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Abstract—There is currently widespread interest in the
development of groups of autonomous underwater vehicles for
ocean exploration. This calls for the deployment of robots that
can act in cooperation by exchanging data over communication
networks. For this purpose, acoustic networks have been so far
the choice par excellence. However, for operations involving
vehicles operating at close range, there is currently a flurry
of activity on the use of optical-based communication systems,
capable of higher transmission rates. As a result, the goal
of this work is to make optical communications viable and
to use both communication technologies during underwater
cooperative missions. Motivated by this goal, the first part of
this work proposes single vehicle motion control algorithms.
Namely, an inner-loop heading controller that accepts references
from an outer-loop path following controller designed at the
kinematic level. Simulations with the MEDUSA-class vehicles
illustrate the implementation of the proposed control systems,
for different path following approaches. The second part of
this work is dedicated to cooperative motion control issues. A
coordination controller is designed and discrete communications
among the vehicles are considered, taking into account the
acoustic communications and triggering mechanisms that reflect
their limitations. Lastly, the third part of the work proposes
an algorithm to make optical communications viable, which
ultimately boils down to achieving optical beam alignment
between a pair of cooperative agents. The proposed algorithm
is illustrated by simulation results that show optical beam
alignment being reached for a pair of vehicles in a cooperative
formation.
Keywords: Motion Control, Path Following, Cooperative
Control, Autonomous Underwater Vehicles

I. INTRODUCTION

Acoustic systems are the pervasive solution to communica-
tions, but their price is quite high and transmissions rates low.
For this reason, there is currently considerable interest in the
possible use of optical modems, as affordable units with the
capability to transmit data at higher rates. Optical communica-
tion systems have, however, narrow directivity patterns, posing
a challenge to achieve optical beam alignment while steering
the vehicles.

As a result, the emphasis of this work lies in the de-
velopment of algorithms for cooperative maneuvers, using
data exchanged among the vehicles, by resorting to acoustic
modems, when the vehicles are distant from each other and
to broadcast their coordination states, and optical modems,
when the vehicles operate at close range. In the latter case, the

optical modems can also serve the dual purpose of transferring
large volumes of data from one vehicle to another.

A. Topic Overview

The strategy to achieve single vehicle motion control starts
with designing an inner-loop heading controller by state-
feedback. In succession, an outer-loop for path following is
designed, which will feed a reference to the inner-loop. This
inner-outer loop decoupling strategy is commonly adopted as
it offers flexibility. All of this is done considering a linearised
system of the MEDUSA vehicle at a particular speed of
operation, and designing a controller that is then applied, with
proper modifications, to the original nonlinear system.

The adopted approach to achieve path following is based
on the kinematics of the problem. Lyapunov’s direct method
is used to design an outer-loop path following controller by
formulating appropriate control laws that make the Lyapunov
function decrease. This method is explored by Micaelli and
Samson in [1], having been improved by L. Lapierre in [2],
in order to solve an initial condition constraint and to prove
global convergence. The basic reasoning is to control explicitly
the rate of progression of a “virtual target” to be tracked along
the path, making the vehicle’s path converge to the target’s
path.

Regarding cooperative motion control, a certain vehicle
formation, during a cooperative mission, is achieved with a
coordination controller that must be designed, which relies
on a communication network scheme represented by a graph.
This controller drives a certain coordination error to zero. It is
important to consider [3] to address the consensus problem and
look into [4] to establish and model discrete communications,
which introduce the concept of triggering functions and allow
the broadcast of the agents’ coordination states to take place
at discrete instants of time.

Lastly, having achieved single and multiple vehicle motion
control, the optical beam alignment problem is addressed,
between a pair of optical communication modems mounted on
the vehicles. The proposed mechanism considers two phases:
one where a rough alignment of the beams is reached, followed
by another where a refinement is introduced. The reasoning
behind the refinement phase is to apply a correction term that
sweeps a neighborhood of the roughly determined alignment
angles. These angles are computed by resorting to local
information that each vehicle has access to, useful to determine
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estimates of where the neighbor and vehicle itself are on top
of the path that is being followed.

II. AUTONOMOUS UNDERWATER VEHICLE MODEL

This section presents the simplified model of an AUV for
planar motion, with 3 degrees of freedom (DOF). Further
simplifications are done taking into consideration the specifics
of the MEDUSA class of autonomous underwater vehicles.
This is an essential step towards designing and testing a
controller for the system that we wish to control. This section
is based on previous work, namely [5].

A. Notation

The pose of an AUV in 3D space can be completely
described using six variables. These variables, and the two
relevant reference frames, are shown in figure 1.

Fig. 1: AUV reference frames and notation. (source: [6])

The body-fixed reference frame is represented by {B} and
the inertial reference frame is represented by {I}. The body
frame is fixed to the vehicle’s centre of mass, with the principal
axes of inertia coincident with the body axes xB , yB , zB .
With the inertial frame {I} fixed somewhere in the world, it
is possible to describe the pose of the vehicle relatively to this
frame.

