
RISC-V Processing System with streaming support
Eduardo Miguel Ferreira Cabral de Melo, Instituto Superior Técnico, Universidade de Lisboa

Abstract—Over the last two years, the adoption of the RISC-
V ISA by the open-source community and companies has
been increasing. This further encourages the development of
new custom extensions added on top of the base ISA, some
of them making use of novelty techniques and concepts. The
development of this work was motivated by analysing a novelty
extension developed for the RISC-V ISA, namely the Unlimited
Vector Extension(UVE), that provides ISA level support for data
streaming coupled with scalable SIMD instructions. This work
provides a proof of concept implementation of the UVE extension
on a base RISC-V Softcore system, by adding a Stream Engine
and Vector Accelerator hardware component to the design.
The system was successfully implemented on a Xilinx Virtex
UltraScale+ VCU1525 FPGA Board and tested by vectorizing
a set of benchmarks, which resulted in execution times of up
to 23 times higher and EDP values of up to 195 lower when
compared with the base RISC-V code.

Index Terms—RISC-V, UVE, Data Streaming, SIMD, Vector
Accelerator, FPGA

I. INTRODUCTION

The CPU market over the last few years has been dominated
by either off-the-shelf third party solutions, such as INTEL and
AMD x86 processors, in consumer grade high performance
devices, mainly laptop and desktop computers, or by ARM’s
proprietary instruction set architecture and processor designs
in the mobile device and microcontroller domains. Although
using third-party proprietary solutions has its benefits, such
as not needing a dedicated hardware team to design and im-
plement in-house solutions, it also comes with disadvantages,
mainly due to the fact that the customer of the third party
solution has little to no control over the processor architecture,
in the case of INTEL and ARM, or over the changes made
to the instruction set architecture, including its flexibility, in
the case of ARM. In fact, APPLE’s recent decision of moving
their Macintosh computers from Intel x86 to ARM validates
that having more control over the whole development stack
does prove advantageous.

In order to provide the hardware community with a flexible
open source instruction set architecture, the RISC-V ISA was
developed at the University of California, Berkeley and the
ISA specification was later published so it could be used both
in academia and in commercial products alike. The RISC-V
ISA was structured to be as modular as possible. Consequently,
and due to being a RISC instruction set architecture, the
base integer instruction set, RV32 or RV64, depending on if
the system is targeting 32 bits or 64 bits, is minimal. This
leads to the base ISA being suitable for microcontrollers and
others solutions that have strict power and area constraints. In
contrast, if one requires a solution that does not have strict
power and area constraints, but on the other hand requires
more advanced features such as floating point support, or

atomic and memory fencing instruction support , then one can
make use of the several extensions that RISC-V provides on
top of the base integer instruction set. Of course, due to the
open-source nature of the RISC-V ISA, third-party extensions
that fulfill custom needs can be developed and integrated into
a RISC-V design.

This work strives to corroborate the flexibility provided by
the RISC-V and the viability of ISA level data streaming
support by providing a proof of concept implementation of
a novel custom RISC-V scalable SIMD extension with ISA
level support for data streaming on top of an already existing
RISC-V processing system [6].

II. RELATED WORK

This work set out as an objective the implementation of
a novelty RISC-V SIMD extension, named Unlimited Vector
Extension (UVE) [2] on top of a RISC-V Softcore System [6].
Consequently, this section will provide context to the reader
about the necessary knowledge of the UVE extension needed
to understand the system implementation.

Fig. 1. Saxpy example kernel implementations using ARM SVE, RISC-V
V and the UVE extension [2]. Instructions with shaded background represent
loop overhead.

The Unlimited Vector Extension [2] is a custom scalable
single instruction multiple data extension developed for the
RISC-V instruction set architecture, created with the main
purpose of reducing the number of overhead instructions in
loop code, when compared with other solutions [7] [5], in
order to extract more performance gains out of data level
parallelism. To this end, it uses a set of hierarchically ordered
set of descriptors to describe memory access patterns. These
descriptors are defined by user code, using the stream instruc-
tions of the UVE extension, at the loop preamble, as can be
seen in figure 1. The decoupling of the memory instructions

from the loop code is achieved by allowing a Stream Engine
to process the descriptors defined in the prefetch instructions
and stream the relevant data to/from the core. This decoupling
can be done without losing flexibility in the type of memory
accesses possible, since complex memory patterns can still
be supported by conjugating several types of descriptors in a
hierarchical fashion.

A. Memory Access Representation

The UVE extension uses a memory access representation
based on stream descriptors, inspired by [3], [4], to describe
the sequence of addresses that comprise accesses to array-
based variables. This model follows the structure of nested
for loops used in regular code, in order to make the transition
from non-vectorized code with no prefetching to UVE code
easier of both understand and perform, either by hand or by
the compiler.

A

STRIDE SIZE
1 4

A

STRIDE SIZE
2 4

A

STRIDE SIZE
1 8

Fig. 2. One dimensional access examples.

Using regular C code, one could represent an one di-
mensional access to memory using a single for loop. This
access makes use of three fundamental variables, the base
address of the variable to be addressed, for example A, the
stride of the memory access and N, the size of the memory
access.Consequently, the UVE representation for a one dimen-
sional access is a descriptor, called base stream descriptor,
that is represented by a three value tuple. The tuple that
represents the base stream descriptor can be used to calculate
memory addresses by applying it to a simple affine function,
addressi = base address + i ∗ stride, i = 0, .., N − 1.By
using this internal representation, several memory access pat-
terns are possible, by varying the base address, size and stride
variables. Some example accesses are represented in figure 2.

