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Abstract

Pre-trained contextual language models based on Transformers have been successful in a number of

applications in Natural Language Processing (NLP), and more recently also on Information Retrieval (IR)

problems. In this thesis, we propose the use of sentence-level representations, built through this type

of models, for ad-hoc document ranking problems. We predict relevance scores for long documents

by aggregating sentence-level scores from a pool of candidate sentences, determined by a RoBERTa-

based model. Experiments on the TREC GOV collection show that the proposed approach produces

better results than using simpler ranking function based on sparse representations, like BM25.
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Resumo

Modelos de linguagem contextuais pré-treinados têm sido bem sucedidos em várias aplicações na

área de processamento de linguagem natural, e mais recentemente em problemas de recuperação de

informação. Neste trabalho, propomos o uso de representações de frases, criadas a partir deste tipo

de modelos, para problemas de classificação de documentos. Calculamos a relevância de documentos

extensos com base na agregação das pontuações de frases candidatas, determinadas por um mod-

elo RoBERTa. Experiências na coleção GOV do TREC mostram que a abordagem proposta produz

melhores resultados do que usar funções de classificação mais simples, baseadas em representações

esparsas, como o BM25.
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In this chapter, we introduce the theme of our thesis, formulated with an initial context of the problem

we are facing and the correspondent motivation to solve it. Next, we state the objectives we achieved,

followed by a brief summary, containing a list of the contributions to this area. Finally, we report the

organization of the document.

1.1 Context and Motivation

The use of neural networks in Information Retrieval (IR) and particularly in ad hoc document ranking,

has been expanding in the past years. Pre-trained contextual language models (PLMs), like BERT

(Devlin et al., 2019) and RoBERTa (Liu et al., 2019), are achieving state-of-the-art results on standard

ad-hoc retrieval benchmarks and in a number of related natural language processing (NLP) tasks, such

as question answering and text summarization. These models are being particularly successful be-

cause, unlike traditional context-free language embedding models like word2vec (Mikolov et al., 2013)

or unidirectional language models like ELMo (Peters et al., 2018), BERT creates deep bidirectional

representations. BERT relies on Transformer encoder (Vaswani et al., 2017) to generate a fixed sized

length output representation which has a quadratic computational complexity to the input sequence, so

the input sequence length is usually limited to 512 tokens. Therefore, when applying PLMs to the task

of document ranking, these models often fall short to encode the entirety of most document contents,

since their size usually surpasses the model limit. To avoid this problem, several previous studies predict

relevance scores over sentences or passages, to be then aggregated into a document relevance score

(Dai and Callan, 2019; Yilmaz et al., 2019).

An issue with passage-level approaches is that the majority of ad-hoc collections only have relevance

judgments for the whole document, making it difficult to fine-tune a passage-based ranking model in the

same domain. Given this problem, models based on BERT are mostly fine-tuned on MSMARCO, i.e. a

passage ranking dataset (Nguyen et al., 2016), and to our knowledge no one has yet tried to modify an

ad-hoc collection into a sentence-level weak labeled dataset. Given this problem, one of our motivations

is to initially explore an unsupervised approach based on a RoBERTa model, previously trained for the

task of semantic similarity between sentences. This way, our model can take advantage of the datasets

built with sentence-labeled pairs to be used for document retrieval. Additionally, we consider the findings

from Yang et al. (2019), that demonstrated the increased effectiveness of BERT when fined-tuned on

the same task, to further fine-tune RoBERTa with a weak signaled dataset.

3



1.2 Objectives

In this thesis, we analyse how a RoBERTa model can be utilized in the task of document ranking, based

on a sentence-level approach. We infer a document’s relevance score by aggregating RoBERTa’s scores

of the document’s best sentences. These candidate sentences are chosen based on their position

and query term similarity. Furthermore, we adapt document-level relevance judgments into a weak

supervised sentence-level dataset, in order to create an environment where RoBERTa can be fine-tuned

and tested on the same domain and task. We evaluate the efficiency of our proposal on a TREC ad-hoc

collection, concluding that our approach has promising results, outperforming the function BM25.

1.3 Summary of Contributions

In brief, this thesis has the following contributions:

• The proposal of a document ranking method based on a sentence-level approach, where only the

best sentences are processed by a RoBERTa model, trained for sentence similarity, and aggre-

gated into a final document-level relevance score.

• The creation of a weak-labeled dataset, where the document labels are adapted into sentence-

level weak signals, in order to analyse how RoBERTa benefits from being fine-tuned on the same

domain and task.

• An evaluation of our proposal on a standard ad-hoc TREC collection, showing the effectiveness

of our sentence-level representation approaches, as well as further investigation about the impact

of the following method’s hyper-parameters: the variation of the RoBERTa model; the number of

sentences considered; the number of documents reranked.

1.4 Document Organization

Our document is organized in the following way: In Chapter 1 we introduce the context and motivation

of the proposed theme, followed by the objectives achieved. Chapter 2 presents an explanation of

the fundamental concepts that serve as base to our proposed work, succeeded by the state-of-the-art

approaches accomplished in the same areas of interest. Chapter 3 addresses the methodology and

subsequent architecture of the proposed solution. Chapter 4 describes the experiments made, in order

to test our proposed method. This includes an explanation of our experimental setup, followed by a deep

analysis of the obtained results. Finally, Chapter 5 exposes the main contributions oh this thesis, as well

as a delineation of promising future work that can be developed.
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In this chapter, we present an initial explanation of the fundamental concepts that are the root of our

work, followed by a review of the most relevant research done in connection to our theme.

2.1 Fundamental Concepts

In Subsection 2.1.1, we describe the classic ranking models that serve as baseline functions to our

reranking methods. Subsection 2.1.2 explains the architecture of the most recent pre-trained contextual

language models.

