
A

Torque vectoring control of an electric vehicle with
in-wheel motors

Nuno Alexandre de Almeida Salgueiro

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor: Prof. João Manuel Lage de Miranda Lemos

Examination Committee

Chairperson: Prof. João Fernando Cardoso Silva Sequeira
Supervisor: Prof. João Manuel Lage de Miranda Lemos

Members of the Committee: Prof. Rita Maria Mendes de Almeida Correia da Cunha

February, 2021



ii



Declaration:

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iii



I choose love.
That unbridled liquid emotion that provides you with the kindest empathy,

the purest energy,
to be the change you wish to see,

to better you into a state of harmony,
embracing you in a roaring river of time and wonders.
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Abstract

Optimal torque distribution of the driving wheels of a vehicle is an open problem. Currently solved with

a mechanical differential, nowadays with the electric engine and in particular with an engine per wheel,

there is room for other solutions.

We rewrite the problem of "how to turn fast without sliding" taking into account the traction control,

developing a system with a starting point and endpoint being the four wheels and the traction with four

wheels, and how that model may help estimate and control a vehicle in such a way that you have better

performance and handling.

Beyond the mathematical model based on the LuGre tire model, an observer and controller were

developed as a Kalman Filter and a Model Predictive controller, as a proof of concept with the observer

being validated with real data of a Formula Student car, FST09e.

We therefore conclude that the approach here taken is valid, that the equations within properly represent

the dynamics of the vehicle attitude and that a controller capable of taking into account power constraints,

traction, lateral stability and desired yaw rate is possible.

Keywords: Torque Vectoring, Kalman Filter, Model Predictive Control, LuGre, State-
space
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Resumo

A distribuição de torque óptimo pelas rodas motoras de um veículo é um problema aberto. Inicialmente

resolvido com o diferencial mecânico, hoje em dia com o motor eléctrico e em particular com um motor

por roda, está aberto o caminho para outras soluções.

Este trabalho foca-se em como reescrever o problema - "virar depressa e não derrapar"tendo em

conta o controlo de tracção, por forma a obter um sistema cujo o ponto de partida e chegada são as

quatro rodas e a tracção às quatro rodas e em como tal modelo pode ajudar na estimação e controlo de

um veículo por forma a obter melhor performance e uma melhor condução.

Além da formulação do modelo matemático com base no modelo de pneus LuGre, um observador

e controlador foram desenvolvidos, através de um filtro de Kalman e de controlo preditivo baseado em

modelo, como prova de conceito e o observador foi validado com dados reais de um carro de competição

da equipa de Formula Student, o FST09e, com resultados positivos.

Conclui-se portanto, que a abordagem aqui apresentada é válida, que as equações com o modelo

de LuGre descrevem a dinâmica da atitude de um carro e que um controlador capaz de ter em conta

restrições de potência, controlo de tracção, de estabilidade lateral e velocidade angular é possível.

Palavras-Chave: Torque Vectoring, Filtro de Kalman, Controlo Preditivo Baseado em
Modelo, LuGre, Estado de Espaços
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Chapter 1

Introduction

1.1 Motivation

The torque vectoring problem has been present in the automotive industry for quite some time. The

electric car, and the electric engine has brought new avenues of research and problems. With an electric

engine per wheel, the usual mechanical differential could no longer be employed but the freedom of

actuation brought new opportunities. The work presented here started in the Formula Student Lisboa

with a simple controller for torque distribution and the lack of a proper controller for the team provided the

motivation for this thesis.

�

?

��

(a)

��

�������

��

�

(b)

Figure 1.1: A simple thought experiment that raises some important questions and provided
motivation into finding an appropriate tire model. After applying a torque and by looking at the
generated force, can we attempt a guess for vx and for the tire/road interaction (friction, etc.)?

The motivation to estimate the velocity vector without the Global Positioning System came from the

fact that the GPS was not always available, and there were some reservations about having your traction

control dependant on the GPS. For the team, a robust controller that required as little as possible in way

of sensors and could also take into account uncertainty of parameters, normal loads at each tire and

steering angles, was a must. There was also a real need to be able to estimate other parameters to

evaluate the performance of the car, and thus the observer motivation. All of this on a possibly thigh

computational budget. It started as a challenge, seen as in figure 1.1, and a way to apply and learn more
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about control theory.

1.2 Topic Overview

In short, Torque Vectoring is about finding an answer to the problem of "how fast can I turn without

slipping?" by controlling the torque/brake at each wheel. In respect to the electric car it became evident

that, with an electric engine, the deadzone of actuation (previously only with brakes) in respect to the

roll steer effect could be further reduced when compared to the traditional combustion engine car (Folke

2010) [20]. Yaw rate control was to be the primary aim of this system and a controller was made [20] with

feedforward, based on a set-point operation.

The actual impacts of an all electric car, beyond the ecological scope, were surmised (DeNovellis 2012)

[40]. Not just the roll stability, but the handling, directional stability, energy consumption, braking/traction

(lateral/longitudinal dynamics) and attitude control and road-holding (vertical dynamics) could be affected.

By 2012, the state-of-the art could be said to be the E-VECTOORC [10] project for a 4 wheel(4WD)

electric car. Noteworthy is the approach used to estimate the friction conditions with the electric engine,

instead of with the hydraulic brake pressure and the slip ratio controller. Beyond that, the main objectives

of this project were the extension of the linear region in respect to wheel steer δ and lateral acceleration

ay - more steering angle, more lateral acceleration in a linear relationship, and minimizing the impact of

emergency manoeuvres to the vehicle heading.

Since then, other approaches have been made. To name a few: with a focus on the lane changing

problem and an explicit objective to replace the ABS and ESC systems [47] by considering the system as

a bicycle model with load transfers, for state variables yaw rate ωz and sideslip angle β , and for inputs the

wheel steering angle and yaw moment. They also took into account the engine limitations, in respect to

torque rate of change [49]. Robust approaches were also made like in [30] and [1] with the single track

equations and an emphasis on the frequency response of the system.

It should be noted that although it seems to be a torque distribution problem, it is in fact a power

distribution problem. Often the engines place local constraints on the power available for each wheel,

and there are global constraints due to the total available power at the vehicle. The work done on this

thesis attempts to write all of these constrains/requirements in such a way that the resulting solution is the

torque to be applied at each wheel. The current state of the art is derived from the bicycle model, with the

controller outputing a yaw moment that then needs to be translated into a torque for each wheel. This

formulation neglects the available power/maximum torque constraint, the traction control problem and the

lateral stability.

1.3 Objectives and Deliverables

The objective of this thesis was to develop a mathematical model of the car, diverging from the bicycle

model, such that an observer and controller could be implemented.
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Ideally the controller must be able to comply with power requirements, both local and global, yaw rate

references, be tunable, provide traction control and lateral stability.

Furthermore, the observer should be able to estimate the slip angles and slip ratios of each wheel and

the velocity vector of the car, without relying on a GPS system but still allowing it to be added in the future.

The system should be able to handle input noise, and noise/bias to the normal load at each tire and

the steering angle.

As a result of this thesis, an observer/controller pair is implemented to showcase the potencial of such

an approach.

1.4 Thesis Outline

This thesis consists of two main parts, modelling and developing the observer and controller.

The modelling and system analysis, both for the plant used in the simulations and the controller, is

described in the next chapter. The controller and observer design follows, with an emphasis on the

controller.

The implementation chapter, describes how the simulation environment and implementation decisions

were made.
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Chapter 2

System Analysis

In this section we develop the mathematical model for the car dynamics. The car can be thought of as

a mass with four points where force is applied to the car as FCar = ∑
Fi , and with dynamics taking into

account the point of application r of this force - tire location, and the self-aligning moment of each tire,∑
Mzi +

∑ ri ×Fi . These four points are at the centre of the tire contact patches. The model that describes

the tire-road interaction is called a tire model. We will start at the tire level, from the engine torque and

work towards the complete car model. Starting with the single tire, a theoretical one wheeled car, to the

full car model. By not taking into account any other forms of friction, we can also derive the "coasting" car

and define the equilibrium points of the model.

The approach taken here to model the car behaviour is to consider the car dynamics in a 2D frame,

and add the vertical dynamics, such as the load transfer, as variations of the normal load - the normal

force generated at the contact patch.

Some assumptions were made about the car model. We assume that there is no camber angle (side

tilt of the wheel), the road is flat, the cg is known, yaw rate and wheel turning speed are measurable in

the car frame, the normal load at each tyre can be estimated, from a suspension model, and that the

measured acceleration is seen from a inertial observer aligned with the car frame. This last one will be

achieved with an Attitude and Heading Reference System, that removes the effect of the imaginary forces

- euler, coriolis and centrifuge.

2.1 Tire Model

The tire model is the building block from which the car model is derived. In a 2D frame, the tire is

reduced to a point that generates a force and a self-aligning torque - due to the rolling motion of the tire.

The generated force, depends on the slip and how the tire is aligned in relation to the road plane(e.g.

camber angle). The goal of a tire model is not only to accurately model the dynamics of the friction, sliding

and the elastic deformations but also take into account how the inputs affect this.

About tire models in general, it is though that a force is generated if there is a slip between the tire and
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the road, given non-zero friction. This slip is called the slip ratio and is defined as

k =
(ωr
v
− 1

)
, (2.1)

according to the Society of Automotive Engineers Vehicle Dynamics Standards Committee.

The angle of the velocity vector at the tire contact patch, also called the slip angle, is defined as

α = −arctan
(
vy

|vx |

)
, (2.2)

for each tire.

Most tire models agree that there is a linear relationship between the slip and the generated force,

with a saturation zone where the slip is high enough that little to no force is generated at the tire.

2.1.1 Magic Formula Tire Model

In this section, we do a brief overview of the Magic Formula tire model. Tire models can be divided in

two groups, the static models, and the dynamic models. The main difference between a static model and

a dynamic model, is that the dynamic model has a transient behaviour. Although the Magic Formula (MF)

tire model is a static model, it is considered to be the gold standard in tire models.

