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Resumo

A Câmara Municipal de Lisboa está a desenvolver esforços para recolher dados de tráfego urbano e o

seu contexto situacional para obter uma visão mais abrangente das mudanças em curso na mobilidade

multimodal e apoiar decisões em conformidade. O presente trabalho contribui para o projeto pioneiro

de pesquisa e inovação “Integrative Learning from Urban Data” (ILU), e descreve uma metodologia

para identificar padrões de mobilidade multimodal através da análise de ı́ndices espaço-temporais de

multimodalidade em transporte público de passageiros em relação ao contexto situacional disponı́vel.

A análise foi realizada através da aplicação de dois ı́ndices socioeconómicos (Coeficiente de Gini e

Índice de Herfindahl) na cidade de Lisboa organizada por uma unidade geográfica sintética, as Zonas

de Análise de Tráfego (TAZ). Os resultados demonstraram que o centro da cidade, rico em pólos de

geração e atração de tráfego, beneficia de um uso mais multimodal do sistema de transporte público.

Adicionalmente, foi construı́da uma ferramenta de software com o objetivo de auxiliar especialistas da

área, a encontrarem inconsistências na rede de transporte público da cidade de Lisboa.
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Abstract

The effects of the rise of car ownership in urban centers are known, such as heavy congestion, road

accidents, fuel consumption and air and noise pollution, lowering people’s quality of life, and loss of com-

petitiveness of certain urban areas. These increasing concerns prompt modern cities to reevaluate their

transportation system and promote a shift towards more efficient and sustainable modes. Multimodality,

the use of different modes of transport in a single journey, can support the shift to a low carbon economy

by taking advantage of the benefits of different transport types to ease pressure on Europe’s congested

roads, whilst also contributing to safer and cheaper transportation. In this context, the Lisbon’s City

Council is establishing efforts to collect urban traffic data and their situational context for gaining more

comprehensive views of the ongoing multimodal mobility changes and support decisions accordingly.

The present work is anchored in the pioneer research and innovation project “Integrative Learning from

Urban Data” (ILU), and describes a methodology to identify multimodal mobility patterns through the

analysis of spatiotemporal indices of multimodality in passengers’ public transport against the available

situational context. The analysis was conducted by applying two social-economic indices (Gini Coef-

ficient and Herfindahl index) in the city of Lisbon organized by a synthetic geographic unit, the Traffic

Analysis Zones (TAZ). Results demonstrate that the center of the city, abundant in traffic generation

and attraction poles, benefit from a more multimodal usage of the public transport system. Addition-

ally, a software tool was built in order to aid specialists in the field, to find inconsistencies on the public

transportation network of the city of Lisbon.

Keywords

Multimodality; Sustainable Mobility; Data Analysis; Spatio-temporal Data Analysis; Public Transporta-

tion.
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1.1 Research Problem

In the last decades, road traffic and mobility needs have increased significantly in Europe, especially

in urban and metropolitan areas, as a result of the ongoing economic growth and other socioeconomic

changes, causing higher CO2 emissions, congestion and air pollution, compromising quality of life of

European citizens. To reach climate goals set by the Paris Agreement, the European Commission have

already recognised the importance of multimodal passenger transport and is committed to increase the

use of public transport and other active modes such as walking, cycling, and shared mobility options.1

Multimodality, the use of different transport modes on the same journey, can offer more efficient transport

solutions whilst contributing to a more sustainable and integrated transport system, by taking advantage

of the benefits of the different modes, such as convenience, reliability, cost, speed and predictability.

Mobility in major European capitals is not yet sustainable, prompting those capitals to reevaluate their

public transport system to meet environmental goals. Lisbon, capital of Portugal, has an estimated resi-

dent population of 506.654 inhabitants within its administrative area of 100 km2, and comprises fourteen

public transport operators. Still, there are half a million cars circulating everyday in Lisbon. It is estimated

that 370.000 cars enter the capital each day, joining the 200.000 that already circulate within the city.2

With a diversity of public transports available and a population density considered low compared to other

European Capitals, it raises awareness about the intense traffic flow from individual transport (private

cars).3 However, two major problems still remain: the perceived duration of the journey by public trans-

port that negatively influences the mode choice, giving preference to the car; and, the fact that public

transport operators make isolated decisions in managing and planning their transport modes, without

having in consideration the arrangement of the other modes that share the same space, making their

use inefficient.

The Lisbon’s City Council is making efforts in becoming sensorized by collecting heterogeneous urban

data for a better understanding of the city mobility patterns. Big data are currently being consolidated

in the Intelligent Management Platform of the City of Lisbon (PGIL) to meet various purposes.4 Still,

the potentialities of exploring the multiplicity of available urban data sources in an integrative manner for

reaching sustainable mobility goals are still untapped.

12018 - Year of Multimodality: https://ec.europa.eu/transport/themes/logistics-and-multimodal-transport/

2018-year-multimodality_en.
2pordata: https://www.pordata.pt.
3https://www.worldometers.info/population/countries-in-europe-by-population/.
4PGIL: https://https://lisboainteligente.cm-lisboa.pt.
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1.2 Contributions

This work is anchored in the pioneer research and innovation project “Integrative Learning from Urban

Data” (ILU), a project that joins the Lisbon City Council and two research institutes (INESC/IST and

LNEC), bridging the ongoing research on urban mobility with recent advances from artificial intelligence.5

The project ILU proposes to address the following challenges:

• The lack of an integrative analysis capable of combining different sources of urban data collected

from sensors in the city and of validation tickets in different public transport modes;

• The absence of a situational context in the forecast and recommendation of circulation in the city.

This work aims at contributing to these lines of research by proposing a methodology for the compre-

hensive understanding of multimodal synergies in demanding urban areas of Lisbon, using the available

data collected from different sources, and to relate that knowledge with relevant situational context. To

achieve this, three major activities are pursued with this dissertation:

1. Comprehensive descriptive analytics:

With the initiatives established by the Lisbon City Council towards sustainable mobility, enabling

the access and consolidation of numerous sources of urban data, it was possible to easily prepare

the data to get relevant knowledge in a straightforward manner. The description of statistical

measurements to model the expected demand in public transportation at different times of the

day and the week, in different zones. And, the computation of the expected behavior through the

application of barycenter averaging.

2. Multimodal pattern analysis:

Assessment of Lisbon’s multimodal patterns, using the mathematical properties of socioeconomic

indices, and correlating these indices with the available situational context. This type of analysis

will allow to have a global view on the performance of multimodality in several areas of the city of

Lisbon.

3. Software Tool :

Deployment of a software tool comprising the previously mentioned analytics. In the form of a web

application, called ILU App, where specialists can visually interact with the data of the different

types of transport modes in the city of Lisbon, applying different parameters (e.g. temporal, spatial,

etc.) for analytic reporting to aid their research.

5ILU: https://https://https://web.ist.utl.pt/rmch/ilu/.
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Additionally, the research developed in the scope of this dissertation was submitted for international

review in the form of two articles. First the article “Boosting Multimodality Mobility Decisions using Big

Data in the City of Lisbon: ongoing and future challenges”, accepted by the scientific committee of

the 14th Conference on Transport Engineering (CIT 2020). And then the article “Exploring multimodal

mobility patterns with big data in the city of Lisbon”, submitted to the scientific committee of the 48th

European Transport Conference (ETC 2020).

1.3 Organization of the Document

The rest of the present work is organized as follows: Chapter 2 introduces concepts related to multi-

modality and spatial temporal analysis, also including a description of Lisbon’s public transport network;

Chapter 3 presents insights of multimodality behavior related studies, and related work on inequality

measurement, and on multimodality performance measurement; In Chapter 4 a methodology to the as-

sessment of multimodality at a spatial level is described; and Chapter 5 presents results of applying our

approach in order to evaluate multimodal patterns of the public transportation in Lisbon; finally, Chapter

6 concludes this work and proposes some potential expansions for future work.
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This chapter describes the essential concepts and notions necessary for an absolute understanding

of the remaining chapters of this work. The chapter starts with a description of the public transportation

available in the Municipality of Lisbon and its integrated fare collection system.

2.1 Public Transport in Lisbon

The available traffic data comes from various heterogeneous sources collected for the Lisbon Metropoli-

tan Area (LMA). The LMA is an administrative division in Portugal centered in the municipality of Lisbon

and covering more 17 municipalities (Figure 2.1). Although the reported research is directed towards

the municipality of Lisbon, its contribution and results can be extended and applied to other nearby

municipalities to enable more comprehensive analysis of inter-municipal commuting mobility patterns.

Figure 2.1: Lisbon Metropolitan Area and its municipalities.
Source: www.vimeca.pt

Like many European Capitals, Lisbon comprises a vast and diverse fleet of public transport, fulfilling

any mobility needs of the population. Nearly all types of transport modes are available in the city:

• Bus: operated by a municipal company of public urban passenger transport surface called Carris,

that also manages electrical trams, and urban lifts.1 With a fleet of 706 buses, Carris covers all the

area of Lisbon’s Municipality (see Figure B.1).