2.1.1 Classic Ranking Models

One type of Information Retrieval (IR) ranking models is based on vector space, where documents and

queries are represented as vectors. Usually, each vector dimension is associated to a term, and if that

term appears in the document, it is represented by a non-zero value weight. There are several ways

to compute these weights. It can be calculated by the Term Frequency (TF), where the more relevant

terms should have a higher number of appearances on the document. It can also be estimated by the

Inverse Document Frequency (IDF), i.e. the most common terms that occur throughout the corpus have

less relevance.

A popular approach, called TF-IDF, calculates the product between the TF and the IDF. This way, the

relevance of a term occurring a high number of times in a document is balanced by the number of times

that term appears in the remaining documents of the corpus. To estimate the final relevance score, we

can compute the cosine similarity between the two vectors.

Another classic type of ranking models are the probabilistic models, which estimate the probability of

a document being relevant to a query. This approach assumes that the documents with higher proba-

bilistic scores should be ranked higher in the ranking list. Okapi BM25 is perhaps the most used ranking

function for search engines, and also the most used baseline method in reranking neural models. Given

a query q and a document D, the BM25 formula is denoted as follows, where f(qi, D) is the term fre-

quency of term qi and |D| is the length of document D. The values k1 and b are free parameters, used

for optimization purposes, usually with k1 ∈ [1.2, 2.0] and b = 0.75.

rel(q,D) =

n∑
i=1

IDF(qi) ·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 ·
(
1− b+ b · |D|

avgdl

) (2.1)

The IDF is the inverse document frequency of term qi, and is calculated by the following expression,

where N is the total number of documents in the collection and n(qi) is the number of documents

containing the term qi.

7



IDF(qi) = log

(
N − n(qi) + 0.5

n(qi) + 0.5
+ 1

)
(2.2)

2.1.2 Bidirectional Encoding Representations from Transformers

Prior to the work of Vaswani et al. (2017), the most common encoders for deep neural ranking models

were based on recurrent or convolutional neural networks. The new architecture Transformers (Vaswani

et al., 2017) is based solely on attention mechanisms. It uses stacked self-attention and point-wise, fully

connected layers for both the encoder and decoder. The encoder-decoder is composed by 6 identical

layers, where each layer has two sub-layers. The first is a multi-head self-attention mechanism, and the

second one is a fully connected feed-forward network. The decoder has an additional third sub-layer,

which performs full head attention over the output of the encoder.

Vaswani et al. (2017) describes an attention function as mapping a query Q and a set of key-valued

pairs (K,V ) to an output. The output is then computed as a weighted sum of the values, where each

value weight is calculated by a compatibility function of the query and the corresponding key. The

attention function is computed by the dot product of the query with all keys, divided by the square root of

the keys dimension dk. This value is given as input to a softmax function, and the correspondent output

is multiplied by the value of each word in the sequence. The attention function is described as follows:

Attention(K,V,D) = softmax

(
Q ·KT

√
dk

)
· V (2.3)

The multi-head attention function allows the model to gather information from different subspaces at

different positions by linearly projecting the queries, keys and values h times with different, learned linear

projections to dq, dk, and dv dimensions, respectively. On each projected version is applied the attention

function in parallel, resulting dv dimensional output values. Finally, the values are concatenated and

projected, resulting in the final values. The multi-head function is described as follows:

MultiHead(K,V,D) = Concat(h1, . . . , hn) ·WO

hi = Attention(Q ·WQ
i ,K ·W

K
i , V ·WV

i )
(2.4)

Devlin et al. (2019) introduced a new pre-trained contextual language model, named BERT. This

model is designed to pre-train deep bidirectional representations from unlabeled text. BERT’s architec-

ture has two main phases: the pre-training and the fine-tuning. In the first one, the model is trained

on unsupervised data for two different tasks. In the last phase, the BERT model is initialized with the

pre-trained parameters, and all of the parameters are fine-tuned with labeled data for a particular down-

stream task. This has the advantage of being a model with an unified architecture across different tasks.

BERT is designed with a multi-layer bidirectional Transformer encoder, based on the work of Vaswani

8



et al. (2017) previously described. In order to handle a variety of tasks, BERT input representation can

hold a single sentence or a pair of sentences in one token sequence. A sequence is referring to the

input token sequence to BERT. The first token is a special classification token, [CLS], that is used

for classification tasks (e.g., the similarity between the two sentences). Thus, for a given token, the

correspondent representation is constructed by the sum of its token, segment and position embeddings.

BERT is pre-trained in two different tasks. The first one is called Masked Language Model, and in

order to train a deep bidirectional model, masks a percentage of tokens at random, and then predict

those masked tokens. The second pre-training task is called Next Sentence Prediction, which prepares

the model for downstream tasks, such as Question Answering or Natural Language Inference. The idea

is to choose two sentences A and B, where 50% of the times B is the actual next sentence that follows

sentence A, and the other 50% a random sentence is chosen from the corpus.

RoBERTa (Liu et al., 2019) is an optimized version of BERT, which fine-tunes a number of hyper-

parameters, such as the learning rate, the number of warmup steps, and the size of the training batches.

However, the biggest improvement comes from extending the pre-training phase to a larger number of

datasets, with varying sizes and domains. Since BERT relies on large quantities of text, the increase of

data size resulted in performance improvements over the downstream tasks.

2.2 Related Work

This section contains the state-of-the-art work of two different fields in IR. Subsection 2.2.1 includes

recent work developed in the area of passage-level relevance ranking. Subsection 2.2.2 contains recent

research about ranking models for the task of document ranking.

2.2.1 Passage-Level Relevance Ranking

In document ranking benchmarks, relevance judgments are almost always associated to the whole doc-

ument, and hence traditional retrieval models calculate relevance scores based on document-level sig-

nals. However, of all the sentences that compose a document, only a select few are perhaps relevant

for a given query. Given the increase of document lengths in full-text collections, Callan (1994) first pro-

posed to consider passage relevance for retrieval tasks. He defined passages by splitting a document

into three different ways: paragraph passages, bounded-paragraph passages, and window passages.