Descriptor 0
{A,8,1}

Descriptor 1
{0,1,8}

Descriptor 0
{A,3,3}

Descriptor 1
{0,1,16}

A A

Fig. 3. Two dimensional access examples.

The use of a single base stream descriptor can be used to
represent a multitude of one dimensional accesses, depending
on the values of the tuple variables, however it can not be
used to represent multi-dimensional memory access patterns.
Therefore, to provide support for a n-dimensional memory
access pattern, the UVE extension employs a hierarchical orga-
nization of several stream descriptors. The stream descriptors
are combined using a linear cascade scheme, analogous to

the nested for loop method, where a descriptor corresponding
to dimension i is used to calculate an offset, using a affine
function, that is then added to the offset of the descriptor
associated with dimension i-1. This method is effectively lin-
early combining the affine functions off all the base descriptors
used to describe the memory access. Consequently, the level
of flexibility provided is far greater when compared with the
use of a single base descriptor, since instead of 3 variables
that can be changed to affect the memory pattern, the use of
cascaded descriptors provides n*3 variables that can be tuned
to create the desired memory access pattern. Some examples
of memory patterns using two cascaded base descriptors are
illustrated in figure 3.

A
Descriptor 0

{A,0,1}

Descriptor 1
{0,4,8}

Modifier 1
{Size,Add,1,4}

A
Descriptor 0

{A,4,1}

Indirect 1
{Offset,Add,A}

Descriptor 0
{B,1,0}

B

Fig. 4. Lower triangular and Indirect Access Examples.

Whilst the hierarchical organization described in the pre-
vious paragraph does indeed provide greater flexibility that
the use of a single descriptor, there are still some types of
memory patterns that the descriptor tree cannot represent, such
as indirect accesses and accesses with inter-loop dependencies,
i.e outer loop modifies descriptor values of inner loop.

Firstly, to deal with these inter loop dependencies, the UVE
extension provides a new mechanism called static descriptor
modifiers. A static descriptor modifier is represented by a
tuple comprised of four elements.The first element is the
target, which is as an identifier of the descriptor parameter
to modify. The second and third elements are the behavior
and displacement of the modifier. The behavior defines the
operation to be executed, i.e addition or subtraction, and the
displacement is the value used by the operation to update the
parameter value. The final value of the tuple is the size of the
static descriptor modifier and it specifies the total number of
iterations for which the modification should occur.

Secondly, in order to represent the behavior of indirect
indexing in the stream descriptor architecture, the UVE exten-
sion describes another type of tuple called indirect descriptor
modifier. It is composed of 3 values, the first and second values
are the target and behaviour of the modifier, just like in the
static descriptor modifier, however the third value of the tuple
is a pointer to the origin data stream. The indirect descriptor
modifier does not need a size value in its tuple since we
are associating the origin stream with the target stream and
consequently the sizes of the target stream depends on the
size of the origin stream. The behavior value of the indirect
stream modifier encodes the following operations:

• add: the displacement value resulting from the origin
stream is added to the target stream parameter each
iteration.

• sub: the displacement value is subtracted to the target
parameter.

• value: sets the target value to the value resulting from the
origin stream.

A visual representation of some examples that illustrate
the use of the static and indirect descriptor modifiers can be
observed in figure 4.

B. Architectural State

Since the UVE extension is at its core a SIMD extension,
it defines two new register files, one composed of vector reg-
isters and another composed of predicate registers. However,
contrary to other SIMD extensions, UVE also defines a stream
interface to the vector instructions due to the fact that the ISA
extension supports data streaming.

1) Vector Register File: The vector register file comprises
32 vector registers, named u0 to u31, analogous to the scalar
register file defined by the RISC-V base ISA. The vector
registers are not limited by the extension to any particular
maximum size, due to the extension adopting a scalable ap-
proach to vector. The only restriction applied to the maximum
size of the vector is that it must be a multiple of the largest
element width allowed, which in this case is 64 bits. However a
minimum size allowed for the vector registers is defined. This
is the case because the vectors are comprised of individual
elements, and the elements widths supported by the extension
are byte(8 bits), half-word(16 bits), word(32 bits) and double
word(64 bits). Consequently the minimum size allowed for
a vector register is the maximum width of the supported
elements, which in the case of the UVE extension is 64 bits. If,
for example, one decides to only support up to 32-bit elements
then the minimum size requirement can be relaxed to 32 bits
since 64-bit wide elements are not supported.

Due to the fact that the vectors are scalable in size, some
additional meta-information needs to be kept for each register
to support the scalable behavior. Consequently, each vector
register holds not only the vector data but also the width of
the elements in the vector and a valid index value. The element
width informs the processor about the widths of the elements
in the vector so it can process them correctly in the execute
stage. The valid index informs the processor about how many
elements in the vector are valid, assuming all valid elements
are contiguous in the vector. By using these two values, each
vector register has the flexibility of processing elements of
different size and also store vectors of different size with the
use of the valid index value. The element width data is encoded
in 2 bits since only 4 possible element widths are available
while the index width depends on the vector length of the
implementation.

2) Predicate Register File: The predicate register file,
contrary to the RISC-V scalar register file and the vector
register file, features only 16 predicate registers, named p0
to p15, however only the first 8 registers, p0 to p7, are
used to predicate arithmetic and regular memory instructions.
The remaining registers, p8 to p15, are used in predicate
instructions that configure values for the first 8 registers or
for context saving if needed. Additionally, predicate register
p0 is hardwired to 1 removing the need for pre-configuration

of a predicate register if normal execution is pretended (no
predication).

