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Abstract

A verification study is done for the simulation of water wave propagation in a 2D open domain with
regards to the main wave quantities. This study is done using ReFRESCO, a CFD code developed by
MARIN that captures the free surface location using the VOF method. The end goal of this dissertation is to
contribute to standardized procedures in wave simulation. The statistical errors – regarding to the influence
of the initial condition on the wave – and numerical errors – regarding the iterative and discretization errors
– are assessed for two wave models in deep water conditions: a linear wave and a 5th order Stokes.
The numerical set up in terms of grid topology and absorption conditions are based on the available
literature. The wave quantities of interest are assessed in two ways: at a fixed location in space, by
averaging the quantities in time and by analysing the moving wave through the domain. This work presents
a study comparing the discretization of three convective schemes regarding robustness, accuracy and
computational costs. The influence of the interpolation of the free surface location on the different quantities
of interest is investigated throughout this work. The relation between the wave dispersion errors and
the wave reflection at the outlet of the domain is established, with the reflection having two separated
components: one dependent on the discretization errors and another dependent on the relation between
wave model and boundary condition.
Keywords: Wave Simulation, Solution Verification, Wave Reflection, Computational Fluid Dynamics,
Volume of Fluid

1. Introduction

Numerical wave simulation, namely using CFD
(Computational Fluid Dynamics) codes, is usually
required in many practical hydrodynamic problems
to describe the complex underlying flow physics.
The use of numerical simulation in engineering ap-
plications needs to be accompanied by systematic
exercises of Verification and Validation of the nu-
merical solution in order to avoid incorrect solutions
or inadequate model choices. Validation concerns
quantifying the modelling errors, while Verification
is a mathematical problem with two activities: Code
Verification – to verify the absence of errors in the
code – and Solution Verification – to estimate the
error and uncertainty of a given solution.

In this work, a Solution Verification study is done
on a 2D wave propagating in an empty domain
using ReFRESCO [1], a Finite-Volume CFD code
developed by MARIN in collaboration with several
non-profit organizations. The mathematical equa-
tions solved are the Navier-Stokes equation. The
flow is assumed to be laminar and so the equations
do not require any statistical treatment to handle
turbulent fluctuations. ReFRESCO makes use of
the Volume of Fluid (VOF) method to accurately

capture the FS; the formulation of this method is
presented in [2].

When simulating waves in deep water conditions,
one of the main concerns is to avoid wave reflec-
tion. Several studies have addressed this issue,
see e:g : [3], [4]. Absorption effectiveness tests are
presented in [4] and [5], where optimal parameters
are recommended.

Regarding Verification and Validation exercises,
a detailed example of a Code Verification on wave
propagation can be seen in [6], while [5] presents
a Verification and Validation study on a problem
involving wave simulation. The Verification done in
this work addresses the influence of the numerical
and statistical error. The influence of the iterative
error is assessed by evaluating the changes in the
solution with different iterative tolerances; the statis-
tical error is evaluated by studying the influence of
the total simulated time and the number of waves
used in computing the average values of the quan-
tities of interest; the convergence of relevant wave
properties using grid and time step refinement is
done to estimate the discretization error and the
solution uncertainty, and to analyse its effects on
the simulated wave.
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The main properties of the two waves compared
in this work are presented in table 1.

Wave properties Linear 5thorder Stokes
Wave height [m] 1.5 24

Period [s] 12.56 12.56
Wavelength [m] 246.55 266.38

Steepness 0.006 0.09

Table 1: Main wave properties from two different
waves compared in this work.

2. Numerical errors and uncertainty
The numerical error can be divided into three

main categories: iterative errors, discretization er-
rors, and round-off errors.