The slip ratio is related to the longitudinal force Fx and the slip angle with the lateral force Fy generated

at the contact patch. In order to describe this phenomenon, Pacejka [42] empirically developed the "Magic

Formula" as,

y = D sin [C arctan {Bx − E (Bx − arctanBx )}] (2.3)

with

Y (X ) = y (x ) + SV , Y : output variable Fx , Fy or Mz (2.4)

x = X + SH , X: input variable tan α or k (2.5)

(2.6)

The parameters for this formula are the stiffness B , the shape C , the peak value D , the curvature E

and the vertical and horizontal shifts SV and SH .

This model is further explained in chapter 4 at [42], where the self-aligning moment Mz is also defined.

While this model has been widely used in control systems, and [45] some have even managed to

derive slip dynamics with this model, there are some issues here. Since it relies on a ratio, at low speeds

it is not a good approximation. It does not explicitly handle the rolling resistance and relies on an offset

for this. The forces generated are not coupled, there is no cross-dependency between longitudinal and

lateral forces. Also, the formula is not easily linearised and the parameters are hard to relate to known

quantities. As such we selected a different model.
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2.1.2 LuGre Tire Model

This work is based on the LuGre dynamic tire model [7], first developed in 1995 by researchers from

the universities of Lund and Grenoble and consists on an extension of the Dahl model by adding the

Stribeck effect and a variable Coulomb friction force. Since then the LuGre tire model has seen more

development by Tsiotras, Velenis and Sorine [56] in 2004 with the development of an exact lumped model.

They also derived an approximate tire model assuming uniform load distribution of the weight along the

contact patch of the tire. It is this model that is used in this thesis. This assumption results in the loss of

the self-aligning torque of the tire. The work of Deur et al [13] in 2005 should also be mentioned since it

further extends the model to consider camber, carcass compliance, conicity, ply steer and an additional

rolling resistance term.

This model is a dynamic model that attempts to describe the tire-road interaction from a physics point

of view. Here the rolling resistance is explained by the hysteresis of the model. While not as explicit as the

"Magic Formula" model, this model also has a linear region in respect to the slip and, since it does not rely

on an explicit ratio, is well defined at low speeds. However the self-aligning moment is not as accurate.

According to the LuGre tire model, the tire can be seen as a group of bristles that deform as they

enter the contact patch of the tire. These imaginary bristles exist both in the longitudinal x and lateral y

axis. The deformation zi , with i being either x or y , is a function of the relative velocity vr i of the bristle

elements and the wheel angular velocity ω.

The LuGre tire model [56] is defined as,

dzi (t , ζ)

d t
=
∂zi (t , ζ)

∂t
+ |ωr |

∂zi (t , ζ)

∂ζ
(2.7)

= vr i (t ) − C0i (vr )zi (t , ζ) (2.8)

µi (t , ζ) = −σ0i zi (t , ζ) − σ1i
∂zi (t , ζ)

∂t
− σ2ivr i (t ) (2.9)

Fi (t ) =

∫ L

0
µi (t , ζ)fn (ζ)dζ (2.10)

Mz (t ) = −

∫ L

0
µy (t , ζ)fn (ζ)

(
L

2
− ζ

)
dζ, i = x , y (2.11)

with: zi (t , ζ) as the internal friction states at time t and position ζ along the contact patch, ω is the wheel

angular velocity and r the tire radius, with L the contact patch length of the tire; σ0i the tire bristle stiffness

with the corresponding stiction and viscous damping constants σ1i and σ2i of the friction coefficients

µi (t , ζ) and vr i the relative velocity of the contact patch elements in the tire.

Thus equation 2.10 models the longitudinal force Fx , side force Fy and 2.11 the self-aligning moment

Mz of the tire.

Deur [12] provided a simplified tire model by assuming a uniform load Fn at the contact patch and

making some assumptions about the transient response. It was shown [56] that, with a high enough
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Figure 2.1: Frame of reference for the LuGre tire model, in a top-down view of a tire, in the tire
frame.

stiffness, the transient behaviour is a good approximation. This model is defined as,

Û̃zi (t ) = vr i −

(
| |vr | |σ0i
g (vr )

+
k ss
i

L
|ωr |

)
z̃i (2.12)

Fi (t ) = Fn
(
σ0i z̃i + σ1i Û̃zi + σ2ivr i

)
(2.13)

with,

g (vr ) =
‖M 2

k vr ‖

‖Mkvr ‖
+

(
µs −

‖M 2
k vr ‖

‖Mkvr ‖

)
e
−

(
| |vr | |
vs

)γ
, g (vr = [0, 0]

T ) = µs (2.14)

Mk =


µk x 0

0 µk y

 (2.15)

k ssi =
1 − e−L/Zi

1 − L
Zi

(
1 − e−L/Zi

) , Zi = |ωr |g (vr )
| |vr | |σ0i

(2.16)

vr =


vr x

vr y

 =

ωr

0

 −

vx

vy

 (2.17)

i = x , y .

The trade-off with this approach is that the uniform load assumption results in the loss of the self-aligning

moment. Usually the self-aligning moment is very small and thus this loss was deemed acceptable. In

2.12 k ss
i

is used to match the steady state behaviour of the tire and g (vr ) is a function that estimates the

friction, given the relative velocity of the contact patches, as a value between the static µs and kinetic µk
Coulomb friction coefficients. The Stribeck velocity vs and the shape parameter are used to model the

transition from one coefficient to another in order to achieve the desired steady-state behaviour of the tire

friction[12]. With this, z̃i becomes the average tire deflection in x and y .

While Velenis [58] started by defining the Coulomb friction coefficient as depending on the direction of

the relative velocity vector vr , and later reformulated the problem using only scalars, here 2.14, we allow

for the kinetic friction to depend on the direction of the relative velocity. The only constraint that we placed

on his original formulation was that it had to be continuous and the limit at (0,0) be defined.
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The only way for the limit,

lim
(vr x ,vr y )→(0,0)

g (vr ) = lim
(v rx ,v ry )→(0,0)

‖M 2
k vr ‖

‖Mkvr ‖
+

(
‖M 2

s vr ‖

‖Msvr ‖
−
‖M 2

k vr ‖

‖Mkvr ‖

)
e
−

(
| |vr | |
vs

)γ
(2.18)

to be defined and allow for a continuous extension of g (vr ) is for the static friction Ms to be the same

along the x and y axis. Otherwise the static friction coefficient would depend on the direction of the

measurement.

As such, we took the middle ground between the original definition of [58] and the final form of the

LuGre tire model. With Ms =


µs 0

0 µs

 , g (v r ) takes the form presented in 2.14 and the limit defined as,

lim
(vr x ,vr y )→(0,0)

g (vr ) = µs . (2.19)

The level curves of the friction coefficient, as a function of the relative velocity, for the tire configurations in

this thesis can be seen in figure 2.2.
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Figure 2.2: g (vr ) level curves as a function of the relative velocity vector vr .

2.1.3 Linearized Tire Model

Our proposal is to take this model 2.20 and introduce parameters such that,
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Û̃zi (t ) = vr i −O i z̃i (2.20)

Fi (t ) = FnOσi z̃i + Fnσivr i (2.21)

with,

O i =

(
| |vr | |σ0i
g (vr )

+
k ss
i

L
|ωr |

)
(2.22)

Oσi = σ0i − σ1iO i (2.23)

σi = σ1i + σ2i . (2.24)

This linearization is done by introducing the parameters O i and Oσi , which we will call the rate of bristle

restitution s−1 and the normalized stiffness in m−1. They are assumed constant for the controller, thus

disregarding the partial derivative of these terms, however the plant will have the non-linear behaviour.

This approximation is equivalent to assume that we are operating in the linear region, that we are not

unduly sliding, which and can be seem in figure 2.3.

This allows for a linear system realization and we can use this in the model predictive part of the

controller and to study the dynamics of the car (at steady-state those parameters will be constant). The

new damping constant is now σi . It can be seen 2.21 that the force is proportional to the load and the

bristle deflection. Another way to look at it is by comparing it to a variable stiffness spring.
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−1 −0.5 0 0.5 1
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Ox

Figure 2.3: Hysteresis and Ox variation with slip. Fixed velocity at 15 m/s, slip angle α = 0 and
variable wheel angular velocity triangular sweeps at 2Hz.

To the previous model we add the input wheel torque u from the engine, take into account the wheel

moment of inertia Iω and say that the input torque must overcome the corresponding generated force as,

Iω Ûω = u − r Fx (2.25)

= u − r FnOσx z̃x − r Fnσxvr x . (2.26)

The linearised state-space model with states, tire deflection, wheel rotation speed and linear velocity
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in the tire frame can be written as,



Û̃zx

Û̃zy

Ûω

Ûvx

Ûvy


=



−Ox , 0, r , −1, 0

0, −Oy , 0, 0, −1

−
r Fn
Iω
Oσx , 0, −

r 2Fnσx
Iω
, r Fnσx

Iω
, 0

Fn
m Oσx , 0, σx

m r , −
σx
m , 0

0, Fn
m Oσy , 0, 0, −

σy
m





z̃x

z̃y

ω

vx

vy


+



0

0

1
Iω

0

0


u (2.27)

The tire generates a force at the contact patch depending on the tire slip ratio κ and the slip angle α .

We estimated the LuGre tire model from the FSAE TTC data for the Hoosier 18.0 × 7.5 10 R25B tire,

and then we modified the values to simulate not so optimum conditions, and called that tire the "wet" tire.

The estimated tire is reported in this work as the "dry" tire. Figure 2.4 shows this relationship.
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Figure 2.4: Effect of tire velocity angle α on the force generated at the contact patch with fixed
velocity at 15 m/s and variable α at 0.1Hz.

Assuming that everything else remains constant, the force along the y axis is most influenced by the

slip angle α , while the slip ratio κ affects mostly the x axis. Both have a linear region about the origin that

saturates at higher values. Furthermore, these curves can have hysteresis which is the main contributing

factor to the rolling resistance.
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The normal load Fn or normal force also contributes to the generated force in a linear relationship, as

previously seen in the equations.
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Figure 2.5: Effect of normal load Fn in the force to slip ratio relationship with fixed velocity at 15
m/s, velocity angle α = 0 and variable wheel angular velocity triangular sweeps at 0.1Hz.

