

Structured Behavior Analysis on Encrypted Traffic

Understanding and Detecting Network Attacks

João Pedro Pires Carrapiço de Almeida Meira

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Pedro Miguel dos Santos Alves Madeira Adão

Eng. Nuno Miguel Lopes Marques

Examination Committee

Chairperson: Prof. Nuno João Neves Mamede

Supervisor: Prof. Pedro Miguel dos Santos Alves Madeira Adão

Member of the committee: Prof. Nuno Miguel Carvalho dos Santos

January 2021

ii

iii

Acknowledgments

Thank you, Prof. Pedro Adão, for supervising my thesis and providing me the guidance I needed.

Thank you, Eng. Nuno Marques, for hearing me when I felt the need to randomly babble about my work,

as well as helping me revise my thesis proposal.

Thanks, Portuguese National Cybersecurity Center, for providing me, from September 2019 to

December 2019, a day-worth of my weekly working hours to have extra time to research and prepare

my thesis proposal.

A final thank you to my family, my girlfriend, and my friends, for having always supported me and my

wishes. Your support helped me keep the balance between my personal, academic and professional

life, and gave me the strength to finish my thesis.

iv

v

Resumo

O objetivo principal deste trabalho é estudar ataques de rede. Ao delinear o perfil dos padrões de

comportamento de rede inerentes a ferramentas de software usadas de forma maliciosa, podemos

detetar as técnicas que essas ferramentas implementam sem precisar de detetar especificamente a

ferramenta com base nas suas especificidades.

Para tal, começamos por desenvolver e propôr uma ferramenta de extração de features de

rede denominada NetGenes, que considera várias features de comunicação de rede conceituais e

estatísticas baseadas exclusivamente em metadados extraídos de protocolos L1-4 (camada-OSI 1 a

camada-OSI 4). A ferramenta NetGenes, a partir de um ficheiro de captura de rede (PCAP, PCAPNG),

permite extrair features de três objetos de rede (flows, talkers e hosts) que se constroem baseados uns

nos outros, agregando logicamente features dos objetos de rede abaixo deles, e permitindo também a

criação de novas features.

De seguida, estudamos várias classes de ameaças, organizando-as logicamente como numa

taxonomia e descrevendo as ameaças, técnicas de ataque e ferramentas que as implementam,

contidas pela mesma.

Depois, criamos vários conjuntos de regras com base nos objetos de rede extraídos pelo

NetGenes para a classe de ameaça “Port Scan”.

Finalmente, utilizamos os conjuntos de regras criados anteriormente ao dataset CIC-IDS-2017,

fornecendo informações valiosas sobre as melhores formas de detetar tráfego pertencente à classe de

ameaça “Port Scan” de forma transparente e direta.

Palavras-chave: Segurança de Redes, Extração de Features TCP/IP, Análise de

Tráfego Cifrado, Threat Hunting em Redes.

vi

vii

Abstract

The main objective of this work is to study network attacks. By profiling the inherent network behavior

patterns of maliciously used software tools, we can detect the techniques that these tools implement

without needing to specifically detect the tool based on its specificities.

It is developed and proposed a network feature extraction tool dubbed NetGenes, which

considers a vast number of conceptual and statistical network communication features exclusively

based on metadata extracted from L1-4 (OSI-Layer 1 to OSI-Layer 4) protocols. NetGenes takes a

network trace-file (PCAP, PCAPNG) as an input, and extracts features of three network objects (flows,

talkers and hosts) which build off of each other, logically aggregating lower-level network object features

beneath them, and also enabling the creation of new features.

Then, we study various threat classes, organizing them in a taxonomy-like manner and outlining

their encompassed threats, attack techniques and tools that implement them.

Moreover, we create various rule sets based on the network objects extracted by NetGenes,

for the “Port Scan” threat class.

Finally, we apply the previously created rule sets to the CIC-IDS-2017 dataset, providing

valuable insight about how to best detect the “Port Scan” threat class and its encompassed variants in

a direct transparent manner.

Keywords: Network Security, TCP/IP Feature Extraction, Encrypted Network Traffic

Analysis, Network Threat Hunting.

viii

ix

Table of Contents
Acknowledgments ... iii

Resumo .. v

Abstract.. vii

List of Tables ... xii

List of Figures ... xiv

List of acronyms and abbreviations ... xvi

Chapter 1. Introduction ... 1

1.1. Work Objectives ... 3

1.2. Main Contributions ... 4

1.3. Document Structure ... 4

Chapter 2. Related Work ... 5

2.1. Author’s Previous Work ... 5

2.2. Common Threat Language: Glossary and Taxonomies .. 6

2.3. Automated Threat Intelligence .. 8

2.4. Network-based Feature Formats and Feature-sets .. 10

2.5. Behavior-based Network Intrusion Detection applied to Botnets 13

2.6. Next-generation Network Security: Cisco Solutions .. 17

2.7. Detected Issues .. 19

Chapter 3. Network Threat Class Taxonomy... 21

3.1. L2-L4 Threat Class: Host Discovery .. 22

3.2. L4 Threat Class: Port Scan .. 24

3.3. L3 Threat Class: L3 Service Discovery ... 26

3.4. L7 Threat Class: L7 Brute Force Attack .. 27

3.5. L3+ Threat Class: L3+ Resource Exhaustion Denial of Service Attack 27

3.6. L4 Threat Class: L4 Resource Exhaustion Denial of Service Attack 28

3.7. L7 Threat Class: HTTP Resource Exhaustion Denial of Service Attack 31

3.8. L1-7 Threat Class: Logical Denial of Service Attack .. 32

Chapter 4. Network Objects ... 35

4.1. NetGenes: network-object feature extraction tool ... 35

4.2. Flow-set based analysis ... 37

4.3. NetGenes-based rule set guide ... 38

4.4. Network traffic analysis: packets, flows and flow sets .. 39

4.5. NetGenes: Limitations and Considerations .. 40

Chapter 5. CIC-IDS-2017 analysis .. 41

5.1. Metrics ... 41

5.1.1. Metrics applied to rule sets ... 43

x

5.2. Network Object Statistics... 43

5.3. Port Scan ... 49

5.3.1. Used nmap parameters .. 49

5.3.2. Defining rules ... 50

5.3.3. Defining rule sets ... 51

5.3.4. File investigation .. 53

5.3.5. Applying the rule sets .. 55

5.3.6. Rule set discussion ... 61

5.3.7. Adversarial evasion ... 64

5.5. Chapter Conclusions .. 65

Chapter 6. Conclusion .. 67

6.1. Main contributions and takeaways .. 67

6.2. Future Work .. 69

Bibliography .. 71

Annex ... 77

xi

xii

List of Tables

Table 1. Threats and labels by threat class. .. 21

Table 2. NetGenes Network Objects and Feature Source. .. 36

Table 3. NetGenes, Wireshark and CICFlowMeter: per-day TCP network-object statistics. 44

Table 4. NetGenes: per-day per-label TCP network-object statistics. 45

Table 5. Bot ARES: Uni-Talker Timeline Analysis based on Flow States. 48

Table 6. Port Scan Rule Set Summary. ... 52

Table 7. Thursday: “TR-1 n=100” Flow Rule Set Results. ... 57

Table 8. Thursday: “TR-1 n=100” Flow Rule Set Metrics. .. 57

Table 9. Friday: “TR-1 n=100” Flow Rule Set Results. .. 58

Table 10. Friday: “TR-1 n=100” Flow Rule Set Metrics. ... 58

Table 11. Thursday & Friday: “TR-1 n=100” Flow Rule Set Results. 59

Table 12. Thursday & Friday: “TR-1 n=100” Flow Rule Set Metrics. 59

Table 13. Thursday & Friday: “TR-1 n=5” Flow Rule Set Metrics for the most generically

performant “Port Scan” Flow Rule Set on each day. ... 61

Table 14. Work Comparison in CIC-IDS-2017 Port Scan Detection. 65

Table 15. NetGenes Packet Features. .. 78

Table 16. NetGenes Flow Features. .. 79

Table 17. NetGenes Talker Features. ... 81

Table 18. NetGenes Host Features (without flow-set based features). 84

Table 19. Monday: TCP Benign Traffic Overview. ... 85

Table 20. Monday: UDP Benign Traffic Overview. .. 86

Table 21. TCP Bi-Talker “Unique Destination Port Count” analysis. 87

Table 22. UDP Bi-Talker “Unique Destination Port Count” analysis. 88

xiii

xiv

List of Figures

Figure 1. SANS Survey Results, by Metric, for each Threat Taxonomy [50]. 7

Figure 2. NetGenes Summarized Architecture. ... 37

xv

xvi

List of acronyms and abbreviations

ARP – Address Resolution Protocol

Bwd – Backward

C2 – Command and Control (Server)

CIDR – Classless Inter-Domain Routing notation

DDoS – Distributed Denial of Service

DoS – Denial of Service

Dst – Destination

eBPF – Extended Berkeley Packet Filter

ETT – ENISA Threat Taxonomy

FTP – File Transfer Protocol

Fwd – Forward

HTTP – Hypertext Transfer Protocol

ICMP – Internet Control Message Protocol

IoC – Indicator of Compromise

IP – Internet Protocol

IPFIX – Internet Protocol Flow Information Export (NetFlow version 10)

IPv4 – Internet Protocol version 4

IPv6 – Internet Protocol version 6

IRC – Internet Relay Chat protocol

Ln – OSI Layer n

MAC – Media Access Control

MISP – Malware Information Sharing Platform

OSI – Open Systems Interconnection model

OSINT – Open-Source Intelligence

OTT – Open Threat Taxonomy

OVAL - Open Vulnerability and Assessment Language

PCAP – Packet Capture Dump File Format

PCAPNG – PCAP Next Generation Dump File Format

SCTP – Stream Control Transmission Protocol

SIEM – Security Information and Event Management

SIP – Session Initiation Protocol

SMB – Server Message Block

SQL – Structured Query Language

Src – Source

SSH – Secure Shell

SSL – Secure Sockets Layer

TAXII – Trusted Automated eXchange of Indicator Information

TCP – Transmission Control Protocol

xvii

THP – Threat Hunting Platform

TIP – Threat Intelligence Platform

TLS – Transport Layer Security

UEBA – User and Entity Behavior Analytics

UDP – User Datagram Protocol

XSS – Cross-Site Scripting

xviii

Chapter 1. Introduction

Fortunately for user privacy, there is now more encrypted network traffic than unencrypted. Right now,

it is estimated that 60% of all Internet traffic and more than 80% of all Web traffic is encrypted, and the

trend of encryption keeps growing [17, 45]. However, encryption poses a challenge to understanding

and detecting threats because encrypted application data makes its logic unintelligible for most

application analysis tools that rely on protocol parsing to detect application-specific events (e.g., WAFs,

SIEM endpoint agents, etc.). For example, regex signatures are used by signature-based detection

systems to detect malicious network activity. Unfortunately for these detection mechanisms, by

changing a single bit of network packet data, the encrypted version of it becomes completely different

from the unencrypted one and cannot be correlated to other slightly modified encrypted versions of it,

fact which enables adversaries to evade and bypass such mechanisms. Even in the case that the regex-

based detection mechanism is performed on the endpoint system, and therefore network traffic is

decryptable, the attacker can still implement and use his own network stack and perform customized

encryption (or even, simply encoding) in his malicious program to evade detection based on regex

signatures, which makes regex-based detection fail to detect zero-day attacks.

On the other hand, using blacklists of contacted IPs and domains is better because, to evade

detection, the attackers will have to spend money to get more IPs and domains, and additionally will

have to modify their original malicious program and redistribute it. However, signature-based detection

mechanisms which rely on blacklists of IPs and domains would still not detect modified malware variants

because the contacted IPs and domains would not have been blacklisted yet. As such, this possibility

can make intrusions unnoticed for as long as they are not added to the blacklist by security researchers,

other systems or other parties which participate in adding more indicators of compromise to the

blacklists. Another example is the case where the attack is specifically tailored to an organization, which

can mean that indicators of compromise are unique and, therefore, not relevant anymore for detection

purposes outside the organization.

Ideally, we should be able to detect network attacks (and even host attacks) based on indicators

which are generic enough to be applied throughout time and independently of many circumstances,

based on each attack’s specific characteristics. Additionally, we should be able to separate normal from

abnormal network traffic by relying on what we know about the behavioral patterns of different types of

tools, threats and threat classes, and, in a standalone manner, use these to each organization’s

advantage and oversight against new network attacks deployed against them.

Improving Threat Detection

Problem: By using indicators of compromise (IoCs) at the network level, one can specifically target

hosts (IPs and domains) and malware (regex signatures) extracted from blacklists. However, we are

still left with the problem that identifying network attacks by using contacted IPs and domains is not

feasible in the long run, because these are constantly changing for the same threats and threat classes.

Similarly, using regex signatures has the same problem, with the aggravating that adversaries can

2

leverage encryption to hide their payloads from detectors, and even just use encoded payloads that get

through a lot of detectors. IoCs are very useful in campaigns and incidents because they enable

cybersecurity teams to efficiently detect and mitigate intrusions related to those, which allows finding

victims and perpetrators of specific network intrusions. These network intrusions are caused by specific

malware variants responsible for internal infection or by attacker-controlled hosts that need to be

detected and blocked, but it often takes time until the relevant IoCs can be manually retrieved and input

into a security feed to share with the rest of the world. Many times, these IoCs are only retrieved after

the damage has already been done, when the organization should have successfully detected an

anomalous event was taking place, even if the attackers’ IPs, domains or regex signatures did not

match any available blacklist. Similarly, threat researchers may need to study a big network capture file

which deals with unknown attackers, but is mixed with all sorts of benign traffic, so it would be very

useful to automate the detection of what we are looking for. In these scenarios, OSINT is very limited

because you may either be patient zero, or you already were, IoCs may not be publicly available or the

attacker may have specifically targeted your network(s).

Solution: To solve the previous problem, we need to successfully detect network attacks

independently of the specificities of the used tools or the attacker’s infrastructure. This led us to focus

on higher-level definitions of the network attack than the specific software used to implement those,

which we call threat classes. By using the core features of a threat class and detecting those, we can

detect any software that implements that threat class, providing a trustworthy anomalous behavior

detection. We propose to target both malware and attacker software by analyzing and profiling their

generated network traffic. Using network behavior analysis in the study of diverse samples,

independently of the traffic being encrypted or unencrypted, we propose to study and profile threats and

threat classes. We also propose to perform this threat profiling by analyzing network behavioral patterns

through information extrapolated from packet metadata only. We theorize that network behavioral

patterns are a much stronger concept to profile software and understand how it works at the network

level than indicators of compromise because it allows for a non-deprecated detection of new attack

campaigns and incidents based on their real root cause. Additionally, a system built on behavioral

classification can still automatically output IoCs and signature-based rules when a threat is detected.

Ultimately, this work intends to contribute to the daily activities of threat researchers who work

in post-mortem analysis tasks related to network traffic, such as threat hunters, intrusion detection

researchers and, also often, SOC analysts. In sum, any network security professional, or anyone who

may be concerned with studying, analyzing and/or detecting malicious network activity, can make use

of this thesis.

3

1.1. Work Objectives

Interest for Network (Security) Engineers

Network automation and the Python programming language are increasingly becoming more hand-to-

hand as big networking companies like Cisco start combining both. Inclusively, the recently renewed

DEVNET certification, which was put in practice in February this year (2020), now includes teaching

network automation capabilities using Python (in the upcoming years, we expect that network engineers

will start looking at Python’s network automation capabilities much closer). It is expected that the

networking community will continuously adapt and move towards an improved automation of the

networking processes, for the most varied issues: performance, reliability, security, etc. Mostly, such

network certifications (CCNA-, CCNP- and CCIE- levels for Cisco) often focus on the design of network

architectures, deployment of vendor-specific solutions, simulating networking environments, performing

advanced network traffic analysis and troubleshooting network problems [39,40]. All these activities

include inherent security concerns and, particularly, the concepts learned in these type of networking

courses are very closely correlated with the fields of network intrusion detection and cyber threat

intelligence [35]. This constantly increasing interest of network engineers in the network security field is

an additional motivation factor to perform this type of research. NetGenes will be an interesting tool for

these professionals, providing them with an automated way of generating comprehensive network-

object features to deeply study their networks and build monitoring systems based on it. Similar tools

are reviewed and discussed in the related work.

Interest for Threat Researchers

Threat researchers mostly work with trace-files as they are concerned in studying passive data rather

than real-time detection, focusing on the study of campaigns and specific incidents, further correlating

these with, both, intrusion sets and TTPs. Threat researchers often look for attack patterns and

indicators which can lead to correlate given incidents, campaigns, intrusion sets and TTPs to specific

threat actors. Patterns and indicators are high-level concepts which are useful for threat actor profiling,

while malware and attacker software are lower-level concepts which are encompassed by TTPs and

are detectable in a network.

Threat hunting activities are commonly performed by using signature-based methods of

detection in combination with multiple updated feeds, which leads to identifying campaigns and

incidents taking place. However, in order to deeply study network threats and threat classes, and to

profile threats and proactively detect them, there needs to be an analysis of network communications

and the modelling of behavior patterns. As such, we propose NetGenes and associated methodologies,

which can be leveraged to perform deep studies of tools, threats and threat classes based on the

network traffic patterns they generate. Furthermore, these methodologies can also be used to analyze

data and build classification models for threat actor network traffic to study and profile those as well.

NetGenes hopes to deliver these capabilities, as well as paving the way to achieve threat-related

classification models which are explainable by default.

4

1.2. Main Contributions

We have developed a new tool that:

• Can extract flows and talkers accurately well, comparable to Wireshark. We validate how

accurate NetGenes was by comparing our results to the ones of Wireshark and CICFlowMeter.

• Extracts a more comprehensive flow feature-set than CICFlowMeter, including more statistical

features, as well as information about TCP flow states.

• Extracts comprehensive flow-set based feature-sets, by means of network objects that are not

considered by flow extraction tools by default.

• Allows the creation of new pre-processed datasets, similar to CICFlowMeter and Argus, which

respectively generated the pre-processed CIC-IDS-2017 and CTU-13 datasets.

Afterwards, we defined a network threat class taxonomy, to give proper context to multiple techniques

used to perform network attacks, as well as multiple tools that practically implement each threat class.

Then, we process the CIC-IDS-2017 raw dataset, composed of one PCAPNG file per weekday,

we analyze the “Bot Ares” traffic present in CIC-IDS-2017 by using the flow-state features we extracted,

which allow seeing patterns in the way that the traffic is created.

We then created multiple rule sets using the previously extracted NetGenes features to detect

the “Port Scan” threat class. We applied these rule sets to the five days of traffic of this dataset, to test

if the rule sets we defined are appropriate to detect the “Port Scan” flows in the CIC-IDS-2017 dataset.

Our rule set successfully ignored all network objects on Monday, Tuesday and Wednesday (as it

should), and detected the “Port Scan” events that the authors mention in their dataset description,

presented on the CIC-IDS-2017 support website [145] and the CIC-IDS-2017 support paper [146], on

Thursday and Friday. However, The TCP flow classification results are presented in chapter 5 and the

direct TCP talker classification results were perfectly accurate for every day, as it can be seen in table

21 (annex).

1.3. Document Structure

This thesis is organized as follows. Chapter 2 presents related work in network traffic analysis. Chapter

3 establishes a taxonomy for network threat classes, splitting them into multiple smaller concepts.

Chapter 4 explains what network objects we considered in this work, as well as how we implemented

them. Chapter 5 analyzes the CIC-IDS-2017 dataset. Chapter 6 concludes this thesis.

5

Chapter 2. Related Work

2.1. Author’s Previous Work

In a previous work [10], we developed a NIDS (dubbed AI-NIDS) which used all CICFlowMeter TCP

flow features except for flow activeness- and idleness- related features. We exclusively considered TCP

flows for detection purposes and were able to achieve very promising TCP flow classification results for

three common threat classes: Denial of Service (DoS), Port Scan and L7 Brute-force Attacks. Despite

this, many flows that were classified as one of the focused three classes would be wrongly classified

as another category: for example, instead of being classified as a Denial of Service, a SYN Flood DoS

would be put in the Port Scan category. This happened because, with the flow features that we had

considered, a SYN Flood would be closer to a Port Scan that it would be to a Denial of Service. In this

work, we augment the considered flow features, as well as create concepts that can encompass the

flow definition and help us achieve a context for the flows.

Bots, other types of network attacks and threats (e.g., Heartbleed, data exfiltration, etc.) were

not tackled properly by AI-NIDS because the low number of malign flows generated by these did not

allow to use them in conjunction with the benign flows in a balanced manner (to obtain class balance,

the number of benign flows would also need to be reduced, which would not be enough to achieve a

broad enough definition of benign) for building accurate supervised ML models.

Moreover, solely using the flow classifier to output alerts would generate too many alerts for

any human analyst. The alert problem happened because it proved to be unfeasible for AI-NIDS to

directly consider any host whose flow was tagged as malign, which exclusively based the decision on

the output of the flow classifier (output of the second layer of the double-layered algorithm that we

proposed for the NIDS classification architecture: malign flow or benign flow). The former assumption

would mean to create a very high number of irrelevant alerts for networks with a lot of traffic, even if the

flow classifier itself seemingly presented low false-positive ratios like 0.12%. We quickly acknowledged

that such low false positive ratios would still generate a lot of alerts because, depending on the size of

the network, a lot of network flows would be continuously generated. For example, consider a network

which generates 1.000.000 flows daily; this would mean that 1200 flows are falsely considered as

malicious, which could possibly mean 1200 false alerts if we directly considered that the talking hosts

are possibly malicious. This is clearly not the right solution for the problem because 1200 false positive

results per day per threat class would be a nightmare for an analyst, and this is even considering a very

low flow classification false-positive ratio (0.12%). We solved the previous problem by applying TCP

flow count thresholds to downsize the number of alerts that would be output. At this moment, the multiple

victims and attackers that were being output because of the flow classifier were reduced drastically due

to limiting a simple feature shared between each couple of hosts. Even though this was just a quick fix

to get things working, it showed us back then that it would be a very interesting idea to consider, as

future work, a higher contextual level above the flows and their features, with the hope that it could

improve the detection performance of malicious network traffic.

6

In conclusion, flow classification alone will not work properly for threat and threat class detection

purposes without a proper context to operate on. This is exactly what this work worries about: create

and use two higher-context concepts for network attack detection, host classification and talker

classification, which we prove to be especially relevant for threat and threat class detection because

the behavior patterns reflected by these concepts can capture the essence of the network attack for its

threat and threat class handles, while flow classification would be more interesting for capturing specific

attack phases and detect specific tools (since tools may present unique collective packet metadata

features). One of the main ideas of this thesis is to be able to analyze the definitions of each label (a

specific threat class, threat, tool, etc.), and try to understand which features we would need to support

to be able to detect the different instances existent in each of those labels based on their exact definition.

Finally, since classifying based on definitions does not conform too much with the definition of anomaly

detection, it should be clarified that it is most useful when the definitions exist in the basis of a knowledge

hierarchy, where the classes are well known and accepted by the domain-specific community and, thus,

are more stable and less mutable. Definitions are how we establish ground truth in this work, so we can

detect anomalies at the levels of threats and tools by using the definitions of their parent threat class.

2.2. Common Threat Language: Glossary and Taxonomies

A common language consists of terms and taxonomies (principles of classification) which enable the

gathering, exchange, and comparison of information. Since the computer security field is relatively new

and comprehends so many concepts, it is a challenge to determine a common language [46].

SANS Institute Comparison of Threat Taxonomies

The SANS Institute published a paper [50], authored by Steven Launius, in March 2018, which

discusses and analyzes different threat taxonomies used by CERTs and other cybersecurity teams.

The author compared four main threat taxonomies:

• Open Threat Taxonomy (OTT) [63], by James Tarala and Kelli K. Tarala

• ENISA Threat Taxonomy (ETT) [48,49], from the European Union Agency for Cybersecurity

• NIST Risk Assessment Threat Exemplary, from the National Institute of Standards and Technology

• Taxonomy of Operational Cybersecurity Risks, from the Carnegie Mellon University

Further, a survey was performed to the risk management department of a large financial company

(along with 23 non-financial company respondents), and each taxonomy was evaluated according to

three main metrics: completeness, complexity and clarity.

7

FIGURE 1. SANS SURVEY RESULTS, BY METRIC, FOR EACH THREAT TAXONOMY [50].

The author concluded that the OTT seemed to be the most preferred threat taxonomy, while remarking

the fact that both the management and the non-management surveyed parties prefer the OTT to other

taxonomies. Finally, the author finished by remarking that the OTT provides “a complete picture of threat

actions, with clear terms, in a manner that is simple for an organization’s leadership to understand”.

Thus, this taxonomy seems to be very appropriate for understanding threats by most parties. For that

reason, we summarily provide an overview of OTT and focus on some of its encompassed concepts

that are closely related to this work.

STIX 2.0

STIX 2.0 [11] is a structured language for describing cyber threat information so it can be shared, stored,

and analyzed in a consistent manner. It is very popular among the cybersecurity community and it

mainly focuses on high-level concepts (e.g., type of organization attacked, STIX attack pattern used)

which can capture threat actors' modus operandi (expressed by their TTPs). Threat actors often act

accordingly with their TTPs and perform campaigns using the same methods, allowing for correlations.

Additionally, campaigns can be attributed to one or more intrusion sets if they are found to be included

by them. Campaigns, incidents, intrusion sets, TTPs, attacker tools, malware and threat actor are all

concepts defined by STIX 2.0 [11], also used in this work. The “attack pattern” and “indicator” concepts

defined by STIX 2.0 are redefined, for the purpose of this work, to “threat actor attack pattern” and

“threat actor indicator”, to avoid confusion, since the first two terms have a completely different meaning

for network behavior modelling and analysis. Of the previous STIX concepts, this thesis specifically

focuses on fingerprinting both malware and attacker tools used by adversaries. This enables

researchers to promptly associate any software (attacker tools and malware), to threat actors’ TTPs

and, consequently, to threat actors. However, deeply studying threat actors is not explored in this thesis

but, rather, we focus on threats and threat classes, further explored in chapter 3.

Open Threat Taxonomy

The Open Threat Taxonomy [63], created by James and Kelli Tarla, was a joint collaboration between

contributors from around 150 different organizations, amongst which there are multiple renowned

organizations in the field of cybersecurity such as NATO (and international governments), the US

Department of Defense (and other federal agencies), the US State (and municipal governments), the

8

Center for Internet Security (CIS), the SANS Institute and multiple Information Sharing and Analytics

Centers (ISACs). People from other sectors (banking, energy, healthcare, insurance, educational

institutions, etc.) involved with risk management and cybersecurity also participated in the making of

this white paper.

The OTT defines four core concepts: threat agents, threat actions, threat targets and threat

consequences. Threat action is “what was done” (sniffing, credential discovery, etc.), mixed with “how

it was done”. The concepts and their respective definitions seem straight forward but, depending on the

actual context, these concepts can be very different. For example, is “threat agent” an advanced

persistent threat (APT) group, a person or is it a device? Equivalently, is “threat target” an organization,

a person, a device? It all depends on the context. To try to provide such context, the OTT aggregates

threat actions into four main threat categories (also called “families of threats”). Each threat category

covers multiple threat actions. Summarily:

• Physical threat category: 14 threat actions

• Resource threat category: 13 threat actions

• Personnel threat category: 7 threat actions

• Technical threat category: 41 threat actions

Since the aim of this work includes possibly detecting bots in a network by analyzing bots’ behavior

(among other network attacks), we want to be able to fully analyze the used techniques and try to

extrapolate the associated technical intentions. By analyzing traffic metadata only, we cannot get

around political or other personal motivations behind a threat. Since our aim is to profile threats by the

techniques used, any other threat category other than the technical threat category is not relevant for

this work. The technical threat actions we identify as being very strongly correlated to the malicious

activities performed by bots and are performed by most infected devices at some point in time:

• TEC-003: Port scans (attempt to find open ports on a machine)

• TEC-008: Brute-force attacks (persistently attempt to authenticate to a service running on a

machine)

• TEC-021: Denial of service attacks (attempt to overload a machine resources)

• TEC-022: Bot Infection (maintain persistence in the infected device, opportunistically connect to

the command-and-control server to receive new commands and, usually, perform malicious

activities on behalf of the infected device)

2.3. Automated Threat Intelligence

Threat Intelligence Gathering and Enrichment

Most automated cyber threat intelligence mechanisms today are performed by automating the treatment

of available (either publicly available or available through paid cyber threat intelligence services like

Cisco Talos) IoCs and applying numerous different methods to obtain useful output. IntelMQ [13] is a

system which uses a message queuing protocol for collecting and processing security feeds. Blacklisted

IPs (IPv4 and IPv6), domains and URLs are the most common observable in these feeds. This system

comprises four types of bots: collectors, parsers, experts and outputs [25]. Collector bots regularly

9

(frequency defined by the user) fetch security feeds from different sources and save the unstructured

data. Parser bots parse the fetched data and transform it into a structured format. Then, expert bots

use the structured data to obtain more information than what was initially fetched by performing extra

actions; for example, by having an IP, one can further perform IP-based lookups such as whois lookup,

reverse DNS lookup, geolocation lookup, among others. Finally, output bots transform all the

information to different formats (Splunk DB, MongoDB, etc.), so that it can be fed to commonly used

applications. IntelMQ introduces the very interesting concept of “information enrichment”, performed by

correlating information that the system obtained about an event (e.g., IPs, domains, md5/sha1/sha256

hashes) in the original feed with further information about each searchable object in various Open-

Source Intelligence (OSINT) feeds.

Threat Intelligence Sharing

The Trusted Automated eXchange of Indicator Information (TAXII) standard defines a set of services

and message exchanges that, when implemented, enable sharing of actionable cyber threat information

across organization and product/service boundaries. TAXII [12] defines concepts, protocols, and

message exchanges to exchange cyber threat information for the detection, prevention, and mitigation

of cyber threats.

Furthermore, the exchange of cyber threat data between trusted partners can be used to inform

and instrument network defenses. The shareable threat intelligence data is mainly comprised of

indicators of compromise (IoCs), such as adversary-used IP addresses, x-mailers and malware. Such

IoCs are extremely important for collaboration because they allow organizations to share and obtain

relevant threat intel with one another. By combining everyone’s intel, each organization is both

protecting other organizations from threats and improving their own security [26].

Implementing the former collaborative threat sharing capability allows each organization to use the

automatically obtained IoCs and automatically use these IoCs to automatically generate signature-

based rulesets. Commonly used signature-based rule syntaxes to identify and block network intrusions

in real-time are, for example: eBPF (extended Berkeley Packet Filter), Yara, Sigma, Suricata, Snort,

OVAL (Open Vulnerability and Assessment Language), OpenIOC, among many other commonly used

syntaxes. The obtained rules can then be imported by the signature-based systems (such as firewalls,

signature-based IDSs and SIEMs) used by each organization, thus enabling a continuous ruleset

update based on up-to-date intel and, consequently, contributing to an improved real-time packet-based

detection in each organization.

YETI is a practical implementation of TAXII developed by MITRE, but it was discontinued. On

the other hand, MISP (Malware Information Sharing Platform) implements TAXII and much more

relevant features which allow for the described threat sharing capability. The threat sharing is directed

to malware and sharing IoCs related to malware, thus supporting signature-based identification of

threats. Furthermore, it also supports threat classes and threat actors, and correlating threats to these

using TTPs and much more. MISP falls in the Threat Intelligence Platform (TIP) category for its

broadness.

Even so, MISP does not implement behavior analysis capabilities at the network traffic level,

since any uploaded evidence is regarded as having been studied and its corresponding IoCs extracted

10

and uploaded in the system as well. THP (Threat Hunting Platform) solutions, for threat research, and

SIEM (Security Information and Event Management) solutions, for active network monitoring, provide

network behavior analysis capabilities by implementing built-in UEBA (User and Entity Behavior

Analytics) modules and/or relevant statistics modules.

