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Resumo 

O objetivo principal deste trabalho é estudar ataques de rede. Ao delinear o perfil dos padrões de 

comportamento de rede inerentes a ferramentas de software usadas de forma maliciosa, podemos 

detetar as técnicas que essas ferramentas implementam sem precisar de detetar especificamente a 

ferramenta com base nas suas especificidades. 

Para tal, começamos por desenvolver e propôr uma ferramenta de extração de features de 

rede denominada NetGenes, que considera várias features de comunicação de rede conceituais e 

estatísticas baseadas exclusivamente em metadados extraídos de protocolos L1-4 (camada-OSI 1 a 

camada-OSI 4). A ferramenta NetGenes, a partir de um ficheiro de captura de rede (PCAP, PCAPNG), 

permite extrair features de três objetos de rede (flows, talkers e hosts) que se constroem baseados uns 

nos outros, agregando logicamente features dos objetos de rede abaixo deles, e permitindo também a 

criação de novas features. 

De seguida, estudamos várias classes de ameaças, organizando-as logicamente como numa 

taxonomia e descrevendo as ameaças, técnicas de ataque e ferramentas que as implementam, 

contidas pela mesma. 

Depois, criamos vários conjuntos de regras com base nos objetos de rede extraídos pelo 

NetGenes para a classe de ameaça “Port Scan”. 

Finalmente, utilizamos os conjuntos de regras criados anteriormente ao dataset CIC-IDS-2017, 

fornecendo informações valiosas sobre as melhores formas de detetar tráfego pertencente à classe de 

ameaça “Port Scan” de forma transparente e direta. 
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Abstract 

The main objective of this work is to study network attacks. By profiling the inherent network behavior 

patterns of maliciously used software tools, we can detect the techniques that these tools implement 

without needing to specifically detect the tool based on its specificities. 

It is developed and proposed a network feature extraction tool dubbed NetGenes, which 

considers a vast number of conceptual and statistical network communication features exclusively 

based on metadata extracted from L1-4 (OSI-Layer 1 to OSI-Layer 4) protocols. NetGenes takes a 

network trace-file (PCAP, PCAPNG) as an input, and extracts features of three network objects (flows, 

talkers and hosts) which build off of each other, logically aggregating lower-level network object features 

beneath them, and also enabling the creation of new features. 

Then, we study various threat classes, organizing them in a taxonomy-like manner and outlining 

their encompassed threats, attack techniques and tools that implement them. 

Moreover, we create various rule sets based on the network objects extracted by NetGenes, 

for the “Port Scan” threat class. 

Finally, we apply the previously created rule sets to the CIC-IDS-2017 dataset, providing 

valuable insight about how to best detect the “Port Scan” threat class and its encompassed variants in 

a direct transparent manner. 
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Chapter 1. Introduction 

Fortunately for user privacy, there is now more encrypted network traffic than unencrypted. Right now, 

it is estimated that 60% of all Internet traffic and more than 80% of all Web traffic is encrypted, and the 

trend of encryption keeps growing [17, 45]. However, encryption poses a challenge to understanding 

and detecting threats because encrypted application data makes its logic unintelligible for most 

application analysis tools that rely on protocol parsing to detect application-specific events (e.g., WAFs, 

SIEM endpoint agents, etc.). For example, regex signatures are used by signature-based detection 

systems to detect malicious network activity. Unfortunately for these detection mechanisms, by 

changing a single bit of network packet data, the encrypted version of it becomes completely different 

from the unencrypted one and cannot be correlated to other slightly modified encrypted versions of it, 

fact which enables adversaries to evade and bypass such mechanisms. Even in the case that the regex-

based detection mechanism is performed on the endpoint system, and therefore network traffic is 

decryptable, the attacker can still implement and use his own network stack and perform customized 

encryption (or even, simply encoding) in his malicious program to evade detection based on regex 

signatures, which makes regex-based detection fail to detect zero-day attacks. 

On the other hand, using blacklists of contacted IPs and domains is better because, to evade 

detection, the attackers will have to spend money to get more IPs and domains, and additionally will 

have to modify their original malicious program and redistribute it. However, signature-based detection 

mechanisms which rely on blacklists of IPs and domains would still not detect modified malware variants 

because the contacted IPs and domains would not have been blacklisted yet. As such, this possibility 

can make intrusions unnoticed for as long as they are not added to the blacklist by security researchers, 

other systems or other parties which participate in adding more indicators of compromise to the 

blacklists. Another example is the case where the attack is specifically tailored to an organization, which 

can mean that indicators of compromise are unique and, therefore, not relevant anymore for detection 

purposes outside the organization. 

Ideally, we should be able to detect network attacks (and even host attacks) based on indicators 

which are generic enough to be applied throughout time and independently of many circumstances, 

based on each attack’s specific characteristics. Additionally, we should be able to separate normal from 

abnormal network traffic by relying on what we know about the behavioral patterns of different types of 

tools, threats and threat classes, and, in a standalone manner, use these to each organization’s 

advantage and oversight against new network attacks deployed against them. 

Improving Threat Detection 

Problem: By using indicators of compromise (IoCs) at the network level, one can specifically target 

hosts (IPs and domains) and malware (regex signatures) extracted from blacklists. However, we are 

still left with the problem that identifying network attacks by using contacted IPs and domains is not 

feasible in the long run, because these are constantly changing for the same threats and threat classes. 

Similarly, using regex signatures has the same problem, with the aggravating that adversaries can 
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leverage encryption to hide their payloads from detectors, and even just use encoded payloads that get 

through a lot of detectors. IoCs are very useful in campaigns and incidents because they enable 

cybersecurity teams to efficiently detect and mitigate intrusions related to those, which allows finding 

victims and perpetrators of specific network intrusions. These network intrusions are caused by specific 

malware variants responsible for internal infection or by attacker-controlled hosts that need to be 

detected and blocked, but it often takes time until the relevant IoCs can be manually retrieved and input 

into a security feed to share with the rest of the world. Many times, these IoCs are only retrieved after 

the damage has already been done, when the organization should have successfully detected an 

anomalous event was taking place, even if the attackers’ IPs, domains or regex signatures did not 

match any available blacklist. Similarly, threat researchers may need to study a big network capture file 

which deals with unknown attackers, but is mixed with all sorts of benign traffic, so it would be very 

useful to automate the detection of what we are looking for. In these scenarios, OSINT is very limited 

because you may either be patient zero, or you already were, IoCs may not be publicly available or the 

attacker may have specifically targeted your network(s). 

Solution: To solve the previous problem, we need to successfully detect network attacks 

independently of the specificities of the used tools or the attacker’s infrastructure. This led us to focus 

on higher-level definitions of the network attack than the specific software used to implement those, 

which we call threat classes. By using the core features of a threat class and detecting those, we can 

detect any software that implements that threat class, providing a trustworthy anomalous behavior 

detection. We propose to target both malware and attacker software by analyzing and profiling their 

generated network traffic. Using network behavior analysis in the study of diverse samples, 

independently of the traffic being encrypted or unencrypted, we propose to study and profile threats and 

threat classes. We also propose to perform this threat profiling by analyzing network behavioral patterns 

through information extrapolated from packet metadata only. We theorize that network behavioral 

patterns are a much stronger concept to profile software and understand how it works at the network 

level than indicators of compromise because it allows for a non-deprecated detection of new attack 

campaigns and incidents based on their real root cause. Additionally, a system built on behavioral 

classification can still automatically output IoCs and signature-based rules when a threat is detected. 