• Subway: The Metropolitano de Lisboa (Metro) provides a public passenger transport service, in

1https://www.carris.pt.
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subway mode.2 It comprises four lines - Blue Line, Yellow Line, Green Line and Red Line - running

on 44.5 kilometres of route and serving 56 stations (see Figure B.2).

• Railway: The rail transport service, in urban trains, of passengers in Lisbon is the responsibility of

Comboios de Portugal (CP).3 CP has a large network of transportation across Portugal, it includes

four railway services that enable the travelling from the municipality of Lisbon to other Portuguese

cities. Figure B.3 presents the modal interfaces between the CP service of Lisbon’s urban rail

transport and Metro.

• Waterway: Transtejo and Soflusa provide a public river transport service integrated in the global

system of the Lisbon Metropolitan Area.4 It allows crossing the Tagus river.

• Cycling: The city of Lisbon has a public bike sharing system known as Gira.5 Bicycle stations are

scattered across the city, where a person can pick up a bike using her/his smartphone, and deliver

it to a station near her/his destination.

The providers of bus, subway, railway and inland waterway modes of transport are currently operat-

ing under an integrated fare collection system, enabled through the VIVA card initiative.6 The VIVA card

initiative, firstly established between the subway operator (Metro) and the major bus operator (Carris),

was in 2017 extended to further encompass railway operator, Comboios de Portugal (CP), and in 2019

extended towards the remaining major carriers operating within (or interfacing with) the city of Lisbon.

To this end, the early individual ticketing systems were consolidated into a unique ticketing system co-

ordinated by OTLIS, the entity responsible to manage the information resources shared among carriers.

The integrated fare collection offers the unprecedented possibility to trace the movements of each user

throughout the modes of the public transportation system, providing an essential source of information

to understand the true mobility dynamics in the city. In 2019, multimodal tariff plans were also released

to create incentives towards a multimodal use of the public transportation system.

2.2 Multimodality

Multimodality is commonly defined as the use of more than one transport mode to complete a trip

within a certain time period. By contrast, monomodality generally refers to the exclusive use of one

mode of transport [29]. Buehler and Hamre (2016) state that multimodality is a subfield of a larger body

of research on intrapersonal variability of travel behaviour, which consists of four dimensions: temporal,

2https://www.metrolisboa.pt.
3https://www.cp.pt.
4https://ttsl.pt.
5https://www.gira-bicicletasdelisboa.pt.
6https://www.portalviva.pt.
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spatial, purpose and modal. Where the “modal” dimension describes the variability in the use of means

of transport over time, referring to the multimodality research [6]. Nobis (2007) emphasizes the fact that

the general definition of multimodality must be observed along individual trips to ensure its separation

from the monomodality concept [29]. This distinction relates to the chosen time period, the longer the

time period is, the higher is the probability that a person uses more than one mode of transportation.

For instance, Nobis (2007) uses in her study a loose definition of multimodality, where any person who

uses more than one mode of transportation within one week is a multimodal transport user.

The following terms are related to the spatial criteria applied to the multimodality analysis (see Sec-

tion 4.1.2).

A Traffic Analysis Zone (TAZ) is a geographical unit used in transportation planning models to

assess socio-economic data [27]. The use of TAZ delineation instead of other more commonly used

zones, like municipalities or parishes (i.e. administrative zones) is justified by the reduced noise level of

the data for traffic modelling, and at the same time, the decrease of geographical error of the trip end

location.

The concept of Traffic Generation and Attraction Poles refers to commercial areas, employment

centres such as business parks and enterprises, and collective equipment like hospitals, schools and

stadiums, that generate or attract a significant volume of vehicle trips, either from contributors, visitors

or providers [19].

2.3 Spatial-temporal Analysis

Spatial-temporal analysis techniques are required to assess urban mobility behaviours. Spatio-temporal

data differs from relational data in that both spatial and temporal attributes are available in addition to

the actual measurements/attributes. Contrary to traditional data mining that deals with distinct objects

(or data instances) having well-defined features, in Spatio-temporal data mining, one can define objects

and features in a variety of ways. This section describes mathematical concepts that were applied in

this research work [3].

Time Series: A time series represents a collection of values obtained from sequential measurements

over time [5, 13]. A time series x is an ordered sequence of t real-valued observations from a random

variable,

x = (x1, ..., xt), xi ∈ R. (2.1)

Multivariate Time Series: The previous definition refers to univariate time series. When multiple

variables are monitored along the same time range, the gathered observations form a multivariate time

series [5,13],

~xt = [x1,t, .., xm,t], xi,t ∈ R. (2.2)

11



Dynamic Time Warping: Dynamic Time Warping (DTW) is based on the Levenshtein distance, it

finds the optimal alignment (or coupling) between two numeric time series, and captures flexible sim-

ilarities by aligning the coordinates inside both series [31]. The cost of the optimal alignment can be

recursively computed by,

D(Ai, Bj) = δ(ai, bi) +min


D(Ai−1, Bj−1)

D(Ai, Bj−1)

D(Ai−1, Bj)


, (2.3)

where Ai is the subsequence 〈a1, ..., ai〉, Bj is the subsequence 〈b1, ..., bj〉, and δ is a distance between

elements of two series. The overall similarity is given by:

D(A|A|, B|B|) = D(AX , BX). (2.4)

Average Time Series (Barycenter): Given a set of time series D = {x1, .., xn} in a space E induced

by Dynamic Time Warping, the average time series x is the time series that minimizes [30]:

argmin

n∑
i=1

DTW 2(x, xi). (2.5)

Figure 2.2: Example of DTW Barycenter Averaging (DBA).

Pearson’s Correlation: For numeric attributes, it’s possible to evaluate the correlation between two

attributes, A and B, by computing the Pearson’s Correlation Coefficient (PCC) [15]. It can also be

applied to time series by pairing observations by time points and ignoring time dependencies between

observations,

rA,B =

∑n
i=1(ai −A)(bi −B)

nσAσB
, (2.6)

where n is the number of tuples, ai and bi are the respective values of A and B in tuple i, A and B are

the respective mean values of A and B, σA and σB are the respective standard deviations of A and B.

And −1 6 rA,B > +1. If rA,B is greater than 0, then A and B are positively correlated, meaning that

the values of A increase as the values of B increase. The higher the value, the stronger the correlation.

Hence, a higher value may indicate that A (or B) may be removed as a redundancy. If the resulting value

is equal to 0, then A and B are independent and there is no correlation between them. If the resulting
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value is less than 0, then A and B are negatively correlated, where the values of one attribute increase

as the values of the other attribute decrease. This means that each attribute discourages the other.

Spearman’s Correlation: Spearman’s Rank Correlation (SRC) is a non-parametric (distribution-

free) correlation measure which equals the Pearson correlation computed from the ranks of the obser-

vations, only if all ranks are distinct integers, usually designated as rS [40],

rS = 1− 6
∑
d2i

n3 − n
, (2.7)

where di = rank(Xi)− rank(Yi). If each of the n measurements of one of the time series is denoted as

Xi (i.e. X1, X2, ..., Xn), then rank(Xi) may represent the rank of Xi, where each rank is an integer, from

1 through n, indicating relative magnitude. The measurements may be ranked from high to low (e.g.

rank 1 indicates the fastest car, rank 2 the next fastest, and so on, with rank n the slowest) or from low to

high (rank 1 denotes the slowest and rank n the fastest). Similarly, each of the n measurements of the

second time series may be denoted as Yi (i.e. Y 1, Y 2, ... , Y n), and R(Yi) would denote the rank of Yi,

where the sequence of ranking (either high to low or low to high) is the same as for R(Xi). An rS = 0

(“no correlation”) indicates that the magnitudes of the ranks of one time series are independent of the

magnitudes of the ranks of the second time series. A positive value of rS (“positive correlation”) indicates

that the rank(Xi) increases as rank(Yi) increases; a negative rS (“negative correlation”) indicates that

the rank(Xi) decreases as rank(Yi) increases. If the sequence of ranks were identical for the two time

series, meaning there was a perfect positive correlation, and rS = 1.0. A perfect negative correlation

(where rS = −1.0) would be one in which the magnitudes of the ranks for one variable vary inversely

with the sizes of the ranks of the second.

Covariance: In probability theory and statistics, correlation and covariance are two similar measures

for assessing how much two attributes change together [15]. Considering two numeric attributes A and

B, and a set of n observations (a1, b1), ..., (an, bn). The mean values of A and B, also known as the

expected values on A and B, respectively:

E(A) = A =

∑n
i=1 ai
n

, (2.8)

and

E(B) = B =

∑n
i=1 bi
n

. (2.9)

Hence, the covariance between A and B is defined as:

Cov(A,B) = E((A−A)(B −B)) =

∑n
i=1(ai −A)(bi −B)

n
. (2.10)
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Equation (2.6) can be reformulated using equation 2.10 as:

rA,B =
Cov(A,B)

σAσB
. (2.11)

It can also be shown that,

Cov(A,B) = E(A ·B)−AB. (2.12)

If A is larger than A (the expected value of A), then B is likely to be larger than B (the expected value

of B). Therefore, the covariance between A and B is positive. Conversely, if one of the attributes tends

to be above its expected value when the other attribute is below its expected value, then the covariance

of A and B is negative.

