
Autogame

Inês Barral Paiva

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Daniel Jorge Viegas Gonçalves

Examination Committee

Chairperson: Prof. Luı́s Manuel Antunes Veiga
Supervisor: Prof. Daniel Jorge Viegas Gonçalves

Member of the Committee: Prof. Daniel Filipe Martins Tavares Mendes

January 2021

Acknowledgments

I would like to thank my parents for their constant love, support, and encouragement throughout the

years. I love you and could not have done this without you.

To my supervisor, Professor Daniel Gonçalves, for his guidance and monitoring, which were essential

to help this project reach its completion. Also, to Tomás Alves and Amir Nabizadeh, for the thorough

reviews and tips in all of this project’s stages.

To Ana, my companion in this adventure, you made this process much more comfortable, pleasant,

and undoubtedly more fun.

To my high school friends, my second family, that were always there when things got rough.

To my teammates from IST’s basketball team, which provided me with so many hours of good times

that helped me maintain my sanity throughout this whole process. And mostly, Catarina, my biggest

cheerleader, thank you for your never-ending help and support.

To my family, and mostly my grandparents, thank you. You showed me the kind of love that I carry

with me in everything I do. Without you, I wouldn’t be where I am today, this is for you.

This project was partly funded by FCT through project GameCourse PTDC/CCI-CIF/30754/2017.

Abstract

Education plays a crucial role in society, shaping young people, and giving them the necessary tools

to accomplish their goals. However, education sometimes fails in giving students motivation and interest

in learning. Gamification provides a solution to this problem. Using gamified elements allows students to

learn in a more engaging and interactive way, motivating them through competition with their colleagues

and themselves.

Multimedia Content Production (MCP) is a Msc. course at Instituto Superior Técnico that has been

using gamification for several years, achieving excellent results and receiving positive feedback from

students. However, the system currently used in this course to provide a gamification experience has

some automation problems, which results in a lot of time wasted by the professors to keep it running

correctly.

This thesis aims to develop AutoGame, a gamified rule-based system that uses rules to act on data

and applies logic to calculate the course’s gamified awards. Autogame was created in the context of

MCP but can be adapted and used in other contexts.

Keywords

Autogame, Gamecourse, Gamerules, Gamification, Gamification in education, Rule-based system.

iii

Resumo

A educação tem um papel basilar no progresso das sociedades humanas, uma vez que transmite aos

jovens o saber fundamental acumulado por gerações, ajudando-os a concretizar os seus projetos de

vida. No entanto, para que os jovens tirem proveito destes recursos educativos têm de estar motiva-

dos. A motivação é uma condição fundamental para que os jovens realmente aprendam, todavia os

educadores nem sempre investem o suficiente neste fator. A gamificação cria uma solução para este

problema, usando elementos de jogos, permite que os alunos aprendam de maneira mais interativa e

cativante, desafiando-se a eles próprios e competindo com os colegas.

Produção de Conteúdos Multimédia é uma cadeira do Mestrado em Engenharia Informática e de

Computadores do Instituto Superior Técnico que utiliza estratégias de gamificação há vários anos, con-

seguindo excelentes resultados e recebendo feedback positivo por parte dos alunos. No entanto, o sis-

tema utilizado para providenciar uma experiência de gamificação tem alguns problemas de automatização

que resulta no investimento de uma grande quantidade de tempo por parte dos professores.

O estudo desenvolvido no âmbito desta tese teve como objetivo o desenvolvimento do Autogame, um

sistema de regras que atua usando lógica sobre um conjunto de dados: os introduzidos pelo professor

e os gerados pela atuação dos alunos. Calculando assim os prémios desbloqueados pelos alunos de

maneira automática, o que permite manter um fluxo constante de informação entre os intervenientes

no processo educativo. Este sistema foi criado para PCM, mas poderá ser adaptado para ser utilizado

noutros contextos.

Palavras Chave

Autogame, Gamecourse, Gamerules, Gamificação, Gamificação na educação, sistema baseado em

regras.

v

Contents

1 Introduction 1

1.1 Objectives . 4

1.2 Document Structure . 4

2 Related work 7

2.1 Non-visual rule systems . 9

2.1.1 Propositional statements . 9

2.1.2 Natural Language Processing . 10

2.1.3 Audio . 11

2.2 Visual rule systems . 12

2.2.1 Flowcharts . 12

2.2.2 Matrices . 13

2.2.3 Drag and drop . 14

2.2.4 Rule Editor . 15

2.3 Gamification . 17

2.4 Discussion . 19

3 Gamecourse 21

3.1 Architecture . 23

3.2 Database . 24

3.3 Expression Language . 25

3.4 Modules . 25

4 Gamerules 27

4.1 Rules . 29

4.2 Rule parser . 30

4.3 Gamerules’ input and output . 31

4.4 Gamerules Procedure . 32

4.5 Issues . 33

vii

5 Autogame 35

5.1 Upgrading to python 3 . 38

5.2 From text files to database . 38

5.3 Communication with Gamecourse . 39

5.4 Changing rule parser . 41

5.5 Getting system’s targets . 42

5.6 Grade retractions . 43

5.7 MCP’s configuration . 45

5.7.1 Configurations . 45

5.7.2 Rules . 45

5.7.2.A Badge rules . 46

5.7.2.B Skill rules . 47

5.7.2.C Grade rules . 48

5.7.2.D Other rules . 49

5.7.3 Auxiliary functions . 49

6 Evaluation 53

6.1 Correctness tests . 55

6.2 Performance tests . 57

6.2.1 Increasing system’s targets . 57

6.2.2 Increasing system’s rules . 58

6.2.3 Discussion . 59

7 Conclusion 61

7.1 Future work . 63

A Gamecourse’s entity-relationship model 69

B MCP’s rules 71

viii

List of Figures

2.1 Decomposition of rule: if (X1 ∧ X2) ∨ X3 then Y1 ∨ Y2. 10

2.2 Framework with rules describing car rental requirements extracted from text. 11

2.3 Example of rules from Medication Review Robot. 12

2.4 Scheme of data-flow visual language. 13

2.5 Matrix rule editor from FuzzyTECH. 14

2.6 Example of rule creation using drag and drop. 15

2.7 Visual rule editor used in tourism. 16

2.8 Rule Editor used in the Internet of Things. 17

2.9 PCM student’s profile on Smartboards. 18

2.10 PCM leaderboard. 18

3.1 GameCourse’s architecture [1] . 24

3.2 Examples of functions from Gamecourse’s expression language. 25

3.3 Available modules for Gamecourse. 26

4.1 Generic rule used in Gamerules. 29

4.2 Gamerules rule: Proeficient Tool User badge. 30

5.1 Autogame’s architecture. 37

5.2 Gamecourse’s Entity-relationship model - small version. 39

5.3 Autogame table. 41

5.4 Amphitheatre Lover badge rule. 47

5.5 Cartoonist skill rule. 48

5.6 Laboratory grade rule. 49

5.7 Initial Bonus rule. 49

6.1 System’s characteristics when increasing the number of targets, with 49 rules. 58

6.2 System’s characteristics when increasing the number of rules, with 100 targets. 59

ix

A.1 Gamecourse’s Entity-Relationship Model. 70

x

List of Tables

2.1 Rule editing approaches’ characteristics. 19

4.1 Gamerules’s auxilar functions for MCP. 31

5.1 Autogame’s auxilar functions for MCP. 51

6.1 Badges that were awarded for a different number of students for both systems. 56

6.2 System’s running time (s) and memory usage peak (MiB) when increasing the number of

targets, with 49 rules. 58

6.3 System’s running time (s) and memory usage peak (MiB) when increasing the number of

rules, with 100 targets. 59

xi

xii

Listings

B.1 Badge rules . 72

B.2 Skill rules . 81

B.3 Grade rules . 87

B.4 Other rules . 88

xiii

xiv

Acronyms

MCP Multimedia Content Production

IST Instituto Superior Técnico

LMS Learning Management System

SWRL Semantic Web Rule Language

RDR Ripple Down Rules

NLP Natural Language Processing

RPC Remote Procedure Call

TCP Transmission Control Protocol

XP Experience Points

UI User Interface

QR Quick Response

xv

xvi

1
Introduction

Contents

1.1 Objectives . 4

1.2 Document Structure . 4

1

2

Education plays a crucial role in society, shaping young people, and giving them the necessary tools

to help them achieve their goals. Being such an important part of human life, education has suffered

and continues to suffer a considerable evolution, as we try to keep on improving it, finding new methods

to make it as efficient as possible. One of the main flaws of the educational system nowadays is that it

is often not motivational enough for students, making them uninterested in learning. Gamification is a

strategy that utilizes gaming elements in non-gamified contexts, one of these contexts being education,

and it provides a whole new learning experience. This method relies on giving experience points to

students for completing specific tasks. It has been used in computer science courses and has proven to

be a great way to motivate students to learn and to give their best, giving them friendly competition and

rewarding them for their effort. Besides, it also helps the professors track their students better, providing

more detailed information about what their students have been doing in the course.

Multimedia Content Production (MCP) is a course in the Information Systems and Computer En-

gineering Master in Instituto Superior Técnico (IST). This course has been using gamification as its

primary learning method for several years and has been the subject of many studies that aim to under-

stand the impact of gamification on students’ motivation and behavior. For this purpose, it was created

a platform called Gamecourse that works with other external sources: Moodle 1, GoogleSheets 2, I am

here [2], a Quick Response (QR) module and Smartboards [3]. This platform allows students to interact

with the course, submit their works, and check their progress. Everything is graded using Experience

Points (XP), and there are online tasks (such as skill tree, and forums) and tasks that can only be done

in class (such as quizzes, attendances, and answering questions). Also, students can decide which

tasks they want to do and in which order they want to do them. As said above, there is a leader board in

Smartboards [3], which displays each student’s current progress, from the one with more XP to the one

with less, allowing them to compare themselves with their peers. In the leader board, it is also possible

to access the student’s profiles and see where they got their points from, the badges they have gathered,

and the skills from the skill tree they have completed.

Although this has shown excellent results throughout the years, there are still many things to improve

to make this course even better, more automated, and more adaptable to the different kinds of students.

Nowadays, to calculate the course’s awards (badges, grades, and completed skills), a teacher must

manually run a script and upload its result to the leader board where the students can access it. The

automation of this platform will be the focus of this thesis, and for that purpose, it will be created a

rule-based system to calculate the course’s awards.

1https://moodle.org/?lang=pt
2https://www.google.com/sheets/about/

3

https://moodle.org/?lang=pt
https://www.google.com/sheets/about/

1.1 Objectives

In its current state, the platform used on MCP requires a lot of steps to assign awards to the students

and flow the information between Moodle and the Leaderboard. A teacher must download data from the

four different external sources, use it to run a script that calculates the awards, and upload its output to

the leader board. Doing this requires a lot of time for the professors, and it’s not an efficient process.

This thesis’s goal is to create AutoGame, a rule-based system that retrieves data from Gamecourse,

acts on it by calculating the students’ awards, and uploads the results back to Gamecourse. Autogame

is going to be used for MCP to make the process of calculating awards more automated, but can also

be adapted to be used in other similar courses. The requirements for this system are the following:

• Automatic: automation is one of the most important requirements for the new system that will

be developed. As previously stated, it requires many steps for the faculty of MCP to work with

Gamecourse. The new system, AutoGame, should run automatically, collecting and processing all

the data necessary.

• Incremental: in its current state, the system being used processes all the data every time the

faculty runs the scripts, which wastes time and resources. The new system should have the

capacity to distinguish data that has been processed from new data.

• Efficient: efficiency is an essential aspect of any technology system. The currently used system

lacks efficiency because it takes a long time to update data and requires a lot of work to do so.

With the use of a rule-based system, it will be possible to achieve better performance by applying

rules only when changes have been made.

• Grade retractions: sometimes professors may want to change something in the system, such as

a grade, which would change the results of a rule that had been applied previously. Autogame

must allow users to make changes and must know how to deal with them.

1.2 Document Structure

This document will be divided in the following sections:

• Section 2, Related Work: brief explanation of the concept of gamification and its use in the

context of education, specifically in MCP. In depth study of rule-based systems and the different

approaches that can be used in the creation of rules, with an analysis of its usability and interfaces.

Discussion of the research and how it will impact our solution.

• Section 3, Gamecourse: description of what Gamecourse is and how it works, specifically the

parts that are most important for Autogame.

4

• Section 4, Gamerules: description of what Gamerules is and how we will use it as a basis for

Autogame.

• Section 5, Autogame: detailed description about the thesis implementation and its functionalities

and features. List of how each problem was solved and how the requirements proposed were met.

• Section 6, Evaluation: assessment of the system’s outputs and performance. Description of the

methods used to evaluate Autogame and its results.

• Section 7, Conclusions: Final remarks about the work and what could be done in the future to

improve it.