Now that the frames have been established, the definition
of the notation used to express the pose of the vehicle, as well
as its velocities, forces, and torques is as follows:
• position of {B} expressed in {I}: η1 = [x, y, z]T ;
• orientation of {B}, in Euler-angles, with respect to {I}:
η2 = [φ, θ, ψ]T ;

• linear velocity of {B} with respect to {I}, expressed in
{B}: ν1 = [u, v, w]T ;

• angular velocity of {B} with respect to {I}, expressed
in {B}: ν2 = [p, q, r]T ;

• forces acting on the vehicle, expressed in {B}: τ 1 =
[X,Y, Z]T ;

• moments acting on the vehicle, expressed in {B}: τ 2 =
[K,M,N ]T .

B. Simplified Kinematic Model

For a planar motion 3 DOF model, let p = [x, y]T denote
the inertial position vector and v = [u, v]T denote the linear
velocity vector, in the body-fixed coordinates, the kinematic
model can be expressed as{

ẋ = u cos(ψ)− v sin(ψ)
ẏ = u sin(ψ) + v cos(ψ)

. (1)

In reality, the sway linear velocity v is expensive to measure.
Usually, for the type of AUV to be used, v takes small values,
therefore it can be neglected without affecting much the end
results. As a result, this simplification yields the following
model: {

ẋ = u cos(ψ)
ẏ = u sin(ψ)

. (2)

C. Simplified Dynamic Model

Likewise, regarding a 3 DOF simplification for planar
motion, the dynamic model can be expressed as

muu̇−mvvr + duu = τu
mv v̇ +muur + dvv = τv
mr ṙ −muvuv + drr = τr

, (3)

where the parameters that describe the dynamics are given by

mu = m−Xu̇ du = −Xu −Xu|u||u|
mv = m− Yv̇ dv = −Yv − Yuv||v|
mr = Iz −Nṙ dr = −Nr −Nr|r||r|
muv = mu −mv

. (4)

This model can be further simplified if one desires to neglect
the sway linear velocity, v, as well.

The next section will take into consideration the specifics
of the MEDUSA class of autonomous underwater vehicles, to
yield the final models for this specific type of vehicle.

D. MEDUSA-class Vehicles

The MEDUSA-class vehicles have two thrusters arranged
symmetrically relatively to the xOz plane, with the direction
of x. These thrusters can operate in common mode, moving the
vehicle forward or backwards, or in differential mode, allowing
the vehicle to turn around its z-axis. The diver version of the
vehicles has two additional thrusters aligned with the z-axis,
allowing for heave control.

Having described the MEDUSA-class vehicles’ thrusters, it
is possible to define

τu = Fs + Fp

τr = l (Fs − Fp)
, (5)

where Fs and Fp are the force produced by the starboard
thruster and the force produced by the portside thruster,
respectively. Moreover, l = 0.15 m, for a MEDUSA vehicle.
On top of this, there are no actuators to control the sway, this
means that τv = 0.

The most recent model parameters being used are defined
in the following table:

m = 17.0 kg Iz = 1 kg·m2

Xu̇ = −20 kg Yv̇ = −30 kg Nṙ = −8.69 kg·m2

Xu = −0.2 kg/s Yv = −50 kg/s Nr = −4.14 kg·m/s

X|u|u = −25 kg/m Y|v|v = −0.01 kg/m N|r|r = −6.23 kg·m

TABLE I: Model parameters for the MEDUSA-class vehicle.
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III. HEADING CONTROL

This section addresses the design of a heading controller for
the vehicle. For this purpose, a state-space representation of
the vehicle’s model will be adopted, based on the previously
obtained simplified models.

The system to be controlled is nonlinear. For this reason, a
linearisation about an equilibrium point can be performed, in
order to apply the Linear Quadratic Regulator (LQR) method
to control the vehicle’s heading using state feedback.

A. State-Space Model

Assuming that a system has n states, p inputs and q outputs,
a state-space representation is given by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
.

In this case, the state vector is given by x = [v, r, ψ]T

(n = 3) and the input is u = τr (p = 1). Since the yaw angle
is to be controlled, the output is y = ψ (q = 1), assuming
the notation simplification: x(t) = x, u(t) = u and y(t) = y.
Moreover, A ∈ Rn×n is the state matrix, B ∈ Rn×p is the
input matrix, C ∈ Rq×n is the output matrix and finally, in
this case, the system doesn’t have a direct feedthrough, so
D ∈ Rq×p is a zero matrix.

The linearisation is to be performed for a constant linear
velocity of operation u∗ = 0.5 m/s, x̄ = [0, 0, 0]T , and the
input ū = 0. This is a reasonable approximation because the
side-slip and the rotation speeds are small with these vehicles.

