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Resumo

Esta tese avalia a robustez numérica (erros iterativos) e a precisão (erros de discretização) do algoritmo

baseado na pressão para escoamentos compressı́veis monofásicos, incluı́do no código ReFRESCO.

Os objetivos principais são: verificar a capacidade de reduzir erros iterativos para valores desprezı́veis

(robustez); estimar a ordem de convergência com o refinamento da malha (precisão) para quantidades

de interesse integrais e locais e comparar as soluções do ReFRESCO com resultados de referência

presentes na literatura.

Selecionaram-se dois conjuntos de casos: três com um escoamento bi-dimensional, subsónico e turbu-

lento (sobre uma placa plana em gradiente de pressão nulo, sobre uma lomba e em torno do perfil alar

NACA0012), definidos em NASA Turbulence Modeling Resource; e outros três, comuns na literatura,

simulando um escoamento invı́scido sobre um arco circular em condições subsónicas, transónicas e

supersónicas.

Realizaram-se estudos de refinamento da malha para todos os casos, em conjuntos de malhas geomet-

ricamente semelhantes, permitindo uma estimativa consistente da ordem de convergência da malha.

Verificou-se a robustez do algoritmo, pois a maioria dos erros iterativos baixaram para valores próximos

da precisão da máquina.

A convergência iterativa é fortemente influenciada pelo grau de refinamento da malha e pela solução

da equação que corrige a pressão.

As ordens de convergência com o refinamento da malha estimadas dependem do caso de estudo, das

quantidades de interesse e do nı́vel de refinamento das malhas.

Os resultados do ReFRESCO acompanham as soluções encontradas na literatura de referência, mas

revelam oscilações numéricas perto de choques, descontinuidades geométricas ou em malhas com

elevada excentricidade.

Palavras-chave: Verificação de Soluções, Algoritmos baseados na pressão, Mecânica de

Fluidos Computacional
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Abstract

This work assesses the numerical robustness (iterative errors) and accuracy (discretization errors) of the

single-phase, pressure-based compressible flow solver developed within the ReFRESCO CFD package.

The objectives of the work are threefold: check the ability to reduce iterative errors to negligible levels

(robustness); estimate the order of grid convergence (accuracy) for integral and local quantities of inter-

est and compare ReFRESCO solutions with reference data available in the open literature.

Two sets of test cases are selected: three two-dimensional, subsonic, turbulent flows (zero pressure gra-

dient flat plate flow, bump-in-channel and NACA 0012 airfoil) available at the NASA Turbulence Modeling

Resource; three two-dimensional inviscid flows over a circular-arc (bump) that correspond to subsonic,

transonic and supersonic conditions that have been addressed in the open literature.

Grid refinement studies have been performed for all test cases using sets of geometrically similar grids

that allow a reliable estimation of the observed order of grid convergence. The robustness of the code is

demonstrated since iterative errors can be reduced to values close to machine accuracy for (almost) all

test cases. Iterative convergence is strongly dependent on grid density and the solution of the pressure

correction equation plays a crucial role in the robustness of the solution procedure.

Observed orders of grid convergence depends on the test case, selected quantity of interest and grid

refinement level. ReFRESCO results are consistent with the reference data available in the open liter-

ature, but numerical oscillations can appear at shocks, geometric discontinuities or poor quality (large

eccentricity) grids.

Keywords: Solution Verification, Pressure-based solvers, Computational Fluid Dynamics
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Chapter 1

Introduction

Nowadays, Computational Fluid Dynamics (CFD) is far from a numerical tool exclusive for the aero-

nautics and aerospace industries [1], as it can be found scattered across other engineering fields, from

marine and automotive to building and power generation, to mention a few [2]. In CFD, a numerical

method is developed to simulate a fluid flow behaviour in a desired application, whether it is on a com-

bustion chamber, over a wing, and so on. The governing equations of fluid motion are a system of partial

differential equations (PDE) composed by the Navier-Stokes equations, which represent the conserva-

tion laws of mass and momentum. However, due to their complexity they are only analytically solved for

simple cases [3].

One discretization technique typically employed is the Finite Volume Method (FVM), which transforms

the governing flow PDE into algebraic equations by dividing the domain of interest in finite volumes [2].

The choice of primary flow variables, i.e., variables that are directly computed from the PDE, further

categorizes these numerical algorithms. Two possible alternatives are: density-based and pressure-

based solvers [4].

Density-based solvers were originally developed for high-speed compressible flows [5]. The continu-

ity equation is a direct equation for density, and pressure is obtained from an equation of state, typically

the perfect gas law. In contrast with pressure-based solution techniques, which were first employed in

incompressible flows [6, 7], the mass conservation equation is modified and combined with with momen-

tum to yield an equation for pressure [2].

Computing pressure from the continuity equation over density has attracted many research efforts,

like [4, 8, 9] to mention a few. The reason for that is related with physical aspects that are commonly

referred to in the literature by the dual role of pressure. As explained in [4], in low-speed flows, pres-

sure acts exclusively on the velocity field to enforce mass conservation since density is constant. On

the other hand, in high-Mach number flows, velocity variations are small compared to the flow’s ve-

locity magnitude, which means that pressure mainly acts on density to satisfy mass conservation. At

intermediate-speed flows, pressure acts on velocity and density alike. Thus, changes in pressure are

finite and relevant throughout all speeds, making this flow quantity very interesting to consider as the

main variable in all-speed flow algorithms [10].
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The recoding necessary for pressure-based incompressible solvers to handle compressible flows is

well documented in key literature of the field, like in [2, 11]. Meanwhile, pseudo compressibility tech-

niques and preconditioning methods had to be developed for density-based solvers to achieve same

levels of versatility [12, 13].

Recently, a compressible version of ReFRESCO was presented [14, 15]. ReFRESCO is a CFD code

designed for naval and offshore applications developed by MARIN (Maritime Research Institute Nether-

lands), in collaboration with other organizations around the world [16]. Most common practical problems

in the Naval engineering field consider fluid incompressibility since the working fluid is water. However,

certain applications like slamming or sloshing may involve multi-phase flows, where compressibility ef-

fects of the gaseous phase might be relevant. Accurate capturing of such physical phenomenon is the

end-goal of ReFRESCO update, which is comprised of various steps.

Firstly, in [14], the solver was updated to handle laminar subsonic flows of perfect gases. Recoding

of the original code was essential, namely the pressure-correction equation, as well as the momentum

and energy equation had to be updated to account for fluid compressibility. A Code Verification [17]

exercise was performed, using the Method of the Manufactured Solutions, to guarantee that coding

errors were non-existent. Moreover, second order of grid convergence was reported, which matched

with the theoretical one for all flow variables.

Afterwards, a brief assessment of the numerical properties of compressible ReFRESCO was per-

formed in [15]. In that study, two benchmark test cases were used: turbulent flow over a flat plate and

over a bump. Both test cases were selected from NASA Langley Research Center Turbulence Model-

ing Resource webpage [18], which centralizes results from RANS-based solvers where CFD developers

can compare and verify their algorithms. The authors reported the iterative convergence rate to increase

when velocity, temperature, and density, were imposed at the inlet of the domain over total pressure and

total temperature. However, the first boundary conditions imply undisturbed flow properties at the inlet of

the domain which often results in larger domain sizes. Additionally, a Solution Verification [19] exercise

to quantities of interest like the skin friction coefficient and the drag coefficient was performed through

order of grid convergence properties. Despite the observed order of grid convergence being lower with

ReFRESCO, its solutions were less sensitive to grid coarsening, when comparing with two other solvers,

CFL3D and FUN3D.

This thesis follows up on the assessment of the numerical properties of ReFRESCO for compressible

flows aiming at expanding their evaluation in more test cases than what has been done so far. More

precisely, this work will focus on the following properties:

1. Robustness - by analysing the iterative convergence;

2. Accuracy – through order of grid convergence studies in Solution Verification exercises, according

with [20], to local, integral, and surface flow quantities.

In total, simulations will be carried out on two sets of benchmark test cases: three two-dimensional

(2D), subsonic, turbulent flows (flow over a flat plate with zero pressure gradient, over a bump-in-channel

and over the NACA0012 airfoil); three 2D inviscid flows over a circular arc (bump) in subsonic, transonic
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and supersonic conditions. The viscous test cases are taken from [18], while the other is commonly

addressed in the literature [4, 9]. Since reference data is available in the literature for the selected

cases, this thesis also features a code-to-code comparison with the solutions from ReFRESCO and

those of other codes.

This thesis is structured as followed: Chapter 2 presents the mathematical and numerical formu-

lations. Chapter 3 describes the selected test cases, while the results for the iterative convergence,

order of grid convergence studies and code to code solution comparison are presented and discussed

in Chapter 4. Finally, this thesis ends in Chapter 5 with the main conclusions.
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Chapter 2

Mathematical and Numerical Model

2.1 Mathematical model

2.1.1 Governing equations

The system of equations (eqs. 2.1) describes a general fluid dynamics problem. It is composed

by the Navier-Stokes equations (eq. 2.1b), as well as the mass (eq. 2.1a) and total energy (eq. 2.1c)

conservation principle, hereby written for a single-phase, unsteady flow of a compressible fluid in their

conservative form, and index notation as:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 , (2.1a)

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂p

∂xi
+
∂τij
∂xj

, (2.1b)

and
∂ρE

∂t
+

∂

∂xj
[ρujH] = − ∂qj

∂xj
+

∂

∂xj
(uiτij) . (2.1c)

The different variables stand for the following: ρ is the density, ui is the velocity along the ith direction

xi, p is the pressure relative to hydrostatics, E is the total energy, and H the total enthalpy. The stress

tensor, τij , and heat flux transfer, qj , are given by the Newtonian fluid hypothesis and the Fourier’s Law,

respectively, i.e.:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ

(
∂uk
∂xk

)
δij (2.2a)

and

qj = −kT
∂T

∂xj
, (2.2b)

where µ, kT , and T , are the molecular viscosity, the thermal conductivity coefficient, and the fluid’s

temperature, respectively; δij is the Kronecker delta.

Closure of the before-mentioned system is achieved with an equation of state. The ideal gas approx-
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imation can be used for that purpose, which states that:

P = ρRT , (2.3)

being P the pressure (relative pressure + hydrostatic pressure) and R the gas constant. Additionally,

considering a calorific perfect gas, the energy equation can be modified to be written only in terms of

primitive flow variables ρ, ui, T and p, as:

e = cvT (2.4a)

and

h = cpT , (2.4b)

with cv and cp being the specific-heat coefficients at constant volume and pressure, respectively, e the

specific internal energy and h the specific enthalpy.

2.1.2 Governing equations in turbulent flows

Time-averaging procedures, like Reynolds-average and Favre-average, can be employed to statistically

steady flows. However, for compressible flows, the Reynolds-Averaged Navier Stokes (RANS) equations

yield higher complexity than the Favre-Averaged Navier Stokes (FANS) equations. As in the former,

double and triple products of fluctuations of flow quantities arise. Before averaging, all flow quantities

are split in a time average quantity, and a fluctuation around the mean value, according to Reynolds

decomposition. Following [21], the tilde denotes mass-averaged (or Favre-averaged) flow quantities,

and the overbar indicates conventional Reynolds-average variables:

ui = ũi + u′′i , (2.5a)

ρ = ρi + ρ′i , (2.5b)

p = pi + p′i (2.5c)

and

T = T i + T ′′i . (2.5d)

In this thesis, the Favre-Averaged Navier-Stokes will be employed on all viscous flows test cases,

which are written below for a statistically steady flow (eqs. 2.6), as well as the average form of stress

tensor (2.7a ) and heat flux vector (eq.2.6a):

∂

∂xi
(ρũi) = 0 , (2.6a)

∂

∂xj
(ρũj ũi) = − ∂p

∂xi
+

∂

∂xj

[
τ ij − ρu′′j u′′i

]
, (2.6b)
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∂

∂xj

[
ρũj

(
cpT̃ +

1

2
ũiũi

)
+ ũj

1

2
ρu′′i u

′′
i

]
=

∂

∂xj

[
−qj − cpρu′′j T ′′ + τiju′′i −

1

2
ρu′′j u

′′
i u
′′
i

]
+

∂

∂xj

[
ũi

(
τ ij − ρu′′i u′′j

)]
, (2.6c)

τ ij = µ

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3
µ
∂ũk
∂xk

δij , (2.7a)

and

qj = −kT
∂T̃

∂xj
. (2.7b)

Independently of the averaging technique, extra terms will always arise that showcase the inherent

difficulty when handling turbulence. Similar to the original system of governing flow equations, extra

equations/correlations are necessary to close this set of averaged-equations.

Firstly, in the momentum equations, an extra quantity appears due to the non-linear nature of the

convection terms. Its physical interpretation is associated with the diffusion of linear momentum be-

tween the mean velocity field and the velocity fluctuations. This term is known as the Reynolds-stress

tensor and its computation is referred to in the literature as turbulence modelling [22]. In this work, the

Boussinesq approximation will be used to model the Reynolds-stress, which states:

− ρu′′j u′′i = µt

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3
µt
∂ũk
∂xk

δij −
2

3
ρkδij , (2.8)

where turbulence is characterized as an increase in diffusivity accounted for with the eddy viscosity

parameter, µt, and ρk is the turbulence kinetic energy (ρk = (1/2) ρu′′i u
′′
i ). For flows up to supersonic

Mach numbers, ρk is neglected as p� ρk [21].