Detrended Cross-Correlation Analysis: Podobnik and Stanley (2008) proposed a modification of

the above covariance equation, called Detrended Cross-correlation Analysis (DXA), in order to quantify

long-range cross-correlations when non-stationarities are present [32]. In this procedure, two long-

range cross-correlated time series yi and y′i of equal length N , are divided into N−n overlapping boxes,

each containing n + 1 values. Defining two integrated signals Rk =
∑k
i=1 yi and Rk =

∑k
i=1 y

′
i, where

k = 1, .., N , a local trend to be the ordinate of a linear least-squares fit, R̃i,k where i ≤ k ≤ i + n, and

the detrended walk as the difference between the original walk and the local trend. The covariance of

the residuals in each box is calculated by:

f2DXA(n, i) =
1

n− 1

i+n∑
k=i

(Rk − R̃k,i)(R′k − R̃′k,i). (2.13)

Finally, the detrended covariance is given by:

F 2
DXA(n) =

N−n∑
i=1

f2DXA(n, i). (2.14)
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The present chapter summarizes research work related to the study of urban multimodality. The

structure of this chapter follows a line of thought reflected in the next two chapters. It starts by referencing

other works that analysed multimodal traffic patterns and behaviors. Followed by a complete definition

of inequality measures present in the social and economic literature. And ends with mentions to other

work that used those socio-economic indices to measure traffic multimodality.

3.1 Multimodality Patterns

Comparison of findings on multimodality analyses and initiatives is challenging, because of different

geographic locations, data sources, timing, and definitions of multimodality. However, some relevant

results are common among studies: the percentage of multimodal persons decreases with advancing

age [7, 22, 29]; car availability is negatively correlated with multimodal behaviour, and positively corre-

lated with monomodal driving [11, 22, 29]; and having a driver’s license is negatively associated with

multimodal users [21,29].

Transfers affect the attractiveness of passenger transport [24]. Therefore, examining transfer patterns

can be beneficial for public transport management. Jang (2010) illustrates that multimodal transfer data

can be used to locate the critical transfer points that need improvement [20]. The dataset used in his

research came from the automatic fare collection (AFC) system of Seoul in South Korea. Contrary

to the fare collection method adopted in Lisbon, the AFC in Seoul is distance-based, where the fare

is calculated on the basis of the total distance run by buses, subway trains, or both from boarding to

alighting. Unlike the public transport operator Carris in Lisbon, the Seoul’s buses are equipped with two

smart card readers located at the doors, for boarding and alighting, so it is possible to obtain the whole

itinerary of each individual trip from the departing location to the final destination, including intermediate

transfers. In his research, Jang codes transfer patterns into series of alphanumeric letters. Each letter

represents a public transport mode associated with it. For example, “BRB” represents a bus-subway-

bus trip. The data collected from the AFC allows to identify stops or stations that have heavy transfer

demands, pointing out the areas that need improvements to enable a seamless transfer between modes.

Heinen (2018) analysed the association between multimodality and the intention to change trans-

port mode [16]. The research by Heinen aimed to demonstrate that multimodality can be a predictor of

variability of mode choice over time, diverging from other common predictors of variability such as, gen-

der, employment, car ownership and life events. Using five indicators of variability and cluster analysis,

Heinen explored to what extent multimodality was associated with the intention to change the level of

cycling, walking, car use and public transport use. Research findings revealed that the more multimodal

individuals were, the more likely they intended to decrease their car use. However, the analysis by the

mentioned author did not provide conclusive evidence that the level of multimodality is associated with
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the intention to change.

3.2 Inequality Measurement

Assessing multimodality can be seen as a particular instance of a more general issue, the measure of

diversity and inequality [12]. This section presents the properties of well-established inequality measures

from the branch of socio-economics, and how to compute and model inequality.

3.2.1 Properties of an Inequality Measure

An inequality measure is usually a function that describes a value to a specific distribution of income in

a way that allows direct and objective comparisons across different distributions. An inequality measure

should have certain properties and behave in a certain way given certain events. Cowell (2011) proposes

five criteria to build a particular class of mathematical functions for use as inequality measures [8]:

1. Weak Principle of Transfers:

An inequality measure satisfies the weak principle of transfers if the following statement is true.

Considering any two individuals, one with income y, the other, a richer person, with income y + δ

where δ is positive (δ > 0). The richer person transfers a positive amount of income ∆y to the

poorer person, where ∆y is less than 2δ. Inequality should then definitely decrease.

2. Scale Independence:

This states that the measured inequality of the slices of the cake should not depend on the size of

the cake. If everyone’s income changes by the same proportion then it can be argued that there

has been no essential alteration in the income distribution, and thus that the value of the inequality

measure should remain the same.

3. Principle of Population:

This means that the inequality of the cake distribution should not depend on the number of cake-

receivers. If the measured inequality in a particular economy with n people in it, is then merged

with the economy of another identical one, it returns a combined economy with a population of 2n,

and with the same proportion of the population receiving any given income. To satisfy the principle

of population, the measured inequality must be the same for any replication of the economy.

4. Decomposability :

This property indicates that there should be a coherent relationship between inequality in the whole

of society and inequality in its constituent parts.
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5. Strong Principle of Transfers:

Consider a distance measure given by:

d = h(s1)− h(s2),

where s2 is greater than s1, and h(s) is a decreasing function defined as h(s) = 1−sβ
β . Then

consider a transfer from rich person 2 to poor person 1. We say that the inequality measure

satisfies the principle of transfers in the strong sense if the amount of the reduction in inequality

depends only on d, the distance, no matter which two individuals we choose.

Aaberge (1986) noted that a desirable property of an inequality measure is that it should equal zero

when the underlying distribution function expresses perfect equality [1].

3.2.2 Representation of Inequality

Income distribution is a central topic in welfare economics. Deardorff (2014) defines welfare economics

as the branch of economics concerning with social welfare, including especially various propositions

relating competitive general equilibrium to the efficiency and desirability of an allocation [9]. In other

words, is the study of how the allocation of resources and goods affects social welfare. This relates

directly to the study of economic efficiency and income distribution. In order to assess income distribution

in populations, economists apply various inequality measures and principles.

Before describing those measures, a clear definition of income distribution and inequality should

be made. Cowell (2011) states that “inequality” suggests a departure from some idea of equality [8],

in which case “equality” just represents the fact that two or more given quantities are the same size,

and “inequality” merely relates to differences in these quantities. Depending on the problem in hand,

inequality can be defined in terms of some personal attribute, such as consumption of a particular

good, life expectancy, land ownership, etc; but usually it’s expressed regarding income. In Deardorffs’

Glossary of International Economics, “income” is the amount of money (nominal or real) received by a

person, household, or other economic unit per unit time. May be (or not) in return for services provided

or goods sold [9].

Towards establishing an inequality measurement, Cowell (2011) sets the essential ingredients of a

“Principle of Inequality Measurement” [8]:

• The specification of an individual social unit such as a single person, the nuclear family or the

extended family, depicted as “persons”.

• Description of a particular attribute (or attributes) such as income, wealth, land-ownership or voting

strength, depicted as “income”.
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• A method of representation or aggregation of the allocation of “income” among the “persons” in a

given population.

The third ingredient refers to inequality measurement which can be summarized as a scalar numerical

representation of the interpersonal differences in income within a given population.

The Lorenz curve is one of the simplest representations of inequality. Specialists use the Lorenz

curve [25] to represent graphically the degree of inequality in the distribution of income in societies.

Lorenz (1905) has pointed out the mathematical inaccuracy of certain commonly used methods, and

has suggested a graphic solution. Individuals holding assets of varying size, are arranged in order,

poorest to richest. The horizontal axis represents the percent of people and the vertical axis the percent

of income those people receive. Equality of distribution would give a series of points in a straight line.

The Lorenz curve is obtained by plotting the cumulative proportion of income against the cumulative

proportion of population, represented in Figure 3.1.

Figure 3.1: Lorenz curve.
Source: Economic Trends, November 1987

A common use of the Lorenz curve is to derive the Gini coefficient, expressed as the ratio of the

shaded area in Figure 3.1 to the area OCD:

G =
OPD

OCD
. (3.1)

The Gini coefficient was developed by the Italian statistician Corrado Gini [14] as a summary measure

of income inequality in society. The Gini coefficient can be presented as a value between 0 and 1 or as

a percentage. A coefficient of 0 reflects a perfectly equal society in which all income is equally shared;

in this case the Lorenz curve would follow the line of equality. The more the Lorenz curve deviates from

the line of equality, the higher will be the resulting value of the Gini coefficient. A coefficient of 1 (or

100%) represents a perfectly unequal society, where all income is earned by one individual in an infinite
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population. The equation (3.1) can be applied in practical terms as the mean of the difference between

every possible pair of individuals, in a population of size n, divided by the mean size µ [35]:

Gini =

∑n
i=1

∑n
j=1|xi − xj |

2n2µ
. (3.2)

The Gini coefficient as with many inequality measures, it is a synthetic index. Therefore, it does not

contain all the information in the Lorenz curve, and it has been pointed out that different Lorenz curves

can have the same Gini coefficient [39] (see Figure 3.2).