• Appendix A, Entitity-Relationship Model: Complete Entity-Relationship Model for Gamecourse’s

database

• Appendix B, MCP’s rules: List of the rules created for MCP.

5

6

2
Related work

Contents

2.1 Non-visual rule systems . 9

2.2 Visual rule systems . 12

2.3 Gamification . 17

2.4 Discussion . 19

7

8

To deal with the gamification features of the course, MCP uses Gamecourse. This platform interacts

with other external sources to provide students with a good gamification experience. A part of that, there

is a set of scripts that have to be run manually by the teachers to calculate the course’s awards. So, to

make the flow of information inside Gamecourse to be as automated as possible, a rule-based system

must be created.

A rule-based system helps apply knowledge most efficiently and correctly, teaching systems how to

act when certain conditions are met. These systems have shown results in very different areas such as

medicine, helping diagnose multiple sclerosis [4] and tuberculosis [5], and in other areas, for example,

in the integration of information in onboard devices [6].

This section aims to analyze the different kinds of rule-based systems and their advantages and

disadvantages. It is also essential to understand how the system allows the user to create, edit, and

delete rules and require expert knowledge to use. For this study, we divided rule-based systems into two

different categories: visual and non-visual. These categories refer to how the rules are created within

the system.

2.1 Non-visual rule systems

This section describes the non-visual ways of creating rule-based systems: propositional statements,

audio, and Natural Language Processing (NLP). These methods are detailed in the following sub-

sections, along with examples.

2.1.1 Propositional statements

A propositional statement is the most basic way of representing a rule, where the rule has a format

like ”IF this condition occurs THEN this happens”. Using this method, it is possible to create rules with

all kinds of complexity levels, from ones with one condition and one conclusion to ones with multiple

conditions. Although this is a straightforward way of representing a rule, this can become very confusing

with the increase of the rule’s complexity.

Propositional statements have been used in the military to help control a weapon system of systems

[7]. In this case, a rule-based system was created to help teach military commanders to make fair

use of weapon systems. To create this, it was used a knowledge base and a rule base, which could

be edited by the administrators, making this a scalable and flexible system. There are five categories

of rules: target-matching, environment-matching, performance-constraint, equipment-combination, and

evaluation-analysis. These rules are written using the following structure:

IF X1 AND X2 AND... AND Xn THEN Y1 OR Y2

9

Where X1, X2, Xn, Y1, and Y2 are states of targets, equipment, and the environment. To help

simplify the rules created, every rule that has an ”or” is decomposed into other more straightforward

rules that only contain ”and” and implications (Fig.2.1).

Figure 2.1: Decomposition of rule: if (X1 ∧ X2) ∨ X3 then Y1 ∨ Y2.

An example of a rule that could be created using this system is:

IF IsDay − time(DetectT ime) AND IsTarget(PowerP lant)

THENPowerP lantDetected(True)

This system has helped automate the weapon systems and has made its use more correct and

efficient. However, as previously stated, it has a scalability problem, making it very difficult to create

more complex rules. On the other hand, it is very straightforward and easy to understand because the

rule almost describes itself.

2.1.2 Natural Language Processing

NLP uses linguistics and artificial intelligence to extract information from text [8]. This can also be applied

to our case, allowing users to write the rules in their own language, using their vocabulary. Although it

can be an excellent alternative to facilitate the creation of rules, NLP techniques are still in a research

phase, meaning that they are not entirely reliable and are still limited [9]. Using text can be an easier

way to make sure that all users can understand and interact with the system. Yet, at the same time, it

can make it confusing and not usable in mobile devices, which would need something more compact

than a whole text to represent a rule.

This method has been used in a framework that extracts rules from online text [10], which uses NLP

and text mining methods to acquire knowledge from the internet and encode it as rules. This framework

uses existing knowledge about a particular domain, including core concepts and deductive relationships

to extract rules. The rules are created using Semantic Web Rule Language (SWRL), which is a language

used to express rules and logic. Rules are composed of a head and a body, which are then formed by

10

atoms that are predefined types of words. To find dependencies in the text the framework uses the

Stanford Parser 1 to analyze grammatical relationships. After finding the dependencies, the system

finds the correspondent classes, and finally, it can start assembling rules. Using the previously found

relationships the framework produces a chain of atoms that represent the rule. In Fig. 2.2 we show you

an example of a framework that uses NLP to extract rules from text.

Figure 2.2: Framework with rules describing car rental requirements extracted from text.

2.1.3 Audio

The use of audio interfaces is a subject that is starting to gain relevance in artificial intelligence, with

the appearance of applications such as Siri and Alexa. D’este et al. have created a medication review

robot [11] to monitor the medication and condition of aged patients using a rule-based system that

uses audio. The robot receives information from the patient, takes sensor readings, uses the data

gathered to make inferences using the expert knowledge system, and then provides the conclusions

to the patient. The robot can consider the patient’s changing condition, consult the medication review,

and give recommendations like eating something when the patient has low blood sugar, reminding them

to taker their medications or reduce medication. For all of this to be possible, an expert system called

Ripple Down Rules (RDR) was implemented. RDR is a method of incrementally adding rules from batch

and online learning to form a knowledge base. This is an excellent method to implement in a robot

because it is simple enough to work with, and it is continuously updated using the robot’s interactions

with its environment.

To perform a medication review, the robot asks specific questions. It takes the patient’s answers as

input, which it analyses using context awareness and finding the keywords related to the question that

was asked. The patient’s responses are used to update their medical record, and if necessary new

1https://nlp.stanford.edu/software/lex-parser.shtml

11

https://nlp.stanford.edu/software/lex-parser.shtml

rules are created. Once all the questions are answered and the robot has the necessary information,

it attempts to match said information with the existing rules’ conditions. Finally, the robot makes rec-

ommendations based on the rules in which the conditions were met. In fact, the rule system created

by the robot uses basic propositional statements (Fig. 2.3), but since it is created using speech-to-text

recognition, it made sense to separate it in a new section.

Figure 2.3: Example of rules from Medication Review Robot.

2.2 Visual rule systems

In this section, we explain visual approaches to create rules in a rule-based system and give an example

for each of the approaches. We enumerate each method’s advantages and disadvantages and use this

information to decide which features are relevant to our project.

2.2.1 Flowcharts

A flowchart is a type of diagram that describes an algorithm step-by-step, referring to every possibil-

ity and giving all of them a path that the system should follow if the corresponding condition is met.

Given that this representation is so simple and provides such a clear path to follow in each situation

that may appear, flowcharts are very popular in computer science. It has even been used in teaching

programming [12].

The use of flowcharts to create rules provides a more visual representation. In the flowchart, each

box represents a part of the rule that can be connected to other parts of the rule using a logic link. Each

logic link comes from a condition and will be connected to a box with a different shape, representing

the result of the condition being met. Using this method, the user can create rules with all kinds of

complexity. Although this is a visual representation and is easy and natural to understand, it has the

disadvantage of requiring a certain level of abstraction that undergraduate users do not have.

12

The use of flowcharts to create rule has been implemented [13] and analyzed. In this case, two

methods to visually build rules have been tried.

The first one (Fig. 2.4) has condition blocks, test blocks, and three different productions. There is

also a Condition Collector (CC) that analyses the inputs and determines if it is possible to apply the

rule. List L is a container for information on past and present actions. There is also a Conflict Set Solver

(CSS) block, which has various types and is used to choose which one of the three production exemplars

should be activated. Add (ADD) and delete (DEL) blocks are used to add/delete a symbolic structure

from memory. Finally, there are also merge blocks (MERGE and LM, list merge).

The second one does not use Condition Collector blocks because list L will be analyzed and modified

by condition and test blocks throughout the scheme in a distributed manner. This will make necessary

the repetition of conditions, but it will make it easier to identify and modify conditions.

Figure 2.4: Scheme of data-flow visual language.

2.2.2 Matrices

Matrices are an alternative way to create a clear visual representation of a rule. There are two inputs, one

represented in the rows and the other in the columns. The output for each pair of inputs is represented

in the corresponding cell. This method has the upside of forcing the rule base’s completeness because

each cell should be filled, meaning that every scenario is covered. On the other hand, it has the downside

13

of only allowing two inputs simultaneously, which makes it impossible for the user to create more complex

rules that depend on more than two variables. FuzzyTECH software supports different kinds of rule

editors, being one of them a matrix rule editor. The matrix rule editor window (Fig. 2.5) displays the

two variables and the matrix representing the relation between them. Each white square of the matrix

represents a rule, and the black ones represent rules that have not been defined yet. The user can

define a new rule by double-clicking the corresponding white square and can delete an existing rule by

double-clicking its black square. There are three lists with the IF and THEN statements’ values at the

bottom of the editor window. The selected rule is indicated by a red square in the matrix and a red

highlight in the lists’ respective lines. The user can also add a weight to each rule by changing the field

”Degree Support”, where a value of zero represents an implausible rule, and a value of 100 represents

an entirely plausible rule.

Figure 2.5: Matrix rule editor from FuzzyTECH.

2.2.3 Drag and drop

Drag and drop method [14] for creating rules uses a “filling in the blanks” design, where the possible

inputs and outputs for the system have been previously created. The user produces rules by choosing

its general form, and then it is possible to move the different parts of the rule or add operators, which

increases the complexity of the rule. Then, the user must fill in blanks with propositions to complete the

rule. To ensure that the user has some guidance during this procedure it was created a tool to show

possible actions, called feedforwards, and a tool to help the user achieve a result based on his last

action, called feedbacks. To add a rule, the user has to click the plus sign, and the rule being edited will

14

be highlighted. Then, the user has to select the proposition blank which will make a pie menu appear to

select the type of proposition which has two possible forms: magnitude OF input IS adjective; or input

EQUALS value. The customizable terms of the rule (magnitude, input, adjective, and value) can be

changed using one item from a list of options. Adding operators works in a similar way, the user clicks

on the operator blank, and a pie menu will appear with the possible options.

This rule editor is as generic as possible, so it can be adapted and used in different domains and by

different kinds of users, just by changing the basic inputs and outputs that the system works with.

Figure 2.6: Example of rule creation using drag and drop.

2.2.4 Rule Editor

Another method studied is a rule editor that provides a more visual way to create rules. This has

been used in tourism [15] by textitBalticMuseums: Love IT! international project 2 which has an e-guide

gamification web service for tourists. The visual rule editor was created to help the addition, view,

modification, and deletion of rules for this service, which tourists can use on their mobile devices. The

editor (Fig. 2.7) is pretty simple and clearly separates the rules into three parts: name, conditions, and

results. The conditions and results are specified next to the rule’s name and there can be as many as

the designer wants. There are buttons to edit a rule, add a new one, and to add conditions and results.

When editing a condition, the designer has to specify the variable that will be used, the comparison

operator, and the threshold for the condition. When editing a result, the designer has to specify the type

of result that can be a badge, points, or even text, and then choose the badge, text, or number of points

given to the user.

A rule editor has also been used in a project regarding the Internet of Things [16]. Here, the au-

thors defend that objects have events, states that can be used as conditions and methods representing

2http://bmloveit.usz.edu.pl/

15

http://bmloveit.usz.edu.pl/

Figure 2.7: Visual rule editor used in tourism.

the results or actions. A workshop was organized with the project’s stakeholders to decide the most

appropriate way to represent this, and the results and feedback were documented.

First, the editor was created using paper, where the user had to create a rule by choosing the

variables (in this case, objects) used in the IF, WHILE, and THEN area. Then, in the edit menu, the

user had to specify each area’s details, what was happening or should happen to the objects being

analyzed. Finally, after defining a description, the rule could be saved in the list of existing rules.

After the tests with paper, it was created a rule editor implemented in Javascript 3. On this rule editor,

the rules can be aggregated into tasks, and each rule has one or more IF clauses, zero or more WHILE

clauses, and one or more THEN clauses. The editor has a list of all the existing rules. Each rule has a

symbol of the object associated with it, the name of the object’s location, and a description of the rule’s

conditions and results. On the editing interface (Fig.2.8) there is a tab for object, condition, and result,

and in each tab, the user has to drag and drop the available components, which are shown in each

tab, to the grey slots available. When a component is dropped on a grey slot, the user has to choose a

template and add the clause’s missing parameters.

3https://developer.mozilla.org/pt-PT/docs/Web/JavaScript

16

https://developer.mozilla.org/pt-PT/docs/Web/JavaScript

Figure 2.8: Rule Editor used in the Internet of Things.

2.3 Gamification

As previously stated, gamification has been a subject of study as a learning method and has shown

promising results in motivating students. This happens because games are interactive and engaging,

something that education lacks sometimes. Gamification tries to combine gaming features and educa-

tion, making it more interesting for students. Competition, the feeling of accomplishment and improve-

ment, and receiving feedback and rewards for effort motivates students and drives them to be better.