Secondly, in the averaged-energy equation, three new terms appear. The turbulent heat flux vector

will be modelled using Reynolds analogy (eq. 2.9), where Prt is the turbulent Prandtl number. The re-

maining two new terms, molecular diffusion (τiju′′i ) and turbulent transport ( 12ρu
′′
j u
′′
i u
′′
i ), will be neglected,

for they only become relevant at supersonic speeds or above [21].

cpρu′′j T
′′ = −µtcp

Prt

∂T̃

∂xj
(2.9)

Lastly, to completely close out the system, one unknown variable remains to be modelled, the eddy-

viscosity introduced earlier. A variety of modelling procedures based on the Boussinesq hypothesis

have been developed, and can be further categorized according to the number of differential equations

by them required [2]:

• Zero equation models – No differential equations are applied, which means eddy viscosity is com-

puted from an algebraic equation. For example, Prandlt’s algebraic mixing length model [23];

• One equation models – Like the Spalart & Allmaras model [24] which solves one differential trans-

port equation for the undamped kinematic eddy viscosity, ν̂ = µt/(ρfv1), where fv1 is an empirical

function;
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• Two equation models – that are more commonly used in CFD simulations for industrial applications

[25]. Among others, the k − ε model, from Jones and Launder [26], and the k − ω model of Wilcox

[27], solve two transport equations each. Adding to k, one solves a transport equation for ε, specific

rate of dissipation of turbulence kinetic energy, while the other computes ω, which is the rate of

conversion of turbulent kinetic energy into thermal energy per volume and time unit.

For all turbulent flow calculations in this work, the Spalart and Allmaras [24] model will be employed

to close the system of equations. This one-equation turbulence model features a transport equation for

undamped kinematic eddy viscosity, with no trip term for a statistically steady flow, defined as:

uj
∂ν̂

∂xj
= cb1(1− ft2)Ŝν̂ −

[
cw1fw −

cb1
κ2
ft2

]( ν̂
d

)2

+
1

σ

[
∂

∂xj

((
µ

ρ
+ ν̂

)
∂ν̂

∂xj

)
+ cb2

∂ν̂

∂xi

∂ν̂

∂xj

]
(2.10)

The definitions of Ŝ, ft2, fw, ft2 and d, as well as the values for the constants cb1, cb2, cw1, κ and σ,

are given in [28].

2.1.3 Boundary conditions

Integration of partial differential equations requires the use of boundary conditions in order to numer-

ically define the finite domain’s boundaries. Boundary conditions are equations that represent physical

conditions or just simplify geometric constraints [29]. The boundary conditions employed on this thesis

are addressed bellow.

Wall boundary conditions define the analysed object geometry, whether that may be a flat plate, a

bump, or an airfoil profile. At the geometry’s surface, either the no-slip or slip boundary were applied.

The former implies the tangential velocity component to be equal to the wall velocity (which is zero for

all cases), while the latter imposes zero shear stress on the wall. However, both the impermeability

condition, which impose zero normal velocity components, and the adiabatic condition i.e., null normal

temperature derivative, were used in all simulations. When viscosity effects are considered, the un-

damped eddy viscosity is set equal to zero, according to [28]. Lastly, pressure is extrapolated from the

interior cells and density is computed from the equation of state (eq. 2.3).

Symmetry boundaries are an example of geometric boundaries that shorten the numerical domain.

They are used to mirror the domain interest in regions where the solution of all flow variables is sym-

metrical [29]. This is mathematically described by setting to zero the velocity component normal to that

boundary, as well as the normal derivatives of all remaining variables.

Two types of inflow boundaries were used:

• Fixed density, velocity, and temperature at the boundary faces, according to undisturbed flow con-

ditions, which equates to Dirichlet boundaries. In addition, for viscous flow simulations, the Dirichlet

condition for the turbulence model transport equations sets a value for ν̂, ν̂ = 3(µ/ρ).

• Alternatively, both stagnation temperature and stagnation pressure can be imposed. Linking be-

tween those quantities and the primitive flow variables are established through isentropic relations
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of an ideal gas, like:

To = T

(
1 +

γ − 1

2
Ma2

)
, (2.11a)

and

Po = P

(
1 +

γ − 1

2
Ma2

) γ
γ−1

, (2.11b)

where To and Po are the stagnation temperature and stagnation pressure, respectively, γ is the

heat capacity ratio and Ma is the Mach number, defined in equation 2.12. Density is calculated to

comply with the equation of state and the boundary condition for the turbulence modelling equals

that of the previous alternative.

Ma =
U

a
, (2.12)

where U is the velocity magnitude
(
U =

√
u2i + u2j + u2k

)
and a the speed of sound in the medium,

which for a perfect gas is taken as
√
γRT .

At the outflow, usually the static pressure level is imposed, and density is computed from the equation

of state (eq. 2.3). Moreover, the remaining variables are extrapolated from the inside of the domain with

zero streamwise derivatives.

Farfield Riemann boundary condition takes the Riemann invariants of the Euler-equations character-

istic waves to calculate the flow properties at the boundary. However, it is only suitable where no flow

perturbations are felt, as it assumes the gradients of all variables to be approximately zero. Because

no local viscosity effects are considered in the vicinity of this boundary, naturally, ∂ν̂/∂xi is set equal

to zero. The implementation of this type of boundary condition for pressure-based solvers has been

discussed recently in [30].

2.2 Numerical Model

2.2.1 Flow solver

The code used for all simulations was a compressible version of ReFRESCO. In this state, Re-

FRESCO is a viscous compressible solver that discretizes the mathematical model (Navier Stokes equa-

tions supplemented with turbulence models) using the FVM formulation, with cell-centred collocated

variables and a face-based implementation. The continuity equation is modified to yield an equation

for pressure, and density is computed from the equation of state. Thus, a pressure-correction equation

is constructed based on a SIMPLE-like algorithm, where velocity-pressure-density coupling follows that

proposed in literature [2, 11]. As a result, an extra term, a convection-like term, appears in the pres-

sure correction equation, which transforms it from a Poisson equation, in incompressible regime, into a

convection-diffusion equation. The diffusive terms are weighted by a factor proportional to 1/Ma2.

The convection terms of all transport equations were linearized with Picard’s method. As a result,

5 linear systems of equations, plus an algebraic equation for density, are obtained and solved with a

segregated approach. The linearization of the convective fluxes, plus the uncoupling of the equations
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and the deferred corrections, build up a non-linear residual. The solver’s development itself is outside

the scope of this work and more detailed descriptions of the discretization process and the SIMPLE-like

algorithm are available in [31, 32].

2.2.2 Solution procedure

Following the Finite Volume Method formulation, the differential transport equations are solved in

control volumes, or cells, that divide the entire domain. On the volume integration of convective, diffusive,

transient, and source terms, the Gauss’ divergence theorem is applied. As a result, the fluxes of the

transported quantities are approximated in one point for each unique face of the control volume through

the mid-point rule.

Since, in a collocated variable framework, the values of the dependent quantities are stored in the

centre of each control volume, numerical schemes are needed to write the face’s fluxes only in terms

of cell values. The choice of numerical schemes has many implications regarding very important prop-

erties of the discretized equations, like stability, accuracy, and boundeness. Those are addressed on

introductory subjects about Computational Fluid Dynamics and in central references of the field, such

as [2, 33]. However, their implications are outside the aim of this work and will not be explained in detail

here. Nonetheless, after the application of a discretization scheme, for an arbitrary cell P in the interior

of the domain, a general linear equation can be written as:

aPφP +
∑
nb

anbφnb = b , (2.13)

where aP and anb1 are coefficients, which values depend on the discretization scheme used, whereas

φP and φnb are the values of a flow variable, and b represents all terms that are independent of unknown

variables.

Applying the same procedure to all cells of the domain, a linear system of equations is constructed

and it can be written as:

Aφ = B , (2.14)

with the capital letters being a matrix/vector form of the corresponding variables in eq. 2.13 and φ the

solution vector for the desired flow variable.

2.2.3 Iterative convergence criteria

At maximum, five linear systems of equations, like eq. 2.14, are required to obtain the field solution.

The x and y momentum balance, pressure correction, energy conservation, and ν̃, transport equations

were preferably solved using the Generalized Minimal Residual (GMRES) method with the block Jacobi

(bJacobi) preconditioner [34]. However, some simulations required a more robust method to obtain a

negligible influence of the iterative error and the direct LU factorization of the coefficient matrixes was

used.
1nb subscript represents the neighbouring cells of an arbitrary cell P
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Nonetheless, the stopping criteria for the iterative convergence were:

• For the linear problem, iterative convergence was achieved when the residual dropped two orders

of magnitude. Adding to that, the maximum number of iterations for each linear system of equa-

tions was set equal to 200, except for the pressure correction equation (∆P ) where the limit was

extended to 5000.

• For the non-linear problem, iterative convergence criteria were always based on the L∞ norm of the

normalized residuals of all transport equations. The normalization is done with the main diagonal

values of the A matrixes (eq. 2.14) and the reference values in each test case: undisturbed flow

conditions and reference length. A converged solution means that the value of the L∞ is bellow

10−8.

The majority of simulations were converged in a workstation with 16 processors. Occasionally a 56

processor computer was also used.

2.2.4 Relaxations

Under-relaxation parameters are commonly applied to improve convergence properties of CFD

solvers as they enhance the robustness of the solution procedure. Both explicit and implicit relaxations

were used in the present numerical simulations. The former improves the diagonal dominance char-

acteristics of the linear system, while the latter influences the change in the linear system variables

between consecutive iterations.

2.2.5 Discretization schemes

Throughout this thesis, different numerical schemes were used to approximate convective fluxes.

Among the selected ones there are: second-order Total Variance Diminishing (TVD) Fromm scheme

with the harmonic limiter (HARM) [35], second-order limited QUICK scheme [36] and a blending of

the central-differences scheme (CDS) with 10% first-order upwind scheme (UP). The diffusive fluxes

were always discretized with the central-differences scheme including non-orthogonality and eccentricity

corrections. Lastly, the Gauss’ theorem is used to determine the gradient of dependent variables at the

cell centres. To avoid repetition, the convection schemes used in each test case were the following:

• In the flat plate and NACA0012 test cases, the Fromm scheme with the harmonic limiter was used;

• The limited QUICK scheme is present in all simulations of a viscous flow over a bump;

• Four convection schemes were used in the inviscid bump test cases: CDS blended with 10% UP,

fully UP, HARM and QUICK schemes.

11



12



Chapter 3

Test cases

3.1 Test cases

As mentioned in Chapter 1, this thesis aims for an assessment of the numerical properties of Re-

FRESCO for compressible flows. For that purpose, two sets of test cases were chosen from the litera-

ture. The first one is composed of three viscous flow test cases and were selected from NASA Langley

Research Center Turbulence Modeling Resource website [18]. The second set feature three inviscid flow

test cases over a circular-arc (bump) in subsonic, transonic and supersonic conditions that were taken

from the works of [4, 9]. Due to the number of test cases analysed, for language simplicity, common

traits among them are hereby presented.

Grid presentation

Establishing a domain’s dimensions and boundaries is not enough to solve a fluids dynamics prob-

lem numerically under the Finite Volume Method framework, for it requires converting the continuous

PDE into a set of algebraic equations. These algebraic equations are obtained by decomposing the do-

main in a grid of elements, or cells, and relating the values of a flow quantity in a cell with its neighbouring

ones.

The shape, orientation, dimensions, etc, of these elements distinguish one grid from another. Since

grid’s characteristics have a direct impact on the numerical properties of a solver [37], more than one

type of grid was used throughout this work. Furthermore, as Solution Verification exercises, like ob-

served order of grid convergence studies, require at least three geometrically similar grids with different

refinement levels (see section 3.2), gathering these grids in sets was inevitable. Each grid is completely

identified not only by its set, which will be set N for grids directly taken from [18], or set IM, for grids

generated with in-house tools [38], but also by its grid refinement ratio, ri, within their set that is defined

by:

ri =
hi
h1

=

(
Ncells,1
Ncells,i

) 1
2

=
Nwall,1
Nwall,i

, (3.1)
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where hi is the typical cell size of grid i, Ncells the total number of grid cells, and Nwall the number of

cells in the wall boundary. The subscript 1 refers to the finest grid of each set. Therefore, a grid with

twice the refinement ratio has half the number of cells discretizing the tested object geometry.

Fluid properties

The working fluid for all simulations is assumed to be a perfect gas with gas constant of R =

287.058m2/(s2K) and a heat capacity ratio of γ = 1.4. Furthermore, for viscous flows test cases, non-

dimensional quantities like, Prandtl (eq. 3.2a) and turbulent Prandtl numbers, are taken as 0.72 and

0.9, respectively. Despite varying between each case both Reynolds (eq. 3.2b) are also presented

below. Finally, the reference temperature is constantly considered equal to Tref = 300K and cp =

1004.703J/(kgK).

Pr =
cpµ

kT
, (3.2a)

and

Rex =
ρUx

µ
. (3.2b)

3.1.1 Viscous flow

2D Zero Pressure Gradient Flat Plate

Figure 3.1 illustrates the domains dimensions and boundary conditions for the 2D turbulent flow over

a flat plate with zero pressure gradient test case taken from [39].