Ultimately, this work intends to contribute to the daily activities of threat researchers who work 

in post-mortem analysis tasks related to network traffic, such as threat hunters, intrusion detection 

researchers and, also often, SOC analysts. In sum, any network security professional, or anyone who 

may be concerned with studying, analyzing and/or detecting malicious network activity, can make use 

of this thesis. 
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1.1. Work Objectives 

Interest for Network (Security) Engineers 

Network automation and the Python programming language are increasingly becoming more hand-to-

hand as big networking companies like Cisco start combining both. Inclusively, the recently renewed 

DEVNET certification, which was put in practice in February this year (2020), now includes teaching 

network automation capabilities using Python (in the upcoming years, we expect that network engineers 

will start looking at Python’s network automation capabilities much closer). It is expected that the 

networking community will continuously adapt and move towards an improved automation of the 

networking processes, for the most varied issues: performance, reliability, security, etc. Mostly, such 

network certifications (CCNA-, CCNP- and CCIE- levels for Cisco) often focus on the design of network 

architectures, deployment of vendor-specific solutions, simulating networking environments, performing 

advanced network traffic analysis and troubleshooting network problems [39,40]. All these activities 

include inherent security concerns and, particularly, the concepts learned in these type of networking 

courses are very closely correlated with the fields of network intrusion detection and cyber threat 

intelligence [35]. This constantly increasing interest of network engineers in the network security field is 

an additional motivation factor to perform this type of research. NetGenes will be an interesting tool for 

these professionals, providing them with an automated way of generating comprehensive network-

object features to deeply study their networks and build monitoring systems based on it. Similar tools 

are reviewed and discussed in the related work. 

Interest for Threat Researchers 

Threat researchers mostly work with trace-files as they are concerned in studying passive data rather 

than real-time detection, focusing on the study of campaigns and specific incidents, further correlating 

these with, both, intrusion sets and TTPs. Threat researchers often look for attack patterns and 

indicators which can lead to correlate given incidents, campaigns, intrusion sets and TTPs to specific 

threat actors. Patterns and indicators are high-level concepts which are useful for threat actor profiling, 

while malware and attacker software are lower-level concepts which are encompassed by TTPs and 

are detectable in a network. 

Threat hunting activities are commonly performed by using signature-based methods of 

detection in combination with multiple updated feeds, which leads to identifying campaigns and 

incidents taking place. However, in order to deeply study network threats and threat classes, and to 

profile threats and proactively detect them, there needs to be an analysis of network communications 

and the modelling of behavior patterns. As such, we propose NetGenes and associated methodologies, 

which can be leveraged to perform deep studies of tools, threats and threat classes based on the 

network traffic patterns they generate. Furthermore, these methodologies can also be used to analyze 

data and build classification models for threat actor network traffic to study and profile those as well. 

NetGenes hopes to deliver these capabilities, as well as paving the way to achieve threat-related 

classification models which are explainable by default. 
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1.2. Main Contributions 

We have developed a new tool that: 

• Can extract flows and talkers accurately well, comparable to Wireshark. We validate how 

accurate NetGenes was by comparing our results to the ones of Wireshark and CICFlowMeter. 

• Extracts a more comprehensive flow feature-set than CICFlowMeter, including more statistical 

features, as well as information about TCP flow states. 

• Extracts comprehensive flow-set based feature-sets, by means of network objects that are not 

considered by flow extraction tools by default. 

• Allows the creation of new pre-processed datasets, similar to CICFlowMeter and Argus, which 

respectively generated the pre-processed CIC-IDS-2017 and CTU-13 datasets. 

Afterwards, we defined a network threat class taxonomy, to give proper context to multiple techniques 

used to perform network attacks, as well as multiple tools that practically implement each threat class. 

Then, we process the CIC-IDS-2017 raw dataset, composed of one PCAPNG file per weekday, 

we analyze the “Bot Ares” traffic present in CIC-IDS-2017 by using the flow-state features we extracted, 

which allow seeing patterns in the way that the traffic is created. 

We then created multiple rule sets using the previously extracted NetGenes features to detect 

the “Port Scan” threat class. We applied these rule sets to the five days of traffic of this dataset, to test 

if the rule sets we defined are appropriate to detect the “Port Scan” flows in the CIC-IDS-2017 dataset. 

Our rule set successfully ignored all network objects on Monday, Tuesday and Wednesday (as it 

should), and detected the “Port Scan” events that the authors mention in their dataset description, 

presented on the CIC-IDS-2017 support website [145] and the CIC-IDS-2017 support paper [146], on 

Thursday and Friday. However, The TCP flow classification results are presented in chapter 5 and the 

direct TCP talker classification results were perfectly accurate for every day, as it can be seen in table 

21 (annex). 

 

 

1.3. Document Structure 

This thesis is organized as follows. Chapter 2 presents related work in network traffic analysis. Chapter 

3 establishes a taxonomy for network threat classes, splitting them into multiple smaller concepts. 

Chapter 4 explains what network objects we considered in this work, as well as how we implemented 

them. Chapter 5 analyzes the CIC-IDS-2017 dataset. Chapter 6 concludes this thesis. 
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Chapter 2. Related Work 

2.1. Author’s Previous Work 

In a previous work [10], we developed a NIDS (dubbed AI-NIDS) which used all CICFlowMeter TCP 

flow features except for flow activeness- and idleness- related features. We exclusively considered TCP 

flows for detection purposes and were able to achieve very promising TCP flow classification results for 

three common threat classes: Denial of Service (DoS), Port Scan and L7 Brute-force Attacks. Despite 

this, many flows that were classified as one of the focused three classes would be wrongly classified 

as another category: for example, instead of being classified as a Denial of Service, a SYN Flood DoS 

would be put in the Port Scan category. This happened because, with the flow features that we had 

considered, a SYN Flood would be closer to a Port Scan that it would be to a Denial of Service. In this 

work, we augment the considered flow features, as well as create concepts that can encompass the 

flow definition and help us achieve a context for the flows. 

Bots, other types of network attacks and threats (e.g., Heartbleed, data exfiltration, etc.) were 

not tackled properly by AI-NIDS because the low number of malign flows generated by these did not 

allow to use them in conjunction with the benign flows in a balanced manner (to obtain class balance, 

the number of benign flows would also need to be reduced, which would not be enough to achieve a 

broad enough definition of benign) for building accurate supervised ML models. 

Moreover, solely using the flow classifier to output alerts would generate too many alerts for 

any human analyst. The alert problem happened because it proved to be unfeasible for AI-NIDS to 

directly consider any host whose flow was tagged as malign, which exclusively based the decision on 

the output of the flow classifier (output of the second layer of the double-layered algorithm that we 

proposed for the NIDS classification architecture: malign flow or benign flow). The former assumption 

would mean to create a very high number of irrelevant alerts for networks with a lot of traffic, even if the 

flow classifier itself seemingly presented low false-positive ratios like 0.12%. We quickly acknowledged 

that such low false positive ratios would still generate a lot of alerts because, depending on the size of 

the network, a lot of network flows would be continuously generated. For example, consider a network 

which generates 1.000.000 flows daily; this would mean that 1200 flows are falsely considered as 

malicious, which could possibly mean 1200 false alerts if we directly considered that the talking hosts 

are possibly malicious. This is clearly not the right solution for the problem because 1200 false positive 

results per day per threat class would be a nightmare for an analyst, and this is even considering a very 

low flow classification false-positive ratio (0.12%). We solved the previous problem by applying TCP 

flow count thresholds to downsize the number of alerts that would be output. At this moment, the multiple 

victims and attackers that were being output because of the flow classifier were reduced drastically due 

to limiting a simple feature shared between each couple of hosts. Even though this was just a quick fix 

to get things working, it showed us back then that it would be a very interesting idea to consider, as 

future work, a higher contextual level above the flows and their features, with the hope that it could 

improve the detection performance of malicious network traffic. 
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In conclusion, flow classification alone will not work properly for threat and threat class detection 

purposes without a proper context to operate on. This is exactly what this work worries about: create 

and use two higher-context concepts for network attack detection, host classification and talker 

classification, which we prove to be especially relevant for threat and threat class detection because 

the behavior patterns reflected by these concepts can capture the essence of the network attack for its 

threat and threat class handles, while flow classification would be more interesting for capturing specific 

attack phases and detect specific tools (since tools may present unique collective packet metadata 

features). One of the main ideas of this thesis is to be able to analyze the definitions of each label (a 

specific threat class, threat, tool, etc.), and try to understand which features we would need to support 

to be able to detect the different instances existent in each of those labels based on their exact definition. 