Figure 3.2: Two Lorenz curves with the same Gini coefficient.

The inability of the Gini coefficient brought other inequality measures into the field of social welfare.

One of these measures is the Atkinson index, which is used to evaluate the effectiveness and fairness of

social distribution [35]. It ranges from 0 to 1, where 0 means the highest equality in distribution, while 1

means it is most unequal in distribution. Let Ti be the income in the ith income range, fi the proportion

of the population in ith group, and T the mean household income. The Atkinson equation is defined as

follows [2]:

Atk = 1−

[
n∑
i=1

(
Ti

T

)1−ε

fi(Ti)

] 1
1−ε

. (3.3)

The Atkinson index evaluates the distributional effect of household income with the ε parameter,

which represents the weight attached by society to inequality in distribution, and by consequence mea-

sures the degree of inequality aversion among various groups. The ε parameter gives the opportunity

to define how sensitively the Atkinson index reacts to income inequalities. When ε increases, less dis-

tribution is transferred to high income groups and more distribution is transferred to low income groups.

The ε parameter defines the sensitivity of Atkinson index to income inequalities. For ε = 0 (no aversion
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to inequality), the society ignores inequality in distribution, whereas when ε tends to∞ (infinite aversion

to inequality) the society only considers distributing all money to low income people.

Similar to the Gini coefficient, an additional measure based on the Lorenz curve is the Hoover index,

also known as the Robin Hood index. It is used to measure the deviation from the preferred equal

distribution. It can be graphically represented as the maximum vertical distance between the Lorenz

curve and the 45-degree line that represents perfect equality of incomes [33] (see Figure 3.3). The

value of the index approximates the share of total income that has to be transferred from households

above the mean to those below the mean to achieve equality in the distribution of incomes, and is defined

as [18]:

RH =

∑
i|yi − y|

2
∑
i yi

, (3.4)

where yi denotes the income of the ith individual and y the mean income. Rogerson & Plane (2013)

apply the Hoover index for the measurement of the degree of population concentration in a region of the

earth, such as a country, that is disaggregated into a set of subregions (e.g. states, counties, or census

tracts). In their study, the index ranges from a low of 0 to a high that approaches 100, with larger values

indicating greater degrees of concentration. The value of the index can be interpreted as the percentage

of the total population that would need to be redistributed across subregions to achieve equal population

densities in all subregions [33].

Figure 3.3: Lorenz Curve and Robin Hood Index.

The measure of inequality and diversity is also studied in widely different research scopes, and

can also be derived from the field of information theory. The study of information theory is concerned

with representing data in a compact fashion (i.e. data compression or source coding), as well as with
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transmitting and storing it in a way that is robust to errors (i.e. as error correction or channel coding) [28].

The task of quantifying information is related to measuring how much surprise there is in an event. Rare

events (with low probability) are more surprising and therefore have more information than those events

that are common (with high probability). The Shannon entropy of a distribution is the expected amount

of information in an event drawn from that distribution and is formally defined as [36]:

H(X) = −
∑
i

p(xi) log p(xi), (3.5)

whereX is a random variable with possible outcomes xi..., xn which occur with probabilities p(x1), .., p(xn).

Theil (1967) argued that the entropy concept provides a useful device for inequality measurement [38].

The Theil entropy index addresses a question frequently encountered in the analysis of income inequal-

ity; to what extent the inequality in the total population can be attributed to income differences between

major population subgroups (e.g. age, sex, race, occupation...) [37]. Let y = (y1, ..., yn) be the income

distribution vector for a population of n individuals, and y the mean income, the Theil index can be written

as:

T (y) =
1

n

∑
i

yi
y

log
yi
y
. (3.6)

The values for this measure vary between 0 in the case of complete equality, and infinity (or 1 if

normalized) indicating larger inequality in the distribution.

Other interesting measure, slightly different from the previous mentioned inequality measures, is the

Herfindahl-Hirschman (HH) index. The HH index is a measure of the size of firms in relation to the

industry and an indicator of the amount of competition among them [17]. It can range from 1/n to 1

moving from a perfect competitive environment (all firms operate with equal market share) to a single

monopolistic producer [4]. A commonly accepted measure for market concentration, the general form of

the HH index is expressed as the sum of the squares of the market shares si(i = 1, 2, ..., n) of all entities

in the industry:

HH =

n∑
i=1

(si)
2, (3.7)

if the following constraint holds:

n∑
i=1

si = 1. (3.8)

A modified version of HH is called the Normalized Herfindahl–Hirshman Index (NHH). Unlike the HH

index, the NHH ranges between values from 0 to 1 and is calculated as follows [21]:

23



NHH =
HH − 1

n

1− 1
n

. (3.9)

3.3 Multimodality Traffic Performance Measurement

Multimodality is generally measured by considering the fraction of users that use a given number of

travel modes. For example, Nobis (2007) showed that car and public transportation users tend to be

between 10 and 25 years old, with the largest group consisting of people aged 18–25, in Germany [29].

While Buehler and Hamre (2016) indicate that 87% of all trips in the United States are made by car and

90% of Americans use automobiles in their commuting trips for work purposes [6]. Most of these works

don’t have in consideration the intensity of use of each mode.

Diana and Pirra (2016) targeted the problem of measuring multimodality at the individual level, by

finding a multimodality index that comprises both descriptive statistics on the number of travel means,

and the intensity of use of each mode [12]. They analysed some of the socio-economic measures,

presented in the previous section, as multimodal indices, and in order to easily assess the different

indices, they rewrote them as a function of a common set of parameters, reasoning at the end that there

is not an index that outperforms the others, still, some measures give best results for different cases.
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Analysing multimodal mobility patterns is a complex task due to the heterogeneity of urban data

sources, which requires a specific approach combining steps from descriptive analytics. The following

sections describe those methodological steps from the processing of traffic data, to the incorporation

with situational context.

4.1 Public Traffic Data Analysis

4.1.1 Data Preprocessing

The first step of the methodology comprises the collection, characterization, preprocessing and uni-

formization of the available traffic data from the different sources.

In the collection phase, the traffic sources are chosen and their corresponding data is collected. That

choice can be based on the following factors:

• Relevance: the usage by the population, quantified by the number of validations per day, week or

another temporal granularity (Section 4.1.2).

• Accessibility: the mode of transport must be available to a large number of the population. Its

usage must not be compromised by any type constraint, in other words, the access to its sta-

tions/stops must be straightforward and scattered across the chosen spatial granularity (Section

4.1.2).

• Privacy Policy: even if working with modes of transport managed by public entities, that does not

mean that the usage and disclosure of the respective traffic data can be easily available. Enforce-

ment of privacy policies by those entities can be a hindrance for a complete and adequate analysis,

by not sharing the requested urban data or just sharing a portion of the relevant information (i.e.

incomplete data).

• Quality of the Data: the public transport entities can have open privacy policies, however, if

the technology used to collect the data is not reliable, the obtained information can be useless

and not adequate for analysis. Another issue is if those entities only collect insufficient traffic

data, like for example, collecting only the number of validations and not registering a timestamp

associated to the validations. Low-quality data will lead to low-quality mining results, affecting

accuracy, completeness, consistency, timeliness, believability, and interpretability [15].

The step of collecting relevant traffic data is followed by its profiling stage. This phase is about

getting familiar with the data, obtain knowledge about the data before preprocessing it. Data delivered

from different urban sources can come in different file formats and data structures, but generally, data
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is presented as tabular data. Studying the various attribute types is a first way to approach it, these

includes characterizing its nominal attributes, binary attributes, ordinal attributes, and numeric attributes.

Basic statistic descriptions can then be applied, such as measures of central tendency – mean (average

value), median (middle value), and mode (most common value) – which give us an idea of the “middle” or

the center of distribution. Plotting the measures of central tendency shows us if the data are symmetric

or skewed [15].

After characterising the data, the next step is the preprocessing. Knowing basic statistics regarding

each attribute, in the profiling phase, makes it easier to fill in missing values, smooth noisy values,

and spot outliers during data preprocessing. Quantile plots, histograms, and scatter plots are graphic

displays of basic statistical descriptions that can be useful during data preprocessing and can provide

insight into areas for mining. Data preprocessing is composed by the following tasks [15]:

1. Data Cleaning: applied to remove noise and correct inconsistencies in the data. This task is

responsible for filling in missing values, smoothing noisy data, identifying or removing outliers, and

resolving inconsistencies. If the data is “dirty”, the analysis will not present trustworthy results.

2. Data Integration: merging of data from different data sources into the target consolidated reposi-

tory, and the identification of shared dimensions among the diversity of data sources.