There is also another point that needs to be taken into consideration when generating force, and that

is the velocity of the moving tire. This is a caracteristic of the LuGre tire model and can be seen in figure
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Figure 2.6: Effect of velocity in the force to slip ratio relationship with fixed velocity at 15 m/s,
wheel velocity angle α = 0 and variable wheel angular velocity triangular sweeps at 0.1Hz.

2.6. According to the equations, the curve "saturates" faster at higher velocities, while still mantaining the

linear region and the overall shape. This phenomena was not seen in the FSAE TTC dataset during the

estimation. This can have several reasons: maybe the effect exists and there is some combination of

parameters that minimizes this effect; maybe the tire effective radius was not properly estimated; maybe

the induced slip in the testbed was not enough to see this. The maximum slip in the dataset is only of

20%.
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2.2 Car Model

The car model is derived from the tire model. The current state of the art consists on defining the car

model as a bicycle model and defines the states as the yaw rate and the yaw moment. We took a diferent

approach and deduced the car dynamics through the previous LuGre tire model for the whole car.

2.2.1 One Wheel Car

We start by studying an hypothetical car with just one wheel. This model will be the basis for the four

wheel car model. The challenge here is to derive the equations in respect to the car frame and not the tire

frame. To this effect we will define a linear transformation that achieves this.
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Figure 2.7: Hypothetical single tire car.

Since we are assuming that the car is a rigid body, then by definition the angular velocity must be the

same at all points, and beginning by assuming that there is no steering δ = 0, the following must hold,

vT i r e =
[
vCar +ωωω × (rT i r e − rCar )

]
. (2.28)

Further assuming that the car centre of gravity is the origin, rCar = [0, 0, 0]T and considering only

planar motion with yaw rate ωz then the velocity at the tire can be deduced as,


vx

vy


T i r e

=
©«

vx

vy


Car

+


−ryωz

rxωz


ª®®¬ . (2.29)

To account for the steering δ , 0 we simply have to add a rotation matrix RTδ to shift the orientation of
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the projected vector,


vx

vy


T i r e

= RTδ
©«

vx

vy


Car

+


−ryωz

rxωz


ª®®¬ (2.30)

=


cos δ, sin δ, rx sin δ − ry cos δ

− sin δ, cos δ, rx cos δ + ry sin δ



vCarx

vCary

ωz


(2.31)

with,

Rδ =


cos δ, − sin δ

sin δ, cos δ

 ,
and we have a linear relationship between the two velocity vectors, assuming that the steering is constant.

Writing the autonomous system, using a state vector in respect to the car frame:



Û̃zx

Û̃zy

Ûω

Ûvx

Ûvy

Ûωz


= A



z̃x

z̃y

ω

vx

vy

ωz


, A =


A11 A12

A21 A22,

 (2.32)

(2.33)

with the block matrices A11, A12,A21,A22 defined as,

A11 =


−Ox , 0, r

0, −Oy , 0

−
Fn r
Iω
Oσx , 0, −Fn r

2

Iω
σx


(2.34)

A12 =


−c, −s, ry c − rx s

s, −c, −ry s − rxc

Fn r
Iω
σxc,

Fn r
Iω
σx s,

−Fn r
Iω
σx

(
ry c − rx s

)


(2.35)

A21 =


Fn
m Oσxc, −

Fn
m Oσy s,

Fn
m r σxc

Fn
m Oσx s,

Fn
m Oσy c,

Fn
m r σx s

Fn
Iz
Oσy (rx s − ry c),

Fn
Iz
Oσy (rxc + ry s),

Fn r
Iz
σx (rx s − ry c)


(2.36)

A22 =


−
Fn
m (c

2σx + s
2σy ),

Fn
m (σy cs − σxcs),

Fn
m σx (ry c

2 − rxcs) +
Fn
m σy (ry c

2 + rxcs)

Fn
m (σy cs − σxcs), −

Fn
m (c

2σy + s
2σx ),

Fn
m σx s(ry c − rx s) −

Fn
m σy c(rxc + ry s)

Fn
Iz

[
σx (ry c

2 − rxcs) + σy (ry s
2 + rxcs)

]
, Fn

Iz

[
σx (ry cs − rx s

2) − σy (rxc
2 + ry cs)

]
, − FnIz

[
σx (ry c − rx s)

2 + σy (ry s + rxc)
2
]


(2.37)

s = sin δ, c = cos δ, (2.38)

we define the building block of the four wheel car model.

This model has six states, three internal states - the deflections z̃x , z̃y and wheel velocity ω, and three
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external states - car linear velocity and the yaw rate ωz . The matrix A11 describes the dynamics of the

internal states, and A22 the dynamics of the external states. A12 and A21 define the dynamics between the

external and internal states.

The model outputs are the angular wheel velocity, the velocity derivatives along x and y and the yaw

rate ωz . All of them are assumed to be measurable,

y = Cx,with C ∈ Ò4×6 (2.39)

=
[
ω, Ûvx , Ûvy ,ωz

]T
. (2.40)

This results in the linear system,

Ûx = A(δ)x + Bu (2.41)

y = C (δ)x (2.42)

with state,

x =
[
zx , zy ,ω,vx ,vy ,ωz

]T
, (2.43)

(2.44)

and u as the input engine torque.

One of the goals of this thesis was to develop an observer for the velocity vector in the car frame. For

this model we were able to prove that it is observable with just these outputs.

With the observability matrix as,

obsv =



C

CA

CA2

...

CA5


, (2.45)

we were able to confirm with the matlab symbolic toolbox that the rank of the observability matrix is six,

which proves that all states are observable, for any steering angle and damping coefficients (including 0).

It is also worth noting that should the tire be placed at the origin r = 0 then there will be no yaw rate,

save for the resulting transient yaw rate from changing the steer angle δ . This is related to the relaxation

length of tire tread, which can be seen as a delayed response of the system to a steering change. The

steady state of this system would have a yaw rate of zero.
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2.2.2 Four wheel Car

Using the previous model to each wheel and taking into account that the external states are shared

between wheels, the four wheel car model can be derived.

Let each tire be referenced as rear right (r r ), rear left (r l ), front right (f r ), front left (f l ), then the four

wheel car is defined as,

Ûx =



A(δr r )
r r
11, 0, 0, 0, A(δr r )

r r
12

0, A(δr l )
r l
11, 0, 0, A(δr l )

r l
12

0, 0, A(δf r )
f r
11, 0, A(δf r )

f r
12

0, 0, 0, A(δf l )
f l
11, A(δf l )

f l
12

A(δr r )
r r
21, A(δr l )

r l
21, A(δf r )

f r
21, A(δf l )

f l
21,

∑
A22


x + Bu (2.46)

= A(δr r , δr l , δf r , δf l )x + Bu (2.47)

y = C (δr r , δr l , δf r , δf l )x =
[
ωr r ωr l ωf r ωf l Ûvx Ûvy ωz

]T
(2.48)

with state and input,

x =
[
z r rx , z

r r
y ,ω

r r , z r lx , z
r l
y ,ω

r l , z f rx , z
f r
y ,ω

f r , z f lx , z
f l
y ,ω

f l ,vx ,vy ,ωz

]T
(2.49)

u =
[
u r r ,u r l ,uf r ,uf l

]T
. (2.50)

2.2.3 Steering

In this section we describe the steering scheme that is assumed to be adopted. We assume that the

car has Ackerman steering.

From figure 2.8 and by assuming a turning point r = (rx , ry ) we derive the relationship between each

wheel,


cot δf r
cot δf l
cot δ


=


ry+wt r ack /2

a−rx
ry−wt r ack /2

a−rx
ry
a−rx


=


ry+wt r ack /2

a+b
ry−wt r ack /2

a+b
ry
a+b .


(2.51)

This results in the following identities,

cot δf r − cot δ =
wt r ack /2

a + b
(2.52)

cot δf r − cot δ =
−wt r ack /2

a + b
(2.53)

cot δf r − cot δf l =
wt r ack
a + b

. (2.54)

The driver is assumed to control the wheel turning angles through δ with 2.52 and 2.53 and requests

a corresponding vehicle turning radius,

R = wbase cot δ . (2.55)
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Figure 2.8: Full car model assuming Ackerman steering. An imaginary wheel (equivalent to the
bicycle model) turned δ rad is assumed to be controlled by the driver. This corresponds to the front
right δf r and front left δf l turning angles. The wheelbase wbase and wheel track wt r ack are also
represented. The car is assumed to have neutral steering when the turning point is on the rear
axle axis, as shown in the figure. Different steering schemes can have this point closer or further
away from the car.

By assuming that the rear wheels are not steerable, we can write the previous car model only in

respect to the steer angle δ as,

Ûx = A(δ)x + Bu (2.56)

y = C (δ)x. (2.57)

2.2.4 Steady State

The dynamics matrix A has rank 15-1, which means that there is a surface of equilibrium points. Other

equilibrium points may be possible, we don’t say anything about them, but those belonging to this surface

must exist. If we had taken into account the air resistance then the only equilibrium point would be the

origin. This is what we call the "coasting" vehicle. The "coasting" vehicle is possible because, so far, no

attrition other than the one from the tire-road interaction has been contemplated.

With the aid of matlab we were able to define the null space, N(A), taking into account different rear

and front wheel radius rr , rf , as the line spanned by the vector n, normalized in respect to the longitudinal
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speed vx and parametrized with the steering δ ,

N(A) = vxn(δ), (2.58)

n(δ) =



0

0

a+b+tan δ ·wt r ack /2
rr (a+b)

0

0

a+b−tan δ ·wt r ack /2
rr (a+b)

0

0√
((a+b) cos δ+wt r ack2 sin δ)

2
+(a+b)2 sin2 δ

rf (a+b) cos δ

0

0√
((a+b) cos δ−wt r ack2 sin δ)

2
+(a+b)2 sin2 δ

rf (a+b) cos δ

1

b tan δ
a+b

tan δ
a+b



with, n(0) =



0

0

1/rr

0

0

1/rr

0

0

1/rf

0

0

1/rf

1

0

0



. (2.59)

The null space 2.59 describes the steady state of the system. It is worth noting that the steady state

does not depend on any parameter pertaining to the tire-road interaction, load at each wheel, mass of the

vehicle or any other such property. We only require the vehicle dimensions, wheelbase, wheel track, and

the tire radius, rr for the rear tires and rf for the front tires and the current turning angle δ . Since there is

no such dependency, it is not possible to estimate the tire-road interaction if the vehicle is "coasting".