Finally, since classifying based on definitions does not conform too much with the definition of anomaly 

detection, it should be clarified that it is most useful when the definitions exist in the basis of a knowledge 

hierarchy, where the classes are well known and accepted by the domain-specific community and, thus, 

are more stable and less mutable. Definitions are how we establish ground truth in this work, so we can 

detect anomalies at the levels of threats and tools by using the definitions of their parent threat class. 

 

2.2. Common Threat Language: Glossary and Taxonomies 

A common language consists of terms and taxonomies (principles of classification) which enable the 

gathering, exchange, and comparison of information. Since the computer security field is relatively new 

and comprehends so many concepts, it is a challenge to determine a common language [46]. 

SANS Institute Comparison of Threat Taxonomies 

The SANS Institute published a paper [50], authored by Steven Launius, in March 2018, which 

discusses and analyzes different threat taxonomies used by CERTs and other cybersecurity teams. 

The author compared four main threat taxonomies: 

• Open Threat Taxonomy (OTT) [63], by James Tarala and Kelli K. Tarala 

• ENISA Threat Taxonomy (ETT) [48,49], from the European Union Agency for Cybersecurity 

• NIST Risk Assessment Threat Exemplary, from the National Institute of Standards and Technology 

• Taxonomy of Operational Cybersecurity Risks, from the Carnegie Mellon University 

Further, a survey was performed to the risk management department of a large financial company 

(along with 23 non-financial company respondents), and each taxonomy was evaluated according to 

three main metrics: completeness, complexity and clarity. 
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FIGURE 1. SANS SURVEY RESULTS, BY METRIC, FOR EACH THREAT TAXONOMY [50]. 

The author concluded that the OTT seemed to be the most preferred threat taxonomy, while remarking 

the fact that both the management and the non-management surveyed parties prefer the OTT to other 

taxonomies. Finally, the author finished by remarking that the OTT provides “a complete picture of threat 

actions, with clear terms, in a manner that is simple for an organization’s leadership to understand”. 

Thus, this taxonomy seems to be very appropriate for understanding threats by most parties. For that 

reason, we summarily provide an overview of OTT and focus on some of its encompassed concepts 

that are closely related to this work. 

STIX 2.0 

STIX 2.0 [11] is a structured language for describing cyber threat information so it can be shared, stored, 

and analyzed in a consistent manner. It is very popular among the cybersecurity community and it 

mainly focuses on high-level concepts (e.g., type of organization attacked, STIX attack pattern used) 

which can capture threat actors' modus operandi (expressed by their TTPs). Threat actors often act 

accordingly with their TTPs and perform campaigns using the same methods, allowing for correlations. 

Additionally, campaigns can be attributed to one or more intrusion sets if they are found to be included 

by them. Campaigns, incidents, intrusion sets, TTPs, attacker tools, malware and threat actor are all 

concepts defined by STIX 2.0 [11], also used in this work. The “attack pattern” and “indicator” concepts 

defined by STIX 2.0 are redefined, for the purpose of this work, to “threat actor attack pattern” and 

“threat actor indicator”, to avoid confusion, since the first two terms have a completely different meaning 

for network behavior modelling and analysis. Of the previous STIX concepts, this thesis specifically 

focuses on fingerprinting both malware and attacker tools used by adversaries. This enables 

researchers to promptly associate any software (attacker tools and malware), to threat actors’ TTPs 

and, consequently, to threat actors. However, deeply studying threat actors is not explored in this thesis 

but, rather, we focus on threats and threat classes, further explored in chapter 3. 

Open Threat Taxonomy 

The Open Threat Taxonomy [63], created by James and Kelli Tarla, was a joint collaboration between 

contributors from around 150 different organizations, amongst which there are multiple renowned 

organizations in the field of cybersecurity such as NATO (and international governments), the US 

Department of Defense (and other federal agencies), the US State (and municipal governments), the 
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Center for Internet Security (CIS), the SANS Institute and multiple Information Sharing and Analytics 

Centers (ISACs). People from other sectors (banking, energy, healthcare, insurance, educational 

institutions, etc.) involved with risk management and cybersecurity also participated in the making of 

this white paper. 

The OTT defines four core concepts: threat agents, threat actions, threat targets and threat 

consequences. Threat action is “what was done” (sniffing, credential discovery, etc.), mixed with “how 

it was done”. The concepts and their respective definitions seem straight forward but, depending on the 

actual context, these concepts can be very different. For example, is “threat agent” an advanced 

persistent threat (APT) group, a person or is it a device? Equivalently, is “threat target” an organization, 

a person, a device? It all depends on the context. To try to provide such context, the OTT aggregates 

threat actions into four main threat categories (also called “families of threats”). Each threat category 

covers multiple threat actions. Summarily: 

• Physical threat category: 14 threat actions 

• Resource threat category: 13 threat actions 

• Personnel threat category: 7 threat actions 

• Technical threat category: 41 threat actions 

Since the aim of this work includes possibly detecting bots in a network by analyzing bots’ behavior 

(among other network attacks), we want to be able to fully analyze the used techniques and try to 

extrapolate the associated technical intentions. By analyzing traffic metadata only, we cannot get 

around political or other personal motivations behind a threat. Since our aim is to profile threats by the 

techniques used, any other threat category other than the technical threat category is not relevant for 

this work. The technical threat actions we identify as being very strongly correlated to the malicious 

activities performed by bots and are performed by most infected devices at some point in time: 

• TEC-003: Port scans (attempt to find open ports on a machine) 

• TEC-008: Brute-force attacks (persistently attempt to authenticate to a service running on a 

machine) 

• TEC-021: Denial of service attacks (attempt to overload a machine resources) 

• TEC-022: Bot Infection (maintain persistence in the infected device, opportunistically connect to 

the command-and-control server to receive new commands and, usually, perform malicious 

activities on behalf of the infected device) 

 

2.3. Automated Threat Intelligence 

Threat Intelligence Gathering and Enrichment 

Most automated cyber threat intelligence mechanisms today are performed by automating the treatment 

of available (either publicly available or available through paid cyber threat intelligence services like 

Cisco Talos) IoCs and applying numerous different methods to obtain useful output. IntelMQ [13] is a 

system which uses a message queuing protocol for collecting and processing security feeds. Blacklisted 

IPs (IPv4 and IPv6), domains and URLs are the most common observable in these feeds. This system 

comprises four types of bots: collectors, parsers, experts and outputs [25]. Collector bots regularly 
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(frequency defined by the user) fetch security feeds from different sources and save the unstructured 

data. Parser bots parse the fetched data and transform it into a structured format. Then, expert bots 

use the structured data to obtain more information than what was initially fetched by performing extra 

actions; for example, by having an IP, one can further perform IP-based lookups such as whois lookup, 

reverse DNS lookup, geolocation lookup, among others. Finally, output bots transform all the 

information to different formats (Splunk DB, MongoDB, etc.), so that it can be fed to commonly used 

applications. IntelMQ introduces the very interesting concept of “information enrichment”, performed by 

correlating information that the system obtained about an event (e.g., IPs, domains, md5/sha1/sha256 

hashes) in the original feed with further information about each searchable object in various Open-

Source Intelligence (OSINT) feeds. 