For this test case, unitary density was assumed. Molecular viscosity is such that the Reynolds

number, based on a reference length L = 1m, is Re = 5× 106, where the reference velocity magnitude

was taken from the undisturbed Mach number of Ma = 0.2 using a reference temperature of Tref =

300K.

The plate begins at the origin of the x-axis and extends to x = 2L, thus Re2L = 107. Next, the inlet

of the domain is located further upstream, at x = −0.33m, whereas its outlet coincides with the end of

the plate. The total height was set one meter away from the plate, so no flow perturbations near the top

boundary condition are expected [39].

Following figure 3.1, the case study boundary conditions are:

• Prescribed stagnation conditions (pressure and temperature) at the inlet;

• Pressure boundary condition at the outlet;

• Impermeable adiabatic surface with the no-slip condition on the entire plate;

• Symmetry boundary between the plate leading edge and the inlet;

• Farfield Riemann condition on the top boundary.

14



Figure 3.1: Domain and boundary conditions according to [18] for the calculation of the two-dimensional
flow over a flat plate.

For this test case, two sets of geometrically similar grids were used. A set of five Cartesian grids, set

N, and a set of five orthogonal multi-block grids, set IM. Moreover, both sets have a fixed refinement ratio

of ri = 2 between each consecutive grid. However, two extra grids, one between the two most refined

grids and another twice as coarse, were added in both sets in order to improve the reliability of the grid

convergence properties evaluation.

Figure 3.2 illustrates the coarsest grid of both set and table 3.1 summarizes information regarding

Ncells, Nwall, y+max, and ri, for the grids of this test case. The grids of set IM have slightly higher number

of cells as their set N counterpart, but the y+ was kept similar between each set and smaller or close

to one, which is appropriate for the Spalart and Allmaras turbulence model [37]. Among the visual

mismatches between the two grids is included the refinement at the leading edge of the plate, which is

higher for the IM set and in a C shape. However, both sets have a grid orthogonal to the plate.

Set N Set IM

Figure 3.2: Illustration of the coarsest grids (ri = 16) of grid sets N and IM. Two-dimensional flow over a
flat plate.

2D Bump-in-channel

The viscous bump test case is another problem taken from [40].

The uniform flow’s Mach number is equal to Ma = 0.2, based on the reference temperature Tref =

300K, and the Reynolds number is Re = 3 × 106, using both unitary length and density. The reference

pressure is Pref = 86100Pa.
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Table 3.1: Total number of cells Ncells, number of boundary faces in the bump Nwall and grid refinement
ratio ri of the grids used. Two dimensional flow over a flat plate.

Set N Set IM

Grid ri Ncells Nwall y+max ri Ncells Nwall y+max

1 1.00 208 896 448 0.127 1.00 256 000 640 0.125
1b 1.45 98 736 308 0.168 1.43 125 440 448 0.165
2 2.00 52 224 224 0.214 2.00 64 000 320 0.215
2b 2.90 24 684 154 0.285 2.86 31 360 224 0.286
3 4.00 13 056 112 0.365 4.00 16 000 160 0.377
4 8.00 3 264 56 0.632 8.00 4 000 80 0.686
5 16.0 816 28 1.16 16.0 1 000 40 1.35

Domain dimensions along with boundary conditions are presented in figure 3.3. The tested object

geometry starts at the origin of the x-axis as a horizontal plate and its length defines the reference length

of this case, i.e., Lref = 1.5m. The actual bump is from x = 0.3m to x = 1.2m and is mathematically

defined as:

y = 0.05

[
sin

(
10x

9
π − π

3

)]4
for 0.3 ≤ x ≤ 1.2 . (3.3)

Finally, the inlet and outlet are located 25 meters away from the beginning and ending of the object,

respectively, and the top boundary is five meters high from the lower boundary.

The boundary conditions for this test follow the ones proposed at [40]. At the inlet, stagnation temper-

ature and stagnation pressure is prescribed, while static pressure is imposed at the outflow. The no-slip

adiabatic condition was considered on the plate+bump surface. Lastly, symmetry planes are used in the

upper side of the domain and in the remaining lower boundary.

Figure 3.3: Domain and boundary conditions according to [18] for the calculation of the two-dimensional
viscous flow over a bump.

The results for this test case were obtained in only one grid set, set N, from [41], which features 5

non-uniformly spaced grids. The vertical grid lines are clustered in the plate leading and trailing edges.

On the other hand, the streamwise grid lines are parallel to the solid surface (plate+bump), stretched in
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Set N Set N zoom

Figure 3.4: Illustration of the coarsest grids (ri = 16) of set N. Two-dimensional viscous flow over a
bump.

the vertical direction and clustered in the near-wall region, which extends to the wake, downstream of

the bump. Table 3.2 and figure 3.4 present some information about each grid and an illustration of the

coarsest grid, along with a zoom of solid surface, respectively.

A preliminary simulation was carried out using a grid locally orthogonal to the entire wall surface

which resulted in spurious oscillations close to the bump’s peak. These anomalies were attributed to the

topology of the grid in that region and are presented in appendix A.

Table 3.2: Total number of cells Ncells, number of boundary faces in the solid surface Nwall and grid
refinement ratio ri of the grids used. Two dimensional viscous flow over a bump.

Set N

Grid ri Ncells Nwall y+max

1 1.00 901 120 640 0.090
2 2.00 225 280 320 0.152
3 4.00 56 320 160 0.256
4 8.00 14 080 80 0.430
5 16.0 3 520 40 0.753

2D NACA0012 Airfoil

The final test case of the first set is the flow around a NACA0012 airfoil. The airfoil mathematical

definition was slightly modified so that its chord, c, equals to 1m as explained in [42], and the no-slip

adiabatic wall boundary condition was applied on the surface of the airfoil. The C-shaped domain il-

lustrated in figure 3.5 has the farfield Riemann boundary condition applied 500m away from the airfoil

surface. As far as incoming flow conditions are concerned, the chord-based Reynolds equates to six

million, for ρref = 2.1264kg/m3, and the undisturbed Mach number is Ma = 0.15, so the flow is essen-

tially incompressible. Simulations were performed for three incoming flow angle of attack, α, 0o, 10o and

15o.

Only one grid set, set N, will be used and it was taken from at [43]. It is composed of 5 grids with

a fixed grid refinement ratio of 2 between each one. Figure 3.6 depicts the coarsest grid and a zoom

around the airfoil shape. All grids share a clustering of cells at the leading and trailing edges, which is
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Figure 3.5: Domain and boundary conditions according to [18] for the calculation of the two-dimensional
flow over the NACA0012 airfoil

extended to the wake. Finally, table 3.3 summarizes quantitative information about each grid.

Figure 3.6: Illustration of the coarsest grids (ri = 16) of grid set N. Two-dimensional flow over the
NACA0012 airfoil.

Table 3.3: Total number of cells Ncells, number of boundary faces in the solid surface Nwall and grid
refinement ratio ri of the grids used. Two dimensional viscous flow over the NACA0012 airfoil.

Set N

Grid ri Ncells Nwall y+max

1 1.00 917 504 1024 0.065
2 2.00 229 376 512 0.135
3 4.00 57 344 256 0.288
4 8.00 14 336 128 0.678
5 16.0 3 584 64 Undefined
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3.1.2 Inviscid flow

The second set of test cases feature the 2D inviscid flow in a channel over a bump for three flow

regimes (subsonic, transonic and supersonic). This test case is found in the open literature and it has

been used to test pressure-based solvers [4, 9]. Although outside the typical speed range for maritime

and offshore applications, this case was selected to test the robustness and accuracy of ReFRESCO in

the presence of sharp variations of flow properties, like the Mach number in shocks. Out of the testing

goal is the complex aspects of viscous flow, like shock-boundary layer interactions.

Domain’s geometrical characteristics and boundary conditions depend on the incoming flow Mach

number. The subsonic and transonic regimes share the same domain and boundary conditions and are

depicted in the top picture of figure 3.7, while in the bottom illustration is clear a reduction in the bump

height for the supersonic regime, as well as, the different boundary conditions.

Both domains extend for three meters in the streamwise direction and have one meter of total height.

A symmetrical bump, of one meter in length, is centred around the origin of the x-axis at the lower side of

the domains. The only difference for the different flow regimes is that for the supersonic case the bump

height is reduced from 0.1m, in the subsonic and transonic cases, to 0.04m.

For the subsonic and transonic flow conditions the density, velocity and temperature are prescribed

at the inlet while the pressure level is defined at the outlet. The velocity is prescribed in order to get a

Mach number of 0.5 for the subsonic flow and 0.675 for the transonic. For the supersonic condition the

flow is supersonic in the entirety of the domain, so the hyperbolic nature of the Euler equations require

the prescription of all variables at the inlet and the extrapolation of all quantities at the outlet1. The upper

and lower boundaries are adiabatic slip walls.

Two grids sets were used for this test case. However, their distinction is only justified due to the

geometrical variations of the bump itself since they have equal number of cells and present the same

topology. Table 3.4 presents quantitative information about each grid applicable to both sets. Each set

is composed of 9 geometrically similar non-uniformly spaced Cartesian grids and the sparsest grid of

each set is illustrated in figure 3.8. The sparsest grids for this study (4 ≤ ri ≤ 44) have cell densities

close to the grids often found in literature for this test case. Such lower grid resolution may lead to

unreliable data for convergence properties estimation. This fact, in turn, explains the need to add finer

grids for the sets of this test case. However, in the supersonic test case, there were still some doubts

about the extrapolations performed with data obtained from grids with 1 ≤ ri ≤ 4 and so extra grids were

generated reaching a refinement level of ri = 0.5.

1Considering the outlet boundary to remain orthogonal to the lower boundary.
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Subsonic and transonic flows

Supersonic flow

Figure 3.7: Domain and boundary conditions for a two-dimensional inviscid fluid flow over a circular-arc
(bump).

Table 3.4: Total number of cells Ncells, number of boundary faces in the bump Nwall and grid refinement
ratio ri of the grids used. Two dimensional inviscid flow over a bump.

Subsonic and Transonic Supersonic

Grid ri Ncells Nwall ri Ncells Nwall

a - - - 0.5 1 982 464 2 816
b - - - 0.645 1 192 464 2 184
c - - - 0.861 669 124 1 636
1 1.0 495 616 1 408 1.0 495 616 1 408
2 1.375 262 144 1 024 1.375 262 144 1 024
3 2.0 123 904 704 2.0 123 904 704
4 2.75 65 536 512 2.75 65 536 512
5 4.0 30 976 352 4.0 30 976 352
6 5.5 16 384 256 5.5 16 384 256
7 11 4 096 128 11 4 096 128
8 22 1 024 64 22 1 024 64
9 44 256 32 44 256 32
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Subsonic and transonic set Supersonic set

Figure 3.8: Illustration of the coarsest grids (ri = 44) of subsonic and transonic grid set and supersonic
grid set. Two-dimensional inviscid flow over a bump.

3.2 Order of grid convergence

The discretization properties of the solver were determined through numerical uncertainty and ob-

served order of grid convergence. Those procedures are thoroughly explained in [20] and a brief de-

scription will be here given.

In summary, for a problem with no exact solution, which includes most practical applications involving

fluid dynamics equations, an estimation of the discretization error is required to evaluate the accuracy of

the solver. The Richardson extrapolation is considered for that purpose, where it is assumed that iterative

errors and round-off errors are negligible for the complete numerical error, thus discretization errors are

the main contributor for the latter. Since all calculations were done in double-precision format, the round-

off error contribution is irrelevant. Furthermore, if the non-linear problem iterative convergence criteria

(see sub-section 2.2.3) is respected, the same can be assumed for this component of the numerical

error. As a result, an estimate for the discretization error εφ, of a flow quantity φ, is given from:

εφ = φi − φo = ahpi (3.4)

where a is a constant, p is the observed order of grid convergence, φi and φo are both flow quantity

values in a grid with the typical cell size hi and the estimate of the exact solution, respectively.

However, equation 3.4 is only suitable for a set of data obtained in the asymptotic range and mono-

tonic behaviour are present. To improve the applicability of the error estimation process, three other

error estimators were considered. Their expressions are written in equations 3.5. The values of a, a1,

a2, φo, and p, are computed in the least-squares sense and among the fitted lines produced, the one

with minimum standard deviation from the data set is chosen. The two-terms estimator (eq. 3.5c) is only

applicable to non-monotonically convergent data and, naturally, the value of p is not defined.

εφ = φi − φo = ahi , (3.5a)

εφ = φi − φo = ah2i (3.5b)

and

εφ = φi − φo = a1hi + a2h
2
i . (3.5c)
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The final objective of these procedures is to define the uncertainty levels of a set of data for a desired

quantity. The uncertainty values are defined so that the exact solution is contained within an interval

with 95% confidence. Besides considering the computed error’s estimate, uncertainty values also take

into account a safety factor, which can either be 1.25, if monotonic data is used, or 3 for all the other

data behaviours.

