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Abstract

Procedural content generation is a popular topic in the games industry, it allows for faster development

of content at reduced cost by being able to create infinite content. Creating levels and other details of

the levels can reduce the workload on artists and game developers. Though a lot of work can still be

done in procedural content generators, such as making generated content more diverse and realistic,

when it comes to generating cooperative content, specifically content that requires collaboration between

both players to be completed, there is a severe lack of work and approaches. We provide a solution to

procedurally generating cooperative content. In this work, we create a level generator that uses a genetic

algorithm as a base. We study how to properly define the problem and apply it to the game Geometry

Friends as an example. We then evaluate our solution and finally we discuss how to keep improving the

area for procedural content generation in cooperative games and propose different approaches.
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Resumo

A geração de conteúdo procedimental é um tópico popular na indústria de jogos, pois permite um

desenvolvimento mais rápido de conteúdo a um custo reduzido, sendo capaz de criar conteúdo in-

finito. A criação de nı́veis e outros detalhes dos nı́veis pode reduzir a carga de trabalho dos artistas

e desenvolvedores de jogos. Embora muito trabalho ainda possa ser feito em geradores de conteúdo

procedural, como tornar o conteúdo gerado mais diverso e realista, quando se trata de gerar conteúdo

cooperativo, especificamente conteúdo que requer cooperação entre ambos os jogadores para ser com-

pleto, há uma grave falta de trabalhos e abordagens. Oferecemos uma solução para gerar conteúdo

cooperativo de maneira procedimental. Neste trabalho criamos um gerador de nı́veis que usa um al-

goritmo genético como base. Estudamos como definir corretamente o problema e aplicamo-lo ao jogo

Geometry Friends como exemplo. Avaliamos a nossa solução e finalmente discutimos como continuar

a melhorar a área de geração de conteúdo procedimental em jogos cooperativos e propomos diferentes

abordagens.

Palavras Chave

Geração Procedimental Conteúdo, Cooperação, Algoritmo Genético, Geometry Friends
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1.1 Context

Games are a source of entertainment for many. They can provide a variety of experiences and help

players learn or improve different skills. Multiplayer games are specially sought after as they allow

players to join their friends in many challenges and promote friendship. Some by having them cooperate

towards a common goal, other by having them compete against each other.

The tools for creating games keep improving and the game industry is larger than ever. The hardware

to play games has also improved and allows for new experiences, such as virtual reality, or simply

allows for larger scale games to be played and developed. But larger scale games take a lot of time to

be developed and it is extra time consuming to design by hand every aspect of the game. For those

reasons procedural content generation is used to help develop certain aspects of games including, the

environment, by creating the trees, rocks or shaping the terrain, the characters that live in the game.

Rogue-like games are a genre where its main focus is that every time you play the game the world

provides different challenges, Spelunky1, Hades2 and Noita3 are some examples. Spelunky and Hades

gameplay focus on the player going through a series of rooms where as you progress their style and

challenges change, they use PCG to create these levels, Noita on the other hand is more of an open-

world game where it has clearly defined areas but you can go to any of those areas without a fixed order

unlike the other examples, the combat system also uses PCG to create the wands each has a different

spells and it is possible to combine wands, with so many possibilities they needed to be procedurally

generated.

1.2 Motivation

Games that focus on providing cooperative challenges and puzzles that require two or more players can

be very difficult to develop as they require the game designer to carefully design the level and test it to

guarantee coherence between the different elements that create the cooperative challenges. For this

reason procedural content generators for these challenges are hard to develop and those that exist allow

multiple players but do not often need both players to solve the challenges generated. These generators

tend to focus on generating a map that has different quests or enemies evenly spread out and that allows

players to face them alone or with others making them easier with others.

Improving tools that allow procedural content generation is important as they also allow for smaller

groups of designers to create larger worlds and they can reduce the costs of development.

While PCG has been subject to many studies, including studies that focused on the generation of

1Derek Yu 2008, Spelunky, video game, Microsoft Windos, Derek Yu.
2Supergiant Games 2018, Hades, video game, Supergiant Games
3Nolla Games 2019, Noita, video game, Nolla Games
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cooperative challenges, there is still a lack of tools to help with designing cooperative focused levels.

1.3 Goal

The problem we are addressing is the procedural generation of cooperative levels, these are levels that

focus on providing cooperative challenges that require cooperation to complete.

Our goal is to create a level generator that receives a series of requirements as input from the

designer and generates a level that fulfills those requirements. To reach this goal we chose to use a

genetic algorithm that can help us find the best solution, we chose a genetic algorithm as they allow us

to spread the search for the solution and allows us to define a direct metric to evaluate the solutions. We

intend for the input to be a description of where in the level should certain types of challenges be. We

will test this solution by creating a level generator for the game Geometry Friends

1.4 Contributions

In this work our main contribution is an approach for creating a procedural cooperative level generator.

We also present a collection of studies in the relevant areas, procedural content generation, cooperation

in games, genetic algorithms, and we look at the game Geometry Friends and analyse it as a cooperative

game. We then provide several heuristics, that receive input from a designer, and that are used in a

genetic algorithm to create levels for the game Geometry Friends. We study the different selection,

crossovers, and mutation methods and their effect in the level generation.

1.5 Outline

This document starts by examining some work related to areas of research connected to our problem.

We begin with an overview of procedural content generation and their use in games, we start that by

defining relevant properties in procedural content generator, followed by different methods on how to

classify these generators. We then define what type of content can be created, and follow up with

different methods that can be used. We then focus on genetic algorithms as they are the base for

our generator. Next we write about cooperation in games, how it is defined, we show examples of

cooperation, and then present different mechanics commonly used in cooperative games, we show to

improve cooperative games, and then how to evaluate them. Next we discuss an example of an attempt

at creating a procedural content generator specific to a simple cooperative 2d platform game. We finish

this section with and overview of the game Geometry Friends. Finally we present our implementation,

how we defined the parameters for the genetic algorithm and their different iteration. We end with an

3



evaluation of our implementation, how it relates to previously defined properties and present feedback

from users testing our generator and the levels generated.
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2.1 Procedural Content Generation in Games

Procedural Content Generation(PCG) has been defined as the algorithmic creation of game content

with limited or indirect user input [1], the game Civilization1 uses PCG techniques to generate maps,

No Mans Sky2 uses it to create planets and its animals. Togelius et al [1] defined content as most of

what is in a game, except things like the game engine and NPC AI (Non-playable Character Artificial

Intelligence) behaviour, this definition is considered to be too broad so we will use a different one that is

defined later.

When developing new tools it is important to be able to classify them, so some desirable properties

for a PCG have been defined [1] as:

• Speed: PCG can be in real time, meaning while the player is playing, or can be generated before-

hand such as during the development of the game and so can take months to generate or, if it is

done during a loading screen right before playing, it can not be too slow, but does not have to be

instant. Therefore the requirements for speed depend on how the content needs to be generated

for the game.

• Reliability: This refers to whether the generator is completely random or if it can guarantee certain

criteria, for example some generators might not need this quality but others may need to make sure

that there is an exit to a dungeon otherwise it is not playable, on the other hand a texture that looks

a bit weird is not game breaking.

• Controllability: If there is something that can be changed, or tweaked by a human to specify

certain aspects, this is very important in player adaptive mechanisms.

• Expressivity and diversity: the ability to generate levels that are not just slight variations on the

same thing, but also that are not all so different that they become senseless. This is one of the

harder properties because of the difficulty of measuring what is expressive or diverse.

• Creativity and believability: this has to do with whether the generated content can be easily

differentiated from human made content or not, mostly we want it to not be obvious.

The usefulness of these qualities obviously depend on the game, for example Minecraft3 requires the

generation to be made in real time, as the player moves further away from the starting area the game

will generate new environments, as opposed to Terraria4 where the map is generated once when the

world is created, before the player enters the world. When looking at games where cooperation is taken

into consideration when creating a level, real time speed can be a requirement that is difficult to meet
1Firaxis, 2K Games 2011, Civilization VI, video game, Microsoft Windows, United States.
2Hello Games 2016, No Man’s Sky, video game, Microsoft Windows, United Kingdom.
3Mojang 2009, Minecraft, video game, Microsoft Windows, Mojang, Sweden.
4Re-Logic 2011, Terraria, video game, Microsoft Windows, Re-Logic, Indiana, United States.
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because there is a need for moments where players have to cooperate in order to progress. For puzzle

games Reliability is a necessity, for open world games there can be less of it, for example in Spelunky5

there is a need to guarantee an exit in the each level. Left 4 Dead6 is a game that experimented with

player adaptive mechanisms in a procedural way, they look at the emotional intensity of players and if it

is high they remove the generation of threats for some time. Minecraft and Terraria are capable of high

level of expressivity with many different maps. Left 4 Dead changes the placement of weapons and the

spawn of monsters, this requires a certain amount of believability because it does not make sense to

have a monster spawn on top of a building where it can not interact with the player, or weapons appear

in non-reachable areas.

Those properties are not enough to compare different generators so Togelius et al [1] also defined a

taxonomy of PCG that consists of the following dimensions:

• Online vs Offline: online is the generation of content as the player is playing the game while offline

is generating during the development of the game or before the player starts a game session.

• Necessary vs Optional: Necessary content is by definition content that is required for completion

of a level, while optional is not. This mostly affects the fact that Necessary content needs to be

correct, meaning a level must be possible to be completed after generation, while Optional does

not.

• Degree and Dimension of control: this refers to how the humans can control the generated

space, if a seed is used, then using the same seed will generate the exact same level, or a

set of parameters can used to have better control on the generation of the content over several

dimensions.

• Generic vs Adaptive: Generic methods do not take the players behaviour into account while

Adaptive will analyse the behaviour and determine a set of parameters to adapt the generation of

content.

• Stochastic vs Deterministic: Stochastic means that the content generated can not be exactly

regenerated, due to the randomness in the generation, as opposed to Deterministic where given

the same input it will generate the same output.

• Constructive vs Generate-and-test: in constructive the generation of the level occurs in one

pass while in Generate-and-test it is an iterative process where first a level is generated, then it is

tested and then we make adaptations and generate again, until a satisfactory solution is reached.

5Derek Yu 2008, Spelunky, video game, Microsoft Windos, Derek Yu.
6Turtle Rock Studios 2008, Left 4 Dead, video game, Microsoft Windows, Valve, United States.
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• Automatic generation versus mixed authorship: Automatic allows for limited input from the

game designer, making possible to tweak some parameters. Mixed authorship tries to allow the

designer to give a more abstract input for example drawing part of a 2D level and having the

algorithm generate the rest based on constraint satisfaction.

When applying these dimensions to puzzle games, we can see that, normally puzzle games have

the entire puzzle created beforehand so the content is not often generated while the player is playing.

Since a puzzle game needs to have a solution the generator has to guarantee the existance of a solu-

tion, and since we hope to apply these in cooperative games then the generator should also guarantee

the necessity for cooperation. The degree and dimension of control is very dependant on which type of

algorithm is used, some allow more or less control and this algorithm will also affect how stochastic or

deterministic the generation process is. We explore the different types of algorithms later. If it is possible

to define good metrics, that can be tested automatically, then a Generate-and-test approach can help

get better levels, possibly ones that have more opportunities for cooperation, however a Constructive

approach is just as valid, since in puzzle games the levels can be created beforehand and so the de-

signer can make changes. Since cooperation is a difficult concept to define in an algorithm or through

metrics a mixed authorship approach might be able to provide better results. However good results have

been achieved with a fully constructive approach [2].

2.1.1 Content for Procedural Generation

The definition of content by Togelius et al [1] is too broad, Hendrikx et al [3] defined content that can be

procedurally generated by separating it into layers based on how the content can be created from other

content, these layers are: game bits, game space, game systems, game scenarios, game design, and

derived content.