Threat Intelligence Sharing 

The Trusted Automated eXchange of Indicator Information (TAXII) standard defines a set of services 

and message exchanges that, when implemented, enable sharing of actionable cyber threat information 

across organization and product/service boundaries. TAXII [12] defines concepts, protocols, and 

message exchanges to exchange cyber threat information for the detection, prevention, and mitigation 

of cyber threats. 

Furthermore, the exchange of cyber threat data between trusted partners can be used to inform 

and instrument network defenses. The shareable threat intelligence data is mainly comprised of 

indicators of compromise (IoCs), such as adversary-used IP addresses, x-mailers and malware. Such 

IoCs are extremely important for collaboration because they allow organizations to share and obtain 

relevant threat intel with one another. By combining everyone’s intel, each organization is both 

protecting other organizations from threats and improving their own security [26]. 

Implementing the former collaborative threat sharing capability allows each organization to use the 

automatically obtained IoCs and automatically use these IoCs to automatically generate signature-

based rulesets. Commonly used signature-based rule syntaxes to identify and block network intrusions 

in real-time are, for example: eBPF (extended Berkeley Packet Filter), Yara, Sigma, Suricata, Snort, 

OVAL (Open Vulnerability and Assessment Language), OpenIOC, among many other commonly used 

syntaxes. The obtained rules can then be imported by the signature-based systems (such as firewalls, 

signature-based IDSs and SIEMs) used by each organization, thus enabling a continuous ruleset 

update based on up-to-date intel and, consequently, contributing to an improved real-time packet-based 

detection in each organization. 

YETI is a practical implementation of TAXII developed by MITRE, but it was discontinued. On 

the other hand, MISP (Malware Information Sharing Platform) implements TAXII and much more 

relevant features which allow for the described threat sharing capability. The threat sharing is directed 

to malware and sharing IoCs related to malware, thus supporting signature-based identification of 

threats. Furthermore, it also supports threat classes and threat actors, and correlating threats to these 

using TTPs and much more. MISP falls in the Threat Intelligence Platform (TIP) category for its 

broadness. 

Even so, MISP does not implement behavior analysis capabilities at the network traffic level, 

since any uploaded evidence is regarded as having been studied and its corresponding IoCs extracted 
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and uploaded in the system as well. THP (Threat Hunting Platform) solutions, for threat research, and 

SIEM (Security Information and Event Management) solutions, for active network monitoring, provide 

network behavior analysis capabilities by implementing built-in UEBA (User and Entity Behavior 

Analytics) modules and/or relevant statistics modules. 

Threat Intelligence Knowledge Bases 

MITRE ATT&CK is an example of a knowledge base of TTPs. Such TTPs are able to comprise threat 

classes, threats and threat actors, by taking into account technical and non-technical, low-level and 

high-level, concepts related to threat intelligence, in a structured format. At the same time, all these 

concepts are organized into hierarchies and intertwined to construct a heavy correlation between the 

different data. The main objects that MITRE ATT&CK considers are: Tactics (TA), Techniques (T), Sub-

Techniques (T), Groups (G), Software (S) and Mitigations (M). The cybersecurity community which 

deals daily with different types of threats uses it since it is a very rich and organized source of 

information for anyone trying to find out more about an intrusion, a malicious campaign, or an adversary. 

 

2.4. Network-based Feature Formats and Feature-sets 

Flow Implementations and Contemplated Features 

Following a growing cybersecurity trend, L5-7 data tends to be more often encrypted than not [17] and, 

therefore, will be unintelligible and impossible to be deeper parsed. The encryption of data at this layer 

is one of the main reasons why we chose to work only with L1-4 protocols and used metadata. 

Consequently, by not looking into L5-7 data and studying threats using their base patterns (L1-4 

protocols) instead, each host’s privacy is regarded in a stronger manner. Additionally, using L1-4 

metadata and their inherent extractable (TCP) flow features has already proved to be very effective in 

modelling network behavior patterns and detecting intrusions [10]. Despite this, it is naturally expected 

that the most frequently used L5-7 protocols (especially the ones mostly used by malware and attacker 

tools), if parsed and structured into knowledgeable features by leveraging protocol-specific concepts, 

will be very relevant for a more fine-tuned, optimized detection. This would be particularly relevant for 

the implementation of a real-time system with endpoint agents capable of decrypting L5-7 traffic, but it 

is not the focus of this thesis. 

In a small article written by Kevin Sheu for Infosec Island [1], he describes NetFlows as not 

being comprehensive enough in terms of cybersecurity features. He argues that NetFlow only look into 

layer-1 to layer-4 (L1-4) data (“layer-3 and layer-4 data”, quoted from the article, obviously assumes 

layer-1 and layer-2 is also contemplated, since ethernet frames and the most common layer-2 protocols 

be contemplated as a basis for layer-3 and layer-4 protocols) and, thus, are not enough to go deeper 

in the connections themselves and gather protocol-specific features. Note that the NetFlow concept 

discussed comprises both NetFlow v1-9 and IPFIX (IP Flow Information eXport, a.k.a. NetFlow v10). 

Moreover, Kevin refers to Zeek [22] (a.k.a. Bro) network metadata as a superior solution in terms of 

knowledge depth (consequently, feature depth). 
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We fundamentally agree with Kevin, but he observes that researchers in the behavior analysis 

area often ignore deeper features in protocols above L5 while still achieving promising results [10], 

which implies that all the information available until L4 is enough to achieve great results in detecting 

specific threats. Although this is the case, the false positive ratio tends to be much higher for classifiers 

that use this limited data only because they cannot distinguish traffic as well as they could with 

decrypted data. Having L7 specific data would, no doubt, improve the false positive ratio, by diving into 

a deeper knowledge pool and, consequently, finding more precise fingerprints for detecting threats. 

However, this work will solely focus on L1-4 data because one of our main goals is to propose a sparse 

and comprehensive feature-set using data from these layers exclusively due to the very common usage 

of encryption and privacy issues. 

A long-term goal that we defined for this work is that the proposed feature-set, as well as the 

proposed feature format based on network objects (flow, talker and host -based features), is possible 

of being adopted by other researchers for studying their network attacks. 

L5-7 Protocol Considerations 

Alas, works which consider L5-7 protocols usually take advantage of fewer features than what could be 

harvested and could possibly be useful threat-related indicators. In order to extract comprehensive L5-

7 features, there needs to be an extensive analysis of a large number of protocols which are very 

complex, and data needs to be parsed in a completely different way for each protocol and structured 

into features that can capture the new concepts and knowledge introduced by those protocols. This 

task would require big development teams with network protocol know-how and a lot of time. Tools 

available with L5-7 protocol data parsing capabilities are, for example, Zeek [22], ntop [21] and 

Tranalyzer-2 [2], amongst many others. 