Threat Intelligence Knowledge Bases

MITRE ATT&CK is an example of a knowledge base of TTPs. Such TTPs are able to comprise threat

classes, threats and threat actors, by taking into account technical and non-technical, low-level and

high-level, concepts related to threat intelligence, in a structured format. At the same time, all these

concepts are organized into hierarchies and intertwined to construct a heavy correlation between the

different data. The main objects that MITRE ATT&CK considers are: Tactics (TA), Techniques (T), Sub-

Techniques (T), Groups (G), Software (S) and Mitigations (M). The cybersecurity community which

deals daily with different types of threats uses it since it is a very rich and organized source of

information for anyone trying to find out more about an intrusion, a malicious campaign, or an adversary.

2.4. Network-based Feature Formats and Feature-sets

Flow Implementations and Contemplated Features

Following a growing cybersecurity trend, L5-7 data tends to be more often encrypted than not [17] and,

therefore, will be unintelligible and impossible to be deeper parsed. The encryption of data at this layer

is one of the main reasons why we chose to work only with L1-4 protocols and used metadata.

Consequently, by not looking into L5-7 data and studying threats using their base patterns (L1-4

protocols) instead, each host’s privacy is regarded in a stronger manner. Additionally, using L1-4

metadata and their inherent extractable (TCP) flow features has already proved to be very effective in

modelling network behavior patterns and detecting intrusions [10]. Despite this, it is naturally expected

that the most frequently used L5-7 protocols (especially the ones mostly used by malware and attacker

tools), if parsed and structured into knowledgeable features by leveraging protocol-specific concepts,

will be very relevant for a more fine-tuned, optimized detection. This would be particularly relevant for

the implementation of a real-time system with endpoint agents capable of decrypting L5-7 traffic, but it

is not the focus of this thesis.

In a small article written by Kevin Sheu for Infosec Island [1], he describes NetFlows as not

being comprehensive enough in terms of cybersecurity features. He argues that NetFlow only look into

layer-1 to layer-4 (L1-4) data (“layer-3 and layer-4 data”, quoted from the article, obviously assumes

layer-1 and layer-2 is also contemplated, since ethernet frames and the most common layer-2 protocols

be contemplated as a basis for layer-3 and layer-4 protocols) and, thus, are not enough to go deeper

in the connections themselves and gather protocol-specific features. Note that the NetFlow concept

discussed comprises both NetFlow v1-9 and IPFIX (IP Flow Information eXport, a.k.a. NetFlow v10).

Moreover, Kevin refers to Zeek [22] (a.k.a. Bro) network metadata as a superior solution in terms of

knowledge depth (consequently, feature depth).

11

We fundamentally agree with Kevin, but he observes that researchers in the behavior analysis

area often ignore deeper features in protocols above L5 while still achieving promising results [10],

which implies that all the information available until L4 is enough to achieve great results in detecting

specific threats. Although this is the case, the false positive ratio tends to be much higher for classifiers

that use this limited data only because they cannot distinguish traffic as well as they could with

decrypted data. Having L7 specific data would, no doubt, improve the false positive ratio, by diving into

a deeper knowledge pool and, consequently, finding more precise fingerprints for detecting threats.

However, this work will solely focus on L1-4 data because one of our main goals is to propose a sparse

and comprehensive feature-set using data from these layers exclusively due to the very common usage

of encryption and privacy issues.

A long-term goal that we defined for this work is that the proposed feature-set, as well as the

proposed feature format based on network objects (flow, talker and host -based features), is possible

of being adopted by other researchers for studying their network attacks.

L5-7 Protocol Considerations

Alas, works which consider L5-7 protocols usually take advantage of fewer features than what could be

harvested and could possibly be useful threat-related indicators. In order to extract comprehensive L5-

7 features, there needs to be an extensive analysis of a large number of protocols which are very

complex, and data needs to be parsed in a completely different way for each protocol and structured

into features that can capture the new concepts and knowledge introduced by those protocols. This

task would require big development teams with network protocol know-how and a lot of time. Tools

available with L5-7 protocol data parsing capabilities are, for example, Zeek [22], ntop [21] and

Tranalyzer-2 [2], amongst many others.

L7 protocol features would cause the creation of new possibly useful features, but the dataset format

would have to include a whole new world of concepts, from a very extensive set of protocols, for it to

be relevant for a generic threat detection or threat studying system. However, for studying specific threat

classes such as botnets, considering the usage of L7 protocols like IRC or HTTP and related concepts

would be helpful, given that port-protocol correlation is validated.

Standalone Port-protocol Correlation

Sacramento et. al [23] assumed that any packet that had a specific source or destination port belongs

to a certain protocol. We do not agree with this because there can be packets whose source port is

used as an ephemeral port and is not really part of a previously started flow in a production environment.

Furthermore, given that no source port was used ephemerally then the flow representation is correct,

but it was still assumed that a certain protocol was being used based on the destination port of the flow.

We argue that stand-alone port-protocol correlation is not the best approach. The reason that it works

most of the times is because traffic is often generated using default L7 protocol configurations, which

enables that frequently a correct correlation between these protocols and their default port(s) is

achieved. This can and will create a weakness in the classification model that considers the used port

relevant because the adversaries, once they learn about this, will be able to evade detection by

configuring the considered network protocols to run in different ports, thus abusing a weak conceptual

12

feature. Consequently, detection algorithms which rely too much on used ports as a feature and do not

perform protocol validation are more vulnerable to be evaded. To solve this problem, we propose the

use of deep packet inspection (dpi) and encrypted traffic fingerprinting techniques [17, 61] in an ideal

scenario, respectively for unencrypted and encrypted traffic, to promptly confirm that the protocol is

being used or, in case it is not, to determine which protocol is in fact being used. Encrypted traffic

fingerprinting is not 100% accurate, like any other fingerprinting technique, but it will provide much more

certainty in the protocol attribution and, a plus, it is encryption-agnostic so it can be used against any

network traffic.

Flow Extraction and Traffic Analysis Tools

By summarizing different tools which extract and contain flow features, we can conclude this section

with important remarks:

• NetFlow leaves out a lot of flow, talker and host features, because it does not deeply focus on

statistical data and sparse flow features, which is crucial for Machine-Learning models to thrive.

Additionally, its features were performance-focused rather than security-focused [1], and there’s

also a lack of statistical features within it, which makes it less edible for machine learning. This is

a problem because we want to consider both security-related features and to obtain data sparsity

to increase the range of available features, consequently increasing the probability of finding more

precise indicators of malicious behavior. Several tools, such as ntop [21], pmacct [20] and NfSen

(which uses Nfdump [19] as its backend NetFlow feature extraction tool), utilize NetFlow (including

IPFix, aka NetFlow v10) as their core flow feature format and implement further custom network-

based features: more flow features specifically extended for other L7 protocols (e.g., BGP, HTTP,

DNS, etc.), and more talker and host features (mostly conceptual). The process these tools

perform is called protocol and feature enrichment, and it aims to achieve a broader support for a

lot of different protocols and adding useful information. From this thought, the “Enhanced NetFlow”

[27] concept was born, allowing the extraction of extra statistical features. It decreases

performance but adds comprehensiveness, which is what one wants to achieve in a platform that

is specifically intended for threat hunting, rather than real-time intrusion detection.

• Using Zeek [22] metadata as a basis enabled researchers to extract more information from it than

what it was extracted with NetFlow-based extraction tools, however the features which were

extracted are also limited [9] when compared to other tools like CICFlowMeter or Tranalyzer which

extract statistical features in addition to conceptual ones.

• Maltrail focuses on some conceptual talker and host features and identifies threats by using both

static and dynamic entries. Their static entries are fetched from various AV reports and the

developers’ personal research [16]. Dynamic entries are composed of blacklist feeds, i.e., lists

which are continuously updated with the most recently gathered threat information (e.g., malware

C2 server, sinkholes, etc.) by the blacklist owner. Flow feature-set is practically non-existent since

it only considers ports. This tool means to give a good overview of the network and possible threats

but does not base its threat detection in automated behavior analysis, rather in traditional

indicators of compromise. It does not possess a good feature-set that can be used in the context

of this thesis.

13

• CICFlowMeter extraction tool does not consider any talker- or host- based features, opposed to

the previous tools. Still, it poses as a very good example of what a flow extraction tool should look

like because it considers a lot of statistical network-object features from a trace file. The downside

of it is a lack of more contextualized features, attributed to talkers and hosts.

• Haddadi et. al [6] studied, evaluated and compared five different flow extraction tools: Maji (59

flow features), YAF (46 flow features), Softflowd, Netmate and Tranalyzer-2. It was concluded that

Tranalyzer-2 was the most comprehensive flow feature extractor from the five exporters.

Tranalyzer-2 is a unidirectional flow extraction tool and analyzer that employs an extended version

of NetFlow feature-set. Furthermore, since it is built in C, it is a lightweight and performant solution

(although performance isn’t the priority). Tranalyzer-2 supports 98 flow features, which are logically

grouped in Time, Inter-arrival, Packets&Bytes and Flags feature-sets.

Tranalyzer-2 is the best flow extraction tool that we could find in terms of considered network-object

features (it considers host, talker and flow features). It can extract information on a lot of protocols of

different layers and contains up to 98 different flow features [6] at the network/transport layer level. It

encompasses talker features and host features, based on Tranalyzer-2’s latest documentation and

presented flow aggregation techniques (mainly using tawk scripting) which they present in their website

[2]. By communicating with the Tranalyzer-2 team and testing their tool, we could verify that Tranalyzer-

2 now extracts 105 flow features by default, rather than the 98 flow features mentioned by Haddadi et.

al [6].

We acknowledge that Tranalyzer-2 output could be worked on with a scripting language to

extend some of its default features and, if necessary, a Rust plugin for Tranalyzer-2 could be developed

to improve its statistical flow features and add other ones at the higher contextual levels of the talker

and host. However, this was not the chosen path.

2.5. Behavior-based Network Intrusion Detection applied to

Botnets

Ongun et. al.

Ongun et. al [9] used Bro connection logs to obtain network communication features. Later, they used

CTU-13 datasets containing thirteen different botnet scenarios, each scenario using different botnets,

techniques, and protocols. These datasets already contain, in the PCAP format, a clear separation

between benign and malicious traffic, which is very useful because it enables any network-based

extraction tool to directly work with this dataset.

Furthermore, the authors note that the amount of imbalance in cyber security is very large,

which is supported by two other paper references in the same area of applying data science methods

to network traffic classification, for which the authors suggest using ensemble classifiers like the

Random Forest algorithm.

14

The authors also mention an important matter regarding choosing the train and test data: when

randomly splitting the network traffic of a specific scenario at random, it will produce highly-correlated

data between training and testing datasets, which will result in a disparity between the metrics

calculated for determining the classifier’s performances and its actual performance. Instead, by

choosing to train on the data of two scenarios and testing on a third separate scenario, they are

removing the possible correlations that the network traffic could have due to belonging to the same

scenarios. However, we note that they are not removing the correlation out of the network threat class

itself, since the same network tools are used to test, even if it is in a different timeframe using different

machines. The two tools tested by the authors are two specific bots they study: “Neris” and “Rbot”.

Additionally, the authors enumerate some important aspects to consider in network traffic

analysis for optimizing the machine-learning model’s effectiveness: feature representation (feature

representations consists in logically grouping features and separately testing them. In the context of

this thesis, we often refer to these as feature-sets); fine-grained labelling; algorithm choice; time-window

choice.

The authors did not observe a major difference when they considered both traffic and timing

features, in comparison to using only aggregated traffic features. Despite this, the authors noted that

using feature representation was beneficial for the performance of their machine learning models. The

authors tried three different logical feature-sets: connection features; traffic features; traffic and

temporal features.

Furthermore, the authors compared their results using coarse-grained and fine-grained

labelling. Their coarse-grained labelling consisted in considering every connection performed by the

botnet IPs in the whole time period as malicious; on the other hand, their fine-grained labelling consisted

in considering the botnet IP connections to the victim(s) when performing a DDoS attack (Rbot) in

separate time windows as malicious. As expected, the fine-grained labelling technique was proven to

be much better for the performance of their machine learning algorithms in detecting the presence of

botnet-related network traffic.

A feature representation that worked well in the authors’ setting for classifying internal IP

addresses is feature representation by time windows and port number. The authors also observed that

feature representation depends on the amount of training data. Additionally, the authors mention that

features extracted directly from raw data such as Zeek connection logs do not always result in the most

optimal representation. They recommended that multiple feature representations apart from Zeek

should be evaluated as future work. We agree with the authors in the sense that features extracted from

Zeek [22] connection logs are not enough (standalone) to fulfill a full feature representation and, thus,

recognize the consequent need of feature aggregation methods on top of Zeek’s raw data to improve

detection.

Gu et. al.

Gu et. al. proposed three botnet detection systems, named BotHunter [3], BotSniffer [4] and BotMiner

[5]. BotHunter [3] utilizes Snort sensors and builds a customized ruleset directly integrated with Snort

to specifically detect the presence of a botnet in a network. Packet payload is considered in the ruleset

as well, looking for known bot generated signatures. BotHunter is publicly available and, consequently,

15

is one of the most used botnet detection systems by researchers to compare their own botnet detection

systems and methods [6,7,15].

In the BotHunter [3] work, the authors use Snort, along with two plugins (SLADE and SCADE), in a

custom way to tackle the entropy which is inherent to a bot infection. The authors focus their efforts on

the victim hosts and their communications with other hosts to study and understand the infection

process. Additionally, the authors consider several common actions amongst bots to try to detect a bot

infection in its early stages. For instance, the following bot infection sequence was taken from a specific

bot, but it is still representative for other bots:

• Event 1 – Target scanning: external-to-internal scan

• Event 2 – Vulnerability exploitation: external-to-internal exploit

• Event 3 – Bot download and execution: internal-to-external

• Event 4 – Command-and-control (C2) channel establishment: internal-to-external

• Event 5 – Outbound scanning: internal-to-external infection scanning

The presence of the above five events is tested using signature-based detection with Snort, SLADE

and SCADE, which is then used to build a matrix, dubbed “network dialog correlation matrix” by the

authors, showing every internal host communicating with an external entity and which events they fired

considering a fixed time window for each experiment.

However, these five events should not be considered representative of all bots. For example,

the infection vector might be a malicious email, which would make event 1 and event 2 irrelevant for its

detection. Another example is if event 3 is the download of a dropper, rather than the bot itself, which

could mean an additional downloading event would have to be considered for the case of a 2nd stage

malware. Event 5 could not happen at all, or it could be a lateral movement (internal-to-internal

scanning). These examples are just some possibilities of how bots could present different behaviors.

At such a realization, the authors do not consider neither a strict order of events nor the existence of all

the presented events in the bot infection sequence to output an alarm of a bot infection. In a prepared

virtual network environment running multiple bots, BotHunter achieved a 95.1% true positive ratio.

Later, Gu et al. proposed BotSniffer [4], a botnet detection system which uses a detection

approach that was able to identify C2 servers and the bots infected hosts in the networks. Their

technique was predicated on the notion that bots belonging to similar botnets would probably indicate

a spatial-temporal relationship and resemblance to each other due to the pre-programmed events

associated with C2 botnets. They focus on protocols running over TCP by having diverse TCP flow

features: number of upstream and downstream packets; size of the uplink and downlink transmission

bytes; average length of the uplink and downlink data packets, maximum packet length, average packet

variance, duration of the data stream and packets loaded in one stream. More specifically, the authors

focus on two L7 protocols, IRC and HTTP, because these two protocols are very commonly used by

bots to fetch or receive commands from a centralized C2 server. The authors used a custom dataset

composed of diverse network traces, and some network logs recorded from an IRC tracker. Most of the

traffic used for the dataset was generated by them in their university campus network. According to

them, BotSniffer presented a high accuracy and low false positive ratio.

16

Despite BotSniffer’s good results, Khan et. al [18] upholds that their detection strategy was

widely concerned by experts in network traffic analysis because it does not depend on the botnet class

to extract a common feature vector of the flow, which in theory compromises the definition of anomaly-

based detection. We agree with Khan et. al and the referred experts that the proposed system does not

use an anomaly-based approach, however it does use network behavior patterns to detect botnets,

thus falling into the behavior-based detection category. In this work, we also analyze network behavioral

patterns and use these to study and detect specific threats, which enables detecting new malware

variants (tier-1 anomaly) and, even deeper, to study and detect threat classes, which enables detecting

new threats (tier-2 anomaly); as such, this work falls into the behavior- and anomaly- based detection

spectrum, independently of the usage of outlier and novel detection algorithms.

Khan et. al.

According to Khan et. al work [18], the main factors that determine the efficiency and accuracy of

detection are the characteristics of the extraction and the classification strategy used. Among other

things, these factors mainly encompass: the labelling taxonomy, the feature-sets, the type of labelling

process and the used classification algorithms.

Khan’s proposed P2P botnet detection framework is based on a decision tree algorithm for feature

selection which extracts the most relevant features and ignores the irrelevant features. Furthermore,

the detector is based on a multi-layer approach to classify network traffic (P2P botnet traffic and non-

P2P traffic) and identify botnets by applying machine learning classifiers on network features such as

port filtering, DNS queries, and flow counting.

At the first layer, it filters non-P2P packets to reduce the amount of network traffic by applying port

filtering using well-known ports, DNS query, and flow counting. The second layer further classifies the

captured network traffic into two classes such as non-P2P and P2P. At the third layer of the model, we

reduce the features which may marginally affect the classification. At the final layer, it successfully

detects P2P botnets using decision tree classifier by extracting network communication features.

The proposed technique covers the limitations of single stage botnet detection, like for example the

resulting class imbalance, i.e., the lack of botnet traffic in comparison to benign traffic, as Ongun et. al.

[9] and our previous work [10] also mention. The accuracy of the model achieved is 98.7% and the

threshold of false alarm (positive) rate is 3%. Furthermore, the authors also demonstrate that the

accuracy of the proposed framework can be improved up to 99%, but at the expense of false reporting

of benign files as botnets as well as false reporting of botnet as benign, so the False Positive and False

Negative ratios would be affected. The authors also observed that the model’s accuracy might be

improved by increasing the epochs of deep learning algorithms (at the expense of more execution cost).

Finally, they performed a benchmarking of the proposed technique by testing it against diverse

datasets and comparing their results with other publicly available machine learning algorithms

implemented for botnet detection.

17

2.6. Next-generation Network Security: Cisco Solutions

Reading Cisco’s article about End-to-End Visibility [37], one can see how Cisco FirePOWER and

FireSIGHT can leverage NetFlows to obtain network intelligence at the L1-L4 level. It allegedly

generates two useful types of event from L4-7 protocols’ data, and two other types of event which are

more poorly related to the L4-7 stack. It uses Snort, a signature-based NIDPS solution, to generate

“Intrusion” events. Additionally, it outputs “Threat and Security” events as well, which combine both

endpoint-based and network-based features to correlate OS events with network events, further used

to perform host/user behavior score ranking and, additionally, to throw “Intelligence” events which are

useful for cybersecurity experts to make informed decisions. Furthermore, the “Malware” event is a type

of event which is outputted through an in-depth study of files received by an endpoint system. Moreover,

the “Anomaly” event is very strongly correlated to what this thesis aims to achieve, by detecting threats

and threat classes. Threat classes are a logic aggregation of threats which, on the other hand, are a

logic aggregation of software solutions, including malware variants. Malware variants are detectable

using IoCs and applying signature-based rules, threats and threat classes are detectable by combining

higher-level network features and network behavior analysis to automatically detect malicious behavior,

which allows obtaining IoCs for newly detected malware variants in automated ways with the study of

threats and threat classes.

Cisco Encrypted Traffic Analytics (ETA) solution is formed by both Cisco StealthWatch solution

and the Enhanced NetFlow concept combined [17, 42, 43]. This solution allows analyzing network’s

encrypted traffic to understand the most of what is happening in the network based only on traffic

metadata. As such, it can be used to detect threats in the network, without breaking users’ privacies

(decrypting and inspecting traffic) and without needing to parse diverse L5-7 protocols too deeply. Of

all Cisco solutions, this one is the most closely related to the technical matters of this work. This solution,

as well as this work, base themselves on the fact that even though not all data is intelligible, it is possible

to extract a lot of threat intel from network traffic considering metadata only. By studying publicly

available information about the Cisco ETA solution [17, 36, 41, 42, 43, 44], one can understand that it

implements encrypted traffic analysis techniques (Cisco StealthWatch) which can be particularly

applied to detect threats in the network, through the extracted and posteriorly enriched network

information (enhanced netflows).

Cisco CTD provides in-depth defense against modern and advanced threats [38] which can

bypass most detection mechanisms. For network-based detection, Cisco CTD uses NetFlows and, on

top, Cisco StealthWatch and Cisco FireSIGHT (which uses Cisco FirePOWER as the knowledgeable

backend module). It also uses an endpoint-based solution called Cisco AMP [53] (Advanced Malware

Protection) for endpoint threat detection.

Cisco AMP [53] acts like an automated malware sandbox analysis mechanism capable of

analyzing network packet data and detecting malicious incoming files using static and dynamic file

analysis. In terms of file-related features, Cisco AMP integrates with Cisco Threat Grid [54, 55, 56] to

obtain more than 700 behavioral indicators (indicator, in this context, refers to features, do not confuse

with indicator of compromise) related to a file and automatically detecting and understanding malware

18

captured in the endpoint, which is not our direct focus. However, it is relevant as a related application

because endpoint-based detection systems also need to include network-based analysis capabilities.

Connection with This Work

In this thesis, we try to attain the same goal as Cisco CTD of detecting the presence of threats in a

network, such as the presence of bots [38], but rather than focusing on the real-time detection of threats,

it focuses on the process of building such detection systems and in the study of threats only at the

network level (rather than studying host-level indicators as well).

Similar to Cisco Enhanced NetFlow, NetGenes strives to obtain the most possible extractable

packet information using comprehensive conceptual and statistical flow features, and similar to the

posterior flow aggregation techniques performed on top of NetFlow output, we strive to obtain the most

possible flow-extractable information by implementing comprehensive conceptual and statistical talker

and host features. We identify this gathering of features as being similar to Cisco Threat Grid, in the

sense that we try to obtain a comprehensive network feature-set as well.

Ideally, if we were to build a full-featured Threat Hunting Platform (THP), it would use the

extracted network-object features to enable an optimized study of threats in post-mortem analysis

scenarios, as well as creating a way to detect them. This would be similar to Cisco StealthWatch in the

sense that it performs a higher-level analysis and enables the creation of intelligence (tier-2 information,

comparable to this work’s host/talker information and to the detection of suspicious/malicious behavior

in those contexts), from enhanced NetFlow output (tier-1 information, comparable to this work’s

extracted flows), all starting from network packets (raw data). However, in this work, we propose the

methodology of studying and analyzing extracted network-object features to understand and detect

whichever tool, threat, threat class, or inclusively any other type of traffic that we may correctly label

(e.g., threat actors, types of normal traffic), that we want to study.

Note: by using NetGenes, which extracts the most data out of network traffic that we are able

to (at the time of writing), we are optimizing the extracted data’s usability. For example, if we were to

develop a specific threat detection module for a real-time detection system (e.g., the NIDS developed

in the context of our previous work [10]), it is very positive that the detection results are completely

independent of packet L5-7 data being encrypted because the system can choose to not parse and

analyze received intelligible L5-7 protocol data in real-time (since it can be a computationally heavy task

to do so) and go straight to the detection of L1-4 events (e.g., detecting the core scenarios of a port

scan, as we do in subsection 5.3 by creating simple but effective rule sets that target it) or, if

implemented, flow fingerprinting may also be employed at the L1-4 level to detect L5-7 events (e.g.,

common HTTP GET requests, SSH initial login request, etc.). Similarly, for threat hunting, ignoring the

encryption state of traffic does not limit us to finding threats in unencrypted network traffic only. Thus,

on top of NetGenes network-object output data, similarly to NetFlow, it is possible to build whole

solutions on top, such as the ones described above and much more: that is the purpose of NetGenes.

Concluding and contextualizing this subsection to our work, we observe that software solutions

such as the ones briefly described above contain very similar solutions to what most literature tries to

achieve. Another interesting observation is that, most of the times, the literature exclusively focuses on

other literature and open-source tools, but the truth is that domain-specific companies, such as Cisco

19

in the networking (and network security) field, are usually ahead. As such, we propose that researchers

in this field look at these companies and try to take away key notes and ideas from their publicly

available documentation and solutions. Doing a good research on state-of-the-art solutions will likely

be an eye-opener and improve researchers’ smaller solutions which, very often, aim to achieve common

goals. This way, the literature might better accompany research in domain-specific areas such as this

one and strive to, inclusively, improve specific concepts and techniques used by these solutions to

achieve the same objectives in a possibly better way. We firmly believe that this is what we performed

within the context of this thesis but, truth be told, there are a lot of different tools out there and a more

extensive study of these tools is required.

2.7. Detected Issues

We overlook closed-source and commercial software solutions which cannot be studied more in-depth

for lack of verifiability. Given the studied related work, we identify the following problems:

1. Lack of L1-4 features: NetFlow-based feature extraction tools, Zeek, Maji, YAF, Softflowd, Netmate,

pmacct. CICFlowMeter (TCP) and Tranalyzer-2 include a more comprehensive set of L1-4 flow

features, but these flow features can still be extended even further.

2. Lack of talker- and host- based features: CICFlowMeter, Tranalyzer-2. Tranalyzer-2 has features on

these higher abstraction levels, but it still lacks some of them (many which are extendable from flow

features) which we want to consider, even though it also considers some features that we haven’t

implemented at the time. These higher-level features provide more context than packet- and flow-

based features; despite this, they are very lightly considered in most datasets, traffic analysis tools

and the literature in general [14].

3. Problem 1 and problem 2 both result in a different research-related problem: a lack of standardized

format for building processed network-based datasets. This is a problem that we identify in the

research community around the intrusion detection field, mainly due to so many different processed

datasets being made available [14]. This lack of format for network-based features leads to each

researcher using raw trace-files or NetFlow logs made available and using diversified methods and

tools to extract knowledgeable features from these. This is a problem because researchers are, one,

spending time in finding useful features extractable from those standard formats and two, creating

privately processed datasets. For the previously mentioned reasons, researchers are forced to

compare their work results with other works which use completely different network feature formats

and feature-sets.

4. Problem 3, consequently, results in at least two other problems:

• Research related to Machine Learning algorithms applied to the network intrusion detection

problem will be, in the most part, inherently inconclusive, because the dataset features worked by

each classifier have different formats. Classifier benchmarking is often performed in processed

datasets using custom network-based feature formats, so very often the work becomes

incomparable with other researchers’ work. At the same time, used network traffic quality is difficult

to be evaluated and compared because instead of there being a focus only on the traffic, the focus

20

of the research papers constantly shifts between the used feature-sets (such as those generated

by tools and datasets), the labelling methodology (e.g., fine-grained, coarse-grained, manual) and

the traffic used to generate datasets.

• Extended signature-based botnet detection techniques, for example, often focus on packet-based

features and use flow-based features [3] to aid detection. Additionally, by analyzing different

anomaly- and behavior- based botnet detection techniques, we observed that there exists a focus

on flow-based features and a few conceptual talker- and host- based features; furthermore, some

works also consider the contacted ports and directly assume that a L7 protocol is being used [23]

which might introduce unintended bias. To consider the used L7 protocol, we recommend

extending the port-protocol correlation with the use of traffic validation techniques like L5-7

protocol fingerprinting in case the traffic is encrypted, or a direct validation of the protocol in case

traffic is unencrypted. This thesis does not contribute with such techniques and would also assume

port-protocol correlation for a more optimized detection if needed, because this work would not be

doable for all relevant L5-7 protocols in the due time. However, it is important that weaknesses

like this are duly documented and that solutions are eventually put in-place, since adversaries can

leverage those weaknesses to evade detection. The reason we propose L5-7 protocol

fingerprinting to solve this problem is because it is an encryption-agnostic solution. This and other

improvements are mentioned as future work.

21

Chapter 3. Network Threat Class Taxonomy

The current chapter is divided in multiple subsections enumerating threat classes, and the taxonomy

that we define in this chapter is mostly based on our experience on network attacks, as well as

knowledge acquired from multiple references [67]-[137] marked as “network attack research reference”.

Threat Class Label OSI Layer Threat

3.1. Host Discovery

3.1.1 L2 ARP Host Discovery

3.1.2 L3 IP Protocol Host Discovery

3.1.2 L3+ ICMP Host Discovery

3.1.4 L4 UDP Host Discovery

3.1.5 L4 TCP Host Discovery

3.2. Port Scan

3.2.1 L4 UDP Port Scan

3.2.2 L4 TCP Port Scan

3.2.3 L4 SCTP Port Scan

3.3. L3 Service

Discovery

3.3.1 L3 IP Protocol Scan over IPv4 (-sO)

3.3.2 L3 IP Protocol Scan over IPv6

3.4. L7 Brute Force

Attack

3.4.1 L7 FTP Brute Force Attack

3.4.2 L7 SSH Brute Force Attack

3.4.3 L7 Telnet Brute Force Attack

3.4.4 L7 SMTP Brute Force Attack

3.4.5 L7 POP3 Brute Force Attack

3.4.6 L7 RDP Brute Force Attack

3.4.7 L7 HTTP-application Brute Force Attack

3.4.8 L7 HTTPS-application Brute Force Attack

3.5. L3+ Resource

Exhaustion Denial

of Service Attack

3.5.1 L3+ ICMP Denial of Service Attack

3.6. L4 Resource

Exhaustion Denial

of Service Attack

3.6.1 L4 UDP Denial of Service Attack

3.6.2 L4 TCP Denial of Service Attack

3.6.3 L4 SCTP Denial of Service Attack

3.7. HTTP Resource

Exhaustion Denial

of Service Attack

3.7.1 L7 HTTP Low and Slow Attack

3.7.2 L7 HTTP Flood

3.8. Logical Denial

of Service Attack

3.8.1 L1-7 Network Protocol Exploitation

3.8.2 L7 Application Layer Logical Exploitation

TABLE 1. THREATS AND LABELS BY THREAT CLASS.

22

The main objective of this chapter is establishing a technical taxonomy on common network threat

classes, establishing a strong ground truth concept for each. The following concepts, used in this

chapter, relate as follows:

• A Threat Class is implemented by one or more Threats.

• A Threat Class encompasses one or more Generic Attack Techniques.

• A Threat Class has an Intent.

• Intent describes the main objectives behind a Threat Class.

• A Threat encompasses one or more Specific Attack Techniques.

• A Generic Attack Technique is implemented by one or more Programs.

• A Specific Attack Technique is implemented by one or more Programs.

• Program Applicability describes criteria for acceptable Programs.

Table 1 shows each threat considered by each threat class, as well as their labels, which we use to

refer to them in each of the following subsections. In the context of this chapter only, labels in-

between square brackets are used to refer to their associated threat classes and threats.

3.1. L2-L4 Threat Class: Host Discovery

Intent: Probe multiple selected hosts to find active ones.

Generic Attack Technique(s):

• CIDR Selection - the attacker probes multiple hosts contained by a network range written in the

Classless Inter-Domain Routing (CIDR) notation. [3.1]

• Host Range Selection - the attacker probes multiple hosts by specifying a range of IP

addresses. [3.1]

Specific Attack Technique(s):

• ARP Ping Scan (-sn -PR) - within a Local Area Network (LAN), the attacker sends an ARP

request to a destination MAC address, which can either be a single MAC address, a multicast

MAC address or the broadcast MAC address (the most common). If any device is listening on

those channels, it will respond (given a normal system configuration) to the request with a valid

MAC address associated with the IP, according to its ARP table, given that default dynamic

ARP table entries are enabled. This scan is very powerful to find hidden devices in a network,

since ARP requests will very likely be responded to by whoever owns the requested information

and is actively listening on those channels. In case of a response, we have confirmation that

the host is active, unless the respondent host had ARP table entries that should already have

expired or, in a more unusual case, if the respondent host was ARP spoofed. [3.1.1]

• IP Protocol Ping (-sn -PO) - for each host, the attacker sends multiple raw IP packets containing

the IP protocol number in the IP header. For example, the attacker can send six raw IP packets,

each containing a different protocol: ICMP (protocol 1), IGMP (protocol 2), IP-in-IP (protocol 4),

TCP (protocol 6), UDP (protocol 17) and SCTP (protocol 132). This method looks for either

responses using the same protocol (host supports protocol) or ICMP protocol unreachable

messages (host doesn't support protocol), both indicating that the target host is alive. [3.1.2]

23

• ICMP Echo Request Scan (-sn -PE) - for each host, the attacker sends an ICMP type 8 packet.