MCP consists of a semester-long MSc course in the Information Systems and Computer Engineering

degree at IST and will be the primary environment of this thesis. This course has been using gamification

for the last several years and is an excellent example of how it can motivate students [17], clearly showing

promising results in increasing motivation and participation. It uses six game elements: XP, levels, a

leaderboard, challenges, badges, and a skill tree. Students are awarded XP for completing course tasks

and can track their progress (Fig. 2.9) and their colleagues’ progress using the leaderboard (Fig. 2.10),

which was created using Smartboards [3]. Badges are given for achieving certain goals and the skill

tree is composed by a set of tasks that the students can complete to earn more points. The way the

course was created provides competition by providing feedback through points and badges, autonomy

by offering different ways to reach higher levels, and relatedness by using forums that create a sense of

community. When comparing the non-gamified version of the course with the gamified one, the teachers

concluded that the results got better in the later, with an increase of participation and activeness.

17

Figure 2.9: PCM student’s profile on Smartboards.

Figure 2.10: PCM leaderboard.

Apart from MCP, there have been other studies where gamification has shown promising results

in software engineering courses [18], providing various challenges through the weeks and assessing

what the students have learned each week, concluding that the topic that was part of the challenge that

week was the topic that students engaged more with. This is because gamification provides rewards,

challenges, achievements, learning, motivation, and user engagement.

Gamification was also use in other areas such as: Improving viewers engagement in TV commercials

18

[19], breast cancer diagnosis [20] and smartphone applications [21].

2.4 Discussion

Rule-based systems have been in use for several years and have shown excellent results, using an

inference engine and a rule base to analyze facts and act on them. The study in Section 2 helped identify

different ways of creating rules and understand them by analyzing real examples. These examples

helped understand which are the main advantages and disadvantages of using each of the methods

studied. Although there are many ways of creating these systems, few examples of these approaches

are used in some cases.

Table 2.1 analyzed some crucial characteristics and whether or not the methods studied had them.

First, having a visual approach when creating rules can make it easier for people to interact with the

system. Also, allowing multiple inputs is essential for the system created because working with only two,

like in the matrices, will prevent the creation of more complex rules. Then, intuitivity, which we related

with if it was easy or not for people outside of the computer engineering area to use the system, it was

concluded that propositional statements and flowcharts failed in this case. Another aspect that could be

interesting to implement is using a tool that gives the user possible ways to complete the rules based on

other rules already created. In this case, both drag and drop and rule editor approaches covered this.

Finally, in the use of these methods in touch devices, some cannot be used because of the complexity

of the schemes requiring bigger screens.

Table 2.1: Rule editing approaches’ characteristics.

Visual Multiple Inputs Expert Knowledge Autocomplete
Propositional
Statements x x

Natural Language
Processing x x

Audio x x
Flowcharts x x
Matrices x x
Drag and Drop x x x
Rule Editor x x x

In our case, we will be using a visual approach with a rule editor because it does not require program-

ming skills to create rules, allowing the end-user to create and edit rules without having the technical

knowledge that some of the other approaches require. Also, a graphical approach should be easy to

learn and use, giving the user almost step-by-step guidance on how to proceed. It is essential to make

sure that the editor that will be created allows for multiple inputs, and that it has an auto-complete feature

that helps create new rules.

Another thing that will be explored is implementing a way for the system to deal with grade retractions,

19

which is a feature that was not mentioned in any of the articles studied, but it is essential in our case.

Some of the rules will depend on the teacher’s grades, and this feature will make sure that the system

undoes actions and performs changes whenever these grades change.

20

3
Gamecourse

Contents

3.1 Architecture . 23

3.2 Database . 24

3.3 Expression Language . 25

3.4 Modules . 25

21

22

Gamecourse is a platform, developed in PHP 1, that was created to support MCP and its gamification

features. It represents the link between teacher and students, and it is where all the information regarding

the course is stored. It allows students to share their work with others, receive grades, check their

progress, among other things.

In the beginning, Gamecourse consisted of a set of static web pages that were generated by a script

that had to be manually run and that displayed the game elements of MCP [22]. In 2013, an MSc

student started working on a web application to replace this script as his MSc project, but it was never

finished [23]. Then, in 2016 André Baltazar developed SmartBoards, a web application composed of a

leaderboard and profile pages for the students that allowed for customization. Three years later, Alice

Dourado improved the system by making it more flexible, scalable, and configurable, which allowed it

to be applied to courses other than MCP [24]. In the same year, Matilde Nascimento created a web

application that allowed teachers to keep track of the students that attended lectures [2]. Nowadays,

apart from myself, two other MSc students are working on this platform, Diana Lopes on the back-end [1]

and Patrı́cia Silva on the front-end [25]. In this chapter, we will explain the aspects of GameCourse that

were important to our system, and in chapter 5, we will explain how both of them interact.

3.1 Architecture

Gamecourse consists of a system that works with a set of web applications that work together to provide

a good gamification experience for MCP students (Fig. 3.1). These applications are the following:

• GoogleSheets: spreadsheet where each sheet is reserved for a teacher. Sometimes teachers

must give a grade or a badge manually, so this is where they will do it.

• Moodle: is a free and open-source Learning Management System (LMS) that is used in MCP as a

place for students to share works, receive grades, participate in forums, and answer quizzes.

• ClassCheck: it is a web application developed by Matilde Nascimento [2] to help teachers keep

track of the students that attend lectures by giving students a code composed of letters and num-

bers to confirm their attendance.

• Moodle: learning platform where students publish their works, receive grades and complete quizzes.

• QR module: application used to store the participations that the students have in class. Any time

a student answers one of the teacher’s questions the teacher gives the student a QR code that

should be redeemed and will enter the system as a participation in class.

1https://www.php.net/

23

https://www.php.net/

Each of the applications has a specific plugin created by Diana Lopes [1] that retrieves data from them

and stores it in a relational database. Apart from these applications, there is also Smartboards. To

provide the necessary information to fill SmartBoards, a teacher must run a script that uses a set of

text files as input and generates a new file with all the awards that were unlocked by the students. This

process has to be performed manually, which wastes the professors’ time. Furthermore, it runs all the

data from the beginning of the semester every time that it runs, which is very inefficient.

Figure 3.1: GameCourse’s architecture [1]

3.2 Database

One of the main components of GameCourse is a database that stores all the information regarding

the courses created. This database consists of tables that can either regard the system’s essential

components or be related to specific modules. The main tables are automatically created by the system

when the course is created, while the tables related to specific modules will only be created when the

module is enabled.

Although some of the tables are filled automatically, one of the main ones, which is the one that

stores all the information from the external sources, requires a few extra steps. First, the administrator

has to enable the plugin module, which allows the system to retrieve data from the data sources. It

24

is then necessary to set a periodicity and configure each of the plugins needed for the course. After

performing these steps, the system is ready to retrieve information from its sources. This information will

consist of all the data that may be important for calculating awards for the students. From ClassCheck,

the system will retrieve attendances; from Moodle, it will retrieve posts and grades from quizzes and

skills; from the QR module, it will retrieve students’ participations in class; finally, from GoogleSheets, it

will retrieve any other grade or badge that the teachers need to award manually. This data is stored in a

table called participation. Each one of the lines in this table refers to an action performed by a student for

a course. From now on, every time we mention the term participation, we are referring to one of these

actions. In Appendix A we provide a full version of Gamecourse’s database entity-relationship model.

3.3 Expression Language

Gamecourse has its own expression language, created to be a uniform and versatile way of interacting

with the system’s different modules. This language is structured with libraries, each with its functions.

Some of these functions are always available because they are related to the system’s basic concepts,

whereas others only become available after the corresponding module is enabled for the course.

The expression language is described in a dictionary (Fig. 3.2) that has a list of all the libraries

and functions available for a course, along with information about the functions, such as its arguments,

definitions, keywords, respective libraries, and what data type it returns.

Figure 3.2: Examples of functions from Gamecourse’s expression language.

3.4 Modules

Gamecourse allows the use of a set of modules (Fig. 3.3), which can increase the complexity of the

course’s gamification experience. The administrator of the course has the power to enable or disable

the modules as he sees fit. Some modules require other modules to be enabled, and enabling a module

adds more functionalities to the course’s platform by allowing more features to the game. That is why

Gamecourse automatically adapts itself to make sure that it can handle the increased complexity by

changing the database and adding new functions to the expression language. For each module, there is

a configuration page where the administrator can define its essential features and configure the module’s

25

view (i.e., how the module’s page is presented to the users).

Figure 3.3: Available modules for Gamecourse.

26

4
Gamerules

Contents

4.1 Rules . 29

4.2 Rule parser . 30

4.3 Gamerules’ input and output . 31

4.4 Gamerules Procedure . 32

4.5 Issues . 33

27

28

Gamerules is a rule system that was developed in Python 1 by an MSc student from IST, as a project

thesis, but was never finished. This project’s objective was to create a rule system that would substitute

the script that was being used for MCP, a gamified course, to calculate the course’s awards. This was

necessary in order to make the system more automatic and efficient.

Although this was never finished, the system created already had a few essential features imple-

mented that would later be very helpful for Autogame. This chapter will explain further and in detail how

Gamerules works and some of its most important features.

4.1 Rules

A rule-based system is a system that applies human-made rules to manipulate data. Gamerules, being

a rule-based system, requires the creation of a set of rules to work with. These rules consist of text files,

each containing a rule that follows a specific structure (Fig. 4.1).

Figure 4.1: Generic rule used in Gamerules.

As shown in Fig. 4.1 rules are composed by four parts:

• Name: it is the name of the rule. This is very important because there are functions that refer to

specific rules by using its name.

• Description: it only exists to make the rule more readable. The system will not do anything with

this information.

• When: it is composed of assignment statements and precondition statements. The preconditions

need to be fulfilled in order to fire the effects of the rule

• Then: it is a set of one or more effects that should happen if the preconditions are met.
1https://www.python.org/

29

https://www.python.org/

Although Gamerules was never finished, João Rego, its developer, had already created a set of rules

with the intent of using them for MCP. This set of rules is composed of 25 rules that refer to the course’s

badges. However, some of them are incomplete and do not work correctly. In Fig. 4.2 we provide the

code for the Proeficient Tool User badge as an example of a rule that was part of Gamerules.

Figure 4.2: Gamerules rule: Proeficient Tool User badge.

A rule is composed of a set of assignments, functions, and conditions. Any assignment that is done

on the when block can also be used in the then block. Functions used in the rule’s body, such as

filter grades and award achievements, have to be defined using a particular decorator, which will be

explained in the next section. In this case, the rule uses the filter grades function to filter the awards

that are important for this badge. It will then compute the badge level by using one of the outputs of the

function used. After, it checks if the condition is true, and finally, if it is, it will award the badge.

4.2 Rule parser

After creating the rules, the system must know how to interpret them. This is where the rule parser

comes in. The rule parser is responsible for going through every character of the rule and separating it

in name, description, when and then. To accomplish this, the parser looks for keywords. First, it saves

everything after ”rule:” as the rule name. Then, it ignores every comment because this is not necessary

for any calculation. The conditions are everything that comes after ”when:” and are saved and compiled

one by one. And finally, as for the effects, it looks for everything after ”then:”.

Given the fact that this parser works by analysing the rule file character by character and compiling

each line of the then and when blocks separately, it doesn’t have previous knowledge. This means that

it cannot run statements that occupy more than one line, such as for and while loops. However, the user

can easily go around this by creating new functions anytime a rule needs more complicated code than

what the rule parser can deal with.

30

To facilitate the use of additional functions on the rules, two function wrappers were created, one for

functions meant to be used in the when block, and one for the ones meant to be used on the then block.

These wrappers are @rule function and @rule effect, respectively. Whenever it is necessary to add a

new function, we create it, import it to the gamefunctions.py file with the respective wrapper, and it is

ready to be used within the rules.

Gamerules already had a list of functions implemented, which were being used in the rules. This

functions are shown in Table 4.1 and are detailed below:

• rule unlocked: it receives a target and the name of a rule and returns True if the target has

unlocked any rule with that name. This is very useful if it is necessary to chain rules. This way, we

can use the fact that a student has fired another rule as the precondition for a rule.

• effect unlocked: this function works precisely as rule unlocked. However, it refers to effects and

not to rules. If the target has unlocked a given effect, this function will return True.

• award achievement: it is used to give the awards to the students. It receives a target, achieve-

ment name, level, and a list of logs that contributed to getting this target this badge. It will then

return a particular object, called Prize, that has the list of awards and the respective logs.

• award grade: works similarly to award achievement. However, it is used for awarding grades. In

this case, the function receives a description and XP instead of badge name and level. It will also

compile everything into a Prize object.

• award treeskill: again, similar to the two functions above. This one awards a skill from the skill

tree. It only receives the target, skill name and logs. It will also create a Prize object.

Table 4.1: Gamerules’s auxilar functions for MCP.