L7 protocol features would cause the creation of new possibly useful features, but the dataset format 

would have to include a whole new world of concepts, from a very extensive set of protocols, for it to 

be relevant for a generic threat detection or threat studying system. However, for studying specific threat 

classes such as botnets, considering the usage of L7 protocols like IRC or HTTP and related concepts 

would be helpful, given that port-protocol correlation is validated. 

Standalone Port-protocol Correlation 

Sacramento et. al [23] assumed that any packet that had a specific source or destination port belongs 

to a certain protocol. We do not agree with this because there can be packets whose source port is 

used as an ephemeral port and is not really part of a previously started flow in a production environment. 

Furthermore, given that no source port was used ephemerally then the flow representation is correct, 

but it was still assumed that a certain protocol was being used based on the destination port of the flow. 

We argue that stand-alone port-protocol correlation is not the best approach. The reason that it works 

most of the times is because traffic is often generated using default L7 protocol configurations, which 

enables that frequently a correct correlation between these protocols and their default port(s) is 

achieved. This can and will create a weakness in the classification model that considers the used port 

relevant because the adversaries, once they learn about this, will be able to evade detection by 

configuring the considered network protocols to run in different ports, thus abusing a weak conceptual 
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feature. Consequently, detection algorithms which rely too much on used ports as a feature and do not 

perform protocol validation are more vulnerable to be evaded. To solve this problem, we propose the 

use of deep packet inspection (dpi) and encrypted traffic fingerprinting techniques [17, 61] in an ideal 

scenario, respectively for unencrypted and encrypted traffic, to promptly confirm that the protocol is 

being used or, in case it is not, to determine which protocol is in fact being used. Encrypted traffic 

fingerprinting is not 100% accurate, like any other fingerprinting technique, but it will provide much more 

certainty in the protocol attribution and, a plus, it is encryption-agnostic so it can be used against any 

network traffic. 

Flow Extraction and Traffic Analysis Tools 

By summarizing different tools which extract and contain flow features, we can conclude this section 

with important remarks: 

• NetFlow leaves out a lot of flow, talker and host features, because it does not deeply focus on 

statistical data and sparse flow features, which is crucial for Machine-Learning models to thrive. 

Additionally, its features were performance-focused rather than security-focused [1], and there’s 

also a lack of statistical features within it, which makes it less edible for machine learning. This is 

a problem because we want to consider both security-related features and to obtain data sparsity 

to increase the range of available features, consequently increasing the probability of finding more 

precise indicators of malicious behavior. Several tools, such as ntop [21], pmacct [20] and NfSen 

(which uses Nfdump [19] as its backend NetFlow feature extraction tool), utilize NetFlow (including 

IPFix, aka NetFlow v10) as their core flow feature format and implement further custom network-

based features: more flow features specifically extended for other L7 protocols (e.g., BGP, HTTP, 

DNS, etc.), and more talker and host features (mostly conceptual). The process these tools 

perform is called protocol and feature enrichment, and it aims to achieve a broader support for a 

lot of different protocols and adding useful information. From this thought, the “Enhanced NetFlow” 

[27] concept was born, allowing the extraction of extra statistical features. It decreases 

performance but adds comprehensiveness, which is what one wants to achieve in a platform that 

is specifically intended for threat hunting, rather than real-time intrusion detection. 

• Using Zeek [22] metadata as a basis enabled researchers to extract more information from it than 

what it was extracted with NetFlow-based extraction tools, however the features which were 

extracted are also limited [9] when compared to other tools like CICFlowMeter or Tranalyzer which 

extract statistical features in addition to conceptual ones. 

• Maltrail focuses on some conceptual talker and host features and identifies threats by using both 

static and dynamic entries. Their static entries are fetched from various AV reports and the 

developers’ personal research [16]. Dynamic entries are composed of blacklist feeds, i.e., lists 

which are continuously updated with the most recently gathered threat information (e.g., malware 

C2 server, sinkholes, etc.) by the blacklist owner. Flow feature-set is practically non-existent since 

it only considers ports. This tool means to give a good overview of the network and possible threats 

but does not base its threat detection in automated behavior analysis, rather in traditional 

indicators of compromise. It does not possess a good feature-set that can be used in the context 

of this thesis. 
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• CICFlowMeter extraction tool does not consider any talker- or host- based features, opposed to 

the previous tools. Still, it poses as a very good example of what a flow extraction tool should look 

like because it considers a lot of statistical network-object features from a trace file. The downside 

of it is a lack of more contextualized features, attributed to talkers and hosts. 

• Haddadi et. al [6] studied, evaluated and compared five different flow extraction tools: Maji (59 

flow features), YAF (46 flow features), Softflowd, Netmate and Tranalyzer-2. It was concluded that 

Tranalyzer-2 was the most comprehensive flow feature extractor from the five exporters. 

Tranalyzer-2 is a unidirectional flow extraction tool and analyzer that employs an extended version 

of NetFlow feature-set. Furthermore, since it is built in C, it is a lightweight and performant solution 

(although performance isn’t the priority). Tranalyzer-2 supports 98 flow features, which are logically 

grouped in Time, Inter-arrival, Packets&Bytes and Flags feature-sets. 

 

Tranalyzer-2 is the best flow extraction tool that we could find in terms of considered network-object 

features (it considers host, talker and flow features). It can extract information on a lot of protocols of 

different layers and contains up to 98 different flow features [6] at the network/transport layer level. It 

encompasses talker features and host features, based on Tranalyzer-2’s latest documentation and 

presented flow aggregation techniques (mainly using tawk scripting) which they present in their website 

[2]. By communicating with the Tranalyzer-2 team and testing their tool, we could verify that Tranalyzer-

2 now extracts 105 flow features by default, rather than the 98 flow features mentioned by Haddadi et. 

al [6]. 

We acknowledge that Tranalyzer-2 output could be worked on with a scripting language to 

extend some of its default features and, if necessary, a Rust plugin for Tranalyzer-2 could be developed 

to improve its statistical flow features and add other ones at the higher contextual levels of the talker 

and host. However, this was not the chosen path. 

 

2.5. Behavior-based Network Intrusion Detection applied to 

Botnets 

Ongun et. al. 

Ongun et. al [9] used Bro connection logs to obtain network communication features. Later, they used 

CTU-13 datasets containing thirteen different botnet scenarios, each scenario using different botnets, 

techniques, and protocols. These datasets already contain, in the PCAP format, a clear separation 

between benign and malicious traffic, which is very useful because it enables any network-based 

extraction tool to directly work with this dataset. 

Furthermore, the authors note that the amount of imbalance in cyber security is very large, 

which is supported by two other paper references in the same area of applying data science methods 

to network traffic classification, for which the authors suggest using ensemble classifiers like the 

Random Forest algorithm. 
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The authors also mention an important matter regarding choosing the train and test data: when 

randomly splitting the network traffic of a specific scenario at random, it will produce highly-correlated 

data between training and testing datasets, which will result in a disparity between the metrics 

calculated for determining the classifier’s performances and its actual performance. Instead, by 

choosing to train on the data of two scenarios and testing on a third separate scenario, they are 

removing the possible correlations that the network traffic could have due to belonging to the same 

scenarios. However, we note that they are not removing the correlation out of the network threat class 

itself, since the same network tools are used to test, even if it is in a different timeframe using different 

machines. The two tools tested by the authors are two specific bots they study: “Neris” and “Rbot”. 

Additionally, the authors enumerate some important aspects to consider in network traffic 

analysis for optimizing the machine-learning model’s effectiveness: feature representation (feature 

representations consists in logically grouping features and separately testing them. In the context of 

this thesis, we often refer to these as feature-sets); fine-grained labelling; algorithm choice; time-window 

choice.  