3. Data Reduction: obtains a reduced representation of the data set that is much smaller in vol-

ume, but still produces the same (or almost the same) analytical results. Data reduction comprises

dimensionality reduction, where data encoding schemes are applied to obtain a “compressed” rep-

resentation of the original data; and numerosity reduction, which consists of replacing the data by

alternative, smaller representations using parametric models (e.g. regression models) or nonpara-

metric models (e.g., histograms, clusters, sampling, or data aggregation).

4. Data Transformation: Strategies for data transformation includes smoothing, which means re-

moving noise from data; aggregation; normalization, where attributes are scaled within a smaller

range; and discretization where the raw values of a numeric attribute are replaced by interval labels

(e.g., 0–10, 11–20, etc.) or conceptual labels (e.g., youth, adult, senior).

4.1.2 Selecting Spatial and Temporal Criteria

Multimodal pattern analysis can be conducted at different spatial and temporal granularities. In terms

of spatial specifications, two major possibilities can be considered. One of them is to manually specify

the target geographical region of interest using a polygon or a circular marking facility. The other, is to

select predefined regions. We propose the following zoning maps for the Lisbon Metropolitan Area, that

are represented in Figure 4.1:
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• Traffic Analysis Zones (TAZ): geographical unit used in transportation planning models to assess

socio-economic indicators.

• Administrative zones: coarsest geographical unit for the city, it can range from municipalities to

parishes, depending on the geographical organization of the target city.

• Sections: finest geographical unit, comprising small districts and neighborhoods.

Under the selected spatial granularity, traffic events, such as card validations and trajectories, as

well as the accompanying situational context data, are then linked to one or more Lisbon’s zones in

accordance with their spatial extent.

Figure 4.1: Zoning: geographical decomposition of the Lisbon city at different granularities.
Source: ILU web application

Two major types of temporal constraints can be placed. First, calendrical constraints – such as

day of the week (e.g. Mondays), weekdays, holidays or on/off-academic period calendars – can be

placed to segment the available traffic data. Multimodal patterns can be represented per calendar or,

alternatively, correction factors can be learned from calendrical annotations in order to guide the target

tasks. Second, time intervals (e.g. on/off-peak hour intervals) or a fixed time granularity (e.g. 15-minute)

can be optionally specified to guide traffic data descriptors. For instance, passenger volume series in

public transport can be resampled from card validations. In the absence of a minimum time granularity,

the data analysis can be conducted at the raw event level or under multiple time aggregations.

4.1.3 Consolidating Traffic Data

Once these constraints are fixed, multi-dimensional querying can be automatically derived to produce

the consolidated data. In addition, data mappings are generally further applied to transform the re-

trieved spatiotemporal data structures into georeferenced multivariate time series structures [26]. These

time structures can be aggregated at different granularities and DTW averaging can be applied for a

more consistent analysis. Inspired by the work of Santos (2020), who studied the correlation between
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the demand for bicycles in Gira stations and the weather [34], correlation between time series of dif-

ferent modes of transport can aid into understanding multimodal synergies, by using linear correlation

coefficients (e.g. Pearson’s, Spearman’s or Kendall’s) and also detrended cross-correlation analysis for

correlating time series under non-stationarity.

4.2 Multimodality Index Data Analysis

For detecting vulnerabilities associated with multimodal transportation, two major options are made avail-

able. First, the inference of multimodal origin-destination matrices. The origin-destination matrices, cur-

rently provided for Carris and Metro operators, are inferred from shared card identifiers along the public

passenger transport operators. Entries in these matrices are marked with statistics, including number of

cross-carrier and cross-mode commutes necessary to accomplish a complete origin-destination trip, that

support the analysis of commuting susceptibilities. Second, the user can select one of the introduced

indices of multimodality and compute them for different regions and time periods.

4.2.1 Challenges

To the best of my knowledge, this type of research has not yet been comprehensively attempted in the

literature, where spatial multimodality is measured as a possible tool for mobility management. The

choice of a suitable index for our problem is therefore a challenging task.

The first issue concerns the heterogeneity of transport modes. The different types of transport modes

are land transport, airway and waterway transport, and each of these types are subdivided in further cat-

egories of transports. In the scope of this research, we are focused on land public transportation, which

encompasses bus, subway, railway and cycling. Vehicles (motorized or not) necessary for transport ac-

cording to the chosen mode, are intrinsically unique, with different travel speeds, used for different kinds

of trips and with different frequencies.

The second issue is a consequence of the previous one, and deals with the measurement unit.

Different results can be produced from considering different units, such as travel times, trip distances

or number of trips. So, the best measurement unit to use, could depend on the context of the problem

being solved.

The third difficulty, is the need to balance the variability of the set of transport modes and the vari-

ability in the intensities of usage.
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4.2.2 Desired Properties

The properties of the inequality measures described in Section 3.2, must be adapted to the context of

transportation before describing the multimodal indices. M. Diana & M. Pirra (2016) reformulate them

as follows [12]:

1. Weak Principle of Transfers:

Consider two travel modes whose intensities of use are I and Iδ, where δ > 0. If the intensity of

the most used mode decreases and that of the least used increases by the same quantity I < 2δ

then the multimodality index should increase.

2. Scale Independence:

If the frequency of use of each mode changes by the same proportion, the multimodality index

should remain the same.

3. Principle of Population:

The multimodality index should remain the same for any replication of the modes with their corre-

sponding intensities of use. The choice set of the modes represents our population and ‘replicating

a mode’ can be seen in our context simply as an increase in the population size due to the consid-

eration of an additional number of modes with the same intensities of use of those already in the

choice set.

4. Decomposability :

Multimodality rankings of alternative distributions of intensities of use in the whole set of travel

modes, should match the multimodality rankings of the corresponding distributions of intensities

within any of the subgroups in which the whole set of travel modes can be composed.

5. Strong Principle of Transfers:

Considering the following distance measure

d = h(
I1
Itotal

)− h(
I2
Itotal

),

for modes 1 and 2, with I1 < I2, where Itotal is the sum of all intensities and h is a decreasing

function defined as

h(I) =
(1− Iβ)

β
,

with β a parameter. If the intensity of the most used mode I2 decreases and the one of the least

used I1 increases, the variation of the index depends only on the variation of d. The ratios Ii/Itotal
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are the ‘intensity shares’ of mode i; the larger the share, the more predominant is the use of that

mode compared to others. The function h is introduced to decrease the distance, and therefore

the effect on the index, when the modal transfer is taking place between two modes that are

progressively more predominant, even if the difference in their relative intensity shares is constant.

4.2.3 Candidate Multimodality Indices

4.2.3.A Herfindahl–Hirschman index

The Herfindahl–Hirschman Index is a typical measure of market concentration and is used to determine

market competitiveness, as described in Section 3.2. This measure can be adapted to the context of

urban mobility, where the value of the index is closer to zero when a lot of different travel means are used

and no means is very intensively used, while the value increases when the use of a smaller number of

modes tends to dominate [12]. The index can be defined as follows:

HH =
1

n

[
n
∑n
i=1(fi − f)2

(
∑n
i=1 fi)

2
+ 1

]
. (4.1)

In order to distinguish between the set of available modes and the set of effectively used modes, M.

Diana & M. Pirra (2016) proposed a variant of Equation (??)eqn:HH* which takes into account only the

m elements different from zero (the effectively used modes) [12]:

HHm =
1

m

[
n
∑n
i=1(fi − f)2

(
∑n
i=1 fi)

2
+ 1

]
. (4.2)

4.2.3.B Gini Coefficient

The Gini coefficient or Gini index, is a summary statistic of the Lorenz curve and is usually used as

a measure of inequality in a population. It considers the differences among values of a frequency

distribution. M. Diana & M. Pirra (2016) translated the usual formulation of the index, presented in

Section 3.2, in the context of multimodality where fi is the intensity of use of ith mode and n the total

number of modes, formulated as [12]:

Gini =
2

n

∑n
i=1 i · fi∑n
i=1 fi

− n+ 1

n
. (4.3)

The Gini coefficient ranges from a minimum value of zero to a maximum of one. The former one

corresponds to an equal usage of all modes, while the latter refers to an infinite population of modes in

which all of them except one are not used (monomodality).
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4.2.3.C Theil Index

The Theil index defined in Section 3.2, can also be adapted to the context of multimodality with the

lowest value of the index indicating the usage of all means with the same frequency, and the highest

one, instead, is referred to a situation of only one mode used among all the n possible choices. The

reformulation of the index in terms of intensities of use of all modes is expressed as [12]:

T =
1

n

∑
i

fi

f
log

fi

f
. (4.4)

Diana and Mokhtarian (2008) reinterpreted the concept of information theory by considering an hy-

pothetical mode choice experiment, where the uncertainty of the outcome is proportional to past multi-

modality behaviours of the traveller, thus defining a multimodality index given by [10]:

OM PI =

n∑
i=1

[
fi∑n
j=1 fj

logn

(∑n
j=1 fj

fi

)]
. (4.5)

They also suggested a variant of OM PI that is sensitive to the mean mobility level of individuals.