Name args description output

rule unlocked rule name (str),
target (int) Returns True if the rule has been unlocked result (bool)

effect unlocked effect name (str),
target (int) Returns True if the effect has been unlocked result (bool)

award achievement badge name (str), target (int),
lvl (int), contributions (list) Create a Prize object with the awards regarding badges Prize (object)

award grade description (str), target (int),
xp (int), contributions (list) Create a Prize object with the awards regarding grades Prize (object)

award treeskill skill (str), target (int),
contributions (list) Create a Prize object with the awards regarding skills Prize (object)

4.3 Gamerules’ input and output

Gamerules is a system that was intended to only use text files. Its input consists of a set of text files with

all the information from the course. It had three categories of files: course, gamification, and logs. The

31

first one consists of two files, one is a list of teachers, and the other is a list of students. There are three

files for the second category: one for badges, one for levels, and one for the skill tree. Finally, there are

moodle logs, moodle quiz grades and spreadsheet logs for the third category. All of these last files had

to be downloaded from their respective source every time the system ran. The system would then go

through all the files before firing the rules and create all the respective objects.

Apart from the configuration files mentioned above, the system also received a list of rules to calcu-

late the awards. These rules were text files with a set of characteristics (Section 4.1) and were stored in

a folder called rules so that the system knew how to access them.

As for the system’s output, it is also a text file, called indicators. This file consists of a dictionary with

all the awards that were attributed to the targets. Each student is used as a key in this dictionary and the

respective value is another dictionary with all the student’s awards. Each of these awards has a name,

a list of logs that were used to calculate that award, and a set of arguments depending on the type of

award. For skills, there is a rating, for badges there is a level and for grades there is the amount of XP.

This output was intended to be used as the Smartboards’ input, which allows the students to check their

progress on the course.

4.4 Gamerules Procedure

Gamerules is a rule system, so it works by receiving facts and rules and calculating results. In this

case, the files described in the last section apart from the rules, work as facts. So, the first thing that

Gamerules does before even firing the rule system itself is going through all of these files and saving its

data as system objects.

After gathering all the information necessary, it creates a RuleSystem object using the path for the

rules folder. When this object is created, it automatically loads the rules folder and compiles the rules

using the rule parser. Then, it calls a function that will fire the rule system, using the list of targets, logs,

and scope as arguments. The first two arguments come from the text files used as input, whereas the

scope can refer to any variables that can be manually added to be accessible in the rules, for example,

additional variables, such as number of classes.

The rule system, when fired, will go through every target and fire each rule individually. When a

rule is fired, the system executes its preconditions, and if all the preconditions are valid, it will execute

the effects. If any of the preconditions is False, it will not execute the effects, and it will automatically

continue to the next rule.

Gamerules also creates a data file to save important information. If it is the first time the system is

running, it will create this data file, and if it is not, it will use the existent one. This file stores information

on the rules, so the system only has to compile the rules one time, and the next time it runs, it will only

32

access the data file instead of compiling the rules again. If there is any change made to the rules, the

user needs to delete this file manually so that the system compiles the rules again and acknowledges the

changes. This data file is also how the functions rule unlocked and effect unlocked know if a rule/effect

has been unlocked.

Finally, with the results from the rules’ effects, the system creates the indicators file that stores every

award that was calculated.

4.5 Issues

Although Gamerules has the basic features of a rule system working, some issues make it impossible to

use in MCP. The system that we need to create needs to fulfill some requirements that are not fulfilled

by Gamerules. Here are some of the issues that we had to be dealt with:

• First, automation was one of the main requirements that the rule system needs to fulfill. We need

a system that runs on its own without needing any intervention from a professor. Gamerules does

not have any mechanism to deal with this.

• We need an incremental system. This was set at the beginning of the project. We need a system

that runs only the necessary rules for the necessary data. At its current state, Gamerules needs

all the logs from the semester to calculate a correct output, which is very inefficient.

• We need to make sure that the system knows how to deal with grade retractions. This is key

because if a teacher needs to change a grade, the system has to delete or update the previous

award instead of having two awards for the same data. Gamerules does not have any feature that

allows the system to make these changes.

• Finally, it is fundamental that the system is integrated into Gamecourse and communicates with it.

Also, we need it to work with Gamecourse’s database instead of working with static files. At this

point, Gamerules is an entirely separate system from Gamecourse and has zero communication

with it. Consequently, it is necessary to change the text files manually if there is any change in the

log files.

33

34

5
Autogame

Contents

5.1 Upgrading to python 3 . 38

5.2 From text files to database . 38

5.3 Communication with Gamecourse . 39

5.4 Changing rule parser . 41

5.5 Getting system’s targets . 42

5.6 Grade retractions . 43

5.7 MCP’s configuration . 45

35

36

The original plan for Autogame was to create a rule-based system to complement MCP’s gamification

experience and replace the script that was used in previous years. However, when we planned this

system, we did not know what Gamerules was already able to do because it was unfinished, and we

never had any document describing its state. At the beginning of this project, a considerable amount of

time was spent understanding how Gamerules worked, what it could do, and what was usable for our

system. After this process was finished, we concluded that the base of the rule system was already

working, so we focused on its integration with Gamecourse, which was already a monumental task.

Autogame (Fig. 5.1), as is, is a rule system that, although being independent, is completely integrated

with Gamecourse. It receives all of its inputs from Gamecourse, although in different stages of the

process, and writes its output directly in the system’s database. The configuration and rule files are

located in the system’s root folder. Then, it gets its targets by retrieving a list of new participations from

the database and getting the students from that list. Moreover, when running, each rule calls functions

that communicate with Gamecourse to retrieve the participations to calculate the respective awards.

Figure 5.1: Autogame’s architecture.

In terms of architecture, the main difference between this system and its ancestor is its inputs and

outputs. Gamerules’ had a static list of participations for the course, whereas Autogame only retrieves

each rule’s essential participations. Besides that, Gamerules had a complete list of students, which

would be used as targets every time the system ran, whereas Autogame only retrieves the essential

students to use as targets from the database. All the other changes made are not reflected in the

system’s architecture but will be explained in detail in this chapter.

37

5.1 Upgrading to python 3

One of the first problems that we encountered when trying to create Autogame was the fact that Gamerules

was written in version 2 of python, which no longer made sense when this project began since there was

already a version 3. So, the first step on this road to Autogame was updating Gamerules to python 3.

This was achieved with the help of a tool from python called 2to3 1 and a lot of research about what

was being used and the best replacement for it. Most of the changes made were simple ones, such as

exchanging function names, how a variable was encoded or how to make imports. However, given the

system’s complexity, this took a fair amount of time. After finishing this process and replacing the text

files that were missing as input, we were already able to run Gamerules despite some issues that would

be solved later on.

5.2 From text files to database

Gamecourse is a system that has been evolving since its creation, and as we previously discussed, one

of the main changes developed by Diana Lopes [1], was a set of plugins that retrieve information from

the external data sources to the system’s database. When Gamerules was first created, it needed to

retrieve data from each source, which no longer applies in our case because everything is now in one

place (Gamecourse’s database). With this improvement, we had also to update Autogame so that it

knew how to communicate with this database.

We established a connection with the database by using MYSQL 2 libraries. The system needs a

username and password to connect with the database, which the course administrator must place in a

file called credentials.txt. This is essential to avoid manually writing this information in all the required

functions. Instead, the user only writes it in the credential file, and the system has a function that reads

the file any time it has to access the database.

Besides all of the above, it is essential to remember that Gamecourse had its data scattered in

different sources, and Gamerules’ objects and functions were created according to the layout of this

information. With the creation of a uniformed database, some of the old objects no longer made sense

and had to be replaced by one that fit the new participation format.

There are three situations when Autogame needs to access Gamecourse’s database. First, to check

when was the last time the system ran, which we explain in section 5.6. Second, to retrieve the rules’

targets, also explained in section 5.6. Third, to write the system’s output. In this last case, our system

will write one line per student and achievement. The awards are written in a table called award. Every

award has a course and a student, and the remaining elements depend on the type of award. There are

1https://docs.python.org/3/library/2to3.html
2https://www.mysql.com/

38

https://docs.python.org/3/library/2to3.html
https://www.mysql.com/

four types:

• Badge: each badge may have up to three levels, and each of the levels has its own line, so one

badge may have up to three lines for the same student. A badge award has a badge name, badge

level, and correspondent XP.

• Skill: each line corresponds to one skill a student has completed from the skill tree. A skill award

has a skill name and correspondent grade and XP;

• Grade: corresponds to a quiz, laboratory, or presentation grade. A grade award has a name,

number of quiz/lab, and grade.

• Other: in MCP’s case this type is only used to award the initial bonus. Apart from the course and

student, these awards only have an award name and correspondent XP.

In Fig. 5.2 we can show an Entity-Relationship model for the tables that are used in Autogame. A

complete version of Gamecourse’s diagram is provided in Appendix A.

Figure 5.2: Gamecourse’s Entity-relationship model - small version.

5.3 Communication with Gamecourse

To fully integrate Autogame with Gamecourse, it was essential that both could establish communication.

This was important for two main reasons:

39

• Expression language: as we explained in section 3.3, Gamecourse has its own expression lan-

guage that consists of a set of functions created to make it easier to communicate with the different

modules of the system. Given the fact that in the future, we expect to have an interface on Game-

course to help users create rules, it made perfect sense that the functions from the expression

language could be used as a rule function or effect. To make this possible, Autogame had to be

able to communicate with Gamecourse so that it could run the functions and return an output.

• Firing Autogame: one of the key features of Autogame is that it runs automatically. In order to do

this, we needed Gamecourse to be able to call our system when needed.

Communication between the two systems would be easy to accomplish if both systems were devel-

oped using the same language. However, this is not the case. Gamecourse is in PHP, whereas Auto-

game was developed in Python. To create a channel for them to communicate, we did some research to

find the best solution for our problem. We looked for the best Remote Procedure Call (RPC) frameworks

that could help us, and we found Apache Thrift 3, which seemed like the right solution. Unfortunately,

it had issues with some Ubuntu versions, which was a deal-breaker. Then, we found out about GRPC
4, another RPC system, developed by Google. Again, after trying to configure it, we concluded that this

would not work either, this time because it had very little PHP support. Finally, we decided to create

a Transmission Control Protocol (TCP) socket in PHP, which would act as a server, listen and wait for

connections, and a Python socket that would act as a client and connect to the server when needed.

After some trial and error, we managed to establish communication between both systems, using a PHP

script and a python script, which we run manually.

After succeeding in establishing this connection, we first focused on being able to run Gamecourse’s

rules. For this, we created a new version of the rule parser that called Gamecourse every time one of

its functions was called in a rule. This worked fine when we had only one rule and one function, but

when we started adding more rules, the server socket would close after running the first function. This

happened because the server was configured to close after the first client connection, which did not

work. After all, we needed to create one client and connect to the server every time a new function

appeared in a rule. To solve this problem, we changed the server so that it only closes after receiving a

message sent by Autogame after it finished running all the rules.

The second situation where both systems have to communicate is when Gamecourse calls the rule

system. This happens every time that one of Gamecourse’s plugins retrieves new data from the data

sources. For this, having two scripts that had to be run separately (one for the client and one for the

server) was not an option. So, we created a new script that creates a Gamerules object with functions

to open the socket, check if the socket is already in use, and run the rule system, using shell exec. And

3https://thrift.apache.org/
4https://grpc.io/

40

https://thrift.apache.org/
https://grpc.io/

every time that one of Gamecourse’s plugin finds new data to add to the database, it will also run our

system.

Finally, to make sure that the rule system does not run over itself for a course or avoid trying to open

a server socket when it is already open, we created the table in Fig. 5.3. This table has a line for each

active course of the system and one for the server, which is the one with course number zero. Autogame

will only run for a course or create a server socket if the respective line’s isRunning is at zero.

Figure 5.3: Autogame table.

5.4 Changing rule parser

As we mentioned in the previous section, the system must acknowledge a Gamecourse function in the

rule files. This is one of the rule parser’s most important jobs, and since Gamerules did not have to deal

with it, this was never implemented until now.

The rule parser works by finding keywords inside the rule files, which is how it knows how to separate

the different parts of the rules (name, description, when, and then). By giving the user the possibility

of using functions that belong to Gamecourse, we created a need to add a new rule piece so that the

system knows how to deal with this properly. To accomplish this, we establish that all these functions

had to follow the following structure:

GC.library name.function name(arguments)

Then, we updated the parser so that it was able to recognize the prefix ”GC” and enters a loop that

works as follows:

1. Saves all characters between the two dots as the library name.

2. Stores the characters between the second dot and the open parenthesis as the function name.

3. Saves everything inside the parenthesis as the arguments.

4. Creates a string that consists of: gc(”library name”,”function name”, arguments)

41

Finally, we created the gc function, which opens a client socket to communicate with Gamecourse.