The authors did not observe a major difference when they considered both traffic and timing 

features, in comparison to using only aggregated traffic features. Despite this, the authors noted that 

using feature representation was beneficial for the performance of their machine learning models. The 

authors tried three different logical feature-sets: connection features; traffic features; traffic and 

temporal features. 

Furthermore, the authors compared their results using coarse-grained and fine-grained 

labelling. Their coarse-grained labelling consisted in considering every connection performed by the 

botnet IPs in the whole time period as malicious; on the other hand, their fine-grained labelling consisted 

in considering the botnet IP connections to the victim(s) when performing a DDoS attack (Rbot) in 

separate time windows as malicious. As expected, the fine-grained labelling technique was proven to 

be much better for the performance of their machine learning algorithms in detecting the presence of 

botnet-related network traffic. 

A feature representation that worked well in the authors’ setting for classifying internal IP 

addresses is feature representation by time windows and port number. The authors also observed that 

feature representation depends on the amount of training data. Additionally, the authors mention that 

features extracted directly from raw data such as Zeek connection logs do not always result in the most 

optimal representation. They recommended that multiple feature representations apart from Zeek 

should be evaluated as future work. We agree with the authors in the sense that features extracted from 

Zeek [22] connection logs are not enough (standalone) to fulfill a full feature representation and, thus, 

recognize the consequent need of feature aggregation methods on top of Zeek’s raw data to improve 

detection. 

Gu et. al. 

Gu et. al. proposed three botnet detection systems, named BotHunter [3], BotSniffer [4] and BotMiner 

[5]. BotHunter [3] utilizes Snort sensors and builds a customized ruleset directly integrated with Snort 

to specifically detect the presence of a botnet in a network. Packet payload is considered in the ruleset 

as well, looking for known bot generated signatures. BotHunter is publicly available and, consequently, 
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is one of the most used botnet detection systems by researchers to compare their own botnet detection 

systems and methods [6,7,15]. 

In the BotHunter [3] work, the authors use Snort, along with two plugins (SLADE and SCADE), in a 

custom way to tackle the entropy which is inherent to a bot infection. The authors focus their efforts on 

the victim hosts and their communications with other hosts to study and understand the infection 

process. Additionally, the authors consider several common actions amongst bots to try to detect a bot 

infection in its early stages. For instance, the following bot infection sequence was taken from a specific 

bot, but it is still representative for other bots: 

• Event 1 – Target scanning: external-to-internal scan 

• Event 2 – Vulnerability exploitation: external-to-internal exploit 

• Event 3 – Bot download and execution: internal-to-external  

• Event 4 – Command-and-control (C2) channel establishment: internal-to-external 

• Event 5 – Outbound scanning: internal-to-external infection scanning 

The presence of the above five events is tested using signature-based detection with Snort, SLADE 

and SCADE, which is then used to build a matrix, dubbed “network dialog correlation matrix” by the 

authors, showing every internal host communicating with an external entity and which events they fired 

considering a fixed time window for each experiment. 

However, these five events should not be considered representative of all bots. For example, 

the infection vector might be a malicious email, which would make event 1 and event 2 irrelevant for its 

detection. Another example is if event 3 is the download of a dropper, rather than the bot itself, which 

could mean an additional downloading event would have to be considered for the case of a 2nd stage 

malware. Event 5 could not happen at all, or it could be a lateral movement (internal-to-internal 

scanning). These examples are just some possibilities of how bots could present different behaviors. 

At such a realization, the authors do not consider neither a strict order of events nor the existence of all 

the presented events in the bot infection sequence to output an alarm of a bot infection. In a prepared 

virtual network environment running multiple bots, BotHunter achieved a 95.1% true positive ratio. 

Later, Gu et al. proposed BotSniffer [4], a botnet detection system which uses a detection 

approach that was able to identify C2 servers and the bots infected hosts in the networks. Their 

technique was predicated on the notion that bots belonging to similar botnets would probably indicate 

a spatial-temporal relationship and resemblance to each other due to the pre-programmed events 

associated with C2 botnets. They focus on protocols running over TCP by having diverse TCP flow 

features: number of upstream and downstream packets; size of the uplink and downlink transmission 

bytes; average length of the uplink and downlink data packets, maximum packet length, average packet 

variance, duration of the data stream and packets loaded in one stream. More specifically, the authors 

focus on two L7 protocols, IRC and HTTP, because these two protocols are very commonly used by 

bots to fetch or receive commands from a centralized C2 server. The authors used a custom dataset 

composed of diverse network traces, and some network logs recorded from an IRC tracker. Most of the 

traffic used for the dataset was generated by them in their university campus network. According to 

them, BotSniffer presented a high accuracy and low false positive ratio. 
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Despite BotSniffer’s good results, Khan et. al [18] upholds that their detection strategy was 

widely concerned by experts in network traffic analysis because it does not depend on the botnet class 

to extract a common feature vector of the flow, which in theory compromises the definition of anomaly-

based detection. We agree with Khan et. al and the referred experts that the proposed system does not 

use an anomaly-based approach, however it does use network behavior patterns to detect botnets, 

thus falling into the behavior-based detection category. In this work, we also analyze network behavioral 

patterns and use these to study and detect specific threats, which enables detecting new malware 

variants (tier-1 anomaly) and, even deeper, to study and detect threat classes, which enables detecting 

new threats (tier-2 anomaly); as such, this work falls into the behavior- and anomaly- based detection 

spectrum, independently of the usage of outlier and novel detection algorithms. 

Khan et. al. 

According to Khan et. al work [18], the main factors that determine the efficiency and accuracy of 

detection are the characteristics of the extraction and the classification strategy used. Among other 

things, these factors mainly encompass: the labelling taxonomy, the feature-sets, the type of labelling 

process and the used classification algorithms. 

Khan’s proposed P2P botnet detection framework is based on a decision tree algorithm for feature 

selection which extracts the most relevant features and ignores the irrelevant features. Furthermore, 

the detector is based on a multi-layer approach to classify network traffic (P2P botnet traffic and non-

P2P traffic) and identify botnets by applying machine learning classifiers on network features such as 

port filtering, DNS queries, and flow counting. 

At the first layer, it filters non-P2P packets to reduce the amount of network traffic by applying port 

filtering using well-known ports, DNS query, and flow counting. The second layer further classifies the 

captured network traffic into two classes such as non-P2P and P2P. At the third layer of the model, we 

reduce the features which may marginally affect the classification. At the final layer, it successfully 

detects P2P botnets using decision tree classifier by extracting network communication features. 

The proposed technique covers the limitations of single stage botnet detection, like for example the 

resulting class imbalance, i.e., the lack of botnet traffic in comparison to benign traffic, as Ongun et. al. 

[9] and our previous work [10] also mention. The accuracy of the model achieved is 98.7% and the 

threshold of false alarm (positive) rate is 3%. Furthermore, the authors also demonstrate that the 

accuracy of the proposed framework can be improved up to 99%, but at the expense of false reporting 

of benign files as botnets as well as false reporting of botnet as benign, so the False Positive and False 

Negative ratios would be affected. The authors also observed that the model’s accuracy might be 

improved by increasing the epochs of deep learning algorithms (at the expense of more execution cost). 

Finally, they performed a benchmarking of the proposed technique by testing it against diverse 

datasets and comparing their results with other publicly available machine learning algorithms 

implemented for botnet detection. 