By isolating the state variables and neglecting the sway
linear velocity v, it is possible to obtain the following model

ṙ = − dr
mr

r +
τr
mr

ψ̇ = r

. (6)

The linearisation is defined as

A =

[
∂ṙ
∂r

∂ṙ
∂ψ

∂ψ̇
∂r

∂ψ̇
∂ψ

]
x=x̄
u=ū

B =

[
∂ṙ
∂τr
∂ψ̇
∂τr

]
x=x̄
u=ū

. (7)

The resultant state-space model is[
ṙ

ψ̇

]
=

[
Nr

mr
0

1 0

] [
r
ψ

]
+

[
1
mr

0

]
u(t)

y(t) =
[

0 1
] [ r

ψ

] . (8)

B. Linear Quadratic Regulator

The control objective is to find, among the class of admis-
sible control laws, the one which minimizes the cost criterion

J =

∫ ∞
t=0

[
x(t)TQx(t) + u(t)TRu(t)

]
dt, (9)

where Q ∈ Rn×n penalises the state error and R ∈ Rp×p
penalises the control effort. To ensure that the control problem

is well-posed, one has to verify that the pair (A,B) is stabi-
lizable and the pair (A,

√
Q) is detectable. If Q = CTC, for

some matrix C, it is shown in [7] that (A,
√
Q) is detectable

if and only if (A,C) is detectable, under the assumption
that Q is a positive semi-definite matrix, thus having only
one positive semi-definite square root [8, Theorem 7.2.6].
Considering Q = CTC, the cost criterion penalises the energy
of the state for a virtual output, given by y = Cx, as follows:

J =

∫ ∞
t=0

[
y(t)T y(t) + u(t)TRu(t)

]
dt

=

∫ ∞
t=0

[
x(t)TCTCx(t) + u(t)TRu(t)

]
dt.

(10)

If the detectability and stabilizability assumptions are verified,
there exists a unique stabilizable solution to the LQR problem,
given by the state feedback control:

u(t) = −Kx(t), (11)

where the gain vector K ∈ Rn×1 satisfies

K = R−1BTP, (12)

and P ≥ 0 is a unique solution to the continuous time
Algebraic Ricatti Equation:

ATP + PA− PBR−1BTP +Q = 0, (13)

which is used to solve the LQR optimal control problem.
The challenge of designing a LQR controller lies in finding

appropriate weighting matrices Q and R. This implies an
iterative process of weight tuning. A first good iteration for the
Q matrix is given by the Bryson’s rule, where the Q weights
are initially set with the inverse of the maximum accepted
value of the square of each state variable, denoted x2

max.
This concludes the definition of the state feedback control

law u(t) = −Kx(t).

C. Integral Effect and Anti-Windup

To complete the design of the heading controller, an in-
tegral effect can be added in order to reject constant distur-
bances (constant external inputs affecting the command of the
thrusters). To achieve this, one has to consider an additional
integrator placed before the disturbance, thus, integrating the
error with respect to time.

Adding this effect implies the addition of ε to the state
vector, as a state variable with a corresponding gain in the K
vector. The previous state-space model is, therefore, adapted
taking into account the dynamics of ε, given by ε̇ = ψref −ψ.

The block diagram of the controlled system with integral
effect is shown in figure 2.

It is important to adopt an anti-windup design that stops
integrating the error once the input saturates. The anti-windup
scheme should prevent the divergence of the integral error
when the control cannot keep up with the reference, maintain-
ing the integral errors “small” (avoids error buildup), defined
as

uaw =

∫
Kε [e+Kaw(sat(u)− u)] dt. (14)
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Fig. 2: Block diagram of the controlled system with integral
effect.

The issue now is that, for the anti-windup scheme to be
implemented and produce a quick action, the integrator must
be right next to the plant. More importantly, placing the
integrator next to the plant results in a Bumpless Transfer
method.

In order to accomplish this, one can look into the theory
presented in the paper [9]. This paper proves that it is possible
to place the integrator after the state feedback through the gain
vector K, by first differentiating the state, while preserving the
closed-loop eigenvalues as well as the input-output properties
of the original linear closed-loop system locally. Therefore, the
new configuration represented in figure 3 is proven possible.

Fig. 3: Anti-windup design with integral effect next to the
plant.

IV. PATH FOLLOWING

This section addresses the design of an outer-loop that can
generate yaw angle references knowing the path and making
use of the vehicle kinematics. The goal is to make the vehicle
converge to and follow the path at a desired speed, that can
be path dependent.

This suggests that an inner-outer loop decoupling strategy be
implemented in order to control the motion of a single vehicle,
designing an outer-loop path following controller based on the
vehicle kinematics.

A. Outer-Loop Control

The proposed path following approach uses Lyapunov’s di-
rect method to design the outer-loop path following controller.
This is done by proposing the virtual control laws that make
the Lyapunov function decrease, also proving stability.

This approach is originally tackled by Micaelli and Samson
in [1], however, only local convergence of the vehicle’s path
to the desired one is proven, due to a stringent initial condition
constraint. L. Lapierre et al. [2] improves upon the previous
work, by controlling explicitly the rate of progression of a

“virtual target” to be tracked along the path, making the
vehicle’s path converge to the target’s and resorting to a Serret-
Frenet frame.