After a document is split into passages, we can obtain passage relevance signals that can be used to

calculate a final document-level relevance score (Liu and Croft, 2002).

More recently, Wu et al. (2019) studied the relation between passage-level relevance and document-

level relevance judgments. They showed that position and query similarity of passages play a significant

role in the determination of document-level relevance. These authors also demonstrated that on the
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THUCNews1 dataset, in average, a relevant document only has 23% of highly relevant passages. In

subsequent work, Wu et al. (2020) proposed a model that uses a passage-level representation based

on a cumulative gain, where the last passage cumulative gain represents the document-level cumulative

gain. Unlike our work, they deal with a dataset with a passage-level ground truth.

In our work, we take into account the aforementioned findings in order to select a pool of candidate

sentences to build a document relevance score. With this approach, we differ from most passage-level

representation models, as we only aggregate the relevance scores of the most relevant sentences. This

reduction of sentences processed by RoBERTa drastically decreases the computational costs.

2.2.2 Neural Ranking Models for IR

There is a large variety of ranking models, including vector space models (e.g., classic TF-IDF), proba-

bilistic models (e.g., BM25 (Robertson et al., 1996)), feature-based learning to rank models (e.g., Lamb-

daMART (Burges, 2010)) and neural ranking models (e.g., DSSM (Huang et al., 2013) or DRMM (Guo

et al., 2016)). However, the contextual capacity of the aforementioned models is much more limited than

a BERT-based model, pre-trained on a large-scale corpus. Recent work has shown that PLMs achieve

state-of-the-art results in many NLP tasks, and also in IR problems (Lin et al., 2020). Nogueira and Cho

(2019) first utilized BERT as a passage reranker, using the MSMARCO passage ranking dataset for

fine-tuning the model. The authors use BERT’s [CLS] vector as input to a single layer neural network, to

obtain a final probability score. In subsequent work, Nogueira et al. (2019) developed a multi-stage doc-

ument ranking architecture with BERT. In the first stage, the top-k0 documents retrieved by a standard

ranking function are reranked by a first BERT model. After that, the top-k1 documents are then reranked

by duoBERT, a second BERT model trained through a pair-wise classification approach. This has the

ability to trade off quality against latency by controlling the number of documents that enter each stage.

Birch (Yilmaz et al., 2019) is another recent approach which started to utilize sentence-level labels,

using BERT to create a document reranker. The authors estimate a document relevance score from

the combination of the document’s original score (e.g., obtained through a model like BM25) with the

aggregation of the top-n most relevant sentences according to BERT. BERT-MaxP (Dai and Callan,

2019) is also a document reranker that instead explores passage-level signals. The authors adopt a

simple passage-level approach by splitting the document into overlapping passages. BERT is then used

to predict the relevance of each passage independently, and the final document score is obtained with

the best passage.

CEDR (MacAvaney et al., 2019) corresponds to a joint approach that incorporates BERT’s vector

representation into existing neural models, such as DRMM. The paper’s method is to use BERT’s [CLS]

vector, benefiting from deep semantic information, as well as individual contextualized token matches.

1http://thuctc.thunlp.org
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PARADE (Li et al., 2020) is an end-to-end document reranking model that aggregates passage-level

representations, overcoming the problem of performing inference over passages independently. The

first step of PARADE is to represent a document as passages. To do so, a sliding window of 150 words

is applied to the document with a stride of 100 words. In the next step, each passage is represented by

BERT’s [CLS] token, built from the concatenation between the query and the passage. In the passage

aggregation phase, all passage representations are concatenated and the resulting vector is given as

input to Transformer (Vaswani et al., 2017) layers, enabling interaction between passages and exploiting

the ordering and dependencies between them. Finally, the [CLS] vector of the last Transformer output

layer is given as input to a single-layer feed-forward network to generate the final document relevance

score. BERT-QE (Zheng et al., 2020) outperforms standard BERT-based models by adding a phase

of contextualized query expansion in their three phased approach. In phase one, a BERT model is

used to re-rank a list of documents based on an unsupervised ranking model. In phase two, the top-kd

documents from the previous phase are selected to return the most relevant chunks of text, to serve as

feedback information. In phase three, the selected chunks are used in combination with the query and

the document to compute a final relevance score. For a deeper understanding about the evolution of

text ranking, Lin et al. (2020) presented an overview on modern techniques.

2.3 Overview

Recent state-of-the-art research shows the importance of considering passage-level relevance for re-

trieval tasks. Pre-trained contextual language models such as BERT achieve state-of-the-art results in

IR benchmarks by benefiting from their deep bidirectional encoding representations. However, since

BERT-based models have a limited number of token capacity, the ranking models started to apply dif-

ferent innovative passage-level approaches to surpass this problem. In the next chapter, we describe a

new sentence-level approach that utilizes the model RoBERTa fine-tuned for sentence similarity tasks.
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In this chapter, we present the proposed method for document ranking using a sentence-level ap-

proach. For a given query q and a document D, we calculate a relevance score rel(q,D) that determines

the importance of document D for the query q. This relevance is performed by aggregating the top-n

best sentence-level scores, obtained by a neural model such as RoBERTa trained on sentence similarity

tasks, (Reimers and Gurevych, 2019) into a document-level score. Figure 3.1 illustrates the general

architecture of our proposal.

Figure 3.1: Illustration of our general document ranking architecture.

3.1 Choosing Candidate Sentences

We do not aim to use the neural ranking model to encode every single sentence in a document. Instead,

we calculate a document relevance score based on a specific pool of candidate sentences, formally

expressed as DP = {S1, . . . , Sn}, where n is the number of sentences. This approach will lead to a sig-

nificant reduction of computational costs, since most documents have a very large number of sentences.