 



17 
 

2.6. Next-generation Network Security: Cisco Solutions 

Reading Cisco’s article about End-to-End Visibility [37], one can see how Cisco FirePOWER and 

FireSIGHT can leverage NetFlows to obtain network intelligence at the L1-L4 level. It allegedly 

generates two useful types of event from L4-7 protocols’ data, and two other types of event which are 

more poorly related to the L4-7 stack. It uses Snort, a signature-based NIDPS solution, to generate 

“Intrusion” events. Additionally, it outputs “Threat and Security” events as well, which combine both 

endpoint-based and network-based features to correlate OS events with network events, further used 

to perform host/user behavior score ranking and, additionally, to throw “Intelligence” events which are 

useful for cybersecurity experts to make informed decisions. Furthermore, the “Malware” event is a type 

of event which is outputted through an in-depth study of files received by an endpoint system. Moreover, 

the “Anomaly” event is very strongly correlated to what this thesis aims to achieve, by detecting threats 

and threat classes. Threat classes are a logic aggregation of threats which, on the other hand, are a 

logic aggregation of software solutions, including malware variants. Malware variants are detectable 

using IoCs and applying signature-based rules, threats and threat classes are detectable by combining 

higher-level network features and network behavior analysis to automatically detect malicious behavior, 

which allows obtaining IoCs for newly detected malware variants in automated ways with the study of 

threats and threat classes. 

Cisco Encrypted Traffic Analytics (ETA) solution is formed by both Cisco StealthWatch solution 

and the Enhanced NetFlow concept combined [17, 42, 43]. This solution allows analyzing network’s 

encrypted traffic to understand the most of what is happening in the network based only on traffic 

metadata. As such, it can be used to detect threats in the network, without breaking users’ privacies 

(decrypting and inspecting traffic) and without needing to parse diverse L5-7 protocols too deeply. Of 

all Cisco solutions, this one is the most closely related to the technical matters of this work. This solution, 

as well as this work, base themselves on the fact that even though not all data is intelligible, it is possible 

to extract a lot of threat intel from network traffic considering metadata only. By studying publicly 

available information about the Cisco ETA solution [17, 36, 41, 42, 43, 44], one can understand that it 

implements encrypted traffic analysis techniques (Cisco StealthWatch) which can be particularly 

applied to detect threats in the network, through the extracted and posteriorly enriched network 

information (enhanced netflows). 

Cisco CTD provides in-depth defense against modern and advanced threats [38] which can 

bypass most detection mechanisms. For network-based detection, Cisco CTD uses NetFlows and, on 

top, Cisco StealthWatch and Cisco FireSIGHT (which uses Cisco FirePOWER as the knowledgeable 

backend module). It also uses an endpoint-based solution called Cisco AMP [53] (Advanced Malware 

Protection) for endpoint threat detection. 

Cisco AMP [53] acts like an automated malware sandbox analysis mechanism capable of 

analyzing network packet data and detecting malicious incoming files using static and dynamic file 

analysis. In terms of file-related features, Cisco AMP integrates with Cisco Threat Grid [54, 55, 56] to 

obtain more than 700 behavioral indicators (indicator, in this context, refers to features, do not confuse 

with indicator of compromise) related to a file and automatically detecting and understanding malware 
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captured in the endpoint, which is not our direct focus. However, it is relevant as a related application 

because endpoint-based detection systems also need to include network-based analysis capabilities. 

Connection with This Work 

In this thesis, we try to attain the same goal as Cisco CTD of detecting the presence of threats in a 

network, such as the presence of bots [38], but rather than focusing on the real-time detection of threats, 

it focuses on the process of building such detection systems and in the study of threats only at the 

network level (rather than studying host-level indicators as well). 

Similar to Cisco Enhanced NetFlow, NetGenes strives to obtain the most possible extractable 

packet information using comprehensive conceptual and statistical flow features, and similar to the 

posterior flow aggregation techniques performed on top of NetFlow output, we strive to obtain the most 

possible flow-extractable information by implementing comprehensive conceptual and statistical talker 

and host features. We identify this gathering of features as being similar to Cisco Threat Grid, in the 

sense that we try to obtain a comprehensive network feature-set as well. 

Ideally, if we were to build a full-featured Threat Hunting Platform (THP), it would use the 

extracted network-object features to enable an optimized study of threats in post-mortem analysis 

scenarios, as well as creating a way to detect them. This would be similar to Cisco StealthWatch in the 

sense that it performs a higher-level analysis and enables the creation of intelligence (tier-2 information, 

comparable to this work’s host/talker information and to the detection of suspicious/malicious behavior 

in those contexts), from enhanced NetFlow output (tier-1 information, comparable to this work’s 

extracted flows), all starting from network packets (raw data). However, in this work, we propose the 

methodology of studying and analyzing extracted network-object features to understand and detect 

whichever tool, threat, threat class, or inclusively any other type of traffic that we may correctly label 

(e.g., threat actors, types of normal traffic), that we want to study. 

Note: by using NetGenes, which extracts the most data out of network traffic that we are able 

to (at the time of writing), we are optimizing the extracted data’s usability. For example, if we were to 

develop a specific threat detection module for a real-time detection system (e.g., the NIDS developed 

in the context of our previous work [10]), it is very positive that the detection results are completely 

independent of packet L5-7 data being encrypted because the system can choose to not parse and 

analyze received intelligible L5-7 protocol data in real-time (since it can be a computationally heavy task 

to do so) and go straight to the detection of L1-4 events (e.g., detecting the core scenarios of a port 

scan, as we do in subsection 5.3 by creating simple but effective rule sets that target it) or, if 

implemented, flow fingerprinting may also be employed at the L1-4 level to detect L5-7 events (e.g., 

common HTTP GET requests, SSH initial login request, etc.). Similarly, for threat hunting, ignoring the 

encryption state of traffic does not limit us to finding threats in unencrypted network traffic only. Thus, 

on top of NetGenes network-object output data, similarly to NetFlow, it is possible to build whole 

solutions on top, such as the ones described above and much more: that is the purpose of NetGenes. 

Concluding and contextualizing this subsection to our work, we observe that software solutions 

such as the ones briefly described above contain very similar solutions to what most literature tries to 

achieve. Another interesting observation is that, most of the times, the literature exclusively focuses on 

other literature and open-source tools, but the truth is that domain-specific companies, such as Cisco 
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in the networking (and network security) field, are usually ahead. As such, we propose that researchers 

in this field look at these companies and try to take away key notes and ideas from their publicly 

available documentation and solutions. Doing a good research on state-of-the-art solutions will likely 

be an eye-opener and improve researchers’ smaller solutions which, very often, aim to achieve common 

goals. This way, the literature might better accompany research in domain-specific areas such as this 

one and strive to, inclusively, improve specific concepts and techniques used by these solutions to 

achieve the same objectives in a possibly better way. We firmly believe that this is what we performed 

within the context of this thesis but, truth be told, there are a lot of different tools out there and a more 

extensive study of these tools is required. 

 

2.7. Detected Issues 

We overlook closed-source and commercial software solutions which cannot be studied more in-depth 

for lack of verifiability. Given the studied related work, we identify the following problems: 

1. Lack of L1-4 features: NetFlow-based feature extraction tools, Zeek, Maji, YAF, Softflowd, Netmate, 

pmacct. CICFlowMeter (TCP) and Tranalyzer-2 include a more comprehensive set of L1-4 flow 

features, but these flow features can still be extended even further. 