When presenting the results for the grid convergence studies of chosen flow quantities, the fits per-

formed with eq. 3.4 are referenced by the value obtained for p with 2 significant figures, while the fixed

order expressions (eq. 3.5a and 3.5b) results are identified with only 1 significant figure. Lastly, if equa-

tion 3.5c represents the best fit for the input data set, it will appear referenced as ”ah+bh2” in the legend

of the plots.
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Chapter 4

Results and discussion

4.1 Quantities of interest

4.1.1 Viscous flow

The quantities of interest analysed under the viscous flows test case conditions are:

• Skin friction coefficient Cf , both its distribution and its value at a specific location, along the wall

boundaries;

Cf =
τw

1
2ρrefU

2
ref

=
τw

1
2PrefγM

2
, (4.1)

where τw is the shear stress on the wall.

• Pressure coefficient Cp distribution for the wall boundaries of viscous bump and NACA0012 case

studies;

Cp =
P − Pref
1
2ρrefU

2
ref

. (4.2)

• Pressure drag coefficient CDp ;

CDp =
Fp

1
2ρrefU

2
refLref

, (4.3)

where Fp is the resulting pressure force component aligned with the incoming flow direction.

• Viscous drag coefficient CDv ;

CDv =
1

Lref

∫ Lref

0

Cfdx , (4.4)

• Total drag coefficient CD;

CD = CDp .+ CDv . (4.5)

• Lift coefficient CL;

CL =
L

1
2ρrefU

2
refLref

, (4.6)
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where L is the resulting force component orthogonal to the incoming flow direction.

Additionally, all integrals are calculated with a second-order mid point rule; and a third-order cubic

interpolation is used for the values Cf and Cp at specific locations.

4.1.2 Inviscid flow

Whereas to study the numerical properties of the solver in the inviscid flow over a bump test cases,

the following quantities were selected:

• Mach number Ma distribution along the bottom and top walls of the inviscid bump test case;

equation 2.1.3.

• Force coefficients CX and CY on the bottom wall;

CX =

∫ 1.5

−1.5
Pdy

1

2
ρrefU

2
refLref

(4.7)

CY =

∫ 1.5

−1.5
Pdx

1

2
ρrefU

2
refLref

. (4.8)

• Change of entropy ∆s in the bottom wall;

∆s

R
=

γ

γ − 1
ln

(
T

Tref

)
− ln

(
P

Pref

)
. (4.9)

• Stagnation temperature To along the bottom wall; equation 2.11a.

• Stagnation pressure Po along the bottom wall; equation 2.11b.

• Primitive flow variables, temperature T and pressure P , along the bottom wall;

As in the previous sub-section, all integrals are calculated with a second-order mid point rule; and

a third-order cubic interpolation is used to determine the values of Ma, ∆s, To, Po, T and P at specific

locations.

4.2 Iterative convergence

Initial condition

The simulations in this thesis were not always performed with the same initial conditions. In total,

three options were used: copy the undisturbed flow variables to the complete domain; interpolate the

solution at the cells centre using an iteratively converged solution obtained in a different grid; and using

an iteratively converged solution obtained in the same grid, but with a different discretization scheme.
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All figures illustrating the iterative convergence history of ReFRESCO simulations in this section are

with respect to the first or second option.

4.2.1 Viscous flow

2D Zero Pressure Gradient Flat Plate

Figure 4.1 illustrates the iterative convergence history of the L∞ normalized residual norm of all

equations: x and y momentum balance, pressure-correction (continuity), energy equation, and turbu-

lence model equation; as a function of the non-linear iteration counter. Additionally, each plot also

contains the changes of dimensionless dependent variables between two consecutive iterations and, on

the right axis, the number of iterations performed on the linear system that solves the pressure-correction

equation (see sub-section 2.2.3). The simulations hereby presented were carried out on the grids with

ri = 1 and ri = 2 of sets N and IM and were all started with an uniform flow solution. The relaxations

used of these simulations are summarized in table 4.1.

The number of non-linear iterations to satisfy the convergence criteria increases from around 5× 104

to approximately 105 with grid refinement. This increase is in part attributed to the fact of the solver being

segregated and the influence of the chosen under-relaxation parameters.

Figure 4.1 shows that the iterative evolution of the solution on both sets is not equal. The IM grids

show noisier convergences than the N grids, especially in the pressure-correction equation (black colour

lines) and energy equation (green colour lines). Another aspect that should be highlighted is the different

behaviour of the linear solver in the solution of the pressure-correction equation. For the IM grids shown

in figure 4.1 the maximum number of linear iterations was reached more often than for the simulations

performed with the N grids. Lastly, figure 4.1 also shows that the convergence level reached by the

non-linear normalized residuals is similar to that of the changes between iterations.

Table 4.1: Under-relaxation parameters of the simulations performed in the grids with ri = 1. and ri = 2.
of the sets N and IM. Two-dimensional flow over a flat plate.

Momentum ∆P Energy ν̃

Set Grid αi αe αi αe αi αe αi αe

N 1 0.975 0.04 1. 0.04 0.975 0.04 0.975 0.06
N 2 0.975 0.06 1. 0.06 0.975 0.06 0.975 0.06
IM 1 0.975 0.04 1. 0.04 0.975 0.04 0.975 0.06
IM 2 0.975 0.06 1. 0.06 0.975 0.06 0.975 0.08

The origin of the irregular convergence behaviour for the IM grids was assessed following two hy-

potheses:

1. The convergence level of the linear system of equations was insufficient;

2. The normalization factors were changing during the simulation run. This is explained by the fact

that the normalization procedure is performed with the main diagonal value aP . Since, by definition,

the L∞ norm is the maximum residual value, which is not guaranteed to be at the same location
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Set N, ri = 1.0 Set N, ri = 2.0

Set IM, ri = 1.0 Set N, ri = 2.0

Figure 4.1: Illustration of the iterative convergence (L∞ norm) in the grids with ri = 1.0 and ri = 2.0 of
the sets N and IM. Two-dimensional flow over a flat plate.

in the domain until the end of the simulation, the value of aP may change to represent the cell with

higher residual in a specific iteration.

For the first assumption, two simulations were performed in the grid with ri = 2 of set IM using the

relaxation parameters presented in table 4.2. One simulation ran with the bJacobi preconditioner, while

the other used the direct solver with complete LU factorization (SuperLU) as the pressure correction

preconditioner. The iterative convergence results are presented in figure 4.2.

The number of non-linear iterations to satisfy convergence is smaller than those presented in figure

4.1 for the same grid, from 50 000 to 25 000. However, the simulations in figure 4.2 were started from

a previously converged solution interpolated from a coarser grid (grid with ri = 8.0). As a result, higher

values of the under-relaxation factors were permitted since the solution is more stable in the earlier

stages of convergence.

Nonetheless, figure 4.2 showcases the impact of the pressure-correction preconditioner since the
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non-linear iterative convergence with the SuperLU preconditioner is perfectly smooth, whereas bJacobi

results exhibit oscillations and insufficient convergence of the linear system of equations. However,

the simulation with SuperLU was approximately 1.4 times more time consuming than the one with the

bJacobi.

The L2 norm of the residuals and variable changes, for the same simulation illustrated in figure 4.2

with the bJacobi preconditioner is presented in figure 4.3. Although some oscillations were smoothed

out, there are still some irregularities at similar stages of the iterative convergence history. This indicates

that the oscillations are mainly coming from lack of convergence in the linear system of equations.

bJacobi SuperLU

Figure 4.2: Illustration of the iterative convergence (L∞ norm) in the grid with ri = 2.0 of set IM using
two different preconditioners in the pressure correction equation, block Jacobi (bJacobi) and the direct
solver SuperLU. Two-dimensional flow over a flat plate.

Table 4.2: Under-relaxation parameters of the simulations performed in the grid with ri = 2. of the set IM
using two different preconditioners in the pressure correction equation, block Jacobi (bJacobi) and the
direct solver SuperLU. Two-dimensional flow over a flat plate.

∆P Momentum ∆P Energy ν̃

Preconditioner αi αe αi αe αi αe αi αe

bJacobi 0.875 0.2 1. 0.1 0.875 0.3 0.875 0.3
SuperLU 0.875 0.175 1. 0.0875 0.875 0.275 0.875 0.275

2D Bump-in-channel

In the viscous bump test case, iterative convergence was generally harder to achieve due to the

decrease of the rate of convergence throughout the residual evolution history. Figure 4.4 depicts the

L∞ residual norm in the grid with ri = 4 of set N as a function of the non-linear iteration counter. The

changes of dimensionless variables between two consecutive iterations are also reflected in the same

plot.

The simulation presented in figure 4.4 was run with the complete LU factorization for the linear system
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Figure 4.3: Illustration of the iterative convergence (L2 norm) in the grid with ri = 2. of set IM using the
block Jacobi preconditioner in the pressure correction equation. Two-dimensional flow over a flat plate.

of the pressure-correction equation. The noisier convergence of the energy equation is bellow the

convergence criteria so it is of little concern. However, the spotlight of this analysis is on the decrease of

rate of convergence with the simulation time. For example, for the figure shown, around 13 000 iterations

of the non-linear system were required to drop the residuals from 106 to 107 while, from that point until

the specified convergence criteria, 50 000 more were necessary. Here, the changes between each

consecutive iteration are, generally, one order of magnitude higher than the residual, thus enhancing

the sensitivity of the solution to the simulation time. The origin of the degradation of the iterative rate is

attributed to the fact that the near-wall cell size is replicated in the wake, where the eddy viscosity is non-

zero. Diffusive effects scale with the inverse square of the cell spacing multiplied by the eddy viscosity(
∝ µt/(∆xi2)

)
, hence these terms become very large with the small near-wall distances used in this test

case (table 3.2). Nonetheless, all grids for this test case were successfully iteratively converged, either

using the GMRES for the convergence of the linear system of equations or the SuperLU preconditioner.

The increasingly lower rates of convergence with respect to the residual evolution obtained for this

test case motivated the following experiment: compare an insufficiently converged solution with a solu-

tion that respected the convergence criteria defined in sub-section 2.2.3. More precisely, one solution

was taken from a point in convergence history whereby the highest value of L∞ norm was, approxi-

mately, 4× 10−6.

So, figure 4.5 showcases the skin friction coefficient Cf and pressure coefficient Cp distributions

along the plate+bump on the finest grid of set N. The red line represents the insufficiently converged

solution (NConv.) and the green-coloured line the converged solution (Conv.).

It is evident that the lack of iterative convergence resulted in an overestimation of Cf . Furthermore,

the disparities in Cp between the two solutions are also noticeable. Nonetheless, the results of Cp seem

to be less sensible to iterative convergence criteria than the ones of Cf .

To further emphasize the importance of reducing the iterative error, figure 4.6 presents the order of

grid convergence studies of an integral quantity, CL, and a surface quantity, Cf at x ≈ 0.63m, using the
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Figure 4.4: Illustration of the iterative convergence (L∞ norm) in the grid with ri = 4.0 of set N. Two-
dimensional viscous flow over a bump.

two solutions of ReFRESCO. The estimation was performed with the data from the four finest grids, using

grid doubling, and the uncertainty bars are showcased for the finest grid of the set. Only the simulation

on the finest grid was insufficiently converged and the solutions on the remaining grids respected the

iterative convergence criteria.

From the results in 4.6, it is clear the negative impact of the finest grid solution in the data set since

the uncertainty bars encompass values between 10%, and 5.7%, of the finest grid solution for CL, and

Cf , respectively. Furthermore, the red colour fitted lines do not intersect any grid solution. The first-order

grid convergence estimated for the insufficiently converged data set indicates that equation 3.5a (which

assumes a set value for “p” equal to 1) ensured the best fit to the solution of the four finest grids. This is

an example where reporting of the computed order of grid convergence should be done carefully.

Figure 4.5: Skin friction coefficient Cf and pressure coefficient Cp along the solid surface obtained with
in the finest grid of set N. NConv. represents a simulation stopped when the highest value of L∞ was,
approximately, 4 × 10−6; Conv. is for a simulation iteratively converged until 10−8 of the L∞ norm.
Two-dimensional viscous flow over a bump.
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Lift coefficient Skin friction coefficient at x = 0.6321975m

Figure 4.6: Order of grid convergence studies for the lift coefficient CL and skin friction coefficient Cf at
x = 0.970084m as a function of the grid refinement ratio ri obtained with ReFRESCO. NConv. represents
a simulation stopped when the highest value of L∞ was, approximately, 4×10−6; Conv. is for a simulation
iteratively converged until 10−8 of the L∞ norm. Two-dimensional viscous flow over a bump.

2D NACA0012 Airfoil

Figure 4.7 illustrates the L∞ norm of the residual evolution as a function of the non-linear counter,

as well as the changes of dimensionless variables and the number of iterations in the linear system of

the pressure correction equation. The simulation was performed in the grid with ri = 4.0 of set N with

the block Jacobi preconditioner and initial solution is a uniform flow field.

The same trends are observed between the residual evolution on the NACA0012 and the ones in

the viscous flow over a bump test case. Here, the near-wall clustering of cells also extends to the wake

of the foil, hindering the non-linear convergence rate considerably with simulation time. For instance,

around 40 000 non-linear iterations were required to drop the normalized residual to 10−7, but 150 000

more were necessary to meet the specified convergence criteria. As a result, due to time constraints,

the solutions for this test were taken from a point in convergence history where the normalized residual

was 10−7. At this point, only the changes in the solution of the momentum-balance equation in x are

higher than the new stopping criteria.