We tested three different approaches to choose a pool of candidate sentences, based on two criteria:

(i) the position of a sentence in the document; or (ii) the number of shared terms between a query and

a sentence.

The approach named FIRST picks the first sentences of a document, exploring the fact that the most

relevant information of a document tends to be near the beginning.

The approach named TERMF contains the sentences that have the highest raw term frequency

score, denoted as follows:

tf(q, S) =
∑
ti∈q

fi,S (3.1)

In the previous expression, fi,S is the raw count of query term ti in sentence S. In the experiments, we

ignored all terms that were either stop words or punctuation.
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Finally, the approach named FIRST+TERMF corresponds to an aggregation of both sets. If the same

sentence is in both groups, that sentence is not repeated and another is chosen from TERMF.

3.2 Creating Sentence Scores

For query q and sentence Si, we use a RoBERTa model to generate a fixed sized vector representation

for both query and sentence. This output is computed by calculating the mean of all vectors produced

for the individual word pieces generated during tokenization, having qavg and savgi , denoted as follows:

qavg = RoBERTa(q) (3.2)

savgi = RoBERTa(Si) (3.3)

Note that we do not use the traditional inference method of selecting the output token [CLS], given

the concatenation of the two strings as input to a RoBERTa cross-encoder. In our experiments, this

setup becomes too expensive because we are dealing with too many possible combination pairs. Since

our focus is to efficiently find the most similar sentences given a query, it can be more beneficial to build

a model properly trained to find semantic similarity between sentences. We follow the work done by

Reimers and Gurevych (2019), which adds a mean-pooling operation to the output of RoBERTa (i.e.,

computing the mean of all output token vectors), in order to derive a fixed sized sentence embedding.

With this approach, the authors designed a bi-encoder that maps each input independently, and then

determines matching scores with the cosine similarity between the two vectors. In our experiments, we

use as base model their version of RoBERTa fine-tuned on the combination of the SNLI (Bowman et al.,

2015) and Multi-Genre NLI (Williams et al., 2018) datasets, and then on the Semantic Textual Search

benchmark (STS-b) (Cer et al., 2017), since this model achieved state-of-the-art results for sentence

similarity tasks.

The relevance score is then obtained by calculating the cosine similarity between the two vectors.

rel(q, Si) = cos(θ) =
qavg · savgi

‖qavg‖ × ‖savgi ‖
(3.4)

In the previous equation, qavg · savgi corresponds to the dot product between the vectors and ‖ ∗ ‖ is the

vector norm.
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3.3 Aggregating Sentence Relevance Scores

Given the pool of sentence relevance scores DPrel
= {rel1, . . . , reln}, we can obtain a document rele-

vance score in three different ways.

Max calculates a document relevance score by choosing the sentence with the highest score.

rel(q,D) = max(rel1, . . . , reln) (3.5)

Sum assumes that all candidate sentences must contribute equally in scoring a document, thus

summing all relevance scores.

rel(q,D) =

n∑
i=1

reli (3.6)

Weighted Mean considers that sentences with a higher query term frequency must have a higher

weight on a document relevance score.

rel(q,D) =

∑n
i=1 wi × reli∑n

i=1 wi
(3.7)

In the previous equation, wi is the raw count of query q terms in the correspondent sentence Si.

3.4 Combining Ranking Systems

Similarly to the work done by Yilmaz et al. (2019), we decided to combine the scores of two ranking

systems (i.e., the initial ranking function and RoBERTa), in order to take advantage of both approaches.

To do so, we used the fusion algorithm named MAPFuse (Lillis et al., 2010) to create a new ranking

system, by combining the document scores given by the baseline ranking function and RoBERTa, with

the help of their correspondent Mean Average Precision (MAP) scores over a held-out set of queries.

The MAPFuse formula is denoted as follows; where S is the set of input systems that returned document

D, MAPs is the MAP score associated with system s, and ps(D) is the position of document D ranked

by system s.

rel(q,D) =
∑
s∈S

MAPs

ps(D)
(3.8)

3.5 Overview

Our goal is to find a document-level relevance score, based on a sentence-level representation approach

of the most important sentences. The first step of our methodology is to choose those sentences. We
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used three different strategies, called FIRST, TERMF, and FIRST+TERMF, based on the position of the

sentence in the document, and on the number of equal terms between the sentence and the query.

Next, the query and each candidate sentence is converted into a fixed size vector of embeddings

by a RoBERTa-based model. This model is built with a bi-encoder and fine-tuned in sentence similarity

tasks. The relevance score between each sentence and the query is calculated through the cosine

similarity between the two vectors. After obtaining all the sentence relevance scores, the following step

is to aggregate them into a final document-level relevance score. To do so, we apply three different

aggregation techniques, called Max, Sum, and Weighted Mean.

Finally, after computing the new ranking system, by reranking the top-n documents, we use the fusion

algorithm MAPFuse to combine RoBERTa’s ranking system with the baseline ranking system, and derive

a new one. The evaluation of our sentence-level ranking architecture is described in the next chapter.
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In this chapter, we report the experimental setup developed in order to test our methodology. This

chapter contains the dataset used, as well as the steps to evaluate, compare, and further fine-tune

our methods. We also show the results obtained, with further analysis on the impact of certain hyper-

parameters in our approaches.

4.1 Experimental Setup

To store and index our collection of documents we used Apache Solr1, which is a well known text search

platform. Considering that the majority of the GOV documents are in the HTML format, we created a

parser to eliminate all document’s unwanted content, like tags and Javascript code.

To split a document into sentences we used an English parser from the Spacy2 library. When choos-

ing the candidate sentences, we set to 10 the total number of sentences for the approaches named

FIRST and TERMF, and 20 for the approach named FIRST+TERMF. These values were tuned based

on a trade-off between sentence pool size and performance. In Section 4.2.3, we further investigate the

variation of performance, given the different number of sentences processed by RoBERTa.