1 1 0 0 0 0 1 1

+ + + + + + + +

Predicate
Registers 1 1 1 1 0 0 0 0

+ + + + + + + +

Operand
A

Operand
B

Result

Half Word(16 bit)
Elements

Word(32 bit)
Elements

Fig. 5. Predication Examples.

The width of a single predicate register is dependent of
the size of the vector length of the implementation. In fact,
the data of the predicate register acts as as a byte mask that
selects which lanes should execute and which lanes should
not (no operation), so the precise width of a predicate register
is V ector Length/8. A couple examples of predication using
different element widths are illustrated in figure 5, considering
a vector length of 64 bits. The left example shows a predication
on half word elements and consequently the bits of the
predicate register that are set are always in pairs, since each
bit represents a byte of the vector. With this predicate register,
only the first and last half words of the vector are changed to
the result of the operation (highlighted in green) and the rest
of the half words remain unchanged. In the right example,
the element width is now 32 bits, and the predicate register is
allowing the operation on the first word, but not on the second
word of the vector.

3) Stream Interface: Due to the fact that the UVE extension
provides ISA level support for data streaming, it defines a
streaming interface that must be followed for the correct func-
tioning of the streaming instructions provided. The streaming
interface makes use of the already existing vector register
file, by associating each stream with a specific vector register.
Therefore, when a compute instruction reads or writes to a
specific vector register, if that register is associated with a data
stream, then the instruction consumes or produces, depending
if the stream is a load or store stream, the vector data from or
to the stream. This instruction behavior is destructive, meaning
that if an instruction reads the contents of, for example, vector
register u1 and this register is associated with a load stream,
then the data read is permanently consumed and cannot be
accessed again using the stream interface. If the consumed
data is to be accessed again, then the processor must save it
in an intermediate register or memory address of choice. This
behaviour eliminates the need of dedicated step instructions
for streams since consuming or producing values from/to a
configured stream automatically iterates the associated stream.
Associating each active stream with a vector register provides
advantages due to the fact that no further decoding bits are
necessary in the instructions to read/write to streams and not
exception mechanisms are needed when reading or writing to
a non-configured stream due to the fact that if the stream is not

configured, then the instructions simply reads/writes from/to
the normal vector register is question.

C. Streaming Instructions

Due to the fact that the UVE extension provides support
for ISA level data streaming, it provides a set of instructions
to control the configuration and flow of streams. These in-
structions can be divided into several groups, mainly con-
figuration instructions, stream control instructions and loop
control instructions and allow the user code full control over
the prefetching mechanisms, memory patterns and loop flow.

ss.ld.{b|h|w|d}

ss.st.{b|h|w|d}

Fig. 6. Simple 1D stream configuration instructions.

1) Configuration Instructions: The configuration instruc-
tions give the user access to configuration of a variety of
memory patterns by making use of the descriptors explained in
the previous section. The simplest memory pattern available is
a one dimensional memory pattern but, despite being simple, it
is one of the most common memory patterns and consequently
the UVE extension provides a pair of instructions to define
one dimensional streams, illustrated in figure 6. The ss.ld
instruction creates a load stream following a one dimensional
pattern defined by the tuple values supplied by the user in
the operand registers while the ss.st instruction creates a
store stream. Both instructions require a prefix that provides
information about the element width of the stream to be
configured, b for byte elements, h for half word elements,
w for word elements and d for double word elements.

ss.{ld|st}.sta.{b|h|w|d}

ss.app[.mod|.ind]

ss.end[.mod|.ind]

Fig. 7. Multiple dimension stream configuration instructions.

To make use of the full potential of the hierarchical descrip-
tor model representation of memory patterns explained in the
previous section, mainly multi-dimensional memory patterns
and modifiers, the UVE extension provides access to three
types of stream configuration instructions, represented in figure
7. The instruction ss.sta creates a stream, with direction chosen
by the prefix ld or st, and appends the descriptor associated
to the first dimension, much like the ss.ld or ss.st instructions
explained before, however in this case the stream configuration
is not terminated and more descriptors can be added. To add
more descriptors to the stream in configuration, the user can
make use of both the ss.app and ss.end instructions. This
ss.app instruction appends a descriptor to a stream, with the
option of appending an indirect or static modifier instead if

the prefix .ind or .mod are present, respectively. The ss.end
instruction behaves just like the append instructions, with the
exception that the ss.end instruction signals the termination
of the configuration phase of the stream in question and
consequently no further descriptors or modifiers can be added.

so.b.[n]c

so.b.[n]dc

Fig. 8. Stream loop control instructions.

2) Loop Control Instructions: Data streaming mechanisms
provide the most benefit when used in user code that iterates
over memory addresses using loop code. Consequently the
UVE extension provides instructions to control the flow of
such loops using stream dimension information. Two types
of loop control instructions are provided, in the form of
conditional branches, and each of the types includes a negation
variant using the optional n prefix. The so.b.c instruction
performs a branch operation if the stream in question ended,
while the so.b.dc performs a branch operation if the dimension
of the stream indicated by a register operand ended. By
using this set of loop control instructions, a fine control over
stream data and processing based on stream dimension can be
achieved, analogously to nested for loop behavior.