If the host responds with an ICMP type 0 packet, it is up, else the host may be down or the

packet was filtered. [3.1.3]

• ICMP Timestamp Request Scan (-sn -PP) - for each host, the attacker sends an ICMP type 13

packet. If the host responds with an ICMP type 14 packet, it is up, else the host may be down

or the packet was filtered. [3.1.3]

• ICMP Information Request (does not exist in Nmap) - for each host, the attacker sends an ICMP

type 15 packet. If the host responds with an ICMP type 16 packet, it is up, else the host may

be down, this service is not implemented on the end device or the packet was filtered. [3.1.3]

• ICMP Address Mask Request Scan (-sn -PM) - for each host, the attacker sends an ICMP type

17 packets. If the host responds with an ICMP type 18 packet, it is up, else the host may be

down, this service is not implemented on the end device or the packet was filtered. [3.1.3]

• UDP Ping Scan (-sn -PU) - for each host, the attacker sends a UDP request to one given port.

If the host responds, the host is up, else the host may be down or the packet was filtered. [3.1.4]

• TCP SYN Ping Scan (-sn -PS) - for each host, the attacker sends a TCP request with the SYN

flag activated to one test port. If the host responds with SYN-ACK or RST, the host is up, else

the host may be down or the packet was filtered. [3.1.5]

• TCP ACK Ping Scan (-sn -PA) - for each host, the attacker sends a TCP packet with the ACK

flag activated to one test port. If the host responds with SYN-ACK or RST, the host is up, else

the host may be down or the packet was filtered. [3.1.5]

Program Applicability: Programs that can communicate over a network can eventually be used for host

discovery, given that the protocols used to communicate are supported by the targeted machine.

However, we will only consider a host discovery program as such if it complies with at least one of the

following conditions:

• It supports sending and interpreting ARP probes for multiple hosts

• It supports sending and interpreting IP protocol probes (raw IP packets specifying the probed

IP protocol number on the IP header) for multiple hosts

• It supports sending and interpreting TCP, UDP and ICMP probes for multiple hosts

• Optionally, these programs can also support other protocols such as SCTP. Also, the existence

of any L5-7 protocol is irrelevant for this category.

Programs - <name> (<L1-4 protocols supported>):

• NetDiscover (ARP)

• UnicornScan - 3.1.1, 3.1.2, 3.1.3 (TCP, UDP, ICMP)

• Nmap - 3.1.1, 3.1.2, 3.1.3 (ARP, raw IP, ICMP, UDP, TCP, SCTP)

• Ncat - 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.5 (UDP, TCP, SCTP)

• Hping3 - 3.1.1, 3.1.2, 3.1.3, 3.1.4 (raw IP, ICMP, UDP, TCP)

• AngryIPScanner - 3.1.1, 3.1.2 (ICMP, UDP, TCP)

• Masscan - 3.1.1, 3.1.2 (ICMP, UDP, TCP)

• ZMap - 3.1.1, 3.1.2 (ICMP, UDP, TCP)

24

3.2. L4 Threat Class: Port Scan

Intent: Probe multiple ports of a given host, for a given L4 protocol.

Generic Attack Technique(s):

• Distributed Port Scan - multiple hosts probe multiple ports of a host. [3.2]

• FTP Bounce Scan (-b) – this method allows an attacker to use a vulnerable FTP server as a

proxy to port scan other hosts. This option is ideally used to target hosts in the same internal

network as the FTP server, which will recognize it and accept packets coming from it, outputting

responses that leak information about the port’s state. [3.2]

Specific Attack Technique(s):

• UDP Scan (-sU) - the attacker sends a UDP packet to each port. If the target responds with

service data, the port is open. If the target does not respond, the port is either closed or filtered.

[3.2.1]

• TCP Connect Scan (-sT) - the attacker sends a TCP packet with the SYN flag bit set to each

port. If the target responds with a SYN-ACK packet, the port is open and accepting requests:

the attacker sends an ACK packet back; the target then responds with the service's specific

data; then, the attacker sends a RST packet and closes the connection. If the target responds

with a RST packet, the port is closed. Else, if the target does not respond, the port is filtered.

[3.2.2]

• TCP SYN Scan (-sS) - the attacker sends a TCP packet with the SYN flag bit set to each port.

If the target responds with SYN-ACK, the port is open and accepting requests: the attacker

sends a RST packet to close the connection. If the target responds with a RST packet, the port

is closed. Else, if the target does not respond, the port is filtered. [3.2.2]

• TCP ACK Scan (-sA) - the attacker sends a TCP packet with the ACK flag bit set to each port.

If the target responds with a RST packet, the port is either open or closed, meaning that the

port is unfiltered (not blocked by any firewall). Else, if the target does not respond or if it

responds with certain ICMP error messages (ICMP Type 3; codes 0, 1, 2, 3, 9, 10 or 13), then

the port is filtered. [3.2.2]

• TCP Null Scan (-sN) - the attacker sends a TCP packet with no flag set to each port. If the

target responds with a RST packet, the port is considered closed. Else, if the target does not

respond, the port is either open or filtered. Finally, if the target responds with an ICMP

"Destination Unreachable" error (ICMP Type 3; codes 0, 1, 2, 3, 9, 10 or 13) then the port is

filtered. [3.2.2]

• TCP Xmas Scan (-sX) - the attacker sends a TCP packet with the FIN, PSH and URG flag bits

set to each port. If the target responds with a RST packet, the port is considered closed. Else,

if the target does not respond, the port is either open or filtered. Finally, if the target responds

with an ICMP "Destination Unreachable" error (ICMP Type 3; codes 0, 1, 2, 3, 9, 10 or 13) then

the port is filtered. [3.2.2]

• TCP FIN Scan (-sF) - the attacker sends a TCP packet with the FIN flag bit set to each port. If

the target responds with a RST packet, the port is considered closed. Else, if the target does

25

not respond, the port is either open or filtered. Finally, if the target responds with an ICMP

"Destination Unreachable" error (ICMP Type 3; codes 0, 1, 2, 3, 9, 10 or 13) then the port is

filtered. [3.2.2]

• TCP Idle Scan (-sI) - the attacker sends a SYN-ACK packet to a host, which will be dubbed

"unaware host" because its technical name, "zombie", already associates to a completely

different meaning in the botnet context. The unexpected SYN-ACK packet sent to the unaware

host will be responded to with a RST packet sent back to the attacker, which has a certain IP

ID associated with it. The attacker then sends a SYN packet to the target host with the source

IP address spoofed with the IP of the unaware host, incrementing its IP ID by 1. On this moment,

there are three possible scenarios: (A1) The target host responds to the unaware host with a

SYN-ACK packet. Since the unaware host was not expecting the packet, it sends a RST packet

to the target host, incrementing its IP ID by 1 again. (A2) The target host responds to the

unaware host with a RST packet. The unaware host did not expect the packet, but since it isn't

a packet that tries to initiate a connection (rather, abort it), the unaware host does not respond

with any packet, thus not incrementing its own IP ID. (A3) The target host does not respond to

the unaware host. As such, the unaware host does not receive any packet and, more

importantly, it doesn't send a packet back, such as in scenario A2, thus not incrementing its IP

ID. Continuation: Once any of the previous scenarios has taken place, the attacker will send a

SYN-ACK packet to the unaware host, to which the unaware host will respond with a RST

packet. The IP ID of the final RST packet will then be analyzed by the attacker for the existence

of one of the following scenarios: (B1) The IP ID was incremented by 2 since the first packet

received from the unaware host, which means that the target host responded with a SYN-ACK

packet to the unaware host, so the probed port is open. (B2) The IP ID was only incremented

by 1 since the first packet received from the unaware host, which means that the target host

responded with a RST packet or did not respond at all, since in both situations the unaware

host does not create any response packet for the target host. As such, from the attacker's

perspective, the probed port might be either closed (scenario A2) or filtered (scenario A3). The

attacker then repeats this whole process for each port that he intends to scan. [3.2.2]

• TCP Maimon Scan (-sM) - this technique is named after its discoverer, Uriel Maimon. It starts

with the attacker sending a TCP packet with the FIN and ACK flag bits set to each port.

According to the RFC-793 (TCP RFC), the host should generate a RST packet in response,

independently of the fact of the port being open or closed. However, Uriel found out that many

BSD-derived systems simply drop this packet if the port is open. [3.2.2]

• TCP Custom Scan (--scanflags) - the attacker sends a TCP packet with a custom set of TCP

flag bits set to each port. The analysis depends on the TCP flag set used, as this means

different possible responses and interpretations. It can be used, for example, to find bypassable

edge-cases for firewalls and IDSs. [3.2.2]

• Service/Version Detection Scan (-sV). Probes open ports to determine service/version info,

meaning that the flow will be fully initiated to allow sending test packets to try and detect the

version of the probed service based on the responses.

26

• SCTP INIT Scan (-sY) - the attacker sends an SCTP INIT packet to each port of the target host.

An SCTP INIT-ACK response packet indicates that the port is open and, in this case, the

attacker aborts the connection right after. An SCTP ABORT response packet indicates that the

port is closed and, if no response is received after several retransmissions, the port is marked

as filtered. [3.2.3]

• SCTP "COOKIE ECHO" Scan (-sZ) - the attacker sends an SCTP COOKIE ECHO packet to

each port of the target host. If the target host doesn't respond, the port is either open or filtered.

If the target host responds with an SCTP ABORT packet, then the port is closed. [3.2.3]

Program Applicability: Any program that communicates over a network can eventually be used for

network host discovery using a certain network protocol, given that the probed protocol is present on

the probed machine. Given the latter, we will only consider a host discovery program as such if at least

one of the following conditions are true:

• It supports sending and interpreting ARP probes for multiple hosts

• It supports sending and interpreting raw IP packets specifying the probed IP protocol number

on the IP header for multiple hosts (IP protocol probes)

• It supports sending and interpreting TCP, UDP and ICMP probes (given their prevalence on

today's networks) for multiple hosts

• Optionally, these programs can also support other much less adopted protocols such as SCTP.

Also, the existence of any L5-7 protocol is irrelevant for this category.

Programs - <name> (<L1-4 protocols supported>):

• UnicornScan - 3.2.1, 3.2.2, 3.2.3 (TCP, UDP, ICMP)

• Nmap - 3.2.1, 3.2.2, 3.2.3 (ARP, raw IP, ICMP, UDP, TCP, SCTP)

• Ncat - 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5 (UDP, TCP, SCTP)

• Hping3 - 3.2.1, 3.2.2, 3.2.3, 3.2.4 (raw IP, ICMP, UDP, TCP)

• AngryIPScanner - 3.2.1, 3.2.2 (ICMP, UDP, TCP)

• Masscan - 3.2.1, 3.2.2 (ICMP, UDP, TCP)

• ZMap - 3.2.1, 3.2.2 (ICMP, UDP, TCP)

3.3. L3 Threat Class: L3 Service Discovery

Intent: Find out information about a target host using raw L3 requests.

Generic Attack Technique(s): Unspecified.

Specific Attack Technique(s):

• IP Protocol Scan over IPv4 (-sO) - the objective of this scan is determining what IP protocols,

running over IPv4, are available in the target host. The attacker sends an IPv4 packet to the

target host, with the "Protocol" field filled in the IPv4 header for each targeted IP protocol

number. For example, the attacker can send six IP packets asking for six IP protocols support:

ICMP (protocol 1), IGMP (protocol 2), IP-in-IP (protocol 4), TCP (protocol 6), UDP (protocol 17)

and SCTP (protocol 132). If the attacker receives a response from the target host using the

probed protocol or an ICMP "Destination Unreachable - Port Unreachable" error (ICMP Type

27

3, code 3), the protocol is supported (open). If an ICMP "Destination Unreachable - Protocol

Unreachable" error (ICMP Type 3, code 2) is received, the protocol is marked as unsupported

(closed). Other ICMP "Destination Unreachable" errors (ICMP Type 3; codes 0, 1, 9, 10, or 13)

cause the protocol to be marked filtered. If no response is received after retransmissions, the

protocol is marked as possibly supported (open or filtered). [3.3.1]

• IP Protocol Scan over IPv6 - the objective of this scan is determining what IP protocols, running

over IPv6, are available in the target host. The attacker sends an IPv6 packet to the target host,

with the "Next Header" field filled in the IP header for each targeted IP protocol number.

Similarly to the IPv4 protocol scan, if the attacker receives a response from the target host

using the probed protocol then the protocol is supported. However, the interpretation of the

responses will differ since ICMPv4 and ICMPv6 responses differ. [3.3.1]

Program Applicability: Any program that allows sending and interpreting multiple L3 service-related

probes.

Programs - <name> (<L1-4 protocols supported>):

• Nmap - 3.3.1, 3.3.2, 3.3.3 (ARP, raw IP, ICMP, UDP, TCP, SCTP)

• Hping3 - 3.3.1, 3.3.2, 3.3.3, 3.3.4 (raw IP, ICMP, UDP, TCP)

3.4. L7 Threat Class: L7 Brute Force Attack

Intent: Test multiple credential combinations in a continuous manner to find out correct ones.

Generic Attack Technique(s):

• Traditional Brute Force Attack - test multiple passwords per few accounts. [3.4]

• Reverse Brute Force Attack (a.k.a. Password Spraying Attack) - test few passwords per

multiple accounts. [3.4]

Specific Attack Technique(s): Unspecified.

Program Applicability: Any program that supports brute-forcing credentials associated with a L7

protocol.

Programs - <name> (<L1-4 protocols supported>) (<L5-7 protocols supported>):

• Ncat (UDP, TCP, SCTP) (None in particular)

• Patator (TCP) (FTP, SSH, Telnet, SMTP, HTTP/HTTPS, RDP, AJP, POP, IMAP, LDAP, SMB,

SNMP)

• ncrack (TCP) (SSH, RDP, FTP, Telnet, HTTP/HTTPS, HTTP/HTTPS WordPress websites,

POP3/POP3S, IMAP, CVS)

• CrackMapExec (SMB)

3.5. L3+ Threat Class: L3+ Resource Exhaustion Denial of Service Attack

Intent: Overwhelm a target system with multiple malicious L3-level control queries, with the goal of

exhausting that system's network and/or computational resources.

Generic Attack Technique(s):

28

• Distributed Denial of Service (DDoS) Attack - use multiple systems to attack a target system.

[3.5]

• Reflection and Amplification Attack - the attacker uses systems which are running specific

network protocols that respond to small requests with large responses. This fact provides an

attacker the possibility of sending multiple spoofed requests with the target's IP address (as

source address) and redirect those systems' responses to the target system, resulting in a

Distributed Denial of Service (DDoS) attack. [3.5]

Specific Attack Technique(s):

• ICMP Ping (Type 8) Flood - the attacker sends multiple ICMP "Echo" (ICMP Type 8) request

packets to the target system. [3.5.1]

• ICMP Destination Unreachable (Type 3) Flood - the attacker sends multiple ICMP "Destination

Unreachable" (ICMP Type 3) packets to the target system. Although this ICMP packet type is

a response, since the ICMP protocol is not stateful, the packet will still be processed. [3.5.1]

• ICMP Time Exceeded (Type 11) Flood - the attacker sends multiple ICMP "Time Exceeded"

(ICMP Type 11) packets to the target system. Although this ICMP packet type is a response,

since the ICMP protocol is not stateful, the packet will still be processed. [3.5.1]

• Smurf Attack (specific "Reflection and Amplification Attack") - the attacker broadcasts spoofed

ICMP "Echo Request" packets on a network, so that systems which are listening on the IP

broadcast address send ICMP "Echo Reply" response packets to the target system. [3.5.1]

• Fraggle Attack (specific "Reflection and Amplification Attack") - the attacker sends spoofed

UDP requests to multiple systems at ports 7 (Echo Protocol) and 19 (CHARGEN Generator

Protocol), so that those systems send ICMP "Destination Unreachable - Port Unreachable"

(ICMP Type 3, code 3) response packets to the target system. [3.5.1]

Program Applicability: Every program that is able to perform multiple malicious requests against a L3-

level control service (subset of L3+ services) to cause network and computational resource exhaustion

on the targeted system, ultimately resulting in a lack of availability to legitimate L3-level control queries.

Programs - <name> (<L1-4 protocols supported>): Hping3 (raw IP, ICMP, UDP, TCP)

3.6. L4 Threat Class: L4 Resource Exhaustion Denial of

Service Attack

Intent: Overwhelm a target system with multiple malicious L4-level requests directed towards a network

service using a given L4 protocol on a given port, with the goal of exhausting the target system's network

and/or computational resources.

Note: Since any received packet needs to be processed by the network stack of the targeted system, a

denial of service attack may still occur against closed ports, which is why we often use the term "system"

rather than "server", which designates a system running a network service usable by clients. We use

the term "server" whenever the attack is only applicable against one.

Generic Attack Technique(s):

29

• High-Rate Attack - quickly and continuously launch multiple requests against a target system.

[3.6]

• Distributed Denial of Service (DDoS) Attack - the attacker uses multiple systems to attack a

target system. [3.6]

• Reflection and Amplification Attack - the attacker uses servers which are running specific

network protocols that respond to small requests with large responses. This fact provides an

attacker the possibility of sending multiple spoofed requests with the target's IP address (as

source address) and redirect those servers' responses to the target system, resulting in a

Distributed Denial of Service (DDoS) attack. [3.6]

• Low-Rate Attack - the attacker launches multiple L4-level requests against a target server and,

for each established connection, slowly sends data back to the server to keep it holding to the

connection as long as possible. [3.6]

Specific Attack Technique(s):

• UDP Reflection and Amplification Attack - the attacker sends multiple spoofed UDP packets to

appear as if these packets originated from the target's network IP address, to multiple systems

running UDP services. This results in those multiple systems reflecting large UDP response

packets to the target's network, resulting in a Distributed Denial of Service (DDoS) attack. DNS

and NTP are examples of UDP services that are very usually used to perform this kind of attack,

but many others can be used as well. More recently, in February 2018, the Memcached service

was used for this kind of attack with an unprecedented amplification factor. [3.6.1]

• TCP SYN-ACK Reflection and Amplification Attack - the attacker sends multiple spoofed TCP

packets to appear as if these packets originated from the target's network IP address, to

multiple systems running TCP services. This results in those multiple systems reflecting TCP

SYN-ACK response packets to the target's network, resulting in a Distributed Denial of Service

(DDoS) attack. [3.6.2]

• TCP SYN Flood Attack - the attacker sends multiple SYN packets to a target server, resulting

in multiple SYN-ACK responses, only to never send any ACK back to the target server. This

results in the target server maintaining multiple sockets occupied for the initiated half-open

connections, resulting in a denial of service for legitimate clients who want to connect to those

ports. [3.6.2]

• TCP "Tsunami" Flood Attack - similar to the TCP SYN Flood attack, however sent packets

contain garbage data to cause the server additional stress when processing each request.

[3.6.2]

• TCP Custom Flag Floods - the attacker sends multiple TCP packets with custom sets of TCP

flags. Some already used attacks based on custom flag combinations are: URG-PSH-SYN

Flood, URG-PSH-RST Flood, "All TCP Flags" Flood (Xmas Flood), ACK-SYN Flood, PSH-RST-

FIN Flood, URG-ACK-FIN Flood, among others. [3.6.2]

• TCP Connection Flood - the attacker sends multiple SYN packets to a target server, resulting

in multiple SYN-ACK responses, to which the attacker will respond with ACK packets ideally in

the longest time possible before the server times out from the connection attempt. This results

30

in multiple longest-time connection initiations (3-way handshakes) between the attacker and

the server to exhaust server's resources for the longest time possible, which the attacker may

complement with additional measures to keep the connection active for the longest time as

well.

• TCP Connection Flood Stress (TCP Sockstress Attack 1) - similar to the TCP connection flood.

[3.6.2]

• TCP Zero Window Connection Stress (TCP Sockstress Attack 2) - the attacker initiates a TCP

connection with the target server. The attacker sends zero-sized window TCP packets, begun

to be specified in the last ACK packet of the 3-way handshake, expressing a false unavailability

to receive any packets with a data size greater than 0 bytes. In response to the former, the

server stores in memory all the data it has yet to send. The attacker will then continuously

request the expected X-byte sized chunks at a specified rate and in specified intervals, which

will optimally be the slowest rate and intervals at which the target server keeps the connection

active, for the longest time possible and avoiding any timeout event. Since the server will have

to hold on to the stored data, it will incur in excessive memory consumption. [3.6.2]

• TCP Small Window Stress Attack (TCP Sockstress Attack 3) - the attacker initiates a TCP

connection with the target server. The attacker sends small-sized window TCP packets, begun

to be specified in the last ACK packet of the 3-way handshake, expressing a false unavailability

to receive packets with a data size greater than X bytes (the Sockstress's framework defines 4

bytes as the default window size). In response to the former, the server splits up the data it has

yet to send into multiple X-byte chunks and stores it in memory. The attacker will then

continuously request the expected X-byte sized chunks at a specified rate and in specified

intervals, which will optimally be the slowest rate and intervals at which the target server keeps

the connection active, for the longest time possible and avoiding any timeout event. Since the

server will have to hold on to the data that it is very slowly being sent, it will incur in excessive

memory consumption. [3.6.2]

• TCP Segment Hole Stress (TCP Sockstress Attack 4) - the attacker initiates a TCP connection

with the target server. The attacker sends 4 bytes to the beginning of the TCP window, then

sends 4 bytes to the end of the TCP window, and then sets the windows size to zero. The

network stack vulnerable servers may respond to the former attack by allocating multiple pages

of kernel memory per connection made, incurring in excessive memory consumption. Note: this

attack is yet unclear in its execution, it would need to be further analyzed. [3.6.2]

• TCP Req Fin Pause Stress (TCP Sockstress Attack 5) - the attacker initiates a TCP connection

with the target server. The attacker sends a L7 application payload (e.g. HTTP GET) inside a

TCP PSH packet. The attacker then sends a FIN packet with a zero size window, to which

vulnerable servers will not respond with a FIN-ACK packet to close the connection, but rather

will maintain the connection open on their side and indefinitely keep the socket occupied on the

FIN_WAIT_1 state (which means that the socket knows the remote computer has closed the

connection, but it is still waiting for the local application that was using the socket to

acknowledge the end of the connection and finally allow releasing the socket). [3.6.2]

31

• TCP Activate Reno Pressure Stress (TCP Sockstress Attack 6) - the attacker initiates a TCP

connection with the target HTTP server, sends a L7 application payload (e.g. HTTP GET) inside

a TCP PSH packet and sends three duplicate ACK packets. Note: it would be interesting to find

more reliable information about this attack, however I could not find any more information on it.

[3.6.2]

• SCTP INIT Flood - the attacker sends multiple SCTP INIT packets to a target system that

supports SCTP. [3.6.3]

• SCTP Address Camping - the attacker connects to an SCTP server and "camps upon" or "holds

up" a valid peer's IP address, preventing the legitimate peer from communicating with the

server. This technique targets the SCTP's multi-homing feature and directly affects the peers'

ability to establish a connection with the server. [3.6.3]

• SCTP Reflection and Amplification Attack (dubbed SCTP Bombing Attack) 1, 2, 3, 4 and 5 –

The five attacks are specified in RFC 5062 [3.6.3]

Program Applicability: Every program that can perform multiple malicious requests against a L4 service

or any application running over a L4 service to cause network and computational resource exhaustion

on the targeted server, ultimately resulting in a lack of availability to legitimate clients.

Programs - <name> (<L1-4 protocols supported>) (<L5-7 protocols supported>):

• Ncat (UDP, TCP, SCTP) (None in particular)

• Hping3 (raw IP, ICMP, UDP, TCP) (None in particular)

• DoS Goldeneye (TCP) (HTTP/HTTPS)

• DoS Hulk (TCP) (HTTP/HTTPS)

• DoS Slowloris (TCP) (HTTP/HTTPS)

3.7. L7 Threat Class: HTTP Resource Exhaustion Denial of

Service Attack

Intent: Overwhelm a target HTTP server with multiple malicious HTTP requests in order to exhaust its

network and/or computational resources.

Generic Attack Technique(s):

• High-Rate Attack - quickly and continuously launch multiple requests against a target HTTP

server. [3.7]

• Distributed Denial of Service (DDoS) Attack - the attacker uses multiple systems to attack a

target HTTP server. [3.7]

• Reflection and Amplification Attack - the attacker uses servers which are running specific

network protocols that respond to small requests with large responses. This fact provides an

attacker the possibility of sending multiple spoofed requests with the target's IP address (as

source address) and redirect those servers' responses to the target server, resulting in a

Distributed Denial of Service (DDoS) attack. [3.7]

32

• Low-Rate Attack - the attacker launches multiple HTTP requests against a target server and,

for each established connection, slowly sends data back to the server to keep it holding to the

connection as long as possible. [3.7]

Specific Attack Technique(s):

• Slowloris - the attacker performs multiple HTTP persistent connections with the target server

and slowly sends partial HTTP headers to it, which will keep it waiting for the receival of the

rest of the headers. Timeouts are avoided by periodically sending "Keep alive" (not to confuse

with the HTTP header value "keep-alive" used on the "connection" field) packets, i.e., "PSH-

ACK" TCP packets transporting partial headers on the data field. [3.7.1]

• R.U.D.Y (R-U-DEAD-YET) - the attacker generates multiple POST requests to fill out form fields

and tells the server how many bytes it should expect using the "Content-Length" HTTP header

field. Then, the attacker sends small-sized TCP packets with the expected data at very slow

rates, which results in the server holding on to the TCP socket to receive the rest of the data

for a long time. [3.7.1]

• HTTP GET Flood - the attacker sends multiple HTTP GET requests to the target server. [3.7.2]

• HTTP POST Flood - the attacker sends multiple HTTP POST requests to the target server.

[3.7.2]

Program Applicability: Every program that is able to perform multiple malicious requests specifically

against an HTTP application to cause network and computational resource exhaustion on the targeted

server, ultimately resulting in a lack of availability to legitimate clients.

Programs - <name> (<L1-4 protocols supported>) (<L5-7 protocols supported>):

• DoS Goldeneye (TCP) (HTTP/HTTPS)

• DoS Hulk (TCP) (HTTP/HTTPS)

• DoS Slowloris (TCP) (HTTP/HTTPS)

3.8. L1-7 Threat Class: Logical Denial of Service Attack

Intent: Exploit a network service or application, vulnerable to a logic flaw, running on the target system.

Exploitation of those is performed through specific actions that highly depend on very specific

vulnerabilities.

Generic Attack Technique(s): Unspecified.

Specific Attack Technique(s):

• Specially Crafted Packets - this technique involves the exploitation of a logical flaw in a network

service that is actively running on the target system by sending a set of packets that, far from

the expected format, are able to create a malfunction in the network service itself. This

technique may make use of an unforeseen vulnerability in a designed network protocol or, if

not on the protocol itself, a vulnerability in its code implementation. "Teardrop" (L3), "Ping of

Death" (L3+), "Land" (L4 - TCP) and "SCTP Association Redirection" (L4 - SCTP) are examples

of this technique. [3.8.1]

33

• Application Layer Logical Exploitation - this technique leverages logical mistakes in a specific

application to cause its unavailability. As an example, if a server requires default guest user

credentials to provide data to any user, all users must locally own those credentials (even if

"under the hood") to authenticate to the server. As such, users might also be able to issue a

password change request to the server to change those credentials if this "guest user" account

is not treated with caution server-side. If no control is put in place for this situation, a single user

could be able to deny every other user from authenticating to and receiving data from the

servers, since every users' locally saved guest user credentials would not be valid anymore.

[3.8.2]

Program Applicability / Programs: Custom exploits.

34

35

Chapter 4. Network Objects

We consider four different network objects: packets, flows, talkers, and hosts. Below, we describe the

relations between these four network objects, before studying the datasets using these:

• Legend: PS – Protocol Stack; SH – Source Host; SP – Source Port; DH – Destination Host; DP

– Destination Port; H – Host; FSC – Flow Separation Counter.

• Packet: Single unit. Defined by SH, SP, DH, DP and PS.

• Flow: gathers SH-SP<->DH-DP forward and backward packets:

o 5-tuple Flow: Includes the protocol stack in the flow definition but does not use the

highest-layer protocol to logically separate it. A 5-tuple flow is orderly defined by SH,

SP, DH, DP, PS.

o 6-tuple Flow: Includes the protocol stack and uses the highest-layer protocol to logically

separate the flow, thus requiring a sixth parameter (which we name “inner flow counter”

or “flow separation counter”). In this work, an example of this is the TCP flow, which

requires separation using the TCP flags and the TCP sequence (SEQ) and

acknowledgement (ACK) numbers. A 6-tuple flow is orderly defined by SH, SP, DH,

DP, PS and FSC.

• Talker: gathers SH<->DH forward and backward 6-tuple flows. A talker is orderly defined by

SH, DH and PS.

• Host: gathers H forward and backward talkers. A host is orderly defined by H and PS.

The Flow, Talker and Host objects we use are bidirectional and can also be referred to as Bi-Flow, Bi-

Talker and Bi-Host. We developed a network object extraction tool dubbed “NetGenes”, which

generates these network objects from multiple packets (captured on a PCAP or PCAPNG file). Inspired

by CICFlowMeter, it generates a high number of Flow features, both conceptual and statistical, as well

as Talker (flow set) and Host (talker set) data points.

4.1. NetGenes: network-object feature extraction tool

The tool we developed, dubbed NetGenes, extracts features of the previous network objects:

• Packets - use packet metadata only, encompassing OSI layer 1 to OSI layer 4.

• Flows - aggregate packet features into flow features, considering the protocol stack. We

consider two main protocol stacks: eth-eth-ipv4-udp and eth-eth-ipv4-tcp. TCP is implemented

in the RFC way, meaning that we analyze TCP flags and the Sequence/Acknowledgment

numbers to logically separate the incomplete 5-tuple TCP flow onto multiple 6-tuple flows.

• Talkers – aggregate flow features into talker features and create new talker-based flow-set

features. We consider “eth-eth-ipv4” as the protocol stack for talkers and hosts, and we uniquely

identify them using their IPv4.

36

• Hosts – aggregate talker features into host features and create new host-based talker-set

features. Host-based flow-set features can also be created but were not implemented. We

consider “eth-eth-ipv4” as the protocol stack for talkers and hosts, and we uniquely identify

them using their IPv4.

Network Object Aggregated Network-object Features

Flow Packet-set based features

Talker Flow-set based features

Host Talker-set (and flow-set) based features

TABLE 2. NETGENES NETWORK OBJECTS AND FEATURE SOURCE.

Note about Host features: we now think that host features should aggregate flow features as well and,

perhaps, substitute most talker features. This conclusion comes from the fact that these host features

have not been as useful as talker features because the latter ones are flow aggregations and we can

directly query them to understand the underlying flow sets, whereas hosts provide information about

the underlying talker sets but there is a lot of lost information on the flow sets. As such, we consider

that hosts should also focus on direct flow aggregation (flow sets). We think that implementing host-

based flow-set features would be beneficial because it provides insight into each host individually and

each of their flow sets, in a similar way that the talker does for each pair of talking hosts.