Convergence of the linear-system to solve the pressure-correction equation is achieved throughout

most of the non-linear problem solution, with exception to the early stages that are a consequence of

the initialization procedure. The spontaneous spikes, followed by high-gradient drops, present in figure

4.7, are a consequence of adjusting the under-relaxation parameters during the simulation run. In table

4.3 only the last set of relaxations are presented.

It should be mentioned that simulations in the grid with ri = 16.0 were unsuccessfully iteratively

converged due to divergence of the solution in the earlier stages. Several attempts were done, either

with varying relaxation parameters, initialization procedures and preconditioners, but always with the

same end-result.
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Figure 4.7: Illustration of the iterative convergence (L∞ norm) in the grid with ri = 4.0 of set N. Two-
dimensional flow over the NACA0012 airfoil.

Table 4.3: Under-relaxation parameters of the simulations performed in the grid with ri = 4.0 of set N .
Two-dimensional flow over the NACA0012 airfoil.

Momentum ∆P Energy ν̃

Set Grid αi αe αi αe αi αe αi αe

N 3 0.85 0.1 1. 0.05 0.85 0.05 0.85 0.05

4.2.2 Inviscid flow

On the inviscid bump test cases, the influence of the undisturbed flow Mach number on the robust-

ness of ReFRESCO will be analysed. As a result, figure 4.8 illustrates the convergence of the L∞ norm

of the normalized residuals with respect to the non-linear counter for the subsonic, transonic, and su-

personic flow conditions. The simulations hereby illustrated were performed in the grids with ri = 5.5

using a Fromm scheme with the harmonic limiter in the convective terms of momentum and energy

equations. Additionally, the linear system of equations was solved with GMRES plus the block Jacobi

preconditioner.

Similar iterative rate was obtained with the subsonic and supersonic test cases, whereas the tran-

sonic conditions are more demanding on the solver iterative convergence. However, smoother conver-

gence behaviour was obtained in the transonic and subsonic conditions. The more irregular convergence

of the supersonic test case is most likely a consequence of the larger explicit under-relaxation values

selected for that case, which are presented in table 4.4. Nonetheless, the convergence rates obtained

with ReFRESCO for the transonic and supersonic flow regimes are in line to the ones reported in [4].
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Subsonic conditions Transonic conditions

Supersonic conditions

Figure 4.8: Illustration of the iterative convergence (L∞ norm) in the grid with ri = 5.5 for subsonic,
transonic and supersonic conditions. Two-dimensional inviscid flow over a bump.

Table 4.4: Under-relaxation parameters of the simulations performed in the grid with ri = 5.5 for sub-
sonic, transonic and supersonic conditions. Two-dimensional inviscid flow over a bump.

Momentum ∆P Energy
Regime αi αe αi αe αi αe

Subsonic 0.85 0.10 1. 0.05 0.85 0.05
Transonic 0.85 0.10 1. 0.05 0.85 0.05

Supersonic 0.95 0.35 1. 0.175 0.95 0.175

4.3 Grid convergence studies

4.3.1 Viscous flow

The grid convergence properties were assessed for the quantities of interest referred in sub-section

4.1.1. By nature the results from these studies are dependent on the number of grids used and their
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density. To assess this dependence, four different alternatives for the estimation of observed order of

grid convergence were chosen:

1. Data from the 5 finest grids of the set, generally with 1 ≤ ri ≤ 4, identified as pa;

2. Data from 3 grids using grid doubling, i.e. ri = 1, ri = 2, and ri = 4, referred as pb;

3. Data from 4 grids using grid doubling, i.e. ri = 1, ri = 2, ri = 4 and ri = 8, mentioned as pc;

4. Data from 5 grids using grid doubling, i.e. ri = 1, ri = 2, and ri = 4, ri = 8 and ri = 16 (pd).

2D Zero Pressure Gradient Flat Plate

Before presenting the results for the grid convergence studies in the flat plate test case conditions, it

should be mentioned that the iterative convergence criteria for the grids with ri ≤ 2 was lowered to 10−9

and the linear convergence criteria for the pressure-correction equation to 10−3. These adjustments

were required in order to minimize the contribution of the iterative error in the total numerical error of the

simulations.

The results of grid convergence studies to the drag coefficient CD and the skin friction coefficient Cf

at x = 0.970084m are depicted in figures 4.9 and 4.10, respectively. Both quantities were analysed in

the grid sets N and IM. The lines included in the plots represent the best fit, as proposed in [20], to each

discrete data set input. However, the estimated uncertainty bar corresponds only to the fit performed for

the 5 finest grids (pa).

The results for the two quantities are consistent between each grid set, which means that the un-

certainty bars of the finest grids overlap. Additionally, they also showcase the deviation of the solutions

obtained in coarser grids from the fitted lines based on fine grids results. This is further quantified in

figure 4.9 by the deterioration of the estimated order of grid convergence if the coarsest grid ri = 16 is

included (pd). Both sets extrapolate the solution for a cell size zero to, approximately, the same value if

the grid with ri = 16 is not included in the estimation. The error constant, a, is slightly larger for the IM

set than for the set N. Lastly, while the value of p is the same between both sets when evaluating locally

Cf , set IM shows lower order of grid convergence for the integral quantity CD than set N.

2D Bump-in-channel

The set of grids in the viscous bump test case features grids with a fixed refinment ratio of 2. As

a result, only the three alternatives for the estimate of the observed order of grid convergence p were

studied, pb, pc and pd (see beginning of this sub-section).

Figure 4.11 presents the three alternative estimates of p for Cf and Cp at 20 selected locations on

the plate+bump surface. The symbols at null values of p indicate that the best fit to the data is obtained

with the two terms expansion (eq. 3.5c).

The two plots suggest the following trends:
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Figure 4.9: Friction drag coefficient CD as a function of the grid refinement ratio ri for the N and IM grid
sets. pa is obtained from the 5 finest grids 1 ≤ ri ≤ 4; pb is obtained from the 3 grids with ri = 1, ri = 2
and ri = 4; pc is obtained from the 4 grids with ri = 1, ri = 2 ,ri = 4 and ri = 8; pd is obtained from the
5 grids with ri = 1, ri = 2 ,ri = 4, ri = 8 and ri = 16. Two-dimensional flow over a flat plate.

Figure 4.10: Skin friction coefficient Cf at 0.970084m away from the leading edge of the plate as a
function of the grid refinement ratio ri for N and IM grid sets. pa is obtained from the 5 finest grids
1 ≤ ri ≤ 4. Two-dimensional flow over a flat plate.

• The best fit for the solutions at the leading edge for Cp are obtained with the two terms expansions.

Whereas, the same estimator is used for the results of Cf in the grids with 1 ≤ ri ≤ 8 at the trailing

edge.

• The estimated values of p for Cf show more scatter than the ones for Cp. Not only that, but the

estimated order of grid convergence is generally higher for the pressure coefficient.

• Unexpectedly, the inclusion of the coarsest grid solution does not always deteriorate the estimate

of p.

The grid convergence histories for Cf and Cp at 3 selected locations are depicted in figure 4.12 for

the three alternative estimates of p. One point is close to the leading edge (x = 0.075m), the other is

located at the bump’s peak (x = 0.75m) and the third one is close to the trialing edge (x = 1.35m). The

uncertainty bars correspond to the lines fitted to the solution of the grids with 1 ≤ ri ≤ 4.

The three fits of each plot estimate similar exact solutions. Despite some fits being obtained with

the alternative expressions in eq. 3.5, most of the data for Cp in the four finest grids exhibit monotonic

convergence.
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Skin friction coefficient Pressure coefficient

Figure 4.11: Observed order of grid convergence of skin friction coefficient Cf (on the left) and pressure
coefficient Cp (on the right). The solutions were taken for 20 different locations along the solid surface.
pb is obtained from the 3 grids with ri = 1, ri = 2 and ri = 4; pc is obtained from the 4 grids with ri = 1,
ri = 2 ,ri = 4 and ri = 8; pd is obtained from the 5 grids with ri = 1, ri = 2 ,ri = 4, ri = 8 and ri = 16.
Two-dimensional viscous flow over a bump.

On the other hand, the same observations do not hold for Cf solutions. At the trialing edge, the data

set is not in the asymptotic range. Cf at the bump’s peak exhibit monotonic convergence if the solutions

form the three finest grid are considered. At a location close to the leading edge there is some scatter

of the data in the finest grids, nonetheless the value of p is determined.

However, it should be mentioned that these three locations are close to ”problematic” regions for

evaluation of Cf : singularities are present at the edges of the solid surface, and a cell face is located at

x = 0.75m so there is slight eccentricity with respect to the nearby cell centers. Nevertheless. adding

extra grids, like in the flat plate test case, may improve the reliability of the data for these estimations.

2D NACA0012 Airfoil

The error discretization estimation for this test case will be restricted to the lift coefficient and total

drag coefficient. Figure 4.13 presents the results of the grid convergence studies for both integral quanti-

ties at three different angles of attack: α = 0o, α = 10o and α = 15o. The fitted lines and estimated order

of grid convergence were obtained according to the categories defined in 4.3. However, the uncertainty

bars are always with respect to the data set of three most refined grids.

Before addressing the results a few limitations have to be acknowledge for the data set of this test

case. Firstly, only solutions in grids with fixed refinement ratio of 2 were used. This can lead to estima-

tions with data set outside the asymptotic range. Secondly, the stopping criteria (L∞ ≤ 10−7) may be

to loose to neglect the iterative error influence, which is a requirement of the procedure used to access

order of grid convergence properties.

Starting with α = 0o, the two terms expression (eq. 3.5c) represents the best fitted lines to the input

data set. Furthermore, the estimated extrapolated solution to cell size zero for the lift coefficient does

not match the expected solution from potential flow theory, i.e. CL = 0 for a symmetric foil aligned with

the flow. Nonetheless, the theoretical value is encompassed in the estimated uncertainty bar of the

finest grid. Finally, the error estimation properties yield essentially the same results independently of the
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Skin friction coefficient Pressure coefficient

Figure 4.12: Skin friction coefficient Cf (on the left) and pressure coefficient Cp (on the right) at three
locations on the solid surface as a function of the grid refinement ratio ri for the N grid set. pb is obtained
from the 3 grids with ri = 1, ri = 2 and ri = 4; pc is obtained from the 4 grids with ri = 1, ri = 2
,ri = 4 and ri = 8; pd is obtained from the 5 grids with ri = 1, ri = 2 ,ri = 4, ri = 8 and ri = 16.
Two-dimensional viscous flow over a bump.

number of grids used.

Following with the solutions for α = 10o, the considerations could not be any different from the previ-

ous angle of attack. Here, the monotonically-converged data shows almost second-order convergence

for CD and close to first-order convergence for CL. The estimated orders of grid convergences are larger

when using the solutions from the three most refined grids.

Only remains the results with α = 15o, where the observed trends are a bit different from the previous

couple of solutions. More precisely, with respect to the influence of the number of grids used in the

estimations since monotonic behaviour is not preserved if only the three finest grids are used. However,
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when accounting for the solution of the grid with ri = 8.0 the estimated order of grid convergences are

1.5 and 1.1, for CD and CL, respectively.

In the end, the angle of attack seems to affect considerably the grid convergence numerical proper-

ties of the solver. However, these estimations may be a consequence of iterative errors, particularly the

value of p for Cl. Furthermore, extra sufficiently fine grid should be included to avoid using the solution

from the grids with ri > 4.0.

Total drag coefficient at α = 0o Lift coefficient at α = 0o

Total drag coefficient at α = 10o Lift coefficient at α = 10o

Total drag coefficient at α = 15o Lift coefficient at α = 15o

Figure 4.13: Total drag coefficient (on the left side) and lift coefficient (on the right side) as function of
the grid refinement ratio ri for the N set of grids of NACA0012 airfoil at three angle of attacks: α = 0o,
α = 10o and α = 15o. pb is obtained from the 3 grids with ri = 1, ri = 2 and ri = 4 and pc is obtained
from the 4 grids with ri = 1, ri = 2 ,ri = 4 and ri = 8. Two-dimensional flow over the NACA0012 airfoil.
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4.3.2 Inviscid flow

In the inviscid bump test case, the grid convergence properties are estimated for the three inlet flow

regimes: subsonic, transonic and supersonic. The truncated power series expressions explained in 3.2

are fitted to the data of the four most refined grids, being the grids with 1 ≤ ri ≤ 2.75 for subsonic and

transonic flows and grids with 0.5 ≤ ri ≤ 1 for the supersonic conditions.

The first set of results present two integral quantities, the force coefficients at the bottom wall, CX

and CY . Figure 4.14 illustrates the convergence with grid refinements of the three flow regimes and

four convection schemes. The results indicate that the solutions with the four schemes are all consistent

since the estimate of the exact solution are in good agreement. CX extrapolates to zero in the subsonic

flow, as it is theoretically expected in a symmetric flow field.

Furthermore, all data set taken to the four finest grids are in the asymptotic range and in general

the fits overlap with the solutions obtained in coarser grids (ri = 11, for instance). Exception goes to

CY in the supersonic case. Here, only the solutions in grids with ri < 4 agree with the fits. These

results motivated the use of extra levels of refinement for the supersonic flow, as otherwise monotonic

convergence would not be present.