4.1.1 Dataset

We analysed our method with the ad-hoc retrieval collection named GOV3. This is a TREC Web collec-

tion crawled from government websites, with approximately 1.25 million documents. In our experiments,

we used the TREC 2002 Web Topic Distillation topics as test data, and both TREC 2003 and 2004 Web

Track topics as training data. Since we have some queries with only a title and others with title and

description, we have chosen to uniformly use the title only for all queries, having a total of 775 queries.

In average, each document has a much higher number of tokens than RoBERTa can handle, making

GOV a reliable collection to test our hypothesis.

4.1.2 Evaluation Metrics

The evaluation is made with the MAP at cutoff 1000, the Precision at cutoff 10, and the Normalized

Discounted Cumulative Gain (nDCG) at cutoff 1000 and 10. The MAP formula is denoted as follows:

MAP(Q) =

∑Q
q=1 AP(q)

|Q|
(4.1)

In the previous equation, |Q| is the total number of queries and AP(q) is the average precision for query

q, which is calculated as follows:
1https://lucene.apache.org/solr
2https://spacy.io
3http://ir.dcs.gla.ac.uk/test_collections/govinfo.html

21

https://lucene.apache.org/solr
https://spacy.io
http://ir.dcs.gla.ac.uk/test_collections/govinfo.html


AP(q) =

∑n
k=1 P(k)× rel(k)

#RelevantDocuments
(4.2)

In the previous equation, P(k) corresponds to the precision at cutoff k documents and rel(k) is 1 or 0

depending if the document is relevant or non-relevant, respectively.

In turn, the nDCG formula is denoted as follows:

nDCGp =
DCGp

IDCGp
(4.3)

In the previous equation, p is a rank position and IDCGp is the value of DCGp sorted by relevance.

DCGp can be obtained by the following formula:

DCGp =

p∑
i=1

rel(i)

log2(i+ 1)
(4.4)

The reranking threshold was set to 30 for optimal performance. In Section 4.2.4, we validate this

choice by studying how the variation of the number of documents that are reranked affects the overall

performance of our method.

4.1.3 Models Under Comparison and Training Strategies

We compare our RoBERTa models against two traditional baselines, both implemented within Solr.

BM25 is an unsupervised ranking function that scores a document based on the term frequency and

the inverse document frequency, considering the document length as a normalization factor (Robertson

et al., 1996). We set BM25 parameters as default, with k1 = 1.2 and b = 0.75.

BM25+Porter combines BM25 with a stemming algorithm that reduces inflected or derived words to

their root form (Porter, 1980). This baseline also removes stop words with a Solr predefined list.

To check the performance of our baselines, we validate them against the method implemented by

Bennett et al. (2008). These authors reported to have used BM25 tuned with the same parameter

values, also having the text pre-processed with Porter’s algorithm and a stop words list. As shown in

Table 4.1, for all the topic’s years considered, we can see a substantial improvement from pre-processing

the documents with a stemming algorithm and a list of stop words. There is also a slight improvement

from our implementation of BM25+Porter compared with the one made by Bennett et al. (2008) for the

year 2002, which validates our reranking baseline. Given these results, we decided to use the top 1000

documents retrieved by the method BM25+Porter in our reranking methods.

As mentioned previously in Section 3.2, we use a publicly available RoBERTa-Base4 model, already

fine-tuned for sentence similarity. In order to further fine-tune RoBERTa for the GOV dataset, we need to

4https://github.com/UKPLab/sentence-transformers
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2002 Topics 2003 Topics 2004 Topics

Model MAP@1K P@10 MAP@1K P@10 MAP@1K P@10

BM25 0.1617 0.1980 0.0892 0.0680 0.2321 0.0693
BM25+Porter 0.1915 0.2460 0.0858 0.0720 0.2478 0.0707

BM25+Porter (Bennett et al., 2008) 0.1888 0.2420 - - - -

Table 4.1: Results of the different baselines, considering the TREC Web Topics Distillation topics from the years of
2002, 2003, and 2004.

adapt the relevance judgments from documents to sentences. To do so, for each document, we choose

the most relevant sentence from the pool of candidate sentences given by FIRST+TERMF and use that

sentence as an instance. With this approach, we assume that all instances taken from relevant docu-

ments are relevant (i.e., similar to the query title) and all instances taken from non-relevant documents

are non-relevant.

Training is performed on a single GPU GeForce GTX 1080, using a triplet loss where the anchor input

sa is compared to a positive input sp and a negative input sn (i.e., a query is compared to a relevant and

a non-relevant sentence) denoted as:

L =
∑
i∈b

max(‖sai − spi‖ − ‖sai − sni‖+ ε, 0) (4.5)

In the previous equation, b is the batch of training instances, ‖ · ‖ is the Euclidean distance metric, and

ε is a margin. Thus, the model is tuned so that the distance between the query and a relevant sentence

is lower than the distance between the query and a non-relevant sentence.

The training data was constructed by pairing a relevant sentence with a non-relevant one from a

random document that is picked from the top-50 non-relevant documents retrieved by BM25. We also

use data augmentation by repeating each relevant document a total of five times, pairing it with different

negative sentences. We fine-tune the model for 2 epochs with batches of 8 training instances, with a

10% random split between training and development data, having a total of 25200 training instances.

We use the Adam optimizer with a learning rate of 3e-5 and with 10% of training data for warm-up.

4.2 Experimental Results

In this section, we analyse the results of the different sentence-level representations, as well as the

impact of the following questions in our methods:

• How does the number of sentences that is considered affect the performance of our ranking

method?