NetGenes is an unfinished prototype, as it will be for as long as every threat class’s core feature

is not implemented. Right now, it includes a lot of conceptual and statistical features on each network

object which may not be at all relevant to detect any network attack by their core features, and it still

does not include all the features that it needs to properly detect every threat class. These features are

workable with Machine Learning, and have been designed to be worked with it as well (e.g., one-hot

encoding of Boolean values), but successfully classifying threat class traffic is not as easy as splitting

datasets in train and test datasets based on authors’ labels and trying multiple classifiers and

regressors, it’s much more complicated than that to implement a generically efficient classifier.

We define core features as features that can successfully describe the core scenarios of a

network attack (generically encompassed by its threat class), with either low possibilities of evasion or

severely affecting the attack’s effectiveness if not detected. The purpose of the NetGenes tool is to help

us extract relevant information for detecting all the network attacks that we want to detect, which should

be thought about by studying the threat classes that those attacks implement to extract the core features

needed. As such, our long-term goal with this work is to continuously improve NetGenes towards

encompassing more threat class core features, in all its extracted network objects. We also think that,

by including non-core features that are useful for the detection of threat class instances, using statistical

analysis and ML classifiers, we may be able to receive hints about what core features we should be

looking for to implement in the tool. We recommend this as future work for more threat classes.

NetGenes’ summarized architecture is presented in figure 2 below. The currently implemented

network-object features are presented in the following annex tables: table 15 presents the packet

features; table 16 presents the flow features; table 17 presents the talker features; table 18 presents

the host features (not considering flow-set based features).

37

FIGURE 2. NETGENES SUMMARIZED ARCHITECTURE.

4.2. Flow-set based analysis

Until we thought about the Port Scan detection problem properly, we tried flow classification using ML

algorithms, which was an improvement over packet- and signature- based detections for detecting new

network attack instances. However, these methods can become outdated due to the fact that tools

change overtime, and also because custom parameters can be given to these tools (and other methods

as well) to alter the generated network traffic enough to be able to evade packet-based and signature-

based detection, as well as evade flow feature analysis methods that do not solely focus on the core

features of the threat class. Additionally, since neither CICFlowMeter nor other pure “flow” extraction

tools extract flow-set based features, most researchers usually only use flow-based features to feed ML

models and study threat classes, which is a big loss of perspective on the information.

We recommend that researchers attempt to extract flow-set based features, such as talker- and

host- based features, to not only improve their detection results but, more importantly, to find the core

features of the threat class, to improve their results based only on those core features, and to create

their own rule sets to detect the threat class. The current state-of-the-art alternative is relying on multiple

statistical flow-based features and attempt to model a whole threat class around those features. This

38

may achieve great results because ML models are capable of creating very complex rule sets within

themselves, but the main problem is that these models will most likely rely in features that do not truly

define the threat class because the train data is not broad enough to help the algorithm ignore non-core

features. If the train data is not broad enough to create a generic model, it will result in network attacks

falling undetected to the generated algorithm when they completely drop said non-core features. It is a

common problem that a ML model will overfit around multiple non-core features based on the train

dataset and achieve great results in the test datasets because of it when, in fact, the features used are

completely irrelevant for the threat class itself, but just happen to be commonalities within the used train

and test datasets that allows detecting those instances.

The previous problem is the reason why, for ML-based research for network traffic analysis

specifically applied to network attacks, if we want to find relevant commonalities that lead us to better

understand a threat class, it is important to use broad train and test datasets with a preference for

multiple scenarios within the same threat class using a single label between all scenarios. It is also very

difficult to truly understand a ML classifier (unless good explainable AI methods are employed) and we

cannot easily outline its limitations, as there is a lack of transparency in the way classifications are

made. To avoid this issue, we created rule sets to directly detect the threat class and its core scenarios.

4.3. NetGenes-based rule set guide

Creating a rule set based on NetGenes features should follow some guidelines:

• Avoid using time-based flow features - time-based flow features can be inaccurate. For

example, if a network interface is being flooded with packets, it uses its processing buffer to

store packets that it cannot process in the current time. This causes that a packet that arrives

at a certain moment t will only be processed by the software in the moment t+n and,

unfortunately, t+n is the one that is stored as the packet timestamp, rather than the real packet

arrival time t.

• Avoid using forward non-core flow features – forward flow features are controllable by the

adversary. When we want to detect flows using these, it is best that these features are

necessary (core features) for the malicious activity we want to detect. This guideline is

commonly broken with ML models, as it will be more inclined to perform a complex form of flow

fingerprinting based on its training data, which also breaks the following guideline.

• Avoid using too many flow features – avoid using too many features, which usually leads to

being too specific about what flows to detect. If this is needed, we should at least be aware that

we are being too specific about it, as it is likely that it represents flow fingerprinting, which is

more specific than flow profiling and should not be used to detect threat class flows but, instead,

more specific flows (e.g., flows created by specific software). Then, we should improve the rule

set in the future to generalize it enough for the threat class, when we confirm that the flows

filtered by this rule will, with a high probability, belong to the target threat class.

39

4.4. Network traffic analysis: packets, flows and flow sets

Some common examples of packet- and flow- based traffic analysis are:

• Firewall Stateless rules – packet-based filtering rules, these rules use packet metadata to

allow and route or to block those packets.

• Firewall Stateful rules – flow-based filtering rules, these rules use packet metadata to maintain

track of active connections, to allow or to block those connections.

• Deep Packet Inspection (DPI) – packet-based detection technique, it uses the information

present in a packet to detect it based on its transport protocol’s data. This technique allows

parsing and creating detection rules for protocols above OSI-layer 5. In the case of decrypted

traffic, it allows for signature-based detection based on L5-7 protocol specifics, as well as

detection based on regex filters.

• Flow Fingerprinting – flow-based detection technique, it uses information extracted from all

the packets of a certain flow to identify the software that generated it. It works because many

tools are consistent in the way that they generate unique identifiable network flows. It works on

encrypted traffic because it exclusively uses packet metadata extractable below OSI-layer 4 to

precisely identify these flows. It allows guessing flow (and packet) contents and context, even

if encrypted, based on multiple L1-L4 features only.

Flow fingerprinting can be differentiated from the flow-based detection techniques we employ in this

work for its stronger specificity in analyzing a significant number of features which serve as a

“fingerprint” identification of a given flow. Thus, if the considered flow features are not core to the threat

class, an attack’s signature may become outdated in time; additionally, an adversary has the possibility

of tampering with those non-core flow features to avoid detection, while still maintaining attack’s

effectiveness.

In this work, we employ flow-based detection methods focused on core flow features, aided by

talker- and host- based detection methods that allow logically grouping flows by core flow-set features.

We call this flow-set based detection.

In this matter, perspective is a key element. Packet-based detection is comparable to trying to

solve a labyrinth in the view of the player. Flow-based detection is like having a limited perspective of

the labyrinth from above. Flow-set based detection is comparable to viewing the whole labyrinth,

providing the context that is needed to improve the abstraction level and consequently facilitate problem

solving.

As an example, for port scan detection, a flow-based detection method does not retrieve or

otherwise consider data points that are core to its detection, like the unique destination port count based

on source host - destination host pairs (talker-based detection) or destination hosts (host-based

detection), which flow-set based detection provides by default.

40

4.5. NetGenes: Limitations and Considerations

Regarding talker features, we defined the direction of forward and backward flows using the talker’s

direction as reference, which by convention is set as the direction of the first flow of the talker. On the

other hand, regarding host features, we defined the direction of forward and backward talkers using

each host as its own reference. This means that the number of forward talkers in a host represents the

number of talkers whose first flow was initiated from/by the current host, while the number of backward

talkers represents the number of talkers whose first flow was initiated to the current host. Although this

convention is needed to properly define the talker and the host object, we should have also kept flow-

derived features in host features as they would allow us to answer simple host queries that cannot

otherwise be answered by talker-derived features. For example, implementing flow aggregation by host

enables us to answer the question “How many services did host A have accessed by other hosts?”.

Answering the previous question is like answering the question “How many services did host B attempt

to access on host A?”, already answered by “bitalker_fwd_biflow_n_unique_dst_ports” and

“bitalker_bwd_biflow_n_unique_dst_ports” talker features, but it is relative to detecting a single host’s

probed ports, which is only doable using the “bihost_bwd_biflow_n_unique_dst_ports” host feature.

Why does this not work with talker’s unique destination ports data? Because, if there are multiple talkers

for one host, we will not be able to determine the unique destination ports of each talker that overlap

with one another; we need to use the flow object to directly fetch this data.

 NetGenes TCP flows may disregard several packets because their flows were not initiated

within the packet capture. This is not a limitation, but rather a choice of disregarding incomplete flows

from the generated traffic data.

The Talker and Host network objects, both considering flow-set and talker-set features, are not

considered in most works, mainly due to the prevalence of ready-to-use data using only flow extraction

tools. By performing flow aggregation, NetGenes facilitates traffic analysis.

41

Chapter 5. CIC-IDS-2017 analysis

Based on the threat class definitions, we can define rule sets based on the extracted features to detect

network attacks while leaving out benign traffic.

Through-out this chapter, we will always sum 3 hours to the times defined by the Canadian

Institute for Cybersecurity (CIC) in their CSV files and official website [145]. The times we consider are

the ones that the PCAP files we used to extract the data show, which are in relation to the Lisbon time

zone (WET).

The CSV files we always refer to are the ones in the “GeneratedLabelledFlows.zip” file (md5:

“5ca3f8f69e3514950681615824149973”, last seen 2020/12/10), since the “MachineLearningCSV.zip”

(md5: “4f83860afbf29cac8163854095bf6cf7”, last seen 2020/12/10) file just contains the same CSV

files with 79 columns instead of the original 85 columns, and we need the 6 removed columns (“Flow

ID”, “Source IP”, “Source Port”, “Destination IP”, “Protocol” and “Timestamp”) to correctly map

CICFlowMeter-generated flows to NetGenes-generated flows. There are 83 features in these 85

columns, as “Flow ID” and “Label” are not considered features.

We found there are CIC-IDS-2017 flows that are mislabeled in files that have mixed benign and

malicious traffic, i.e., all files except Monday’s file. The following information was used to check the CIC-

IDS-2017 CSV dataset files for errors in labels, to crosscheck with the information supplied in the official

CIC-IDS-2017 website [145], the official CIC-IDS-2017 paper [146] and their dataset:

• TCP regular expression for CIC-IDS-2017 flow CSV files (IP protocol number “6”): “^[0-9]+\.[0-

9]+\.[0-9]+\.[0-9]+\-[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+\-.*\-6\,.*<CIC-IDS-2017 Label>”

• UDP regular expression for CIC-IDS-2017 flow CSV files (IP protocol number “17”): “^[0-9]+\.[0-

9]+\.[0-9]+\.[0-9]+\-[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+\-.*\-17\,.*<CIC-IDS-2017 Label>”

• NetGenes-generated bi-flows, bi-talkers and bi-hosts, and threat-class rule sets.

Furthermore, the way we study the CIC-IDS-2017 dataset is per weekday. We use our different rule

sets to understand what is going on each day and interpret the network traffic. We also point out some

mislabeled network traffic that we have detected along the way, which we hope the Canadian Institute

for Cybersecurity notices and eventually correct for future researchers.

5.1. Metrics

In this subsection, we define metrics for a binary classification contemplating only class and non-class

results. A class may be represented any labelable object, such as a threat class, a threat, or a tool. A

result may be represented by any network object, such as a host, a talker, or a flow.

The classification results are grouped in:

• True Positive results (abbreviated TP) are results correctly classified as class results.

• True Negative results (abbreviated TN) are results correctly classified as non-class results.

• False Positive results (abbreviated FP) are results incorrectly classified as class results.

• False Negative results (abbreviated FN) are results incorrectly classified as non-class results.

The classification results are made comparable by calculating the following metrics:

42

• Sensitivity or True Positive Rate (abbreviated TPR) is the rate of results correctly classified

as class results among class results.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(1)

• Specificity or True Negative Rate (abbreviated TNR) is the rate of results correctly classified

as non-class results among non-class results.

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(2)

• Fallout or False Positive Rate (abbreviated FPR) is the rate of results incorrectly classified as

class results among non-class results.

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
(3)

• Miss Rate or False Negative Rate (abbreviated FNR) is the rate of results incorrectly classified

as non-class results among class results.

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
(4)

We also calculate and use the following metrics:

• Overall Accuracy is the rate of correctly classified results among all results. It can be

interpreted as the probability that a classification is correct.

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(5)

• Precision is the rate of correctly classified class results among results classified as class

results. It can be interpreted as the probability that a class classification is correct. The higher

the precision is, the more probable it is that a class-flagged instance is correctly classified,

which means that a class classification will yield a high relevance. This is the most important

metric to us because we only want to flag a network attack when we are certain that it occurred.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6)

• F1-Score is the harmonic mean of Sensitivity and Precision. It weighs false positive and false

negative results altogether.

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(7)

• Matthews Correlation Coefficient, abbreviated MCC, is used as a measure of the quality of

binary (two-class) classifications. The classifications we perform are binary classifications

because, even though we distinguish between multiple classes, our rule sets only consider

class and non-class instances. The MCC is a very important metric to us because it takes into

account the four result groupings (TP, TN, FP and FN) and weighs their sizes to provide a

balanced metric. It shows that we can output a high number of suspicious instances (less FN,

more TP), without compromising the TN and FP. Unlike the other considered metrics, the MCC

varies between -1 (-100%) and 1 (100%). The higher the MCC is, the best we can provide

correct (high TP over TP+FP results; high TN over TN+FN results) and complete (high TP over

TP+FN results; high TN over TN+FP results) class and non-class classifications.

43

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
(8)

We are interested in maintaining a balance between all metrics and getting great results for those

metrics. However, in many cases, it is not possible to do both, so we must focus on this thesis’s

objective: “Helping network threat analysts studying and detecting network attacks”. We want to make

sure that we can present the analyst with malicious instances only, ignoring others. As such, we want

to maximize precision as much as possible, by maximizing TP and minimizing FP.

5.1.1. Metrics applied to rule sets

In practice, what does it mean to have a high-precision rule set and why is it so relevant? It

means that what we care about the most is the true positives (TP) and false positives (FP). This happens

because TP and FP results are the ones that an analyst will actually see when a rule set is applied.

A rule set with a high precision will likely retrieve most output class flows, but may not retrieve

a high rate of class flows in relation to all available class flows (i.e., high FNR). It provides enough

information to pursue an investigation on more class flows (in other words, a high rate of true maliciously

classified flows in relation to all truly malicious flows) by successfully identifying the talker and the hosts

involved, as well as the identified set of malicious flows. Precision is our most important metric.

On the other hand, a rule set with a high sensitivity (TPR) will likely retrieve a high rate of class

flows in relation to all available class flows, but may result in a higher fallout (FPR). As such, we instead

use the F1-Score (harmonic mean of the precision and the sensitivity) as our second most important

metric. The F1-Score helps us evaluate rule sets in their ability to be correct (precision) at the same

time that they are complete (sensitivity).

Finally, we use the MCC as our third most important metric, to measure the rule set’s ability of

correctly and completely classify class and non-class instances.

5.2. Network Object Statistics

From this point on, to avoid repetition, we implicitly refer to TCP network objects when referring to

network objects, unless we explicitly refer to the UDP protocol.

Using three different tools, NetGenes, Wireshark and CICFlowMeter, we generate statistics

about this dataset in table 3. The following acronyms are used for this table: BT – Bi-Talker, UT – Uni-

Talker, T – Talker, C – IPv4 Conversation (Wireshark) w/ “eth && tcp” filter, F – Flow, P – Packet.

By analyzing table 3, we can see that the way that we implemented the network objects we

implemented in NetGenes is practically paired with Wireshark. Like Wireshark, we create a TCP flow

considering the usual flag combinations that matter in the flow initiation and termination phases, i.e.,

SYN, ACK, RST and FIN packets. We also consider the TCP sequence and acknowledgement numbers

to not only validate subsequent packets but, also, to find incorrectly ordered packets in the current 5-

tuple flow (excluding previously separated 6-tuple flows within it) and ignore the timestamp order.

Considering the SEQ/ACK numbers significantly improved our TCP flow parsing and extraction. One

key difference between our tool and Wireshark is that we chose to only consider the packets that belong

to a valid detected flow, i.e., we only consider a flow and its packets if the flow has been initiated within

44

the current capture, so we will explicitly discard all flows and their packets if no initiation has been seen.

This choice of ours might be able to explain the subtle difference between our network objects and

Wireshark’s network objects, but since we want to be consistent in multiple data points, we choose to

discard those incomplete flows.

Day

TCP/IPv4 (Eth-Eth-IPv4-TCP protocol stack)

NetGenes Wireshark CICFlowMeter

UT BT F P T / C F P T F P

M
o

n
d

a
y

2
1
5
6

2

2
1
5
5

7

1
3
2
2

1
8

1
0
6
5

6
5
0

5

2
1
5
6

3

1
3
1
7

6
5

1
0
7
1

8
4
8

5

N
/A

3
0
5
4

2
3

1
0
6
6

5
3
3

2

T
u

e
s
d

a
y

1
9
1
8

7

1
9
1
8

3

1
0
9
1

6
4

1
0
6
5

8
2
9

6

1
9
1
8

8

1
0
8
1

9
5

1
0
7
1

0
3
2

0

N
/A

2
4
5
7

8
1

1
0
6
7

0
0
8

8

W
e
d

n
e

s
d

a
y

1
9
6
6

6

1
9
6
6

3

2
7
3
8

5
8

1
2
7
0

1
2
0

8

1
9
6
6

9

2
7
8
2

0
9

1
2
9
4

3
3
8

1

N
/A

4
8
9
4

5
0

1
2
8
9

6
5
2

0

T
h

u
rs

d
a
y

1
8
3
9

4

1
8
3
8

7

1
6
7
9

0
3

8
4
6
6

1
8
7

1
8
3
9

4

1
5
9
8

1
0

8
5
3
8

1
8
5

N
/A

2
7
4
6

2
4

5
6
8
9

8
6
5

F
ri

d
a
y

1
7
5
5

9

1
7
5
5

4

3
4
7
9

9
4

9
1
4
0

2
4
9

1
7
5
6

3

3
4
5
0

6
0

9
1
9
2

3
5
4

N
/A

5
1
4
2

7
6

9
1
5
5

1
6
9

TABLE 3. NETGENES, WIRESHARK AND CICFLOWMETER: PER-DAY TCP NETWORK-OBJECT

STATISTICS.

As for CICFlowMeter, our tool was initially inspired by it to make the most out of packet metadata. We

grew our flow features and, further, we created two more network objects above the flow with their own

features. In terms of network object parsing and extraction, CICFlowMeter does not implement the

“Talker” network object and, by analyzing table 3 results, we can see that CICFlowMeter was not

consistent with NetGenes and Wireshark results. Hence, since Wireshark is a tool that is in the industry

for years and is commonly accepted by network and cybersecurity specialists, we consider this a good

sign that NetGenes is on the right track of achieving a good flow definition.

45

Day Label
TCP/IPv4 (Eth-Eth-IPv4-TCP protocol stack) Network Objects

(Bi-)Talkers* Flows Packets
M

o
n

d
a
y

 None 7 uni- and bi-talkers 10 10

BENIGN 21561 uni-talkers and 21556 bi-talkers 132208 10656495

T
u

e
s
d

a
y

FTP-Patator 172.16.0.1-192.168.10.50-TCP 2505 65004

SSH-Patator 172.16.0.1-192.168.10.50-TCP 2935 161332

None 13 uni- and bi- talkers 31 31

BENIGN 19180 uni-talkers and 19177 bi-talkers 103693 10431929

W
e
d

n
e

s
d

a
y

DoS slowloris 172.16.0.1-192.168.10.50-TCP 2089 41181

DoS

Slowhttptest
172.16.0.1-192.168.10.50-TCP 1245 17524

DoS Hulk 172.16.0.1-192.168.10.50-TCP 154659 2028799

DoS GoldenEye 172.16.0.1-192.168.10.50-TCP 7458 105160

None 14 uni- and bi- talkers 22 38

BENIGN 19666 uni-talkers and 19663 bi-talkers 108384 10459210

T
h

u
rs

d
a
y

Web Attack –

Brute Force
172.16.0.1-192.168.10.50-TCP 143 22371

Web Attack –

XSS
172.16.0.1-192.168.10.50-TCP 23 5416

Web Attack –

Sql Injection
172.16.0.1-192.168.10.50-TCP 9 94

Infiltration 192.168.10.8-205.174.165.73-TCP 20 59754

None 24 uni- and bi-talkers 95 192

BENIGN 18387 uni-talkers and 18383 bi-talkers 167613 8378360

F
ri

d
a
y

PortScan 172.16.0.1-192.168.10.50-TCP 158980 320401

DDoS 172.16.0.1-192.168.10.50-TCP 68212 891556

Bot

192.168.10.12-52.6.13.28-TCP (label only)

192.168.10.14-205.174.165.73-TCP

192.168.10.15-205.174.165.73-TCP

192.168.10.5-205.174.165.73-TCP

192.168.10.8-205.174.165.73-TCP

192.168.10.9-205.174.165.73-TCP

192.168.10.17-52.7.235.158-TCP (label only)

2208 12853

None 5 uni- and bi- talkers 173 213

BENIGN 17556 uni-talkers and 17552 bi-talkers 118421 7915226

TABLE 4. NETGENES: PER-DAY PER-LABEL TCP NETWORK-OBJECT STATISTICS.

46

*The malicious bi-talkers are specified in this column, considering the dataset authors’ labels

*The “label only” tag means that the malicious talker was not provided in the CIC-IDS-2017’s official

website, but was present in the CIC-IDS-2017 authors’ labels

CIC-IDS-2017 original dataset presents 158930 port scan flows, 158923 TCP flows (protocol field = 6),

1 UDP flow (protocol field = 17) and 6 unspecified-protocol flows (protocol field = 0). Table 4 shows the

TCP network-object statistics based on the mapping between CICFlowMeter and NetGenes flows

before correcting any label:

• Thursday’s traffic was corrected to 71809 port scan flows and 95804 benign flows

• Friday’s traffic was corrected to 2206 bot flows and 118423 benign flows

As for UDP, Friday’s flows were also corrected, from 1 labeled port scan flow to 195 port scan flows

that should have been labeled as port scan. We talk about all these flows in more detail further.

5.2.1. Benign Traffic Overview

The issue with port-protocol correlation is not detecting an adversary that is making use of a certain

protocol’s commonly used port to communicate using an unexpected protocol; if the traffic was

decryptable, there would be no issue in this since we can validate the L5-7 traffic according to the used

L5-7 protocol specification. However, since we assume encryption, we would not be able to validate

this specification and would have to resort to flow fingerprinting to detect common L5-7 events in each

supported protocol to provide us with some level of comfort about the fact that it is that protocol which

is running. Even so, because we have considered Monday’s benign traffic as ground truth and we are

interested in showing what CIC-IDS-2017’s benign traffic is constituted of, and not anything more, we

assume port-protocol correlation in this subsection.

For providing a small overview of CIC-IDS-2017’s traffic, we strictly overviewed Monday’s

traffic, which according to the dataset authors is comprised only of benign traffic and is labeled as such

in the dataset. Monday’s TCP benign traffic overview is presented in table 19 (annex), while Monday’s

UDP benign traffic is presented in table 20 (annex).

As can be seen in table 20, the most common UDP traffic was DNS traffic (UDP/53), as well as

protocols such as Kerberos (UDP/88), NetBIOS (UDP/137), LDAP (UDP/389), NTP (UDP/123) and

SSDP (UDP/1900). As for UDP/443 traffic, which produced the highest number of flows after DNS

traffic, these communications were performed to external servers whose public IPs belong to Google,

according to the WHOIS records at the time of writing.

On the other hand, as can be seen in table 21, the most common TCP traffic was HTTPS

(TCP/443) and HTTP (TCP/80) traffic, as well as protocols such as SSH (TCP/22), LDAP (TCP/389

and TCP/3268), FTP (TCP/21), SMTP over SLL (TCP/465), Kerberos (TCP/88), SMB (TCP/445) and

NetBIOS (TCP/139).

47

5.2.2. Bot ARES Traffic

We have successfully converted the CTU-13 original dataset to a NetGenes-based dataset, as we did

with CIC-IDS-2017. However, time restraints did not allow analyzing the CTU-13 dataset and properly

defining the “Bot” threat class. Since we were also initially targeting this threat class, we present a

simple run-down of the CIC-IDS-2017’s Bot flows based on flow connection states, which logically

divides the traffic of the 5 bi-talkers marked as “Bot” by CIC-IDS-2017’s official website (5 out of 7) in

two time-ranges: 13:04-14:02 and 14:03-15:59. The following are the Bot uni-talkers found:

• 192.168.10.12-52.6.13.28-TCP Uni-Talker (UT-1) – 12:34:14-12:35:14, 1 flow, three-way-

handshake initiation & full-duplex connection established & graceful termination. Flow labeled

as “Bot”, but it is not mentioned in the CIC-IDS-2017’s official website.

• 192.168.10.5-205.174.165.73-TCP Uni-Talker (UT-2) – 13:29:01-14:01:44, 109 flows, three-

way-handshake initiation & full-duplex connection established & (graceful termination | null

termination); 14:03:24-15:59:35, 210 flows, two-way-handshake initiation & rejected connection

& abort termination (forward “syn” + backward “rst-ack”).

• 192.168.10.8-205.174.165.73-TCP Uni-Talker (UT-3) – 13:36:11-14:02:03, 117 flows, three-

way-handshake initiation & full-duplex connection established & (graceful termination | null

termination); 14:03:17-15:59:53, 420 flows, two-way-handshake initiation & rejected connection

& abort termination (forward “syn” + backward “rst-ack”)

• 192.168.10.9-205.174.165.73-TCP Uni-Talker (UT-4) – 13:04:14-14:01:44, 151 flows, three-

way-handshake initiation & full-duplex connection established & (graceful termination | null

termination); 14:03:24-15:59:36, 210 flows, two-way-handshake initiation & rejected connection

& abort termination (forward “syn” + backward “rst-ack”)

• 192.168.10.14-205.174.165.73-TCP Uni-Talker (UT-5) – 13:24:29-14:01:43, 139 flows, three-

way-handshake initiation & full-duplex connection established & graceful termination; 14:03:23-

15:59:34, 210 flows, two-way-handshake initiation & rejected connection & abort termination

(forward “syn” + backward “rst-ack”)

• 192.168.10.15-205.174.165.73-TCP Uni-Talker (UT-6) – 13:06:55-14:01:59, 220 flows, three-

way-handshake initiation & full-duplex connection established & (graceful termination | null

termination); 14:03:14-15:59:51, 420 flows, two-way-handshake initiation & rejected connection

& abort termination (forward “syn” + backward “rst-ack”)

• 192.168.10.17-52.7.235.158-TCP Uni-Talker (UT-7) – 14:20:40-14:21:41, 1 flow, three-way-

handshake initiation & full-duplex connection established & graceful termination. Flow labeled

as “Bot”, but it is not mentioned in the CIC-IDS-2017’s official website.

• All “Bot” flows were initiated to destination port TCP/8080, where the C2 server ran.

48

Timeline Uni-Talker Full-duplex

Connection Flows

Rejected Connection

Flows

12:34:14-12:35:14 UT-1 1 0

13:04:14-14:01:44 UT-4 151 0

13:06:55-14:01:59 UT-6 220 0

13:24:29-14:01:43 UT-5 139 0

13:29:01-14:01:44 UT-2 109 0

13:36:11-14:02:03 UT-3 117 0

14:03:14-15:59:51 UT-6 0 420

14:03:17-15:59:53 UT-3 0 420

14:03:23-15:59:34 UT-5 0 210

14:03:24-15:59:35 UT-2 0 210

14:03:24-15:59:36 UT-4 0 210

14:20:40-14:21:41 UT-7 1 0

TABLE 5. BOT ARES: UNI-TALKER TIMELINE ANALYSIS BASED ON FLOW STATES.

Table 5 shows the Uni-Talker timeline of Bot ARES based on the full-duplex connection and rejected

connection states:

• The first (UT-1) and last uni-talker (UT-7) traffic, marked red, is labeled as belonging to Bot

ARES traffic, but is never mentioned by the authors neither on CIC-IDS-2017 website nor on

their support paper.

• In the first time-range (13:04-14:02), marked bold, the C2 server is accepting connections from

its bot victims and providing the fetched commands. The bot was fetching commands from the

C2 server in 10-second intervals (occasionally using 100-second intervals instead).

• In the second time-range (14:03-15:59), the C2 server was shut down and the system in which

it was run now has closed the port; when the bot victims contact the system’s closed port, it

responds with rst2-ack2 packets, rejecting all incoming connections. This traffic is correctly

labeled in the dataset, but not mentioned on the website or the paper. The presented data

indicates that the bot software continued to run on the victim hosts, consistently attempting to

connect to the C2 server at port TCP/8080 even after 14:02. When a bot got their first rejected

connection, they started consistently attempting to reach the C2 server in 100-second intervals

instead, which kept consistently rejecting the connections. Curiously, in this time-range, each

internal host repeatedly initiated a 210-multiple number of rejected-connection flows to the C2

server (a single outside host), initiating and terminating flows at approximately the same

timestamps between each other.

49

Bot ARES Discussion

CIC-IDS-2017’s “Bot” traffic is very limited in comparison to CTU-13, but it allows understanding that

there are noticeable patterns that may be exploited even though most of these patterns are based on

the “Bot ARES” tool specificities and used configurations, rather than the “Bot” threat class itself.

It could be interesting to consider detecting fixed communication timings (considering flow inter-

initiation and inter-termination timings), since these timings would give away the automated nature of

the network traffic, but timings could eventually be randomized enough to make the bot traffic

undistinguishable from human-generated traffic. Assuming that fixed timings are maintained and we

just detect the traffic by timing, other benign automated tools would be detected that way as well. If we

chose to detect bot traffic this way, all the rest of the benign automated network traffic would have to

eventually be whitelisted for this type of analysis to be useful for an analyst. As such, this type of analysis

based on timing would be perfect for a network that is continuously monitored by an analyst, who can

whitelist the benign automated traffic of the network over time, in order to be able to distinguish and

detect the malicious automated traffic as well based on this communication timing indicator (in this case,

the network traffic generated by a bot). A more core indicator, however, would be the fact that a bot will

try to consistently connect to its C2 server, independently of it being up or down (bot always needs to

re-check if it is up again). This latter might be the most relevant takeaway from CIC-IDS-2017 Bot ARES

traffic, as every other parameter results from specific configuration.

5.3. Port Scan

We start by remembering that a Port Scan’s intent is to “probe multiple ports of a given host, for a given

L4 protocol”, leading us to create the TR-1 rule and filter talkers by their unique destination ports count

using a fixed threshold. We use the previous rule to create the FR-TR-Default rule and filter flows for

those talkers. Then, we create other flow rules to logically narrow down relevant flows within the talkers,

given flow initiations and terminations, connection states, and more, that are common in port scans.

5.3.1. Used nmap parameters

The CIC-IDS-2017 authors mention that they have used the following nmap flags in the Friday’s flows:

“-sS, sT, -sF, -sX, -sN, -sP, -sV, -sU, -sO, -sA, -sW, -sR, -sL, -sI, -b”. In the “Port Scan” threat class

context, all these nmap flags used were previously mentioned/described, except for:

• List Scan (-sL) – this option simply prints a list of hosts in the specified network range, so no

traffic is generated.

• TCP Window Scan (-sW) – this option does not generate new traffic, it just changes the

interpretation of the scanned ports. Using this analysis method, the attacker may analyze the

response packet to check whether a port is open: a positive window size indicates an open port

and a zero-size window indicates a closed port; if the response packet time to live (ttl) is lower

than the rest of the received RST packets the port is likely to be open. This applies to most

systems, but there are other systems that may return the inverse.

50

• IP protocol scan (-sO) – traffic generated by this option belongs to the “L3 Service Discovery”

threat class, since it consists of raw IPv4 packets (no L4 traffic) with no capabilities of probing

a port (which is a L4 concept).