The obtained result for a straight moving vehicle n(0) is the expected, with the vehicle velocity and

each wheel angular velocity depending only on the tire radius. We also derive the relationship between

the pairs (ωz ,vx ) and (ωz ,vy ) which shall henceforth be referred as the desired yaw rate and the lateral

stability, respectively. From the vector n(δ),

vx
ωz

=
1

tan δ / (a + b) =⇒ ωz =
vx tan δ
a + b

(2.60)

vy

ωz
=
b tan δ/(a + b)
tan δ/(a + b) =⇒ vy = b · ωz (2.61)

we derive the relationships between yaw-rate, longitudinal and lateral velocity.

This is useful in the sense that we can define the desired behaviour, and can also be applied to other

problem formulations, such as with the tradicional desired yaw rate equation,

ωz =
δ

a + b + Kuv 2x
vx , (2.62)

with the understeer coeficient Ku , which can also be used and tuned to achieve more understeer or
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oversteer. In this case, the v 2x term shoud be either fixed to the current estimated or to the propagated

expected value from the system dynamics.
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Figure 2.9: Phase trajectories showing the linear relationship between the yaw rate ωz and the
linear velocity along x vx , in an inertial frame aligned with the car. The starting points at the edges
were defined using the null space of the dynamics matrix A, given a vehicle speed and steering
angle δ , with the yaw rate being changed to define a point at the edge. A zoom in at the origin is
provided. The tire configuration was set to "dry". Lateral g forces represented in dashed black.

Figures (2.9) and (2.10) show the linear relationship at steady state and the convergence of the

phase trajectories towards the equilibrium, showing that the system is stable for this range of values and

parameters. The air friction drag was taken into account during these simulations, which causes the

phase trajectories to slide along the line towards 0. This effect is more visible at higher velocities where

the squared dependency on the forward velocity vx has a greater impact. It can be further seen that at

higher velocities the vehicle tends to be asymptotically stable towards the previously defined null space.

The phase trajectories were simulated with a very low cg in order to dismiss the load transfer. Ideally we

want the state to move along this line and, in the driving case, go towards the specified g force limit.

Other unmodelled dynamics, not just the air drag, where taken into account in the plant simulations.

2.3 Unmodelled Dynamics

There are some dynamics that are not contemplated in the previous model. The normal load is not

constant and can change depending on the downforce or the mass transfer between wheels during

cornering and/or acceleration [1]. The air friction is another factor that should be taken into account. In

this work, the controller will see the air friction as a disturbance to the model. In fact, this disturbance and

others, such as transmission losses - not covered in this work - are seen by the tire model as hysteresis.
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Figure 2.10: Phase trajectories showing the linear relationship between the yaw rate ωz and the
linear velocity along y vy , in an inertial frame aligned with the car. The starting points at the edges
were defined using the null space of the dynamics matrix, given a vehicle speed and steering angle,
with the yaw rate being changed to define a point at the edge. A zoom in at the origin is provided.
The tire configuration was set to "dry".

This is equivalent to the Pacejka tire model with the offset parameters, allowing the linear region to slide

up and down as needed.

2.3.1 Variable Normal Load

The load at each wheel i is not constant. We need to consider the base load, load transfer and the

load due to the downforce. The base load F ibn is the load resulting from the distribution of the weight due

to the unsprung mass plus the weight of the wheels,



F r rbn

F r lbn

F f rbn

F f lbn


=



a ·g ·m
2(a+b)

a ·g ·m
2(a+b)

b ·g ·m
2(a+b)

b ·g ·m
2(a+b)


+



g · mwr

g · mwr

g · mwf

g · mwf


. (2.63)

Next we consider the longitudinal and lateral load transfer due to the vehicle acceleration and the centrifugal

forces. Here, we will only consider the load transfer due to the centrifugal force. Not taken into account

were the Coriolis and Euler forces. The centrifugal force, due to a rotation about a point r is given by

Fc = −mωωω × (ωωω × r). (2.64)
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If we assume that v is tangent to the force, and take into account only planar motion,

Fc = −m(ωωω × v) with, v = ωωω × r (2.65)

ωωω = [0, 0,ωz ]
T (2.66)

v = [vx ,vy , 0]T (2.67)

=⇒


Fcx

Fcy

 = m

−vyωz

vxωz

 , (2.68)

and use that to write the load transfer Ft x , Ft y , given in respect to the acceleration and the height hc of the

cg, we have


Ft x

Ft y

 = m · hc

Ûvx−vyωz
a+b
Ûvy+vxωz
wt r ack

 . (2.69)

No distinction was made between the sprung/unsprung mass and no suspension model was assumed.

In addition to this we need to consider the downforce as a result of the air friction and the vehicle

aerodynamics. The air friction has a drag component and a downforce component. The downforce is

given by the front and back wings, or approximated by an equivalent wing. We assume that the rear wing

provides equal downforce to the rear wheels and the front wing provides downforce to the front wheels as,

Fdownf or ce =
1

2
WHF ρv 2x . (2.70)

widthW as the wing width, H the chord, and F the lift coefficient.

Adding all of these contributions, the estimated normal load fn (x) is given by,



F r rn

F r ln

F f rn

F f ln


=



a ·g ·m
2(a+b)

a ·g ·m
2(a+b)

b ·g ·m
2(a+b)

b ·g ·m
2(a+b)


+



g · mwr

g · mwr

g · mwf

g · mwf


+



WrHr Fr

WrHr Fr

Wf Hf Ff

Wf Hf Ff


ρv 2x
4

+m · hc



1, 1

1, −1

−1, 1

−1, −1



ax−vyωz
2·(a+b)
ay+vxωz
2·wt r ack

 (2.71)

= fn (x).

2.3.2 Wheel radius

The wheel radius is not constant, and even though the variation is small it is still a problem when it

comes to tire slip estimations.

We further assume that the tire has a spring like behaviour, with a vertical stiffness kst i f f , resulting in

the following definition for the loaded radius rL and contact patch L,

rL = r −
Fn
kst i f f

(2.72)

L = 2
√
r 2 − r 2L (2.73)
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Figure 2.11: The tire is assumed to behave like a spring when loaded, resulting in a loaded tire
radius rL and contact patch length L.

dismissing the transient behaviour of the wheel radius.

See Jazar [25] for a better definition of effective tire radius based on the loaded radius and the unloaded

radius (also called geometric radius). In practice the tire radius depends on the type of tire, tire velocity,

stiffness, load and inflation pressure. However, in this work, a simplified radius is considered.

2.3.3 Drag

The drag due to the air friction is treated as a disturbance to the model but is modelled in the plant as,

Fdr ag =
1

2
ρCDAv

2
x . (2.74)

The resulting force from the drag acting on the vehicle is given by the drag equation, with CDA usually

referred as the drag area, ρ the air density and vx the vehicle speed along the x axis.

This has a negative impact on the vehicle performance because it increases the power required to

reach higher velocities and diminishes the resulting acceleration. On the other hand, the downforce has a

positive impact on the performance by increasing the normal load.

As a consequence of drag, a theoretical max speed can be derived by saying that the total work done

by the forces acting on the vehicle is the result of the consumed power minus the power of the drag force

Fdr ag , and setting that to zero,

P ower = Fdr ag · vmax (2.75)

vmax =
3

√
P ower

0.5ρCDA
. (2.76)
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Chapter 3

Observer/Controller Design

The proposed solution consists on a Model Predictive Controller with an EKF observer. The role of

the observer is to estimate the state vector, with an emphasis on the velocity vector. The estimated state

x̂ and associated covariance matrix P̂ are given to the MPC that will minimize a cost function over the

prediction horizon, based on the desired behaviour of the system.

,�̂  � ̂ 

Observer

�Controller

�

Car
�����, �����Driver

Figure 3.1: High level view of the system with the controller and observer. The driver provides a
signal, comprised by the pedal and steer. The controller then actuates on the car, given the driver
input and the car state estimation from the observer.

3.1 Observer

The goal of the observer is to provide an accurate estimation of the states, given the plant outputs and

the inputs. In order to show if the velocity vector was observable we used an EKF. Should the system

be observable, in the simulated conditions, we expect to see a bounded trace of the covariance matrix

t r ace(P̂k ) < cconst , cconst > 0.

Taking the discrete system, see annex A, we consider that,

xk+1 = Ak · xk + Bk · u +wk with wk ∼ N (0,Q ) (3.1)

yk = Ck · xk + vk with vk ∼ N (0, R ). (3.2)
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The estimation is done through two steps. First we predict what we expect to see. And then, based on

the error, we update our estimation.

For the prediction step we take the previous estimation k − 1, and use he previously linearised model

Ak−1 |k−1 to estimate the new state. We use that new estimation to derive a new linearization Ak |k−1 and

calculate the corresponding estimation covariance P̂k |k−1.

x̂k |k−1 = Ak−1 |k−1 · x̂k−1 |k−1 + Bk−1 |k−1 · uk (3.3)

P̂k |k−1 = Ak |k−1 · P̂k−1 |k−1 · A
T
k |k−1 + Q (3.4)

Then we use the error between the measured outputs yk and the expected outputs to update our

estimation through the optimal Kalman gain Kk ,

ek = yk − Ck |k−1 · x̂k |k−1 (3.5)

Sk = Ck |k−1 · Pk |k−1 · C
T
k |k−1 + R (3.6)

Kk = Pk |k−1 · C
T
k |k−1 · S

−1
k (3.7)

x̂k |k = xk |k−1 + Kk · ek (3.8)

P̂k |k = (I − Kk · Ck |k ) · P̂k |k−1, (3.9)

and make new linearizations Ak |k and Ck |k .