This way, when Autogame compiles this string created by the rule parser, it calls this function that

communicates with Gamecourse. It also sends the course that the rule system is running for and all

the information necessary for Gamecourse to run the function. On the server-side, it separates these

arguments and runs the function. If the function’s output is a list, it encodes each item and sends them

separately. Then, Autogame decodes them and saves them as a Logline object in a list. These loglines

are lines from the participation table, which means that each one refers to an action performed by a

student. We created this object so that it is easier to access any participation element if necessary.

5.5 Getting system’s targets

When Autogame was designed, one of its requirements was that it had to be an incremental system,

meaning that it would only run new participations that occurred after the last time the system had run.

This was a high priority because the old system always ran everything, which was inefficient and wasted

a lot of the administrator’s time.

To meet this requirement, we needed to find a strategy for the system to run as few participations

as possible while computing the results correctly. Only running new participations was never an option

because the system would not keep in memory the previous ones. It needs every participation to com-

pute a correct result. It seemed like an impossible task to generate a pleasing result without running

everything from the beginning of the semester, but we would not have an efficient system without this.

To solve this problem, we shifted our focus from trying to run as few participants as possible to running

for the least amount of targets as possible. While results may vary if we do not consider all the partic-

ipations, targets are independent of each other, so running the system only for a portion of the targets

would not impact the output.

The first step to put this into practice was to create a criterion for which targets the system would

run each time. However, it did not make sense to risk having some students with updated awards and

some students with outdated results. So we had to find a balanced solution. The solution we found was:

running for every target with new participations since the last time the system ran. This means that we

avoid recalculating awards for students who did not perform any action or received any grade that would

change the system’s last output.

To accomplish this, we added a new column to the autogame table (Fig. 5.3), which saves the last

time the system ran. Every time our script is called, it checks if the system is not already running for the

course; if it is not, it updates the course’s line on the table with the new timestamp and sets the system

as running. We chose to update the timestamp in the beginning because if we updated it at the end, it

would create an interval of time between the system starting and finishing where the participations that

42

occurred in-between would not be taken into account. This way, the system would always know the last

time it ran and could easily access this information.

Finally, we created a function responsible for retrieving the targets even before we run the rule system

itself. This works by using the course and the timestamp of the last time the system ran as arguments.

Then, the function accesses the participation table and, using these arguments, retrieves a list of all

the students that have participations posterior to the timestamp. Apart from selecting the data from the

participation table, we also added a join clause to the query so that it also checks game course user

and course user tables to make sure that all the targets have the role of students. Finally, it saves these

targets in a dictionary that will then be used as input for the rule system.

However, changing the targets was not enough. Because Autogame is always recalculating awards,

it was necessary to know how to deal with its output. We could not just write everything without taking

into account what was already in the award table because if we did, we would have multiple repeated

lines. To avoid this, we made sure that the system compares its output with what was already calculated

before. In the next section, we clarify in detail how and why this was done.

5.6 Grade retractions

Another requirement that we set for Autogame at the beginning of this project was that it had to know how

to deal with grade retractions and other changes that may affect what the system had already calculated

before. This requirement is essential because professors may need to change a grade, and this requires

the system being able to retract what was previously awarded.

To deal with this, we needed to know how Gamecourse deals with these changes. If the system

just added a new line to the participation table with the new grade, this might have been a problem

because our system would need to make sure that it only used the most recent grade. Fortunately,

Gamecourse deals with this by updating the line that was already in the database and changing its

grade and timestamp. Given that the timestamp is updated, our system reruns this line and recalculates

its output. However, it is necessary to change what had been previously awarded. So, how does the

system do this?

First, it is important to explain that we faced this problem differently depending on what kind of rule

we were dealing with. As mentioned in Section 5.2 the awards are divided into badges, skills, grades,

and others. For each one, we created a function that writes the outputs in the database. This is how it

works:

• For badges: in this case, each badge can have up to three lines on the table, depending on

the level the student has reached. When the system recalculates a badge, adding or deleting

more than one line may be necessary. The system checks the number of lines on the database

43

and compares it to the level that has been calculated. If there are more lines than the new level,

the system computes the difference between these two values and deletes that number of lines,

starting with the highest level. If the new level computed is higher than the number of lines already

in the database, the system will award the remaining lines.

• For skills: in this case, each student cannot have more than one line per skill. The system starts

by checking if there is already something in the database regarding that skill. If there is not, it

will insert the line with the corresponding grade and XP. If there is, there are two possibilities: if

the new rating for this skill is lower than three, then the student no longer has this skill complete,

and the line is deleted; if the rating is higher than three and different from the grade already in the

database then Autogame updates the line with the new grade.

• For grades: in this case, the rules for awarding quiz/laboratory grades retrieve all the lines from

the table that correspond to this type of participation. So, the function that awards these grades

has to go through all the logs and award grades considering the quiz/laboratory number. There is

a for loop that will go through the list of lines and either insert or update the corresponding lines.

Each lab or quiz only has one corresponding line, and it is not necessary to delete lines because

if a student already has something in the database, it will continue there even if the new grade is

zero. For the course presentations, which are also awarded with the same function, the system

works similarly, but it is unnecessary to check the number because there is only one.

• For others: as we mentioned in Section 5.2, this type of award is only used to award the initial

bonus. This bonus is given to all the students at the beginning of the course. This is always

awarded for every target and only needs to be awarded one time. It never has to be updated or

deleted. So the system only checks if the line is already in the database, and if it is not, it adds it.

This method of dealing with retractions always makes sure that the database’s awards are correct,

but this implementation created a problem. Most of the rules related to badges had a condition to ensure

that a rule was only fired if the level calculated was superior to zero (so, no awards for badges with level

zero). However, there is a possibility that a student was previously awarded a badge, and after the

system recalculates, this student no longer deserves it, and subsequently, the rule will not be fired. So,

the badge will not be deleted from the system, which obviously cannot happen. To solve this issue, the

rules were changed so that, even if the new estimated level is zero, the system will fire the rule and

delete any necessary awards. If there are no lines to be erased, the system will continue to the next

rule.

44

5.7 MCP’s configuration

Autogame is an adaptable system, however, its main objective, and focus of this dissertation, is to be

used in MCP. This section is intended to show how we configured the system and created the rules to

fit MCP’s purpose. Here, we explain:

1. The configuration of the system.

2. How we created the rules, giving some meaningful examples

3. The auxiliary functions that were necessary to implement in order to obtain the correct results.

5.7.1 Configurations

The first step to use Autogame for a course is taking care of its configurations. For that, it is necessary

that the course already exists in the database. The id of this course is used to refer to it within the

system.

First, we created a configurations file on the config folder, located in the root folder of Autogame, with

the following name: config < course id >. In this file, we created a dictionary called METADATA where

we can put any information that needs to be accessed in the rules, such as initial bonus or number of

classes for each campus. If these values ever change, we can change them here, and the rules will

collect the correct values the next time the system runs. How this works is by adding this dictionary to

the scope of the system. If it is necessary to add other data, we can add it to the config file and then to

the scope of the rule system.

Then, we created a rule folder for the course. This folder must be created in the rules folder, locate

on the root folder of Autogame. Also, its name must be the course id; otherwise, the system will not

know how to access the folder. This is where the rule files must be stored and where the system saves

the generated data files.

5.7.2 Rules

The rule files are one of Autogame’s most essential inputs since they define how the system calculates

its output. Although the rules’ structure did not change from Gamerules to Autogame, many changes

had to be made to ensure that the system could perform everything it needed to perform to generate

correct results. The process of creating this rules took a lot of going back and forth, checking results,

and making small changes to reach the correct output. Each rule was individually run, checked, and

re-checked until its output matched the previous system’s output.

As we mentioned in Section 5.2 and later on in Section 5.6, rules can be divided in fours categories:

badges, skills, grades and others. To describe the process of creating the rules, we will explain, for each

45

category, the rule’s general structure and give one significant example. The complete set of rules can

be found in appendix B.

5.7.2.A Badge rules

One of the main gamification features of MCP is its set of badges. In total, we have a list of 25 rules that

award badges. Although these badges are very different from each other, all these rules follow a similar

structure, which consists of:

1. Getting any necessary data from the configuration file.

2. Using a Gamecourse function to retrieve the list of participations relevant for this badge.

3. Using auxiliary functions to calculate any additional data.

4. Computing the level of the badge for the target.

5. Awarding the respective level.

In Fig. 5.4 we provide the rule for Amphitheatre Lover badge. To get this badge, the students have to

attend 50, 75, or 100 percent of the classes, depending on the level. To compute if this badge should be

awarded, we start by getting the number of classes from both university campuses from the configuration

file. Then, we use the expression language to get all the participations for this student that are from type

”attended lecture” and ”attended lecture (late)”. Then, we use an auxiliary function to check the student’s

campus. After getting the campus and checking the length of the participations list for this student, we

use another function to compute the level. Finally, we award the badge, if necessary, by writing it on the

database with its respective level. In the badge’s case, there are no conditions so that the system can

deal with grade retractions, as explained in Section 5.6.

46

Figure 5.4: Amphitheatre Lover badge rule.

5.7.2.B Skill rules

The second category of rules that we created is the skill rules. The skill rules refer to a skill in the skill

tree of the course. Each skill has a tier, and skills in tier 2 or above need two pre-requisite skills from

the tier below to be completed. To check if the precedent rules have been completed, we use a function

that returns true if a rule has been fired. If a skill rule has been fired, it means that the skill has been

completed. So, this kind of rules have the following structure:

1. Checking if this skill is unlocked.

2. Using a Gamecourse function to retrieve the list of participations for this skill.

3. Using an auxiliary function to get the rating for this skill.

4. Creating condition so that the rule only fires if the rating is equal or greater than three (the minimum

rate to complete a skill).

5. Awarding the respective skill.

Fig. 5.5 represents the rule for the Cartoonist skill. First, the system checks if the two precedent

skills have been completed. If they have been, it continues, if not, the conditions have not been met, so

it continues to the next rule. Then, it retrieves the related participations relative to this skill. There should

be only one participation because if a teacher decides to change a grade, the line for this skill should be

updated, and there will never be more than one line. However, if for some reason there are more than

47

one, the next function, which is the one that checks the skill rating, will return the rating for the line with

the more recent timestamp. Then, we use a condition so that the rule only fires if the rating is equal to or

greater than three. This condition exists because the skill is only completed if it has this minimum rating.

And, if the rule fired even though the student did not have this minimum rating, the function rule unlocked

would return an incorrect output. Finally, if the conditions are met, the system writes the new award in

the database.

Figure 5.5: Cartoonist skill rule.

All the rules for this category have the following filename structure: Skill < skill tier >< skill name >

.txt. The reason behind this is because the system runs the rules by filename, and we need it to run the

rules from the lower tiers first. If this was not the case and the system ran a rule from a higher tier that

had precedent skills that were not yet fired, then there was no way to know if the skill had been unlocked

or not.

5.7.2.C Grade rules

For this category, it is only necessary to retrieve the participations from Gamecourse, create a condition,

and award the grade.

In Fig. 5.6 we provide the rule for awarding laboratory grades. For this rule, we begin by retrieving

the participations that have ”lab grade” type. There can be more than one participation in this case, one

for each laboratory. Then we use a condition so that the rule only fires if the list of participations has

a length greater than zero. Finally, we award the lab grade for each of the participations retrieved. If

there is more than one participation for a specific laboratory, the system will only award the more recent

grade.

48

Figure 5.6: Laboratory grade rule.

5.7.2.D Other rules

In MCP’s case this category includes only one rule, which awards the initial bonus. This kind of rule is

the simplest one. As shown in Fig 5.7, it only needs to perform two steps. First, it retrieves the initial

bonus from the configuration file, and then, it awards that amount of XP for each student.

Figure 5.7: Initial Bonus rule.

5.7.3 Auxiliary functions

Although Gamerules already had a set of functions created to be used in the rules files, Autogame works

differently, so the functions that existed did not fulfill our needs. Gamecourse’s expression language

made our task a lot easier because it provided a set of functions that allowed us to retrieve filtered

information from the database. However, we still lacked some code to help us perform additional actions.

The functions used to write the awards in the database (described in Section 5.6) are examples of

functions added to Autogame to ensure that the rules work as intended. Apart from these, as we were

creating the rules, we found new challenges that could not be solved with the existing functions, so we

began developing new ones. All the functions that were created with the intent of being used within the

rules are described below and in Table 5.1.

49

• get campus: it receives a target as input and, by connecting with the database, checks its campus

and returns it. It can either return an ”A” for Alameda or a ”T” for Taguspark.

• compute lvl: it is used on the badge rules. It receives from two to four values, depending on how

many levels the badge has. The first value is the number of participations the target has, and the

next ones are the thresholds needed to achieve each of the levels. It computes the level to which

the first value belongs and returns an integer that is the computed level.

• get rating: it is used in the skill rules. It receives a list of one or more Logline objects. If the length

of the list is zero, it returns a rating of zero; if it is one, it returns the rating of that participation; and

if it is greater than one, it returns the rating for the most recent participation.