The path following configuration is represented in figure 4.
The position of the vehicle is represented by the centre of mass
M , with coordinates [s1, y1]T in the frame {T}, and [X,Y ]T

in the fixed inertial frame {I}. The signed curvilinear abscissa
of P along the path is denoted s, which is associated with the
Serret-Frenet frame {T}.

𝑥

𝑦

{𝐼}

𝑥𝐵

𝜓

𝜃𝑐
𝑃

{𝑇}

𝑛 𝑚

𝑦1

{𝐶}

𝑂

𝑠1

𝑀

Fig. 4: Configuration for the L. Lapierre’s guidance method.

Let the rotation matrix from {I} to {T} be expressed as

RTI

(π
2
− β

)
=

 sin
(
π
2 − β

)
cos
(
π
2 − β

)
0

cos
(
π
2 − β

)
− sin

(
π
2 − β

)
0

0 0 1

 ,
(15)

parametrized locally by the angle β, considering that θc =
π/2− β. A classical law of mechanics gives

[
d
−−→
OM

dt

]
I

=

[
d
−−→
OP

dt

]
I

+

[
d
−−→
PM

dt

]
T

+ (−→wc ×
−−→
PM), (16)

with

[
−−→
OM]I =

 X
Y
0

 , [
−→
OP]I =

 s
0
0

 , [
−−→
PM]T =

 s1

y1

0

 ,
(17)

and

~wc ×
−−→
PM =

 0
0

β̇ = cc(s)ṡ

×
 s1

y1

0

 =

 −cc(s)ṡy1

cs(s)ṡs1

0

 ,
(18)

where [~wc]I is the rotation velocity vector of frame {T} with
respect to {I} and cc(s) is the path’s curvature at {T}, one
gets

RTI

(π
2
− β

) Ẋ

Ẏ
0

 =

 ṡ [1− cc(s)y1] + ṡ1

ẏ1 + cc(s)ṡs1

0

 . (19)
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Solving for ṡ1 and ẏ1, recalling the simplified kinematic model
of the vehicle and introducing the variable θ = ψ − β, yields
the kinematic model of the vehicle in the (s1, y1) coordinates
given by 

ṡ1 = −ṡ (1− ccy1) + u cos(θ)
ẏ1 = −ccṡs1 − u sin(θ)

θ̇ = r − ccṡ
, (20)

where r = ψ̇.
The outer-loop control objective is to ultimately drive θ to

zero, so that the vehicle orients itself with the trajectory, and
to drive the cross-track error y1 to zero, so that the vehicle
converges to the path.

Using a nonlinear controller design strategy based on the
kinematic model, the control objectives can be embodied in a
Lyapunov candidate function

V1 =
1

2

(
s2

1 + y2
1

)
+

1

2γ
(θ − δ (y1, u))

2
, (21)

where it is assumed that
A.1: δ(0, u) = 0.
A.2: y1u sin δ (y1, u) ≥ 0,∀y∀u.
A.3: limt→∞ u(t) 6= 0.

Letting the ideal kinematic control laws for s and θ, given
by the authors of [2], be defined as

ṡ = u cos θ + k1s1

θ̇ = δ̇ + γy1u
sin θ−sin δ

θ−δ − k2(θ − δ) , (22)

where k1 and k2 are positive gains. Then,

V̇1 = −k1s
2
1 − y1u sin δ − k2

(θ − δ)2

γ
≤ 0, (23)

where the second term, y1u sin δ, respects the inequality
through assumption A.2. As a result, these control laws can
be used to achieve the convergence of the vehicle to the path
at a desired speed, hence accomplishing path following.

Given that ultimately the vehicle is steered by receiving
values of r = ψ̇ and recalling (20),

r = θ̇ + ccṡ

= δ̇ + γy1u
sin θ − sin δ

θ − δ
− k2(θ − δ) + ccṡ.

(24)

The choice of the δ(y1, u) function is instrumental in
shaping the transient manoeuvrers during the path approach
phase. Looking again into the references [1] and [2], it is
recommended the usage of

δ (y1, u) = θa tanh (kδy1u) , (25)

where 0 < θa < π/2, kδ is an arbitrary positive gain and
δ(y1, u) is differentiable with respect to u at u = 0.

With properly defined path parametrization, one can obtain
measures of (s1, y1), cc(s) and θc (or β = π/2 − θc) to
the aforementioned virtual control laws and achieve path
following.

B. Path Following with Ocean Currents

The previous path following approach gives yaw rate, r,
references to the inner-loop, instead of yaw angle, ψ, refer-
ences. If ocean currents are to be taken into consideration,
the previous outer-loop control laws must be adapted to
both consider the ocean currents and to output yaw angle ψ
references.

The reasoning behind the approach to deal with the ocean
current disturbance is to feed compensated heading control
references that are meant to align the total velocity vector
of the vehicle with the trajectory, instead of the vehicle’s
main body axis. To achieve this, a current observer, in the
fixed inertial frame, is used so that it is possible to then
compensate the heading references with the intent of canceling
the perpendicular component of the velocity of the current to
the trajectory.