With M as the absolute maximum reported frequency of utilisation of any mode, and nM as the po-

tential maximum total frequency across all considered modes, hence defining a mobility-level-sensitive

multimodality Index, given by:

OM MI =

n∑
i=1

[
fi
nM

[
1 + ln

(
M

fi

)]]
. (4.6)

4.2.3.D Atkinson Index

The Atkinson index described in Section 3.2, for n different modes of intensities fi and mean f can be

redefined as [12]:

Atk = 1−

[
1

n

n∑
i=1

(
fi

f

)1−ε
] 1

1−ε

. (4.7)

4.3 Incorporating Situational Context

The analysis of multimodality indices can be complemented with the presence of situational context. The

major constituent elements of such context are the traffic generation poles. The concept of traffic gener-

ation and attraction poles generally refers to commercial areas, employment centres such as business

parks and enterprises, and collective equipment like hospitals, schools and stadiums, that generate or

attract a significant volume of vehicle trips, either from contributors, visitors or providers. We currently

maintain a complete localization of traffic generation poles for the city of Lisbon, as well as major city
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events (such as large concerts, congresses and soccer matches). Figure 5.6 provides a map of the

city with some poles with impact on the city traffic. The combined analysis of the traffic generation/at-

traction poles maps with the computed multimodality indices, as well as station-route maps, providing

a comprehensive and dynamic way of modelling the spatiotemporal distribution of traffic along the city.

Additionally, the surveyed indices can be revised to further measure how the volume of passengers

generated and attracted by nearby poles are being currently satisfied by the co-located modes of public

transport.
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5.1 The Dataset

Three public transport modes were chosen for this study - Carris, Metro and Gira - according to the

choice factors presented in Section 4.1. Carris and Metro are the two most used public transport modes

and their stations can be found almost in all the Municipality of Lisbon. Gira, the biking sharing system,

however, can only be found in the center axis of the city and in the neighborhood of Parque das Nações

(Figure 5.1); and the validations during the week are fewer than the other two modes (Figure 5.2), not

fulfilling all the factors in Section 4.1. The Relevance and Accessibility constraints may not be satisfied,

but, compared to the other modes not included in this work, Gira traffic data was easily available and its

attributes were relevant for this analysis.

Figure 5.1: Lisbon’s stations location. a) Carris. b) Metro c) Gira.

As mentioned in Section 2.1, smart card technology (the VIVA card) was used to gather public trans-

port traffic data. For Carris, the smart card data only monitors entries, estimators of existing validations

can be used to infer the exits (not in the scope of this research). For the remaining modes of transport,

Metro and Gira, we have access to both passengers’ entry and exit records. The entities responsible for

the modes Carris and Metro, allowed the use of their data from the month of October 2018, whereas for

Gira, the records range from 13 December 2018 to 31 December 2018.

The data retrieved from Carris buses’ smart card readers, is modeled as tabular data with 9865446

a) b)

Figure 5.2: Weekly mode share distribution of TAZ nº66. a) Week days. b) Weekends.
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rows. Each row represents a smart card validation, which means that a passenger as entered the bus.

Since the passengers can pay the bus ticket either with the smart card or with cash by buying a ticket at a

Carris partner or directly to the bus driver, there is a portion of the validations that is not take into account.

Yet, that small number of validations is not significant enough to influence the analysis, so that fact can

be ignored. Figure 5.3 displays a sample (five rows) of the validations data gathered by the smart card

readers. It has 14 attributes, 4 attributes are nominal (Route, Direction, Description, Designation), 9 are

numeric (NºFleet, Variant, NºPlate, NºTrip, Stop, NºSerial, NºCard, TitleCode, StopID), and 1 is ordinal

(Date/Time). But only Date/Time and StopId are relevant for this research. The attribute Data/Hora

represents the date and the hour of a bus entry at the station identified by the attribute Date/Time,

neither one of this columns contains missing or inconsistent values.

Figure 5.3: Sample of Carris smart card’s validations data.

Metro data presents its data in the form of an origin-destination matrix (Figure 5.4). Contrary to

Carris, Metro subway is equipped with two smart card readers, one at the boarding and the other at the

alighting, thus, the data retrieved is organized in two matrix (entries and exits). The rows and columns

are labeled with the Metro stations, and each cell has a numerical value describing the number of

validations (entries or exits) from those stations, in a time range of 15 minutes, and that is the reason

why Some cells contain missing values which will be filled with 0’s.

Figure 5.4: Sample of Metro smart card’s validations data (entries).

For the Gira bike sharing system (for more information about this system see Section 2.1), the col-

lected data is modeled by tabular data with a total of 88747 rows, where its columns have 6 attributes,

4 are numeric (station id, num bicycles, num empty stations, num stations), 1 boolean (state), and 1

is ordinal (date) (Figure 5.5). The bike stations update the number of available bikes (num bicycles)

and the number of empty bike slots (num empty stations), in their records, every time a bike has been
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picked-up or dropped-off.

Figure 5.5: Sample of Gira stations’ data.

Additionally to the information about Carris, Metro and Gira, other types of urban data are available.

We have access to the localization of the stations of every mode, in geographic coordinates (Figure

5.1), but also the localization of traffic generation poles for the city of Lisbon (i.e. commercial areas,

enterprises, hospitals, schools and stadiums), as well as major city events such as large concerts,

congresses and soccer matches.

Figure 5.6: Major traffic generation poles: commercial (blue), schools and institutes (green), and health centres
(red).
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5.2 Public Transport Data Analysis

This section models the traffic demand and explores the spatiotemporal content of the available traffic

data, taking into consideration user-specific commutes in interface areas. The task of analysing public

transport data is divided in three parts. First, the depiction of public transportation demand over time,

through the analysis of time series. Second, we will see more accurately how temporal data from public

transports behaves over time, using DTW time series averaging. And finally to see the correlation

between the three modes of transport with three different correlation coefficients.

5.2.1 Spatial Granularity

The assessment of temporal data requires beforehand the specification of a spatial granularity. Among

all the possibilities of spatial criteria defined in Section 4.1.2, we opted by choosing the Traffic Analysis

Zones (TAZ) and the parishes of Lisbon. The TAZ are not administrative divisions, these form of spatial

modelling is derived from trip generation densities processed by delineation algorithms that use the

peaks of densities as the centre of a zone [27]. Figure 5.7 illustrates all the 103 TAZs of the Municipality

of Lisbon, where their designation are indexed to their respective number on Table A.1. Only eleven TAZs

can be considered for analysis since these are the only TAZs that enclose stations from all three chosen

modes of transport (Figure 5.9). The parishes of Lisbon (called freguesias in Portuguese), contrary

to the TAZs, have a coarser granularity, and is a territorial unit delineated by a Municipality or a State

entity. The parishes of Lisbon are displayed in Figure 5.8 and their names are indexed in Table A.2. Like

the TAZs, not all the parishes contain all three types of public transport stations, only ten (Figure 5.10).

Multimodal pattern analysis using parishes as spatial granularity was not described in this dissertation

(only TAZs), however, it is possible to use parishes as the geographic unit in the ILU software tool.

The location of the TAZs and parishes that contain stations of the three modes, Carris, Metro and

Gira, reveals that the intermodal interfaces are located in the central axis of the city, and although there

are other modes of transport besides those we are analyzing here, this demonstrates the urban planning

priority given to the city’s commercial zone and the high-density residential zone, and the lack of options

in terms of public transport for the population in the medium and low-density resident zone. But these

facts are already predictable considering the market share of each mode (Figure 5.11), which is highly

irregular.

5.2.2 Temporal Series

Among all the Traffic Analysis Zones, the TAZ of Avenidas Novas (Avenidas Novas — Este) (TAZ nº66),

was the chosen geographical zone for analysis. There’s no particular reason that we chose that TAZ.
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Figure 5.7: TAZs of the Municipality of Lisbon.

Figure 5.8: Parishes of the Municipality of Lisbon.

However, its a zone enclosing stations from all three public modes of transport under study; and sec-

ondly, its a zone adjacent to Saldanha, which is an influential multimodal interface encompassing multiple

modes of transport and characterized by the presence of business and cultural traffic generation poles.

Since we are studying the behavior of urban multimodal demand, only the check-ins are considered
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Figure 5.9: TAZs with three modes of transport (Metro, Carris, Gira).

Figure 5.10: Parishes with three modes of transport (Metro, Carris, Gira).

(in the case of Metro and Gira, cause Carris only validates entries). Figure 5.12 shows the volume and

variation of validations in TAZ nº66 during a week. In terms of volume, Metro has roughly ten times
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Figure 5.11: Cycling-bus-subway market quota (modal trip share) for major traffic analysis zones (TAZ) in Lisbon.