The round-off errors are the result of the finite
precision of computers. This type of error is several
orders of magnitude below other sources, thus they
are not addressed in this work. The iterative errors
derive from the non-linear mathematical models
solved by CFD. This work focuses on the residuals
of the non-linear solution procedure as a method
of monitoring the iterative error. Regarding the dis-
cretization error, this is usually the dominant type of
numerical error. The estimation of the exact solution
is done using is a grid and time step convergence
study. The estimation of the discretization error
using power series expansion on unsteady flow is
given by:

›ffi ≈ ffii − ffi0 = ¸xh
px
i + ¸tfi

pt
i ; (1)

where the subscript 0 corresponds to the estimation
of the exact solution and i corresponds to the solu-
tion of a given grid; ¸x and ¸t are constants; h is the
typical cell size; fi is the time step size, and pt and
px are the observed order of convergence in time
and space, respectively. If the discretization error
is the dominant error source and the refinement is
sufficiently fine, then the observed order of conver-
gence should be equal to the order of discretization
of the numerical models. In practical applications,
scatter results may influence the observed conver-
gence due to many factors: from the complex nature
of the equations being solved to the to noise intro-
duced by the post-processing techniques employed
to obtain the solution. These factors influence the
observed orders of convergence.

The estimation of the numerical uncertainty de-
fines an interval that should contain the exact solu-
tion with 95% of confidence; this interval is defined
as :

ffii − Uffi ≤ ffiexact ≤ ffii + Uffi: (2)

The guidelines for the discretization error estima-
tion and the quantification of the solution’s uncer-
tainty are given in detail in [7]. In this work, these

procedures are applied using the tool Numerical
Uncertainty Analysis, developed by MARIN, that is
available at [8].

3. Simulation settings

3.1. Numerical schemes

This work compares two schemes in regards to time
discretization and three schemes in regards to con-
vective flux discretization. The discretization in time
is done using Implicit Three Time-Level (first-order
accurate) and Implicit Euler (second-order accu-
rate). In the discretization of the convective flux,
we compared three schemes: QUICK (Quadratic
Upstream Interpolation for Convective Kinematics),
limited QUICK, and Harmonic. Their formulation
can be seen in [9], [10] and [11], respectively. Fi-
nally, the discretization of the VOF transport equa-
tion is done using REFRICS, an interface-capturing
scheme that is discussed in detail in [2].

The monitoring of the wave elevation is accom-
plished by tracking the FS location at every time
step. ReFRESCO has built-in monitors for this pur-
pose. The VOF field is defined between 0 and
1, corresponding respectively to the water and air
phases. These wave-probe monitors interpolate
the VOF field to locate the interface. In this case,
the interface is defined by ¸ = 0:5, following the
common procedure seen, e.g., in [12]. In this work,
three interpolation settings are compared: Barycen-
tric type 2 and 3, with the monitors aligned with the
cell centres, and also Barycentric type 2 with the
locations non-aligned

3.2. Generation and absorption boundary condi-
tions (GABC)

The waves generation is done by prescribing the ve-
locity and the volume-fraction fields at the boundary
cells.

The absorption techniques can be divided into
two categories: boundary-based and domain-based
absorption. The boundary-based (also denomi-
nated as non-reflective) make use of the Sommer-
feld condition to absorb the wave. The boundary-
based techniques used in this work are known as
body forces. This technique uses the source terms
in the momentum conservation equations and on
the VOF transport equation to gradually force the
flow to match the prescribed wave. The intensity
of the body forces is controlled by a function that
guarantees its progressive application; the detailed
description of this technique can be seen in [4].
These two techniques are used simultaneously in
this work: the body forces to force the solution to
the analytical solution and then the Sommerfeld
boundary condition absorbs the outgoing wave.
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3.3. Grid topology and grid refinement
This work adopts the same grid topology princi-
ple seen in [4] regarding the wave energy-based
topology. However, this is adapted to Cartesian
structured grids. The horizontal refinement is in-
dependent of the y−direction and it is equidistant.
The water region underneath the FS is divided into
two regions: zone A’ and zone B’, that can be seen
in figure 1. The vertical refinement in Zone A’ is
equidistant, while in Zone B’ the refinement is de-
fined using a stretching function. The first cell from
Zone B’ has ∆y Zone A′ = ∆y Zone B′ . The ∆y pro-
gressively increases towards the domain bottom.
The refinement of the air region is symmetrical to
that of the water region.

x= 0.25 L 

x= 0.50 L

x= 0.75 L

x

y

L=5 

1  

Body 
Forces
Zone

1.4 H1.
01

 

Pressure BC

Spli Wall BC 

Zone B’ 

Zone A’ 

Gen. Abs. BC Gen. Abs. BC

-1,050

-0,525

0,000

0,525

1,050

Figure 1: general grid topology and set up used in
this work.