Game Bits are the lowest layer and therefore the most elementary units of game content, typically not

used to engage the user when considered independently. They can be Concrete or Abstract, Concrete

is content that can be interacted with such as trees and items, Abstract is content that needs to be

combined to create concrete content such as textures and sound.

Some examples of game bits are:

• Textures (Abstract): Images that add detail to geometry and models or visual representation of

menus

• Sound (Abstract): Music is used to set the atmosphere and pace of the game while general

sound effects are used as feedback to the player.

• Vegetation (Concrete): Adds realism to the game making it more immersive.
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• Buildings (Concrete): Essential for representing urban environments and special buildings often

affect the players decision on where to go.

• Behavior (Concrete): Describes the way in which objects interact with each other and the envi-

ronment. This helps the game be more interesting.

• Fire, Water, Stone and Clouds (Concrete): Help create more believable worlds.

Game Space is the environment in which the game takes place, this is partially filled with game

bits in which the player is going to navigate. It can also be considered Concrete or Abstract, Concrete

spaces tend to closely resemble spaces the way humans perceive them, Abstract is more an imagined

space for example the board in the game of chess.

Examples of game spaces are:

• Indoor Maps (Abstract or Concrete): Structures and relative position of space partitioned into

rooms, that can be connected by corridors, or overlapping and connected by stairs. Can also be

caves with varying and unusual geometry.

• Outdoor Maps (Abstract or Concrete): Can be depictions of elevation and structures of outdoor

terrains, normally outdoor maps tend to then have indoor maps.

• Bodies of Water (Concrete): Can be rivers, lakes and seas and are often used as obstacles or

sometimes interactive game space.

• Other map features (abstract or concrete): such as teleportation areas and mountains, ridges,

ravines, may also be part of game space.

Game Systems is a representation of the relation between content in the game, it can be seen as

Abstract for example the relation between Vegetation and its relation with the features of the outdoor

maps, or Concrete like cities and networks of cities

Some Examples are:

• Ecosystems (Abstract or Concrete): Describes the placing, evolution and interaction of flora

and fauna.

• Road Networks (Abstract or Concrete): form the basic structures of an outdoors map, used for

transportation between points of interest

• Urban Environments (Abstract or Concrete): large clusters of buildings where many people live

and interact with their surroundings.

• Entity Behaviour (Concrete): Very important for making the player experience in the virtual world

life-like. This is done by defining the relation between NPCs and the player including their possible
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interactions. Hendrikx believes that not only does player interaction requires complex entity be-

havior, but also that group movement patterns are examples where procedural algorithms could

achieve more realistic results.

Game Scenarios describe how the game unfolds. They can describe it in an Abstract way by de-

scribing how other objects inter-relate, in a Concrete way by explicitly showing it to the player as part of

the game narrative.

Some Examples are:

• Puzzles (Abstract): Are problems that use previous knowledge to be solved or there is a limited

amount of possible solutions in which case they can be solved by exploring that finite space i.e.

attempting every possible solution.

• Storyboards (Abstract or Concrete): Are sequential panels describing a scene or event.

• Story (Abstract or Concrete): Presents the background for the events and goals that the player

will go through

• Levels (Abstract or Concrete): Are normally used as separators between gameplay sequences.

They are made by grouping the previous elements and consist of a playable environment that has

its objectives, such as solving a sequence of puzzles, or collecting some object.

Game Design can refer to all previous types of content including game design itself, it can be seen

as rules or goals, aesthetic components, story or themes.

Part of the game design is:

• System Design(Abstract): are the patterns and rules underlying a game.

• World Design (usually Concrete): is the appearance of the world, when and where the story is

taking place and what is the story. [4]

Derived Content are things that are a byproduct of the game world. This content helps the player

immerse themselves by allowing the player to record their in-game experiences for review inside or

outside the game.

For Example:

• News and Broadcasts (Concrete): By showing the player or their actions in the news in the

game’s universe.

• Leaderboards (Abstract ): players ranking tables.

There are many different ways of creating a Procedural Content Generator, Hendrikx et al [3] com-

piled a collection of them and related them to which type of content they could be applied to. First they
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created a taxonomy to classify the different types of algorithms based on the main basis of the algorithm,

this taxonomy identified six groups: Pseudo-Random Number Generators (PRNG), Generative Gram-

mars (GG), Image Filtering (IF), Spatial Algorithms (SA), Modelling and Simulation of Complex Systems

(CS), Artificial Intelligence (AI).

Pseudo Random Number Generators(PRNG) are algorithms that generate a sequence of numbers

that resemble a sequence of random numbers.

Generative Grammars(GG) consider grammar as a system of rules that through combination of

them forms grammatical sentences in a given language, by considering objects encoded as letters or

words they can be used generate structures.

Image Filtering(IF) algorithms try to improve an image in regards to a (subjective) measure, or to

emphasize certain characteristics, such as displaying (partially) hidden information.

Spatial Algorithms(SA) manipulate space to generate game content, they receive a structure like a

grid or a recursive functions.

Modeling and Simulation of Complex Systems(CS) is used to overcome the difficulties that exist

when describing natural phenomena with mathematical equations. They sometimes focus on specifying

local interactions and then look for emerging behaviour.

Artificial Intelligence(AI) is a field that tries to mimic animal or human intelligence. Examples are

speech recognition, planning, execution of tasks by robots, and search of solutions for optimization

problems.

We looked at what each area had and how they could help in our problem and decided that an AI to

search for levels that fit our requirements could be the solution. We decided on a genetic algorithm as

they have been successful when applied to complex problems such as Bin packaging [5] and timetable

scheduling problems [6]. They have also been used in generating content for games, Moghadam et al [7]

used it define the rhythm and difficulty of an endless runner. Connor et al [8] used a genetic algorithm

to create a game level, it would generate the map and rate it the ratio of space that was traversable

and whether there was a path from the beginning to the end. Genetic algorithms have also been used

to generate levels for 2d platforming games, Mourato et al [9] applied a genetic algorithm to generating

levels for the 1989 Prince of Persia7. Given these varied uses of the genetic algorithms we believed it

could generate good results for our problem as well.

2.2 Genetic Algorithms

Genetic algorithms fall into the Artificial Intelligence group of algorithms, according to Hendrikx et al [3].

This is because the idea behind them is to mimic biological evolution. Goldberg et al [10] defines them

7Jordan Mechner, Brøderbund Software,1989, Prince of Persia, MS-DOS, Brøderbund Software, Ubisoft
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Algorithm 2.1: Layout of a Genetic algorithm
Function GeneticAlgorithm(populationSize):

population← initialize(chromosome.create,populationSize)
CalculateFitness(population)
while not StopConditon(population) do

Selection(population)
Crossover(population)
Mutation(population)
CalculateFitness(population)

return population

as ‘search algorithms based on the mechanics of natural selection and natural genetics’ and they are

used to solve optimization problems. They mimic biological evolution because they define a population

that is described by structures that are similar to chromosomes, then they evolve that population through

reproduction and some suffer mutations.

Genetic algorithms 2.1 can be divided into these parts: the chromosome or individual, the fitness

function, the selection method, the crossover method and the mutation method. The stop condition is

generally until the population converges or a maximum number of generations.

2.2.1 Chromosome

The chromosome represents an individual in a population and they are considered as a possible solution

to the problem. They are a sequence of genes, a set of parameters or variables that represent our

solution, also called the genotype, which is the encoding of the chromosome, i.e. its representation.

Usually they are represented by a string of bits, binary values that are either 1 or 0, but the representation

varies a lot depending on the problem in question. From these genotypes comes the phenotype which

is where we get the expression or meaning in the sequence of genes, what does each part of our

chromosome represents in our problem. It is possible that the chromosome representation does not

have a fixed size.

For example, we are trying to determine a path from one point to another in a 2 dimensional plane

and for this we use a chromosome that represents a series of steps, it can have a fixed number of

steps or it can have a minimum and maximum number, we can then use an array of 2D vectors or

an array of integers to store our chromosome, these are the genotypes. When we determine what

those vectors then represent is when we are defining the phenotype, for example, each vector could

represent a direction in which to move at every step, or each integer could represent an angle amount

that determines how much it should turn at that step and then it would move according to each step for

a predetermined amount of time. We can see these representations then vary a lot when applied, in the

vector representation at each step its path is only determined by that step's vector, while the angle is
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(x1,y1)
(x2,y2)

α1 α2

Chromosome 1 : ((x1,y1),(x2,y2), ...)
Chromosome 2: (α1,α2,...)

Step 2Step 1

Figure 2.1: Example of vector and angle chromosomes

influenced by each previous step.

2.2.2 Fitness Function

The fitness function is where the problem we are trying to solve is defined and where we interpret the

chromosome. Its objective is to give a value to each individual in the population, normally the values are

between 0 and 1 where 1 is the best and is considered to be a solution to the problem. This function

is where most of the effort in a genetic algorithm should be applied. It is important to properly define a

function that approximates the designer's goal. If improperly defined the function might converge to a

bad solution, that is one that the designer does not actually want, or might not converge at all.

It is common to iteratively define a fitness function, because it might not result in what is functionally

desired or, sometimes it might become too computationally expensive, so experimentation is required to

find a balance between the functional requirements and the performance requirements. When it is too

computationally expensive, using a fitness approximation method (which takes information from previous

evaluations to determine the new one) is a possible way to optimize the fitness function.

2.2.3 Selection

The selection is done to choose which individuals from the population should be used for creating the

next generation through crossover. The main goal of this process is to help the algorithm converge.
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This is because in general the selection process chooses the best chromosomes, that is the ones with

highest fitness.

There are many approaches to the selection method. Some of these approaches are different types

of fitness proportionate selections, that is that they use the fitness of each individual and their overall

relation to the population to determine the likelihood that they are chosen. Examples of these selections

methods are the Roulette Wheel, Rank, and Stochastic Universal Sampling selection.

The Roulette Wheel [11] takes all of the fitness values of the population and puts them in an array. It

then normalizes it like a vector, afterwards it creates an array with the cumulative percentages, which is

calculated by going through the normalized vector and at each index it adds the fitness values of all the

previous indexes and inserts it to the new array. This is similar to creating a wheel where the slices for

each member is proportional to their fitness. Afterwards it then spins that wheel by generating a random

value x between 0 and 1 and searching in the array for the first index whose value is greater than x.

Then the chromosome related to that index is chosen as a parent. This is repeated for as many parents

are necessary and it is possible that the same chromosome is chosen more than once.

The Rank selection functions much like this but it first sorts the population by fitness and then assigns

a new fitness value from 1 to n where 1 is given to the worst chromosome and n is given to the best, it

then applies the roulette wheel method with the new fitness values, again the same chromosome can

be chosen several times.

The Stochastic Universal Sampling is equal to the roulette wheel except when choosing from the

array, instead of generating a new number for each choice it generates a number only once and then

increases it by a fixed amount, this step amount is calculated as 1/n, where n is the number of parents to

be selected. This approach increases the chances that chromosomes with lower fitness will be selected,

because when a member has a high fitness value in comparison to the other members it can saturate

the wheel with a larger slice. By using steps it can better guarantee that it will eventually not choose

that higher fitness chromosome. This is important because while the selection method wants to help the

algorithm converge it still needs to not have it converge too early.

The Tournament Selection is a method that runs a small tournament with random individuals of the

population for each choice, the winner of the tournament is the member with the highest fitness. The

tournament size determines the likelihood that weaker individuals get selected, for example a tourna-

ment size of 1 would be the same as choosing randomly, while a size of 2, which is normally the default

size, would guarantee that the lowest fitness is never chosen and would on average be better than one,

however Lavinas et al [12] experimented with the tournament size and found that the most common

sizes, 2 and 3, are not always a good choice and the size should be adjusted to the problem. Very

large tournament sizes can make it so that the fittest chromosomes are chosen more commonly, and

since normally the tournament selection allows for the same chromosome to participate in several tour-
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naments, it is possible that, with a large tournament size, the selected individuals will not be very varied

and diverse.