For the subsonic flow, the observed order of grid convergences p seem consistent. The reuslts also

show that the use of 10% first-order upwind in the blending is enough to drop p to values close to one.

However, there is a drastic reduction in the error constant when compared to fully UP results, evidenced

in the slope of the fit.

Concerning the transonic case unexpected values of p are present, like p = 1.6 for CX with the UP

scheme. This might suggest the current grid refinement level to be insufficient to establish the order of

grid convergence for that scheme. Another strange result is p = 0.5 for CY with the QUICK scheme.

Despite the solutions with the HARM and QUICK schemes being almost coincident, the estimated values

of p for the first are considerably higher. This is attributed to very small changes in the solutions the four

finest grids.

With fully supersonic flow conditions, the observed order of grid convergence is only possible to

establish with the inclusion of the extra refined grids. For instance, the convergence of CX with the

HARM and QUICK schemes only becomes monotonic for grids with ri < 3.

Lastly, it is also evident that the numerical accuracy of the UP solutions in the finest grids is worse

than that obtained with the HARM and QUICK schemes with ri = 5.5

Figure 4.15 illustrates the convergence with grid refinement of temperature T and pressure P at one

location on the bottom wall, downstream of the second geometric discontinuity. For these local primitive

variables, not all fits show monotonic convergence. Nonetheless, most of the trends observed in the

force coefficients are also applicable to this set of data. The key difference is related to the consistency

of the extrapolation solution across the four schemes. The estimates of the exact temperature for the

HARM and QUICK schemes are similar between each other and differ from those obtained with the

CDS-10UP and UP schemes.

On the other hand, there is consistency in the extrapolated values for pressure with the four schemes.

This fact greatly benefits the convergence properties of the force coefficients as those are only depedent
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on one primitive flow variable, pressure.

The final check of the grid convergence properties for this test case are to derived flow quantities

such as: Mach Ma, change of entropy ∆s, stagnation temperature To and stagnation pressure Po.

These quantities are analysed for the same location as in figure 4.15.

Figure 4.16 illustrates the grid convergence properties for Ma and ∆s for the four schemes tested

across the three flow regimes. The trends observed for the Mach number are similar to those showcased

for the temperature. As for T , in the supersonic flow the solutions of the four convection schemes do not

extrapolate to the same estimate of the exact solution and the HARM and QUICK schemes yield similar

results.

Considering the change in entropy, is it noticeable the deviation from the theoretical exact solution in

subsonic flow (∆s = 0) for the UP scheme results. Since the selected location for the transonic flow is

downstream of the bump, the increase in entropy is expected due to the shock. As expected, the values

for ∆s/R for the supersonic flow should be lower than those of the transonic flow. However, the four

schemes do not agree on the solution extrapolated to cell size zero. The HARM and QUICK schemes

lead to ∆s/R < 0, while the CDS-10UP scheme leads to ∆s/R > 0 and the UP scheme estimates

∆s/R = 0. These differences are explained by the convergence properties of To.

For adiabatic flows of an ideal fluid, stagnation temperature should remain constant. However. figure

4.17 showcases that this is not guaranteed for the present numerical simulations. With exception to the

supersonic case, the HARM and QUICK schemes extrapolate to the exact solution. The loss of To in the

supersonic conditions explains the negative values of ∆s for the HARM and QUICK schemes.

Lastly, the grid convergence of Po shows consistent results when extrapolating the solution to cell size

zero among the four schemes tested. Again, the supersonic conditions are the exception with consistent

results from the HARM and QUICK schemes and discrepancies from the remaining two convection

schemes. Po is depedent on P and Ma. Since the results for P in figure 4.15 are consistent across the

four schemes, the trends in Po are a consequence of the Mach number.
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Figure 4.14: Grid convergence of the horizontal Cx and vertical Cy forces coefficients obtained by inte-
gration of the pressure on the bottom wall. ReFRESCO results using different convection schemes for
the subsonic, transonic and supersonic flows of an inviscid fluid over a bump.
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Figure 4.15: Grid convergence of the temperature T and pressure P at one location on the bottom wall.
ReFRESCO results using different convection schemes for the subsonic, transonic and supersonic flows
of an inviscid fluid over a bump.
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Figure 4.16: Grid convergence of the Mach number Ma and change of entropy ∆s at on location on
the bottom wall. ReFRESCO results using different convection schemes for the subsonic, transonic and
supersonic flows of an inviscid fluid over a bump.
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Figure 4.17: Grid convergence of the stagnation temperature To and stagnation pressure Po at one
locations on the bottom wall. ReFRESCO results using different convection schemes for the subsonic,
transonic and supersonic flows of an inviscid fluid over a bump.
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4.4 Code-to-code comparison

This section is reserved to compare results obtained with ReFRESCO with those available in the

open literature from other codes. The comparative solutions will include results from: CFL3D flow solver,

a cell-centered density-based solver [44]; FUN3D, a vertex-centered density-based solver [45]; digitized

data from the works of Gregory, et al. [46]; and experimental data from Ladson, et al. [47]. The results

reported by Moukalled, et al. [4], and Pèric, et al. [9], are also replicated here for a side-by-side graphical

comparison.

4.4.1 Viscous flow

2D Zero Pressure Gradient Flat Plate

Results from the flat plate test case using ReFRESCO will be compared with the solutions of two

other solvers available at [48], CFL3D and FUN3D. The grids available at [49] match the set N of this

test case only using grid doubling, i.e., the grids with ri = 1.45 and ri = 2.90 are not present. As a result,

the estimates of p will be with respect to pb, pc, and pd, categories defined in sub-section 4.3.1.

Figure 4.18 presents the convergence with grid refinement of CD for the three solvers. The error bars

included in the plots correspond to the fits performed to the three finest grids. To help the comparison

between ReFRESCO and the other two solvers, table 4.5 summarizes the estimated values of p, the

extrapolated value to a grid with cell size zero CDo , and the absolute difference of CDo computed by

ReFRESCO relative to the value obtained from the other codes, |∆CDo |.

Considering the plots in figure 4.18, there is no overlap of the estimated error bar of ReFRESCO in

relation to the other solvers. When using the values from the three finest grids to estimate the extrapo-

lated solution, the largest difference is between ReFRESCO and FUN3D being 0.147% of the solution

obtained with ReFRESCO. Additionally, these differences are consistently smaller when comparing Re-

FRESCO with CFL3D rather than ReFRESCO with the FUN3D solver.

The highest value of pwas achieved by ReFRESCO using the three finest grids, and incorporating the

coarsest grid in the estimation of the discretization error deteriorates the observed order of convergence.

On the other hand, the opposite behaviour is observed for the solutions taken from [48], which is an

unexpected result.

Regarding a surface quantity, the first comparison is performed for the grid convergence properties of

Cf at x = 0.970084071m. Figure 4.19 and table 4.6 present equivalent information to the one showcased

in figure 4.18 and table 4.5, respectively. Although, most of the main trends observed in the data of CD

remain accurate for the solutions of Cf , a few changes are worth mentioning:

• The observed order of convergence is always higher for the CFL3D solver, independently of the

grids included in the estimation.

• Despite still existing no overlap between the finest grids error bars of ReFRESCO and the other

two solvers, the mismatches of the lines are smaller than those obtained in figure 4.18. Those
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are reflected in the differences of the extrapolated solutions, |∆Cfo|, that are generally lower than

those presented for the previous integral quantity.

The distribution of Cf along the plate in the finest grid of set N is represented in figure 4.20 for the

three solvers. The right plot of the figure presents the differences between ReFRESCO solution and the

solutions of CFL3D (blue colour line) and FUN3D (green colour line). To complement the comparison,

the uncertainty values computed from ReFRESCO using data from the three grids with ri = 1, ri = 2,

and ri = 4, calculated in selected points throughout the plate were also included.

Visually, the three distributions are identical. However, the right plot shows that the differences

between ReFRESCO and the other two solvers are larger than the estimated numerical uncertainty.

Generally, the disparities in the skin friction coefficient are around 4× 10−6, while the uncertainty levels

are close to 2× 10−7. Nonetheless, without estimating the numerical uncertainty of the FUN3D and

CFL3D solutions, there is no guarantee that the results of ReFRESCO are inconsistent. The latter was

not obtained because only the distribution of Cf in the finest grid is given at [48].

Figure 4.18: Friction drag coefficient CD as a function of the grid refinement ratio ri obtained with
ReFRESCO, CFL3D and FUN3D in the grids of set N. pb is obtained from the 3 grids with ri = 1, ri = 2
and ri = 4; pc is obtained from the 4 grids with ri = 1, ri = 2 ,ri = 4 and ri = 8; pd is obtained from the
5 grids with ri = 1, ri = 2 ,ri = 4, ri = 8 and ri = 16. Two-dimensional flow over a flat plate.

2D Bump-in-channel

The results of the viscous bump test case using ReFRESCO are compared with solutions of CFL3D

and FUN3D flows solvers, available at [50].

Figure 4.21 presents the distribution of two flow quantities, Cf and Cp, for the entire solid surface

(plate+bump) computed on the finest grid of set N. Additionally, like in figure 4.20, the differences be-

tween the solution of the other two solvers and ReFRESCO, and the uncertainty of levels of the latter,

were also included.

The skin friction coefficient distributions of the solvers match visually. Only at the edges of the plate,

which pose numerical singularities, the differences between the CFL3D and FUN3D with ReFRESCO

are considerable. Nonetheless, the quantification of the mismatches averages 5 identical digits. Fur-

thermore, these differences correspond to the numerical uncertainties estimated for ReFRESCO along
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Table 4.5: Observed order of grid convergence p, estimated exact solution CDo and the absolute dif-
ference of CDo computed by ReFRESCO and the one obtained with the other solvers |∆CDo | relative
to ReFRESCO solutions, of the friction drag coefficient obtained with ReFRESCO, CFL3D and FUN3D
in the N grid set. pb is obtained from the 3 grids with ri = 1, ri = 2 and ri = 4; pc is obtained from
the 4 grids with ri = 1, ri = 2 ,ri = 4 and ri = 8; pd is obtained from the 5 grids with ri = 1, ri = 2
,ri = 4,ri = 8 and ri = 16. Two-dimensional flow over a flat plate.

ReFRESCO CFL3D FUN3D

p

b 1.97 1.75 0.80
c 1.71 1.87 1.05
d 1.20 1.92 1.25
b 2.8628× 10−3 2.8592× 10−3 2.8586× 10−3

CDo c 2.8628× 10−3 2.8593× 10−3 2.8562× 10−3

d 2.8634× 10−3 2.8594× 10−3 2.8546× 10−3

b - 0.126% 0.147%
|∆Cfo | c - 0.122% 0.231%

d - 0.140% 0.308%

Figure 4.19: Skin friction coefficient Cf at x = 0.970084m as a function of the grid refinement ratio ri
obtained with ReFRESCO, CFL3D and FUN3D in the N grids set. pb is obtained from the 3 grids with
ri = 1, ri = 2 and ri = 4; pc is obtained from the 4 grids with ri = 1, ri = 2 ,ri = 4 and ri = 8; pd is
obtained from the 5 grids with ri = 1, ri = 2 ,ri = 4, ri = 8 and ri = 16. Two-dimensional flow over a flat
plate.

the bump. As a result, the solution from ReFRESCO is consistent with the results available in the open

literature.

When comparing the pressure coefficients there are graphical disparities. However, those were

attributed to distinct reference pressure levels since the computed differences along the solid surface are

almost a constant horizontal line. Unfortunately, the set reference pressure defined for the comparative

codes was not found, while for the ReFRESCO simulations the outlet pressure of the domain is the

reference value (see 3.1.1). Without clarifying this problem, no statement can be made concerning the

consistency (or inconsistency) of ReFRESCO results when evaluating the Cp distribution.

As far as grid convergence properties are concerned, the selected integral quantities are: total drag

coefficient CD, lift coefficient CL, pressure drag coefficient CDv and viscous drag coefficient CDp . The

reuslts of ReFRESCO are displayed on figure 4.22, together with the solutions available at [50]. Grid

convergence studies for Cf , at x ≈ 0.63m and x ≈ 0.75m, is illustrated in figure 4.23. Among the four
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Table 4.6: Observed order of grid convergence p, estimated exact solution Cfo and the absolute dif-
ference of Cfo computed by ReFRESCO and the one obtained with the other solvers |∆Cfo | relative
to ReFRESCO solutions, of the skin friction coefficient at x = 0.970084m obtained with ReFRESCO,
CFL3D and FUN3D in the N grid set. pb is obtained from the 3 grids with ri = 1, ri = 2 and ri = 4; pc
is obtained from the 4 grids with ri = 1, ri = 2 ,ri = 4 and ri = 8; pd is obtained from the 5 grids with
ri = 1, ri = 2 ,ri = 4,ri = 8 and ri = 16. Two-dimensional flow over a flat plate.