Figure 5.12: Weekly volume and variation of validations in TAZ nº66.

more validations than the other two modes. To better respond to the skewness towards large values,

we applied a logarithmic scale for the Y axis. Metro and Carris have a similar behavior during the
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week, however the dispersion of values for Metro is minimal, where for Carris, the dispersion of values

is slightly more substantial. The observations during the week for these two modes are approximately

constant during the week, and then at Friday it starts to decrease till the end of the weekend. Gira

demand behavior is relatively the opposite: its decreasing during the week days, and it increases during

the weekend. The standard deviation for Gira during the weekend is low, where during the week days,

the dispersion of values is significant. This difference between Gira and the other two modes, can be

explained by the fact that bicycles are mostly used as leisure and sport transport, and not so much as

transport for commuting (home-work), like Carris and Metro, which can also explain the high dispersion

of values during the week. Another cause could be he fact that the bicycle is more accessible to the

younger population, as it’s a human-powered mode of transport, while the Carris and the Metro are used

by people of all ages.

It’s also interesting to analyse the urban multimodal demand at a finer granularity of time. Figure

5.12 presents the volume and variation in TAZ nº66 for every hour during week days and weekends. At

week days, Metro and Carris have approximately the same trend, with two peaks during the day, one

at around 8am and the other ate the end of the day (around 5pm). Those volume peaks correspond

to commuting travels, resulting in the morning and evening rush hours. The variability is practically the

same throughout a week day for these two modes of transport. Again, Gira behaves differently from

Carris and Metro, with a regular trend through the hours of a week day. A high standard deviation is

present at around 8am for Gira, which can also be explained by the morning commute, where people

not always use their car to go to work and opt for a more healthy alternative like the bicycle. At weekends,

Gira volume is always higher than Carris at all hours, which was already perceived in Figure 5.12. The

standard deviation is highly irregular for Carris, but more steady for the subway mode. This irregularities

can be explained by the fact that during weekends there is not a pattern as in commuting travels (most

people don’t work in weekends), and the public transport modes are greatly affected by cultural events

(which usually take place during weekends), and since the stations of Carris are very accessible and

scatter in almost every street of Lisbon, it makes the preferred mode to attend this type of events.
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a)

b)

Figure 5.13: Daily volume and variation of validations in TAZ nº66. a) Week days. b) Weekends.
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5.2.3 Barycenter Averaging

The data used in the analysis carried out in Section 5.2.2 was processed using the mean of validations

per station, causing to be sensitive to noisy data [31]. A more accurate procedure is applied in this

section, where euclidean averaging and DTW barycenter averaging (DBA) is applied to the sequences

of each mode. These sequences or time series are built from each week of the available date range.

For example, Carris data is available for the month of October (2018), so the DBA is computed from

four sequences (i.e. a cluster) corresponding to the validations of the weeks of that month. Figure 5.14

shows the weekly volume of validations through barycenter averaging in TAZ nº66, where there are no

significant differences in trend of the series, compared to the previous analysed plot in Figure 5.12.

However it’s interesting to notice that in the days where there is a high variability of the validations, the

euclidean sequence is affected by it and deviates from the DBA sequence. Thus, it enables to visualize

that the difference between the demand in the last day of the week (Friday) and the first day of the

weekend (Saturday) is much more distinct with this type of plots.

Figure 5.14: Barycenter averaging (DTW and Euclidean) for weekly volume of validations in TAZ nº66.

The daily volume of validations through barycenter averaging is described in Figure 5.15, and now

the Gira sequence doesn’t seem to behave constantly, as in Figure 5.13. For week days, we now can see

that there is a peak at 8am, and another two peaks at around 3pm and 5pm. The 8am and 5pm peaks

correspond to commute trips, also present in Metro and Carris. The 3pm Gira peak is not perceived in

the other two modes, and may be caused by other currently unknown factors, probably some cultural
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event, or due to the fact that the Gira data analysed here is from December, so holiday season could

influence those results. There is no major difference between the weekend hours series using DBA

(Figure 5.15 b) and the aggregation series from Figure 5.13 b). What is interesting to notice here, is the

difference between the euclidean barycenter and the DBA of the Gira sequence. At approximately 8pm

and 10pm, the euclidean and the DBA are symmetric (when one is positive, the other is negative). Once

again, this is explained by the dispersion of the values and the sensibility of the euclidean measure. This

justifies the use of DBA in this type of analysis.

a)

b)

Figure 5.15: Barycenter averaging (DTW and Euclidean) for daily volume of validations in TAZ nº66 (logarithmic
scale). a) Week days. b) Weekends.
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5.2.4 Correlations

The final task of the public transport data analysis is to correlate the data of the available transport

modes. Figures 5.16, 5.17 and 5.18 show respectively, the Pearson’s, Spearman’s and DXA correlation

coefficients between the different modes weekly.1 There is not a major difference between the used

coefficients, the correlation varies in the same way between modes. Already perceived with the previ-

ous analysed line plots, but now we can confirm: Carris entries and Metro exits validations are highly

correlated, whereas those volumes are negatively correlated with those from Gira.

Figure 5.16: Weekly Pearson correlation heatmap between modes of TAZ nº66.

Figure 5.17: Weekly Spearman correlation heatmap between modes of TAZ nº66.

Figure 5.18: Weekly DXA correlation heatmap between modes of TAZ nº66.

5.3 Multimodality Indices Analysis

The previous section analysed multimodality in one zone. This section will now assess multimodality

among all available geographical units (TAZs), in order to have a global vision of multimodality at the

spatial level of the city of Lisbon. Among all candidate multimodality indices presented in Section 4.2.3,
1Results were computed for daily correlations, but they were very similar to the weekly correlations, so they were not included.
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the Gini coefficient and the Herfindahl–Hirschman index were the measures selected for this analysis,

because they are simple to implement and to adapt to the context of transportation and they differ in their

properties but range between the same values. Figure 5.19 displays four TAZ maps of Lisbon coloured

with the values of the Gini index (green is 0 corresponding to multimodality and 1 is red corresponding to

monomodality) at different hours. There is not a major change in the index values among these hours.

The TAZs with a higher degree of multimodality correspond mostly to the TAZs containing all the three

modes (bus, subway and cycling) (see Figure 5.9) and encompass a large number of traffic generation

poles (see Figure 5.6). Still there are TAZs containing all selected modes, but they have a medium

index value (around 0.5); this is due to the fact that the Gini index is sensible to the intensity of usage

of the modes (scale dependence, see Section 4.2.2 ). The results for the Herfindahl–Hirschman index

(HH) are similar to the ones of the Gini index, with the exception that the HH index is highly sensible to

the number of used modes (principle of population, see Section 4.2.2), that justifies the color red over

almost all TAZs, since most of the TAZs out of the center only have two or one mode of transport (only

including bus, subway and cycling).

Figure 5.19: Gini index TAZ map (week days). a) 8h. b) 12h. c) 17h. d) 21h.

The variation of both indices was plotted throughout the week (Figures 5.21 and 5.22). And for both

indices, the variation is almost identical. Until the middle of the week (Wednesday) the indices values

rise, then start to decrease until Saturday, and at Sunday they slightly increase. The standard deviation

was calculated for both plots, however, the variability was too large to be included in the plots, which
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Figure 5.20: HH index TAZ map (week days). a) 8h. b) 12h. c) 17h. d) 21h.

Figure 5.21: Weekly Gini index lineplot.

suggest that the weekly variation of the indices may not be significant enough to be considered in the

analysis. This means that if the Y axis had coarser value ticks, both plots would look like a straight line.
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Figure 5.22: Weekly HH index lineplot.

5.4 Software Tool

The ILU project contributions are integrated in the ILU App web platform. The application was devel-

oped in Python with Dash, which is a framework for building machine learning and data science web

applications, powered by Plotly2. Figure 5.23 presents the home page of the application. Each colourful

option is associated with the respective task of the project ILU.

Figure 5.23: Home page of the ILU App.

This work contributes to the task Descrição: Padrões de Mobilidade Urbana. It contains two pages,

one for the multimodal pattern analysis and other for the assessment of the multimodal indices. Figure
2Plotly: https://plotly.com/dash/.
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Figure 5.24: Multimodal Patterns Analysis Menu (ILU App).

Figure 5.25: Multimodal Indices Analysis Menu (ILU App).

5.24 displays the interface of the Multimodal Pattern Analysis page, where the user can specify spatial

parameters, such as the type of zone, the modes of transport, and in case the user chooses Metro, he

can specify if he wants the validations from the exits or the entries. Next, the user can choose some

temporal parameters, including the date range, the type of days (e.g. weekends), the granularity of

the results (in minutes), the manner the results will be presented (time series, barycenter averaging

or correlation heatmaps) and in case the user chooses to visualize correlation, he can choose which

measure to be computed. After all the parameters are set, the user can select from the mini map the

zone to be processed. In the Multimodal Indices page interface, presented in Figure 5.25, the user can

choose the multimodal index, the type of days (e.g. week days) and the zoning method. The user can

also select from the slider in the bottom a specific hour, and the page will present a map of Lisbon similar

to the ones in Figure 5.19.
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6.1 Concluding Remarks

This Thesis offered a structured view of the multimodal synergies from heterogeneous sources of urban

data. To the best of our knowledge, the literature only focused on the measurement of multimodality at

the individual level, in other words, it studied to what degree people (or public transports passengers)

were multimodal. So this thesis aimed at studying multimodality at the spatial level, in order to aid

specialists in the field of transportation engineering and urban planning. The proposed methodology

was applied to the city of Lisbon using three public modes of transport: Carris (bus), Metro (subway)

and Gira (cycling). The results demonstrated that the cycling mode behaves differently than the bus and

the subway mode, and the population prefers more environment friendly and healthy transport modes

during the weekends (bicycles) than more traditional modes like the bus. The multimodality across

the city was measured using two inequality measures: the Gini and the Herfindahl–Hirschman indices.