Figure 1 shows the baseline topology for this
work, as well as the location and types of BC. It
also shows the location of the forcing zone and the
location of the monitors used to record the wave
elevation. The box in Zone A’, is made 40 % higher
than the wave height. This dimension is set to guar-
antee a fine cell size in FS and at its vicinity. The use
of Cartesian structured grids has two advantages:
first, it eliminates the error from non-orthogonality
and eccentricity corrections; second, it easier to
guarantee geometrically similar grids. Nonetheless,
the drawbacks regarding this type of grids are the
total number of cells.

The grids and time steps used throughout this
work are summarized in tables 2 and 3. The grids
in table 2 have the same number of cells in both
Cartesian directions. In the x− direction, the cells
are equidistant, meaning that all the cell size have
the same horizontal cell size. The values of CFL
presented in table 3 are obtained relative to the max-
imum CFL value observed for a simulation using
grid B and dt = T=184.

The grid chosen for the baseline simulation set-
tings is grid B, with the time step dtB for a CFL
of 0.12. These baseline settings are equivalent to

1This dimension corresponds to the total height of Zone A’

Grid hi=h0 #/ (1:4H) *1 #/– total #
Grid A 4 9 21 11 025
Grid B 3 12 28 19 600
Grid C 2 18 42 44 100
Grid D 1 36 96 176 400

Table 2: Grids used in the convergence study.

CFL number dtA dtB dtC dtD
0.12 T/184 T/245 T/368 T/736
0.25 T/88 T/118 T/177 T/353
0.5 T/44 T/59 T/89 T/177

Table 3: Time step used convergence study. The
value in the denominator is approximated to the unit.
The subscripts in the time steps correspond to the
grids in 2.

coarse settings used in the literature.

4. Post-Processing Methods
To have a more complete analysis of the wave char-
acteristics, the wave elevation is analysed in two
ways: at a fixed location within a given time inter-
val and also across an array of monitors equally
spaced in the domain and aligned with the direction
of propagation.

The quantities of interest used to characterize the
wave at a fixed location are the wave height (Ht )
and period (Tt ). These wave characteristics are
averaged for a set N waves.

The monitor array is used to determine the wave
height as a function of the domain position H(xi ) –
where xi is the location of each monitor. This ap-
proach can be described as the recording of the
wave height of the last simulated wave to fully prop-
agate from the inlet to the outlet of the domain. The
use of the last simulated wave in this analysis is
done to guarantee that the transient effects are min-
imized. The reflection coefficient (Crx ), the average
height along the domain (Hx ), the wave diffusion,
the wavelength (– ) and wave the phase shift (∆ffi )
are all computed from the H(xi ) function.

Following the approach used in [13], the reflection
coefficient used in this work is given by:

Cr =
Hmax − Hmin

Hmax + Hmin
(3)

The reflection coefficient (Crx ) is evaluated using
H(xi ). The reflection coefficient is then computed
between the maximum (max < H(xi ) >) and mini-
mum (min < H(xi ) >) in the domain section com-
prised between 2– < x < 4–. Further details of the
post-processing methods can be seen in [14].
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5. Verification studies: Iterative and statistical
error

This section provides an overview of the influence of
the iterative error and the statistical treatment of the
quantities of interest. The simulations in this section
are performed for the baseline settings (grid B and
dtB with a total number of cells of 19600 cells). The
wave quantities of interest evaluated in this section
are the average wave height Ht and period Tt .

5.1. Iterative error
The influence of the iterative error in the solution is
addressed with regards to an adequate choice of an
iterative criterion tolerance. This is accomplished
with an tolerance convergence study to determine
its sensitivity of the solution to the iterative error.
The choice of the iterative criterion tolerance has a
significant impact on the computational cost. Five
simulations with different L∞ tolerance criteria are
compared. The lowest tolerance used is 10−6 and
the highest is 10−2. The simulated time corresponds
to 60 periods. This simulated time guarantees mini-
mal impact of statistical error in quantities of inter-
est.