Outside of the observer problem we say that x̂k is the state estimation at time k and, similarly, that P̂k
is the corresponding covariance matrix. Similarly Ak and Ck correspond to the linearizations.

It is worth noting that proper choice of the expected process noise covariance Q can help with some of

the unmodelled dynamics and other disturbances. The sensor noise covariance R must also be adjusted

according to the sensors accuracy and noise.

3.2 Controller

The controller used here is a Model Predictive Controller. Implied with this is an optimization problem

that must be solved in real-time. To that effect we selected the KWIK algorithm [48]. The KWIK algorithm

solves quadratic programming (QP) problems with linear inequality constraints. Some of our constraints

are quadratic but can be approximated by linear constraints. In this section we cover the problem definition,

the state and input constraints, as well as an alternate cost function with soft constraints, should some

constraints prove to be infeasible for a particular horizon.

3.2.1 Model Predictive Controller

MPC is a control strategy under the optimal control umbrella. First developed in the petrochemical

industry for process control it has also spread to other areas. It has a strong theoretical basis and its
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stability, optimality and robustness properties are well known. It is also popular due to it’s ability to take

into account several constraints, such as in the context of this thesis.

The proposed solution is to transfer the control problem into an optimization problem and solve it

through quadratic programming (QP) with a quadratic cost function. This problem is then numerically

solved with the KWIK algorithm [48]. Given the discrete piecewise linear system, solve the optimization

problem over an horizon window with N time-steps of Ts duration each, with Q and R weight matrices

being at least semi-positive definite. Here we will consider only linear constrains, Au for the inputs and Ax
for the state constraints, with the corresponding constraints vectors bu and bx . For a time instance m and

N k steps, the problem to be solved is to find the inputs um that minimize,

min
um

J (um ) =
N∑
k=1

xTm,k · Q · xm,k + u
T
m,k · R · um,k (3.10)

s.t.

xk+1 = Ak · xk + B · uk+1

Au · um ≥ bu

Ax · xm ≥ bx

um =
[
uTm,1, uTm,2, · · · , uTm,k , · · · , uTm,N

]T
xm =

[
xTm,1, xTm,2, · · · , xTm,k , · · · , xTm,N

]T
.

To solve the problem we need to rework the problem formulation. The state can be propagated from

the initial state x0 with the system dynamics and inputs as,

xm,1 = A0x0 + Bum,1 (3.11)

xm,2 = A1A0x0 + A1Bum,1 + Bum,2 (3.12)

thus,

xm =Mx0 + Cum , (3.13)

with the auxiliary matrices C

C =



B , 0,
. . . 0

A1B , B , 0,
. . .

...

A2A1B , A1B , B , 0,
...

...
...

...
... 0

...

(Π1i=NAi )B , (Π
1
i=N−1Ai )B , · · · , A2A1B , A1B , B


, (3.14)
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andM

M =



A0

A1A0

A2A1A0
...

Π0
i=N−1Ai


(3.15)

which allows us to write the the state constraints as inputs constraints,

Axxm ≥ bx (3.16)

AxMx0 + AxCum ≥ bx (3.17)

AxCum ≥ bx − AxMx0 (3.18)

and adding the previous input constraints we arrive at the more compact form,

Acum ≥ bc (3.19)

Ac =


AxC

Au

 (3.20)

bc =


bx − AxMx0

bu

 . (3.21)

We then rewrite the problem,

min
um

J = uTmHum + 2 · (F · x0)T um (3.22)

s.t.

Acu ≥ bc

H = CTQC + R (3.23)

F = CTQM, (3.24)

which can be solved with the KWIK algorithm [48] if the Hessian matrix H is positive definite H � 0 and

Hermitian H = H H .

Lastly, taking into account that if the car is at rest x0 = 0 and if H � 0, then the only possible solution is

um = 0. To address this, when x0 is small, it is set to some other slightly higher value. There is a range of

values for transitioning, both from rest - driving, and to rest - braking.

3.2.2 Input Constraints

The input constraints have to do with the engine curve and the overall available power. We assume

that the electric engine will be functioning as an engine, while accelerating, or as a brake, consuming
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power to brake and not as a generator, consuming mechanical power and generating electric power.

However, this section can be revisited for a more in depth power management. We feel that the example

provided here is enough for a proof of concept. We could also factor in some constraint/cost to reduce

uneven engine wear, like the one proposed in [27] and/or to take into account heat generation.

For the engine curve, we assume that there is some maximum and negative torque, and power

constraints when braking and accelerating that define the engine curve. Other engine curves can be

considered. The maximum driving and braking torque constraint is trivial to enforce over the horizon, and

is considered in the input constraints. For the power constraint we can write it by propagating the wheel

speed state and multiplying it by the input torque,

P iengi ne = ω
i · u i , (3.25)

with es as the wheel speed selector matrix, such that,

Pr r ,r l ,f r ,f l
engi nem

= diag(um ) · (esMx0 + esCum ) =



P r r

engi nem,1

P r l

engi nem,1

P f r

engi nem,1

P f l

engi nem,1

· · ·

P r r

engi nem,N

P r l

engi nem,N

P f r

engi nem,N

P f l

engi nem,N



, (3.26)

we arrive at a quadratic constraint in respect to um . This can be avoided if we assume that, besides

the one directly connected, the contribution from one engine to some other wheel is negligible. Which

amounts to say that the product esC can be approximated through a diagonal matrix. This decouples

the problem into constraints to be satisfied by each engine i , since the power at each engine can be

approximated by,

P i

engi nem,k
= u im,k · maux + u

i
m,k

2
· caux , (3.27)

with maux and caux as the corresponding entries of e is · M · x0 and e is · C. With this, we can solve

P i

engi nem,k
≤ max driving/braking engine power, (3.28)

in respect to the input torque u im,k and find the equivalent driving/braking torque constraint as a linear

inequality constraint, such that the local power constraints can be written as

um ≥ bequivalent engine torque constraint. (3.29)
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The equivalent engine torque constraint can be determined by finding the roots of equation 3.27.

For the overall available power, the previous approximation is not as useful. But we can propagate the

wheel turning speed across the horizon with only the autonomous system dynamics and the previous

input solution, getting ∗ωim,k from Mx0 + Cum−1, and say that the power generated at each wheel is

approximately given by 3.25. We then say that the total power consumption must be less than a given

limit,

Ptotalm,k ≈

r r ,r l ,f r ,f l∑
i

∗ωim,k · u
i
m,k , (3.30)

and use it to make a linear inequality constraint in respect to the inputs.

All of the above was also used to do the braking power constraints, both local and global.

3.2.3 State Constraints

The state constraints ensure that there are tip-over safeguards and that the wheel slip ratio does not

exceed a predetermined value. The tip-over safeguards can be made to enforce a minimum load at each

tire or to limit the lateral g forces. The wheel slip constraint can be turned into a linear constraint if we

rewrite 2.1 into,

v ix (k + 1) − ωr = 0, (3.31)

with v ix as the longitudinal speed at a tire i in the tire frame. Which results in the following linear constraints,

v ix (1 + k
+) − ωi r ≥ 0 (3.32)

v ix (1 − k
−) + ωi r ≥ 0. (3.33)

The velocities at each tire can then be mapped into velocities at the centre of mass with the linear

transformation 2.30, thus ensuring we can have this constraint as a linear constraint in our optimization

problem 3.10,


−r

r


(1 + k +) 0

(1 − k −) 0



cos δ sin δ rx sin δ − ry cos δ

− sin δ cos δ rx cos δ + ry sin δ





ωi

vx

vy

ωz


≥ 0 (3.34)

=⇒


−r (1 + k +) cos δ (1 + k +) sin δ (1 + k +)(rx sin δ − ry cos δ)

r (1 − k −) cos δ (1 − k −) sin δ (1 − k −)(rx sin δ − ry cos δ)




ωi

vx

vy

ωz


≥ 0. (3.35)

For the tip-over problem we can define a limit for the g forces. This means that if a turning radius is
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requested that can’t satisfy this constraint at the initial velocity, the controller will brake the car in such a

way that it does the tightest turn with, at most, the specified g force until the requested turning radius is

achieved. It will then only expend energy in maintaining that velocity. Similarly, the controller will allow the

car to accelerate until the maximum gforce is achieved.

The lateral g forces are considered to be only due to the centrifugal force, which is also responsible for

the lateral load transfer, disregarding the contribution from Ûvy ,

gf or ce y = sign(ωz )
vx · ωz
g

(3.36)

Any constraint done here in respect to both the longitudinal velocity and the yaw rate results in a non-linear

constraint. Since we can directly measure the yaw rate, the approach taken here was to propagate the

longitudinal velocity and use that value has a constant,

g · gf or ce l imi t y
∗vx

≥ |ωz | (3.37)

which can be turned into two linear constraints, one for the lower bound and another for the upper bound

of ωz , for each time step.

The tip-over prevention can also be ensured by placing steering constraints on the input steer from the

driver and limiting the maximum steer angle as in stated by Kang [28]. Or by making constraint similar to

the g force constraint, based on the minimum acceptable normal load at each tire.

3.2.4 Cost Function

According to the system dynamics, the cost function must minimize the lateral stabilization error and

ensure the yaw rate - linear velocity relationship. At thrust, we want a compromise between the highest

longitudinal speed at the end of the horizon vx |N and the minimum error during the horizon. With some

positive weight factors ρ we devised the following cost function,

min
um

J = −ρvxv
2
x ,N +

N∑
k=1

[
ρωz

(
ωz ,k −

vx ,k tan δ
a + b

)2
+ ρl (vy ,k − bωz ,k )

2

]
, (3.38)

(3.39)

that happens to result in a symmetric positive definite matrix H 3.22. Should H not be positive definite at

some point, it can be reconstructed to provide a convex hull by decomposing it and enforcing positive

eigenvalues. In practice, only least energetic component was negative. For the most part H is at least

semi-positive definite H � 0. Whether or not H is full rank is tied to whether or not the system is over-

actuated. In those cases we can’t ensure that the solution is the most optimum solution, in the sense of

optimum control.