III. PROPOSED HARDWARE MODIFICATIONS

Scalar
Core

Vector
Accelerator

Peripheral
Controller

L1
Data

Cache

Memory Interface

Stream Engine

Peripherals

L1
Instruction

Cache

CD1

CD1
CD3 CD2

CD2

CD3

Fig. 9. RISC-V Streaming Processing System.

This section will explain in detail the architecture of the new
hardware blocks introduced by this work, mainly the Stream
Engine and Vector Accelerator, which are illustrated in figure
9. The Stream Engine processes streams configured by the
Scalar Core, interfaces with main memory to load or store the
data required, and interfaces with the Vector Accelerator to
produce/consume data to/from SIMD instructions. The Vector
Accelerator provides the necessary hardware to support Single
Instruction Multiple Data instructions and a stream memory
bank to interface with the Stream Engine in order to process
stream data.

Stream Info
Register

Stream
Proccesing

Block

Stream
Memory
Request

Controller

Stream AXI
Request Arbiter

Streaming Block x32

Stream Info
Assembler

Stream Engine

AXI Controller

Request
Fifo

Read

Write

Stream
Info

AXI_Bus

Stream Engine AXI Wrapper

Fig. 10. Stream Engine Component Diagram.

A. Stream Engine

In order to get the full flexibility and performance benefits of
the UVE extension, in particular for processing large amounts
of data, support for the streaming instructions(add a reference
to table with UVE instructions) should be present. With that
goal in mind, a hardware streaming solution was designed and
coupled with both the Scalar Core and Vector Accelerator. The
Scalar Core provides the decoded streaming control signals
from the streaming instructions to the Stream Engine while
the Vector Accelerator implements an interface that allows
sending/receiving data to/from the Stream Engine.

The Stream Engine is composed of 5 main types of hard-
ware blocks, represented in figure 10.The first block is the
Stream Info Assembler, which assembles streaming informa-
tion and saves it in the corresponding Stream Info Register
based on Stream ID. The second and third blocks are the
Stream Processing and Stream Memory Request Controller
blocks, whose function is to calculate stream addresses each
clock cycle and create AXI requests from those addresses,
respectively. The fourth block, Stream AXI Request Arbiter,
manages the access of the several Memory Request Con-
trollers to the Request Fifo. The last block, AXI Controller,
implements a finite state machine that controls load/store
requests to/from main memory via the Advanced eXtensible
Interface(AXI) Protocol [1].

1) Stream Info Assembler: Since we can have streams
defined by multiple streaming instructions, the control signals
for a given stream received each clock cycle need to be
assembled into a Stream Info Register for later use in the
Stream Engine. For this reason, the first stage of the Stream
Engine consists of an assembly block that keeps a record of
stream info until it is ready to be written to the respective
Stream Info Register. To configure a stream, the Stream Info
Assembler block uses the control and data signals, properly
identified in table I.

The signal s start informs the stream engine that a new
stream must be created and that the first descriptor informa-
tion, s baddr, s size and s stride, along with static stream

TABLE I
STREAM INFO ASSEMBLER INPUT SIGNAL TYPES AND WIDTHS.

Signal Type Width(bits)
s start control 1
s append control 1
s end control 1
s id data 5
s ldst data 1
s width data 2
s baddr data 32
s size data 32
s stride data 32

information, such as s id, s ldst and s width, should be stored.
If s append is set, the new descriptor information will be
added to the already created stream with id equal to s id.
Finally, if s end is set, then the last descriptor information is
stored and the stream with id s id is written to the correspond-
ing Stream Info Register and removed from configuration.

2) Stream Processing Block: After a stream is properly
configured in the configuration stage, the resulting data is
written to a Stream Info Register and the contents of this
register are directly connected to the Stream Processing block.
The stream info register holds the required information to
process a stream, information that can be divided into two
groups, stream properties and descriptor information.

Stream property information includes the stream id, stream
type, i.e load or store, and element width while descriptor
information includes the base address, size and stride values
of each descriptor of the stream.

3) Stream Descriptor Update Circuit: The basic informa-
tion block of a stream is the stream descriptor and is composed
of three values:

• base address: address offset
• size: number of elements accessed
• stride: spacing, in number of elements, of two subsequent

accesses to memory
These three values fundamentally describe a 1 dimensional
access to memory where each address can be calculated by

addressi = base address+ i ∗ stride i = 0, ..., size− 1 .
(1)

One can easily implement equation 1 in hardware, resulting
in the circuit illustrated in figure 11. Firstly we implement
multiplication by doing successive addition, using an adder
and an accumulate register for the address signal. Then,
the finished flag of the descriptor can be easily calculated
by keeping track of the iteration number using a register,
incrementing its value every clock cycle and comparing it to
the descriptor size.

The circuit also contemplates a Descriptor Register Bank,
which is a Register File containing all descriptor variables and
counters needed to update a descriptor from the hierarchy each
clock cycle.

4) Stream Descriptor Update FSM: In order for the pro-
cessing block to be complete and compliant with the UVE

A
dder

stride_i

offset_i

r_offset_i

Comparator
(=)

A
dder

A
dder

'1'

counter_i

r_counter_i

d_finished

Descriptor
Register Bank

sel_a

sel_b

Fig. 11. Multiple Descriptor Update Circuit Diagram.