Elitism selection method sorts the chromosomes by fitness value and chooses the k chromosomes

with the highest fitness, if k is equal to the size of the population it chooses the entire population, this

selection method does not choose the same chromosome twice, but if you want to maintain the size of

the population you would still choose a k smaller than the population, which would require you to use

the same chromosome as parent more than once. There is a version of elitism that selects parents for

the crossover but also holds on to the previously selected parents for the next generation, but they will

still be affected by the mutation step.

2.2.4 Crossover

The previously selected chromosomes will act as parents and mate in order to cross their genes and

create the children or individuals that compose the next population. The reason for the crossover is to

try and diversify the population while passing on features from the parents to the children. There are

many different ways for the parents to crossover, among the most known are the single-point and the

two-point crossover.

The single point crossover randomly chooses an index in the sequence of genes and the first child

would get every gene before that point from the first parent and the second child would get every gene

before that point from the second parent, then the first child would get the bits after that point from the

second parent and vice versa for the second child. The two point crossover would do the same but

would choose two indexes, as shown in figures 2.2 and 2.3. There is also a K-point crossover variant

that chooses k points, so with 1 or 2 as k, it would mimic these crossovers.

Parent 1

Parent 2

Child 1

Child 2

Figure 2.2: Example of single point crossover

Parent 1

Parent 2

Child 1

Child 2

Figure 2.3: Example of two point crossover

There are versions of these crossovers that do not guarantee that the size remains the same for the

chromosome, normally considered to be the messy versions, these can be used for chromosomes that

do not have a fixed size.

Another crossover method is the uniform crossover, this method creates offspring where each gene
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1 0 1 0 0 1 1 0

1 1 1 0 0 1 1 01 1 1 0 0 1 1 0

Flip Bit

1 1 0 0 1 1 1 1

Uniform Flip bit

1 1 1 0 0 1 1 0

1 1 0 1 1 0 0 0

Segment Flip

1 1 1 0 0 1 1 0

1 1 1 1 0 0 1 0

Reverse Segment

1 1 1 0 0 1 1 0

Shuffle gene

1 1 1 1 0 1 0 0

Figure 2.4: Example of mutations

is chosen with a certain probability, normally an equal probability, which parent it inherits from.

Typically in crossover methods two children are generated, where one has elements from both par-

ents and the other has the remaining elements from the same parents, this is normally done so that all

feature from both parents are still somewhere in the population. This is not a necessary requirement

for crossover methods. With k point crossover, if only one child was created, the beginning of the sec-

ond parent is not passed on, with the uniform crossover this might not happen since both chromosome,

normally, have equal chances of being chosen.

Something that can be necessary to define a crossover specific to your chromosome, this can nor-

mally happen if there are certain guarantees that need to be fulfilled when creating the offspring. An

example of this are some problems where the chromosome represent a list of items where no item

repeats itself and every chromosome has the same list in a different order, these are used for order

based problems (e.g.: the travelling salesman). Since this is a common problem some crossovers spe-

cific to these problems have already been developed such as the cycle crossover [13], partially-mapped

crossover(PMX) [14], the uniform partially-mapped crossover (UPMX) [15], and ordered crossover(OX1)

[10].

2.2.5 Mutation

The main purpose of the mutation is to help diversify the population and stop it from converging early,

it does this by altering the chromosome in different ways: it can alter the gene values or it can switch

the order of the genes. Not every individual is affected by a mutation, this is controlled by a mutation

probability that should not be set too high or else the search has a risk of becoming too random. However

it might be better might be better to have a lot of diversity in the first generations of a genetic algorithm

and, as higher fitness solutions are found, the mutation probability can be decreased.

The flip bit mutation is a classic mutation method. This requires the chromosome to be a sequence

of bits and then chooses a random bit and changes its value, from 1 to 0 and vice versa, this operator
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can also be seen as a not function. Other variations on this might choose a segment of the chromosome

and flip those, or they can go through the genes in a uniform manner and, with a random chance, flip

each gene. These methods all have non bit versions that instead of choosing an opposite value they

generate a new random value to replace the gene. Other methods involve switching the order, some

reverse the gene order, others reverse a segment, some shuffle the index of the genes.

2.3 Cooperation in Games

Cooperation is a concept that has existed for millennia, it is the process of a group working together

towards a common goal. Humans enjoy cooperating together so bringing it to video games was expect.

Cooperative video games are believed to have started in 1978 with Fire Truck arcade game developed

by Atari where two players would cooperatively steer the vehicle. Later with the introduction of consoles

players would be able to use of multiple controllers, then with the origin of the internet and online mul-

tiplayer came the surge of cooperative games like MMORPGs. With the internet there came a need

to differentiate between local co-op, where the game is designed for players that are using the same

display screen, and online co-op, where each player would use their own screen.

Zagal et al [16] refers to three types of games categories in game theory: Competitive, Cooperative

and Collaborative. Although originally only competitive and cooperative where considered, Marschak et

al [17] refers to how collaboration in a team differs from cooperation. In competitive games, players have

goals that oppose each other, therefore they need to create strategies that oppose the strategy from the

other player, so this types of games are not relevant for our goal.

In Cooperative games both players have different goals but they do not necessarily oppose each

other, this means that they may want to help each other in order to get a better results for themselves.

These two definitions were part of the traditional Game Theory.

Later came the third category Collaborative games. In these games all participants are in a team

therefore they all share the outcomes. While participants may have different knowledge and abilities, by

sharing the same goal and outcomes they will all have to work together to maximize their utility. So they

differ from cooperative games where players are not forced to cooperate to reach their different goals.

In collaborative games players have the same goal and therefore need cooperation in order to get the

best outcome.

We will not be making this distinction because in general when we talk about cooperation in video

games we do not differentiate between that and collaboration, others authors, that we will be mentioning

ahead [18] [19], also do not make that difference. Therefore whenever there is an opportunity for players

to work together we consider that as cooperation, whether they have the same or different end goals.
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For example in Dead By Daylight8 the player is part of a team of four that are trying to get away from

a monster. The player wins by escaping, to that they need to open the door to escape, before opening it

all generators around the map need to be fixed. It is cooperative because some players can distract the

monster while others fix the generators, players can save others that have been caught by the monster,

and so they need to cooperate, trying to win alone is much harder. However each players end goal is to

escape, the others can be caught, as long as they escape, they win.

On the other hand we can look at Overcooked9, or the multiplayer mode from Portal 210. In these

games the rewards are shared among the players and so the player wins if the other players also win.

However these two are still different types of cooperation, in Overcooked, depending on if the players

are completely separated from each other, one player can be enough to finish the level while in Portal it

needs both players to complete the level. We consider all these games as cooperative games.

2.3.1 Game Mechanics for Cooperative Games

Cooperation in video games comes in many different ways and Rocha et al [18] defined several common

Design Patterns and Challenges Archetypes that appear in video games. These design patterns are:

• Complementarity: the most common design pattern, it tries to make sure characters complement

each other, by having different abilities or different roles.

• Synergies between abilities: Guarantee that the abilities of one character synergize with the

abilities of another character.

• Abilities that can only be used on another player: this type of abilities is to incentivize cooper-

ation.

• Shared Goals: simple design pattern to make player work together, by giving groups of players

goals that are not restricted to one player and therefore can be completed in a group.

• Synergies between goals (Interlaced/Intertwined goals): even if players have different goals

one approach is to create some sort of synergy between the goals in order for them to cooperate.

• Special Rules for Players of the same Team: it is possible that the same action has different

outcomes if done on a team member versus when it is done on an opponent. This can facilitate

cooperation.

These where later extended by Magy et al [19] where they added:

8Behaviour Interactive 2016, Dead By Daylight, video game, Microsoft Windows, Montreal, Canada
9Ghost Town Games 2016, Overcooked!, video game, Microsoft Windows, Cambridge, United Kingdom

10Valve 2011, Portal 2, video game, Microsoft Windows, Bellevue, Washington, US
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• Camera Setting: There are three main ways to have a shared screen in games, split horizontally

or vertically, one character in focus, all characters in focus (the screen moves when all characters

are near each other).

• Interacting with the same object: providing objects that can be manipulated by abilities from

both characters.

• Shared Puzzles: to give players a shared challenge of obstacle.

• Shared Characters: providing a character that both players can use but only one at a time, making

them discuss how to share the character.

• Special characters targeting lone wolf: having an enemy or obstacle that makes it much harder

for a player to work alone, for example an enemy that grapples a player.

• Vocalization: having player characters inside the game give feedback of nearby dangers or points

of interest.

• Limited Resources: limiting resources so that players have to share and exchange their own

resources.

Reuter et al [20] and Hullettand and Whitehead [21] also use patterns for describing cooperation,

but instead of the patterns describing game mechanics they describe gameplay sections, for example

a pattern that describes a segment of the level as: the players have to both interact with two different

buttons at the same time, this pattern could then be called Timed Two Man Rule11. This is useful

because by defining them this way we can look at a level as a sequence of these patterns.

2.3.2 Improving Cooperation in Games

Zagal et al [16] explored cooperation in board games, however they decided to use the term collaboration

instead because they believed that using game theory’s definition then cooperative games would still

look for only one winner, in which case cooperative games could promote anti-collaborative practices,

such as free riding, when a player does not work as much but still benefits, and backstabbing, which is

when another player cooperates with another but then that other player defects allowing them to gain an

advantage.

For this study they looked specifically at the Lord Of The Rings game by Reiner Knizia. This board

game is about getting the hobbit that is carrying the ring from one side of the board to the other before

they are corrupted and caught by Sauron, when a player is caught they are removed from the game. The

players draw tiles and play cards to advance on the board, they then can choose to draw cards or reduce

11The two-man rule is a control mechanism that to give access to actions it requires the presence of two people.
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their state of corruption, if a player plays their last card they increase their state of corruption. Analysing

this game they concluded four lessons and three pitfalls that they extended to other cooperative games.

Lesson 1: “To highlight problems of competitiveness, a collaborative game should introduce a ten-

sion between perceived individual utility and team utility.”

This lessons tries to address selfish behaviour that affects the team. For example a player draws a

tile where he can choose between increasing his corruption by 2 or increasing every players corruption

by 1. We can look at individual utility as either increasing corruption by 2 or 1, but when looking at team

utility in a team of 5 players it becomes increasing corruption by 2 or 5. A selfish player will choose to

have his individual corruption be increased by 1 while the teams corruption is increased by 5.

Lesson 2: “To further highlight problems of competitiveness, individual players should be allowed to

make decisions and take actions without the consent of the team.”

Lesson 3: “Players must be able to trace payoffs back to their decisions.”

Lesson 4: “To encourage team members to make selfless decisions, a collaborative game should

bestow different abilities or responsibilities upon the players.”

Although these lessons can be used when designing a cooperative level generator they are more

centered in game mechanics and are more useful for designing a cooperative game in itself.

Pitfall 1: “To avoid the game degenerating into one player making the decisions for the team,collaborative

games have to provide a sufficient rationale for collaboration.”

Pitfall 2: “For a game to be engaging, players need to care about the outcome and that outcome

should have a satisfying result.”

This pitfall obviously applies to all games, but more so to cooperative games, if players are not

motivated they will not care enough to help each other, and if the outcome is boring or unrelated to the

actions, i.e. a random outcome, then they wont want to learn the consequences of their actions.

Pitfall 3: “For a collaborative game to be enjoyable multiple times, the experience needs to be

different each time and the presented challenge needs to evolve.”