Firstly, it is important to consider the velocity notation:
• Vc – velocity vector of the ocean current;
• V

‖
c – parallel component of the ocean current to the

trajectory;
• V ⊥c – perpendicular component of the ocean current to

the trajectory.
The total velocity vector of the vehicle is denoted by VT ,

the goal being to align this velocity vector with the trajectory,
which causes an angle mismatch, σ, relatively to the vehicle’s
heading – course angle. The linear velocity of the vehicle is
depicted by u, the vessel’s velocity relatively to the water.

Recalling the L. Lapierre’s kinematic model and taking the
ocean currents into account, the new kinematic model is given
by {

ṡ1 = −ṡ (1− ccy1) + u cos(θ) + V
‖
c

ẏ1 = −ccṡs1 − u sin(θ) + V ⊥c
. (26)

Using a new Lyapunov function

V1 =
1

2

(
s2

1 + y2
1

)
, (27)

the ideal kinematic control laws for s and θ are now given by

ṡ = u cos θ + k1s1 + V
‖
c

θ = arcsin
[
sat
(
k2y1 +

V ⊥
c

u

)] , (28)

where k1 and k2 are positive gains and u is set to be constant
and positive. Therefore,

V̇1 = −k1s
2
1 − uk2y

2
1 ≤ 0, (29)

proving that the chosen virtual control law for θ will make the
cross-track error converge to zero, as intended. Recalling that
θ = ψ − β,

ψ = arcsin
[
sat
(
k2y1 +

V ⊥
c

u

)]
+ β . (30)

As a result, the L. Lapierre’s path following method is now
defined to give yaw references to the inner-loop, ψref , while
taking into account the ocean currents.
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Following the same reasoning as in [10] and looking at the
filter theory contemplated in [11], it is possible to propose an
observer to estimate the ocean current disturbance, assuming
that a position system is available to provide measurements
of the position of the vehicle, p = [x, y]T . Moreover, since
the influence of the ocean currents is not a major topic of this
work, it is also assumed that the vehicle’s speed relatively to
the fluid, u, is measured by a DVL (Doppler Velocity Log).

The structure of the observer, fixed in the world frame {I},
is based on the vehicle kinematics, ignoring the sway speed
v, {

ẋ = u cos(ψ) + vcx
ẏ = u sin(ψ) + vcy

, (31)

where vcx and vcy denote the components of the ocean current
disturbance in {I}.

Taking into account the measured quantities, the kinematic
model and defining the notation x̂ as an estimate of the inertial
x and x̃ := x−x̂ as the error of the estimate (the same notation
is used for y and vci ), an observer for the component vcx is{

˙̂x = u cosψ + v̂cx + kx1 x̃
˙̂vcx = kx2

x̃
. (32)

Clearly, the estimate errors x̃ and ṽcx are asymptotically expo-
nentially stable if all the roots of the characteristic polynomial
p(s) = s2 + kx1

s+ kx2
associated with the system[

˙̃x
˙̃vcx

]
=

[
−kx1 1
−kx2 0

] [
x̃
ṽcx

]
(33)

have strictly negative real parts.
The observer for the component vcy can be written in an

analogous manner, to yield{
˙̂y = u sinψ + v̂cy + ky1 ỹ
˙̂vcy = ky2 ỹ

. (34)

The estimate errors ỹ and ṽcy are similarly proven asymptot-
ically exponentially stable, as the previous situation.

To obtain the perpendicular and parallel velocity compo-
nents in the Serret-Frenet frame one should recall the trans-
formation RTI (θc) applied to [vcx , vcy , 0]T .

As a result, it is now possible to estimate the ocean current
disturbance, which is, in turn, used to compensate the heading
so that the total velocity vector of the vehicle is aligned with
the trajectory.

V. MULTIPLE VEHICLE COORDINATION CONTROL

Coordination control between a group of vehicles is to be
achieved through the design of a coordination controller that
drives a certain coordination error to zero, reaching consensus
among the vehicles’ states.

It is important to consider that the agents must broadcast
their coordination states to their neighbors. For this reason,
the communication network scheme is represented by an
undirected graph G = (V, E) such that elements of E consist
of two elements from V , i.e. E ⊆ [V]2. The elements of V

are called vertices, or nodes of G and the elements E are its
edges, or links. One edge connects two nodes.

Additionally, discrete communications must be taken into
consideration, in order to reflect the communication modems
limitations and common operation. As a result, a mechanism
in which the vehicles only need to exchange data with their
neighbors when necessary, in accordance with an appropriately
defined criterion will be proposed, introducing the concept of
triggering functions.

A. Graph Theory

In the multiple vehicle coordination control scenario, the
graph edges represent the communication link between a pair
of vehicles, which are undirected, allowing for communica-
tions in both directions: from node n0 to n1 and from n1 to
n0 (each node represents a vehicle), for example.

Additionally, N [i] represents the set of neighboring nodes
of node i with which this node communicates.