• Can a different version of RoBERTa improve effectiveness without losing efficiency?
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Single System MAPFuse

Model MAP@1K nDCG@1K P@10 nDCG@10 MAP@1K nDCG@1K P@10 nDCG@10

BM25 0.1617 0.4129 0.1980 0.2440 - - - -
BM25+Porter 0.1915 0.4648 0.2460 0.3049 - - - -
BM25 (Bennett et al., 2008) 0.1888 - 0.2420 - - - - -

RoBERTa (Full Text) 0.1533 0.4322 0.2400 0.2713 0.1911 0.4646 0.2480 0.3074

1. RoBERTaMax 0.1512 0.4286 0.2400 0.2616 0.1887 0.4624 0.2620 0.3124
1. RoBERTaSum 0.1556 0.4354 0.2540 0.2791 0.1857 0.4603 0.2600 0.3094
1. RoBERTaW.Mean 0.1365 0.4182 0.2120 0.2397 0.1827 0.4559 0.2320 0.2884

2. RoBERTaMax 0.1488 0.4333 0.2100 0.2515 0.1838 0.4613 0.2540 0.3062
2. RoBERTaSum 0.1592 0.4337 0.2120 0.2504 0.1815 0.4580 0.2340 0.2888
2. RoBERTaW.Mean 0.1417 0.4181 0.2020 0.2256 0.1815 0.4574 0.2340 0.2867

3. RoBERTaMax 0.1527 0.4299 0.2360 0.2578 0.1891 0.4632 0.2620 0.3120
3. RoBERTaSum 0.1655 0.4418 0.2200 0.2664 0.1898 0.4657 0.2500 0.3117
3. RoBERTaW.Mean 0.1504 0.4285 0.2060 0.2383 0.1840 0.4584 0.2300 0.2872

3. RoBERTaMax (fine-tuned) 0.1516 0.4394 0.2240 0.2732 0.1884 0.4663 0.2660 0.3234

Table 4.2: Results of different models on the GOV dataset, considering the TREC 2002 Web Topic Distillation topics.
The rows labeled with 1. 2. or 3. correspond to the FIRST, TERMF, and FIRST+TERMF approaches,
respectively. Best results are in bold.

• How does the number of documents that are reranked by RoBERTa affect the performance of our

ranking method?

4.2.1 Different Sentence-Level Representations

The ranking performance of our methods is shown in Tables 4.2, 4.3, and 4.4, corresponding to the

2002, 2003, and 2004 topic distillation years, respectively. We can see that when RoBERTa uses the

document’s full content, cut to the maximum number of word pieces that are allowed, it under-performs

over some sentence-level versions for all the different topic distillation years. This confirms that for

long-sized documents, RoBERTa benefits from a sentence-level representation approach. We can also

conclude that almost all the MAPFuse results, given by the fusion between a RoBERTa reranking system

and the BM25+Porter baseline ranking system, perform better than it’s systems evaluated separately. In

Table 4.3, we can observe that the best approach of the 2003 set, 3. RoBERTaMax, already surpasses the

results given by BM25+Porter, suggesting that, in some cases, our RoBERTa approach can outperform

the baseline ranking function without the need of a fusion algorithm.

When analysing the different methods for choosing the candidate sentences, FIRST+TERMF yields

the best results for the 2002 and 2003 sets, while FIRST is the most efficient approach for the 2004 set.

This shows that the first sentences are essential to consider in a sentence-level approach, confirming

that relevant information tends to be near the top of a document. On the other hand, the approach

TERMF gave the worst results in all three experiments, reinforcing the importance of considering the

document’s first sentences, even if they have a low number of terms in common with the query.

As for the score aggregation methods, we can see that the most effective relevance score aggrega-
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Single System MAPFuse

Model MAP@1K nDCG@1K P@10 nDCG@10 MAP@1K nDCG@1K P@10 nDCG@10

BM25 0.0892 0.2897 0.0680 0.1161 - - - -
BM25+Porter 0.0858 0.2935 0.0720 0.1123 - - - -

RoBERTa (Full Text) 0.0889 0.3014 0.0800 0.1194 0.0945 0.3028 0.0880 0.1292

1. RoBERTaMax 0.0998 0.3056 0.0840 0.1316 0.0866 0.2957 0.0800 0.1158
1. RoBERTaSum 0.0855 0.2968 0.0880 0.1242 0.0924 0.3018 0.0900 0.1286
1. RoBERTaW.Mean 0.0854 0.2934 0.0700 0.1105 0.0930 0.2980 0.0820 0.1198

2. RoBERTaMax 0.0708 0.2801 0.0640 0.0896 0.0754 0.2842 0.0840 0.1075
2. RoBERTaSum 0.0910 0.3008 0.0740 0.1205 0.0818 0.2916 0.0760 0.1124
2. RoBERTaW.Mean 0.0827 0.2931 0.0700 0.1092 0.0846 0.2935 0.0860 0.1201

3. RoBERTaMax 0.1092 0.3115 0.0900 0.1374 0.1019 0.3073 0.0840 0.1300
3. RoBERTaSum 0.0975 0.3021 0.0700 0.1151 0.0880 0.2963 0.0760 0.1142
3. RoBERTaW.Mean 0.0936 0.3056 0.0720 0.1261 0.0918 0.3012 0.0800 0.1247

Table 4.3: Results of different models on the GOV dataset, considering the TREC 2003 Web Topic Distillation topics.
The rows labeled with 1. 2. or 3. correspond to the FIRST, TERMF, and FIRST+TERMF approaches,
respectively. Best results are in bold.

tion method is Sum for the 2002 set and Max for the 2003 and 2004 sets. This suggests that in particular

topics it is more advantageous to predict a relevance score based equally on multiple sentences and

in others to use the single most relevant sentence. Weighted Mean had always lower results than the

other two methods, which is perhaps due to the fact that the first sentences in a document tend to be

somewhat equally relevant. Also, BERT based models rely on contextual semantic information to predict

it’s embeddings, meaning that a high term frequency between query and sentence does not necessarily

translate on a high similarity. In terms of the improvements of the nDCG@10 metric, the 2002 set had a

maximum improvement of 2.5% over the initial baseline ranker BM25+Porter, while the 2003 set had an

increase of 22.4% and the 2004 set improved 11.8%.