The first pitfall is in a way related to how information is portrayed in a game, this is important to take

into consideration because a level is a visual representation of information, so a generator has to take

into consideration how to show the level, beyond making it playable. The third pitfall is the one we are

directly addressing by creating a procedural content generator.

2.3.3 Evaluating Cooperative Games

Magy et al [19] defined Cooperative Performance Metrics(CPM), these are associated with observable

events, they used them to analyse play sessions for different cooperative games, such as Rock Band 2,

Lego Star Wars, Kameo, and Little Big Planet. The final set of CPMs they developed where:
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• Laughter or excitement together, which is associated to events where players laughed due to a

game event, or verbally expressed their enjoyment, or their facial expressions showed happiness

or excitement.

• Worked out strategies, this is associated to talking about how to solve a challenge or how to

approach a challenge.

• Helping, is for when a player indicate to the others how to do something, such as how to use a

controller, what is the correct path to solve the puzzle, or saved the other while they were failing.

• Global Strategies, this metric is related events where players had different roles, for example

while one traverses the level the other fights enemies.

• Waited for each other, was associated to when a player had to wait for another, this was normally

due to different levels of skill between the players.

• Got in each others’ way, is a associated to moments where players wanted to, or did different

actions that opposed or hindered progress, or for when one players leads the way and the other

lags behind.

For their study they had a group of players play cooperative games and recorded their front and back.

Then Magy et al analysed the footage, counting all occurrences of these metrics.

These allowed them to better compare games in terms of how cooperative they were, the more

positive CPMs the more cooperative a game would be. These metrics can be applied to compare

generated levels to non generated ones when user testing, thus giving us a new way to evaluate how

cooperative a generated level is.

2.4 Procedural Content Generator for Cooperative Games

There are Generators that create maps and levels that allow for multiple players, however these levels

are generated based on a single player perspective. Games like Minecraft, Risk of Rain12, use procedu-

ral generation to create their maps and levels, they then allow multiple players on these maps, however

they are created in a way that does not focus on providing challenges that require cooperation.

Minecraft can be made easier with multiple players, each working on their part of a building, gathering

resources or exploring new areas. Risk of Rain follows the same patterns and provides challenges

that Rocha et al [18] would classify as Shared Goals. However these are goals that are meant to be

achievable alone.

12Hopoo Games 2013, Risk of Rain, video game, Microsoft Windows, Chucklefish
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The area that combines both Procedural Content Generation and Cooperation has not had much

research, van Arkel et al [2] used PCG to generate levels for a simple cooperative game. Their game is

a 2D puzzle-platform game for two players, the objective is to move from the start to the end of a level.

The players can move, jump, stand on top of each other and interact with levers or move objects.

They use the term collaborative instead of cooperative because they followed the same definition as

Zagal et al [16], but as mentioned previously we consider both to be interchangeable.

Van Arkal et al [2] defined game design patterns and for that they followed Reuter et al [20] and

Hullettand and Whitehead [21] approach of having design patterns describe sections of gameplay, this

way all a generator had to do would be to combine them and generate gameplay situations.

The patterns they defined are:

• The Upsy-Daisy: An obstacle is unreachable by a normal jump and so the players need to time

their jumps, with one on top of the other, to reach the object and push it down.

• Timed Lever-and-Gate: A lever that when activated opens a gate for a limited amount of time.

• Common Enemy: An enemy that has the side facing the player invulnerable to attacks and so one

player must distract it so the other can attack it from behind.

Van Arkel et al [2] used Ludoscope [22] an AI assisted mission and level design tool, it uses graphs

of tasks to determine which tasks are reachable after completing other tasks and which goals become

unreachable, it can also determine deadlocks. With Ludoscope it is possible to define the process of

generating a level, by breaking it down into steps that can be executed separately, and then it uses the

principles of model driven engineering and generative grammars to generate levels.

Their level generation process focus on a more automatic approach, as opposed to a mixed au-

thorship, and so does not include much human interaction. It is based on a sequence of steps: Path

Generation, Define Level Segments, Apply Design Patterns, Final Adjustments.

It uses a sequence of generative grammars the first receives a small 6x3 grid of undefined tiles where

in the leftmost column they place at random a ‘Start’ tile and then they place at random an ‘End’ tile on

the rightmost column.

The Path generation uses two grammars, the first creates a path from left to right, from the start to the

end tile, they then move the ‘End’ tile and using the second grammar create a path from right to left. This

path is generated by replacing the undefined tiles with tiles that have certain orientations for example

‘1H’ represents horizontal segment ‘1V’ a vertical one, ‘LCD’ stands for Left Corner Down meaning that

in that segment the player enters from the left side and would have to move through a corner that exits

on the right. They have others like UCR stands for Up-CornerRight, DCR for Down-Corner-Right, . . . .

The Define Level Segment expands the smaller grid into a new one where each tile is now 20x20 tile

‘segment’, it is then chosen a template for each segment depending on their orientation, each orientation
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has several templates. Each template can then have ‘Encounters’ added to them, these are the Game

Design patterns described before, ‘The Upsy-Daisy’, ‘Timed Lever-and-Gate’, ‘Common Enemy’.

The Apply Design Patterns then uses these encounters as smaller level segments to contain the

challenges involving certain mechanics. An encounter can have another encounter in it.

The Final Adjustments corrects some objects orientation, and removes unnecessary information.

This level is then put through a parser that reads the Ludoscope output file and using the tiles, their

position and type the corresponding objects are placed in Unity.

This approach managed to generate many different levels for their puzzle platform game, however it

does not allow for much input beforehand from the Game Designer.

Given that the levels generated use templates for each sections and for the challenges, they can

generate many different levels however they can become repetitive if they have a small number of tem-

plates. These templates are where the game designers have more control when it comes to the level

generation.

2.5 Geometry Friends

Geometry Friends13 is a cooperative puzzle platform game for two players. The game has two different

characters, a yellow circle and a green rectangle. Both characters are subjected to gravity and friction but

each character is unique. The circle can jump and its method of movement is through rolling, by jumping

it can climb obstacles, this is because its jump height is almost half the height of the level as seen in

figure 2.5. The rectangle unlike the circle cannot jump and its movement is by dragging itself across

the floor, so to compensate not being able to jump it can change its shape by stretching horizontally or

vertically while keeping the same area, so if it is horizontally it will loose height but gain width, it can

also climb small obstacles but only if it has enough space, to climb it has to extend upwards and then

move towards the obstacle and if it has enough momentum it will fall on top of the obstacle, as seen in

figure 2.6. This difference is where the core gameplay lies. The circle is bigger and cannot fit in small

places while the rectangle by changing its size can fit through smaller paths. The fact that the characters

differ from one another makes this game different from one the van Arkel et al [2] used when testing his

generator.

The game is then divided into worlds, these worlds are groups of individual levels that have a theme,

such as levels that promote cooperation, others that promote individualism. In each level the players

must collect all the purple diamonds, each level differs in the position of the platforms, the platforms

type, the characters starting area, and the collectibles position. Some platforms are colored yellow or

green and as such the characters that are not those colors cannot pass through them. Figure 2.7 is an

13Geometry Friends, http://gaips.inesc-id.pt/geometryfriends/
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Figure 2.5: Circle jump height Figure 2.6: Rectangle climbing a ledge

example of a simple level while 2.8 is a more complex level with the colored platforms.

Figure 2.7: Level in Geometry Friends Figure 2.8: Level in with special platforms

The cooperative aspect of the games comes from the interactions needed by both players in order

to complete a level, the interactions can be done indirectly, for example a player can reach an area with

a collectible that the other cannot, this way by grabbing that collectible the player is helping reach the

common goal of finishing the level. Or the interaction can be more directly, and this is the most important

interaction as it is the one that better promotes cooperation by having both players do something at the

same time. This cooperative action is done by having the rectangle act as a platform for the circle

allowing it to reach higher places with its jump, the rectangle can be extra helpful as it can extend

upwards as the circle is jumping allowing for an added bonus to the strength of the jump.

2.5.1 A level in Geometry Friends

A level is a limited space with walls surrounding it, any number of platforms, and at least one purple

diamond to collect, where any diamond that exists must be reachable. There are also the starting

positions, one for the circle and another for the rectangle.

If we were to look at a level in a more abstract sense then we can see it as a set of sequences
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of moves that each character can make in order to complete the level, for example the circle can get

on top of a specific platform by jumping and then jump again to pick up a diamond, the rectangle can

extend horizontally to pass through a small space then move inside to grab a diamond. This way we can

describe a cooperative action as a sequence of timed actions, for example, first the rectangle moves

underneath a certain diamond, then extends horizontally, to make it easier for the circle to get on top,

second the circle gets on top of the rectangle by moving and jumping, third the rectangle extends ver-

tically to its full height, fourth the circle jumps to reach the diamond. For example figure 2.9 shows the

solution to solving a level.

Figure 2.9: Possible Sequence of moves to com-
plete the level Figure 2.10: Level divided into areas

These actions can be seen as all happening in a contained area related to the diamond we are trying

to reach, so we could say that, for each diamond we have an area that is classified on who can reach

it, this would lead to four different areas: the circle only area, the rectangle only area, the cooperative

area, and the common area. In the first only the circle is capable of reaching that area, the second only

the rectangle is capable of it, in the third both are required in order to reach it, and in the last one both

can reach it. For example in figure 2.10 we divide the level into those areas.

The levels in Geometry Friends are described by an XML file. This file starts with an element with the

tag <Levels> encompassing all the levels inside of that world, <Level1>, <Level2> and so on. Each

<LevelX> then needs to have a at least a set of elements each with the following tags: ‘BallStarting-

Position’, ‘SquareStartingPosition’ and ‘Collectibles’, then it can have, even if empty, ‘BlackObstacles’,

‘GreenObstacles’, ‘YellowObstacles’, ‘GreenElevators’, ‘OrangeElevators’, and ‘TimeLimit’.

The game is played on a 1280 x 800 window, for describing the position of objects it uses the windows

pixels as a coordinate system, meaning the top left of the window would be X=0 and Y=0 and bottom

right X=1280, Y=800, however since the level is always limited by walls the playable area of each level

ends up being 1200 x 720 where each wall is 40 pixels wide the same as the floor and roof, this means

that the top left corner of the playable area has X=40 and Y=40 coordinates and bottom right X=1240,

Y=760, the width and height also use pixels to represent their size.
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As a way to facilitate positioning the characters, if a character has a spawn that puts them inside a

platform at the beginning of the level, then that character is pushed away from the center of that platform,

so if it close to the top it is pushed upwards, if it close to the bottom it is pushed downwards.

The circle has a 40 pixel radius, so it can be seen as occupying an 80x80 square and its starting

position is based on the center of the circle. The rectangle is 100x100 pixels when it starts and it can

then change its height to values between 50 and 200, while keeping its area, so when at 50 height it has

200 width and vice versa. Like the circle, the square starting position is based on its center.
The following is the xml corresponding to the level in Figure 2.7.

1 <Level1>

2 <BallStartingPosition X="88" Y="712" />

3 <SquareStartingPosition X="984" Y="696" />

4 <Collectibles>

5 <Collectible X="104" Y="280" />

6 <Collectible X="696" Y="728" />

7 <Collectible X="1064" Y="200" />

8 </Collectibles>

9 <BlackObstacles>

10 <Obstacle X="200" Y="600" height="32" width="288" centered="false" />

11 <Obstacle X="504" Y="376" height="384" width="48" centered="false" />

12 <Obstacle X="552" Y="648" height="32" width="256" centered="false" />

13 </BlackObstacles>

14 </Level1>
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Van Arkel et al [2]'s approach managed to generate levels but to try and apply it to Geometry Friends,

we believe, would not result in the best and diverse levels, this is because the levels do not have as much

space nor do they have areas as well defined as his, and our characters are different from each other

unlike his where who does what does not matter. We started this project with an idea in mind on how

to approach it and, after looking at previous attempts, we decided to use a genetic algorithm to search

through the possible solutions to our problem.