ReFRESCO CFL3D FUN3D

b 1.79 1.98 1.34
p c 1.72 1.97 1.56

d 1.32 1.97 1.86
b 2.7086× 10−3 2.7052× 10−3 2.7060× 10−3

Cfo c 2.7086× 10−3 2.7052× 10−3 2.7058× 10−3

d 2.7089× 10−3 2.7052× 10−3 2.7054× 10−3

b - 0.126% 0.096%
|∆Cfo | c - 0.126% 0.103%

d - 0.137% 0.129%

Figure 4.20: Skin friction coefficient Cf along the plate obtained with ReFRESCO, CFL3D and FUN3D
in the finest grid of set N. Uncertainty estimates of ReFRESCO are obtained from the 3 grids with ri = 1,
ri = 2 and ri = 4. Two-dimensional flow over a flat plate.

categories for assessing the grid convergence properties presented in the beginning of section 4.3, two

were chosen for the following set of results, those being pb and pc. The fitted lines and uncertainty bars

presented in the figures above are with respect to the solutions of the grids with 1 ≤ ri ≤ 4.

The results for CL are in the asymptotic region, except when using the solutions of ReFRESCO in

the 4 most refined grids. The computed solution for a grid with cell size zero of ReFRESCO is also

in great agreement with the other solvers as the differences between those are, at maximum, 0.084%,

considering the data obtained from the 3 most refined grids. This information is summarized in table 4.7,

which contains the computed order of grid convergence, the extrapolated solution and the mismatches

between that computed by ReFRESCO and by the other two solvers.

On the other hand, the results for CD feature mostly data sets outside the asymptotic region. The

sensitivity of the drag coefficient to the grids refinement level can be explained by the distribution of Cf .

More precisely, the resolution of the numerical singularities located at the leading and trailing edges of

the solid surface. As seen in the inviscid bump results, local refinements in that regions greatly affect
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Skin friction coefficient distribution

Pressure coefficient distribution

Figure 4.21: Skin friction coefficient Cf and pressure coefficient Cp along the solid surface obtained with
ReFRESCO, CFL3D and FUN3D in the finest grid of set N. Uncertainty estimates of ReFRESCO are
obtained from the 3 grids with ri = 1, ri = 2 and ri = 4. Two-dimensional viscous flow over a bump.

the resolution of this discontinuities. As a result, reliable estimates of p may require finer grids than

the ones present in this set. Nonetheless, the estimated numerical uncertainty is very small (almost

indistinguishable from the symbol for the finest grid) and the differences from the extrapolated solution

are close to 0.145% when comparing the values obtained from the 3 most refined grids, as evidenced

in table 4.8.

The grid convergence studies for two components of CD, CDv and CDp , confirm the the previous

observations. The integration of the viscous forces exhibits oscillatory behaviour in the finest grids, while

the convergence of the remaining component is smooth. Interestingly, the contribution of CDp in the total

drag coefficient is enough to dissimulate the oscillatory behaviour promoted by CDv . Nevertheless, the

solutions of ReFRESCO are in agreement with those of other codes for these two components as well.

The last results of this test case concern the numerical convergence properties of the skin friction

coefficient at two different locations: x = 0.6321975m and x = 0.75m. Equivalent information to table

4.7 is presented with respect to the numerical properties of the skin friction in x = 0.6321975m and

x = 0.75m on tables 4.9 and 4.10, respectively.

Regarding the consistency of ReFRESCO, the same observations as in the integral quantities can

be made. However, these results showcase that Solution Verification exercises are specific to each flow

quantity and may vary depending on the location in the domain where the estimations are performed.
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Lift coefficient Total drag coefficient

Viscous drag coefficient Pressure drag coefficient

Figure 4.22: Total drag coefficient CD, lift coefficient CL, pressure drag coefficient CDv and viscous
drag coefficient CDp as a function of the grid refinement ratio ri obtained with ReFRESCO, CFL3D and
FUN3D in the N grids set. pb is obtained from the 3 grids with ri = 1, ri = 2 and ri = 4; pc is obtained
from the 4 grids with ri = 1, ri = 2 ,ri = 4 and ri = 8. Two-dimensional viscous flow over a bump.

Table 4.7: Observed order of grid convergence p, estimated exact solution CLo and the absolute differ-
ence of Cfo computed by ReFRESCO and the one obtained with the other solvers |∆CLo | relative to
ReFRESCO solutions, of the lift coefficient obtained with ReFRESCO, CFL3D and FUN3D in the N grid
set. pb is obtained from the 3 grids with ri = 1, ri = 2 and ri = 4; pc is obtained from the 4 grids with
ri = 1, ri = 2 ,ri = 4. Two-dimensional viscous flow over a bump.

ReFRESCO CFL3D FUN3D

p
b 1.79 0.49 1.44
c fixed 2nd order (eq. 3.5b) 1.13 1.28

CLo
b 2.4942× 10−2 2.4963× 10−2 2.4957× 10−2

c 2.4943× 10−2 2.4949× 10−2 2.4962× 10−2

|∆CLo |
b - 0.084% 0.060%
c - 0.024% 0.076%

This is evidenced by the fact that, while the results of ReFRESCO for the left-side plot are very similar

to the comparative data regarding the extrapolated solution (if the solution from the gird with ri = 8 is not

included), while the plot on the right shows differences on the extrapolated solutions as high as 0.232%

for the three most refined grids. However, even those, are in the sixth decimal figure of Cf .
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Table 4.8: Observed order of grid convergence p, estimated exact solution CDo and the absolute differ-
ence of Cfo computed by ReFRESCO and the one obtained with the other solvers |∆CDo | relative to
ReFRESCO solutions, of the total drag coefficient obtained with ReFRESCO, CFL3D and FUN3D in the
N grid set. pb is obtained from the 3 grids with ri = 1, ri = 2 and ri = 4; pc is obtained from the 4 grids
with ri = 1, ri = 2 ,ri = 4. Two-dimensional viscous flow over a bump.

ReFRESCO CFL3D FUN3D

p
b 2 terms expansion (eq. 3.5c) 2 terms expansion (eq. 3.5c) 2 terms expansion (eq. 3.5c)
c fixed 2nd order (eq. 3.5b) fixed 2nd order (eq. 3.5b) 2 terms expansion (eq. 3.5c)

CDo
b 3.5762× 10−3 3.5726× 10−3 3.5710× 10−3

c 3.5709× 10−3 3.5678× 10−3 3.5744× 10−3

|∆CDo |
b - 0.101% 0.145%
c - 0.087% 0.098%

Figure 4.23: Skin friction coefficient Cf at x = 0.6321975m and at x = 0.75m as a function of the grid
refinement ratio ri obtained with ReFRESCO, CFL3D and FUN3D in the N grids set. pb is obtained from
the 3 grids with ri = 1, ri = 2 and ri = 4; pc is obtained from the 4 grids with ri = 1, ri = 2 ,ri = 4 and
ri = 8. Two-dimensional viscous flow over a bump.

Table 4.9: Observed order of grid convergence p, estimated exact solution Cfo and the absolute dif-
ference of Cfo computed by ReFRESCO and the one obtained with the other solvers |∆Cfo | relative
to ReFRESCO solutions, of the skin friction coefficient at x = 0.6321975m obtained with ReFRESCO,
CFL3D and FUN3D in the N grid set. pb is obtained from the 3 grids with ri = 1, ri = 2 and ri = 4; pc is
obtained from the 4 grids with ri = 1, ri = 2 ,ri = 4. Two-dimensional viscous flow over a bump.

ReFRESCO CFL3D FUN3D

p
b 1.17 2 terms expansion (eq. 3.5c) 2 terms expansion (eq. 3.5c)
c 0.93 2 terms expansion (eq. 3.5c) 2 terms expansion (eq. 3.5c)

Cfo
b 5.1814× 10−3 5.1861× 10−3 5.1848× 10−3

c 5.1848× 10−3 5.1871× 10−3 5.1818× 10−3

|∆Cfo |
b - 0.091% 0.066%
c - 0.245% 0.143%

2D NACA0012 Airfoil

The results for the skin friction coefficient on the upper surface of the foil and pressure coefficient

distribution on both sides computed in the second finest grid (ri = 2.0) of set N with ReFRESCO for the

three angles of attack studied are presented in figure 4.24. The figure also illustrates the reported results
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Table 4.10: Observed order of grid convergence p, estimated exact solution Cfo and the absolute dif-
ference of Cfo computed by ReFRESCO and the one obtained with the other solvers |∆Cfo | relative to
ReFRESCO solutions, of the skin friction coefficient at x = 0.75m obtained with ReFRESCO, CFL3D
and FUN3D in the N grid set. pb is obtained from the 3 grids with ri = 1, ri = 2 and ri = 4; pc is obtained
from the 4 grids with ri = 1, ri = 2 ,ri = 4. Two-dimensional viscous flow over a bump.

ReFRESCO CFL3D FUN3D

p
b 0.89 1.43 1.57
c 2 terms expansion (eq. 3.5c) 1.78 1.63

Cfo
b 6.1679× 10−3 6.1536× 10−3 6.1573× 10−3

c 6.1685× 10−3 6.1518× 10−3 6.1567× 10−3

|∆Cfo |
b - 0.232% 0.172%
c - 0.271% 0.191%

for CFL3D solver and the experimental data from two sources: Ladson, et al. [47], with Rec = 6 × 106;

and Gregory, et al. [46], with Rec ≈ 3× 106. All the comparative data are taken from [42].

The solutions of ReFRESCO are in great agreement with the results from CFL3D flow solver across

all angles of attack for both quantities. Both codes predict a separation bubble in the upper surface of

the foil at approximately x/c = 92% for α = 15o. Similar to the trends in the viscous bump test case,

the main discrepancy between ReFRESCO and CFL3D is in the numerical influences of the change in

boundary conditions in the trailing edge of the foil.

The experimental data reported in [46] seems to be in line to the CFD solutions despite the difference

in the Reynolds number. However, the results obtained by Ladson, and co-workers [47], for Rec = 6×106

show considerable differences in the pressure peaks at the leading edge and in pressure levels across

the first half of the upper surface. It is believed that these results may not sufficiently represent a two-

dimensional flow because the aspect ratio of model used was only 1.333, as stated in [42].

Throughout this sub-section, the results from ReFRESCO were interpolated to same locations as

those of the CFL3D solutions using a third-order cubic interpolation. However, if the values of the skin

friction coefficient are taken directly form the cell faces that discretize the airfoil surface, oscillations in

Cf appear in the upper surface of the foil (or both surfaces if α = 0o).

Figure 4.25 depicts the oscillations for α = 0o. Those are present in all grids of the NACA0012 set

and are after the Cf peak. On the other hand, for α = 10o and α = 15o, the oscillations are moved to

the front of the peak. The origin for these anomalous behaviour might be related with the grid properties

close to the leading edge of the airfoil. Figure 4.25 also includes a zoom of that region in the grid with

ri = 4.0. The increase in eccentricity of the cells, as the grid lines stop to be perpendicular to the airfoil

surface, might be the origin of the oscillations.
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Skin friction coefficient at α = 0o Pressure coefficient at α = 0o

Skin friction coefficient at α = 10o Pressure coefficient at α = 10o

Skin friction coefficient at α = 15o Pressure coefficient at α = 15o

Figure 4.24: Skin friction coefficient Cf of the upper surface and pressure coefficient Cp along both sides
of the airfoil obtained with ReFRESCO, CFL3D in the grid with ri = 2.0 of set N. Experimental data from
Ladson et al. [47] with Rec = 6× 106 and tripped transition, and Gregory et al. [46] with Rec ≈ 3× 106,
are also included. Two-dimensional flow over the NACA0012 airfoil.

4.4.2 Inviscid flow

The literature comparison for the inviscid bump test cases will be exclusively restricted to the distri-

butions of the Mach number distributions on the top and bottom walls (see section 4.1.2) of the subsonic,

transonic, and supersonic flow conditions. As a result, this sub-section is categorized according to the

inlet flow regime. Additionally, only the grids with similar cell densities to the ones used in [4] and [9]

will be presented. In the former reference, simulations were performed using the TVD SMART scheme

for the convective terms discretization, while in the latter the CDS blended with 10% UP was employed
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Figure 4.25: Oscillations in the skin friction coefficient Cf on the upper surface of the airfoil (on the left).
The solution of ReFRESCO was not interpolated to the locations of the CFL3D results. Instead, the
values of Cf taken from every cell face that discretize the airfoil surface on the grid with ri = 2. One the
right, a close-up view of the third most refined grid close to the leading edge of airfoil. Two-dimensional
flow over the NACA0012 airfoil.

to approximate the convective fluxes. Unfortunately, only visual representations of Mach number distri-

butions were found in the open literature which narrows down the comparative assessment for this test

case to a qualitative graphical comparison.

Subsonic flow

So, figure 4.26 presents the Mach number distributions along the top (dashed lines) and the lower

boundary (solid lines) obtained with ReFRESCO for the HARM scheme and blended CDS. Additionally,

the reported results in [4] and [9] are also replicated.

On ReFRESCO results, there is little influence of the discretization convection scheme. As expected,

the largest differences are concerned with the resolution of the geometric singularities, at the start and

end of the bump, which deteriorates with grid coarsening. Furthermore, the solution asymmetry is also

more noticeable in the coarser grids and is tied to the positive values of CX in figure 4.14, which is

theoretically expected to be zero. However, the distributions of ReFRESCO are similar to those found in

the open literature.

Transonic flow

Equivalent results to the previous figure are shown in figure 4.27, but for the transonic flow conditions.