Linear

L∞
(Ht − Ht 10−6 )/ Ht 10−6

25% L 50% L 75% L
10−2 1.395×10−3 3.188×10−3 4.433×10−3

10−3 2.281×10−4 4.476×10−4 6.249×10−4

10−4 3.778×10−5 9.993×10−4 1.041×10−5

10−5 8.340×10−5 1.878×10−4 2.216×10−4

Stokes

L∞
(Ht − Ht 10−6 )/ Ht 10−6

25% L 50% L 75% L
10−2 7.555×10−6 1.007×10−5 2.424×10−5

10−3 2.294×10−7 1.974×10−6 1.991×10−6

10−4 1.378×10−7 2.511×10−9 9.514×10−7

Table 4: Relative differences of the data values
for Ht between the different criterion using 10−6

solution as a reference, where i stands for each
tolerance and L stands for the domain length.

The results from the iterative convergence are
shown in table 4, where the results are presented as
the difference to the value obtained with the lowest
tolerance (L∞ = 10−6). For the linear wave, some
of the table entries for the tolerances lower than
L∞ = 10−4 presented values where the difference
between the solutions is greater than the tolerance.
In this cases, the iterative criterion does not reflect
the level of iterative error. For the Stokes wave, this
study shows that all relative differences between the
solutions are at least one order of magnitude lower
when compared with the linear wave. The results of
Tt for both wave models are omitted given that they

were two orders of magnitude below the Ht values.
From this results it can be seen that an increase

in CPU time does not justify the gain in accuracy
achieved by using tolerances beyond 10−3. Thus,
L∞ = 10−3 is the tolerance used throughout this
work.

5.2. Statistical uncertainty
The estimated statistical uncertainty is the interval
around the averaged value that reflects the variation
in the values of the sample. It is given by:

UN =
1

N

vuut NX
i=1

(ffii − ffi)2; (4)

where ffii is a value from the sample, ffi is the aver-
age value and N is the sample size. The waves in-
cluded in the sample are schematically represented
in figure 2. Figure 3 shows the successive differ-
ences of the wave quantities of interest for the linear
wave. It can be seen that, in both cases, the waves
are influenced by the initial condition and that this
influence became negligible after 30 to 35 periods
of simulation. After this, the quantities maintain the
same differences. The Stokes wave demonstrated
the same tendencies. However, its values were one
order of magnitude higher. Thus, to evaluate the
statistical uncertainty, the following scenarios were
considered: using a short simulation time (30 pe-
riods) and by using a long simulation time (120 in
the linear wave and 60 for the Stokes wave). The
estimated uncertainty is evaluated regarding the
sample size in these two scenarios. The results are
shown in table 5.

N waves

Figure 2: Linear wave elevation for 120 periods of
simulation

For the linear wave, the results demonstrate that
the lowest statistical uncertainty is attained for the
longer simulated time with a sample size around 20
waves. However, the absolute value of the uncer-
tainty of Ht for 30 simulated periods with a sample
size of 5 waves is in the same order of magnitude
of iterative tolerance criterion (L∞= 10−3 ). We can
conclude that the computational costs associated
with the 120 periods of simulated time would not
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Figure 3: Successive differences for 120 period of
simulation for the linear wave.

Linear

Sample size Simulated time
120 T 30 T

#5 H=Href 1.005 1.006
U=Href [%] 8.474×10−4 6.787×10−2

#10 H=Href 1.004 1.009
U=Href [%] 9.121×10−4 1.562×10−1

#20 H=Href 1.004 1.015
U=Href [%] 6.495×10−4 2.775×10−1

Stokes

Sample size Simulated time
60 T 30 T

#5 H=Href 0.867 0.868
U=Href [%] 4.503×10−4 8.807×10−2

#10 H=Href 0.867 0.872
U=Href [%] 3.001×10−4 1.873×10−1

#20 H=Href 0.867 0.877
U=Href [%] 4.291×10−4 2.757×10−1

Table 5: Comparison between long and short simu-
lation time lengths with three sample sizes for the
two waves.