Should the MPC problem be infeasible, we need to known why. One possibility is when the slip

constraints for a given wheel can’t be met. In such a case a quadratic cost Js l i p for those wheels is added
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to the cost function in order to bring it back to feasibility,

Js l i p = ρs l i p
∑ (

v ix − ω
i r

)2
(3.40)

with ρs l i p as a weight and the sum being only about those wheels.

The other possibility for an infeasible problem is if the g force can’t be within bounds over the horizon.

In which case we also add a very high quadratic cost to the yaw rate ωz in order to reduce the g force.

With this we can ensure that even when the problem is infeasible, we can move towards a feasible

operation point without dismissing the original problem formulation.
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Chapter 4

Implementation

The end goal of this thesis is to implement the observer/controller pair in the FST Lisboa team cars,

serving as the control basis for further algorithms. This chapter covers the Matlab implementation work,

from a configuration and design point of view. The used and developed simulink models are shown and

the implementation details of the observer, controller and plant are covered.

The implementation of this thesis was made entirely in Matlab. A LuGre library was developed to

generate the state space matrices. The plant, observer and controller were made in level-2 s-functions.

These s-functions make use of the developed library and are parametrized accordingly and can be latter

developed in C code. The s-functions were developed due to the ease of implementation of non linear

systems, debugging and the ability to set a sampling time for the discrete blocks (observer & controller) or

continuous (plant) as needed.

Figure 4.1: Broad overview of the structure of the Matlab implementation.

Notable functions developed are the s-functions "msfcn_extended_kalman", "msfcn_full_car_normal_load"

and the "c_msfcn_linear_mpc_KWIK". These are respectively the observer, plant and the controller. They

make use of the function "CarLuGreNormal" in the library. That is the main function in the library since it

returns the state space matrices of the car. The next most important is the "TireDynamics" that returns the

30



state space matrices of the single tire model, and is used by the "CarLuGreNormal" to assemble the full

car system, with a similar approach as the developed model equations in chapter 2. The "TireDynamics"

function also allows for fixed O i parameters, variable tire radius and contact patch length (based on the

normal load).
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Figure 4.2: Simulink developed for simulating the car, observer and controller. Used to test the observer/controller pair in several configurations.
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Figure 4.3: Simulink developed to simulate a single tire. Used to study tire hysteresis and the effect of the slip angle, slip ratio, normal load and constant O i
parameters.
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Figure 4.4: Simulink developed for simulating the kalman filter, given a dataset.
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The main simulink, show in figure 4.2, features mass transfers in a very simplified way ,the suspension

is simply a lowpass filter on the mass transfers, the communication transport delay, engine slew rate,

noise in the sensors and in the normal load - including bias in the normal load; allows disabling the

controller/observer for individual component testing. It was used extensively in the course of this project

in order to better understand the vehicle dynamics and limits of the controller/observer.

Next, by order of importance is the simulink of the decoupled tire 4.3. It allowed for proper hysteresis

analysis, slips and the parameter effects on the tire behaviour.

The tire parameters were estimated with the matlab non linear grey box estimation, from the System

Identification Toolbox, and the FSAE TTC dataset.

Lastly the observer only simulink 4.4, was developed to test datasets collected in one of the FST

Lisboa team’s run and allowed to finally see the quality of the estimations and provide the team with a

useful tool to further validate design choices, and better understand the car. As a side note, from the

data we were able to find steering wheel issues and an issue in the left rear wheel, both validated in the

workshop.

The following sections deal with the more in-depth parameters and implementation details of each

component.

4.1 Observer

The observer is implemented using the previous Kalman equations. However, in practice the observer

provides the controller with the ˆxk+1 |k and ˆPk+1 |k estimates. This allows for a single discretization per

cycle, reducing the computational cost and minimizing the impact of the transport delay.

For the process noise covariance matrix Q and sensor noise covariance R , we chose based on a

qualitative performance analysis and sensor data.

By analysing the periodogram in figure 4.5, obtained with matlab, and assuming that there is white

noise in the signal (seen as a flat line in dB), we took the high frequency noise as the noise power N0 and

chose a diagonal R matrix compatible with these values.

The process covariance noise matrix Q was chosen based on the perceived performance of the

observer and also set as a diagonal matrix.

Sensor R Process Q
σ2ωi 0.05 10−2

σ2ax 0.5 10−3

σ2ay 0.5 10−3

σ2ωz 0.0001 10−3

σ2zx 10−7

σ2zy 10−7

Sampling Time TsEKF 10 ms
PreWarp Frequency 2π

3TsEKF
rad/s

Table 4.1: EKF covariance parameters, sampling time, PreWarp frequency (for the bilinear trans-
form) used for the observer.
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Figure 4.5: Estimated power spectral density: periodogram of the directly observable states from
sensor readings. The periodogram of the left rear wheel was not included, since the type of signal
is the same as the rear right wheel.

Table 4.1 surmises the EKF settings used in this work.

4.2 Controller

The controller is implemented with the KWIK algorithm provided by matlab in "mpcqpsolver". There-

fore the implementation effort was mostly in constructing the optimization problem, such that it met all

requirements, and in tuning the controller.

Due to noise, the controller can attempt to correct the heading of the vehicle by braking or accelerating.

It just so happens that braking and accelerating some wheels is the fastest way to achieve the required

yaw moment. This is not always desirable, specially in the presence of noise. Thus a deadzone was

implemented to limit the braking solutions only when the yaw rate error eωz and/or the lateral stability error

e l was outside of this deadzone.
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Since we have the covariance matrix P̂ from the observer, we can use a linear transformation T as,

Tl =
[
0 · · · 0 1 −b

]
(4.1)

Tωz =
[
0 · · · 0 1 0 − tan δ

a+b

]
(4.2)

to find the associated covariance

σ2eωz = Tωz · P ·T
T
ωz (4.3)

σ2e l = Tl · P ·T
T
l . (4.4)

The same was also used to place an upper limit on the global braking/driving power when propagating

the state over the horizon.

For the H matrix of the MPC problem, we ensure that it is positive definite by reconstructing it. First

we take the Schur decomposition as

H =V · D ·VT (4.5)

with V as a unitary matrix as V −1 = VT and the diagonal entries of D as the eigenvalues. If there is a

negative eigenvalue we use that value to add a weight to the diagonal entries of H plus some small ε to

ensure full rank. In the worst case scenario, multiple negative eigenvalues, or if the eigenvalue with the

highest energy is negative, we set D = abs(D ) and reconstruct H adding a diagonal matrix composed of ε

entries, should the resulting matrix be only semipositive definite.

Table 4.2 surmises the MPC settings.

MPC parameters Description
ρvx 1 end velocity cost weight
ρωz 104 desired yaw rate running cost weight
ρl 103 lateral stability running cost weight
ρgf or ce 108 yaw rate soft running cost weight
ρs l i p 1018 slip soft running cost weight
Maximum driving engine Power 35kW
Maximum braking engine Power 30kW
Maximum vehicle driving Power 80kW
Maximum vehicle braking Power 30kW
TsMPC 100 ms
Maximum slip ratio ±0.05
Prewarp Frequency 2π

4TsMPC
rad/s PreWarp Frequency for the bilinear transform

Table 4.2: Table with the MPC settings.

4.3 Plant

The modelled vehicle is the FST09e, with two configurations: 2 rear driving wheels (FST09e 2w) and

4 driving wheels (FST09e 4w). Taking into account figure 2.8, the car dimensions and parameters are
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detailed in table 4.3.

Vehicle parameters Description
m 325 Kg mass with driver
a 0.73 m distance between the front wheel axis an the cg
b 0.81 m distance between the rear wheel axis an the cg
wt r ack 1.2 m wheel track
Iz 600 kg/m2 inertia moment about the z axis
Iω 4 kg/m2 non driving wheel moment of inertia
Iωd 10 kg/m2 driving wheel moment of inertia
r 0.2286 m unloaded tire radius
CDA 1.33 drag coefficient
gear ratio 16.25
communications delay 10 ms
WHFf r ont 0.9330 front downforce coefficient
WHFr ear 2.1770 rear downforce coefficient

Table 4.3: Simulated vehicle parameters.

The estimated parameters for the LuGre tire are described in table 4.4.

Tire parameters Description
kst i f f 96.865 kN/m vertical tire stiffness
σ0x 911.2273 m−1 bristle stiffness
σ0y 429.4989 m−1
σ1x ,1y ,2x ,2y 0 s/m stiction and viscous damping coefficients

Dry

µs 2.6564 static friction coefficient
µk x 0.1500 kinetic friction coefficient
µk y 0.1201
vs 10 m/s stribeck velocity
γ 4.9299 shape coeficient

Wet

µs 0.8855 static friction coefficient
µk x 0.050 kinetic friction coefficient
µk y 0.040
vs 3.3333 m/s stribeck velocity
γ 1.6433 shape coeficient

Table 4.4: Tire parameters used in the simulations. The dry parameters were the estimated
parameters from the FSAE TTC dataset.

4.4 Verification and Validation

The verification and validation of the model was done through the state estimations from the EKF on a

run with the FST09e. The car had two engines on a rear wheel configuration, and only those angular

velocities were available, since those measurements are tied to the engines. Figure 4.6 shows the result

of the integration of the velocity and yaw rate estimations. The line colour is such that green means that

the instant center of rotation is on the line that passes through the rear axle, red that is bellow it, and blue

that it is above. Ideally we want the sideslip angle at the rear axle βr to be 0.