• Ping scan (-sn): this option tells nmap to not do a Port Scan after host discovery. The “-sP” flag

is just an alias for the “-sn” flag, which we use in the “Host Discovery” threat class. By default,

it sends an ICMP echo request, TCP SYN to port 443, TCP ACK to port 80, and an ICMP

timestamp request.

• Service/Version Detection (-sR) – the “-sR” flag is just an alias for the previously described “-

sV” flag (Service/Version Detection) since March 2011 (before, it was used for the “RPC Scan”,

which is now implicitly included in this option).

5.3.2. Defining rules

“Port Scan” Host rules:

• (Unused rule) HR-1 – “Other hosts tried to access more than n network services of the host.”:

(bihost_bwd_biflow_n_unique_dst_ports>n)

“Port Scan” Talker rules:

• TR-1 – “Source host tried to access more than n network services of destination host, or

destination host tried to access more than n network services of source host.”:

(bitalker_fwd_biflow_n_unique_dst_ports>n) | (bitalker_bwd_biflow_n_unique_dst_ports>n)

Default Flow rules:

• (Unused rule) FR-HR-Default – Filter flows for relevant backward uni-hosts: (bihost_bwd_id

==bihost_id)

• FR-TR-Default – Filter flows for relevant bi-talkers (dividable in forward and backward uni-

talkers): (unitalker_id==unitalker_fwd_id) | (unitalker_id==unitalker_bwd_id)

“Port Scan” Flow rules:

• FR-1 – “Flow was initialized by an unacknowledged connection request. Either the initialization

packet did not properly reach the destination host, or any host in-between the source host

(exclusive) and the destination host (inclusive) dropped the packet. No connection was

established.”: biflow_eth_ipv4_tcp_initiation_requested_connection==1

• FR-2 – “Flow was initialized in an incomplete manner, only completing a two-way handshake.

In other words, source host requested a connection (syn1) and destination host acknowledged

it (ack2), encompassing two connection possibilities: 1 – connection rejected, 2 – half-duplex

connection established.”: biflow_eth_ipv4_tcp_initiation_two_way_handshake==1

• FR-2.1 – “The destination host rejected the connection (rst2-ack2).”: FR-2 &

biflow_eth_ipv4_tcp_connection_rejected==1

• FR-2.2 – “A half-duplex connection was established, i.e., although the destination host

accepted the connection request (syn2-ack2), the source host never acknowledged it (!ack3),

as the third step of the three-way-handshake mandates.”:

FR-2 & biflow_eth_ipv4_tcp_connection_established_half_duplex==1

51

• FR-2.2.1 – “The source host established a half-duplex TCP connection, just to abort it

afterwards.”:

(biflow_eth_ipv4_tcp_connection_established_half_duplex==1) &

(biflow_eth_ipv4_tcp_termination_abort==1) &

(biflow_fwd_eth_ipv4_tcp_n_active_rst_flags>0)

• FR-3 – “A full-duplex connection was established and there was only 1 packet (syn2-ack2) that

was sent by the destination host, before the source host aborted the connection.”:

(biflow_eth_ipv4_tcp_connection_established_full_duplex==1) &

(biflow_bwd_n_packets==1) &

(biflow_eth_ipv4_tcp_termination_abort==1) &

(biflow_fwd_eth_ipv4_tcp_n_active_rst_flags>0)

We note that TR-1 source and destination hosts/ports are not based on packet direction, but on flow

direction. Packet direction varies in a flow, so it would be a mistake to directly consider unique

destination port counts if it was based in the packets, as you would capture both the source and the

destination ports of the flow. As such, only after you have achieved a flow definition can you correctly

define and extract talker features, and the same applies to flow-set based host features, such as the

one presented in HR-1.

The factor that makes the features in HR-1 and TR-1 core features is the fact that they are

directly extrapolated from the very definition of port scan, which very basically consists in

communicating with various ports to unveil their status. Similarly, all the flow rules define the core

scenarios of a port scan: filtered port scans, closed port scans and open port scans.

Results obtained using the host rules we defined, HR-1 and FR-HR-Default, are not presented,

because the talker-based rules we defined, TR-1 and FR-TR-Default, were enough to achieve great

results. Despite this, we further discuss this matter because the host rules can top the talker features

when a single network attack is performed using multiple source IPs.

5.3.3. Defining rule sets

For studying the “Port Scan” threat class, we use the following flow rule sets:

• RS1 – “TR-1 n=100, FR-TR-Default” – Flows whose bi-talkers have more than 100 unique

destination ports. This rule is used in all further rule sets.

• RS2 – “TR-1 n=100, FR-TR-Default & FR-1” – Flows that feature an unanswered connection

request as flow initiation. It captures probes against filtered ports, which result in dropped

connections.

• RS3 – “TR-1 n=100, FR-TR-Default & FR-2” – Flows that feature a two-way-handshake as flow

initiation. It captures probes against closed ports, which result in rejected connections, as well

as probes against open ports, which result in half-duplex connections in most cases that do not

require a full-duplex connection (e.g., Connect scan, Version scan, custom adversarial scan).

• RS4 – “TR-1 n=100, FR-TR-Default & FR-3” – Flows that are initiated using a three-way

handshake and result in an established full-duplex connection that is later aborted by the source

host (who initiated it), without the destination host ever sending another packet other than the

52

syn2-ack2 packet. It captures “Connect Scan” and similar probes against open ports that are

not very well known, which causes just a TCP full-duplex connection and nothing more except

abort-terminating the flow.

• RS5 – “TR-1 n=100, FR-TR-Default & FR-2.1” – Flows that feature a rejected connection. It

captures probes against closed ports.

• RS6 – “TR-1 n=100, FR-TR-Default & FR-2.2” – Flows that feature a half-duplex connection. It

captures probes against open ports (except previously mentioned cases).

• RS7 – “TR-1 n=100, FR-TR-Default & FR-2.2.1” – Flows that feature a half-duplex connection

and, at the same time, are aborted by the same host that initiated the flow. It captures probes

against open ports (except previously mentioned cases).

• RS8 – “TR-1 n=100, FR-TR-Default & (FR-1 | FR-2)” – Flows that feature an unanswered

connection request, a rejected connection, or a half-duplex connection. It captures probes

against closed ports, filtered ports and open ports (except previously mentioned cases that

require a full-duplex connection).

• RS9 – “TR-1 n=100, FR-TR-Default & (FR-1 | FR-3)” – Flows that feature an unanswered

connection request or a full-duplex connection. It captures probes against filtered ports and

open ports.

• RS10 – “TR-1 n=100, FR-TR-Default & (FR-2 | FR-3)” – Flows that feature a rejected

connection, a half-duplex connection, or a full-duplex connection. It captures probes against

closed ports and open ports.

• RS11 – “TR-1 n=100, FR-TR-Default & (FR-1 | FR-2 | FR-3)” – Flows that feature an

unanswered connection request, a rejected connection, a half-duplex connection or a specific

full-duplex connection. It captures probes against closed ports, filtered ports and open ports

(including a specific full-duplex connection case).

PS Rule Set PS Flow Rules
Port State

Closed Port Filtered Port Open Port

RS1 None N/A N/A N/A

RS2 FR-1 NO YES NO

RS3 FR-2 YES NO YES

RS4 FR-3 NO NO YES

RS5 FR-2.1 YES NO NO

RS6 FR-2.2 NO NO YES

RS7 FR-2.2.1 NO NO YES

RS8 FR-1 | FR-2 YES YES YES

RS9 FR-1 | FR-3 NO YES YES

RS10 FR-2 | FR-3 YES NO YES

RS11 FR-1 | FR-2 | FR-3 YES YES YES

TABLE 6. PORT SCAN RULE SET SUMMARY.

53

5.3.4. File investigation

Using the previously defined rule sets, we investigated each day’s file:

• Monday:

o UDP “Benign” traffic: we determined that a benign NetBIOS name service had been responding

over udp/137, from time “12:01:14” to time “19:58:53”, from source host “192.168.10.12” to

destination host “192.168.10.25”, from source port “137” to 161 different destination ports in the

range “49173-49295”, as well as a more consistent flow of data to destination port “137”. See

the “NetBIOS note” below the bullet points for further details.

o No malicious activity was detected.

• Tuesday:

o UDP “Benign” traffic: we determined that a benign NetBIOS name service had been responding

over udp/137, from time “12:02:18” to time “19:59:19”, from source host “192.168.10.50” to

destination host “192.168.10.25”, from source port “137” to 188 different destination ports in the

range “49184-49605”, as well as a more consistent flow of data to destination port “137”. See

the “NetBIOS note” below the bullet points for further details.

o No malicious activity was detected.

• Wednesday:

o UDP “Benign” traffic: we determined that a benign NetBIOS name service had been responding

over udp/137, from time “11:46:29” to time “20:01:29”, from source host “192.168.10.50” to

destination host “192.168.10.25”, from source port “137” to 167 different destination ports in the

range “49184-49353”, as well as a more consistent flow of data to destination port “137”. See

the “NetBIOS note” below the bullet points for further details.

o No malicious activity was detected.

• Thursday:

o UDP “Benign” traffic: we determined that a benign NetBIOS name service had been responding

over udp/137, from time “12:23:16” to time “20:01:55”, from source host “192.168.10.19” to

destination host “192.168.10.25”, from source port “137” to 128 different destination ports in the

range “49194-49401”, as well as a more consistent flow of data to destination port “137”. See

the “NetBIOS note” below the bullet points for further details.

o TCP “Port Scan” mislabeled traffic: we determined that a TCP Port Scan occurred, from time

“17:00:32” to “17:00:46”, from host “172.16.0.1” to host “192.168.10.51”, from source port

“50122” and “50133” to 997 different destination ports in the range “1-65389”. This occurrence

was never mentioned by the authors. Regarding the rest of the traffic in the “172.16.0.1-

196.168.10.51-TCP” talker, 5 flows marked “Benign” were created to the HTTP port (tcp/80)

from “16:14:21” to “16:14:22”, which are in fact “Benign” flows. Hence, in this 1 talker, we caught

998 mislabeled NetGenes-generated flows which should have been marked as “Port Scan”

instead of “Benign”. By using the TR-1 rule, we have successfully detected an unmentioned

TCP port scan. We manually corrected these 998 flows as “Port Scan” afterwards.

o TCP “Port Scan” mislabeled traffic: in the official CIC-IDS-2017 website, the authors state that

the third “Infiltration” attack, dubbed “Infiltration – Dropbox Download”, divided in two steps,

54

occurs in Thursday’s “18:04-18:45” time range. The first step was correctly marked as

“Infiltration”, but the second step, which was supposed to be a “Port Scan” using “nmap”, was

marked as “Benign”. We determined that there were 11 TCP port scans launched against 11

hosts, from time “18:05:14” to time “18:44:35”, from host “192.168.10.8” to 11 different internal

hosts ("192.168.10.5", "192.168.10.9", "192.168.10.12", "192.168.10.14", "192.168.10.15",

"192.168.10.16", "192.168.10.17", "192.168.10.19", "192.168.10.25", "192.168.10.50",

"192.168.10.51"), from 451 different source ports in the range “33264-65243” to 1038 different

destination ports in the range “1-65389”. The 11 bi-talkers encompass 73150 flows, of which

2265 flows are not in the “18:05:14-18:44:35” time range, of which 74 flows that target the

destination port 5060 (Session Initiation Protocol, SIP) are seemingly “Benign”. Hence, in these

73150 flows, there were several mislabeled NetGenes-generated flows which should have

been marked as “Port Scan” instead of “Benign”, which according to our previously mentioned

manual labelling might be 70811 (73150 – 2265 – 74) “Port Scan” flows. In this manual labelling,

on the filtered bi-talkers, we stumbled upon 813 flows with the source port range 1266-3215,

which we were not sure about, so we still classified these as “Port Scan” as our base criteria

only directed us to bi-talkers with the source host “192.168.10.8”, within the timings presented

in CIC-IDS-2017’s official website. Since we are dealing with a very significant number of flows,

it is quite difficult to manually label them in the most accurate way. We would either need the

authors’ labels corrected or more specific details on this traffic to be able to be perfectly

accurate. The TR-1 rule helped us detecting the network pivoting step (11 TCP port scans) of

an on-going infiltration, along with the TCP port scan we described in the previous bullet-point.

As a final step, we manually labeled the incorrect 70811 flows as “Port Scan” afterwards.

• Friday:

o UDP “Port Scan” mislabeled traffic: In the official CIC-IDS-2017 website, the authors state that

the flag “sU” was used in Friday’s “18:11-18:12” time range, even though only 1 UDP flow that

targeted the destination port tcp/123 was marked as “Port Scan” (CIC flow id “172.16.0.1-

192.168.10.50-38260-123-17”) in this file. We determined that a UDP port scan (“nmap” with

“sU” flag) did occur, from time “18:11:11” to time “18:12:32”, from host “172.16.0.1” to host

“192.168.10.50”, from source port ranges “38260-38268” and “38271-38276” (15 source ports)

to 82 different destination ports in the range “42-65024”. Regarding the rest of the traffic in the

“172.16.0.1-192.168.10.50-UDP” talker, 39 flows marked “None” targeted udp/21 and udp/22

from “17:17:10” to “17:19:09”, while the remaining 34 flows marked “None” targeted udp/40125

from “18:13:14” to “18:21:28”. Hence, in this 1 talker, there were 195 mislabeled NetGenes-

generated flows which should have been marked as “Port Scan” rather than “None” (meaning

a lack of existence in the original dataset) to join the 1 flow correctly classified as a “Port Scan”.

The TR-1 rule, once again, proved useful to finding labeling errors in the dataset. Weirdly, the

1 UDP “Port Scan” flow was the only maliciously tagged traffic in the whole CIC-IDS-2017

dataset.

o UDP “Benign” traffic: we determined that a benign NetBIOS name service had been responding

over udp/137, from time “12:01:23” to time “20:01:22”, from source host “192.168.10.50” to

55

destination host “192.168.10.25”, from source port “137” to 161 different destination ports in the

range “49184-49401”, as well as a more consistent flow of data to destination port “137”. See

the “NetBIOS note” below the bullet points for further details.

o TCP “Port Scan” traffic: we determined that there was 1 TCP port scan launched, from time

“16:05:34” to time “18:23:53”, from host “172.16.0.1” to host “192.168.10.50”, from 14140

different source ports in the range “32768-64915” to 998 different destination ports in the range

“1-65389”. Finally, since this “Port Scan” is the only one that is correctly labeled by CIC, we

tested our results with the original CIC-IDS-2017 labeled flows.

“Benign” NetBIOS traffic: Even though there was more NetBIOS traffic, the above-mentioned

NetBIOS flows were the ones that generated, by far, the most traffic to different multiple destination

ports within the same bi-talkers. For an average of 8 hours per day, a new UDP flow was created within

an exact 3-minute time span. NetBIOS traffic can be distinguished from a typical UDP port scan due to

its UDP communication coming from NetBIOS reserved port “137” to dynamic destination ports over a

significantly high time span, while maintaining a communication flow between source and destination

ports udp/137. Since port scans may also be spanned over greater periods of times and be made to

simulate the above port conditions, the rule is that any non-dynamic destination port different than

udp/137 that is scanned from source port udp/137 of the same host should be flagged. This represents

automated benign behavior that should either be treated in a higher layer than OSI layer 4 or be treated

as an exception, given a real-world scenario where we may know where NetBIOS instances are

running. This traffic can be seen marked yellow in table 22.

Mislabeled “Port Scan” traffic: None of the previously mentioned mislabeled “Port Scan” traffic was

detected or referenced by any related work that studied the CIC-IDS-2017 dataset.

5.3.5. Applying the rule sets

Before we apply our rule sets, we note that the threshold could be put lower in a real-world scenario,

where we would know which exception cases needed to be handled. It is highly unusual that a source

host accesses a lot of network services on a destination host (bi-talker level). Even a single destination

host running more than 5 network services is not usual (bi-host level). In CIC-IDS-2017 files, we have

traffic classified as “Benign” that is a product of CIC’s ML-based B-Profile tool, which is meant to

generate “Benign” traffic. Unfortunately, by not considering source and destination hosts, although this

tool seems to create a highly accurate definition of a “Benign” bi-flow, it does not create the most

accurate “Benign” definition of bi-talkers and bi-hosts. In this file, among the 17554 bi-talkers, 4 bi-

talkers have [5-10] ports, 7 bi-talkers have [11-50] ports and 4 bi-talkers have [51-100] ports, with all

their bi-flows marked as “Benign”. We still want to be able to detect these types of cases, so we believe

that a fair threshold would be a maximum of 5 ports. With such a low threshold, a positive hit would not

directly be considered as a “Port Scan” at the talker level, but rather a suspicion of a “Port Scan” that

needs to be validated by an analyst and can lead to finding automated benign exceptions. Furthermore,

the flow rules we implemented may also be applied to help the analyst distinguish benign bi-talkers from

port scan bi-talkers. As for the B-Profile tool’s case, the fact that it constantly communicates with the

same host for multiple network services should be handled as an exception put by an analyst who

knows (or, a posteriori, gets to know) such a tool is performing queries from the same IP to multiple

56

services on a single host, as well as knowing the hosts which are running more than 5 network services

and that, consequently, are prone to receive benign traffic in more than 5 ports.

As a first step, we filter bi-talkers for the number of unique destination ports (TR-1 rule) using a

threshold of 100. This means that talkers with bitalker_fwd_biflow_n_unique_dst_ports>100 or

bitalker_bwd_biflow_n_unique_dst_ports>100 will match. Among the 17554 Friday talkers, there is only

1 talker that matches this rule: “172.16.0.1-192.168.10.50-TCP”, active from “14:47:47” to “19:16:12”,

with bitalker_fwd_biflow_n_unique_dst_ports=999. On Friday, this 1 talker is the only one that is marked

as “Port Scan”, according to CIC-IDS-2017 labels and their official website. At this point, we have

already determined that the host “172.16.0.1” was likely responsible for launching a Port Scan against

the host “192.168.10.50”, filtering out 17553 (99.994%) of Friday’s talkers.

If we use a threshold of 5 instead in the first step, we match 17 talkers. Here, in the worst-case

scenario, the analyst does not know anything at all about the network and does not consider that there

are multiple automated “Benign” network scripts running and accessing multiple network services on

specific hosts. In this scenario, 17537 talkers (99.903%) are still filtered out.

As a second step, we use the “bitalker_id” talker data column as filter for the flows (FR-TR-

Default rule), by filtering the “unitalker_id” flow data column for the bi-talker “172.16.0.1-192.168.10.50-

TCP” or, practically, filtering for both uni-talkers “172.16.0.1-192.168.10.50-TCP” and “192.168.10.50-

172.16.0.1-TCP” (in this case, the only uni-talker that exists is the first one, since this bi-talker doesn’t

encompass any backward flow). Out of the 347994 flows, the bi-talker filter leads to 255794 filtered

flows, which is an unusually high number of flows for a single bi-talker.

Third, the “biflow_eth_ipv4_tcp_initiation_two_way_handshake” flow feature (FR-2 rule) is used

to filter flows with a two-way handshake initiation (FR-2 rule), filtering flows whose connection is rejected

by the server (port is closed, hence the connection is rejected with a RST packet), as well as flows that

establish a half-duplex connection (port is open, server accepts the connection but client closes it before

finalizing the three-way handshake). Additionally, in Port Scan scenarios, this half-duplex connection is

usually aborted by the source host. The filter returns 158485 flows, of which 39 flows are marked

“None”, 32 flows are marked “Benign”, and 158414 flows are marked “Port Scan”.

With the previous filters (“TR-1 n=100, FR-TR-Default & FR-2” rules), we have successfully

detected 158414 (99.644%) flows out of the 158980 “Port Scan” flows. The reason why we are not

detecting the remaining 566 (0.357%) “Port Scan” flows is that the scans that require a three-way-

handshake initiation and a full-duplex connection will not be caught if the previous flow filter is applied,

such as, for example, the “Connect Scan” and the “Service/Version Detection Scan”, which account for

565 “Port Scan” flows, together with only 1 dropped “Port Scan” flow.

Furthermore, if we further filter the 158485 flows, we can see that 158000 were rejected

connections, while only 485 were established half-duplex connections:

• Regarding half-duplex connections, the half-duplex connection filter returned 484 flows (due to

a bug regarding corrupted packet timestamps messing with correct packet order, we suspect).

This sole missing flow shares the same TCP flag features of the captured half-duplex

connection flows, so we suspect it is a half-duplex connection like the others. The 1 sole flow

we mentioned is marked “Benign”, while the initially filtered 484 flows are marked “Port Scan”.

57

• Regarding rejected connections, 39 flows are marked “None”, 31 are marked “Benign” and

157930 are marked “Port Scan”.

Above, we detailed the “TR-1 with n=100” rule, joined with the “FR-TR-Default” and “FR-2” rule

variations, for detecting Friday’s correctly labeled “Port Scan” flows. We summarize the results we

obtained for all rule sets which we automatically applied to the dataset, in the subsections below. We

analyze Thursday traffic as well, using Thursday’s mislabeled “Port Scan” flows, which we manually

corrected. After manually having manually labeled Thursday’s mislabeled port scan flows based on the

file investigation we previously carried out, we can analyze our flow rule sets in the Thursday’s file as

well.

5.3.5.1. “Port Scan” Rule sets applied to Thursday

 #Flows

 TP TN FP FN

RS1 71809 93748 2346 0

RS2 30174 94060 2034 41635

RS3 40987 96014 80 30822

RS4 0 96094 0 71809

RS5 40593 96041 53 31216

RS6 393 96067 27 71416

RS7 1 96094 0 71808

RS8 71161 93980 2114 648

RS9 30174 94060 2034 41635

RS10 40987 96014 80 30822

RS11 71161 93980 2114 648

TABLE 7. THURSDAY: “TR-1 N=100” FLOW RULE SET RESULTS.

 Flow Classification Metrics (%)

 TPR TNR FPR FNR
Overall

Accuracy
Precision

F1-
Score

MCC

RS1 100.000 97.559 2.441 0.000 98.603 96.836 98.393 97.197

RS2 42.020 97.883 2.117 57.980 73.992 93.685 58.017 50.140

RS3 57.078 99.917 0.083 42.922 81.595 99.805 72.623 65.600

RS4 N/A 100.000 N/A 100.000 57.232 N/A N/A N/A

RS5 56.529 99.945 0.055 43.471 81.337 99.870 72.194 65.228

RS6 0.547 99.972 0.028 99.453 57.450 93.571 1.088 5.142

RS7 0.001 100.000 0.000 99.999 57.232 100.000 0.003 0.282

RS8 99.098 97.800 2.200 0.902 98.355 97.115 98.096 96.664

RS9 42.020 97.883 2.117 57.980 73.992 93.685 58.017 50.140

RS10 57.078 99.917 0.083 42.922 81.595 99.805 72.623 65.600

RS11 99.098 97.800 2.200 0.902 98.355 97.115 98.096 96.664

TABLE 8. THURSDAY: “TR-1 N=100” FLOW RULE SET METRICS.

We only compare “TR-1 n=100” to avoid comparing both talker rules, which present very similar results.

More information on the “TR-1 n=100” filtered bi-talkers can be found in table 21 (annex).

Considering only the “TR-1 n=100” talker rule, we compare every flow rule set using three metrics.

The results using “TR-1 n=100, FR-TR-Default”, which considers all flows of the filtered bi-talkers,

achieves a high precision (96.836%) and the highest MCC (97.197%) in this case because most flows

in the filtered bi-talkers are “Port Scan” flows. Amongst the “Port Scan” flow rule sets:

58

• The RS7 rule set (“FR-2.2.1”) achieved a perfect precision. In the context of Thursday’s flows,

the only flow that had a half-duplex connection whose source host aborted it afterwards (“FR-

2.2.1”), was a Port Scan flow.

• The RS11 (“FR-1 | FR-2 | FR-3”) and RS8 (“FR-1 | FR-2”) rule sets generically performed the

best for Thursday’s flows with a shared MCC of 96.664%, with a precision of 97.115% and F1-

Score of 98.096%, and with a sensitivity of 99.098%. This means that Thursday’s Port Scan

flows are mostly comprised of dropped (“FR-1”) and rejected (“FR-2”) packets.

These mislabeled Thursday port scans were never found or evaluated by the considered related work.

At the time of writing, we did not find any other paper that referenced this traffic as having been

mislabeled, even though the authors talk about this traffic in their paper and in the dataset’s website.

5.3.5.2. “Port Scan” Rule sets applied to Friday

 #Flows

 TP TN FP FN

RS1 158980 92200 96814 0

RS2 1 188089 925 158979

RS3 158414 188943 71 566

RS4 474 189013 1 158506

RS5 157930 188944 70 1050

RS6 484 189014 0 158496

RS7 484 189014 0 158496

RS8 158415 188018 996 565

RS9 475 188088 926 158505

RS10 158888 188942 72 92

RS11 158889 188017 997 91

TABLE 9. FRIDAY: “TR-1 N=100” FLOW RULE SET RESULTS.

 Flow Classification Metrics (%)

 TPR TNR FPR FNR
Overall

Accuracy
Precision

F1-
Score

MCC

RS1 100.000 48.779 51.221 0.000 72.179 62.152 76.659 55.061

RS2 0.001 99.511 0.489 99.999 54.050 0.108 0.001 -4.726

RS3 99.644 99.962 0.038 0.356 99.817 99.955 99.799 99.631

RS4 0.298 99.999 0.001 99.702 54.451 99.789 0.595 4.016

RS5 99.340 99.963 0.037 0.660 99.678 99.956 99.647 99.353

RS6 0.304 100.000 0.000 99.696 54.454 100.000 0.607 4.069

RS7 0.304 100.000 0.000 99.696 54.454 100.000 0.607 4.069

RS8 99.645 99.473 0.527 0.355 99.551 99.375 99.510 99.097

RS9 0.299 99.510 0.490 99.701 54.186 33.904 0.592 -1.504

RS10 99.942 99.962 0.038 0.058 99.953 99.955 99.948 99.905

RS11 99.943 99.473 0.527 0.057 99.687 99.376 99.659 99.372

TABLE 10. FRIDAY: “TR-1 N=100” FLOW RULE SET METRICS.

We only compare “TR-1 n=100” to avoid comparing both talker rules, which present very similar results.

More information on the “TR-1 n=100” filtered bi-talkers can be found in table 21 (annex).

Considering only the “TR-1 n=100” talker rule, we compare every flow rule set using three

metrics. The results using “TR-1 n=100, FR-TR-Default”, which considers all flows of the filtered bi-

59

talkers, is not enough to achieve a high precision in this case because there are a lot of other flows in

the same bi-talker that are not “Port Scan” flows, specifically flows belonging to the DDoS attack

generated with the LOIC tool (the tool’s acronym is mistaken twice, one in the CIC-IDS-2017’s official

website and one in their paper).

Additionally, note that the RS10 rule set (“FR-2 | FR-3”) generically performed the best for

Friday’s flows. This means that most Friday flows are either rejected connections or full-duplex

connections that were established and immediately terminated. We can also see that “FR-2” is the

dominant flow rule, as its individual rule set (RS3) correctly classified many more flows than the “FR-3”

rule set (RS4). Despite that fact, in the real world, flows are not always rejected when a Port Scan

occurs. In this case, the authors turned off the firewall rules which would have normally caused more

dropped packets.

Friday’s flows are the only “Port Scan” flows that were correctly labeled and are also the only

ones that are evaluated by other works. Since only Friday flows are considered for training and testing

data, there is a chance that they might miss other types of Port Scan flows. For example, they might

miss flows that are dropped since only 1 dropped Port Scan flow was presented in Friday’s flows.

5.3.5.3. Common (Thursday + Friday) rule set evaluation

 #Flows

 TP TN FP FN

RS1 230789 185948 99160 0

RS2 30175 282149 2959 200614

RS3 199401 284957 151 31388

RS4 474 285107 1 230315

RS5 198523 284985 123 32266

RS6 877 285111 27 229912

RS7 485 285108 0 230304

RS8 229576 281998 3110 1213

RS9 30649 282148 2960 200140

RS10 199875 284956 152 30914

RS11 230050 281997 3111 739

TABLE 11. THURSDAY & FRIDAY: “TR-1 N=100” FLOW RULE SET RESULTS.

 Flow Classification Metrics (%)

 TPR TNR FPR FNR
Overall

Accuracy
Precision

F1-
Score

MCC

RS1 100.000 65.220 34.780 0.000 80.779 69.947 82.316 67.542

RS2 13.075 98.962 1.038 86.925 60.540 91.070 22.867 24.413

RS3 86.400 99.947 0.053 13.600 93.887 99.924 92.671 88.156

RS4 0.205 100.000 0.000 99.795 55.356 99.789 0.410 3.361

RS5 86.019 99.957 0.043 13.981 93.722 99.938 92.458 87.851

RS6 0.380 99.991 0.009 99.620 55.432 97.013 0.757 4.405

RS7 0.210 100.000 0.000 99.790 55.359 100.000 0.419 3.410

RS8 99.474 98.909 1.091 0.526 99.162 98.663 99.067 98.309

RS9 13.280 98.962 1.038 86.720 60.632 91.193 23.184 24.665

RS10 86.605 99.947 0.053 13.395 93.978 99.924 92.789 88.326

RS11 99.680 98.909 1.091 0.320 99.254 98.666 99.170 98.496

TABLE 12. THURSDAY & FRIDAY: “TR-1 N=100” FLOW RULE SET METRICS.

60

According to CIC-IDS-2017’s labels, only Friday featured a port scan, however, according to CIC-IDS-

2017’s official website and our rule set, both days featured a port scan. Nevertheless, the above metrics

join the only two days where a port scan was detected by our rule sets (the other three days were

correctly discarded by the rule sets). We recall the simplified interpretations of the above listed metrics:

• High Precision: in the studied context, most flows that are filtered by the rule set are Port Scan

flows.

• High F1-Score/MCC: in the studied context, most flows that are filtered by the rule set are Port

Scan flows and there are not much more Port Scan flows left to detect.

We summarize each “Port Scan” flow rule set (considering “FR-TR-Default” applied with “TR-1 n=100”):

• The RS1 rule set (lack of flow rules), which captures every flow within the filtered talkers, has

a precision of 69.947%. It has an F1-Score of 82.316%. It detects every Port Scan flow, but

also wrongfully considers 34.780% of all Port Scan flows.

• The RS2 rule set (“FR-1”), which captures every flow with an unanswered requested connection

(likely dropped), has a precision of 91.070%. Its low F1-Score (22.867%) reflects the fact that

it only detects 13.075% of all Port Scan flows.

• The RS3 rule set (“FR-2”), which captures every flow initiated with a two-way handshake, has

a precision of 99.924%. It has an F1-Score of 92.671%, the highest F1-Score for a single flow

rule, detecting 86.400% of all Port Scans.

• The RS4 rule set (“FR-3”), which captures every flow that had a full-duplex connection that is

later aborted by the source host, without the destination host ever sending another packet other

than the three-way-handshake’s second packet, has a precision of 99.789%. Its low F1-Score

of 0.410% reflects the fact that it only detects 0.205% of all Port Scan flows.

• The RS5 rule set (“FR-2.1”), which captures every flow that was rejected, has a precision of

99.938%. it has an F1-Score of 92.458%, detecting 86.019% of all Port Scan flows.

• The RS6 rule set (“FR-2.2”), which captures every flow that had a half-duplex connection, has

a high precision, so most instances classified as a Port Scan with this rule set were, in fact, a

Port Scan. Its low F1-Score is low reflects the fact that it only detects 0.380% of all Port Scan

flows.

• The RS7 rule set (“FR-2.2.1”), which captures every flow that had a half-duplex connection

whose source host aborted it afterwards, seems to be the most specific to port scan situations,

and its 100.000% precision indicates just that. In fact, there might be no other reason for a host

to open a half-duplex connection and abort it afterwards unless it was simply checking if the

port was accepting connections. Its low F1-Score of 0.419% reflects the fact that it only detects

0.210% of all Port Scan flows.