IDLE

LOOP INC UPSTREAM
INC

stream_start = 0

d_finished = 1 & idx =
descriptor_num

stream_start = 1

d_finished = 1 & idx !=
descriptor_num

d_finished = 0

d_finished = 1 & idx =
descriptor_num

d_finished = 0
or stall = 1 d_finished = 0

or stall = 1

Fig. 12. Processing Block Finite State Machine Model.

streaming instructions, a finite state machine was added to
provide not only control signals to the descriptor register bank
in figure 11, but also implement the hierarchical organization
of the stream descriptors described in II. The FSM implements
this behaviour using the following states:

• IDLE: Processing Block is idle and waiting for a stream
to process

• LOOP INC: First descriptor values of the stream being
processed is updated, and an address is produced, each
clock cycle

• UPSTREAM INC: Descriptors higher in the hierarchy
are conditionally updated, depending on if the dimension
associated with the given descriptor finished, providing
new offset values to be used by the first descriptor to
calculate new addresses

5) Stream Memory Request Controller: Section III-A2
explained the process of calculating a single address from
the stream each clock cycle using stream descriptors. These
addresses could be used directly to issue request to main
memory, however in order to use the maximum bandwidth
possible from the bus connecting the Stream Engine to main
memory, a Memory Request Controller was designed and
implemented.

SU
B Comparator

(=)

shifted_stride

Register

address

last_address

diff

is_consecutive

A
D
D
ER

Register
r_size

stride

size

rst

Fig. 13. Memory Request Controller Detection Circuit.

The proposed implementation of the Memory Request Con-
troller uses the fact that consecutive addresses of a stream are
usually correlated, i.e spaced apart by a given stride value and
sends a single request to main memory that loads/stores several
elements using a single base address and stride information.
With this in mind, the circuit illustrated in figure 13 was
designed. The circuit uses the current address, last calculated
address and the first descriptor stride to evaluate if the current
address and last address are consecutive addresses in the
stream, i.e if they are spaced by the stride value. If the
addresses are consecutive, then the Memory Controller will
not send a request to memory, but will instead wait for the
next clock cycle to evaluate the new address. If, however,
the address values are not consecutive, then the Memory
Controller will output a memory request with base address,
size and stride information. One exception to this is when
the first address of a stream is calculated and detected by the
Memory Controller.In this case, since there is no last address
saved, the controller assumes the addresses are consecutive
in order to guarantee the correct behaviour of the system.
When a request is sent, i.e two non consecutive addresses
were detected, the counter that keeps track of the number
of elements in a request is reset, and the current address
will be saved as the base address of the next request. If the
number of elements in a request equals the total width of
the bus that connects the Stream Engine to main memory,
then the Memory Controller will force a request and reset the
appropriate variables. There is one further detail to have in
consideration, which is when the stride value is greater than
the number of elements allowed in a single burst request to
main memory. If this is the case, then the Memory Controller
will send one request to main memory for each address in the
stream.

6) Stream Request Arbiter: The Processing and Request
stages of the Stream Engine have been explained in detail
in sections III-A2 and III-A5 and could be used to directly
connect to memory via AXI interface if only one stream was
processed concurrently. However the UVE extension standard
requires processing of up to 32 streams at the same time. The
issue that arises from concurrent processing of streams is the
arbitration of memory requests. Using the AXI Protocol and a
single memory interface to main memory, only one request

can be made at a time. Since this limitation is present in
the presented system, a request arbiter was integrated into the
design of the Stream Engine.

1 2 3 4

1

2

3

4

X

X

X

X

1 1 1

1 1

1

0

0 0

000

Fig. 14. Internal Matrix Representation Example.

The arbitration scheme used by the Stream Engine Request
Arbiter is the matrix arbitration scheme. This dynamic arbi-
tration scheme guarantees that the master who last used the
common bus will have the lowest priority, using an internal
matrix representation of priorities, illustrated in figure 14 for
a system with 4 masters. If the value at row i, column j is set,
then master i has priority over master j. Each time a request
is served for master i, row i will be set to 0 and values in
column i will be set to 1, ensuring that all masters will have
priority over master i. This arbitration scheme guarantees that
no single stream can have total control of the request bus,
allowing for smooth arbitration between concurrent streams.

7) Stream AXI Controller: The previous sections described
how the Stream Engine configures, processes and manages
requests of streams, yet there is still a need to forward the
requests produced by the engine to main memory. There are
several protocols that one could use to achieve this, and the
choice is dependent of the support of the system in question.
In this implementation the AXI Protocol was used, since
the original system already supported a connection to main
memory via a Xillinx MIG IP, which is configured to use the
AXI Protocol.

AXI IDLE

AXI
READ
ADDR

AXI
WRITE
ADDR

AXI READ

AXI WRITE

AXI
WRITE
RESP

req = 0

req
 =

1 &
 st

 =
1

arvalid = 1 &
arready = 1

!(arvalid = 1 &
arready = 1)

rvalid = 1 &
rready = 1 &

rlast = 1

bvalid = 1 &
bready = 1!(rvalid = 1 &

rready = 1 &
rlast = 1)

wvalid = 1 &
wready = 1 &

wlast = 1

!(bvalid = 1 &
bready = 1)

req = 1 & ld = 1

!(awvalid = 1 &
awready = 1)

awvalid = 1 &
awready = 1

!(wvalid = 1 &
wready = 1 &

wlast = 1)

Fig. 15. AXI Controller Finite State Machine Diagram.