In this context, two main definitions are relevant: the adja-
cency matrix and the degree matrix.
Definition 1 (Adjacency Matrix). The adjacency matrix A =
(aij)N×N of G in which its elements are defined as

aij :=

{
1 if ninj ∈ E
0 otherwise . (35)

Definition 2 (Degree Matrix). Let G be a graph. The degree
matrix, D = (dij)N×N of G can have each element of the
matrix defined as

dij :=

{
d (ni) =

∣∣N [i]
∣∣ if i = j

0 otherwise
. (36)

From the two latter definitions, it is possible to define the
Laplacian, L, of the undirected graph to represent it. The
expression of the Laplacian of an undirected graph is defined
as L = D − A. It is well known that if G is undirected,
then L is symmetric and L1 = 0, where 1 := [1]N×1 and
0 := [0]N×1, with N being the total number of nodes.

One last modification can be made to the Laplacian form
of a graph to obtain the normalized Laplacian

LD = D−1(D −A). (37)

B. Coordination Control

The coordination problem statement, referring to [12], can
be formally defined as
Problem 1 (Coordination Problem). For vehicle i = 1, . . . , n
derive a control law for γ̇[i] as a function of local states and
the variables γ[j], j ∈ N [i] such that γ[i]−γ[j],∀i, j approach
a small neighborhood of zero as t → ∞ and the formation
travels at the speed ud(t), that is, γ̇[i] → ud∀i.

With the stated coordination problem, it is important to
define the coordination state γ[i], which corresponds to the
normalized arc-length, computed from the outer-loop.

The distributed coordination controllers, designed to make
γ[i] reach consensus, will yield a correction term, u[i]

c , that is
added to the desired speed of each vehicle, with the goal of
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driving the coordination error to zero. Thus, the desired speed
that enters the inner-loop is

u
[i]
d = u

[i]
L + u[i]

c . (38)

Knowing that the communication network is modeled by an
undirected graph, the previously defined normalized Laplacian,
LD, can be used to help define the coordination error vector:

ξ = LDγ, (39)

where ξ is the coordination error vector and γ =
[γ[1], ..., γ[N ]]T is the state vector containing the coordination
state of each vehicle.

Assuming, for now, continuous communications, a dis-
tributed control law for uc that drives ξi to zero is given by

uc = −kξ tanh (LDγ) , (40)

where kξ is a positive constant and the hyperbolic tangent is
used to bound uc, in order to prevent the speed reference from
becoming negative.

As a result, it is possible now to use the defined distributed
control law to reach consensus, thus achieving coordination.
Moving forward, one should then take into account the discrete
communications among vehicles.

C. Event-Triggered Communication Mechanism

An Event-Triggered Communication (ETC) mechanism is
proposed, in which the vehicles only need to exchange data
with their neighbors when necessary, in accordance with a
properly defined triggering function that contains all the local
information that vehicle i has at a certain instant of time
(referring to [3] and [4]).

In this mechanism, instead of using the true neighboring
states, γ[j]; j ∈ N [i], the previously defined control law (40)
uses their estimates – if any agent can produce good estimates
of the neighboring states, then there is no need to communicate
continuously. Letting γ̂[ij] be an estimate of γ[j] computed by
vehicle i and γ̂[i] is an estimate of the vehicle’s state itself,
the ETC control law is given by

u[i]
c = −kξ tanh

γ̂[i] − 1∣∣N [i]
∣∣ ∑
j∈N [i]

γ̂[ij]

 ; i ∈ N . (41)

Letting
{
t
[i]
k

}
; k ∈ N be the sequence of time instants

at which vehicle i sends its current value of γ[i](t
[i]
k ) to its

neighbors, during the interval T [i]
k :=

[
t
[i]
k , t

[i]
k+1

)
and for

t ∈ T [i]
k , an estimator for γ̂[i] can be defined as

˙̂γ|i](t) = ū
[i]
L

γ̂[i]
(
t
[i]
k

)
= γ[i]

(
t
[i]
k

)
,

(42)

knowing that the state is the normalized arc-length, then ū
[i]
L

corresponds to the normalized desired speed given by the path

generation block. The second equation implies that whenever
vehicle i broadcasts γ[i] to its neighbors, the initial condition
for γ̂[i] will be reset. The estimator for γ̂[ji] is obtained
analogously.

Having defined the new distributed control law, which
considers the estimates of the states, the next step is to define
the triggering function that dictates when should there be a
state broadcast.

D. Time-Dependent Triggering Events

For a purely time-dependent triggering event, to ensure that
the estimation error is bounded, vehicle i should transmit γ[i]

whenever e[i] hits a designed threshold η[i] that is dependent
on time, where e[i](t) = γ̂[i](t)−γ[i](t) is the local estimation
error of vehicle i itself. The triggering function for vehicle i
is given by

h[i](t) =
∣∣∣e[i](t)

∣∣∣− η[i](t), (43)

where η[i](t) belongs to a class of non-negative functions C
defined by C := {f : R≥0 → R≥0 |≤ 0 ≤ f(t) ≤ cu} for all
i ∈ N . For example, η[i](t) = c1 + c2e

−αt with a proper
choice of c1, c2 and α is a typical function belonging to C.
With this definition, vehicle i will send its state to its neighbors
whenever h[i](t) ≥ 0.