significantly increase the precision of the calcula-
tion done in this work. As for the Stokes wave, the
results show that the uncertainty for the shortest
simulation is around 0.02% of Href for a sample
of 5 waves. In terms of absolute value, this figure
is just slightly above the iterative tolerance. From
these results, we can conclude that the settings
used in the linear wave in terms of the statistical
uncertainty and iterative convergence yield similar
consequences in both wave models. In this case,
the values of Tt were one order of magnitude below
Ht . This is consistent with the trend observed for
iterative errors. The values of the period can be
seen in [14]. The simulations done throughout this
work use a simulated time of 30 periods and Ht and
Tt are obtained with a sample size of 5 waves.

6. Verification studies: Grid and time step con-
vergence studies

The grid and time step convergence studies pre-
sented were done to addresses the influence of

the discretization error in the simulation of the lin-
ear wave and compare different numerical schemes
with regards to robustness, computational cost and
accuracy. The convergence of the Stokes wave was
done only with the numerical scheme that yielded
better results.

The results of the convergence of Ht for the cen-
tre of the domain are shown in figures 4, 5, 6. The
results of the convergence show that the first-order
accuracy in time integration penalizes the error level
of Ht . The convergence in figure 4(a) reflects the
numerical diffusion present in this simulation. It can
be seen that ¸t from equation 1 is greater than ¸x .
On the other hand, the convergence of the Stokes
wave in figure 6(c) presents a significant slope in ¸x ,
which indicates that the space discretization error
is the dominant factor in the convergence.
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Figure 4: Linear wave: convergence of Ht and Tt for
CFL of 0.12 and 0.25 and 0.5 with Implicit Euler and
QUICK.
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(a) Average wave height.
ffi0 = 9:722 × 10−1, Uffi1 =
11:18%.
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Figure 5: Linear wave: convergence of Ht and Tt for
CFL of 0.12 and 0.25 for Three Time Level with
QUICK.

The results of the convergence have shown that
the influence of the discretization errors on Tt was
negligible given that the values of the uncertainty
are significantly lower than those of Ht . This is ob-
served independently of the wave model, convective
scheme and accuracy in time integration. These
results are consistent with the trend observed for
iterative and statistical errors.

The convergence for three domain location is
shown in 7. These results show that the conver-
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(a) Linear wave average height.
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(c) Stokes wave average height.
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Figure 6: Convergence of wave height and period
for linear and Stokes waves with Three Time Level
and limited QUICK schemes.

gence has different tendencies and estimated ex-
act values depending on the location. Nonetheless,
they are all consistent, i.e., there is overlap between
all error bars. Other noise factors like monitor inter-
polation error, post-processing and wave reflection
play a role in the convergence.
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6.1. Comparison between QUICK, limited QUICK
and Harmonic

Figure 8 shows the wave height convergence for the
QUICK and limited QUICK, and for the Harmonic
and limited QUICK schemes. In the first case, the
two schemes present different fitting curves; the
uncertainty for QUICK is lower given it presents a
monotonic convergence.

Finally, the convective schemes were also com-
pared regarding robustness and the computational
cost. In each of these aspects, the limited QUICK
performed better than the other two schemes.
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Figure 8: Comparison between schemes on the
convergence of Ht at 50 % of L

6.2. Sensitivity study
Table 6 presents the sensitivity study done for the
two waves. The baseline grid and time step param-
eters are the same for both waves, however, the
linear wave was subjected to a higher refinement
level given its lower sensitivity to the numerical pa-
rameters when compared with the Stokes wave. It
can be seen that the most significant changes in
both waves were introduced by the refinement in the
x−direction, i.e., the wave propagation direction.