The best results regarding the RoBERTa’s model fine-tuned on the GOV weak labeled dataset can

be seen in the last row of Table 4.2. We can verify that this model achieved the best value of nDCG@10,

improving 6.1% over BM25+Porter, while the other metrics are in line with the previous best RoBERTa

method. We only reported the most effective approach, which was the FIRST+TERMF sentence pool

together with Max aggregation. This was because, when building the dataset, we chose only the best

sentence from the document’s pool of sentences given by FIRST+TERMF.

4.2.2 Different RoBERTa Models

In this section, we analyse the effectiveness and efficiency of our model compared with RoBERTa-Large,

a more robust version of RoBERTa, as well as against a DistilRoBERTa model trained on the MSMARCO

dataset. Although approaches based on Transformer models such as RoBERTa have achieved state-of-

the-art results, they are computationally expensive. We need to consider that the ranking system will be

applied in real time search engines and thus it is necessary to have an efficient architecture.
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Single System MAPFuse

Model MAP@1K nDCG@1K P@10 nDCG@10 MAP@1K nDCG@1K P@10 nDCG@10

BM25 0.2321 0.3943 0.0693 0.2746 - - - -
BM25+Porter 0.2478 0.4057 0.0707 0.2914 - - - -

RoBERTa (Full Text) 0.2079 0.3741 0.0702 0.2532 0.2498 0.4091 0.0782 0.3035

1. RoBERTaMax 0.2375 0.4011 0.0716 0.2837 0.2736 0.4286 0.0800 0.3257
1. RoBERTaSum 0.2134 0.3785 0.0707 0.2592 0.2662 0.4226 0.0769 0.3162
1. RoBERTaW.Mean 0.2037 0.3705 0.0618 0.2429 0.2640 0.4196 0.0724 0.3059

2. RoBERTaMax 0.1898 0.3637 0.0627 0.2329 0.2591 0.4152 0.0738 0.3026
2. RoBERTaSum 0.1914 0.3568 0.0551 0.2217 0.2567 0.4123 0.0680 0.2931
2. RoBERTaW.Mean 0.2047 0.3699 0.0591 0.2419 0.2574 0.4129 0.0724 0.2993

3. RoBERTaMax 0.2271 0.3953 0.0764 0.2827 0.2590 0.4173 0.0787 0.3145
3. RoBERTaSum 0.1765 0.3475 0.0609 0.2179 0.2455 0.4044 0.0724 0.2892
3. RoBERTaW.Mean 0.1669 0.3410 0.0631 0.2131 0.2505 0.4090 0.0724 0.2967

Table 4.4: Results of different models on the GOV dataset, considering the TREC 2004 Web Topic Distillation topics.
The rows labeled with 1. 2. or 3. correspond to the FIRST, TERMF, and FIRST+TERMF approaches,
respectively. Best results are in bold.

In Table 4.5, we have the sizes of the models that were considered, as well as their correspon-

dent inference time over a document. The inference time estimates in seconds the encoding of the

query and each sentence, plus the computation of the cosine similarity between them. RoBERTa-Large

takes approximately 119% more computational time than RoBERTa-Base, while the distilled version of

RoBERTa-Base is 36% more time efficient.

Table 4.6 shows the results achieved by the best methods for the three different models. Regarding

the results of RoBERTa-Large, we can see that with no system fusion there is an increase of performance

for all it’s methods. This fact suggests that when we only consider the scores of RoBERTa, the model

with the biggest size tends to perform better. For the MAPFuse results, RoBERTa-Large has better

results than RoBERTa-Base when using the Max aggregation method, but performs worse regarding

the Sum aggregation method. Overall, we can conclude that for a bigger RoBERTa version, a loss in

efficiency does not necessarily translate in a significant improvement of effectiveness.

As for DistilRoBERTa-Base, we wanted to investigate if a distilled version of RoBERTa-Base, fine-

tuned on the MSMARCO dataset could bring performance improvements. With this experiment, we are

trying to see if there are significant differences when RoBERTa is trained on a similar ranking task in-

stead of a semantic task. We can see in Table 4.6 that DistilRoBERTa has promising results given a

single system, beating the other two models. However, it does not achieve considerable improvements

over the best methods. Overall, DistilRoBERTa gives a sense that it can be a possible option to ex-

plore the model’s fine-tuning phase on a passage-level dataset, given the advantage of decreasing the

computational costs.
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Model # Layers # Layer Size # Parameters Inference Time
(s / doc)

RoBERTa-Large 24 1024 355M 0.10
RoBERTa-Base 12 768 125M 0.05
DistilRoBERTa-Base 6 768 82M 0.03

Table 4.5: Different versions of RoBERTa, compared in terms of size and computational time. Inference time over
a document is estimated considering the use of the first 10 sentences.

Single System MAPFuse

Model MAP@1K nDCG@1K P@10 nDCG@10 MAP@1K nDCG@1K P@10 nDCG@10

1. RoBERTa-LargeMax 0.1550 0.4327 0.2500 0.2723 0.1871 0.4646 0.2660 0.3197
1. RoBERTa-BaseMax 0.1512 0.4286 0.2400 0.2616 0.1800 0.4565 0.2660 0.3130
1. DistilRoBERTa-BaseMax 0.1546 0.4368 0.2400 0.2808 0.1784 0.4617 0.2580 0.3187

1. RoBERTa-LargeSum 0.1563 0.4355 0.2520 0.2815 0.1844 0.4718 0.2620 0.3308
1. RoBERTa-BaseSum 0.1556 0.4354 0.2540 0.2791 0.1879 0.4736 0.2660 0.3322
1. DistilRoBERTa-BaseSum 0.1602 0.4421 0.2320 0.2829 0.1870 0.4619 0.2640 0.3181