3.1 Software

Since Genetic algorithms follow the same procedure, we decided to use already implemented versions.

Our first attempt used ‘GeneticSharp’ a C# genetic algorithm library and our second approach used

DEAP [23] a python genetic algorithm library. With ‘GeneticSharp’ we developed the first iteration of the

chromosomes, that used bits, the first implementation of the fitness function and we then used already

implemented selection, crossover and mutation methods. We noticed that the fitness attributed to the

levels was not always the actual fitness and so after finding this inconsistency we changed implementa-

tions. DEAP shared plenty of methods with ‘GeneticSharp’ but provided an easier alternative to defining

the chromosome so we changed from an array of bits to an array of integers.

3.2 Overview

Our goal is to generate levels, specifically for the game geometry friends, so our output will be a level.

That includes generating the characters starting position, the platforms, that is their position, width and

height, and the collectibles position. To do this we adapted a genetic algorithm where each chromosome

would represent everything from the level, so the spawns, platforms and collectibles. We wanted the

designer to be able to give some input and be able to guide the algorithm into generating levels with

certain characteristics so for this we decided on having the input be a series of areas where the designer

would specify how certain areas of the level should be reached. So they would indicate if an area should

be reached through cooperation, or if only a certain character should be able to reach that area or both

needed to reach it, we would then have the collectibles be evenly spread throughout the different areas.

However we later found that just the platforms and spawns positioning was a complex enough problem

for our fitness function, so we decided on separating the generating process into two steps, first a genetic

algorithm would receive the input and generate the platforms and characters positions that best matched

that input, next we would place collectibles in the areas provided by the input. The process is shown

in figure 3.1, in (1) is the visual representation of the input, in (2) is the visual representation of the

chromosome with the highest fitness at the end of the genetic algorithm, this is what we have at the end
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of the first step, a level without collectibles in it. In (3) we have placed the collectibles, they are positioned

relative to the input areas and the bigger area has more collectibles, and in (4) we have the level playable

inside the game, this meant we had to transform the chromosome and the collectibles position into an

xml file that could them be read by the game. We will go into more detail in the following sections.

(1) (2) (4)(3)

Figure 3.1: The level generation from input to inside the game

3.3 Genetic Algorithm

3.3.1 Chromosomes

In our implementation each chromosome represented a level, the Chromosomes in our first attempt was

structured as [Rectangle Spawn, Circle Spawn, Collectible Array, Platform Array]. Both the Rectangle

Spawn and Circle Spawn were represented by a position so an ‘x’ and ‘y’ value, the collectible array

represented the number of collectibles and where they are positioned and the platform array does the

same but for the platforms. The collectibles and platforms have one bit, we considered it the active

indicator bit, that would determine whether that collectible or platform is actually placed or not, we did

this because our chromosome had a fixed size but we didn’t want a fixed number of collectible neither

a fixed number of platforms. We decided on having a chromosome with a fixed size to limit our search

space and also make it easier to manage and alter the chromosomes. The collectibles then also had

a position like the spawns, the platforms were like the collectibles but also had the width and height of

the platform. The size of the collectible array and the platform array determine the maximum amount

of platforms so for the collectible array it could indicate up to 5 collectibles and the platform array could

indicate up to 8 platforms. The ‘x’ and ‘y’ in the positions each used 2 bytes so 16 bits, this is less than

the 32 bits used for an integer value, we choose this because the highest value each ‘x’ can take was

1280 and for ‘y’ was 760. The rectangle and the circle spawn each had 32 bits representing them. The

collectibles having one bit and a position used (1+16+16) 33 bits, the collectible array used (33x5) 165

bits. The platforms had one bit a position and, for simplicity, the width and height are represented by

a position as well, so each platform used (1+16+16+16+16) 65 bits, therefore the total of bits for the

platform array was (65x8) 520 bits. The chromosome in total needed (32+32+165+520) 749 bits to fully

represent a level.
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p p 5xCollectible 8xPlatform

Rectangle Spawn Circle Spawn Collectible Array Platform Array
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x, y, width(w), height(h): 16 bits each Position(p) =  Platform =x y a pCollectible = a p w hActivator bit(a): 1 bit

Figure 3.2: First Chromosome genotype

We later changed the chromosomes because of the fitness function, since the fitness function only

looked at the where each character could reach, it did not look at the position of the collectibles. There-

fore we decided to separate the level generation into two parts, the first had the level's platforms, rect-

angle and circle starting position, and in the second part we would add the collectibles. This meant that

since the fitness function did not need to take the collectibles into account, neither would the chromo-

some need to represent them. This was important because when we mutated the chromosome or when

we generated children there was a chance it would change only the part related with the collectibles

meaning it would, for the fitness function, not make any changes to the level's fitness. The chromosome

became [Rectangle Spawn,Circle Spawn,Platform Array], losing 165 bits so it had 584.

When we changed from GeneticSharp to DEAP, we changed the representation from an array of bits

to a list of integers, the overall functionality was the same except now we had better control over the

values allowing us to have better control over the mutations and crossovers. In both GeneticSharp and

DEAP the initial population was generated with random values, all we did was define its size.

3.3.2 Fitness Function

The first fitness function we tested received an array of regions that indicated if only the rectangle should

be able to reach it or just the circle or if cooperation was needed or a common region where both should

be able to reach, these regions were described by their position, an x and y, their width and height and

what type of regions it was. In the figure 3.3 we used an input that requested a cooperative region at

the top of the level, shown in blue, a circle only region on the left of the level, in yellow, a rectangle only

region on the right, in green, and a common region in grey. The function would evaluate the level using

those regions and return a value between 0 and 1, where 1 represented a level that fit the input perfectly.

The first step was to calculate where each character could reach and what places needed cooper-

ation to be reached and only after would it be able to evaluate the level based on the intersection of

where each character could reach and the regions indicated. Then the fitness would be the sum of the

percentage of the area from all the input regions that matched, shown in the algorithm 3.1. To calcu-

late where each character could reach we used Rafael et al [24] approach, first calculating where each

character could fit and then simulating the movements they could make starting from their spawn, this

gave us a grid that in each cell we could know who could reach it and how, in figure 3.4 we have a
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Figure 3.3: Visual representation of input regions for the fitness function

visual representation of that grid and we can see that, in green is where only the rectangle can reach,

in yellow is where only the circle can reach, in blue is where the circle can reach with the help of the

rectangle, and in grey are areas where both characters can reach. With this grid we could then calculate

the intersection with the input regions given by the designer. To calculate the intersection we would go

to where the region would be on the level and for each cell inside the region we would compare who

could reach that cell with the region type, so if the region type requested cooperation, we would count

how many cells could only be reached by the circle with the help of the rectangle and then we would

divide that by the area of the input region, giving us the percentage of area intersected.

Algorithm 3.1: Sum of all intersections
Function FitnessSum(fitnessAreas, level):

levelReachabilityGrid = CalculateReachability(level)
percentageSum = 0
for area in fitnessAreas do

percentageOfAreaIntersected = CalculateIntersection(levelReachabilityGrid,area)
percentageSum = percentageSum + percentageOfAreaIntersected

percentageSum = percentageSum / lenght(fitnessAreas)
return percentageSum

In the figure 3.4 we can see the the areas where each character can reach and how, in green only

the rectangle can reach those areas, in yellow only the circle, in blue the circle requires the help of the

rectangle to reach that area and in grey both can reach. However it is possible to see that near any

platform is an area in white that supposedly means no character can reach it, except that in some cases

they can, this happens because Rafael's approach first calculates where each character can fit, and if

a character would be partially inside a platform it counts that area as somewhere they cannot fit. Then

when it goes to simulate where each character can reach it only takes into consideration where they can
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Figure 3.4: Rafaels approach to calculate reachability Figure 3.5: Rafaels approach with the improvement

fit, which was previously calculated. This means that near any platform that both could move on top of,

would first be a white area and then a rectangle only area and then a common area, in the figure3.4

we can look at the bottom area of the map an see this happening. When we went to calculate the

intersection it would count those areas in green as rectangle only areas but in reality both players can

reach those areas. So to fix this problem we added a step that extends their reach. We do this by going

to each place that each character can reach and simulate having them placed there, in other words, we

go to each position that they can reach and consider that every position around that area they can also

reach therefore extending their reach and creating a simulation closer to the game as seen in figure 3.5.

The first implementation of the chromosomes had in consideration where the collectibles could be,

however since the fitness function only took into consideration where each character could reach, we did

not need the collectibles so we removed them from the chromosome. Another problem we ran into was

that to fully simulate where each character could go we would have to take into consideration the level

on a pixel scale, which would mean a lot of computation per level, something that Rafael did not do, his

approach would take a level and divide it into 16 by 16 pixel wide squares, this meant that a level would

go from 1280 pixels of width to 80 blocks and 760 pixels of height to 47 blocks, so when we created the

chromosomes and their values could go up to 1280 it meant that in the fitness function it would have

to be rounded to a smaller value, so in order to again reduce unnecessary mutations and crossovers

we reduced the maximum values for the x and y positions as well as the width and height to fit into the

smaller scale.

We tested this approach using the sum of the percentage of intersections and common selection,

crossover and mutation methods such as the stochastic selection, two point crossover and the uniform

mutation and we saw it would get stuck when generating certain levels. We noticed that it would some-

times ignore one of the areas and maximize the others, for example, if there were two regions indicated,

one for rectangle only and another for circle only. It could generate a level where the specified rectangle

only region was fully matched but the circle only region was not matched at all, it would give that level

a fitness of 0.5, then in subsequent generations it would try to increase the circle only region, but po-
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tentially at a cost to the rectangle region which could lead to no overall fitness improvement. This was

even more prevalent when one area was smaller than the other, this is because to fully intersect where

a character could reach with a smaller area is easier, so that area would more quickly indicate as having

one hundred percent coverage while the other area might not have any which would lead to ignoring the

larger area in subsequent generations, in order to improve we changed the fitness function. The new

approach would still calculate where each could reach and the intersection of the character's reach with

the input areas, but instead of adding up the percentage of area matched we would consider the value

of the smallest percentage of intersection as show in the algorithm 3.2. This way we would get higher

fitness when all of them had reach at least a certain percentage, so while in the previous approach 0.5

could mean one area had zero intersection and another was fully intersected, in this new approach it

would mean that every input area had at least fifty percent intersection. This is better since we want the

levels to better represent the input.

Algorithm 3.2: Minimum of all intersection
Function FitnessMin(fitnessAreas, level):

levelReachabilityGrid = CalculateReachability(level)
percentages = []
for area in fitnessAreas do

percentageOfAreaIntersected = CalculateIntersection(levelReachabilityGrid,area)
percentages = percentages + [percentageOfAreaIntersected]

return Min(percentages)

This approach then generated much better results however it created some problems as it took only

the worst intersection into consideration, this meant that the others could keep improving but that would

not be taken into consideration in the fitness, so we tested with, instead of considering the smallest

percentage of intersection, we would instead multiply all the percentages, shown in algorithm 3.3, and

that would be the fitness. This approach would give fitness one if every area was fully intersected, fitness

zero if an area was being ignored, however while in the minimum intersection approach 0.5 meant that

fifty percent of all regions where intersected, in this approach we did not have that guarantee and if

every input area had fifty percent the fitness would be 0.5n where n is the number of input areas which

depending on how many areas we specify could be a very low number and might not be a good indicative

of how good the level is. This approach took into consideration every time there were improvements on

the intersection percentage of any input area and should help create smaller increments in fitness, thus

approaching a higher fitness level in a smoother fashion that would be less dependant on mutations

making big changes to the levels. It still had some resemblance to the sum of the fitness as, in this

approach it could not completely ignore an area, but it would still get stuck because to increase the

percentage of an area it could lead to decreasing the percentage in a different area and so the overall

fitness might not increase. This did not happen as much with the minimum intersection because we
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only look at the smallest value which gave room for the percentage of the other areas to decrease,

so long as the smallest percentage increased. Therefore, we believe the guarantee that the minimum

intersection approach provides, on how each region is evolving together, is better than having one that

had a better intersection and another that had almost no intersection, and so we decided that, in the

end, the generator would use the minimum intersection approach.