E. State-Dependent Triggering Events

Regarding state-dependent triggering events, it is possible
to introduce another triggering function for each vehicle that
depends on the information about its state estimate and the
state estimates of the neighboring vehicles that communicate
with it.

With the local information of the states, a new threshold
is defined for (e[i])2(t), resulting in the following triggering
function:

h[i](t) = (e[i])2(t)−

θ[i] σ

σ[i]

∑
j∈N [i]

aij

(
γ̂[i](t)− γ̂[ij](t)

)2

+ ε0

 ,

(44)
where aij represents the adjacency matrix A entries, which
take the value of 1 or 0. The other constants: σ, σ[i], θ[i], and ε0
are defined in [4] and, for the sake of simplicity, were deemed
not relevant to show here. Likewise, with the above definition,
vehicle i will send its state to its neighbors whenever h[i](t) ≥
0.

VI. HYBRID NETWORK – OPTICAL COMMUNICATIONS

Optical communications have narrow directivity patterns,
which make the issue challenging when they’re added on
moving agents, whose speeds are consistently being corrected
in order to reach consensus. With this in mind, the major
goal of this section is to accomplish optical beam alignment
between a pair of vehicles. Each vehicle should be able to
estimate the position of the neighbors on top of the path
they are following, based on the information given by the
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coordination states, and it is assumed that the optical modems
have an independent rotation axis.

Beam alignment is planned to be accomplished with two
phases: rough and refined alignment phases. Rough alignment
aims to rotate the beams based on estimates of the positions
of each vehicle, which may not lead to proper alignment due
to the errors of the estimates. Refined alignment aims to apply
small deviations to the rough alignment angle until the beams
align, locking that beam orientation.

A. Rough Alignment Phase

Let pt = [xt, yt]
T denote the position of the center of mass

of the transmitting vehicle, with at denoting the central axis of
the transmitting beam and α denoting the angle at which the
transmitting beam is oriented. Likewise, let pr = [xr, yr]

T

denote the position of the center of mass of the receiving
vehicle, with ar denoting the central axis of the receiving
beam, with orientation given by σ. Figure 5 represents the
geometry of the beam alignment problem.

𝑥

𝑦{𝐼}

𝒑𝒕

𝛼

𝑥𝑟
𝒑𝒓

𝑂

𝑦𝑟

𝑥𝑡

𝑦𝑡

𝜎

𝑎𝑡

𝑎𝑟

Fig. 5: Geometric representation of the optical beam alignment
problem.

For now, it is assumed that each vehicle knows exactly pt
and pr (and not their estimates). With the goal of overlapping
at and ar, a geometric analysis of the situation represented in
5 yields the following equations for α:

α =

{
π
2 − arcsin (k) , yr ≥ yt
−π2 + arcsin (k) , yr < yt

, (45)

where k is given by

k =
d (O,pr)

‖pr − pt‖
. (46)

The numerator d (O,pr) denotes the signed distance between
O and pr. As a result,

k =
xr − xt√

(yr − yt)2 + (xr − xt)2
. (47)

Similarly, the equations for σ are defined as

σ =

{
3π
2 − arcsin (k) , yr ≥ yt
π
2 + arcsin (k) , yr < yt

. (48)

In reality, each vehicle has local information about their
own estimated coordination state and the estimated states of
the neighboring vehicles. As a result, one has to compute pt[i]

and pr [ij] using γ̂[i](t) and γ̂[ij](t), both for each vehicle of
the pair, based on the path parametrization.

B. Refined Alignment Phase

A refinement is needed because, under uncertainty, one
vehicle may have a wrong idea of the position of its neighbor
during a period of time, requiring a small correction to the
rough orientations.

The correction term applied to α and σ will work as a
sweeping mechanism: sweeping a small neighborhood of each
roughly determined angle until the beams align, locking that
corrected orientation.

Letting αc and σc denote the corrected angles, defined as

αc = α+A sin(2πfα)

σc = σ +A sin(2πfσ),
(49)

where fα and fσ denote the oscillation frequencies of the
correction term in hertz and A denotes the amplitude of the
oscillations in degrees, one is capable of sweeping, having
used a sine wave with a certain frequency and amplitude as a
sweeping term.

One way of determining that refinement has reached its goal
and that it was able to correct the orientation is by inspecting
the power of the received signal. The power of the signal is
largely impacted by how misaligned are the optical beams.
The power variation is represented in figure 6.

Fig. 6: Variation of the received signal power with the beam
misalignment for two different ranges.

In a simulation environment, it is possible to have access
to information that in reality each vehicle doesn’t have. This
is used to compute the ideal orientation for each beam and to
evaluate how misaligned the beams are, ∆φ, during the rough
alignment phase. From this, the refinement phase should be
activated until the corrected orientation makes the received
power be within a user defined threshold.