• The RS8 rule set (“FR-1 | FR-2”) has a precision of 98.663%. It has an F1-Score of 99.067%,

detecting 99.474% of all Port Scan flows.

• The RS9 rule set (“FR-1 | FR-3”) has a precision of 91.193%. Its low F1-Score of 23.184%

reflects the fact that it only detects 13.280% of all Port Scan flows.

61

• The RS10 rule set (“FR-2 | FR-3”) has a precision of 99.924%. It has an F1-Score of 92.789%,

detecting 86.605% of all Port Scan flows.

• The RS11 rule set (“FR-1 | FR-2 | FR-3”) has a precision of 98.666%. With an F1-Score of

99.170%, it has the highest F1-Score among all rule sets, detecting 99.680% of all Port Scan

flows.

Table 13 shows the “TR-1 n=5” talker rule being test tested with the most generically performant flow

rule sets for each day: the “FR-TR-Default & (FR-2 | FR-3)” rule set for Friday and the “FR-TR-Default

& (FR-1 | FR-2 | FR-3)” rule set for Thursday. The “TR-1 n=5” talker rule can be overviewed using table

21 (annex) results to see how different thresholds affect the number of filtered talkers and filtered flows,

while a more in-depth analysis is only possible through directly testing with the dataset.

The results between bi-talker filters “TR-1 n=100” and “TR-1 n=5” were not very different, but

we recall that it is important that an analyst should be aware of any “Benign” automated behavior in a

network that they may need to analyze or monitor, in order to create relevant exceptions and obtain the

best results out of the automated analysis. Given these exceptions, a threshold of 5 would still be able

to match only the relevant bi-talkers. In conclusion, in a real-world scenario where an analyst is able to

whitelist benign automated traffic, we could lower the threshold down and incur in no loss at all.

5.3.6. Rule set discussion

If we use an hourly time window for defining bi-talkers (and bi-hosts, if we use HR-1) rather than the

daily time window used in this work, we can achieve better results because most traffic that correlates

to each other is often very close in time, including in this dataset. For example, Friday’s “Port Scan”

flows span over 41 minutes and, since the first few seconds, it is already detectable by the unique

destination port count rule (TR-1 rule).

In a real-world setup, a smaller time window can be used to greatly improve the classification

overall metrics and precision, but it is very important that the smaller window does not become a

“blindfold”: if not combined with lengthier time windows, such as the daily time window or an even

Port Scan: Thursday, TR-1 n=5, FR-TR-Default & (FR-1 | FR-2 | FR-3)

Results Flows Metric Value (%) Metric Value (%)

TP 71161 Sensitivity / TPR 99.098 Overall Accuracy 98.354

TN 93979 Specificity / TNR 97.799 Precision 97.114

FP 2115 Fallout / FPR 2.201 F1-Score 98.096

FN 648 Miss Rate / FNR 0.902 MCC 96.662

Port Scan: Friday, TR-1 n=5, FR-TR-Default & (FR-2 | FR-3)

Results Flows Metric Value (%) Metric Value (%)

TP 158888 Sensitivity / TPR 99.942 Overall Accuracy 99.952

TN 188940 Specificity / TNR 99.961 Precision 99.953

FP 74 Fallout / FPR 0.039 F1-Score 99.948

FN 92 Miss Rate / FNR 0.058 MCC 99.904

TABLE 13. THURSDAY & FRIDAY: “TR-1 N=5” FLOW RULE SET METRICS FOR THE MOST

GENERICALLY PERFORMANT “PORT SCAN” FLOW RULE SET ON EACH DAY.

62

lengthier one, a smaller window may miss network attacks spanned over greater time ranges. CIC-IDS-

2017 does not include any port scan that may be considered slow, but even if it did, as long as it

scanned more than TR-1’s threshold ports per day, we would be able to detect it. If we want to be

completely safe about detecting all port scan instances, a lengthier time window may be implemented,

as well as working towards minimizing the TR-1’s threshold in each time window by correctly white-

listing all the “Benign” exceptions detected overtime.

The metrics that we calculated tell us how our rule sets correlate with the classification problem

at hand, given the studied datasets. The best part about using rule sets is that we know exactly what

we are looking for and detecting, so we have complete control over what we want to detect. The hardest

part about rule sets is that we need to effectively find the threat class’s core features and explicitly

implement them; else, the reliable way to create performant classification systems would still be ML

classifiers, even though they would be more prone to be bypassed by an adversary capable of

customizing their flows. Examples of adversarial evasion to our rule sets are considered in the next

subsection (5.3.7).

Training ML models with network attack data that is inherently limited leads to limiting the ML

models to that same inherently limited data. A ML model will train and test itself with data that is not

broad enough to successfully measure its performance, by not considering unforeseen edge cases.

This limitation issue does not come from a misconfiguration of the ML classification system, but from

the train data which is not enough to emulate the data that an adversary would be able to try out to

confuse the classifier. In this scenario, unless the ML model only attributes feature importance to threat

class core features (which is very unlikely given that many statistical features are strongly correlated to

these core features and NetGenes includes plenty statistical features), train data may not be enough to

help the classifier correctly unmix these features. As such, in this same scenario, the only way to make

the ML model focus on the core features would be doing manual feature selection, so we would still

have to go through our threat class definitions to find their core features and explicitly implement core

features from scratch. This results in not needing to deduce unimplemented core features anymore, as

well as creating detection systems that can detect network attacks without having random vulnerabilities

(against knowledgeable attackers, or simply against tools that do not respect the same non-core rules

that the classifier incorrectly employs). However, the truth is that ML-based approaches can lead to

great results detecting the class instances in the test datasets, while at the same time not yielding a

true relevance of the used features and algorithms to really detect the network attack by its root causes,

mainly due lack of data and a lot of non-core features. This means the measured classification results

can be high for the considered data but will fail to flag different traffic that represents the same

fundamental threat class while maintaining the same attack effectiveness. If the previous issue was not

enough, there is also a need to make sure that class imbalance is not an issue by resampling (for

example, reducing class samples to the least common denominator, as it was done in the previous

work). The lack of data broadness issue and subsequent limitations will be there as long as there are

endless traffic possibilities that do not affect attack effectiveness using non-core features.

In summary, in a non-adversarial scenario, the train/test data will likely not be broad enough to

detect every variation of a network attack, and, inclusively, may lead to a misclassification of similar

63

non-class traffic based on the non-core features it uses. In an adversarial scenario, this means that the

utilized weaker features can eventually be tampered with by an adversary to make network attacks

invisible to the classification system while still maintaining their effectiveness.

A practical example of the previous issue is a ML model that trains with TCP flag counts from

multiple datasets and will classify every flow that has certain combinations of TCP flag count ranges as

malicious. While these combinations may be true for the contemplated training and test cases, an

adversary can fool this classifier by, for example, sending more packets with the accounted TCP flags

activated, or messing around with other random features if the training data (and, consequently, the

classifier as well) had a strong bias towards these. With flow initiation, flow connection flow end states

being correctly implemented in the data extraction phase, this is no longer an issue. Another practical

example is the TCP SYN Flood Attack, which considering only flow features can be incorrectly detected

as a Port Scan for its packet-set (flow) similarities, as we saw during the test phase of our previous

work. However, by simply analyzing flow-set (talker/host) based data, which not many related works

did, we can see that the considered flows consistently contact a specific port, which may or may not

have an active service in this case.

The solution to solve the previous issues is undertaking manual feature selection before

employing any type of Machine Learning, as the real issue can be narrowed down to the automated

feature selection that does not know any better other than the data that it is presented with and will

choose features solely based on this data, so the issue is not the Machine Learning usage per se, but

the assumption that the utilized data is complete enough to make the ML algorithm select the correct

core features only among all the considered features.

Moreover, without the correct extracted data features, as well as broad train and testing data,

there could be many unforeseen blind spots to a classifier. Defining broad testing data is difficult for

network attacks due to so much customization (switching tools, customizing parameters or customizing

the sent network traffic in any given way) that is possible and, on the other hand, it is assumed that an

adversary will try every possible way to bypass the detection mechanisms. Since we do not want to be

blindly playing mouse and cat with our detection mechanisms, we avoid using classifiers which we do

not have our complete control over.

Also, it is of utmost importance that we think from scratch about possible adversarial moves

against our detection mechanisms, independently of the detection mechanisms being rule sets or more

complex ML algorithms. A critical difference between the last two is that rule sets are easier to

understand and debug, and they also allow us to have a more fine-grained control over what exactly

we want to detect. Although ML can help us detect useful features which hold a significant logical value

for the classification problem, it will not do so unless we have implemented this feature at least partially:

for example, if we had not implemented flow states, a well-trained performant ML model could indicate

us that the syn and ack counts are relevant features, which may be seen as a hint that flow states are

relevant. If we had not implemented the TCP flow flag counts, there would be no way that we could

deduce that flow states were useful for detection by means of Machine Learning. However, in our case,

the TCP flow state features were implemented because we thought that flag counts were not enough

to tell what was happening for the TCP connection itself, and we wanted to be able to filter flows as if

64

we were working with blocking packets and connections in iptables. At the same time, by better studying

how a port scan worked, we were able to logically match the important port scan scenarios to their

associated core features.

At the flow level, flow initiation types, connection states and termination types needed to be

extracted because using TCP flag counts only is not enough to properly query the data for these types

of features. However, we must note that even though the classifier may not have knowledge about the

order in which the flags were used, as well as all their possible combinations between one another, it is

very possible that a ML model can find a correlation between TCP flag counts and each type of

connection state, which ultimately leads to correctly classifying a “Port Scan” flow correctly in most

cases where an adversary does not properly customize their traffic. With these features explicitly

implemented, a ML model could now use these features instead but, as we already mentioned, the

used training/testing data would have to be broad enough to show us a clear difference in terms of

tangible results.

Finally, one important thing that needs to be pointed out is that the false-positive ratio in flow

classifications is not as important anymore when using flow-set based rules. This is because the number

of alerts regarding malicious talkers and hosts is going to become very limited now, whereas if we only

apply flow classification, we may have a low false-positive ratio and still capture non-malicious talkers

and hosts, creating the possibility of false alerts. Flows need to be analyzed in sets, not only individually.

5.3.7. Adversarial evasion

“Attackers could span the port scan over lengthy periods of time.” – solved by increasing the bi-talker

time window. These lengthier bi-talkers should complement smaller time window bi-talkers, rather than

replace them, as we have discussed before.

“Attackers could start performing full-duplex connections for every open port.” – This situation messes

with the FR-2.2 and FR-2.2.1 rules, which only detect half-duplex connections. We will still detect every

closed port (FR-2.1 - rejected connection) and filtered port (FR-1 – dropped connection) attempts, which

make up most of the flows. The FR-2.2 and FR-2.2.1 rules are very precise rules, but they depend on

the source host to be fulfilled because only the source host has the power to decide if he wants to close

the connection in this state, or if he wants to acknowledge the connection, thus creating a full-duplex

connection, and only then terminating it.

“The attacker could use multiple of their owned IPs to perform the port scan” – This situation requires

using host’s backward flows’ unique destination port counts, while maintaining the same flow rule set.

By answering the question “How many services did host A have accessed by other hosts?”, the

“bihost_bwd_biflow_n_unique_dst_ports” host feature would be the most relevant feature to detect a

distributed port scan. Since this type of port scan requires focusing on a single host’s destination ports,

independently of the source host, it can only be reliably detected using host-based rules. Based on the

CIC-IDS-2017 authors’ labels, the official website and our dataset analysis, a distributed port scan

attack does not seem to have happened.

“The attacker could perform a port scan to a limited number of ports only, enough to evade detection.”

– this case would not be detected, but the effectiveness of the Port Scan is very limited. The adversary

may only scan n-1 ports before the port scan is detected. To detect this, TR-1’s threshold would need

65

to be lowered. The lower the threshold, the lower the effectiveness of the Port Scan will be without it

being flagged. However, it is expected that more false-positive results arise, especially false-positive

talker results. For example, if false-positive flow results increase by 100, this is not a big deal given the

flows’ order of greatness (FPR will slightly increase here), but if the talker rule set TR-1 is a weak rule

set, false-positive talker results will also increase by a similar value, which means the FPR will greatly

increase and, consequently, that would mean the analyst would have a lot of hosts to validate.

“The attacker customizes multiple port scan packets in every possible way they can (e.g., add garbage

data, use multiple flag combinations, slow-down the packet pace, all of the above, etc.)” – we attribute

zero relevance to features other than the core features considered in the various port scan rule sets,

and our classification will either remain the same in every rule set that is not slightly controllable by the

adversary, or simply not output anything in the rule sets that are. Among the rule sets we defined, the

high-precision flow rules “FR-3”, “FR-2.2.1” and “FR-2.2” can be fooled by a knowledgeable adversary:

in order to bypass FR-3, the adversary needs to receive at least 1 packet after the full-duplex connection

is established, which is achievable if he sends more packets (or by performing a graceful termination,

which would require at least a second packet from the destination host); similarly, to bypass FR-2.2 and

FR-2.2.1, the adversary may choose to perform full-duplex connections whenever a port is open, rather

than the usual half-duplex connection, and send more packets each time to bypass the FR-3 rule as

well again. Finally, bypassing a TR-1 with a low threshold, as well as the FR-1, FR-2 and FR-2.1 rules,

is much more difficult for a scan that intends to find open ports on the network, unless the adversary

can successfully guess the ports that are open (which obviously defeats the purpose of the port scan)

all the times. This is why core features work very well. Also, in real-world scenarios, TR-1’s threshold

can be safely lowered because most hosts will not usually access more than 1 or 2 different ports of a

destination host in one single day (let alone in 1 hour, or any other smaller time window that we might

want to use); in the cases where they go up the threshold, the flow rule sets can effectively eliminate

false-positive results.

5.5. Chapter Conclusions

Works Detected Port Scans
in CIC-IDS-2017

Best Overall Accuracy for

CIC-IDS-2017 Friday’s “Port

Scan” Flow Classification

Previous work (2018) [10] 1 99.73%

Singh et. al,

ICAESMT-2019 (2019) [148]
1 99.9815%

Stiawan et. al,

IEEE Access 8, 132911–132921

(2020) [149]

1 99.7%

Current work (2020) 13 99.953%

TABLE 14. WORK COMPARISON IN CIC-IDS-2017 PORT SCAN DETECTION.

66

As we have already defined earlier in the previous chapter, core features are features that can

successfully describe the core scenarios of a threat class, with either low possibilities of evasion or

severely affecting that class’s effectiveness if not detected. We believe we have achieved this for the

Port Scan threat class, as you can see by analyzing each rule’s effectiveness and the fact that the rules

that can be evaded by the attacker represent the detection of a low percentage of flows – open port

rules, which can always be made to look benign by truly accessing and using the service as a normal

user would just to evade those rules at the L1-L4 level if the adversary intends to do so. The other rules,

however, are more resilient, as they do not depend on L5-7 behavior.

Table 14 shows a comparison between our current work and three other works that have

applied their detection mechanisms to the CIC-IDS-2017 dataset. Our work detected the 12 port scans

that occurred Thursday and were incorrectly labeled in the dataset, of which 11 were referenced by the

dataset authors [145,146], when they refer to Thursday’s infiltration 2nd step in which 192.168.10.8

performs a port scan to “all other clients”, and 1 port scan that was not referenced at all. NetGenes-

generated data and the rules we employed were effective to spot these types of imprecisions in the

dataset.

Furthermore, as other works, we detected the Port Scan that occurred on Friday, correctly

detecting the only 2 hosts involved in this interaction. Even though our flow classification results were

not as great as Singh et. al results [148], we tried hard to not flow fingerprint any flow, which is very

hard to not do when working with Machine Learning unless manual feature selection is performed, due

to the already explained issues with train and test datasets that do not allow accounting for many

variants.

Additionally, this work’s flow definition is different from the flow definition considered by most

other works, as we have already shown in the beginning of this chapter: namely, for Friday’s TCP port

scan flows, we are accounting a total of 158980 Friday TCP port scan flows extracted by NetGenes,

while other works consider 158930 original port scan flows extracted by CICFlowMeter (158923 of

which are TCP flows, 6 are marked as unidentified and 1 is the only correctly labeled UDP flow, as we

have already detailed in subsection 5.2). Moreover, we also note that we did not detect the version

detection scans, which would result in many rules that are essentially flow fingerprinting and would steer

away from using core features only. If this traffic exists unencrypted, we should instead gather L5-7

features by default and assess these new features as indicators rather than performing flow

fingerprinting, as at that abstraction level they could be core features. We propose that as future work.

Finally, even though the metrics we defined are important, it is more relevant to understand

why we are getting such results. Understanding what our rules do is more important than the metrics

they achieve in correctly classifying flows. Additionally, what we really want to do is to be able to safely

state that a certain network attack has occurred, identify the attacker(s) and identify the victim(s), which

can be performed using flow-set information (as we do with Port Scan’s HR-1 and TR-1). Additionally,

a set of flows filtered by high-precision rule sets indicates that they are malicious with a very high

certainty (even if those are not the only malicious flows), and this information will help the analyst further

narrow down the network traffic that they need to focus on to undertake a deeper network analysis.

67

Chapter 6. Conclusion

6.1. Main contributions and takeaways

We developed our own tool, dubbed NetGenes, to extract useful information from the packets captured

inside a network trace-file. The extracted information is independent of encryption because only the

packet metadata is used to generate it. This information is then hierarchically organized in three abstract

network concepts, which we dubbed “network objects”, responsible for logically aggregating traffic, each

one with its own features. NetGenes provides a lot of conceptual and statistical network features, to

arm an analyst or researcher with a readable feature format. This feature format enables a researcher

to quickly acknowledge the fundamentals of the network communications captured inside the network

trace-file, while each network-object features provide deeper insight on the network data.

By developing NetGenes, we can use a set of flow features that is lengthier than many flow

extraction tools, including conceptual and statistical features, usable to study and handle the data in the

most complete way that we possibly can (considering the multiple tool’s development cycles this year).

We also developed and extensively use the “Talker” network object as a flow aggregator, as well as the

“Host” network object as a talker and flow aggregator, as well as their respective features. NetGenes is

a tool that was inspired by CICFlowMeter (a tool made by researchers at the Canadian Institute for

Cybersecurity, CIC), but at the moment includes slightly more flow features and adds the concept of

flow-set based features on top, which is already present in tools that are used more by the network

community like tranalyzer2 (which includes the “top talkers” concept and possibility of flow aggregation

scripts) and WireShark (IPv4 and IPv6 “Conversations”). Summarily, Wireshark (and tshark for that

matter) has the various network-object definitions well implemented, however it does not present us a

set of features as rich as CICFlowMeter (as well as tranalyzer-2 and other tools that we’ve talked about)

does, as it provides us a more human-friendly and efficient real-time visualization that does not consider

the same number of features that we can consider to better study traffic. Our solution was to develop

our own tool that tries to combine the best of Wireshark, which has a good definition of the concepts of

flow, talker and host, to the best of CICFlowMeter, which gives us a vast set of data ready to analyze.

The Talker object proved to be an important concept to analyze network traffic. It provides a

relevant context for flows, grouping them by source host and destination host, and allows filtering useful

flows based on talker-based flow-set features.

Similarly, the Host object, also proved to be an important concept to analyze network traffic. It

provides a relevant context for talkers and flows, grouping them by Host, and allows filtering useful

flows based on host-based talker-set and flow-set features.

With this work, we proved that ML-based classification is not a necessary requirement to

achieve good results in network traffic analysis; in fact, we argue that it may lead to weaker classification

systems in what it comes to being generic, not because of the algorithms, but because of the inherent

lack of broadness in train and test data and leading to use non-core features. The features we

implemented for flows, talkers, and hosts, provide a simple and effective way of querying and quickly

analyzing traffic data. Machine Learning algorithms can always still be used for flow fingerprinting using

68

all the features that NetGenes provides (the only Boolean values are even provided one-hot encoded

for this reason), but avoid providing higher relative importance to features other than the threat class’s

previously thought-out and explicitly implemented core features. Moreover, we have not found any

related work that tackles the correct classification of hosts against the false-positive flow results, except

for us in the context of the previous work, where we recognized that we were correctly identifying most

test dataset flows using ML models, as many other related works were doing (at the time, for other

datasets), but a high number of hosts would still be incorrectly tagged as malicious as a result of the

false-positive flow classifications. The “Talker” and “Host” object introduced in this work provide the

needed features to avoid false-positive talker and host classifications. This matter is very important

because a human analyst should be given a low number of alerts regarding hosts, talkers or flows, to

further investigate only alerts that are truly relevant; if we often output incorrect alerts, a correct alert

will likely be discarded with the rest (like the story “The Boy Who Cried Wolf”). The highest the precision

of a rule set (given that it is correctly built with the specifics of the threat class in mind) is, the higher

relevance an output alert has. Furthermore, by using manually created rule sets that directly query the

data, we were able to study how each rule set can individually contribute to achieve great flow

classification results.

We do not need to worry about getting broad train datasets to prepare ML models for multiple

tools. By focusing on the core features of a threat class, we do not require network traffic from multiple

tools to model their common threat or threat class. Based on our previous work results, ML would be

only able to help if we could gather a broad-enough dataset for every threat class we have to study;

however, the problem is that software tools can be customized in endless ways, so the network traffic

that is generated is different each time but still maintains the effectiveness of the malicious tool. This

means that, to detect anomalous instances, it is not sufficient to extract multiple statistical features and

delegate the classification job to the Machine Learning algorithm. It is our job to ensure the Machine

Learning algorithms are being explicitly fed with broad data but, also, with core features that enable the

“correct” detection of the threat class. Thus, rather than focusing on the algorithms we should use, we

focused more on extracting important traffic features to best detect the threat classes we ought to

detect. By successfully detecting the threat class itself, we are creating generic rules to detect threats

and software tools that implement those threat classes, including new software tools that implement it

which may not even have been created by someone. The practical application of a new tool or threat

results in a completely new network attack, but we can still detect it because it is bound to maintain the

threat class’s core features. This shows our work’s intent to fit in the anomaly detection category the

best possible way that we can.

Additionally, our rule sets are not restrained by class-imbalanced datasets, nor is it restrained

by the relative size of different, often mutually exclusive, types of instances (e.g., the difference between

the number of dropped, rejected and accepted connections in the “Port Scan” threat class). The first

often results in a classification bias towards higher-sized classes, while the latter results in a modelling

bias of the class towards higher-sized types of instances within the same class. The first is a widely

researched issue in related works about ML-based network traffic analysis, while the latter is a more

hidden issue.

69

Another important aspect of the proposed method is that we can more easily understand what

went wrong with our classification system, when it misses TP results in favor of FN ones, by directly

applying the individual rule set responsible for the results and analyzing the flows that are left out by it.

Additionally, an analyst could also think about new rule sets that would be better for their case and

easily modify the classification system to their liking, by considering new custom rules, tuning rule

parameters and/or deactivating default rules. On the other hand, a classification system based on pre-

trained ML algorithms provides less of this type of flexibility. Additionally, a classification system based

on our proposed flow rule sets provides more transparency than most ML-based works. Rather than

specifying statistical features importance, we specify how we use them in high-precision rule sets.

By filtering out irrelevant flow sets, talker-based and host-based rule sets not only improve the

detection results at the flow level, but more important, substantially reduce suspicions on benign talkers

and hosts. The previous matter is very important because when a single flow is deemed as malicious,

it could be incorrectly assumed that its talker and the two hosts are malicious, when that flow cold have

just been a false positive. This is the reason why false-positive results in anomaly-based intrusion

detection systems is an issue, and we propose that talker features and host features are used in order

to avoid misclassifications of talkers and hosts solely based on flow rule sets.

6.2. Future Work

As future work, we propose to associate other L1-4 threat classes to specific L1-4 network object

features. If the previous network object features are not implemented, implement those features, create

the rule sets and experiment with datasets. If no new ideas come up on how to best detect those threat

classes, even after extensively studying them, we propose to try to use ML classifiers to study the

targeted threat class by studying how the ML model classifies it with great accuracies. If the ML model

has not overfit to the training dataset, the feature importance values can provide hints about the core

features (e.g., SYN/ACK flag counts can hint about the importance of the flow initiation, among others).

Finally, we enumerate other future work that is performable based on this work:

• Further develop NetGenes: first, continuously include more L1-4 protocols and features;

second, parse and extract relevant conceptual and statistical features from L5-7 protocols as

well to enable working on the network behavior analysis capabilities of endpoint agents such

as a HIDPS (Host-based Intrusion Detection and Prevention System) for a real-time use-case,

or a malware sandbox analysis tools for a threat hunting use-case. Examples of this extraction

can be seen in Cisco StealthWatch solution, which investigates TLS, DNS and HTTP in more

depth to create conceptual features which are useful for threat identification. In theory, this will

allow starting to tackle the detection of L5-7 threat classes by their core features rather than

using ML-based classification to flow-fingerprint these threat classes.

• For rule sets concerned with data from specific ports and the L5-7 protocols used: implement

L5-7 protocol fingerprinting to validate direct protocol-port correlation, using L5-7 parsers for

decrypted traffic and using statistical analysis- or ML- based L1-4 detection for encrypted traffic,

similar to TCP/IP stack fingerprinting.

70

• Implement a THP (Threat Hunting Platform): an integrating part of a larger Threat Intelligence

Platform (TIP), it intends to automate and facilitate most of the work performed by threat

researchers when analyzing threat-related network traffic (in the form of a trace-file), mostly by

simplifying common data science and artificial intelligence use cases specifically applied to

threat analysis. It should integrate NetGenes data output into a database and should also allow

applying semi-automated labelling (e.g., labelling by host, by talker or by flow) in a user-friendly

way. Finally, by using datasets with a common feature set, researchers would be able to

compare their training-set network traffic and labelling methods more easily, rather than

focusing on getting comprehensive and logically organized feature sets, which is a very big

challenge by itself. Furthermore, this platform should also allow researchers to assess what

features of the supported ones are relevant for their specific threat-related use-cases. Finally,

this would also enable researchers to deeply study network attacks without needing to program

or script anything, but rather simply use the platform.

• Generate explicit behavior-based classification rules to obtain white-box classification systems

using advanced explainable AI methods [58, 59]. It could accelerate the discovery of core

features by making the classification process as transparent as possible, while maintaining the

great classification results ML offers for the default cases considered in the train dataset. The

resulting rule sets would still need to be assessed against adversarial evasion.

• Implement a low-level TIP: real-time system with an involved community capable of generating

shareable behavior-based and signature-based rulesets and integrating a THP capability.

• Implement a real-time NIDPS capable of using NetGenes’s extracted network-object features

as a basis for building behavioral classification rules capable of operating at the flow-, talker-

and host- levels. Furthermore, when it is available a real-time TIP with an involved community

and support for shareable IoCs and signature and behavioral classification rules, add extra

capability to the platform by integrating the NIDPS to enhance each constituency’s detection

capabilities, with automatically updatable classifiers based on the collaborative threat

intelligence gathering performed in each network. Such a capability aims to automatically

protect each constituency network from threats detected in collaborative constituencies, thus

unifying security among all entities. More in-depth, Packet-based filtering will be performed by

the usual signature-based methods, using external blacklists and threat intelligence feeds, but

its rules will be continually updated by the community because IoCs (IPs, domains and malware

signatures) will be shared between constituencies when a real detection occurs, given a

confirmation. Behavioral classification rules, at the flow, talker and host levels, obtained through

explainable AI methods and signature-based packet-level rules will be automatically generated

locally and shared with the TIP community, preventing the infection of collaborative networks.

• Design a fully functional centralized SIEM architecture and implement it. It must be capable of

integrating with the previous systems and being interoperable with other commonly used tools

and standards.

71

Bibliography

1. Answering Tough Questions About Network Metadata and Zeek,
http://www.infosecisland.com/blogview/25191-Answering-Tough-Questions-About-Network-
Metadata-and-Zeek.html, last accessed 2019/11/27

2. Tranalyzer Website, http://tranalyzer.com, last accessed 2019/12/02
3. Gu, G., Porras, P.A., Yegneswaran, V., Fong, M.W., Lee, W.: Bothunter: Detecting malware

infection through ids-driven dialog correlation. In: USENIX Security Symposium. vol. 7, pp. 1–16
(2007)

4. Gu, G., Zhang, J., Lee, W.: Botsniffer: Detecting botnet command and control channels in network
traffic (2008)

5. Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: Clustering analysis of network traffic for protocol-
and structure- independent botnet detection (2008)

6. Haddadi, F., Zincir-Heywood, A.N.: Benchmarking the effect of flow exporters and protocol filters
on botnet traffic classification. IEEE Systems journal 10(4), 1390–1401 (2014)

7. Haddadi, F., Le Cong, D., Porter, L., Zincir-Heywood, A.N.: On the effectiveness of different botnet
detection approaches. In: International Conference on Information Security Practice and
Experience. pp. 121–135. Springer (2015)

8. Haddadi, F., Zincir-Heywood, A.N.: Botnet behaviour analysis: How would a data analytics-based
system with minimum a priori information perform? International Journal of Network Management
27(4), e1977 (2017).