Firstly, the confirmation that the numerical settings chosen for these simulations give rise to transonic

flow conditions since, at the inlet, Ma < 1, then reaches values close Ma = 1.5 on the bump surface,

and a shock restores subsonic conditions at the outlet of the domain.

Contrary to the behaviour observed in the subsonic conditions, here the choice of convection schemes

is more evident. The blended CDS generates oscillations upstream of the shock whereas the HARM
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ReFRESCO CDS+10UP
Reference [9] CDS+5UP

ReFRESCO HARM Reference [4] SMART

Figure 4.26: Comparison of Mach distributions obtained with ReFRESCO and results available in [9]
and [4] for the subsonic flow of an inviscid fluid over a bump. Mach number at the inlet Ma = 0.5.

scheme shows a smooth solution. Oscillations are also present after the shock discontinuity, although

this time, for both schemes. However, those typically affect the same number of cells thus the region

affected by these numerical oscillations tends to decrease with grid refinement.

The results from ReFRESCO and the two reference solutions in figure 4.27 are generally in good

agreement. Although the results from [9] do not show oscillations upstream of the shock wave, despite

being computed with the same numerical convection scheme, it is assumed that their vanishing is tied

to the grid spacing on that region. Nonetheless, all numerical simulations exhibit oscillations after the

shock wave roughly at the same locations between them.

Supersonic flow

The last test case of this section will consider the Mach distributions on the upper and lower sides

of the domain in supersonic conditions. Those are illustrated in figure 4.28 for the solution obtained

with ReFRESCO, and reported in [4] and [9] alike. The flow, in fact, is fully supersonic, i.e. Ma > 1

throughout both walls, which validates changing the pressure imposition boundary condition to the inlet

over the outlet of the domain (see section 3.1.2).

Among the three undisturbed flow Mach number, the present one is the more demanding for the

accuracy of the solution. Two oblique shocks are generated, at the leading and trailing edges of the
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ReFRESCO CDS+10UP Reference [9] CDS+10UP

ReFRESCO HARM

Reference [4] SMART

Figure 4.27: Comparison of Mach distributions obtained with ReFRESCO and results available in [9]
and [4] for the transonic flow of an inviscid fluid over a bump. Mach number at the inlet Ma = 0.675.

bump, and the first is reflected on the top wall where the effect of grid coarsening is more negetivly felt.

Moreover, using the blended CDS for convective fluxes results in more oscillations than using the HARM

scheme. The behaviour and value of the Mach number at the outlet boundary is also depedent on the

grid refinment level and on the convection scheme, as it was seen in figure 4.16.

When comparing with results available in the open literature, the biggest discrepancy in the Re-

FRESCO solutions are felt using the CDS, more precisely after the oblique shocks. However, in [9] it

was assumed constant stagnation temperature, so T is directly computed from equation 2.11a, whereas

the present simulations of ReFRESCO solve the energy equation (eq.2.1c). Note that, contrary to the

transonic flow simulations, the solutions reported in [9] show oscillations prior to the geometric disconti-

nuities which favours the assumption made in the previous flow regime.

Admittedly, the comparison between ReFRESCO and [4] can be inconclusive since the convection

schemes are not the same (although they are both TVD schemes) and the grid set is not equal, both

in density and in grid spacing. Nonetheless, common trends can be found in both solutions, like the

oscillations at the back of the shocks.
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ReFRESCO CDS+10UP Reference [9] CDS+10UP

ReFRESCO HARM
Reference [4] SMART

Figure 4.28: Comparison of Mach distributions obtained with ReFRESCO and results available in [9]
and [4] for the supersonic flow of an inviscid fluid over a bump. Mach number at the inlet Ma = 1.65.
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Chapter 5

Conclusions

In this thesis, a study of the robustness and accuracy of the single-phase, pressure-based, com-

pressible flow solver in ReFRESCO, was performed. The iterative and discretization convergence prop-

erties were analysed in six different two-dimensional test cases: viscous flow over a plate, a bump and

the NACA0012 airfoil; and inviscid flow over a bump in subsonic, transonic and supersonic regimes.

The first three test cases are described in the NASA Turbulence Resource Modeling website [18], while

the remaining ones are commonly found in the open literature as benchmark cases for compressible

flow solvers [4, 9]. Comparative data was taken from the previous sources to contrast with the solutions

obtained by ReFRESCO.

The mathematical model used entails a system of equations composed by the continuity equations,

the Navier-Stokes equations, the conservation of total energy principle and an algebraic equation of

state, the ideal gas law. Additionally, for a statistically steady turbulent flow, the Favre-average proce-

dure is applied and the system is supplemented with the one-equation turbulence model of Spalart and

Allmaras. ReFRESCO uses a finite-volume method formulation to discretize the governing flow equa-

tions, together with a segregated approach using a SIMPLE-like algorithm for the solution procedure.

The estimation of the discretization error was performed with grid refinement studies using different

sets of geometrically similar grids. The sets for the viscous flow test cases are available at [18]. Only the

flat plate case study feature an alternative set using multi-block structured grids and two extra grids were

added to the original set. For the inviscid bump test case, a set of single-block structured grids covers

not only the typical grid densities found in the open literature, but also sufficiently fine grids necessary

to obtain mostly monotonic convergent solutions for the quantities of interest studied.

The main conclusion to derive from the results of this work were:

• The compressible flow solver is robust. From the 45 unique grids used, only in the sparsest grid

of the NACA0012 an iteratively converged solution to the non-linear problem was not obtained.

Additionally, the residuals of the non-linear problem were converged to values close to machine

accuracy, again, only in the NACA0012 airfoil test case the stopping criteria was increased on

order of magnitude due to time constraints. Nonetheless, it was found that iterative convergence

of the non-linear residual is influenced by the following:
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– Insufficiently converged solutions of the linear system of equations that solve the pressure-

correction equation may originate highly irregular behaviour of the non-linear convergence;

– The use of direct solvers in the linear system of equations also eliminates those irregularities

but does not guarantee lower simulation times over iterative solvers;

– The convergence rate of the non-linear problem degrades with the increase of grid density as

fine grids require smaller values of the under-relaxation parameters. Nonetheless, the use of

an improved initial condition for the iterative process, like interpolating a converged solution

from a coarser grid, allows a selection of higher values of under-relaxation parameters as

divergence in the earlier stages of convergence is less likely;

– The inlet flow regime also influences the choice of the under-relaxation parameters with the

transonic conditions being more demanding on the solver robustness. Nonetheless, iterative

convergence rates for the inviscid bump test case are similar to those found in the open

literature for the three flow regimes;

– Another grid characteristic that greatly affects the rate of convergence is extending the near-

wall cell size at the solid surfaces to the wake region. Such small cells in that region greatly

increases the diffusivity and slows down considerably the convergence rate as the residuals

are converged close to machine accuracy.

• Grid convergence properties are dependent on the convection scheme, inlet flow regime, quantity

of interest and incoming flow angle of attack.

• Concerning the inviscid flow test case, estimations of the exact solution are not always consistent

between the four convection schemes. This is mostly evidenced in the supersonic test case. The

discrepancies are tied to the loss of stagnation temperature (that should remain constant) due to

the geometric singularities and shocks. However, the pressure is consistent across all schemes.

• ReFRESCO yields consistent solutions in the two grid sets of the flat plate exercise, i.e. the error

bars obtained for the two finest grids solutions intersect. However, there are key factors to take

into consideration when performing any Solution Verification exercise:

– Ensure that the solutions are obtained in sufficiently fine grids for the data set to be in the

asymptotic range. Often times, the typical grid densities employed in the open literature lack

resolution for reliable estimates of grid convergence properties;

– Careful selection of the residual stopping criteria is mandatory. Lack of iterative convergence

generates misleading solutions. The inevitable data scattering is evidenced in grid conver-

gence exercises by an increase of the numerical uncertainty. To ensure negligible influence

of the iterative error, not only the residuals, but also the changes of variables between each

consecutive iteration should converge to values close to machine accuracy. Attention to these

aspects is rewarded with mostly close to second-order convergence levels for integral quan-

tities and slightly lower values for local flow quantities.
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• The solutions obtained with ReFRESCO are in great graphical agreement with solutions from other

CFD solvers, like CFL3D and FUN3D. However, some differences between the solutions of the

three solvers are higher than the estimated numerical uncertainty of ReFRESCO. More definitive

statements concerning the consistency of ReFRESCO are only possible if information regarding

the uncertainty of the comparative data is available.

• Moreover, ReFRESCO accurately predicts solutions in subsonic, transonic and supersonic condi-

tions, when comparing to other pressure-based solvers. However, oscillations can appear close to

geometrical singularities, shocks and in poor quality (excessive eccentricity) grids.

Future Work

Initially, this thesis was planned to include a Solution Verification exercise considering a three-dimensional

test case. However, ensuring that the ´studied solutions had negligible influence of the iterative error

always took precedence. Not only that but, the number of cells of the finest grids used in this study are

considerably high (close to 1 million for most of them). These facts, combined with limited hardware

capabilities, resulted in simulation runs that took approximately 1 week to conclude. Nonetheless, more

reliable conclusions can be derived from the viscous bump and NACA0012 test cases, if extra grids are

added to their sets (like in the flat plate test case). Additionally, for the airfoil case study, lower itera-

tive convergence criteria should also be considered. However, the present version of the single-phase

compressible solver in ReFRESCO is only an intermediate step towards the end-goal, be able to handle

multi-phase compressible flows. This, in turn, would imply re-evaluation of numerical properties with

different test cases that simulate relevant phenomena of multi-phase compressible fluids.
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Appendix A

Alternative grid set for the viscous

bump test case

This appendix presents the results for an alternative grid set generated for the viscous bump test

case conditions presented in figure 3.3. The set is composed of 5 multi-block geometrically similar

grids. Here, the grids lines are locally orthogonal and parallel to the entire wall boundary surface, both

plate and bump. However, those recover Cartesian orientation at 0.3m above the lower boundary. The

clustering of cells at the leading edge of the horizontal plate extends to the trailing edge. Afterwards,

an expansion of the grid lines guarantees no excessively small cells at the wake that hinder iterative

convergence rate, as addressed in sub-section 4.2.1. Figure A.1 illustrates the sparsest grid of this set

and table A.1 summarizes some information regarding each grid. Two extra grids (grid a and b) were

added to the original set to improve the estimation of convergence properties.

Figure A.1: Illustration of the coarsest grid (ri = 16) of an alternative grid set generated for the two-
dimensional viscous flow over a bump test case conditions.

Results

The following solutions were obtained by iteratively converging the non-linear problem until 10−8

of the L∞ norm of the normalized residuals. Figure A.2 presents the skin friction distribution on the

plate+bump solid surface on the finest grid of this set, red colour lines. For reference, the green lines

represent the solutions of the finest of set N (of the 2D bump-in.channel test case). Naturally, all results

presented here were obtained with compressible flow solver in ReFRESCO.
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Table A.1: Total number of cells Ncells, number of boundary faces in the bump Nwall and grid refinement
ratio ri of the grids composing an alternative grid set generated for the two-dimensional viscous flow
over a bump test case.

Grid ri Ncells Nwall y+max

1 1.00 716 800 640 0.447
a 1.43 351 232 448 0.588
2 2.00 179 320 224 0.763
b 2.86 87 808 224 1.00
3 4.00 44 800 160 1.32
4 8.00 11 200 80 2.33
5 16.0 2 800 40 4.30

Overall, the two distributions have good graphical similarities. Exception goes to the oscillations in

Cf at the bump’s peak, as illustrated in the close-up view, at the right-side of figure A.2. This anomaly

greatly influences the evaluation of grid convergence properties for the skin friction coefficient on that

location, as it is evidenced in figure A.3.

The left-side depicts the results of grid convergence studies to Cf at x = 0.6321975 and the right-side

at x = 0.75. The red lines are fitted to the solutions of the 5 most refined grids (pa) of the alternative grid

set. While the green fits represent the solutions on set N.

The results for Cf are consistent in the two selected locations, i.e. the uncertainty bars overlap.

However, the oscillation in figure A.3 results in a constant overestimation of Cf and loss of monotonic

convergence, despite the use of finer grids. Furthermore, the disparities of the the extrapolated solutions

are also aggravated. The opposite behaviour is found in the left-side plot which emphasizes the local

impact of this anomaly.

The oscillation in Cf is present in all grids of the alternative set. Its origin was found to be related to

the increase in eccentricity of the cells around the bump’s peak. If a cell centre (instead of a cell face) is

at x = 0.75m the oscillation of Cf vanishes.

Figure A.2: Skin friction coefficient Cf along the solid surface (plate+bump) obtained with ReFRESCO.
The green lines represent the solution on the finest grid of set N of the 2D bump-in-channel test case,
while the red colour lines illustrate the solution on the finest grid of the alternative set.
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Figure A.3: Grid convergence studies to the skin friction coefficient Cf at x = 0.6321975 (left-side) and
at x = 0.75 (right-side). All solutions were obtained with ReFRESCO. The value of p for the red data set
is obtained from the 5 grids with ≤ ri ≤ of the alternative grid set; the green line if fitted to the solutions
of the the grids with ri = 1, ri = 2 and ri = 4 of set N of the 2D bump-in-channel test case.
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