Linear
Variables – =–ref Ht =Href

Baseline simulation 0:985 1:006
1.5 × y−direction 0:985 0:993
1.5 × x−direction 0:989 1:016

1.5 × t 0:984 1:000

Stokes
Variable – =–ref Ht =Href

Baseline Simulation 1.031 0.868
1:25× y −direction 1.033 0.851
1:25× x − direction 1.025 0.911

t=1:25 1.033 0.868

Table 6: Summary of numerical properties for the
sensitivity study, for the linear wave

7. Convergence of the main wave properties
This section provides a comparison of the two wave
models regarding the convergence of the main wave
properties analysed using H(x). This study was
done for a single CFL line of 0.12. The objective
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of this discussion is to see how the influence of the
numerical error relates to wave models and their
simulation settings and to see the interpolation er-
ror. The wave reflection, which is an indirect conse-
quence of the discretization error, is also analysed.

Each quantity is assessed with three monitor in-
terpolation settings. In one setting, 100 equally
spaced monitors are placed throughout the domain,
independently of the grid refinement. In the other
two, the monitors are aligned with the cell centres
(in the vertical direction) and the number of monitors
changes with the grid refinement; the difference be-
tween this two monitors is the interpolation scheme.
Since the FS is interpolated by these monitors, this
allows us to see the influence of the FS interpolation
on the convergence of these quantities.

7.1. Average wave height
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Figure 9: Average wave height convergence for the
two wave models. The error bars represent the
numerical uncertainty and the values on the legend
correspond to the estimated exact solution.

The convergence of the average wave height in
figure 9 shows a significant influence of the monitor
interpolation has a significant influence on the Hx .
This influence is reflected in the different tendencies
of the fitting curves.

The levels of uncertainty are higher for the Stokes
wave despite the small difference between the data
points and the fitting curve. The main factor that

contributes to this is the difference between the
estimated error and the data point of the finest grid.

Comparing the quantities of interest in both wave
models, it can be concluded that the numerical dif-
fusion plays an important role in the simulation of
the Stokes waves and that this effect shapes the
fitting curves. As for the linear wave, it can be seen
that its data points are more sensitive to the noise
factors present in the simulation.

7.2. Average wavelength (– ) and phase error (∆ffi )
The – value is computed considering the whole
domain except the region of application of the body
forces. This value is computed at the last time
step of the simulation. The deterioration of wave
propagation is reflected in the difference between
– and the reference value. However, – is not an
accurate measure to evaluate the dispersion error
of the wave at the vicinity of the outlet boundary
condition. ∆ffi is used for this purpose.
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Figure 10: Average wavelength convergence for the
two wave models.

The convergence if ∆ffi indicates that the disper-
sion error implies a decrease in the wavelength of
the linear wave, while it produces the opposite ef-
fect in the Stokes wave. This can be seen in figure
10. The tendencies observed in these results are
similar to the convergence in the exercise done in
[6] for the Stokes and the linear waves.

The measuring of ∆ffi is done in the vicinity of the
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body forces region. The results are presented in
figure 11 in terms of the percentage of one wave
period. As discussed previously, the period is not
influenced by the refinement, thus an increase in
wavelength implies an increase in the wave propa-
gation velocity and consequently the wave phase.
This relation justifies why ∆ffi decreases with the in-
crease of the refinement level while also displaying
a similar tendency in the fitting curve that of the – .
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Figure 11: Phase error convergence for the two
wave models.

7.3. Reflection coefficient
The study of the reflection coefficient quantifies the
reflection of the wave at the and absorption condi-
tions: Sommerfeld BC and the body forces. Cr is
computed applying equation 3 to the wave height
along the domain – H(x) .

The convergence of Cr, presented in figure 12,
shows that the Cr decreases with the refinement
level. In figure 12(b) the fitting was done without
the grid A given that this data points were clearly
diverging from the fitting tendency of the rest of the
data points. This is divergence is likely to be a con-
sequence of the wave diffusion in that diminishes
the amplitude of the reflected wave.

For the linear wave, the estimated exact solu-
tion is less the 0.5 % whereas for the Stokes wave
the estimated exact solution is between 2:35% <
Crx < 2:48%. These results show that the Stokes
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Figure 12: Reflection coefficient convergence for
the two wave models.

wave tends to Cr significantly higher than that of
the the linear wave. This difference was also ob-
served on a convergence study on the Stokes wave
condition in [6] , however in this example no body
forces had been applied to the wave. This fact sug-
gests that the difference seen between Cr in the
exact solution is due to an error introduced by the
Sommerfeld BC.