The following regards should be taken into account:
• The sweeping frequencies should be set according to
fα = 2fσ , increasing the chances of beam alignment per
period of the sweeping signal with the smallest frequency.

• The amplitude of the sweeping oscillations should start
small and then it should increase if, for every two periods
of sweeping, beam alignment is not achieved, avoiding
situations where small sweepings are not enough.

VII. RESULTS

Considering coordination control, simulations were done
taking into account a group of three vehicles in an in-line
formation. Each vehicle has an inner-loop heading controller
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and an outer-loop path following controller as described pre-
viously.

The adopted communication scheme is mathematically rep-
resented by the following Laplacian matrix

L =

 1 −1 0
−1 2 −1
0 −1 1

 . (50)

Figure 7 the cooperative mission being achieved with time-
dependent ETC. Moreover, it is possible to observe when
each vehicle transmits its state, based on the time-dependent
triggering function.

(a) Coordination of an in-line forma-
tion.

(b) Time-dependent triggering events
over time.

Fig. 7: Cooperative motion control simulation of a group of
three vehicles using time-dependent ETC.

As it is shown, considering that each vehicle estimates the
state of its neighbors, the agents don’t need to be communicat-
ing continuously to achieve coordination. Additionally, using
a triggering function avoids communication congestion when
one considers that underwater acoustic communications have
slow data transference.

Better results seem to be obtained using state-dependent
ETC, figure 8, which may be related to the fact that the trig-
gering function uses more local information. These translate to
more triggering during the transitions between path segments,
which is ideal. The state errors, γ̃ij , represented in figure 9
show that the states are synchronized asymptotically.

(a) Coordination of an in-line forma-
tion.

(b) State-dependent triggering events
over time.

Fig. 8: Cooperative motion control simulation of a group of
three vehicles using state-dependent ETC.

(a) State errors γ̃ij . (b) Vehicles’ speed ui.

Fig. 9: Evolution of the state errors and the surge speed of
each vehicle using state-dependent ETC.

These results for cooperative missions also show that the
proposed inner and outer loops work properly, allowing each
vehicle to be steered while following a desired path.

Regarding the proposed mechanism for optical beam align-
ment between a pair of vehicles, figure 10 shows the central
axis of each beam reaching alignment during a cooperative
mission.

(a) Zoomed-in portion of the path 1. (b) Zoomed-in portion of the path 2.

Fig. 10: Optical beam alignment for a lawnmower path
zoomed-in portions.

Most of the time, the rough alignment phase already pro-
duces a good enough orientation of the beams and only a
small sweeping is required, as expected, observing figure 11.
Nevertheless, the refinement phase makes the alignment error
be more constrained to a neighborhood of zero.

(a) Evolution of the misalignment
∆φ.

(b) Evolution of the misalignment
∆φ without refinement.

Fig. 11: Evolution of the misalignment ∆φ with and without
refinement.

However, due to the range of communication (2 meters), the
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power curve is very narrow, as represented before in figure 6,
even a small deviation can produce a dramatic impact on the
value of the received signal power, which is why, in figure
12, the normalized power shows sudden drops. Nevertheless,
looking at the average and median values, most of the time,
optical communications aim to be within the user defined
power threshold.

(a) Evolution of the received signal
power of vehicle 1.

(b) Evolution of the received signal
power of vehicle 2.

Fig. 12: Evolution of the received signal powers (lawnmower
path + discrete communications).

These results show that optical communications can be
a viable communication solution for underwater cooperative
missions, hence proving that the proposed mechanism works
properly. While the refined alignment is being reached, some
communication intermittency is to be expected.

VIII. CONCLUSIONS

The purpose of this work was to ultimately show that using
a hybrid communication network, during cooperative missions,
is viable. Acoustic communications are commonly used with
underwater autonomous vehicles to broadcast the state of the
vehicles. However, optical communication modems are just
now breaking through in this field and so the problems re-
garding their narrow directivity patterns boil down to reaching
optical beam alignment between a pair of vehicles, which has
been shown to be viable.

Nevertheless, due to the complexity of this optical beam
alignment problem using moving cooperative agents, some
communication intermittency is to be expected, still the pro-
posed algorithm may just be enough to transmit mission data
(such as maps and images) among the vehicles using the faster
optical communications pillar of the hybrid network.

At the first stage, single and multiple vehicle motion control
had to be achieved, considering coordination with discrete
communications among the vehicles. This was essential to
ultimately address the optical communications problem.

The major contribution was the proposal of the alignment
mechanism, which resorts to two stages: a rough beam align-
ment phase followed by a refined one, which basically boiled
down to implementing a sweeping mechanism until the optical
beams overlapped.

As for future work, it would be important to test the
beam alignment algorithm in real vehicles performing real
cooperative missions, recalling that ocean currents have to

be considered as studied in this work as well. Moreover,
if this optical beam alignment algorithm shows promising
results in real tests, then one could consider using the optical
communications to transmit the vehicles’ coordination states
as well.
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