As such, an AXI Controller block was developed and added
to the Stream Engine structure, which implements the finite
state machine model represented in figure 15. This FSM model
implements the handshake model of transactions used by the
AXI interface, using several states:

• AXI IDLE: Wating for AXI Request

• AXI READ ADDR: Exchange of read address and burst
type information

• AXI WRITE ADDR: Exchange of write address and burst
type information

• AXI READ: Exchange of data requested by a read request
• AXI WRITE: Exchange of data requested by a write

request
• AXI WRITE RESP: Exchange of information that indi-

cates the success or failure of a write request
8) Stream Data Input/Output Interface: The Stream Engine

implements a general read and write interface that can be used
by an external block, the Vector Accelerator in this work,
to load and/or store data using streams. The read and write
interface signals were assembled into two separate tables, II
and III, and a small description of the function of each signal
is provided.

TABLE II
STREAM ENGINE READ INTERFACE.

Signal I/O Description

r id out id of the stream that is requesting data
r width out element width of the data being requested
r en out if 1, then the incoming read request is valid
r last out bit that signals the current read request is the last request of the stream
r data in data requested by the stream
r empty in informs the stream engine if there is data to be read

TABLE III
STREAM ENGINE WRITE INTERFACE.

Signal I/O Description

w id out id of the stream that is requesting data
w width out element width of the data being requested
w en out if 1, then the incoming write request is valid
w dim out vector of bits that signal if stream dimensions have finished
w dim wr out if 1, then dimension info is valid
w last out bit that signals the current write request is the last request of the stream
w data out data requested by the external block
w full in informs the stream engine if data can be written

B. Vector Accelerator

Scoreboard

ID

Instruction
Decoder

UnitInstruction

Hazard

Vector
Register

File

Predicate
Register
File

V Ops

P Ops

BCU

ALU

MCU

Br_Ctr

ALU_Ctr

MEM_Ctr

Pred_Ctrl

OP
SEL Ops

Ops

Ops

Ops

Branch

Br_Target

ex_data

mem_req

EX MEM WB

Memory
Queue

Memory
Decoder

Unit

L1 Data
Cache

m
em

_data
ex_data

Vector
Register

File

Predicate
Register

File
m_wb

ex_wb

m_wb

ex_wb

m
em

_data

m
em

_data

ex_data

ex_data

Pred
Unit

Fig. 16. Vector Accelerator Pipeline Diagram.

The Vector Accelerator implements a 4 stage in-order
pipeline architecture that is controller by the Scalar Core via
a asynchronous fifo buffer.It supports a subset of the UVE
extension instructions and as such features programmable
vector width.The simplified diagram of the accelerator pipeline
is illustrated in figure 16.

1) Instruction Decode Stage: The ID stage of the Vector
Accelerator receives the instruction from the Scalar Core
through a fifo instead of an instruction cache or integrated
memory. As such, the ID stage stalls the pipeline if the fifo
is empty, since there are no instructions to decode. If a valid
instruction is ready to be read on the fifo, then the instruction
is decoded and the scoreboard computes if a hazard would
be caused by issuing the instruction. If a hazard is indeed
detected, the ID stage will stall the pipeline and the instruction
will not be read from the fifo since it needs to be available until
the hazard is resolved. The ID stage also controls the Vector
Register File and Predication Register File using decoded
signals from the incoming instructions and provides the values
to the Execute stage.

The Instruction Decode also provides a memory bank,
separate from the Vector Register File, to store data both
incoming and outgoing from/to a stream, that implements
the read and write interfaces of III-A8. The memory bank
is composed of 64 first-in first-out buffers, i.e 2 buffers for
each register in the Vector Register File, since streams can
be of two types, load and store, consequently support both for
read and write support for each component, stream engine and
vector accelerator, is necessary. The data incoming from the
accelerator is directly written/read from the fifo, while stream
data goes trough a write/read controller that assembles vector
sized blocks out of the elements of the stream and writes/reads
these blocks when necessary.

2) Execute Stage: The Execute stage of the pipeline is com-
posed of four different main blocks that operate on different
types of instructions. If a branch instruction was decoded, the
branch target address and branch flag are calculated by the
Branch Control Unit and then shared to the Scalar Core. The
branch and branch values need to be shared to the Scalar Core
since it controls the flow of the program with its IF stage,
which is not present in the Vector Accelerator.

If the decoded instruction is an arithmetic or logic instruc-
tion, then the result is calculated in the Arithmetic Logic Unit
and then predicated using a Predicate Register in the Pred-
ication Unit. Since the Vector Accelerator implements UVE
extension instructions, it requires support for 8, 16 and 32 bit
element width vectors. As such, the ALU supports a variable
width adder and variable width multiplier. The variable width
adder is implemented using 32-bit programmable adders in
paraller, while the variable width multiplier is implemented
using 32-bit programmable multipliers that use the radix-4
algorithm for multiplication.

Lastly, if the decoded instruction is a memory instruction,
then the Memory Control Unit calculates the base address of
the request, the size, in number of elements, of the request and
the remaining control signals needed by the Memory Stage to
perform the request.

3) Memory Stage: The Memory stage of the Vector Accel-
erator employs the same memory queue technique used in the
Scalar Core, i.e the memory requests are first stored in first-in
first-out queue to avoid stalling the pipeline due to the high
latency of memory accesses. In contrary to the Scalar Core, the

memory requests of the Vector Accelerator can have dynamic
size, i.e one request can load/store between one and the max
number of elements of a vector. For that purpose, the Memory
stage provides control bits to the Peripheral Controller that
give information about the element width and size of the
transfer. Using these values the memory stage also calculates
the number of valid elements in the vector, in case of a load
instruction, since this meta information is appended to the
vector in the register file.