To confirm the influence of Sommerfeld BC, three
simulations of the Stokes without body forces were
done. The results are presented in table 7.

Grid CrSommerfeld [%] ∆Cr[%]
Grid B 1.673 3.698
Grid C 2.105 2.082
Grid D 2.344 1.060
ffi0 2.921 0.55

Table 7: Cr of the Stokes wave using only the Som-
merfeld boundary condition at the outlet. ∆Cr =
|CrSommerfeld − Crbaseline | is the difference between
the solution with and without body forces.

Table 7 show the difference between the Cr ob-
tained with and without body forces (∆Cr). It is
shown that ∆Cr decrease with the increase in the
refinement level. As the difference between the
setups resides only on the presence of the body
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forces, then this factor must be the source of the
added Cr contribution.

The convergence of Cr for the linear wave further
reinforces this two mentioned reflection sources
since Cr presents an estimated value close to zero.
This indicates that when the body forces compo-
nent decreases with the refinement level and the
wave is fully absorbed by the Sommerfeld boundary
condition. Hence, it can be concluded that there
is one reflection component that is a function of
the discretization error, which is linked to the body
forces and another that is a function of the wave
model itself which is associated with the Sommer-
feld boundary condition. The wave reflection can
then be summarized by the equation:

Cr = Crsommerfeld + Crbody forces; (5)

8. Conclusions
This work presents a Solution Verification study
for regular wave propagation in an open domain.
Two waves provided by two different wave mod-
els were compared under deep water conditions.
The quantities of interest of the wave were anal-
ysed considering the statistical error as well as the
numerical error and its consequences on the propa-
gating wave. The following conclusions were drawn
from the results obtained in this work:

• The study on the influence of the iterative error,
monitored by the residuals L∞ norm, showed
that the gain in accuracy with a tolerance be-
yond 10−3 did not justify the increase in CPU
time.

• Regarding the initial condition, it can be ne-
glected for a simulation time greater than 30 to
35 periods of simulation.

• The results of the study on the statistical uncer-
tainty showed that the lowest uncertainty was
obtained for longer simulated times for both
waves. Nevertheless, the absolute value of the
uncertainty for 30 periods with 5 waves in the
sample is in the same order of the iterative tol-
erance (L∞= 10−3 ). Despite displaying the
same tendency, the Stokes’ wave uncertainty
for the 30 simulated periods was around 0.02%
of Href for a sample of 5 waves. In terms of
absolute value, this figure is just slightly above
the iterative tolerance that was set.

• The influence of the numerical error on the
wave period was significantly lower than on the
wave height. On the iterative and statistical
error, the error for the period was at least one
order bellow the error for the wave height. Re-
garding the discretization error, it was seen that

it had a negligible effect on Tt on the simula-
tions using second-order accurate schemes for
the discretization of the time terms.

• The convergence of grid and time step using
Implicit Euler showed that using a first-order
accurate scheme in time penalises the solution.
The results show a significant wave diffusion
that makes this scheme unsuited for this type
of applications.

• The grid and time step convergence showed
that different domain locations presented differ-
ent fitting curves and estimated values. This
demonstrates the presence of noise factors
that influence the convergence, such as inter-
polation errors and wave reflection.

• In the sensitivity study done to – and Ht , it was
demonstrated that Stokes wave has a greater
sensitivity to the changes in the grid param-
eters than the linear wave. Furthermore, the
refinement in the wave propagation direction
proved to be the most significant parameter.
Thus, a greater refinement in this direction is
recommended to improve the quality of theses
type of simulations.

• From the convergence of Hx , the three inter-
polation schemes used yielded three different
fitting curves with on both waves. However, this
influence was more pronounced on the linear
wave given the influence of the diffusion in the
Stokes wave convergence.

• The convergence of the – and ∆ffi it is observed
the same tendencies on the fitting curves.

• Regrading the reflection, it was concluded that
two factors are contributing to the reflected
wave: the body forces and the wave model.
Regarding the body forces, it was seen that
this contribution tends to zero with the increase
in the refinement level, while the contribution re-
lated to the wave model tends to a fixed value.
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