• compute rating: this function is used for badges that need to add multiple participations’ ratings.

Its argument is a list of Logline objects. It goes through every participation on the list and adds the

respective ratings, returning the total value.

• filter quiz: this function was created specifically for the Quiz Master badge. In MCP the worst

grade from the quizzes does not count. This is done by ignoring the last quiz grade and creating

a new one which is the difference between the last one and the worst one. This difference is then

added to the database. When we retrieve the database’s participations, this participation comes

in the list too. The problem is that we do not need and do not want this participation for this badge.

So, we created this function specifically for erasing this object from the list, if it exists. It can also

be modified to erase any other participation from any other list if necessary.

• filter excellence: this is another function that was specifically developed for one badge, in this

case, Lab Master badge. For this badge, it is necessary to check how many of the participations

have the maximum laboratory grade. The key here is that the maximum grade is not the same for

all the classes. From now on, we will call tier each group of laboratory classes that has the same

maximum grade. For example, in MCP’s case, the first five laboratory classes have a maximum

grade of 150 XP and the last five a maximum of 400 XP. This means that there are two tiers in this

course, each with 5 classes. So, this function receives a list of participations, a list of maximum

grades (for MCP: [150, 400]), and the number of classes in each tier (for MCP: [5, 5]). It will then

go through each participation and check if it has the maximum grade for the tier it belongs to. If it

does, it will be added to a new list, which will then be the output of this function.

50

Table 5.1: Autogame’s auxilar functions for MCP.

Name args description output
get campus target (int) Returns targets’s campus campus (str)
compute lvl val (int), *lvls (int) Returns level in which ”val” is inserted level (int)
get rating logs (list) Returns rating for the most recent log rating (int)

compute rating logs (list) Computes the sum of the ratings of the logs total rating (int)
filter quiz logs (list) Erases element of list referent to ”quizz 9” final logs (list)

filter excellence logs (list), tiers (list),
classes (list)

Returns only the logs with maximum grade for the
corresponding laboratory class final logs (list)

51

52

6
Evaluation

Contents

6.1 Correctness tests . 55

6.2 Performance tests . 57

53

54

To ensure the quality of Autogame, we conducted a thorough evaluation to cover all the aspects of

the system that might not have been working as intended. This evaluation process was composed of

two phases: correctness tests and performance tests. The first phase consisted of running a set of

tests to evaluate the system’s output and its expected results. The second one intended to evaluate the

system’s performance by creating extreme scenarios and checking the time and memory the system

needed to run. This chapter shows how we conducted this evaluation, its results, and a discussion on

what we were expecting versus what we got.

6.1 Correctness tests

The first phase of Autogame’s evaluation was a correctness tests. These correctness tests had the

purpose of finding out if the system was creating a correct output. We defined as a correct output a

text file generated by the previous system, which consisted of a list of all the awards given to MCP’s

2019/2020 students. However, our system did not create such a file, so to compare both outputs, the

first step was to add code to Autogame to create this file with the same structure as the one produced

by the previously used script. To do that, we made it so that it wrote the awards to the file every time

the system was supposed to write on the database. The goal was to create a file that compiled all the

semester’s awards, so at this point, we did not worry about having to write or delete awards. This file

was created with all the participations on the database so, the system did not need to perform deletes

or updates in order to produce a correct result.

After changing our system to create this file, we proceeded to compare it to the same file from the

previous system. To do this, we created a function that read through both the files and saved their

information on a dictionary. This dictionary had a key with every rule name, and each of the rule names

had a new dictionary where the students were the keys. Finally, for each student and rule name, we

created a list of awards. With this structure created for both system, we started the comparison process.

Once we had both files, we needed to compare the results. We decided to create a set of tests using

python’s package unittest 1 which allowed us to create personalized tests to assess the correctness of

our output. This evaluation consisted of a set of tests, each for a specific rule, that compared the number

of students who received that award and then if the specific awards were correct (levels, grades, number

of quiz/laboratory). For this tests we used the students from MCP which are 99, and the rules created

for the course, which are 49. In table 6.1 we provide the results of the tests that failed when comparing

the number of students that received a specific award.

Apart from the rules described in the table above, we had some other issues with rules that had the

correct number of students, however, some of the award’s attributes were incorrect. One of the reasons

1https://docs.python.org/3.0/library/unittest.html

55

https://docs.python.org/3.0/library/unittest.html

Table 6.1: Badges that were awarded for a different number of students for both systems.

Students
Award Previous system Autogame

Amphitheater Lover Badge 86 87
Right on Time Badge 86 87
Tree Climber Badge 62 60
Lab Master Badge 86 86

this happened was that the data our system uses is not 100% equal to the data used to generate the

awards file last year. This was because some of the data was lost and had to be added manually.

Also, and some of the previous system’s data was not updated when the file was created. Here is an

explanation of all the awards that had incorrect outputs and why this happened:

• Amphitheatre Lover and Right on Time: both these badges use almost the same participations.

Somehow, when creating the database, we added participations for a student incorrectly. Upon

running the tests, we compared our results to the previous ones and what was in the leaderboard

from last year, and we took these participations from our database. The test was then run again

with the new data, and everything matched the correct results.

• Tree Climber: in this case, we discovered that the previous system was incorrectly awarding this

badge. This badge is awarded when a student completes skills for tiers 2, 3, and 4 of the skill tree,

each tier corresponding to a badge level. However, last year’s file awarded this badge even if the

student did not have the minimum rating to have the skill completed. A student would have level 3

of this badge if he/she tried a skill from tier 4, even if the rating was a zero. This was not supposed

to happen, so we kept our results as the correct ones. The difference between the number of

students who received this award in both systems is due to this miss calculation.

• Lab grades: in this case, the difference between files was that some grades were different. Our

system was awarding the grades taken from google sheets. However, the other file did not have

the correct grades for some students. This was most likely because the teacher corrected these

grades, and then the participations file for the script used last year was not updated.

• Lab Master: in this case, we had some students that had more levels on this badge than what

was supposed to happen. This was due to the fact that we were using the wrong thresholds in our

rules, so it was easier to get the maximum level. Upon correcting this, the system passed the test.

Finally, upon making the necessary adjustments to the system’s data or the previous file’s incorrect

awards, our system passed every test. The only one that had a different output, in the end, was the rule

for the Tree Climber badge, which, as we explained above, was not being correctly calculated.

56

6.2 Performance tests

Good performance is a critical feature in any information system. Ensuring the system can handle a lot

of users and rules was one of our main priorities when developing Autogame. To put the system to the

test, we created some extreme scenarios and checked how long the system took to run and how much

memory is used. In the next sub-sections, we describe the process of creating these tests, their results,

and a commentary on them.

6.2.1 Increasing system’s targets

To evaluate the system, we wanted to test how it would behave in terms of memory usage peak and

running time for different numbers of targets. For this, as for the correctness tests, we created a set of

tests using python’s unittest library.

The first step was to create a new course used only for testing and adding a lot of new students, more

specifically 1000 students. To create these students, we first found a list of random names online, then

chose a student with many participations and used her as an example. Then, using a python script that

we developed, we added the new students to the database and generated the same participations from

the MCP student for each new one. This way, we created 1000 new targets, with the same interaction

with the course as the person that had the most interaction last year.

Then, we changed the function that retrieves targets from the database to have a new argument

used as the maximum number of students. Inside this function, we added a limit to how many students

the query could retrieve. By doing this, we made it easier to run a rule system for different numbers of

targets in the tests.

Finally, we created the seven different tests that would run Autogame for different numbers of stu-

dents, using all of MCP’s 49 rules. Using python’s libraries time 2 and resource 3 we managed to

calculate the running time, in seconds, and memory usage peak, in Mebibytes, for each test. In table

6.2 we provide the results of our evaluation. We ran the tests three times and averaged the results to

ensure that they are as accurate as possible and avoid having external factors altering our results. Also,

in Fig. 6.1 we show the evolution of the system’s load with the increase of the number of targets.

2https://docs.python.org/3/library/time.html
3https://docs.python.org/3/library/resource.html

57

https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/resource.html

Table 6.2: System’s running time (s) and memory usage peak (MiB) when increasing the number of targets, with
49 rules.

1 2 3 Average
Targets Time Memory Time Memory Time Memory Time Memory

10 2,96 22,96 2,36 22,88 3,91 22,75 3,55 22,87
50 11,44 26,14 11,02 25,96 13,93 26,01 12,32 26,03

100 22,33 29,93 28,79 29,91 23,22 29,81 25,03 29,88
200 52,67 37,91 59,77 37,77 44,34 37,69 52,34 37,79
500 146,48 61,96 151,69 62,15 116,42 61,81 140,15 61,98
750 225,29 82,61 205,29 82,78 189,29 81,94 207,43 82,44

1000 289,68 101,66 281,57 101,85 282,49 101,20 283,89 101,57

(a) Running time (s). (b) Memory usage peak (MiB).

Figure 6.1: System’s characteristics when increasing the number of targets, with 49 rules.

6.2.2 Increasing system’s rules

Another aspect of the system that we wanted to test was its ability to deal with a large quantity of rules.

This may be important in the future for MCP or even other courses that starts using our system. To

test how the system deals with a larger number of rules, we conducted a similar experiment as in the

previous sub-section.

For this case, we needed many rules, more specifically, 150, which is three times the number of tules

in MCP. To ensure that the rules’ complexity was not a factor here, we used the same rule repeatedly

but with a different name every time. We chose one with medium complexity to create these rules and

developed a script that created equal text files with two differences: the name of the file and the rule’s

name inside the file. This way, the system was running the same rule every time but was dealing with it

as if it were a different one, so it always inserted new awards instead of updating the previous ones.

After having the rules, we started creating the tests using the same method as in the previous ex-

perience. However, in this case, we made the number of targets a constant, 100 students, which is the

number of students in MCP. Each test created run the rule system with a different rule folder. Each

58

folder had a different number of rules inside, from 5 to 150. Then, using the same libraries as before, it

calculated the running time and memory peak usage.

In table 6.3 we provide the results of the three times that we run the rules and the average results.

In Fig. 6.2 present the average values to show the system’s evolution when we increased the number of

rules.

Table 6.3: System’s running time (s) and memory usage peak (MiB) when increasing the number of rules, with 100
targets.

1 2 3 Average
Targets Time Memory Time Memory Time Memory Time Memory

5 3,30 22,38 4,27 22,23 2,84 22,21 3,73 22,27
10 5,76 23,07 5,40 23,31 5,56 23,13 6,20 23,17
25 14,09 25,44 15,71 25,50 14,05 25,43 15,56 25,46
50 27,13 29,23 32,90 29,15 29,59 29,00 31,57 29,13
75 44,12 32,87 53,95 32,82 45,16 32,74 49,42 32,81

100 65,11 36,77 71,92 36,88 62,33 36,84 67,78 36,83
150 113,17 44,39 96,34 44,45 97,59 44,32 105,73 44,38

(a) Running time (s). (b) Memory usage peak (MiB).

Figure 6.2: System’s characteristics when increasing the number of rules, with 100 targets.

6.2.3 Discussion

Autogame is a rule system that runs every time new data is added to Gamecourse’s database. In our

system, performance assessment is vital because this system runs many times a day, and it needs to

be able to run as fast as possible and use the least amount of the computer’s resources as possible. In

both Fig. 6.2 and Fig. 6.1 we can conclude that, by taking the system to an extreme scenario, both in

terms of number of targets and in number of rules, the system maintains a linear evolution. This gives

us an idea of the system’s load when using a certain amount of targets and rules.

In MCP’s case, we had 99 students and 49 rules, which means that the system will take around 25

seconds to calculate all the awards for the semester. However, it is essential to remember that this is an

incremental system and will never need to calculate all the course awards simultaneously. The system

59

only runs when new participations are added to the database and most likely will have a low periodicity.

This means that it will only run for students with new participations since the last time the system ran.

So, for MCP the running time during the semester will more likely be between 3 and 15 seconds. As for

the memory, for the system to run all of MCP’s awards for the semester it takes the system around 30

MiB. However, as discussed for the time, the system normally will not run for all 100 targets, it will run

for around 5 to 25 targets depending on the periodicity. This means that the system’s memory used will

be somewhere between 22 and 25 MiB. This memory usage is not at all high, which means that any

computer can easily run Autogame without it taking too much of the system’s memory.

60

7
Conclusion

Contents

7.1 Future work . 63

61

62

For this dissertation, we developed a scalable and automated rule system for a gamification course.

Most of this work was put into integrating this system in Gamecourse, the system used for MCP. How-

ever, this can be adapted to other courses and similar systems.

To develop our system, we initially had a longstanding process of understanding and update Gamerules,

the previous of the rule system that was never finished. Gamerules already had implemented some of

the rule system’s main features. However, it needed much work in order to be usable in the context

that we wanted it to work in, MCP. Some of the first steps we had to take consisted of just trying to

understand a system that had zero documentation and changing some minor details to make it work as

it was.