Those measurements demonstrated that the commercial center of the city, rich in traffic generation and

attraction poles, was more multimodal than the outer residential zones.

The inherent sensitivity of the properties of the used indices, is greatly influenced by the number of

modes and their intensity, which could be attenuated if the other public transport operators shared their

traffic data, providing the possibility to analyse more transport modes and to obtain a more extensive

and complete view of the multimodal patterns of the city. The data received from Carris, Metro and Gira

was also incomplete, relying only on information from the months of October and December 2018.

6.2 Community and Scientific Acceptance

The research pursued for this dissertation is being subject to international reviews through the submis-

sion of work to peer-review international Conferences in the field (the submission of articles is linked to

Journal publications). The article proposal - “Boosting Multimodality Mobility Decisions using Big Data

in the City of Lisbon: ongoing and future challenges”, was accepted by the scientific committee of the

14th Conference on Transport Engineering (CIT 2020) R-Evolution in Transport (this conference will be

held in 2021 due to the current pandemic caused by COVID-19).1 Additionally, the article – “Exploring

multimodal mobility patterns with big data in the city of Lisbon”, was submitted to the scientific committee

of the 48th European Transport Conference (ETC 2020) held online last September [23].2 This latter ar-

ticle was presented by the former author at the ETC 2020 Young Researchers and Practioners Forum at

the session Mobility and it received a very positive feedback from the international scientific community.

It was also submitted to the European Transport Research Review Journal linked to the ETC 2020.

1https://www3.ubu.es/cit2021/en/
2https://aetransport.org
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6.3 Future Work

This research presented an innovative method to evaluate traffic patterns, through the analysis of spatial

multimodality data. The Traffic Analysis Zones were chosen as the geographical unit under study but

other spatial granularities could equally be suggested. With more data, other types of temporal gran-

ularities could also be added to the research such as months and years. And, the use of the other

mentioned inequality measures could provide more insights on the degree of spatial multimodality in the

city. The multimodal data can also be correlated with other types of situational context, such as weather

or public events (e.g. concerts), in order to evaluate the factors that influence variations in multimodality

on the city. And finally, this study was applied to the city of Lisbon but would be equally interesting to

explore multimodality behaviors in other cities.
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A
Auxiliary Tables

Table A.1: TAZs of the Municipality of Lisbon

Number Description

1 Belém (Ribeirinha - Belém)

2 Belém (Alto Duque)

3 Belém (Belém — Oeste)

4 Belém (Belém — Este)

5 Ajuda (Restelo)

6 Alcântara (Ribeirinha - Belém)

7 Alcântara (Santo Amaro — Oeste)

Continued on next page
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Table A.1 – continued from previous page

Number Description

8 Alcântara (Santo Amaro — Sul)

9 Alcântara (Santo Amaro — Norte)

10 Ajuda (Ajuda — Sul)

11 Ajuda (Ajuda — Oeste)

12 Ajuda (Ajuda — Norte)

13 Estrela (Ribeirinha - Belém)

14 Estrela (Alcântara)

15 Estrela (Lapa)

16 Estrela (Estrela)

17 Campo de Ourique (Campo Ourique)

18 Campo de Ourique (Amoreiras)

19 Misericórdia (São Paulo)

20 Misericórdia (Bairro Alto)

21 Santo António (Amoreiras)

22 Santo António (São Mamede)

23 Santo António (São José)

24 Benfica (Colégio Militar/Luz)

25 Benfica (Benfica — Sul)

26 Benfica (Benfica — Norte)

27 Benfica (Monsanto — Norte)

28 São Domingos de Benfica (São Domingos de Benfica)

29 São Domingos de Benfica (Sete Rios — Norte)

30 São Domingos de Benfica (Estrada Luz — Este)

Continued on next page
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Table A.1 – continued from previous page

Number Description

31 São Domingos de Benfica (Monsanto — Norte)

32 São Domingos de Benfica (Sete Rios — Sul)

33 Campolide (Bairro Liberdade)

34 Campolide (Praça Espanha — Sul)

35 Campolide (Praça Espanha — Norte)

36 Campolide (Campolide)

37 São Domingos de Benfica (Estrada Luz — Oeste)

38 Carnide (Avenidas Novas)

39 Carnide (Carnide)

40 Lumiar (Telheiras — Oeste)

41 Lumiar (Telheiras — Este)

42 Lumiar (Parque Europa)

43 Lumiar (Lumiar — Oeste)

44 Lumiar (Lumiar — Sul)

45 Lumiar (Paço Lumiar)

46 Lumiar (Telheiras — Norte)

47 Lumiar (Lumiar — Norte)

48 Santa Clara (Ameixoeira — Norte)

49 Santa Clara (Ameixoeira — Sul)

50 Alvalade (Hospital Santa Maria — Oeste)

51 Alvalade (Hospital Santa Maria — Este)

52 Alvalade (Cidade Universitária)

53 Alvalade (Campo Grande)

Continued on next page
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Table A.1 – continued from previous page

Number Description

54 Alvalade (Avenida do Brasil)

55 Alvalade (Alvalade)

56 Alvalade (São João de Brito)

57 Alvalade (Roma - Areeiro — Este)

58 Alvalade (Roma - Areeiro — Oeste)

59 Avenidas Novas (Bairro Santos — Este)

60 Avenidas Novas (Bairro Santos — Oeste)

61 Avenidas Novas (Campo Pequeno — Oeste)

62 Avenidas Novas (Campo Pequeno — Este)

63 Avenidas Novas (Avenidas Novas — Oeste)

64 Avenidas Novas (Parque Eduardo VII)

65 Avenidas Novas (Picoas)

66 Avenidas Novas (Avenidas Novas — Este)

67 Areeiro (Areeiro — Norte)

68 Areeiro (Areeiro — Sul)

69 Areeiro (Alto Pina)

70 Arroios (Estefânia)

71 Arroios (Arroios — Norte)

72 Arroios (Arroios — Sul)

73 Arroios (Anjos)

74 Santa Maria Maior (Baixa)

75 Santa Maria Maior (Castelo)

76 São Vicente de Fora (São Vicente)

Continued on next page
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Table A.1 – continued from previous page

Number Description

77 Penha de França (Penha França)

78 Penha de França (São João)

79 Beato (Madre Deus — Oeste)

80 Beato (Picheleira)

81 Beato (Madre Deus — Sul)

82 Beato (Madre Deus — Norte)

83 Marvila (Chelas)

84 Marvila (Marechal Gomes da Costa)

85 Marvila (Infante Dom Henrique - Porto — Este)

86 Marvila (Infante Dom Henrique - Porto — Oeste)

87 Marvila (Parque Bela Vista)

88 Marvila (Bairro Armador)

89 Lumiar (Aeroporto)

90 Olivais (Logı́stica Aeroportuaria)

91 Olivais (Alfredo Bensaúde)

92 Olivais (Encarnação — Oeste)

93 Olivais (Relógio)

94 Olivais (Olivais - Centro)

95 Olivais (Encarnação — Este)

96 Olivais (Olivais — Norte)

97 Olivais (Olivais — Sul)

98 Olivais (Olivais — Este)

99 Parque das Nações (Parque Nações — Sul)

Continued on next page
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Table A.1 – continued from previous page

Number Description

100 Parque das Nações (Estação Oriente)

101 Parque das Nações (Quinta Laranjeiras)

102 Parque das Nações (Parque Nações — Norte)

103 Parque das Nações (Parque Tejo)

Table A.2: Parishes of the Municipality of Lisbon

Number Description

101 Ajuda

102 Alcantara

103 Alvalade

104 Areeiro

105 Arroios

106 Avenidas Novas

107 Beato

108 Belem

109 Benfica

110 Campo de Ourique

111 Campolide

112 Carnide

113 Estrela

114 Lumiar

115 Marvila

Continued on next page

66



Table A.2 – continued from previous page

Number Description

116 Misericordia

117 Olivais

118 Parque das Nacoes

119 Penha de Franca

120 Santa Clara

121 Santa Maria Maior

122 Santo Antonio

123 Sao Domingos de Benfica

124 Sao Vicente
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Figure B.2: Metropolitano de Lisboa Network Diagram.
Source: www.metrolisboa.pt
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Figure B.3: CP/Metro Network Diagram.
Source: www.cp.pt
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