9. Ongun, T., Sakharaov, T., Boboila, S., Oprea, A., Eliassi-Rad, T.: On designing machine learning
models for malicious network traffic classification. arXiv preprint arXiv:1907.04846 (2019)

10. Almeida, F., Meira, J., Adão, P., Loura, R.: Network Intrusion Detection: Machine-Learning
Techniques for TCP Flow Classification (2018, unpublished)

11. White Paper - STIX Project, https://stixproject.github.io/getting-started/whitepaper/, last accessed
03/12/2019

12. White Paper - TAXII Project, https://taxiiproject.github.io/getting-started/whitepaper/, last accessed
04/12/2019

13. IntelMQ GitHub, https://github.com/certtools/intelmq, last accessed 04/12/2019
14. Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of network-based intrusion

detection data sets. Computers & Security (2019)
15. Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., Garant, D.: Botnet detection based

on traffic behavior analysis and flow intervals. Computers & Security 39, 2–16 (2013)
16. Maltrail GitHub, https://github.com/stamparm/maltrail, last accessed 2019/12/05
17. White Paper - Cisco Public 2019 Encrypted Traffic Analytics (ETA),

https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-
security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf, last accessed 2019/12/18

18. Khan, R.U., Zhang, X., Kumar, R., Sharif, A., Golilarz, N.A., Alazab, M.: An adaptive multi-layer
botnet detection technique using machine learning classifiers. Applied Sciences 9(11), 2375 (2019)

19. Nfdump GitHub, https://github.com/phaag/nfdump, last accessed 2019/12/06
20. Pmacct GitHub, https://github.com/pmacct/pmacct, last accessed 2019/12/07
21. Ntopng GitHub, https://github.com/ntop/ntopng, last accessed 2019/12/07
22. Zeek GitHub, https://github.com/zeek/zeek, last accessed 2019/12/08
23. Sacramento, L., Medeiros, I., Bota, J., Correia, M.: Flowhacker: Detecting unknown network attacks

in big traffic data using network flows. In: 2018 17th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/12th IEEE International Conference On
Big Data Science And Engineering (TrustCom/BigDataSE). pp. 567–572. IEEE (2018)

24. Sacramento, L., Medeiros, I., Bota, J., Correia, M.: Detecting botnets and unknown network attacks
in big traffic data. Botnets: Architectures, Countermeasures, and Challenges p. 237 (2019)

25. IntelMQ Bots Documentation, https://intelmq.readthedocs.io/en/latest/Bots/, last accessed
2019/12/09

26. The Githubification of InfoSec, https://medium.com/@johnlatwc/the-githubification-of-infosec-
afbdbfaad1d1, last accessed 2019/12/10

27. Rohmad, M.S., Azmat, F., Manaf, M., Manan, J.A.: Enhanced netflow version 9 (e-netflow v9) for
network mediation: Structure, experiment and analysis. In: 2008 International Symposium on
Information Technology. vol. 3, pp. 1–6. IEEE (2008)

28. CSE-CIC-IDS2018 dataset, https://www.unb.ca/cic/datasets/ids-2018.html, last accessed
2019/12/11

http://www.infosecisland.com/blogview/25191-Answering-Tough-Questions-About-Network-Metadata-and-Zeek.html
http://www.infosecisland.com/blogview/25191-Answering-Tough-Questions-About-Network-Metadata-and-Zeek.html
http://tranalyzer.com/
https://stixproject.github.io/getting-started/whitepaper/
https://taxiiproject.github.io/getting-started/whitepaper/
https://github.com/certtools/intelmq
https://github.com/stamparm/maltrail
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://github.com/pmacct/pmacct
https://github.com/ntop/ntopng
https://github.com/zeek/zeek
https://intelmq.readthedocs.io/en/latest/Bots/
https://medium.com/@johnlatwc/the-githubification-of-infosec-afbdbfaad1d1
https://medium.com/@johnlatwc/the-githubification-of-infosec-afbdbfaad1d1
https://www.unb.ca/cic/datasets/ids-2018.html

72

29. ISCX-Bot-2014 dataset, https://www.unb.ca/cic/datasets/botnet.html, last accessed 2019/12/11
30. CTU-13 dataset, https://www.stratosphereips.org/datasets-ctu13, last accessed 2019/12/11
31. ISOT Botnet dataset, https://www.uvic.ca/engineering/ece/isot/datasets/, last accessed 2019/12/11
32. RFC 7676 - IPv6 Support for Generic Routing Encapsulation (GRE),

https://tools.ietf.org/html/rfc7676, last accessed 2019/12/11
33. An overview of correlation measures between categorical and continuous variables,

https://medium.com/@outside2SDs/an-overview-of-correlation-measures-between-categorical-
and-continuous-variables-4c7f85610365, last accessed 2019/12/12

34. Feature Correlation and Feature Importance Bias with Random Forests,
http://rnowling.github.io/machine/learning/2015/08/11/random-forest-correlation-bias.html, last
accessed 2019/12/12

35. Cisco Security Certifications Overview, https://www.cisco.com/c/dam/en_us/training-
events/certifications/shared/docs/sec_oView_dSheet.pdf, last accessed 2019/12/12

36. Security Analytics and Logging: Supercharging FirePower with Stealthwatch,
https://blogs.cisco.com/security/security-analytics-and-logging-supercharging-firepower-with-
stealthwatch, last accessed 2019/12/12

37. Cisco VMDC Cloud Security 1.0 Design Guide, chap. 4 (2014)
38. Cisco Cyber Threat Defense (CTD) design guide,

https://www.cisco.com/c/dam/en/us/td/docs/security/network_security/ctd/ctd2-
0/design_guides/ctd_2-0_cvd_guide_jul15.pdf, last accessed 2019/12/12

39. New Cisco Certification Updates 2019, https://blog.ine.com/new-cisco-certification-updates-2019,
last accessed 2019/12/13

40. Cert News: New Cisco Certifications Coming in 2020,
https://www.cbtnuggets.com/blog/career/career-progression/cert-news-new-cisco-ccna-coming-in-
2020, last accessed 2019/12/13

41. Cisco Encrypted Traffic Analytics (ETA) Promotional Video, cisco.com/go/eta, last accessed
2019/12/19

42. White Paper - Cisco Public 2016 StealthWatch, https://www.cisco.com/c/dam/m/en_hk/never-
better/dna/pdf/stealthwatch_solution_overview_whitepaper_en.pdf, last accessed 2019/12/19

43. Radhakrishnan, S.: Detect threats in encrypted traffic without decryption, using network based
security analytics (2017)

44. Cisco Encrypted Traffic Analytics: Necessity Driving Ubiquity,
https://blogs.cisco.com/security/cisco-encrypted-traffic-analytics-necessity-driving-ubiquity, last
accessed 2019/12/19

45. Orans, L., Hils, A., D’Hoinne, J., Ahlm, E.: Gartner Predicts 2017: Network and Gateway Security
(2016)

46. Howard, J.D., Longstaff, T.A.: A common language for computer security incidents. Tech. rep.,
Sandia National Labs., Albuquerque, NM (US); Sandia National Labs (1998)

47. White Paper - Evaluation of Comprehensive Taxonomies for Information Technology Threats,
https://www.sans.org/reading-room/whitepapers/threatintelligence/paper/38360, last accessed
2019/12/20

48. ENISA Threat Taxonomy, https://www.enisa.europa.eu/topics/threat-risk-management/threats-
and-trends/enisa-threat-landscape/threat-taxonomy, last accessed 2019/12/20

49. Sfakianakis, A., Douligeris, C., Marinos, L., Lourenço, M., Raghimi, O.: Enisa threat landscape
report 2018: 15 top cyberthreats and trends. DOI 10, 622757(2019)

50. Steven Launius, Evaluation of Comprehensive Taxonomies for Information Technology Threats,
SANS Institute (2018), https://www.sans.org/reading-
room/whitepapers/threatintelligence/evaluation-comprehensive-taxonomies-information-
technology-threats-38360, last accessed 2019/12/22.

51. NIST TTP definition, https://csrc.nist.gov/glossary/term/Tactics-Techniques-and-Procedures, last
accessed 2020/01/03.

52. STIX TTP definition, https://stixproject.github.io/data-model/1.2/ttp/TTPType/, last accessed
2020/01/03.

53. Cisco Advanced Malware Protection Solution Overview,
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/advanced-malware-
protection/solution-overview-c22-734228.html, last accessed 2020/01/03.

54. Cisco Threat Grid Promotional Video, https://www.cisco.com/c/en/us/products/security/threat-
grid/index.html, last accessed 2020/01/03.

55. Cisco Threat Grid Demo, July 2018, https://www.youtube.com/watch?v=un2t2T_s6IY, last
accessed 2020/01/03.

https://www.unb.ca/cic/datasets/botnet.html
https://tools.ietf.org/html/rfc7676
https://medium.com/@outside2SDs/an-overview-of-correlation-measures-between-categorical-and-continuous-variables-4c7f85610365
https://medium.com/@outside2SDs/an-overview-of-correlation-measures-between-categorical-and-continuous-variables-4c7f85610365
http://rnowling.github.io/machine/learning/2015/08/11/random-forest-correlation-bias.html
https://www.cbtnuggets.com/blog/career/career-progression/cert-news-new-cisco-ccna-coming-in-2020
https://www.cbtnuggets.com/blog/career/career-progression/cert-news-new-cisco-ccna-coming-in-2020
https://www.cisco.com/c/dam/m/en_hk/never-better/dna/pdf/stealthwatch_solution_overview_whitepaper_en.pdf
https://www.cisco.com/c/dam/m/en_hk/never-better/dna/pdf/stealthwatch_solution_overview_whitepaper_en.pdf
https://blogs.cisco.com/security/cisco-encrypted-traffic-analytics-necessity-driving-ubiquity
https://www.sans.org/reading-room/whitepapers/threatintelligence/paper/38360
https://www.sans.org/reading-room/whitepapers/threatintelligence/evaluation-comprehensive-taxonomies-information-technology-threats-38360
https://www.sans.org/reading-room/whitepapers/threatintelligence/evaluation-comprehensive-taxonomies-information-technology-threats-38360
https://www.sans.org/reading-room/whitepapers/threatintelligence/evaluation-comprehensive-taxonomies-information-technology-threats-38360
https://csrc.nist.gov/glossary/term/Tactics-Techniques-and-Procedures
https://stixproject.github.io/data-model/1.2/ttp/TTPType/
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/advanced-malware-protection/solution-overview-c22-734228.html
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/advanced-malware-protection/solution-overview-c22-734228.html
https://www.cisco.com/c/en/us/products/security/threat-grid/index.html
https://www.cisco.com/c/en/us/products/security/threat-grid/index.html
https://www.youtube.com/watch?v=un2t2T_s6IY

73

56. Investigating Malware with Threat Grid, https://www.youtube.com/watch?v=W7IuchQR7dA, last
accessed 2020/01/03.

57. Feature Importance: Explainable Artificial Intelligence, https://medium.com/time-to-work/feature-
importance-c837e0e27155, last accessed 2020/01/04.

58. Interpretable AI or How I Learned to Stop Worrying and Trust AI: Techniques to build Robust,
Unbiased AI Applications, https://towardsdatascience.com/the-how-of-explainable-ai-post-
modelling-explainability-8b4cbc7adf5f, last accessed 2020/01/04.

59. The How of Explainable AI: Post-modelling Explainability, https://towardsdatascience.com/the-how-
of-explainable-ai-post-modelling-explainability-8b4cbc7adf5f, last accessed 2020/01/04.

60. Hindy, H., Brosset, D., Bayne, E., Seeam, A., Tachtatzis, C., Atkinson, R., Bellekens, X.: A
taxonomy and survey of intrusion detection system design techniques, network threats and
datasets. arXiv preprint arXiv:1806.03517 (2018)

61. Leroux, S., Bohez, S., Maenhaut, P.J., Meheus, N., Simoens, P., Dhoedt, B.: Fingerprinting
encrypted network traffic types using machine learning. In: NOMS 2018-2018 IEEE/IFIP Network
Operations and Management Symposium. pp. 1–5. IEEE (2018)

62. Garcia, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet detection methods.
computers & security 45, 100–123 (2014)

63. White Paper – Open Threat Taxonomy (Version 1.1),
https://www.auditscripts.com/resources/open_threat_taxonomy_v1.1a.pdf, last accessed
31/03/2020

64. https://securitytrails.com/blog/top-scanned-ports, last accessed 2020/08/03.
65. TCP Flags summarized, https://www.keycdn.com/support/tcp-flags, last accessed 2020/08/02.
66. IPv4Security.com - TCP Start timeout / TCP Session timeout / TCP End timeout on a CheckPoint

firewall, http://www.ipv4security.com/packet_flow/tcp_timeout.txt, last accessed 2020/08/04.
67. Network attack research reference, https://www.yeahhub.com/15-most-useful-host-scanning-

commands-kalilinux/, last accessed 15/11, last accessed 2020/11/15.
68. Network attack research reference,

https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html, last
accessed 15/11.

69. Network attack research reference,
http://www.cs.columbia.edu/~dgen/papers/conferences/conference-07.pdf, last accessed
2020/11/15.

70. Network attack research reference, https://betangel.kayako.com/article/107-how-do-i-secure-my-
dns-resolver-against-amplification-attacks, last accessed 2020/11/15.

71. Network attack research reference, https://nmap.org/man/pt_PT/man-host-discovery.html, last
accessed 2020/11/15.

72. Network attack research reference, https://nmap.org/book/man-port-scanning-techniques.html, last
accessed 2020/11/15.

73. Network attack research reference, https://medium.com/@iphelix/port-scanning-techniques-
7661839d182e, last accessed 2020/11/15.

74. Network attack research reference, https://nmap.org/book/idlescan.html, last accessed 2020/11/15.
75. Network attack research reference, https://nmap.org/misc/split-handshake.pdf, last accessed

2020/11/15.
76. Network attack research reference, https://en.wikipedia.org/wiki/SYN_flood, last accessed

2020/11/15.
77. Network attack research reference, https://www.sciencedirect.com/topics/computer-science/denial-

of-service, last accessed 2020/11/15.
78. Network attack research reference,

https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html, last
accessed 2020/11/15.

79. Network attack research reference, https://link.springer.com/referenceworkentry/10.1007%2F978-
1-4419-5906-5_262, last accessed 2020/11/15.

80. Network attack research reference, https://nmap.org/book/man-version-detection.html, last
accessed 2020/11/15.

81. Network attack research reference, https://nmap.org/book/osdetect-ipv6-methods.html, last
accessed 2020/11/15.

82. Network attack research reference, https://nmap.org/book/port-scanning-options.html, last
accessed 2020/11/15.

83. Network attack research reference, https://linux.die.net/man/1/nmap, last accessed 2020/11/15.

https://www.youtube.com/watch?v=W7IuchQR7dA
https://medium.com/time-to-work/feature-importance-c837e0e27155
https://medium.com/time-to-work/feature-importance-c837e0e27155
https://towardsdatascience.com/the-how-of-explainable-ai-post-modelling-explainability-8b4cbc7adf5f
https://towardsdatascience.com/the-how-of-explainable-ai-post-modelling-explainability-8b4cbc7adf5f
https://towardsdatascience.com/the-how-of-explainable-ai-post-modelling-explainability-8b4cbc7adf5f
https://towardsdatascience.com/the-how-of-explainable-ai-post-modelling-explainability-8b4cbc7adf5f
https://www.auditscripts.com/resources/open_threat_taxonomy_v1.1a.pdf
https://securitytrails.com/blog/top-scanned-ports
https://www.keycdn.com/support/tcp-flags
http://www.ipv4security.com/packet_flow/tcp_timeout.txt
https://www.yeahhub.com/15-most-useful-host-scanning-commands-kalilinux/
https://www.yeahhub.com/15-most-useful-host-scanning-commands-kalilinux/
https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html
http://www.cs.columbia.edu/~dgen/papers/conferences/conference-07.pdf
https://betangel.kayako.com/article/107-how-do-i-secure-my-dns-resolver-against-amplification-attacks
https://betangel.kayako.com/article/107-how-do-i-secure-my-dns-resolver-against-amplification-attacks
https://nmap.org/man/pt_PT/man-host-discovery.html
https://nmap.org/book/man-port-scanning-techniques.html
https://medium.com/@iphelix/port-scanning-techniques-7661839d182e
https://medium.com/@iphelix/port-scanning-techniques-7661839d182e
https://nmap.org/book/idlescan.html
https://nmap.org/misc/split-handshake.pdf
https://en.wikipedia.org/wiki/SYN_flood
https://www.sciencedirect.com/topics/computer-science/denial-of-service
https://www.sciencedirect.com/topics/computer-science/denial-of-service
https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html
https://link.springer.com/referenceworkentry/10.1007%2F978-1-4419-5906-5_262
https://link.springer.com/referenceworkentry/10.1007%2F978-1-4419-5906-5_262
https://nmap.org/book/man-version-detection.html
https://nmap.org/book/osdetect-ipv6-methods.html
https://nmap.org/book/port-scanning-options.html
https://linux.die.net/man/1/nmap

74

84. Network attack research reference, https://www.cloudflare.com/learning/ddos/ddos-attack-
tools/slowloris/, last accessed 2020/11/16.

85. Network attack research reference, https://www.cloudflare.com/learning/ddos/ddos-low-and-slow-
attack/, last accessed 2020/11/16.

86. Network attack research reference, https://www.cloudflare.com/learning/ddos/http-flood-ddos-
attack/, last accessed 2020/11/16.

87. Network attack research reference, https://blog.qualys.com/securitylabs/2011/11/02/how-to-
protect-against-slow-http-attacks, last accessed 2020/11/16.

88. Network attack research reference, https://www.imperva.com/learn/application-security/slowloris/,
last accessed 2020/11/16.

89. Network attack research reference, https://help.fortinet.com/fos50hlp/54/Content/FortiOS/fortigate-
firewall-52/Concepts/SCTP.htm, last accessed 2020/11/16.

90. Network attack research reference, https://www.cloudflare.com/learning/ddos/syn-flood-ddos-
attack/, last accessed 2020/11/16.

91. Network attack research reference, https://kb.mazebolt.com/knowledgebase/slowloris-attack/, last
accessed 2020/11/16.

92. Network attack research reference, https://www.imperva.com/learn/application-security/rudy-r-u-
dead-yet/, last accessed 2020/11/16.

93. Network attack research reference, https://www.imperva.com/learn/application-security/http-flood/,
last accessed 2020/11/16.

94. Network attack research reference, https://www.techrepublic.com/blog/data-center/sockstress-a-
new-and-effective-dos-attack/, last accessed 2020/11/16.

95. Network attack research reference, https://en.wikipedia.org/wiki/Sockstress, last accessed
2020/11/16.

96. Network attack research reference, https://security.radware.com/ddos-knowledge-
center/ddospedia/sockstress/, last accessed 2020/11/17.

97. Network attack research reference, https://security.radware.com/ddos-knowledge-
center/ddospedia/tcp-flood/, last accessed 2020/11/17.

98. Network attack research reference, https://security.radware.com/ddos-knowledge-
center/ddospedia/http-flood/, last accessed 2020/11/17.

99. Network attack research reference, https://tools.ietf.org/html/rfc5062, last accessed 2020/11/17.
100. Network attack research reference, https://www.stationx.net/nmap-cheat-sheet/, last accessed

2020/11/17.
101. Network attack research reference, https://en.wikipedia.org/wiki/Denial-of-service_attack, last

accessed 2020/11/18.
102. Network attack research reference, https://www.f5.com/services/resources/glossary/icmp-flood-

ping-flood-smurf-attack, last accessed 2020/11/18.
103. Network attack research reference, https://www.imperva.com/learn/application-security/smurf-

attack-ddos/, last accessed 2020/11/18.
104. Network attack research reference, https://security.radware.com/ddos-knowledge-

center/ddospedia/teardrop-attack/, last accessed 2020/11/18.
105. Network attack research reference, https://security.radware.com/ddos-knowledge-

center/ddospedia/land-attack/, last accessed 2020/11/18.
106. Network attack research reference, https://en.wikipedia.org/wiki/Smurf_attack, last accessed

2020/11/18.
107. Network attack research reference, https://www.cloudflare.com/learning/ddos/dns-amplification-

ddos-attack/, last accessed 2020/11/18.
108. Network attack research reference, https://www.cloudflare.com/learning/ddos/ntp-amplification-

ddos-attack/, last accessed 2020/11/18.
109. Network attack research reference, https://www.darkreading.com/attacks-breaches/new-ddos-

attacks-leverage-tcp-amplification-/d/d-id/1336339, last accessed 2020/11/19.
110. Network attack research reference, https://www.trendmicro.com/vinfo/hk-en/security/news/cyber-

attacks/ddos-attacks-that-employ-tcp-amplification-cause-network-congestion-secondary-outages,
last accessed 2020/11/19.

111. Network attack research reference, https://blog.verisign.com/security/dns-based-threats-dns-
reflection-amplification-attacks/, last accessed 2020/11/19.

112. Network attack research reference, https://www.us-cert.gov/ncas/alerts/TA14-017A, last accessed
2020/11/19.

https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/
https://www.cloudflare.com/learning/ddos/ddos-low-and-slow-attack/
https://www.cloudflare.com/learning/ddos/ddos-low-and-slow-attack/
https://www.cloudflare.com/learning/ddos/http-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/http-flood-ddos-attack/
https://blog.qualys.com/securitylabs/2011/11/02/how-to-protect-against-slow-http-attacks
https://blog.qualys.com/securitylabs/2011/11/02/how-to-protect-against-slow-http-attacks
https://www.imperva.com/learn/application-security/slowloris/
https://help.fortinet.com/fos50hlp/54/Content/FortiOS/fortigate-firewall-52/Concepts/SCTP.htm
https://help.fortinet.com/fos50hlp/54/Content/FortiOS/fortigate-firewall-52/Concepts/SCTP.htm
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/
https://kb.mazebolt.com/knowledgebase/slowloris-attack/
https://www.imperva.com/learn/application-security/rudy-r-u-dead-yet/
https://www.imperva.com/learn/application-security/rudy-r-u-dead-yet/
https://www.imperva.com/learn/application-security/http-flood/
https://www.techrepublic.com/blog/data-center/sockstress-a-new-and-effective-dos-attack/
https://www.techrepublic.com/blog/data-center/sockstress-a-new-and-effective-dos-attack/
https://en.wikipedia.org/wiki/Sockstress
https://security.radware.com/ddos-knowledge-center/ddospedia/sockstress/
https://security.radware.com/ddos-knowledge-center/ddospedia/sockstress/
https://security.radware.com/ddos-knowledge-center/ddospedia/tcp-flood/
https://security.radware.com/ddos-knowledge-center/ddospedia/tcp-flood/
https://security.radware.com/ddos-knowledge-center/ddospedia/http-flood/
https://security.radware.com/ddos-knowledge-center/ddospedia/http-flood/
https://tools.ietf.org/html/rfc5062
https://www.stationx.net/nmap-cheat-sheet/
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://www.f5.com/services/resources/glossary/icmp-flood-ping-flood-smurf-attack
https://www.f5.com/services/resources/glossary/icmp-flood-ping-flood-smurf-attack
https://www.imperva.com/learn/application-security/smurf-attack-ddos/
https://www.imperva.com/learn/application-security/smurf-attack-ddos/
https://security.radware.com/ddos-knowledge-center/ddospedia/teardrop-attack/
https://security.radware.com/ddos-knowledge-center/ddospedia/teardrop-attack/
https://security.radware.com/ddos-knowledge-center/ddospedia/land-attack/
https://security.radware.com/ddos-knowledge-center/ddospedia/land-attack/
https://en.wikipedia.org/wiki/Smurf_attack
https://www.cloudflare.com/learning/ddos/dns-amplification-ddos-attack/
https://www.cloudflare.com/learning/ddos/dns-amplification-ddos-attack/
https://www.cloudflare.com/learning/ddos/ntp-amplification-ddos-attack/
https://www.cloudflare.com/learning/ddos/ntp-amplification-ddos-attack/
https://www.darkreading.com/attacks-breaches/new-ddos-attacks-leverage-tcp-amplification-/d/d-id/1336339
https://www.darkreading.com/attacks-breaches/new-ddos-attacks-leverage-tcp-amplification-/d/d-id/1336339
https://www.trendmicro.com/vinfo/hk-en/security/news/cyber-attacks/ddos-attacks-that-employ-tcp-amplification-cause-network-congestion-secondary-outages
https://www.trendmicro.com/vinfo/hk-en/security/news/cyber-attacks/ddos-attacks-that-employ-tcp-amplification-cause-network-congestion-secondary-outages
https://blog.verisign.com/security/dns-based-threats-dns-reflection-amplification-attacks/
https://blog.verisign.com/security/dns-based-threats-dns-reflection-amplification-attacks/
https://www.us-cert.gov/ncas/alerts/TA14-017A

75

113. Network attack research reference,
https://isc.sans.edu/forums/diary/How+did+it+all+start+Early+Memcached+DDoS+Attack+Precurs
ors+and+Ransom+Notes/23437/, last accessed 2020/11/19.

114. Network attack research reference, https://www.cloudflare.com/learning/ddos/ping-icmp-flood-
ddos-attack/, last accessed 2020/11/19.

115. Network attack research reference, https://link.springer.com/content/pdf/10.1007%2F978-0-387-
34827-8_6.pdf, last accessed 2020/11/19.

116. Network attack research reference, https://www.akamai.com/uk/en/resources/our-thinking/threat-
advisories/connection-less-lightweight-directory-access-protocol-reflection-ddos-threat-
advisory.jsp, last accessed 2020/11/19.

117. Network attack research reference, https://beyondsecurity.com/scan-pentest-network-cisco-ssh-
malformed-packet-dos-vulnerability.html?cn-reloaded=1, last accessed 2020/11/19.

118. Network attack research reference, https://security.radware.com/ddos-knowledge-
center/ddospedia/low-rate-attack/, last accessed 2020/11/19.

119. Network attack research reference, https://br.netscout.com/what-is-ddos/slow-post-attacks, last
accessed 2020/11/19.

120. Network attack research reference, https://samsclass.info/123/proj10/sockstress.htm, last
accessed 2020/11/19.

121. Network attack research reference, https://activereach.net/resources/ddos-knowledge-
centre/ddos-dictionary/, last accessed 2020/11/19.

122. Network attack research reference, https://securiteam.com/securitynews/6b0031f0ka/, last
accessed 2020/11/19.

123. Network attack research reference, https://ddos-guard.net/en/terminology/attack_type/naptha-
attack, last accessed 2020/11/19.

124. Network attack research reference, https://blog.radware.com/security/2016/06/2016-republican-
national-convention-rnc-democratic-national-convention-dnc-will-be-cyber-attacked/, last accessed
2020/11/19.

125. Network attack research reference, https://kb.mazebolt.com/knowledgebase_category/layer-3/, last
accessed 2020/11/19.

126. Network attack research reference, https://kb.mazebolt.com/knowledgebase_category/layer-4/, last
accessed 2020/11/19.

127. Network attack research reference, https://kb.mazebolt.com/knowledgebase_category/layer-7/, last
accessed 2020/11/19.

128. Network attack research reference, https://kb.mazebolt.com/knowledgebase/ip-fragmented-flood/,
last accessed 2020/11/19.

129. Network attack research reference, https://kb.mazebolt.com/knowledgebase/icmp-ping-flood/, last
accessed 2020/11/19.

130. Network attack research reference, https://kb.mazebolt.com/knowledgebase/icmp-time-exceeded-
flood/, last accessed 2020/11/19.

131. Network attack research reference, https://kb.mazebolt.com/knowledgebase/icmp-destination-
unreachable-flood/, last accessed 2020/11/19.

132. Network attack research reference, https://www.gont.com.ar/papers/tn-03-09-security-assessment-
TCP.pdf, last accessed 2020/11/19.

133. Network attack research reference, https://www.grc.com/sn/notes-164.htm, last accessed
2020/11/19.

134. Network attack research reference, https://ddos-guard.net/en/terminology/attack_type, last
accessed 2020/11/19.

135. Network attack research reference, https://www.varonis.com/blog/smb-port/, last accessed
2020/11/19.

136. Network attack research reference, https://securitytrails.com/blog/top-scanned-ports, last accessed
2020/11/19.

137. Network attack research reference, https://www.extrahop.com/company/blog/2016/how-to-
recognize-malicious-network-scanning-port-scanning/, last accessed 2020/11/19.

138. Service overview and network port requirements for Windows, https://docs.microsoft.com/en-
us/troubleshoot/windows-server/networking/service-overview-and-network-port-requirements, last
accessed 2020/11/23.

139. IANA Service Name and Transport Protocol Port Number Registry,
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-
numbers.xhtml, last accessed 2020/11/23.

https://isc.sans.edu/forums/diary/How+did+it+all+start+Early+Memcached+DDoS+Attack+Precursors+and+Ransom+Notes/23437/
https://isc.sans.edu/forums/diary/How+did+it+all+start+Early+Memcached+DDoS+Attack+Precursors+and+Ransom+Notes/23437/
https://www.cloudflare.com/learning/ddos/ping-icmp-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/ping-icmp-flood-ddos-attack/
https://link.springer.com/content/pdf/10.1007%2F978-0-387-34827-8_6.pdf
https://link.springer.com/content/pdf/10.1007%2F978-0-387-34827-8_6.pdf
https://www.akamai.com/uk/en/resources/our-thinking/threat-advisories/connection-less-lightweight-directory-access-protocol-reflection-ddos-threat-advisory.jsp
https://www.akamai.com/uk/en/resources/our-thinking/threat-advisories/connection-less-lightweight-directory-access-protocol-reflection-ddos-threat-advisory.jsp
https://www.akamai.com/uk/en/resources/our-thinking/threat-advisories/connection-less-lightweight-directory-access-protocol-reflection-ddos-threat-advisory.jsp
https://beyondsecurity.com/scan-pentest-network-cisco-ssh-malformed-packet-dos-vulnerability.html?cn-reloaded=1
https://beyondsecurity.com/scan-pentest-network-cisco-ssh-malformed-packet-dos-vulnerability.html?cn-reloaded=1
https://security.radware.com/ddos-knowledge-center/ddospedia/low-rate-attack/
https://security.radware.com/ddos-knowledge-center/ddospedia/low-rate-attack/
https://br.netscout.com/what-is-ddos/slow-post-attacks
https://samsclass.info/123/proj10/sockstress.htm
https://activereach.net/resources/ddos-knowledge-centre/ddos-dictionary/
https://activereach.net/resources/ddos-knowledge-centre/ddos-dictionary/
https://securiteam.com/securitynews/6b0031f0ka/
https://ddos-guard.net/en/terminology/attack_type/naptha-attack
https://ddos-guard.net/en/terminology/attack_type/naptha-attack
https://blog.radware.com/security/2016/06/2016-republican-national-convention-rnc-democratic-national-convention-dnc-will-be-cyber-attacked/
https://blog.radware.com/security/2016/06/2016-republican-national-convention-rnc-democratic-national-convention-dnc-will-be-cyber-attacked/
https://kb.mazebolt.com/knowledgebase_category/layer-3/
https://kb.mazebolt.com/knowledgebase_category/layer-4/
https://kb.mazebolt.com/knowledgebase_category/layer-7/
https://kb.mazebolt.com/knowledgebase/ip-fragmented-flood/
https://kb.mazebolt.com/knowledgebase/icmp-ping-flood/
https://kb.mazebolt.com/knowledgebase/icmp-time-exceeded-flood/
https://kb.mazebolt.com/knowledgebase/icmp-time-exceeded-flood/
https://kb.mazebolt.com/knowledgebase/icmp-destination-unreachable-flood/
https://kb.mazebolt.com/knowledgebase/icmp-destination-unreachable-flood/
https://www.gont.com.ar/papers/tn-03-09-security-assessment-TCP.pdf
https://www.gont.com.ar/papers/tn-03-09-security-assessment-TCP.pdf
https://www.grc.com/sn/notes-164.htm
https://ddos-guard.net/en/terminology/attack_type
https://www.varonis.com/blog/smb-port/
https://securitytrails.com/blog/top-scanned-ports
https://www.extrahop.com/company/blog/2016/how-to-recognize-malicious-network-scanning-port-scanning/
https://www.extrahop.com/company/blog/2016/how-to-recognize-malicious-network-scanning-port-scanning/
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/service-overview-and-network-port-requirements
https://docs.microsoft.com/en-us/troubleshoot/windows-server/networking/service-overview-and-network-port-requirements
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

76

140. SpeedGuide.Net Port “XYZ” Information, https://www.speedguide.net/port.php?port=XYZ, last
accessed 2020/11/23.

141. NMAP - Subverting Intrusion Detection Systems, https://nmap.org/book/subvert-ids.html, last
accessed 2020/11/24.

142. Panigrahi, R., Borah, S.: A detailed analysis of cicids2017 dataset for designing intrusion detection
systems. International Journal of Engineering & Technology 7 (3.24), 479–482 (2018).

143. Zhang, Y., Chen, X., Jin, L., Wang, X., Guo, D.: Network intrusion detection: Based on deep
hierarchical network and original flow data. IEEE Access 7, 37004–37016 (2019).

144. Confusion Matrix Wikipedia – Metric Calculations, https://en.wikipedia.org/wiki/Confusion_matrix,
last accessed 2020/12/15.

145. CIC-IDS-2017’s official website, https://www.unb.ca/cic/datasets/ids-2017.html, last accessed
2020/12/28.

146. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset
and intrusion traffic characterization. In: ICISSP. pp. 108–116 (2018)

147. Gustavsson, V.: Machine learning for a network-based intrusion detection system: An application
using zeek and the cicids2017 dataset (2019)

148. Singh Panwar, S., Raiwani, Y., Panwar, L.S.: Evaluation of network intrusion detection with features
selection and machine learning algorithms on cicids-2017 dataset. In: International Conference on
Advances in Engineering Science Management & Technology (ICAESMT)-2019, Uttaranchal
University, Dehradun, India (2019)

149. Stiawan, D., Idris, M.Y.B., Bamhdi, A.M., Budiarto, R., et al.: Cicids-2017 dataset feature analysis
with information gain for anomaly detection. IEEE Access 8, 132911–132921 (2020)

150. Ullah, I., Mahmoud, Q.H.: A two-level flow-based anomalous activity detection system for iot
networks. Electronics 9(3), 530 (2020)

https://www.speedguide.net/port.php?port=XYZ
https://nmap.org/book/subvert-ids.html
https://en.wikipedia.org/wiki/Confusion_matrix
https://www.unb.ca/cic/datasets/ids-2017.html

77

Annex

The annex is organized as follows

Table 15. NetGenes Packet features.

Table 16. NetGenes Flow features.

Table 17. NetGenes Talker features.

Table 18. NetGenes Host features (without flow-set based features).

Table 19. Monday: TCP Benign Traffic Overview.

Table 20. Monday: UDP Benign Traffic Overview.