As it can be seen, even though we don’t have data about all the wheels, only the driving ones, and in

spite of parameter uncertainty - many of the parameters could not be validated, the estimation shows a
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Figure 4.6: Trajectory estimation by integrating the velocity and yaw rate estimations from the EKF
at 100Hz. The car starts at the origin and first moves along the positive x axis, to the right. The line
color shows racio of the sideslip angle at the rear axle and at the cg βr

βc
.

trajectory that has the shape of the test track and it "closes the circle" of more than 600m in a ≈ 3 min test

run on a vehicle that at some points reached almost 2g of lateral force. While this is a qualitative measure,

the comparison with the sensor data serves to show how much of an improvement the estimation made.

Figure 4.7 also shows the estimated velocities alongside the trace of the covariance matrix. The trace

of the covariance matrix is used as a qualitative measure of the uncertainty and serves to see whether

or not the uncertainty is bounded, thus proving that these results can be used to supply the controller

with state estimations in a stable manner. Furthermore it also hints at the possibility of the system being

locally observable. Figure 4.8 shows some quantities computed from the state estimation. It can be seen

that during a turn, the estimation improves and that the slip ratio follows the expected braking/driving

manouvers even though the mechanical braking was not taken into account in the observer estimations.

As a side note, normal loads were assumed to be constant which can be the reason why the slip ratio of

the left wheel remains so low. Another reason could be that the transmission of the left wheel offers more

resistantance than the right one. The torque measurements were done applying a constant factor to the

measured current at the engines, and are likelly to be lower than reported due to current saturation and

the engine wear.

39



0.0
0.2
0.4
0.6
0.8
1.0
1.2

0 20 40 60 80 100 120 140 160

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
0

10
20
30
40
50
60

-2
0
2
4
6
8

10
12
14

Time (s)

trace(P̂ )

(ra
d/
s)

ω̂z
ωz

(ra
d/
s)

ω̂r r
ω̂r l
ω̂f r
ω̂f l

(m
/s
)

v̂x
v̂y

Figure 4.7: Estimations from the kalman filter applied to the dataset run. From top to bottom:
linear velocities estimations; wheel angular velocities; yaw rate estimation ω̂z and sensor reading
ωz ; trace of the covariance matrix P̂ of the state estimation.

40



-40
-20
0

20
40

0 20 40 60 80 100 120 140 160

-5

0

5

-0.05

0.00

0.05

-100 Nm

-50 Nm

0 Nm

50 Nm

100 Nm-15.0

-7.5

0.0

7.5

15.0

0

180

α
(d
eg

re
es

)

Time (s)

αf r
αf l

α
(d
eg

re
es

)

αr r
αr l

κ

κr r
κr l
ur r
ur l

(d
eg

re
es

)

steering wheel
βc
βr

Figure 4.8: Slip ratios and slip angles, estimated from the attitude values and known vehicle
dimensions. The front slip angles are estimated taking into account the wheel turning angle, which
may be inaccurate. From the top to bottom: The steering wheel signal, with scale axis at the right,
and the velocity angles at the rear axis βr and at the center of mass βc ; the slip ratios of the driving
wheels κr r κr l , with the corresponding applied torque to the wheel ur r and ur l , torque scale to the
right; rear wheels slip angle αr r , αr l ; front wheels slip angle αf r , αf l .

41



Chapter 5

Results

In order to better understand and measure the performance of the observer/controller pair, 3 simulation

tests were done, with noise. The simulations were done on a personal computer, with a Intel i7-4700HQ

processor.

The turning test, to evaluate the attitude of the vehicle, stability of the response, the g force limit and

the settling time of the yaw rate as well the acceleration during the turn, should vehicle be short of the the

g force limit.

The acceleration test, in order to measure the traction control, how fast the total available power was

applied to the car and how straight the car went by measuring the side drift. Last, the braking test, also

with similar objectives.

The annex, contains the plots for some of the simulations.

5.1 Simulations

5.1.1 Turning

The turning test consists on a short acceleration run followed by a steep wheel steer angle change,

requesting a 17.5 m turning radius and continuing to accelerate. Table 5.1 shows how fast the car is set

into the curve, by looking at the settling time of βr , and the effect of such a sharp turn has on the attitude

of the car, by looking at the peak βr value. Further, timmings for the observer and controller are provided

in order to validate the chosen sampling times for the controller and observer. The settling time for the

wet four wheel simulation was not provided since βr was not sufficiently impacted, which is a good result.

Turning
1st arc radius Max βr βr Settling(15%) T95% EKF T95% MPC

Dry FST09e 2w 17.49 m 0.93 deg 0.20 s 9.78 ms 89.74 ms
FST09e 4w 17.71 m 0.82 deg 0.35 s 9.08 ms 81.73 ms

Wet FST09e 2w 17.46 m 0.68 deg 0.19 s 9.88 ms 97.78 ms
FST09e 4w 17.78 m 0.39 deg 8.77ms 80.26 ms

Table 5.1: General data on the turning simulation test.
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Table 5.2 surmizes the yaw rate values. Take into account that for the two wheel configuration, the car

had to accelerate on the curve, thus a longer rise time is reported. The speed at the start and end of the

turning maneuver is surmized in 5.3.

Yaw rate ωz
Settling Min Settling Max Rise (5%-95%) Settling (2%) Overshoot

Dry FST09e 2w 0.9590 rad/s 1.0195 rad/s 1.7694 s 2.1943 s 1.0967%
FST09e 4w 0.9544 rad/s 1.0223 rad/s 0.3961 s 0.5092 s 2.0063%

Wet FST09e 2w 0.9596 rad/s 1.0204 rad/s 5.1181 s 6.6460 s 1.1446%
FST09e 4w 0.9477 rad/s 1.0250 rad/s 0.3789 s 11.5633 s 3.1584%

Table 5.2: Yaw rate summary of the turning simulation test.

Turning
Velocity before turn Terminal velocity Deviation before turning

Dry FST09e 2w 13.1507 m/s 17.5368 m/s 0.0422 m
FST09e 4w 17.8495 m/s 17.6853 m/s 0.0015 m

Wet FST09e 2w 11.4939 m/s 17.5194 m/s 0.0348 m
FST09e 4w 17.1954 m/s 17.9041 m/s 0.0000 m

Table 5.3: Velocity conditions for the turning simulation.

It can be seen that the car is properly set into the curve, quickly achieving the proper attack angle, seen

through βc , table 5.4, and in βc . This was achieved by braking the inner rear wheel and then achieving

and mantaining the maximum speed, defined from the requested arc and lateral g force limit. See annex

B.2.1 for an example of this.

Turning βc
Settling Min Settling Max Rise (5%-95%) Settling (2%) Overshoot

Dry FST09e 2w 2.5200 deg 2.6547 deg 0.2028 s 0.3308 s 0.0847%
FST09e 4w 2.5209 deg 2.6646 deg 0.2697 s 0.3168 s 0.4436%

Wet FST09e 2w 2.5537 deg 2.6903 deg 0.2488 s 0.2733 s 1.4506%
FST09e 4w 2.5212 deg 2.6675 deg 0.4026 s 0.4512 s 0.6118%

Table 5.4: Sideslip angle βc summary, from the turning simulation.
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5.1.2 Acceleration

The goal of the accelaration test is to see how well the car goes straight and how fast the whole power

is used. Table 5.5 surmises how fast the car reaches the 100m mark, 100kmh, the drift, max speed and

the computacional timings.

Acceleration
100m 100 kmh Drift (100m) Max Speed T95% EKF T95% MPC

Dry FST09e 2w 9.67 s 11.64 s −0.2060 m 43.4826 m/s 10.93 ms 86.78 ms
FST09e 4w 6.89 s 7.97 s −0.1329 m 45.5187 m/s 9.69 ms 67.57 ms

Wet FST09e 2w 10.25 s 13.02 s −0.1745 m 43.3595 m/s 9.71 ms 66.74 ms
FST09e 4w 7.06 s 8.16 s −0.1550 m 45.4958 m/s 9.06 ms 63.96 ms

Table 5.5: General data on the acceleration simulation test.

Table 5.6 shows the results from a power point of view. Keep in mind that the two rear wheel

configuration can only use 70kW worth of power, since there are only two engines.

Power
SettlingMin SettlingMax Rise(5%-98%) SettlingTime(2%) Overshoot

Dry FST09e 2w 59264.8491W 70721.5090W 7.6685 s 1.3694%
FST09e 4w 76667.3081W 79874.0087W 2.8217 s 4.5142 s 0.2194%

Wet FST09e 2w 50547.0315W 70653.5099W 8.4064 s 0.8121%
FST09e 4w 76567.2365W 79948.2199W 2.8648 s 4.2117 s 0.7763%

Table 5.6: Power summary on the acceleration simulation test.

In general the four wheel configuration can more easily place the full power on the ground, since it

does not need as high slip ratios to achieve this, and the performance difference between the wet and dry

scenarios is negletable. The settling times for the two wheel configuration where not estimated but the

plots are available in the annex. See annex B.2.2 for more details.

5.1.3 Braking

The braking in the simulation test does not take into account the mechanical braking, and was done

only to evaluate drift, and the power constraints. It can be seen in table 5.7 that they were achieved.

Braking
Time Distance Drift Max Power T95% EKF T95% MPC

Dry FST09e 2w 4.2945 s 30.5424 m 0.0103 m 30794.9704W 7.95 ms 86.15 ms
FST09e 4w 3.8360 s 31.1629 m 0.0058 m 32900.1087W 10.14 ms 89.63 ms

Wet FST09e 2w 5.8024 s 39.9180 m 0.0586 m 30535.7724W 9.69 ms 104.19 ms
FST09e 4w 3.8559 s 31.7787 m 0.0309 m 32563.9473W 9.88 ms 78.95 ms

Table 5.7: General data on the braking simulation test.
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Chapter 6

Conclusions

To conclude this work, there are several points that we would like to make.

6.1 Achievements

Looking at the work developed, the results, and taking into account what we set up to do, we can say

that we met all the proposed objectives. The only thing we could not verify was the performance of the

controller in the car, although the observer alone is sufficient to justify this and further work. Should the

attitude estimations be correct, in spite of the parameter uncertainties, then we managed to do with a

common sensor and some current measurements, what dedicated and expensive sensors do, and we

could implement this observer into virtually any electric car.