Algorithm 3.3: Multiplication of all intersections
Function FitnessMult(fitnessAreas, level):

levelReachabilityGrid = CalculateReachability(level)
percentageMult = 1
for area in fitnessAreas do

percentageOfAreaIntersected = CalculateIntersection(levelReachabilityGrid,area)
percentageMult = percentageMult * percentageOfAreaIntersected

return percentageMult

This fitness function where the input was a set of areas could generate levels and they where varied

but depending on the input it could take a very long time to reach acceptable levels. As seen in tables

3.1 and 3.2 with some inputs we could generate levels that met our regions and the results for the same

input were quite varied. To create this tables we used the algorithm with the minimum intersection fitness

function, an elitism selection method, the uniform crossover we implemented that was specific to our

chromosome, and the uniform mutation that either changed the number of platforms or the appearance

of the platforms. For example, in table 3.1, for the second input area, we generated different levels, all

with the same properties, an area for the rectangle in the middle and a cooperative area at the top, as

requested by the input. Looking at another input, the third input, we again generated different levels, but

we can see how it can take more generations than others to reach those results, as shown after 100

generations it was not able to create levels with rectangle only areas in the specified regions, while after

more generations we get progressively better results. With 500 generations it generated levels where

if it blocked the entire bottom third of the level to the rectangle, the input area was achieved, but then

with 2000 generations it managed to block only the corners for the rectangle leaving the middle for both.

2000 generations to reach the best results might not be a problem if each generation is fairly quick, but

in our case we were testing in a computer with windows 10 and python 3.8, the CPU was an AMD fx

8320, we had 16GB of ram and the project was kept on a 250GB SSD, with a population size of 50 it

could take anywhere from 5 seconds up to 9 seconds per generation that is, even in the best case, over

2 and a half hours to generate a level.

The first fitness function allows the designer to give very specific input but it can take quite a long

time to generate a level that matches those specifications, so we decided to try a less restrictive fitness

function. This was mostly to see what type of levels could be generated if we didn’t specify where the

areas had to be, and instead we specified what percentage of the level should be those areas. So this
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Population
Size 50 10 50 10 50 10

Input Area

100
Max
Generations

500
Max
Generations

2000
Max
Generations

Table 3.1: Example of levels Generated

Population
Size 50 10 50 10 50 10

Input Area

100
Max
Generations

500
Max
Generations

2000
Max
Generations

Table 3.2: Example of levels Generated
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new function received, as input, a series of percentages, one for each type of area, so a percentage

that represented how much area should be for just the rectangle, another for just the circle, another

that required cooperation and another for the common areas. We tested two versions of this fitness

function, one would consider the percentages relative to the level, so if we specified 30 percent should

be rectangle area, then 30 percent of the level would need to be reachable by only the rectangle. The

other version was to consider the percentage relative to the area that is reachable. This is less restrictive

than the first and easier to specify and imagine since it is not necessary to think of how much 30 percent

of a level is and there is no need to take into consideration how much of the level will be occupied by the

platforms, but instead the designer can think relative to where the players will be and think of how that

area should be used and what for. So when it is specified that 30 percent should be for the rectangle

only then that means that of all the areas that can be reached thirty percent of that would be reachable

only by the rectangle. We calculate the fitness by subtracting from 1 the absolute of the difference from

the expected percentage and the current percentage as shown in 3.1.

fitness = 1− |expRecPer − curRecPer| − |expCircPer − curCircPer|

− |expCoopPer − curCoopPer| − |expCommonPer − curCommonPer| (3.1)

10% Rectangle
16% Circle
18% Cooperative
26% Common
30% Platforms or unreachable

21% Rectangle
23% Circle
28% Cooperative
0% Common
28% Platforms or unreachable

24% Rectangle
38% Circle
3% Cooperative
16% Common
19% Platforms or unreachable

16% Rectangle
32% Circle
17% Cooperative
1% Common
34% Platforms or unreachable

4% Rectangle
2% Circle
57% Cooperative
32% Common
5% Platforms or unreachable

0.98 0.91 0.940.760.98Fitness

Figure 3.6: Levels generated using the percentage relative to the entire level

Fitness 0.93 0.85 0.94 0.86

Figure 3.7: Levels generated using 15% rectangle, 20% circle, 20% cooperative, 30% common as the input per-
centage relative to the entire level

In the figure 3.6 we can see levels generated using the percentage relative to the level approach, the

values for these percentage where randomly chosen, and we represent the levels the same as before,

so in blue indicates an area that requires cooperation to achieve, in yellow an area that only the circle

can reach, in green an area that only the rectangle can reach and in grey an area where both can reach,
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in black are the platforms and the rectangle and circle spawns are indicated by a green rectangle and

a yellow circle. We used an elitism selection method, a crossover specific to our problem that uniformly

decides from which parent to inherit, and a mutation that is also specific to our problem where it either

changes the platforms positions or the amount of platforms. From the fitness value we could see that the

levels generated match the percentages requested. An interesting thing to note is that, in the second

level, it requests zero common areas but you cannot have a cooperative area without a common area, so

when it calculates the fitness, it tries to minimize the common area and maximize the cooperative area.

Testing with random values showed that it can adapt to any input so we then tested with the same input

to see if there was diversity to the levels or if it always found the same solution. In figure 3.7 we show

levels that used as input percentage, 15 rectangle only, 20 circle only, 20 cooperative and 30 common,

leaving 15 percent for platforms or unreachable places, underneath them is the fitness that they had,

these levels where generated after 100 generations. We can see that both levels that have above 0.9

fitness are quite similar. The second level appears to be headed the same direction as the previous two,

yet the last level has a much different approach to matching the input. We ran it several times and, for

this input, it seemed like the trend for levels with fitness over 0.9 was to have the area for the rectangle

at the bottom and then going to the right, as shown in these examples.

When using the second version of this fitness function, where the input is percentage relative to the

reachable area and not the entire level, we have a correlation where in order to increase the percentage

of a certain type it will always decrease all the others. This happens because the only way to increase

percentages are by, either reaching new places or taking from currently reachable places and switching

their type of area. When reaching new places, the overall reachable area is larger, so the percentage is

relative to that change. This does not happen with the previous approach since the area of the level is

of fixed size.

32% Rectangle
17% Circle
40% Cooperative
10% Common

32% Rectangle
30% Circle
37% Cooperative
1% Common

23% Rectangle
22% Circle
29% Cooperative
27% Common

5% Rectangle
6% Circle
53% Cooperative
37% Common

24% Rectangle
12% Circle
34% Cooperative
30% Common

0.93 0.94 0.930.890.95Fitness

Figure 3.8: Levels generated using the percentage relative to the reachable area

In figure 3.8, we see levels generated using percentage relative to the reachable area, again these

values where randomly chosen and through their fitness we could see that they match the input closely,

as they all had above 0.85. In the first two examples the levels are quite similar, they are also similar to

levels generated using the previous approach. One of their common factors is the input requests a fairly

large percentage of rectangle only area and a low percentage for common only area. This can mean that

although it is less restricted in its search, in the end the levels generated are not as diverse as we wanted
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Fitness 0.95 0.98 0.98 0.97

Figure 3.9: Levels generated using 10% rectangle 10% circle 40% cooperative and 40% common as the input
percentage relative to the reachable areas

and expected them to be. We then tested with the same input, for this, we used as input percentages:

10% rectangle only, 10% circle only, 40% cooperative and 40% common, these percentages should add

to 100 since they do not have to account for the platforms. In figure 3.9, we show the generated levels

after 100 generations, underneath each level is their respective fitness, they all have a fitness above 0.9

and we can notice some patterns: they all have the rectangle spawning high, most likely as a way to

remove part of the reach from the circle and replace it with a common area, almost all have only one area

cut off for the rectangle and this area is to the right, and the platform positioning, appears more diverse

than the first fitness function where we specified the areas (in that approach we could understand why

the platforms where placed like that).

The trade offs between both approaches are that the first allows for much more control at the cost

of needing more time to generate, the second approach while it has more freedom it is too unreliable

to produce levels with input from the designer, so it might be better used with random inputs. The first

approach if it received random inputs it could have areas overlapping each other, or sticking out of the

level, so it is better for helping the designer. That is why we believe that overall the first approach is

better for the designer and it is the one we used for the final generator.

3.3.3 Selection

The selection method for choosing the parents originally was to simply take the entire population and

use them as parents, randomly choosing two parents and then using the crossover method to create

two new members of the population without repeating the parents. This approach was just to have a

baseline for comparison, because we knew others should be better. When we look at the graph in figure

3.11, we can see that we have a lot of outliers, this mostly means that the mutation is what is creating

those improvements, but since we are not necessarily using them for creating the next offspring they

disappear.

When testing all these different selection methods, the random selection method, the stochastic

selection method, the tournament selection method with size 4 and size 16, and the elitism selection

method, we used a population size of 50, 500 generations, we used the same crossover and mutation

methods, as well as the fitness function that received the same areas as input and considered the
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Figure 3.10: Visual representation of input regions used in selection method testing

minimum intersection as fitness, the input areas were one cooperative area along the top of the level

and one rectangle only area on the bottom near the middle of the level as seen in figure 3.10. The

graphs generated have the generation number along the x axis and the fitness along the y, in blue is the

highest level fitness found in that generation, in yellow is the average of all levels fitness values, green

is the average of the first quartile, red the second, purple the third and brown the fourth quartile.

Figure 3.11: Random selection Figure 3.12: Stochastic selection

In order to take fitness into consideration we tried stochastic universal sampling but we ran into a

problem where sometimes the whole population had zero fitness. This is because, for example, if every

spawn was inside a platform their fitness would be zero, this led to it just choosing random levels and

having the same problem as the first attempt. However if one happened to have higher fitness and no

other had a fitness value above zero then it would mainly choose that one as both parents and therefore

creating only clones of that one as an offspring. We can see in figure 3.12 that, when the fitness is

very low, we have the same results as the random approach but, when it is higher, the first quartile is

extremely close to the best fitness. This is because the top levels were just copies of the best level

because they could have been the result of crossover where the best level was chosen as both parents,
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or the top levels were versions of the best level that had different fitness as a result of a mutation. When

we implement a function that removes all levels that have the same platforms and spawns and replace

them with a random level, we end up with results such as the ones seen in figure 3.13, where we again

see results similar to the random selection which indicates that we are relying on the random levels that

were added to maintain population size.

Figure 3.13: Stochastic selection without duplicate levels

We then tried the tournament selection using two different sizes for the tournament, 4 and 16. We

found that with the small tournament size we got a similar results as with random selection, although a

bit better when looking at the average and first quartile in figure 3.14. With the larger tournament size

we ended up having the same problem as with the stochastic selection in which we would again be

choosing the same level to be parent several times, and that is not bad as long as it does not create

offspring with itself, which happens when using tournament selection for each parent and a larger size.

We can see in figure 3.15 that the top levels all have similar fitness, and even though that does not

necessarily mean that the levels are the same, when we then look at the entire last generation we saw

that the top 12 levels were exactly the same, this also happened with the stochastic selection.