3. RoBERTa-LargeMax 0.1554 0.4322 0.2600 0.2742 0.1738 0.4647 0.2660 0.3202
3. RoBERTa-BaseMax 0.1527 0.4299 0.2360 0.2578 0.1803 0.4610 0.2560 0.3086
3. DistilRoBERTa-BaseMax 0.1615 0.4512 0.2420 0.2997 0.1927 0.4710 0.2600 0.3317

3. RoBERTa-LargeSum 0.1582 0.4375 0.2320 0.2704 0.1798 0.4671 0.2580 0.3198
3. RoBERTa-BaseSum 0.1655 0.4418 0.2200 0.2664 0.1938 0.4702 0.2620 0.3243
3. DistilRoBERTa-BaseSum 0.1733 0.4474 0.2320 0.2826 0.1924 0.4670 0.2680 0.3276

Table 4.6: Comparison between the results of different RoBERTa versions. The rows labeled with 1. or 3. corre-
spond to the FIRST and FIRST+TERMF approaches, respectively. Best results are in bold.

4.2.3 Number of Considered Sentences

One important hyper-parameter is the number of sentences considered when choosing the document’s

candidate sentences. In this section, we analyse how the variation of sentences processed by RoBERTa

influences the reranking effectiveness of our approaches.

Figure 4.1 shows the results in terms of nDCG@10, with the number of sentences varying from 8 to

64. It would be expected for RoBERTa to increase its performance with a larger amount of document

data preserved. However, we can see that for RoBERTaSum and RoBERTaW.Mean the more sentences

are considered, the less effective the model becomes. On the other hand, RoBERTaMax, whose score

aggregation method only considers the single most relevant sentence, has stable results with the in-

crease in the number of sentences. These results validate our hypothesis that it is beneficial, not only

in terms of computational costs but also performance-wise, to select a pool of the document’s most

relevant sentences to be processed by RoBERTa.

4.2.4 Number of Reranked Documents

The majority of neural ranking methods apply their model to the top-n documents retrieved by an initial

ranking function. In our case, RoBERTa reranks the top documents retrieved by the baseline named
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Figure 4.1: Results using 1. RoBERTa for different numbers of candidate sentences. nDCG@10 is reported.

BM25+Porter, which is described in Section 4.1.3. In this section, we investigate the impact of varying

the number of documents that are reranked by our method.

Figure 4.2 shows the performance of RoBERTaSum with the FIRST method, with the number of docu-

ments reranked by RoBERTa varying from 10 to 100. We can see that nDCG@10 has its highest value

at 20 reranked documents, and then slowly decreases with the increase of documents. P@10 reaches

its maximum value at 20, 30, and 50 documents and then falls when considering 100 documents. We

can conclude that from 50 reranked documents the model is not capable of increasing its performance.

Considering these values and the trade-off between effectiveness and computational cost, we decided

to fix the reranking threshold to 30 documents in our experiments.

4.3 Overview

We started our experimental setup by choosing the text search platform Apache Solr to store and index

the collection of documents we are analysing. This collection is named GOV and it contains approxi-

mately 1.25 million documents extracted from government websites. To evaluate our methods, we chose

the metrics MAP at cutoff 1000, the Precision at cutoff 10, and the nDCG at cutoff 1000 and 10. Our

RoBERTa models reranked the top 1000 documents from the baseline ranking function BM25, with text

pre-processed with Porter’s algorithm and a list of stop words. These metrics will evaluate three different

distillation topics from the years 2002, 2003, and 2004. We also describe the fine-tuning process of the

RoBERTa model, in order to test if we could have performance improvements by further fine-tuning the

model in a weak-labeled dataset from the same domain.

In the experimental results we concluded that, for all the different experiments, our methods beat

the original baseline BM25+Porter, and also beat the method in which all the document’s content is
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Figure 4.2: Results using 1. RoBERTaSum for different numbers of reranked documents. nDCG@10 and P@10 are
reported.

used (i.e., using the full token capacity of RoBERTa). Furthermore, we concluded that in some cases,

the reranking system RoBERTa achieved better results than the baseline, without the use of the fusion

algorithm MAPFuse. In further investigation, we analysed the behaviour of our best methods when we

changed some of their hyper-parameters: the type of RoBERTa model used, the number of considered

sentences, and the number of documents reranked. The next chapter will conclude this thesis by report-

ing the main contributions achieved by this work, follows by a description of possible ways to improve

the results that were previously mentioned.
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This chapter closes our thesis, with a description of the contributions made with this thesis and a

discussion of the possible paths to further develop our work.

5.1 Main Contributions

We proposed a sentence-level approach based on RoBERTa for the task of document ranking, analysing

its performance on the TREC ad-hoc collection named GOV. First, we pick a pool of candidate sentences

to be processed by RoBERTa so as to generate relevance scores, and then aggregate the scores a final

document-level relevance score. We studied different ways of choosing the best candidate sentences,

as well as different aggregation methods. Additionally, we investigated the importance of creating an

environment where the model is fine-tuned on the same domain and task, by converting the document-

level labels into weak sentence-based signals. Experimental results show that our approach beats the

baseline ranking function BM25 and has better results than using a document-level model architecture.

5.2 Future Work

For further work, we believe it would be interesting to test this method with different collections, that

have already been used with recent state-of-the-art models, so that we have a more clear comparison

between methods. Since our method is fully based on a sentence-level approach, from the training

phase to the inference phase, we could compare it with a similar method, based on a passage-level

approach. Also, we only tested a select few relevance score aggregation methods. More advanced

functions can be implemented to further improve the results, including the use of rank aggregation

methods such as MAPFuse to combine the scores from the candidate sentences. As for the model

training phase, more elaborate strategies to choose the representative sentences for each document is

also a promising path for future work.
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