Table 21. TCP Bi-Talker Forward and Backward “Unique Destination Port Count” analysis.

Table 22. UDP Bi-Talker Forward and Backward “Unique Destination Port Count” analysis.

Table 21 and Table 22 Legend:

• Abbreviations: V – Values; T – Talkers; F – Flows

• Colors: Color Absence – Not “Port Scan”; Yellow – “Port Scan” Exception; Red – “Port Scan”

78

TABLE 15. NETGENES PACKET FEATURES.

P
ro

to
c
o

l

Ad.

Info.
Flow Features

G
e
n
e
ri
c

b
if
lo

w
_

a
n
y
_
fi
rs

t_
p
a
c
k
e
t_

ti
m

e

b
if
lo

w
_

a
n
y
_

la
s
t_

p
a
c
k
e
t_

ti
m

e

biflow_any_duration biflow_any_n_packets

biflow_fwd_n_packets biflow_bwd_n_packets

biflow_any_packets_per_sec biflow_fwd_packets_per_sec

biflow_bwd_packets_per_sec biflow_any_bytes_per_sec

biflow_fwd_bytes_per_sec biflow_bwd_bytes_per_sec

biflow_any_packet_iat_total biflow_any_packet_iat_mean

biflow_any_packet_iat_std biflow_any_packet_iat_var

biflow_any_packet_iat_max biflow_any_packet_iat_min

biflow_fwd_packet_iat_total biflow_fwd_packet_iat_mean

biflow_fwd_packet_iat_std biflow_fwd_packet_iat_var

biflow_fwd_packet_iat_max biflow_fwd_packet_iat_min

biflow_bwd_packet_iat_total biflow_bwd_packet_iat_mean

biflow_bwd_packet_iat_std biflow_bwd_packet_iat_var

biflow_bwd_packet_iat_max biflow_bwd_packet_iat_min

IP
v
4

b
ih

o
s
t_

fw
d

_
id

b
ih

o
s
t_

b
w

d
_
id

biflow_any_eth_ip_n_active_df_flags biflow_fwd_eth_ip_n_active_df_flags

biflow_bwd_eth_ip_n_active_df_flags biflow_any_eth_ip_n_active_mf_flags

biflow_fwd_eth_ip_n_active_mf_flags biflow_bwd_eth_ip_n_active_mf_flags

biflow_any_eth_ipv4_header_len_total biflow_any_eth_ipv4_header_len_mean

biflow_any_eth_ipv4_header_len_std biflow_any_eth_ipv4_header_len_var

biflow_any_eth_ipv4_header_len_max biflow_any_eth_ipv4_header_len_min

biflow_fwd_eth_ipv4_header_len_total biflow_fwd_eth_ipv4_header_len_mean

biflow_fwd_eth_ipv4_header_len_std biflow_fwd_eth_ipv4_header_len_var

biflow_fwd_eth_ipv4_header_len_max biflow_fwd_eth_ipv4_header_len_min

biflow_bwd_eth_ipv4_header_len_total biflow_bwd_eth_ipv4_header_len_mean

biflow_bwd_eth_ipv4_header_len_std biflow_bwd_eth_ipv4_header_len_var

biflow_bwd_eth_ipv4_header_len_max biflow_bwd_eth_ipv4_header_len_min

biflow_any_eth_ipv4_data_len_total biflow_any_eth_ipv4_data_len_mean

biflow_any_eth_ipv4_data_len_std biflow_any_eth_ipv4_data_len_var

Protocol
Additional

Information
Packet Features

Generic timestamp

IPv4
src_ip ipv4_header_len ipv4_data_len

dst_ip ipv4_df_flag ipv4_mf_flag

L4
src_port

l4_header_len l4_data_len
dst_port

TCP

tcp_seq_numb tcp_ack_numb

tcp_fin_flag tcp_syn_flag tcp_rst_flag tcp_psh_flag

tcp_ack_flag tcp_urg_flag tcp_ece_flag tcp_cwr_flag

79

biflow_any_eth_ipv4_data_len_max biflow_any_eth_ipv4_data_len_min

biflow_fwd_eth_ipv4_data_len_total biflow_fwd_eth_ipv4_data_len_mean

biflow_fwd_eth_ipv4_data_len_std biflow_fwd_eth_ipv4_data_len_var

biflow_fwd_eth_ipv4_data_len_max biflow_fwd_eth_ipv4_data_len_min

biflow_bwd_eth_ipv4_data_len_total biflow_bwd_eth_ipv4_data_len_mean

biflow_bwd_eth_ipv4_data_len_std biflow_bwd_eth_ipv4_data_len_var

biflow_bwd_eth_ipv4_data_len_max biflow_bwd_eth_ipv4_data_len_min

L
4

b
if
lo

w
_
s
rc

_
p

o
rt

b
if
lo

w
_

d
s
t_

p
o
rt

biflow_any_eth_ipv4_l4_n_data_packets biflow_fwd_eth_ipv4_l4_n_data_packets

biflow_bwd_eth_ipv4_l4_n_data_packets biflow_any_eth_ipv4_l4_data_packets_per_sec

biflow_fwd_eth_ipv4_l4_data_packets_per_sec biflow_bwd_eth_ipv4_l4_data_packets_per_sec

biflow_any_eth_ipv4_l4_header_len_total biflow_any_eth_ipv4_l4_header_len_mean

biflow_any_eth_ipv4_l4_header_len_std biflow_any_eth_ipv4_l4_header_len_var

biflow_any_eth_ipv4_l4_header_len_max biflow_any_eth_ipv4_l4_header_len_min

biflow_fwd_eth_ipv4_l4_header_len_total biflow_fwd_eth_ipv4_l4_header_len_mean

biflow_fwd_eth_ipv4_l4_header_len_std biflow_fwd_eth_ipv4_l4_header_len_var

biflow_fwd_eth_ipv4_l4_header_len_max biflow_fwd_eth_ipv4_l4_header_len_min

biflow_bwd_eth_ipv4_l4_header_len_total biflow_bwd_eth_ipv4_l4_header_len_mean

biflow_bwd_eth_ipv4_l4_header_len_std biflow_bwd_eth_ipv4_l4_header_len_var

biflow_bwd_eth_ipv4_l4_header_len_max biflow_bwd_eth_ipv4_l4_header_len_min

biflow_any_eth_ipv4_l4_data_len_total biflow_any_eth_ipv4_l4_data_len_mean

biflow_any_eth_ipv4_l4_data_len_std biflow_any_eth_ipv4_l4_data_len_var

biflow_any_eth_ipv4_l4_data_len_max biflow_any_eth_ipv4_l4_data_len_min

biflow_fwd_eth_ipv4_l4_data_len_total biflow_fwd_eth_ipv4_l4_data_len_mean

biflow_fwd_eth_ipv4_l4_data_len_std biflow_fwd_eth_ipv4_l4_data_len_var

biflow_fwd_eth_ipv4_l4_data_len_max biflow_fwd_eth_ipv4_l4_data_len_min

biflow_bwd_eth_ipv4_l4_data_len_total biflow_bwd_eth_ipv4_l4_data_len_mean

biflow_bwd_eth_ipv4_l4_data_len_std biflow_bwd_eth_ipv4_l4_data_len_var

biflow_bwd_eth_ipv4_l4_data_len_max biflow_bwd_eth_ipv4_l4_data_len_min

T
C

P

fl
o
w

_
s
e
p
a
ra

ti
o

n
_
c
o
u

n
te

r

biflow_eth_ipv4_tcp_initiation_requested_connection biflow_eth_ipv4_tcp_initiation_two_way_handshake

biflow_eth_ipv4_tcp_initiation_three_way_handshake biflow_eth_ipv4_tcp_connection_redropped

biflow_eth_ipv4_tcp_connection_rejected
biflow_eth_ipv4_tcp_connection_established_half_du

plex

biflow_eth_ipv4_tcp_connection_established_full_duplex biflow_eth_ipv4_tcp_termination_abort

biflow_eth_ipv4_tcp_termination_null biflow_eth_ipv4_tcp_termination_graceful

biflow_any_eth_ipv4_tcp_n_active_fin_flags biflow_any_eth_ipv4_tcp_n_active_syn_flags

biflow_any_eth_ipv4_tcp_n_active_rst_flags biflow_any_eth_ipv4_tcp_n_active_psh_flags

biflow_any_eth_ipv4_tcp_n_active_ack_flags biflow_any_eth_ipv4_tcp_n_active_urg_flags

biflow_any_eth_ipv4_tcp_n_active_ece_flags biflow_any_eth_ipv4_tcp_n_active_cwr_flags

biflow_fwd_eth_ipv4_tcp_n_active_fin_flags biflow_fwd_eth_ipv4_tcp_n_active_syn_flags

biflow_fwd_eth_ipv4_tcp_n_active_rst_flags biflow_fwd_eth_ipv4_tcp_n_active_psh_flags

biflow_fwd_eth_ipv4_tcp_n_active_ack_flags biflow_fwd_eth_ipv4_tcp_n_active_urg_flags

biflow_fwd_eth_ipv4_tcp_n_active_ece_flags biflow_fwd_eth_ipv4_tcp_n_active_cwr_flags

biflow_bwd_eth_ipv4_tcp_n_active_fin_flags biflow_bwd_eth_ipv4_tcp_n_active_syn_flags

biflow_bwd_eth_ipv4_tcp_n_active_rst_flags biflow_bwd_eth_ipv4_tcp_n_active_psh_flags

biflow_bwd_eth_ipv4_tcp_n_active_ack_flags biflow_bwd_eth_ipv4_tcp_n_active_urg_flags

biflow_bwd_eth_ipv4_tcp_n_active_ece_flags biflow_bwd_eth_ipv4_tcp_n_active_cwr_flags

TABLE 16. NETGENES FLOW FEATURES.

80

P
ro

to
c
o

l

Ad.

Info.
Talker Features

G
e
n
e
ri
c

b
it
a

lk
e
r_

a
n
y
_
fi
rs

t_
b
if
lo

w
_
in

it
ia

ti
o
n

_
ti
m

e

b
it
a

lk
e
r_

a
n
y
_
la

s
t_

b
if
lo

w
_
te

rm
in

a
ti
o

n
_
ti
m

e

bitalker_any_duration bitalker_any_n_biflows

bitalker_fwd_n_biflows bitalker_bwd_n_biflows

bitalker_any_biflows_per_sec bitalker_fwd_biflows_per_sec

bitalker_bwd_biflows_per_sec bitalker_any_biflow_bytes_per_sec

bitalker_fwd_biflow_bytes_per_sec bitalker_bwd_biflow_bytes_per_sec

bitalker_any_biflow_n_packets_total bitalker_any_biflow_n_packets_mean

bitalker_any_biflow_n_packets_std bitalker_any_biflow_n_packets_var

bitalker_any_biflow_n_packets_max bitalker_any_biflow_n_packets_min

bitalker_fwd_biflow_n_packets_total bitalker_fwd_biflow_n_packets_mean

bitalker_fwd_biflow_n_packets_std bitalker_fwd_biflow_n_packets_var

bitalker_fwd_biflow_n_packets_max bitalker_fwd_biflow_n_packets_min

bitalker_bwd_biflow_n_packets_total bitalker_bwd_biflow_n_packets_mean

bitalker_bwd_biflow_n_packets_std bitalker_bwd_biflow_n_packets_var

bitalker_bwd_biflow_n_packets_max bitalker_bwd_biflow_n_packets_min

bitalker_any_biflow_duration_total bitalker_any_biflow_duration_mean

bitalker_any_biflow_duration_std bitalker_any_biflow_duration_var

bitalker_any_biflow_duration_max bitalker_any_biflow_duration_min

bitalker_fwd_biflow_duration_total bitalker_fwd_biflow_duration_mean

bitalker_fwd_biflow_duration_std bitalker_fwd_biflow_duration_var

bitalker_fwd_biflow_duration_max bitalker_fwd_biflow_duration_min

bitalker_bwd_biflow_duration_total bitalker_bwd_biflow_duration_mean

bitalker_bwd_biflow_duration_std bitalker_bwd_biflow_duration_var

bitalker_bwd_biflow_duration_max bitalker_bwd_biflow_duration_min

bitalker_any_biflow_iit_total bitalker_any_biflow_iit_mean

bitalker_any_biflow_iit_std bitalker_any_biflow_iit_var

bitalker_any_biflow_iit_max bitalker_any_biflow_iit_min

bitalker_fwd_biflow_iit_total bitalker_fwd_biflow_iit_mean

bitalker_fwd_biflow_iit_std bitalker_fwd_biflow_iit_var

bitalker_fwd_biflow_iit_max bitalker_fwd_biflow_iit_min

bitalker_bwd_biflow_iit_total bitalker_bwd_biflow_iit_mean

bitalker_bwd_biflow_iit_std bitalker_bwd_biflow_iit_var

bitalker_bwd_biflow_iit_max bitalker_bwd_biflow_iit_min

bitalker_any_biflow_itt_total bitalker_any_biflow_itt_mean

bitalker_any_biflow_itt_std bitalker_any_biflow_itt_var

bitalker_any_biflow_itt_max bitalker_any_biflow_itt_min

bitalker_fwd_biflow_itt_total bitalker_fwd_biflow_itt_mean

bitalker_fwd_biflow_itt_std bitalker_fwd_biflow_itt_var

bitalker_fwd_biflow_itt_max bitalker_fwd_biflow_itt_min

bitalker_bwd_biflow_itt_total bitalker_bwd_biflow_itt_mean

bitalker_bwd_biflow_itt_std bitalker_bwd_biflow_itt_var

bitalker_bwd_biflow_itt_max bitalker_bwd_biflow_itt_min

81

IP
v
4

b
ih

o
s
t_

fw
d

_
id

b
ih

o
s
t_

b
w

d
_
id

bitalker_any_biflow_eth_ipv4_data_lens_total bitalker_any_biflow_eth_ipv4_data_lens_mean

bitalker_any_biflow_eth_ipv4_data_lens_std bitalker_any_biflow_eth_ipv4_data_lens_var

bitalker_any_biflow_eth_ipv4_data_lens_max bitalker_any_biflow_eth_ipv4_data_lens_min

bitalker_fwd_biflow_eth_ipv4_data_lens_total bitalker_fwd_biflow_eth_ipv4_data_lens_mean

bitalker_fwd_biflow_eth_ipv4_data_lens_std bitalker_fwd_biflow_eth_ipv4_data_lens_var

bitalker_fwd_biflow_eth_ipv4_data_lens_max bitalker_fwd_biflow_eth_ipv4_data_lens_min

bitalker_bwd_biflow_eth_ipv4_data_lens_total bitalker_bwd_biflow_eth_ipv4_data_lens_mean

bitalker_bwd_biflow_eth_ipv4_data_lens_std bitalker_bwd_biflow_eth_ipv4_data_lens_var

bitalker_bwd_biflow_eth_ipv4_data_lens_max bitalker_bwd_biflow_eth_ipv4_data_lens_min

L
4

bitalker_any_biflow_n_unique_dst_ports bitalker_fwd_biflow_n_unique_dst_ports

bitalker_bwd_biflow_n_unique_dst_ports bitalker_any_biflow_n_unique_src_ports

bitalker_fwd_biflow_n_unique_src_ports bitalker_bwd_biflow_n_unique_src_ports

bitalker_any_eth_ipv4_l4_biflow_n_data_packets_total bitalker_any_eth_ipv4_l4_biflow_n_data_packets_mean

bitalker_any_eth_ipv4_l4_biflow_n_data_packets_std bitalker_any_eth_ipv4_l4_biflow_n_data_packets_var

bitalker_any_eth_ipv4_l4_biflow_n_data_packets_max bitalker_any_eth_ipv4_l4_biflow_n_data_packets_min

bitalker_fwd_eth_ipv4_l4_biflow_n_data_packets_total bitalker_fwd_eth_ipv4_l4_biflow_n_data_packets_mean

bitalker_fwd_eth_ipv4_l4_biflow_n_data_packets_std bitalker_fwd_eth_ipv4_l4_biflow_n_data_packets_var

bitalker_fwd_eth_ipv4_l4_biflow_n_data_packets_max bitalker_fwd_eth_ipv4_l4_biflow_n_data_packets_min

bitalker_bwd_eth_ipv4_l4_biflow_n_data_packets_total bitalker_bwd_eth_ipv4_l4_biflow_n_data_packets_mean

bitalker_bwd_eth_ipv4_l4_biflow_n_data_packets_std bitalker_bwd_eth_ipv4_l4_biflow_n_data_packets_var

bitalker_bwd_eth_ipv4_l4_biflow_n_data_packets_max bitalker_bwd_eth_ipv4_l4_biflow_n_data_packets_min

T
C

P

bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_total bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_mean

bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_std bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_var

bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_max bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_min

bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_total bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_mean

bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_std bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_var

bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_max bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_min

bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_total bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_mean

bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_std bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_var

bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_max bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_min

bitalker_eth_ipv4_tcp_biflow_connections_redropped_total bitalker_eth_ipv4_tcp_biflow_connections_redropped_mean

bitalker_eth_ipv4_tcp_biflow_connections_redropped_std bitalker_eth_ipv4_tcp_biflow_connections_redropped_var

bitalker_eth_ipv4_tcp_biflow_connections_redropped_max bitalker_eth_ipv4_tcp_biflow_connections_redropped_min

bitalker_eth_ipv4_tcp_biflow_connections_rejected_total bitalker_eth_ipv4_tcp_biflow_connections_rejected_mean

bitalker_eth_ipv4_tcp_biflow_connections_rejected_std bitalker_eth_ipv4_tcp_biflow_connections_rejected_var

bitalker_eth_ipv4_tcp_biflow_connections_rejected_max bitalker_eth_ipv4_tcp_biflow_connections_rejected_min

bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_total bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_mean

bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_std bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_var

bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_max bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_min

bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_total bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_mean

bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_std bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_var

bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_max bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_min

bitalker_eth_ipv4_tcp_biflow_abort_terminations_total bitalker_eth_ipv4_tcp_biflow_abort_terminations_mean

bitalker_eth_ipv4_tcp_biflow_abort_terminations_std bitalker_eth_ipv4_tcp_biflow_abort_terminations_var

bitalker_eth_ipv4_tcp_biflow_abort_terminations_max bitalker_eth_ipv4_tcp_biflow_abort_terminations_min

bitalker_eth_ipv4_tcp_biflow_null_terminations_total bitalker_eth_ipv4_tcp_biflow_null_terminations_mean

bitalker_eth_ipv4_tcp_biflow_null_terminations_std bitalker_eth_ipv4_tcp_biflow_null_terminations_var

bitalker_eth_ipv4_tcp_biflow_null_terminations_max bitalker_eth_ipv4_tcp_biflow_null_terminations_min

bitalker_eth_ipv4_tcp_biflow_graceful_terminations_total bitalker_eth_ipv4_tcp_biflow_graceful_terminations_mean

bitalker_eth_ipv4_tcp_biflow_graceful_terminations_std bitalker_eth_ipv4_tcp_biflow_graceful_terminations_var

bitalker_eth_ipv4_tcp_biflow_graceful_terminations_max bitalker_eth_ipv4_tcp_biflow_graceful_terminations_min

TABLE 17. NETGENES TALKER FEATURES.

82

P
ro

to
c
o

l

Ad.

Info.
Host Features

G
e
n
e
ri
c

b
ih

o
s
t_

a
n
y
_

fi
rs

t_
b

it
a

lk
e
r_

in
it
ia

ti
o
n
_
ti
m

e

b
ih

o
s
t_

a
n
y
_

la
s
t_

b
it
a
lk

e
r_

te
rm

in
a

ti
o

n
_
ti
m

e
 bihost_any_duration bihost_any_n_bitalkers

bihost_fwd_n_bitalkers bihost_bwd_n_bitalkers

bihost_any_bitalkers_per_sec bihost_fwd_bitalkers_per_sec

bihost_bwd_bitalkers_per_sec bihost_any_bitalker_bytes_per_sec

bihost_fwd_bitalker_bytes_per_sec bihost_bwd_bitalker_bytes_per_sec

bihost_any_bitalker_n_biflows_total bihost_any_bitalker_n_biflows_mean

bihost_any_bitalker_n_biflows_std bihost_any_bitalker_n_biflows_var

bihost_any_bitalker_n_biflows_max bihost_any_bitalker_n_biflows_min

bihost_fwd_bitalker_n_biflows_total bihost_fwd_bitalker_n_biflows_mean

bihost_fwd_bitalker_n_biflows_std bihost_fwd_bitalker_n_biflows_var

bihost_fwd_bitalker_n_biflows_max bihost_fwd_bitalker_n_biflows_min

bihost_bwd_bitalker_n_biflows_total bihost_bwd_bitalker_n_biflows_mean

bihost_bwd_bitalker_n_biflows_std bihost_bwd_bitalker_n_biflows_var

bihost_bwd_bitalker_n_biflows_max bihost_bwd_bitalker_n_biflows_min

IP
v
4

b
ih

o
s
t_

id

bihost_any_bitalker_any_biflow_eth_ipv4_data_lens_total bihost_any_bitalker_any_biflow_eth_ipv4_data_lens_mean

bihost_any_bitalker_any_biflow_eth_ipv4_data_lens_std bihost_any_bitalker_any_biflow_eth_ipv4_data_lens_var

bihost_any_bitalker_any_biflow_eth_ipv4_data_lens_max bihost_any_bitalker_any_biflow_eth_ipv4_data_lens_min

bihost_fwd_bitalker_any_biflow_eth_ipv4_data_lens_total bihost_fwd_bitalker_any_biflow_eth_ipv4_data_lens_mean

bihost_fwd_bitalker_any_biflow_eth_ipv4_data_lens_std bihost_fwd_bitalker_any_biflow_eth_ipv4_data_lens_var

bihost_fwd_bitalker_any_biflow_eth_ipv4_data_lens_max bihost_fwd_bitalker_any_biflow_eth_ipv4_data_lens_min

bihost_bwd_bitalker_any_biflow_eth_ipv4_data_lens_total bihost_bwd_bitalker_any_biflow_eth_ipv4_data_lens_mean

bihost_bwd_bitalker_any_biflow_eth_ipv4_data_lens_std bihost_bwd_bitalker_any_biflow_eth_ipv4_data_lens_var

bihost_bwd_bitalker_any_biflow_eth_ipv4_data_lens_max bihost_bwd_bitalker_any_biflow_eth_ipv4_data_lens_min

L
4

bihost_any_bitalker_any_biflow_n_unique_dst_ports_total bihost_any_bitalker_any_biflow_n_unique_dst_ports_mean

bihost_any_bitalker_any_biflow_n_unique_dst_ports_std bihost_any_bitalker_any_biflow_n_unique_dst_ports_var

bihost_any_bitalker_any_biflow_n_unique_dst_ports_max bihost_any_bitalker_any_biflow_n_unique_dst_ports_min

bihost_fwd_bitalker_any_biflow_n_unique_dst_ports_total bihost_fwd_bitalker_any_biflow_n_unique_dst_ports_mean

bihost_fwd_bitalker_any_biflow_n_unique_dst_ports_std bihost_fwd_bitalker_any_biflow_n_unique_dst_ports_var

bihost_fwd_bitalker_any_biflow_n_unique_dst_ports_max bihost_fwd_bitalker_any_biflow_n_unique_dst_ports_min

bihost_bwd_bitalker_any_biflow_n_unique_dst_ports_total bihost_bwd_bitalker_any_biflow_n_unique_dst_ports_mean

bihost_bwd_bitalker_any_biflow_n_unique_dst_ports_std bihost_bwd_bitalker_any_biflow_n_unique_dst_ports_var

bihost_bwd_bitalker_any_biflow_n_unique_dst_ports_max bihost_bwd_bitalker_any_biflow_n_unique_dst_ports_min

bihost_any_bitalker_any_biflow_n_unique_src_ports_total bihost_any_bitalker_any_biflow_n_unique_src_ports_mean

bihost_any_bitalker_any_biflow_n_unique_src_ports_std bihost_any_bitalker_any_biflow_n_unique_src_ports_var

bihost_any_bitalker_any_biflow_n_unique_src_ports_max bihost_any_bitalker_any_biflow_n_unique_src_ports_min

bihost_fwd_bitalker_any_biflow_n_unique_src_ports_total bihost_fwd_bitalker_any_biflow_n_unique_src_ports_mean

bihost_fwd_bitalker_any_biflow_n_unique_src_ports_std bihost_fwd_bitalker_any_biflow_n_unique_src_ports_var

bihost_fwd_bitalker_any_biflow_n_unique_src_ports_max bihost_fwd_bitalker_any_biflow_n_unique_src_ports_min

bihost_bwd_bitalker_any_biflow_n_unique_src_ports_total bihost_bwd_bitalker_any_biflow_n_unique_src_ports_mean

bihost_bwd_bitalker_any_biflow_n_unique_src_ports_std bihost_bwd_bitalker_any_biflow_n_unique_src_ports_var

bihost_bwd_bitalker_any_biflow_n_unique_src_ports_max bihost_bwd_bitalker_any_biflow_n_unique_src_ports_min

T
C

P

bihost_any_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_total bihost_any_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_mean

bihost_any_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_std bihost_any_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_var

bihost_any_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_max bihost_any_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_min

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_mean

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_var

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_min

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_mean

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_var

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_min

bihost_any_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_total bihost_any_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_mean

bihost_any_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_std bihost_any_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_var

83

bihost_any_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_max bihost_any_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_min

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_mean

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_var

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_min

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_mean

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_var

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_min

bihost_any_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_total bihost_any_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_mean

bihost_any_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_std bihost_any_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_var

bihost_any_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_max bihost_any_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_min

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_mean

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_var

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_min

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_mean

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_var

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_min

bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_redropped_total bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_redropped_mean

bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_redropped_std bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_redropped_var

bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_redropped_max bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_redropped_min

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_mean

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_var

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_min

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_mean

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_var

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_min

bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_rejected_total bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_rejected_mean

bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_rejected_std bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_rejected_var

bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_rejected_max bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_rejected_min

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_mean

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_var

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_min

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_mean

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_var

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_min

bihost_any_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_total bihost_any_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_mean

bihost_any_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_std bihost_any_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_var

bihost_any_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_max bihost_any_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_min

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_mean

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_var

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_min

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_mean

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_var

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_min

bihost_any_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_total bihost_any_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_mean

bihost_any_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_std bihost_any_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_var

bihost_any_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_max bihost_any_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_min

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_mean

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_var

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_min

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_mean

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_var

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_min

bihost_any_bitalker_eth_ipv4_tcp_biflow_abort_terminations_total bihost_any_bitalker_eth_ipv4_tcp_biflow_abort_terminations_mean

bihost_any_bitalker_eth_ipv4_tcp_biflow_abort_terminations_std bihost_any_bitalker_eth_ipv4_tcp_biflow_abort_terminations_var

bihost_any_bitalker_eth_ipv4_tcp_biflow_abort_terminations_max bihost_any_bitalker_eth_ipv4_tcp_biflow_abort_terminations_min

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_mean

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_var

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_min

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_mean

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_var

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_min

bihost_any_bitalker_eth_ipv4_tcp_biflow_null_terminations_total bihost_any_bitalker_eth_ipv4_tcp_biflow_null_terminations_mean

bihost_any_bitalker_eth_ipv4_tcp_biflow_null_terminations_std bihost_any_bitalker_eth_ipv4_tcp_biflow_null_terminations_var

bihost_any_bitalker_eth_ipv4_tcp_biflow_null_terminations_max bihost_any_bitalker_eth_ipv4_tcp_biflow_null_terminations_min

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_mean

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_var

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_min

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_mean

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_var

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_min

84

bihost_any_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_total bihost_any_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_mean

bihost_any_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_std bihost_any_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_var

bihost_any_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_max bihost_any_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_min

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_mean

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_var

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_min

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_mean

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_var

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_min

TABLE 18. NETGENES HOST FEATURES (WITHOUT FLOW-SET BASED FEATURES).

85

#Flows Destination Port Port to L5-7 Protocol

94203 443 HTTPS

34113 80 HTTP

1054 22 SSH

537 8313-65490 Multiple applications

476 389 LDAP

458 21 FTP

367 465 SMTP over SSL

327 88 Kerberos

218 3268 LDAP Global Catalog

181 445 SMB

108 139 NetBIOS Session Service

71 8080 HTTP alternative port

70 135 RPC

29 4502-7905 Multiple applications

4 8081 HTTP alternative port

1 53 DNS

1 843 Unidentified

TABLE 19. MONDAY: TCP BENIGN TRAFFIC OVERVIEW.

86

#Flows Destination Port Port to L5-7 Protocol

114707 53 DNS

844 443 Application Traffic (Google)

582 88 Kerberos

388 137 NetBIOS Name Service

246 389 LDAP

148 123 NTP

126 19302-63056 Multiple applications

111 1900 SSDP

66 5355 LLMNR

40 1124 HP VMM Control

40 3289 Citrix

35 3478 VoIP STUN

9 138 NetBIOS Datagram Service

8 5353 MDNS

5 7725 Nitrogen Service

5 8612 Canon BJNP Port 2

3 8610 Canon MFNP Service

1 42 WINS

TABLE 20. MONDAY: UDP BENIGN TRAFFIC OVERVIEW.

87

TCP Protocol

“bitalker_fwd_biflow_n_unique_dst_ports” – Talker Feature

V
Monday Tuesday Wednesday Thursday Friday

T F T F T F T F T F

[1
,5

]

21542 129769 19167 106421 19647 271091 18360 91294 17538 89530

[6
,1

0
]

4 474 5 656 4 423 1 114 4 521

[1
1
,

5
0
]

10 1778 10 1889 6 1032 7 1116 7 1267

[5
1
,1

0
0
]

1 197 1 198 6 1312 4 844 4 882

[1
0
1
,

5
0

0
]

0 0 0 0 0 0 0 0 0 0

[5
0
1
,

+
∞

 [

0 0 0 0 0 0 12 74155 1 255794

bitalker_bwd_biflow_n_unique_dst_ports – Talker Feature

[0
,5

]

21556 132086 19182 108975 19662 273753 18386 167590 17553 347868

[6
,1

0
]

1 132 0 0 1 105 1 313 1 126

[1
1
,

5
0
]

0 0 1 189 0 0 0 0 0 0

[5
1
,1

0
0
]

0 0 0 0 0 0 0 0 0 0

[1
0
1
,

5
0

0
]

0 0 0 0 0 0 0 0 0 0

[5
0
1
,

+
∞

 [

0 0 0 0 0 0 0 0 0 0

TABLE 21. TCP BI-TALKER “UNIQUE DESTINATION PORT COUNT” ANALYSIS.

88

UDP Protocol

“bitalker_fwd_biflow_n_unique_dst_ports” – Talker Feature

V
Monday Tuesday Wednesday Thursday Friday

T F T F T F T F T F

[1
,5

]

636 117244 593 103246 151 96174 205 98625 191 102363

[6
,1

0
]

0 0 0 0 1 12683 10 236 0 0

[1
1
,

5
0
]

1 18 0 0 0 0 0 0 0 0

[5
1
,1

0
0
]

0 0 0 0 0 0 0 0 1 268

[1
0
1
,

5
0

0
]

1 105 1 188 1 167 1 129 1 162

[5
0
1
,

+
∞

 [

0 0 0 0 0 0 0 0 0 0

“bitalker_bwd_biflow_n_unique_dst_ports” – Talker Feature

[0
,5

]

638 117367 594 103434 152 98263 216 98990 193 102793

[6
,1

0
]

0 0 0 0 1 10761 0 0 0 0

[1
1
,

5
0
]

0 0 0 0 0 0 0 0 0 0

[5
1
,1

0
0
]

0 0 0 0 0 0 0 0 0 0

[1
0
1
,

5
0

0
]

0 0 0 0 0 0 0 0 0 0

[5
0
1
,

+
∞

 [

0 0 0 0 0 0 0 0 0 0

TABLE 22. UDP BI-TALKER “UNIQUE DESTINATION PORT COUNT” ANALYSIS.