We then tried using elitism, where we would take the top thirty percent of the population and create

an offspring while making sure both parents where different and each parent combination would not

repeat itself. This, in general, elevated the average fitness as seen in figure 3.16, but after applying

mutations it could create worse levels than the previous generations, so we changed it to guarantee that

the best level would always stay from one generation to next and it would be used to create offspring.

This would mean that that level would not suffer mutations but its offspring would. From figure 3.17 we

can see that this results in overall higher fitness values.

Looking at all these graphs, we notice that the third and fourth quartile are both near each other

with zero fitness. We believe that this is due to how the fitness function can quickly evaluate a levels

fitness as zero. For example, if both characters are inside platforms, then that is an unplayable level
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Figure 3.14: Tournament with 4 participants Figure 3.15: Tournament with 16 participants

Figure 3.16: Top 30% elitism
Figure 3.17: Top 30% elitism and maintaining the

best

and has zero fitness even if those platforms were positioned in such a way that would otherwise create

a high fitness level. As mentioned before, if a character is placed inside a platform, it is pushed either

up or down. Unfortunately our fitness function does not take this into consideration and instead just

gives it zero fitness. Another thing that gives levels very low fitness is the fact that we use the minimum

intersection of the calculated reachability with specified areas, so even if we have a specified area that

is fully reachable, but the other is unreachable, be it by having a platform on top of it or simply that

characters just can not reach it, then that level also has zero fitness.

3.3.4 Crossover

In the following sections, Crossover and Mutation, will be presented using two levels to help explain

what our process was and show how the levels are created, these levels are show in figures 3.18 and

3.19. We will mention how they then create a new offspring inside the algorithm so, in figure 3.20,

we show how they are represented as an array of integers(in bold are the activator bits or in this case
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integers). For simplicity and ease of reading, we will only show the active platforms and consider that

no others exist. However, when testing we still had the other platforms present in the chromosomes,

even if inactive, and each level had another version of itself with their platforms in different positions in

the array, these versions represent a level that is evaluated the same by the fitness function but inside

the algorithm the array of integers is different, these versions are also shown in the figure 3.20 as the

version 2(V2) of each level, we can see that the platforms they have are the same just in different order

and position. This is relevant because when doing the crossovers, we choose between platforms that

are on the same index in both, so, if they both have all platforms in the first three platform indexes in the

chromosome, then none of them would be able to gain platforms or lose platforms after the crossover,

only change between the ones they have.

Figure 3.18: Level 1 before any changes Figure 3.19: Level 2 before any changes

The crossovers we originally tested were the one point crossover and the two point crossover. They

would take two parents and create two children. As it could occur with the mutation, but less likely,

this could generate children that were equal to the parents, for example, if both parents had only the

first three platform active and the point chosen was after those three platforms, the crossover would

just change the platforms that where not active, creating offspring that were evaluated the same as the

parents. Another problem of choosing a random index was that it could pick an index in the middle of

a value (x, y, width, height) from a platform and could change the platform itself acting almost like a

mutation. This is an unwanted side effect that, when we changed from the array of bits to the array of

integers, became less prominent since it could no longer pick the middle of a value. However it could

still change a platform if it chose an index in the middle of a platform, changing its value combinations

(for example it could have the same width but the height from the other parent, which again would be

like a mutation). An example of this can be seen in figures 3.21 and 3.22, where the elements from the

Level 1      : [20, 42, 7, 42, 1, 28, 25, 4, 18, 1, 45, 25, 4, 18, 1, 33, 25, 15, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Level 2      : [61, 43, 5, 40, 1, 12, 37, 18, 2, 1, 31, 23, 3, 24, 1, 34, 40, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Level 1 V2 : [20, 42, 7, 42, 1, 33, 25, 15, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 28, 25, 4, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 45, 25, 4, 18]
Level 2 V2 : [61, 43, 5, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 37, 18, 2, 1, 31, 23, 3, 24, 0, 0, 0, 0, 0, 1, 34, 40, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Figure 3.20: Levels representation as an array of integers
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Level 1:[20, 42, 7, 42, 1, 28, 25, 4, 18, 1, 45, 25, 4, 18, 1, 33, 25, 15, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Level 2:[61, 43, 5, 40, 1, 12, 37, 18, 2, 1, 31, 23, 3, 24, 1, 34, 40, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Child 1:[20, 42, 7, 42, 1, 28, 25, 4, 18, 1, 45, 25, 4, 18, 1, 33, 40, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Child 2:[61, 43, 5, 40, 1, 12, 37, 18, 2, 1, 31, 23, 3, 24, 1, 34, 25, 15, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Figure 3.21: Children generated using a one point crossover with Levels 1 and 2 as parents

Level 1      :[20, 42, 7, 42, 1, 28, 25, 4, 18, 1, 45, 25, 4, 18, 1, 33, 25, 15, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Level 2 V2:[61, 43, 5, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 37, 18, 2, 1, 31, 23, 3, 24, 0, 0, 0, 0, 0, 1, 34, 40, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Child 1     :[20, 42, 7, 42, 1, 28, 25, 4, 18, 1, 45, 25, 4, 18, 1, 33, 25, 15, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Child 2     :[61, 43, 5, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 37, 18, 4, 0, 31, 23, 3, 24, 0, 0, 0, 0, 0, 1, 34, 40, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Figure 3.22: Children generated using a two point crossover with Levels 1 and 2 V2 as parents

second level that were transferred to the children are underlined and, the visual representation for the

children is shown.

From the examples shown, we can see that these could be considered mutated levels, since in the

first example the third platform from each level switched their x position. The same can be seen in the

second example, where the height of the platform was changed and the active indicator was also flipped

which resulted in adding a platform that would be completely random, but since these examples have

the random numbers as zero the new platform is not shown. Figure 3.22 also shows us how it is relevant

that the platforms are not all in the first three platform indexes, if they were, the levels resulting from

the crossover would always have three platforms, but, since the platforms'index is not aligned with each

other, there are platforms that can be removed or added instead of just switched.

We also tested a more specific crossover to our chromosome. This crossover would switch only

platforms that were active or it would switch between platforms that were active in one but not the other,

this way it would ignore crossing platforms that were not active and that would not create offspring that

did not differ from the parent. It would also, when crossing, take the entire platform so as to not change

its size and position.

These approaches would generate two children from the same two parents and the children would

be, in a sense, the opposite of the other, because what one child got from one parent, the other would
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Level 1:[20, 42, 7, 42, 1, 28, 25, 4, 18, 1, 45, 25, 4, 18, 1, 33, 25, 15, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Level 2:[61, 43, 5, 40, 1, 12, 37, 18, 2, 1, 31, 23, 3, 24, 1, 34, 40, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Child 1:[20, 42, 7, 42, 1, 28, 25, 4, 18, 1, 31, 23, 3, 24, 1, 33, 25, 15, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Child 2:[61, 43, 5, 40, 1, 12, 37, 18, 2, 1, 45, 25, 4, 18, 1, 34, 40, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Figure 3.23: Children generated using the specialized crossover with Levels 1 and 2 as parents

get from the second and vice versa. So, the other crossover we tested was to choose two parents and

generate only one child. For each feature: rectangle starting position, circle starting position and, each

platform, we would give it fifty percent chance to be from the first parent or the second parent, a simple

algorithm shown in 3.4. We thought about doing this to every value, but then the child would lose any

resemblance to the parents since their features would be irrelevant and again this would end up being a

uniform mutation that could only choose from two values, either the first parent or the second.

Algorithm 3.4: Function for creating a child from two parents
Function CrossChromosome(parentOne,parentTwo):

child← clone(parentOne)
for platform in parentTwo do

if random() ≤ 0.5 then
switchPlatform(child,platform)

for spawn in parentTwo do
if random() ≤ 0.5 then

switchSpawn(child,spawn)

return child

By generating only one child it is possible to not repeat parents. While in the previous approaches

two parents would generate two children, in this approach you can repeat one parent and not the other,

allowing you to choose a parent you believe to be better to generate offspring and let them cross with a

more varied selection, rather than repeating both parents. But even if you do repeat both parents, their

children will not necessarily be the opposite of each other(as in, what one gets the other does not). In

figure 3.24, we used the same parents twice and the results are two children that share some attributes

and not others, but they are not just the opposite of each other.
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Level 2      :[61, 43, 5, 40, 1, 12, 37, 18, 2, 1, 31, 23, 3, 24, 1, 34, 40, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Level 1 V2 :[20, 42, 7, 42, 1, 33, 25, 15, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 28, 25, 4, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 45, 25, 4, 18]
Cross 1     :[20, 42, 7, 42, 1, 33, 25, 15, 4, 0, 0, 0, 0, 0, 1, 34, 40, 16, 2, 1, 28, 25, 4, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Cross 2     :[61, 43, 7, 42, 1, 12, 37, 18, 2, 1, 31, 23, 3, 24, 0, 0, 0, 0, 0, 1, 28, 25, 4, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 45, 25, 4, 18]

Figure 3.24: Two Children generated with Levels 2 and 1 v2 as parents using the algorithm 3.4

Level 2      :[61, 43, 5, 40, 1, 12, 37, 18, 2, 1, 31, 23, 3, 24, 1, 34, 40, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Level 1 V2 :[20, 42, 7, 42, 1, 33, 25, 15, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 28, 25, 4, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 45, 25, 4, 18]
Child 1     :[20, 42, 7, 42, 1, 33, 25, 15, 4, 0, 0, 0, 0, 0, 1, 34, 40, 16, 2, 1, 28, 25, 4, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Child 2     :[61, 43, 7, 42, 1, 12, 37, 18, 2, 1, 31, 23, 3, 24, 0, 0, 0, 0, 0, 1, 28, 25, 4, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 45, 25, 4, 18]

Figure 3.25: Levels 1 and 2 after uniform mutation

3.3.5 Mutation

The mutation that was used at the beginning was a simple bit flip mutation that would randomly choose

a bit and flip it. With so many different bits it could make little to no difference in the outcome so we then

tried with a uniform mutation that would go through each bit and with a random chance it would flip that

bit.

Both these mutations had the same problem and that was because our chromosome had the active

indicator bit that would effectively make a lot of other bits irrelevant. Additionally when we still had the

collectibles in our chromosome, it could change the collectible part only, this meant that after a mutation

the way the chromosome was evaluated could remain the same. When we changed chromosome

representations to an array of integers without the collectibles, since we no longer had bits, we tested

what we consider something equivalent to the bit flip and that was using a random integer. The first

approach was to choose a random index and generate a random integer, the second was to do that

uniformly through the array and these still had the same problem. We can see, in figure 3.25, the

changes that the uniform mutation can cause, the values underlined are the ones that were altered

through the mutation, some activator bits where changed, in this case it is not noticeable because other

values, such as width or height, are zero, however, when a chromosome is first created, they have

random integers, so new platforms with random values would have been added.
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Level 1 : [20, 42, 7, 42, 1, 28, 25, 4, 18, 1, 45, 25, 4, 18, 1, 33, 25, 15, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Mutated: [20, 42, 7, 4, 1, 28, 25, 4, 18, 1, 45, 25, 4, 18, 1, 33, 25, 15, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Level 2 : [61, 43, 5, 40, 1, 12, 37, 18, 2, 1, 31, 23, 3, 24, 1, 34, 40, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Mutated: [61, 43, 5, 40, 1, 12, 37, 73, 2, 1, 31, 23, 3, 24, 1, 34, 40, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Figure 3.26: Levels 1 and 2 after a significant change mutation

Algorithm 3.5: Function for significant mutations
Function
SignificantMutateChromosome(level,platformNumberChance,uniformV alueChance):

if random() ≤ platformNumberChance then
for platform in level do

if random() ≤ uniformV alueChance then
platform.active←!platform.active

else
for platform in level do

if platform.active then
for attribute in platform do

if random() ≤ uniformV alueChance then
attribute← random(attribute)

for spawn in level do
for attribute in spawn do

if random() ≤ uniformV alueChance then
attribute← random(attribute)

return level
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Level 1 : [20, 42, 7, 42, 1, 28, 25, 4, 18, 1, 45, 25, 4, 18, 1, 33, 25, 15, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Mutated: [20, 42, 7, 42, 1, 28, 25, 4, 18, 1, 45, 25, 4, 18, 0, 33, 25, 15, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Level 2 : [61, 43, 5, 40, 1, 12, 37, 18, 2, 1, 31, 23, 3, 24, 1, 34, 40, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Mutated: [61, 37, 5, 40, 1, 12, 37, 18, 2, 1, 12, 23, 3, 24, 1, 42, 21, 56, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Figure 3.27: Levels 1 and 2 after applying the SignificantMutateChromosome function

The next mutation we tested was more specific to our chromosome, it could go to the active indicator

for the platforms and it would flip it, or it could choose a platform that was active and go through its x, y,

width and height and change them, this was the equivalent to the flip bit, but would guarantee that the

level would always be changed and therefore change its evaluation. This mutation did not alter the level

much, as shown in figure 3.26, which meant that it would take a lot of mutations to get some significant

changes. That is why we then implemented a variation on the uniform mutation in such a way that would

guarantee changes, it would either change the number of platforms, or it would change the platforms or

character starting positions(spawns), we show this in the algorithm 3.5.