Upon understating the basics of Gamerules, we started the process of creating Autogame and inte-

grating it with Gamecourse. This was a significant part of our work, from creating access to the database,

making the communication between PHP and Python, and going through every scenario possible to en-

sure that the rules could perform every task necessary. It required adapting the system over and over

again until we found the solution that best fitted our needs.

The evaluation showed that Autogame was generating the correct results, which was vital for our

work. The performance tests showed that it was capable of running in a matter of seconds and without

overusing the system’s memory.

Overall, the system in its current state can hopefully be used in MCP in the next semester. It will

provide an automatic way for the system to calculate the course’s awards and will make the task of

keeping the gamification experience up and running that much easier.

7.1 Future work

Although the system is working fine, and without any issues, it can always be improved. One of the

areas where the system is lacking is in its interaction with the user. Creating text files for each rule

and adding configuration files is not the most user-friendly way of using a rule system. Therefore, the

next step can be creating a User Interface (UI) for the system, where the user will have the option of

creating rules on the browser. This can also make the creation of rules easier by giving the users a list of

existing functions. Actually, there is already another MSc student, Ana Nogueira, working on developing

an interface for Autogame in Gamecourse. It will certainly make the system more pleasing to use and

add new and better features.

Another thing that can always be improved is the system’s libraries and functions. This would open

the door to more possibilities within the rules and make them more flexible. Some of the system’s

functions were specifically created to fit a MCP rule and will not probably be useful for any other rules in

the future.

63

64

Bibliography

[1] D. Lopes, “Gamecourse beyond,” Master’s thesis, Instituto Superior Técnico, Universidade de Lis-

boa, 2021.

[2] M. Nascimento, “I am here!” Master’s thesis, Instituto Superior Técnico, Universidade de Lisboa,

2019.

[3] A. Baltazar, “Smartboards,” Master’s thesis, Instituto Superior Técnico, Universidade de Lisboa,

2016.

[4] M. A. Ghahazi, M. H. F. Zarandi, M. H. Harirchian, and S. R. Damirchi-Darasi, “Fuzzy rule based

expert system for diagnosis of multiple sclerosis,” IEEE Conference on Norbert Wiener in the 21st

Century (21CW), 2014.

[5] A. R. C. Semogan, B. D. Gerardo, B. T. T. III, J. T. d. Castro, and L. F. Cervantes, “A rule-based fuzzy

diagnostics decision support system for tuberculosis,” Ninth International Conference on Software

Engineering Research, Management and Applications, 2011.

[6] W. B. Guo, X. P. Hu, and J. Liu, “Rule-based reasoning in onboard devices: An intelligent route guid-

ance system,” IEEE International Conference on Service Operations and Logistics, and Informatics,

2006.

[7] Y. Shanliang, F. Yuewen, Z. Peng, and H. Kedi, “Implementation of a rule-based expert system

for application of weapon system of systems,” International Conference on Mechatronic Sciences,

Electric Engineering and Computer (MEC), 2013.

[8] M. Stanojevic and S. Vranes, “A natural language processing for semantic web services,” EURO-

CON 2005 - The International Conference on ”Computer as a Tool”, 2005.

[9] H. Isahara, “Resource-based natural language processing,” International Conference on Natural

Language Processing and Knowledge Engineering, 2007.

[10] H. S., O. M.J., and D. A.K., “A framework for the automatic extraction of rules from online text,”

2011.

65

[11] C. D’Este, D. Reid, and B. H. Kang, “A robotic interface to a medication review expert system,”

International Symposium on Ubiquitous Multimedia Computing, 2008.

[12] D. Hooshyar, R. B. Ahmad, M. H. N. M. Nasir, and W. C. Mu, “Flowchart-based approach to aid

novice programmers: A novel framework,” International Conference on Computer and Information

Sciences (ICCOINS), 2014.

[13] M. Mosconi and M. Porta, “A data-flow visual approach to symbolic computing:implementing a

production-rule-based programming system through a general-purpose data-flow vl,” Proceeding

2000 IEEE International Symposium on Visual Languages, 2000.

[14] J. Poli and J. Laurent, “Touch interface for guided authoring of expert systems rules,” IEEE Interna-

tional Conference on Fuzzy Systems (FUZZ-IEEE), 2016.

[15] A. Kulpa, J. Swacha, and K. Muszynska, “Visual rule editor for e-guide gamification web platform,”

Federated Conference on Computer Science and Information Systems (FedCSIS), 2019.

[16] T. Tuomisto, T. Kymäläinen, J. Plomp, A. Haapasalo, and K. Hakala, “Simple rule editor for the

internet of things,” International Conference on Intelligent Environments, 2014.

[17] G. Barata, S. Gama, J. Jorge, and D. Gonçalves, “So fun it hurts – gamifying an engineering course,”

International Conference on Augmented Cognition, 2011.

[18] B. S. Akpolat and W. Slany, “Enhancing software engineering student team engagement in a high-

intensity extreme programming course using gamification,” IEEE 27th Conference on Software En-

gineering Education and Training (CSEE&T), 2014.

[19] R. D. Michele and M. Furini, “Tv commercials: Improving viewers engagement through gamification

and second screen,” IEEE Symposium on Computers and Communications (ISCC), 2017.

[20] A. L. Brazil and E. Clu, “A virtual environment for breast exams practice with haptics and gamifica-

tion,” IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH),

2017.

[21] A. Tóth and S. Tóvölgyi, “The introduction of gamification: A review paper about the applied gam-

ification in the smartphone applications,” 7th IEEE International Conference on Cognitive Infocom-

munications (CogInfoCom), 2016.

[22] G. Barata, S. Gama, J. Jorge, , and D. Gonçalves, “Engaging engineering students with gamifica-

tion,” Proceedings of the fifth outing of the International Conference on Games and Virtual Worlds

for Serious Applications, 2013.

66

[23] J. Amaral, “Gamecourse,” Master’s thesis, Instituto Superior Técnico, Universidade de Lisboa,

2013.

[24] A. Dourado, “Gamecoursenext,” Master’s thesis, Instituto Superior Técnico, Universidade de Lis-

boa, 2019.

[25] P. Silva, “Gamecourseui,” Master’s thesis, Instituto Superior Técnico, Universidade de Lisboa, 2021.

67

68

A
Gamecourse’s entity-relationship

model

69

Figure A.1: Gamecourse’s Entity-Relationship Model.

70

B
MCP’s rules

71

Listing B.1: Badge rules

rule: Amphitheatre Lover

Show up for theoretical lectures!

lvl.1: attend 50\% of classes

lvl.2: attend 75\% of classes

lvl.3: attend 100\% of classes

when:

total_alameda = METADATA["all_lectures_alameda"] + METADATA["

invited_alameda"]

total_tagus = METADATA["all_lectures_tagus"] + METADATA["invited_tagus"]

logs = GC.participations.getAllParticipations(target , "attended lecture")

logs += GC.participations.getAllParticipations(target , "attended lecture (

late)")

nlogs = len(logs)

campus = get_campus(target)

total = total_alameda if campus == "A" else total_tagus

lvl = compute_lvl(nlogs , int(total*0.5), int(total*0.75), total)

then:

award_badge(target , "Amphitheatre Lover", lvl , logs)

###

rule: Apprentice

Give answers in the 'questions ' or 'Labs forums '

lvl.1: get four points

lvl.2: get eight points

lvl.3: get twelve points

when:

logs = GC.participations.getForumParticipations(target , "Questions")

logs += GC.participations.getForumParticipations(target , "Labs")

points = compute_rating(logs)

lvl = compute_lvl(points ,4,8,12)

then:

award_badge(target , "Apprentice", lvl , logs)

###

rule: Artist

Show creativity and quality:

lvl.1: get four posts of four points (or higher)

72

lvl.2: get six posts of four points (or higher)

lvl.3: get twelve posts of four points (or higher)

when:

logs = GC.participations.getParticipations(target , "graded post", 4)

logs += GC.participations.getParticipations(target , "graded post", 5)

nlogs = len(logs)

lvl = compute_lvl(nlogs ,4,6,12)

then:

award_badge(target , "Artist", lvl , logs)

###

rule: Attentive Student

Find relevant bugs in class materials

lvl.1: get four points

lvl.2: get eight points

lvl.3: get twelve points

when:

logs = GC.participations.getForumParticipations(target , "Bugs")

points = compute_rating(logs)

lvl = compute_lvl(points ,4,8,12)

then:

award_badge(target , "Attentive Student",lvl , logs)

###

rule: Book Master

Read class slides

lvl.1: read slides for 50% of lectures

lvl.2: read slides for 75% of lectures

lvl.3: read all lectures slides

when:

total = METADATA["all_lectures"]

logs = GC.participations.getResourceViews(target)

nlogs = len(logs)

lvl = compute_lvl(nlogs , total*0.5, total*0.75, total)

then:

award_badge(target , "Book Master", lvl , logs)

###

73

rule: Class Annotator

Find related resources , more information , about class subjects

lvl.1: get four points

lvl.2: get eight points

lvl.3: get twelve points

when:

logs = GC.participations.getForumParticipations(target , "Participation", "

Class Annotator")

points = compute_rating(logs)

lvl = compute_lvl(points ,4,8,12)

then:

award_badge(target , "Class Annotator",lvl , logs)

###

rule: Course Emperor

Take the course , be the best

lvl.1: Have the highest course grade!

when:

logs = GC.participations.getAllParticipations(target , "course emperor")

nlogs = len(logs)

lvl = compute_lvl(nlogs , 1)

then:

award_badge(target , "Course Emperor", lvl , logs)

###

rule: Focused

Participate in the Focus Group Interviews

lvl.1: participate in the interviews

when:

logs = GC.participations.getAllParticipations(target , "participated in

focus groups")

nlogs = len(logs)

lvl = compute_lvl(nlogs , 1)

then:

award_badge(target , "Focused", lvl , logs)

###

rule: Golden Star

74

Be creative and do relevant things to help improve the course

lvl.1: perform one task

lvl.2: perform two tasks

lvl.3: perform three tasks

when:

logs = GC.participations.getParticipations(target , "golden star award")

nlogs = len(logs)

lvl = compute_lvl(nlogs , 1, 2, 3)

then:

award_badge(target , "Golden Star", lvl , logs)

###

rule: Hall of Fame

Get into the Hall of Fame

lvl.1: one entry

lvl.2: two entries

lvl.3: three entries

when:

logs = GC.participations.getAllParticipations(target , "hall of fame")

nlogs = len(logs)

lvl = compute_lvl(nlogs , 1, 2, 3)

then:

award_badge(target , "Hall of Fame", lvl , logs)

###

rule: Lab King

Attend the labs , be the best

lvl.1: Have the highest grade in the labs

when:

logs = GC.participations.getAllParticipations(target , "lab king")

nlogs = len(logs)

lvl = compute_lvl(nlogs , 1)

then:

award_badge(target , "Lab King", lvl , logs)

###

rule: Lab Lover

Show up for labs!