4) Write Back Stage: The Write Back stage of the acceler-
ator is composed of two Register Files, i.e the Vector Register
File and the Predicate Register File. The Vector Register File
supports 32 bit registers with programmable size equal to
the vector size desired plus additional meta information. This
meta information is composed of vector width bits and valid
index bits. The Predicate Register File supports 16 registers
were the size, in bits, equals the number of bytes of a vector
in the implementation. Both register files implement a dual
write channel interface, one channel for execute data and one
for memory data, however the memory write interface of the
predicate register is unused in the current implementation.

IV. IMPLEMENTATION

The implementation process of the proposed architecture
was carried out using the Xilinx Vivado tool, version 2019.1
in a Linux environment using the Xilinx Virtex UltraScale+
VCU1525 FPGA [8] and several routines were run to analyse
system area, operating frequency and power requirements.

A. Area Analysis

To analyse the area requirements of the system an utiliza-
tion report was run over the implementation result to obtain
resource utilization values for each of the components of the
system, namely the Scalar Core (including the Instruction
Cache), Peripheral Controller and Cache subsystem, Vector
Accelerator and Stream Engine, which can be observed in
table IV. The component that demands more resources is the
Vector Accelerator due to exploring hardware parallelism by
using multiple lanes of execution. All other components, with
the exception of the complex XDMA IP, require low amount
of resources from the FPGA.

TABLE IV
COMPONENT FPGA RESOURCE USAGE.

Component LUT LUTRAM FF BRAM DSP

Scalar Core 14275 226 19465 0 10
Peripheral Controller+Data Cache 20693 0 10051 1 0
Vector Accelerator 84506 10000 22285 0 0
Stream Engine 35262 1152 39933 0 0
XDMA 72843 5837 69603 124 0
MIG 18282 1729 19299 25 1
AXI Interconnect 18743 5922 29004 0 0

B. Timing Analysis

The implemented system architecture is composed of three
main clock domains required for the four main components of
the system and a few other clocks, mainly the PCIe reference

clock and the MIG clock, mandatory by the design due
to the use of the XDMA and MIG controllers. The Scalar
Core component, which includes the instruction cache of the
system, uses one clock domain, that shall be named as clock
domain 1. The subsystem that contains both the Peripheral
Controller and Data Cache blocks use clock domain 2 and at
last both the Vector Accelerator and the Stream Engine use
clock domain 3. The maximum operating frequencies of these
clock domains were evaluated both isolated and integrated in
the whole system, and the results can be observed in table
V. When isolated, the operating frequencies are higher due to
less resource requirements, more placement possibilities and
routing flexibility.

TABLE V
MAXIMUM OPERATING FREQUENCY RESULTS.

Operating Frequency isolated (Mhz) Operating Frequency in system (Mhz)

Clock Domain 1 170 106
Clock Domain 2 370 115
Clock Domain 3 185 94

C. Power Analysis

The Vivado tool provides the user with a post-
implementation routine that is run on the placed design and
outputs the power consumption of the system as a whole and
its components. Using this feature, the power consumption
of the developed system was analysed and the results are
illustrated, per component, in table VI. As can be seen, 96%
of the power required by the system is focused on the external
blocks, mainly the XDMA controller, MIG controller and
the AXI Interconnect IP. Of the developed components, the
Stream Engine and the Vector Accelerator require the most
power. This is due to the architecture of these hardware blocks,
mainly the fact that they explore hardware parallelism at the
cost of higher resource usage, with the arithmetic lanes of
execution on the Vector Accelerator and the parallel stream
processing blocks in the Stream Engine. The total dynamic
power requirement of the system is obtained by summing the
entries of table VI and equates to 10.061W .

TABLE VI
DYNAMIC POWER REQUIREMENT PER COMPONENT.

Component Power(W) % of total power of the system

Scalar Core 0.084 1
Peripheral Controller+Data Cache 0.074 1
Vector Accelerator 0.208 2
Stream Engine 0.352 3
XDMA 7.037 70
MIG 1.472 15
AXI Interconnect 0.834 8

V. BENCHMARK RESULTS

This section will go over the results obtained by running a
set of benchmarks, namely the Memory Copy, IAXPY and
Matrix Vector Multiplication benchmarks, when simulating
the implemented system, with implemented vector register
length equal to 256 bits and including the memory controllers

for accurate memory latency simulation, using the Xilinx
Vivado application. Further, an energy efficiency analysis of
the system is performed using the Energy Delay Product
metric.

A. Memory Copy

0

2

4

6

8

10

12

14

16

8 32 128 256

Sp
ee

d
u

p

N

Memory Copy Speedup

Fig. 17. Memory Copy kernel speedup.

The Memory Copy benchmark provides an evaluation of
a one dimensional, unitary stride memory access pattern on
the developed architecture. Consequently the benchmark was
evaluated using four different loop size values, where the first
loop size, N = 8, corresponds to moving an entire vector,
and the last loop size, N = 256, loads the exact amount of
data to fill the entire data cache of the system. The speedup
values, represented in figure 17, were obtained by comparing
the execution times of the RISC-V kernel (baseline) with
the UVE kernel. Speedups varying from 8 to 13 times were
achieved when using the vectorized UVE code, due to the use
of data streaming instructions and SIMD instructions, that both
mask the latency of memory operations and increase the data
throughput of the system.

B. IAXPY

0

5

10

15

20

25

8 32 128 256

Sp
ee

d
u

p

N

Scaled Vector Add Speedup

Fig. 18. IAXPY kernel speedup.