As we can see in figure 3.27, level one had only its platforms changed and level two had mutations

only in the active platforms. We believe this approach is better than uniformly changing all its values

because it could lead to too many mutations. Separating it into either changing only the platforms

number or only the platforms themselves gives us a bit more control over the evolution.

3.3.6 Collectibles

The levels generated do not yet have the collectibles placed, so, in the following step, we inserted the

collectibles in the level by using the input areas as the regions to place them in. The requirements to

placing a collectible were: it must be in an area that can be reached by a character, they should be

spread evenly through all the input areas, if an area has a very large area then it should have more

collectibles. We set area size thresholds for the amount of collectibles each region had. First every

region had at least one collectible, then if a region occupied more than 10 percent of a level it would

have 2 collectibles, if it represented more than 20 percent it would have 3 collectibles, if it represent more

than 35 percent it would have 4 collectibles and any region had an area that would be equal or greater

to 50 percent of a level would have 5 collectibles. The algorithm places collectibles in each area, to do

that, for each area it first checks how many collectibles to place in it, it decides based on the region's

size, then for each collectible it randomly chooses a position inside the corresponding area and places

them there, whenever a collectible is placed, it checks if it is in a reachable position, if the position is
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reachable by the area type request and then the algorithm checks if it is not near other collectibles. If

one or more of these conditions fail, it generates a new random position inside the area and repeats the

process, after a certain amount of failed attempts it does not place the collectible, meaning that area will

have one less collectible than what was decided based on the area's size. In figure 3.28, we can see a

level generated with the input shown in figure 3.10 and collectibles placed according to the same input

areas.

Figure 3.28: A level with collectibles placed and its representation in game
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After all the iterations, we the decided that the end generator would use the fitness function that

received, as its input, a series of areas, it would use elitism as a selection method, the crossover would

only generate one child and it would uniformly choose from which parent it would inherit an attribute, the

mutation, we decided on, would change either changed the number of platforms or uniformly change the

aspect of the platforms. This version of the generator was the one used for testing1.

4.1 Metrics

Figure 4.1: Time Taken per generation with popula-
tion of 50

Figure 4.2: Time Taken per generation with popula-
tion of 10

We did a short study of the generator based on the time it took from receiving the input to having

a level generated. We tested in a computer with windows 10 and python 3.8, the CPU was an AMD fx

8320, we had 16GB of ram and the project was kept on a 250GB SSD. We found that with a population

size of 50 each generation took on average 5.5 seconds where the majority of that time was used

evaluating the fitness of the levels, while with a population size of 10 it took on average 1.1 second per

generation. In figures 4.1 and 4.2 we can see that the time per generation varies a lot. This happens

because during the evaluation we can determine at earlier points if the level will have a certain fitness,

for example, if no spawns are valid then the fitness for that level will be zero, others then take more time

because the bigger the amount of a level is reachable the longer it takes to evaluate. The average time

to calculate the fitness of a level is one tenth of a second but, in figure 4.3, we can see that the lowest

values are about 0.05 seconds, while the highest can go a bit above 0.2 seconds which is at least four

times longer than the fastest levels.

1https://github.com/NMBLM/GeometryFriendsLevelGenerator
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Figure 4.3: Time per evaluation of a level

4.2 Experimenting

We asked people to experiment with the generator, and give us some feedback. The process started

by showing them the game and having them play the game. Then we introduced them to generator, we

explained how it worked, by showing examples of input and examples of output, and showing how they

where related. Next, we asked them to provide input for the algorithm, in order to do this we created a

basic GUI tool, shown in figure 4.4, it was developed in python using ‘tkinter’, its main purpose was to

provide the participants with a visual representation of what their input meant, so it showed where in the

level and what type of area they where requesting. This tool would take a series of inputs describing

the regions and then generated those regions in the image on the right, the add row button allowed

the tester to specify more areas, the confirm spec button updated the preview image on the right, that

allowed them to see where in the level they were specifying the area, the save spec created a file that

could then be used as input for the level generator. We then used that input to generate levels. The

generator then chose the best level generated and placed collectibles in it. The result was 10 versions

of the best level where only the collectible placements changed. We then had them choose the version

that seemed the best in terms of collectible placement and we had them play the generated level and

say how it matched with their expectation.

The feedback we were looking for was, firstly, if the levels generated meet their requested input,

secondly, if the levels were playable, thirdly, if the input requested was meaningful (as in, if it helps

define what the designer wants when creating a level), fourthly, what their opinion was on the time it took

to generate the levels after giving the input.

The responses varied a bit, depending on the input, the levels generated could be quite good and
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Figure 4.4: GUI Tool to specify input, with some example input

playable or they could be impossible to complete. Some inputs requested impossible combinations such

as an area just for the circle directly above an area that requires cooperation to reach, this type of inputs

lead to the generator not being able to create a level meeting the requirements.

Input Area

Level Evaluation

Level In game

Figure 4.5: Examples of input from testers and the final level generated

We had some positive reactions as the levels generated did somewhat meet what the participants

where expecting, but its important to note that those that tested the tool are not familiar with the game

and asking them to create a level for a game they played only minutes before can result in unusual

inputs. In the figure 4.5 we show some of the inputs given to us in the test and the levels generated

at the end, including their in game representation. Our generator for the last input did not manage to

generate a level that would satisfy it and so even after the 500 generation all levels had a fitness value

of zero, we believe this was due to having a small circle only area above a cooperative area.

As for if the levels where playable most of them could be completed, but for example the third input

requested generated a level where the rectangle could either go left or right but not both ways, and so it

was not possible to complete.

When asked if the input requested was something helped define their vision for the level, we had

mixed responses, some said that it would be better to specify the actions instead, so, for example,

saying they wanted the circle and the rectangle to cooperate twice and how they should cooperate.

Others said that it was abstract enough and that if they wanted to be more specific, it would be better to
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just create the level entirely.

Lastly, when asked about the time it took the generate the level every one agreed that it was too long,

even if it is to done during development and not right before the level was going to be played.

4.3 Level Generator

With the generator complete we can classify it based on previously defined properties. In terms of Speed

it is not fast, it cannot generate in real time and therefore the generation has to be done beforehand

during the development, this does allow for the designer to then make minor changes on the end level.

When we look at Reliability we can say that it is not entirely random, this is because it checks where each

character can reach in the levels and equates that to whether it can be completed or not, it does this

by calculating where each character can reach and then guaranteeing that the collectibles are placed

in reachable areas. When calculating where each character can reach it assumes that the character

can go in any direction and then return to where they started. This is not always true as, for example,

we can have the rectangle spawn on top of a platform that separates the level in two, an area on the

left and an area on the right. When we calculate the reachability it determines that the rectangle can

reach both the left and right area, however when we play the level, if we decide to go to the area on

the left, we will have to fall and, since the rectangle cannot jump, we will not be able go back on top of

the platform. Therefore without restarting the level we cannot reach both areas, so for the most part it

can remove most levels that cannot be finished but not all, we could see this happen in one our tests

with users shown previously. In terms of Controllability, the designer can specify areas of interest, as

previously mention the areas that determine who should be able to reach them and how, so it does

provide some control to the designer. In terms of expressivity and diversity we saw that given the same

input it can generate different levels, however since the inputs, in a sense, specify how a level should be

completed, it might be considered the same level in a more abstract way, but because we can specify

many different inputs we would say that it does provide expressivity and diversity. Lastly in terms of

creativity and believability we would say that the positioning of the platforms and of the collectibles do

reveal that the levels where generated by a machine, this is because in most human made levels, there

is some sense of symmetry or order, such as collectibles that are at a certain height will all be lined up,

whereas with our collectible positioning they will be very obviously misaligned.
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In this work we proposed a level generator that could provide cooperative challenges in its levels

and developed a level generator for the game Geometry Friends. The method for creating those levels

used a genetic algorithm with a chromosome that represented the level as the solution, then a fitness

function that received abstract input, such as where certain events should take place (in our generator

these were the area that specified cooperation or individual tasks), the function then evaluated the levels

in terms of where the cooperative events and individual tasks where occurring and how those compared

to the requested input. For a problem as complex as this, we believe that the crossover and mutation

methods should be tailored to the chromosome and that common methods might not be enough.

5.1 The Final Generator

In the end, we created a generator that could receive input from the designer specifying areas of interest.

These areas could represent things such as: only the rectangle should be able to reach this area, or

only the circle should be able to reach this area, or both characters should be able to reach this area, or,

finally, this area should be reachable only by having both players cooperate. The generator could create

levels that matched those inputs. To do this it used a genetic algorithm, the chromosome represented

the level and specified its features, it then evaluated where each character could reach in the level, then

compared that to the input given by the designer and gave it a fitness value. To get the best results

and improve the search done by the genetic algorithm we studied the selection methods and found that

elitism provided better results, we found that the crossover method was better if it was specific to our

level and we came to the same conclusion regarding the mutation, both needed to take in consideration

the features present in our chromosome. In a second step after the genetic algorithm created a level,

we placed collectibles in the generated level according to the input areas.

5.2 Future Work

The most direct improvements that can be made are improvements to the current generator. As it

was described it cannot take into consideration all types of platforms that are available in the game,

so extending it to be able to generate levels using the yellow and the green platforms is one possible

improvement, another possible change is to to have the chromosomes not be of fixed size and allow it

to have more than eight platforms. One thing that could be changed is the input, we tested two different

types of inputs, but others can be explored as well, for example, one where the designer defines the

solution by indicating which moves to make and then the generator only guarantees that that path is

possible and that it is a solution to the level. The levels we generated did not focus on appearing human

made, this can be another point of study.
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As for the area of cooperative level generators, there is still a lot of work that can be done and differ-

ent approaches that can be tested. For more complex games, it might not be possible to calculate where

each character can be and where, so an approach that used intelligent agents could be developed to

play those games and try to complete the levels generated, of course that would require an artificial

intelligence that is capable of completing cooperative challenges, these types of AI are very hard, es-

pecially ones that require timed actions on the part of both players. Using neural networks to evaluate

the levels is a possible way to potentially speed up the evaluation process, the biggest hurdle in this

approach would be to have an extensive enough set of levels that are also evaluated.
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