We managed to develop a vehicle model, an observer, a robust controller, agnostic to the number

of driving wheels, capable of enforcing power constraints, attitude constraints, achieving desired yaw

rates and slip ratios, tunable and customizable for other needs and objectives while being computacionaly

viable.

6.2 Future Work

After the conclusion of this work, we believe that an online parameter estimation for the tire/road

interaction and some car parameters should be developed and the state estimation problem should be

incorporated into the model predictive controller since the observation and control problems are not

completely separable. The solver should also be independently implemented and natively support the

switching of hard constraints into soft constraints. In line with this, more work on the observability and

detectability of the system should be done.

Another point that could be better explored is how the pedal interacts with the controller. Currently the

pedal is assumed to control the total available power, but also having it as a factor in the velocity weight of

the MPC might be a better approach, or even in the slip ratio limit.

An electric engine state space model, if linear, could also be incorporated into the controller, changing
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the problem from a torque input into an engine current input. Should the resulting model also be observable,

this could be a factor for the engine temperature and wear estimation. The engine wear leveling could then

be achieved with input weights in the controller. This could also be the foundation for cooling strategies,

even wear and temperature control by placing weights/limits on the actuation, based on these measures.

Lastly, the suspension model should be incorporated in order to have better normal load estimations

and, consequently tire slip estimations. And maybe in the future, we could also develop active suspension

models that could further improve handling and weight distribution.

Even the tire model could be improved by taking into account the non-linearities that were not fully

explored in this work, such as conicity and temperature to name a few.

But all of this can only be accomplished with proper state estimation and known vehicle dynamics. We

hope that more work can be done as a result of this thesis and problem formulation.

6.3 Closing Remarks

I would like to conclude this work by thanking everyone involved in the Formula Student Lisboa team,

past and current members. The competition provides an opportunity to improve teamwork, soft skills,

hard skills, and a number of problems that span several disciplines in what is often a major undertaking

each year. A better place where we can fail, learn from it, and explore our limits would be hard to get.

More acknowledgement and support from this institution would go a long way in what is first and foremost

a student initiative with far reaching potential in our future as engineers, individuals, and ultimately in the

image of this learning institution.
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Appendix A

Bilinear transform for State-Space

Models

Taking a continuous linear state-space system as,

Ûx = Ax + Bu (A.1)

y = Cx (A.2)

a discretization of the system can be obtained as

Ad = e
ATs (A.3)

Bd = (e
ATs − I )BA−1 (A.4)

and keeping C from the continuous system. However, this requires A to be invertible. In this work the A

matrix is not full rank and we used the bilinear transform instead.

The billinear transform (also known as Tustin transform) with frequency ω0 match (sometimes called

frequency pre-wrap) and sampling time Ts , corresponding to ωs = 2π/Ts was used. We can adjust the

response by specifying a frequency to match against, and the observability properties of the pair (A,C )

are kept in (Ad ,Cd ).

Taking the Laplace transform, assuming (A,C ) constant and disregarding the initial conditions,

L


Ûx = Ax + Bu

y = Cx
→


sX(s) = AX(s) + BU(s)

Y(s) = CX(s)
(A.5)

⇒


X(s) = (s I − A)−1BU(s)

Y(s) = C (s I − A)−1BU(s),
(A.6)

54



we define G(s) as the transfer function,

G(s)U(s) = Y(s) (A.7)

G(s) = C (s I − A)−1B . (A.8)

The bilinear transform is an aproximate map from s to z = esTs . We apply the bilinear transform and define

the frequency match to ω0 with the gain K ,

s ≈ K
z − 1

z + 1
with, K =

ω0
tan(ω0Ts/2)

and lim
ω0→0

K =
2

Ts
, (A.9)

which results in,

H (z ) = G

(
K
z − 1

z + 1

)
= Dd + Cd (z I − Ad )−1Bd (A.10)

= C

(
K
z − 1

z + 1
I − A

)−1
B (A.11)

=
z + 1

K
C

(
(z − 1)I − z + 1

K
A

)−1
B (A.12)

= (z + 1)C (z (K I − A) − (K I + A))−1 B (A.13)

= (z + 1)C (zP − Q )−1 B with, P = K I − A,Q = K I + A (A.14)

= (z + 1)C
(
z I − P −1Q

)−1
P −1B , with, Ad = P −1Q and Bd =

√
2KP −1B , (A.15)

by considering that,

(z + 1)C = C (z + 1) (A.16)

= C (z I + I + Ad − Ad ) (A.17)

= C ((z I − Ad ) + (I + Ad )) (A.18)

= C ((z I − Ad ) + P −1(P + Q )) (A.19)

= C ((z I − Ad ) + 2KP −1) (A.20)

we can rewrite H (z ),

H (z ) =
z + 1
√
2K

C (z I − Ad )−1 Bd (A.21)

=
1
√
2K

C ((z I − Ad ) + 2KP −1) (z I − Ad )−1 Bd (A.22)

=
1
√
2K

C (I + 2KP −1 (z I − Ad )−1)Bd (A.23)

=
1
√
2K

CBd +
√
2KCP −1 (z I − Ad )−1 Bd (A.24)

= CP −1B +
√
2KCP −1 (z I − Ad )−1 Bd (A.25)

= Dd + Cd (z I − Ad )−1Bd (A.26)
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and write the discretized system matrices as,

Ad = (K I − A)−1(K I + A) (A.27)

Bd =
√
2K (K I − A)−1B (A.28)

Cd =
√
2KC (K I − A)−1 (A.29)

Dd = C (K I − A)−1B (A.30)
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Appendix B

Simulations

B.1 FST09e 4w

B.1.1 Turning

Turning Dry FST09e 4w
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Figure B.1: Vehicle trajectory and lateral g force for a simulation of an acceleration followed by
turning with expected radius of 35m, with four wheel traction configuration on dry terrain.
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Figure B.2: Vehicle velocity, wheel angular velocity and yaw rate estimation, ground truth and
reference yaw rate, for a simulation of an acceleration followed by turning with expected radius of
35m, with four wheel traction configuration on dry terrain.
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Figure B.3: Front, rear slip ratios and sideslip angles for a simulation of an acceleration followed
by turning with expected radius of 35m, with four wheel traction configuration on dry terrain.
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Figure B.4: Total and braking power, as well as the engine torque for a simulation of an acceleration
followed by turning with expected radius of 35m, with four wheel traction configuration on dry terrain.
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Turning Wet FST09e 4w
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Figure B.5: Vehicle trajectory and lateral g force for a simulation of an acceleration followed by
turning with expected radius of 35m, with four wheel traction configuration on wet terrain.
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Figure B.6: Vehicle velocity, wheel angular velocity and yaw rate estimation, ground truth and
reference yaw rate, for a simulation of an acceleration followed by turning with expected radius of
35m, with four wheel traction configuration on wet terrain.
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Figure B.7: Front, rear slip ratios and sideslip angles for a simulation of an acceleration followed
by turning with expected radius of 35m, with four wheel traction configuration on wet terrain.
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Figure B.8: Total and braking power, as well as the engine torque for a simulation of an acceleration
followed by turning with expected radius of 35m, with four wheel traction configuration on wet
terrain.
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B.2 FST09e 2w

B.2.1 Turning

Turning Dry FST09e 2w
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Figure B.9: Vehicle trajectory and lateral g force for a simulation of an acceleration followed by
turning with expected radius of 35m, with rear wheel traction configuration on dry terrain.
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Figure B.10: Vehicle velocity, wheel angular velocity and yaw rate estimation, ground truth and
reference yaw rate, for a simulation of an acceleration followed by turning with expected radius of
35m, with rear wheel traction configuration on dry terrain.
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Figure B.11: Front, rear slip ratios and sideslip angles for a simulation of an acceleration followed
by turning with expected radius of 35m, with two wheel rear traction configuration on dry terrain.
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Figure B.12: Total and braking power, as well as the engine torque for a simulation of an accelera-
tion followed by turning with expected radius of 35m, with a two wheel rear traction configuration
on dry terrain.
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Turning Wet FST09e 2w
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Figure B.13: Vehicle trajectory and lateral g force for a simulation of an acceleration followed by
turning with expected radius of 35m, with rear wheel traction configuration on wet terrain.
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Figure B.14: Vehicle velocity, wheel angular velocity and yaw rate estimation, ground truth and
reference yaw rate, for a simulation of an acceleration followed by turning with expected radius of
35m, with rear wheel traction configuration on wet terrain.
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Figure B.15: Front, rear slip ratios and sideslip angles for a simulation of an acceleration followed
by turning with expected radius of 35m, with two wheel rear traction configuration on wet terrain.
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Figure B.16: Total and braking power, as well as the engine torque for a simulation of an accelera-
tion followed by turning with expected radius of 35m, with a two wheel rear traction configuration
on wet terrain.
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B.2.2 Accelerating

Accelaration Dry FST09e 2w
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Figure B.17: Vehicle velocity, wheel angular velocity and slip ratio estimation, for a simulation of
an acceleration with rear wheel traction configuration on dry terrain.
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Figure B.18: Power and torque for a simulation of an acceleration with rear wheel traction configu-
ration on dry terrain.
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Accelaration Wet FST09e 2w
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Figure B.19: Vehicle velocity, wheel angular velocity and slip ratio estimation, for a simulation of
an acceleration with rear wheel traction configuration on wet terrain.
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Figure B.20: Power and torque for a simulation of an acceleration with rear wheel traction configu-
ration on wet terrain.

76



B.2.3 Braking
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Figure B.21: Vehicle velocity, wheel angular velocity and slip ratio estimation, for a simulation of a
braking manouver with rear wheel traction configuration on dry terrain.
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Figure B.22: Power and torque for a simulation of braking manouver with rear wheel traction
configuration on dry terrain.
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Braking Wet FST09e 2w
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Figure B.23: Vehicle velocity, wheel angular velocity and slip ratio estimation, for a simulation of a
braking manouver with rear wheel traction configuration on wet terrain.
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Figure B.24: Power and torque for a simulation of a braking manouver with rear wheel traction
configuration on wet terrain.
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