75

lvl.1: attend 50% of classes

lvl.2: attend 75% of classes

lvl.3: attend 100% of classes

when:

logs = GC.participations.getAllParticipations(target , "attended lab")

nlogs = len(logs)

total = METADATA["all_labs"]

lvl = compute_lvl(nlogs , total*0.5, total*0.75, total)

then:

award_badge(target , "Lab Lover", lvl , logs)

###

rule: Lab Master

Excel at the labs

lvl.1: top grade in four graded classes

lvl.2: top grade in six graded classes

lvl.3: top grade in all graded classes

when:

tier_1 = METADATA["lab_excellence_threshold_1"]

tier_2 = METADATA["lab_excellence_threshold_2"]

logs = GC.participations.getParticipations(target , "lab grade")

flogs = filter_excellence(logs ,[tier_1, tier_2],[5,5])

nlogs = len(flogs)

labs = METADATA["all_labs"] - 1

lvl = compute_lvl(nlogs , 4, 6, labs)

then:

award_badge(target , "Lab Master", lvl , flogs)

###

rule: Popular Choice Award

Have the most liked multimedia presentation

lvl.1: be the third most liked

lvl.2: be the second most liked

lvl.3: be the most liked!

when:

lvl = GC.participations.getRankings(target , "popular choice award (

presentation)")

then:

76

award_badge(target , "Popular Choice Award", lvl)

###

rule: Post Master

Post something in the forums

lvl.1: make twenty posts

lvl.2: make thirty posts

lvl.3: make fifty posts

when:

logs = GC.participations.getAllParticipations(target , "forum upload post")

nlogs = len(logs)

lvl = compute_lvl(nlogs , 20, 30, 50)

then:

award_badge(target , "Post Master", lvl , logs)

###

rule: Presentation King

Present your thing , be the best

lvl.1: Have the highest grade in the presentations

when:

logs = GC.participations.getAllParticipations(target , "presentation king")

nlogs = len(logs)

lvl = compute_lvl(nlogs , 1)

then:

award_badge(target , "Presentation King", lvl , logs)

###

rule: Quiz King

Take the quizzes , be the best

lvl.1: Have the highest grade in the quizzes!

when:

logs = GC.participations.getAllParticipations(target , "quiz king")

nlogs = len(logs)

lvl = compute_lvl(nlogs , 1)

then:

award_badge(target , "Quiz King", lvl , logs)

###

77

rule: Quiz Master

Excel at the quizzes

lvl.1: top grade in four quizzes

lvl.2: top grade in six quizzes

lvl.3: top grade in eight quizzes

when:

max = METADATA['quiz_max_grade ']

logs = GC.participations.getParticipations(target , "quiz grade", max)

final_logs = filter_quiz(logs)

nlogs = len(final_logs)

lvl = compute_lvl(nlogs , 4, 6, 8)

then:

award_badge(target , "Quiz Master", lvl , final_logs)

###

rule: Replier Extraordinaire

Respond to the gamification questionnaires

lvl.1: respond to first questionnaire

lvl.2: respond to both the first questionnaire and the weekly

questionnaires

lvl.3: respond to all the questionnaires

when:

logs = GC.participations.getAllParticipations(target , "replied to

questionnaires")

lvl = len(logs)

lvl > 0

then:

award_badge(target , "Replier Extraordinaire", lvl , logs)

###

rule: Right on Time

Don't be late for class!

lvl.1: be on time for 50% of lectures

lvl.2: be on time for 75% of lectures

lvl.3: always be there on time

when:

total_alameda = METADATA["all_lectures_alameda"] + METADATA["

invited_alameda"]

78

total_tagus = METADATA["all_lectures_tagus"] + METADATA["invited_tagus"]

campus = get_campus(target)

total = total_alameda if campus == "A" else total_tagus

logs = GC.participations.getAllParticipations(target , "attended lecture")

nlogs = len(logs)

total = total_alameda if campus == "A" else total_tagus

lvl = compute_lvl(nlogs , int(total*0.5), int(total*0.75), total)

then:

award_badge(target , "Right on Time", lvl , logs)

###

rule: Squire

Help your colleagues by writing tutorials of your tree challenges

lvl.1: get four points

lvl.2: get ten points

lvl.3: get sixteen points

when:

logs = GC.participations.getForumParticipations(target , "Participation", "

Tutorials")

points = compute_rating(logs)

lvl = compute_lvl(points ,4,10,16)

then:

award_badge(target , "Squire", lvl , logs)

###

rule: Suggestive

Help your colleagues by writing tutorials of your tree challenges

lvl.1: get four points

lvl.2: get eight points

lvl.3: get twelve points

when:

logs = GC.participations.getForumParticipations(target , "Participation", "

Suggestions")

points = compute_rating(logs)

lvl = compute_lvl(points ,4,8,12)

then:

award_badge(target , "Suggestive", lvl , logs)

###

79

rule: Talkative

Participate in Theoretical Lectures!

lvl.1: participate 2 times

lvl.2: participate 6 times

lvl.3: participate 12 times

when:

logs = GC.participations.getAllParticipations(target , "participated in

lecture")

logs += GC.participations.getAllParticipations(target , "participated in

invited lecture")

nlogs = len(logs)

lvl = compute_lvl(nlogs ,2,6,12)

then:

award_badge(target , "Talkative", lvl , logs)

###

rule: Tree Climber

Reach higher levels of the skill tree

lvl.1: reach level two

lvl.2: reach level three

lvl.3: reach level four

when:

lvl_3 = rule_unlocked("Director", target) or rule_unlocked("Series

Intro", target)

lvl_2_a = rule_unlocked("Cartoonist", target) or rule_unlocked("Fake

Speech", target)

lvl_2_b = rule_unlocked("Foley", target) or rule_unlocked("Kinetic",

target)

lvl_2_c = rule_unlocked("Stop Motion", target) or rule_unlocked("

reTrailer", target)

lvl_2 = lvl_2_a or lvl_2_b or lvl_2_c

lvl_1_a = rule_unlocked("Alien Invasions", target) or rule_unlocked("

Course Image", target)

lvl_1_b = rule_unlocked("Looping GIF", target) or rule_unlocked("

Pixel Art", target)

lvl_1_c = rule_unlocked("Publicist", target) or rule_unlocked("reMIDI

", target)

80

lvl_1 = lvl_1_a or lvl_1_b or lvl_1_c

lvl = 0

lvl = 1 if lvl_1 else 0

lvl = 2 if lvl_2 else max(lvl , 0)

lvl = 3 if lvl_3 else max(lvl , 0)

lvl > 0

then:

award_badge(target , "Tree Climber", lvl)

###

rule: Wild Imagination

Suggest presentation subjects

lvl.1: suggest a new subject for your presentation

when:

logs = GC.participations.getAllParticipations(target , "suggested

presentation subject")

nlogs = len(logs)

lvl = compute_lvl(nlogs , 1)

then:

award_badge(target , "Wild Imagination", lvl , logs)

Listing B.2: Skill rules

rule: Album Cover

Complete the skill Album Cover with a grade of 3 or more

when:

logs = GC.participations.getSkillParticipations(target , "Album Cover")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Album Cover", rating , logs)

###

rule: Audiobook

Complete the skill Audiobook with a grade of 3 or more

when:

logs = GC.participations.getSkillParticipations(target , "Audiobook")

rating = get_rating(logs)

81

rating >= 3

then:

award_skill(target , "Audiobook", rating , logs)

###

rule: Course Logo

Complete the skill Course Logo with a grade of 3 or more

when:

logs = GC.participations.getSkillParticipations(target , "Course Logo")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Course Logo", rating , logs)

###

rule: Movie Poster

Complete the skill Movie Poster with a grade of 3 or more

when:

logs = GC.participations.getSkillParticipations(target , "Movie Poster")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Movie Poster", rating , logs)

###

rule: Podcast

Complete the skill Podcast with a grade of 3 or more

when:

logs = GC.participations.getSkillParticipations(target , "Podcasts")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Podcast", rating , logs)

###

rule: Reporter

Complete the skill Reporter with a grade of 3 or more

when:

82

logs = GC.participations.getSkillParticipations(target , "Reporter")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Reporter", rating , logs)

###

rule: Alien Invasions

Complete the skill Alien Invasions with a grade of 3 or more

when:

rule_unlocked("Movie Poster", target)

rule_unlocked("Podcast", target)

logs = GC.participations.getSkillParticipations(target , "Alien Invasions")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Alien Invasions", rating , logs)

###

rule: Course Image

Complete the skill Course Image with a grade of 3 or more

when:

rule_unlocked("Course Logo", target)

rule_unlocked("Reporter", target)

logs = GC.participations.getSkillParticipations(target , "Course Image")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Course Image", rating , logs)

###

rule: Looping GIF

Complete the skill Looping GIF with a grade of 3 or more

when:

rule_unlocked("Movie Poster", target)

rule_unlocked("Reporter", target)

logs = GC.participations.getSkillParticipations(target , "Looping GIF")

rating = get_rating(logs)

83

rating >= 3

then:

award_skill(target , "Looping GIF", rating , logs)

###

rule: Pixel Art

Complete the skill Pixel Art with a grade of 3 or more

when:

rule_unlocked("Podcast", target)

rule_unlocked("Course Logo", target)

logs = GC.participations.getSkillParticipations(target , "Pixel Art")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Pixel Art", rating , logs)

###

rule: Publicist

Complete the skill Publicist with a grade of 3 or more

when:

rule_unlocked("Album Cover", target)

rule_unlocked("Movie Poster", target)

logs = GC.participations.getSkillParticipations(target , "Publicist")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Publicist", rating , logs)

###

rule: reMIDI

Complete the skill reMIDI with a grade of 3 or more

when:

rule_unlocked("Album Cover", target)

rule_unlocked("Audiobook", target)

logs = GC.participations.getSkillParticipations(target , "reMIDI")

rating = get_rating(logs)

rating >= 3

84

then:

award_skill(target , "reMIDI", rating , logs)

###

rule: Cartoonist

Complete the skill Cartoonist with a grade of 3 or more

when:

rule_unlocked("Looping GIF", target)

rule_unlocked("Pixel Art", target)

logs = GC.participations.getSkillParticipations(target , "Cartoonist")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Cartoonist", rating , logs)

###

rule: Fake Speech

Complete the skill Fake Speech with a grade of 3 or more

when:

rule_unlocked("Course Image", target)

rule_unlocked("reMIDI", target)

logs = GC.participations.getSkillParticipations(target , "Fake Speech")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Fake Speech", rating , logs)

###

rule: Foley

Complete the skill Foley with a grade of 3 or more

when:

rule_unlocked("Publicist", target)

rule_unlocked("Pixel Art", target)

logs = GC.participations.getSkillParticipations(target , "Foley")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Foley", rating , logs)

85

###

rule: Kinetic

Complete the skill Kinetic with a grade of 3 or more

when:

rule_unlocked("Looping GIF", target)

rule_unlocked("Alien Invasions", target) or rule_unlocked("reMIDI", target)

logs = GC.participations.getSkillParticipations(target , "Kinetic")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Kinetic", rating , logs)

###

rule: reTrailer

Complete the skill reTrailer with a grade of 3 or more

when:

rule_unlocked("Publicist", target)

rule_unlocked("Course Image", target)

logs = GC.participations.getSkillParticipations(target , "reTrailer")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "reTrailer", rating , logs)

###

rule: Stop Motion

Complete the skill Stop Motion with a grade of 3 or more

when:

rule_unlocked("reMIDI", target)

rule_unlocked("Alien Invasions", target)

logs = GC.participations.getSkillParticipations(target , "Stop Motion")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Stop Motion", rating , logs)

###

86

rule: Director

Complete the skill Director with a grade of 3 or more

when:

opt_1 = rule_unlocked("Stop Motion", target) and rule_unlocked("reTrailer",

target)

opt_2 = rule_unlocked("Foley", target) and rule_unlocked("Kinetic", target)

opt_1 or opt_2

logs = GC.participations.getSkillParticipations(target , "Director")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Director", rating , logs)

###

rule: Series Intro

Complete the skill Series Intro with a grade of 3 or more

when:

rule_unlocked("Cartoonist", target)

rule_unlocked("Stop Motion", target) or rule_unlocked("Fake Speech", target

)

logs = GC.participations.getSkillParticipations(target , "Series Intro")

rating = get_rating(logs)

rating >= 3

then:

award_skill(target , "Series Intro", rating , logs)

Listing B.3: Grade rules

rule: Lab Grade

Get grades from the labs

when:

logs = GC.participations.getParticipations(target , "lab grade")

len(logs) > 0

then:

award_grade(target , "lab", logs)

###

rule: Presentation Grade

87

Get grades from the labs

when:

logs = GC.participations.getParticipations(target , "Presentation grade")

len(logs) > 0

then:

award_grade(target , "presentation", logs)

###

rule: Quiz Grade

Get grades from the quizzes

when:

logs = GC.participations.getAllParticipations(target , "quiz grade")

len(logs) > 0

then:

award_grade(target , "quiz", logs)

Listing B.4: Other rules

rule: Initial Bonus

Bonus given to all the students in the beginning of the course!

when:

xp = METADATA["initial_bonus"]

then:

award_prize(target , "Initial Bonus", xp)

88

89

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Objectives
	1.2 Document Structure

	2 Related work
	2.1 Non-visual rule systems
	2.1.1 Propositional statements
	2.1.2 Natural Language Processing
	2.1.3 Audio

	2.2 Visual rule systems
	2.2.1 Flowcharts
	2.2.2 Matrices
	2.2.3 Drag and drop
	2.2.4 Rule Editor

	2.3 Gamification
	2.4 Discussion

	3 Gamecourse
	3.1 Architecture
	3.2 Database
	3.3 Expression Language
	3.4 Modules

	4 Gamerules
	4.1 Rules
	4.2 Rule parser
	4.3 Gamerules' input and output
	4.4 Gamerules Procedure
	4.5 Issues

	5 Autogame
	5.1 Upgrading to python 3
	5.2 From text files to database
	5.3 Communication with Gamecourse
	5.4 Changing rule parser
	5.5 Getting system's targets
	5.6 Grade retractions
	5.7 MCP's configuration
	5.7.1 Configurations
	5.7.2 Rules
	5.7.2.A Badge rules
	5.7.2.B Skill rules
	5.7.2.C Grade rules
	5.7.2.D Other rules

	5.7.3 Auxiliary functions

	6 Evaluation
	6.1 Correctness tests
	6.2 Performance tests
	6.2.1 Increasing system's targets
	6.2.2 Increasing system's rules
	6.2.3 Discussion

	7 Conclusion
	7.1 Future work

	Bibliography
	Appendix A

	A Gamecourse's entity-relationship model
	Appendix B

	B MCP's rules