Similarly to the Memory Copy benchmark, the IAXPY
kernel also make use of the same one dimensional, unitary
stride memory access pattern, however a key difference exists,
this difference being the use of a multiplication instruction
followed by an add instruction in the loop code. The use
of these instructions, in particular the multiply instruction,
makes this benchmark a more compute bound algorithm than
the memory copy benchmark, allowing for analysis of the
impact of vectorization support on the developed system. The

benchmark was evaluated using the same loop size values as
the memory copy benchmark, due to the fact that they describe
the same memory access pattern and so that the impact of
vectorization can be evaluated by comparing the results of both
benchmarks. Comparing figure 17 to 18, it can be observed
that both graphs follow the same curve, however the IAXPY
speedups are higher across the board, ranging from 14 to 22
times. This is due the the more compute-bound nature of
the IAXPY kernel when compared with the Memory Copy
kernel, and as such, the vectorization of the code provides
more benefits in speedup.

C. Matrix Vector Multiplication

0

2

4

6

8

10

12

14

4 8 12 16

Sp
ee

d
u

p

N

Matrix Vector Mul Speedup

Fig. 19. Matrix Vector Multiplication kernel speedup.

Contrary to the benchmarks so far, the Matrix Vector Multi-
plication algorithm describes a more complex memory access
pattern. In detail, it describes a two dimensional access pattern,
used to load a 2D matrix, and one dimensional access patterns
to load the vectors used in the algorithm. Consequently,
this benchmark provides an evaluation of the impact of data
streaming and code vectorization on more complex access
patterns. The values of N used and the obtained speedups,
ranging from 6 to 12 times, are represented in figure 19.
Contrary to the Memory Copy and IAXPY results, the increase
in loop size provides a greater increase in speedup values, even
in the highest value of N used. This is the case because the
memory access pattern is more complex, consequently the use
of data streaming in the UVE kernel provides more relevant
gains when the memory accesses increase, compared with the
base RISC-V kernel.

D. Energy Efficiency Analysis

To analyse the impact of executing the analysed bench-
marks using the vectorized UVE kernel in relation to the
baseline RISC-V kernel, the Energy Delay Product values
were calculated using the dynamic power requirement of the
system and the execution times of the different benchmarks,
for the highest value of N. From the table, one can observe
that across all benchmarks the values of EDP are lower by 2
orders of magnitude when considering the UVE kernel, with
the UVE/RV ratio ranging from 97 up to 195. This is to be
expected due to the values of speedup obtained by using such
kernel in favor of the base RISC-V kernel and the fact that
the EDP is proportional to the square of the execution time,
consequently benefiting lower execution times in comparison

to lower power requirements. These results also indicate that
the use of the UVE extension for computationally or memory
intensive algorithms, such as the benchmarks used, results in
higher energy efficiency when compared with the use of base
RISC-V code.

TABLE VII
ENERGY DELAY PRODUCT VALUES.

Memory Copy Scaled Vector Addition Matrix Vector Multiplication

EDP RISC-V (Js) 4.23× 10−5 2.04× 10−4 1.50× 10−4

EDP UVE (Js) 4.62× 10−7 1.04× 10−6 1.01× 10−6

VI. CONCLUSION

The development of this work began after the analysis of a
novelty custom SIMD extension, the Unlimited Vector Exten-
sion. This extension provided support for SIMD instructions
that operate on scalable vector length registers, with the added
support of instruction set architecture level support for data
streaming.

Based on the analysis of the extension requirements, a
hardware streaming solution, i.e a Stream Engine, was devel-
oped and coupled with an already existing RISC-V system
composed of a softcore, data cache and memory mapped
peripherals. Subsequently, a Vector Accelerator was introduced
to the system to provide support for the SIMD instructions
provided by the UVE extension.

The complete system was then implemented successfully in
a Xilinx Virtex UltraScale+ VCU 1525 FPGA board and sub-
sequently the performance gains of the system using streaming
and SIMD instructions, when compared to base RISC-V code,
was measured with the use of a set of benchmarks, resulting
in execution of up to 23 times faster and EDP values of up to
195 times lower when using the UVE extension.

REFERENCES

[1] ARM, “AMBA® AXITM and ACETM Protocol Specification,” 2011.
[2] J. M. R. Domingos, “Unlimited Vector Extension with data streaming

support,” Master’s thesis, Instituto Superior Técnico, October 2020.
[3] N. Neves, P. Tomás, and N. Roma, “Efficient Data-Stream Management

for Shared-Memory Many-Core Systems,” International Conference on
Field-Programmable Logic and Applications, 2015.

[4] ——, “Adaptive In-Cache Streaming for Efficient Data Management,”
IEE Transactions on Very large Scale Integration Systems, 2016.

[5] RISC-V, “RISC-V V vector extension,” Available:
https://github.com/riscv/riscv-v-spec, 2020, [Online].

[6] J. F. M. Rodrigues, “Configurable RISC-V Softcore Processor for FPGA
Implementation,” Master’s thesis, Instituto Superior Técnico, November
2019.

[7] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gbrielli,
M. Hornsell, G. Magklis, A. Martinez, N. Premillieu, A. R. A. Reid,
and P. Walker, “The ARM Scalable Vector Extension,” Available:
https://ieeexplore.ieee.org/document/7924233, 2020, [Online].

[8] Xilinx, “Xilinx Virtex UltraScale+ FPGA VCU1525 Acceleration De-
velopment Kit,” Available: https://www.xilinx.com/products/boards-and-
kits/vcu1525-a.html, 2020, [Online].