2. Lack of talker- and host- based features: CICFlowMeter, Tranalyzer-2. Tranalyzer-2 has features on 

these higher abstraction levels, but it still lacks some of them (many which are extendable from flow 

features) which we want to consider, even though it also considers some features that we haven’t 

implemented at the time. These higher-level features provide more context than packet- and flow- 

based features; despite this, they are very lightly considered in most datasets, traffic analysis tools 

and the literature in general [14]. 

3. Problem 1 and problem 2 both result in a different research-related problem: a lack of standardized 

format for building processed network-based datasets. This is a problem that we identify in the 

research community around the intrusion detection field, mainly due to so many different processed 

datasets being made available [14]. This lack of format for network-based features leads to each 

researcher using raw trace-files or NetFlow logs made available and using diversified methods and 

tools to extract knowledgeable features from these. This is a problem because researchers are, one, 

spending time in finding useful features extractable from those standard formats and two, creating 

privately processed datasets. For the previously mentioned reasons, researchers are forced to 

compare their work results with other works which use completely different network feature formats 

and feature-sets. 

4. Problem 3, consequently, results in at least two other problems: 

• Research related to Machine Learning algorithms applied to the network intrusion detection 

problem will be, in the most part, inherently inconclusive, because the dataset features worked by 

each classifier have different formats. Classifier benchmarking is often performed in processed 

datasets using custom network-based feature formats, so very often the work becomes 

incomparable with other researchers’ work. At the same time, used network traffic quality is difficult 

to be evaluated and compared because instead of there being a focus only on the traffic, the focus 
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of the research papers constantly shifts between the used feature-sets (such as those generated 

by tools and datasets), the labelling methodology (e.g., fine-grained, coarse-grained, manual) and 

the traffic used to generate datasets. 

• Extended signature-based botnet detection techniques, for example, often focus on packet-based 

features and use flow-based features [3] to aid detection. Additionally, by analyzing different 

anomaly- and behavior- based botnet detection techniques, we observed that there exists a focus 

on flow-based features and a few conceptual talker- and host- based features; furthermore, some 

works also consider the contacted ports and directly assume that a L7 protocol is being used [23] 

which might introduce unintended bias. To consider the used L7 protocol, we recommend 

extending the port-protocol correlation with the use of traffic validation techniques like L5-7 

protocol fingerprinting in case the traffic is encrypted, or a direct validation of the protocol in case 

traffic is unencrypted. This thesis does not contribute with such techniques and would also assume 

port-protocol correlation for a more optimized detection if needed, because this work would not be 

doable for all relevant L5-7 protocols in the due time. However, it is important that weaknesses 

like this are duly documented and that solutions are eventually put in-place, since adversaries can 

leverage those weaknesses to evade detection. The reason we propose L5-7 protocol 

fingerprinting to solve this problem is because it is an encryption-agnostic solution. This and other 

improvements are mentioned as future work. 
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Chapter 3. Network Threat Class Taxonomy 

The current chapter is divided in multiple subsections enumerating threat classes, and the taxonomy 

that we define in this chapter is mostly based on our experience on network attacks, as well as 

knowledge acquired from multiple references [67]-[137] marked as “network attack research reference”. 

 

Threat Class Label OSI Layer Threat 

3.1. Host Discovery 

3.1.1 L2 ARP Host Discovery 

3.1.2 L3 IP Protocol Host Discovery 

3.1.2 L3+ ICMP Host Discovery 

3.1.4 L4 UDP Host Discovery 

3.1.5 L4 TCP Host Discovery 

3.2. Port Scan 

3.2.1 L4 UDP Port Scan 

3.2.2 L4 TCP Port Scan 

3.2.3 L4 SCTP Port Scan 

3.3. L3 Service 

Discovery 

3.3.1 L3 IP Protocol Scan over IPv4 (-sO) 

3.3.2 L3 IP Protocol Scan over IPv6 

3.4. L7 Brute Force 

Attack 

3.4.1 L7 FTP Brute Force Attack 

3.4.2 L7 SSH Brute Force Attack 

3.4.3 L7 Telnet Brute Force Attack 

3.4.4 L7 SMTP Brute Force Attack 

3.4.5 L7 POP3 Brute Force Attack 

3.4.6 L7 RDP Brute Force Attack 

3.4.7 L7 HTTP-application Brute Force Attack 

3.4.8 L7 HTTPS-application Brute Force Attack 

3.5. L3+ Resource 

Exhaustion Denial 

of Service Attack 

3.5.1 L3+ ICMP Denial of Service Attack 

3.6. L4 Resource 

Exhaustion Denial 

of Service Attack 

3.6.1 L4 UDP Denial of Service Attack 

3.6.2 L4 TCP Denial of Service Attack 

3.6.3 L4 SCTP Denial of Service Attack 

3.7. HTTP Resource 

Exhaustion Denial 

of Service Attack 

3.7.1 L7 HTTP Low and Slow Attack 

3.7.2 L7 HTTP Flood 

3.8. Logical Denial 

of Service Attack 

3.8.1 L1-7 Network Protocol Exploitation 

3.8.2 L7 Application Layer Logical Exploitation 

TABLE 1. THREATS AND LABELS BY THREAT CLASS. 
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The main objective of this chapter is establishing a technical taxonomy on common network threat 

classes, establishing a strong ground truth concept for each. The following concepts, used in this 

chapter, relate as follows: 

• A Threat Class is implemented by one or more Threats. 

• A Threat Class encompasses one or more Generic Attack Techniques. 

• A Threat Class has an Intent. 

• Intent describes the main objectives behind a Threat Class. 

• A Threat encompasses one or more Specific Attack Techniques. 

• A Generic Attack Technique is implemented by one or more Programs. 

• A Specific Attack Technique is implemented by one or more Programs. 

• Program Applicability describes criteria for acceptable Programs. 

Table 1 shows each threat considered by each threat class, as well as their labels, which we use to 

refer to them in each of the following subsections. In the context of this chapter only, labels in-

between square brackets are used to refer to their associated threat classes and threats. 

 

3.1. L2-L4 Threat Class: Host Discovery 

Intent: Probe multiple selected hosts to find active ones. 

Generic Attack Technique(s): 

• CIDR Selection - the attacker probes multiple hosts contained by a network range written in the 

Classless Inter-Domain Routing (CIDR) notation. [3.1] 

• Host Range Selection - the attacker probes multiple hosts by specifying a range of IP 

addresses. [3.1] 

Specific Attack Technique(s): 

• ARP Ping Scan (-sn -PR) - within a Local Area Network (LAN), the attacker sends an ARP 

request to a destination MAC address, which can either be a single MAC address, a multicast 

MAC address or the broadcast MAC address (the most common). If any device is listening on 

those channels, it will respond (given a normal system configuration) to the request with a valid 

MAC address associated with the IP, according to its ARP table, given that default dynamic 

ARP table entries are enabled. This scan is very powerful to find hidden devices in a network, 

since ARP requests will very likely be responded to by whoever owns the requested information 

and is actively listening on those channels. In case of a response, we have confirmation that 

the host is active, unless the respondent host had ARP table entries that should already have 

expired or, in a more unusual case, if the respondent host was ARP spoofed. [3.1.1] 

• IP Protocol Ping (-sn -PO) - for each host, the attacker sends multiple raw IP packets containing 

the IP protocol number in the IP header. For example, the attacker can send six raw IP packets, 

each containing a different protocol: ICMP (protocol 1), IGMP (protocol 2), IP-in-IP (protocol 4), 

TCP (protocol 6), UDP (protocol 17) and SCTP (protocol 132). This method looks for either 

responses using the same protocol (host supports protocol) or ICMP protocol unreachable 

messages (host doesn't support protocol), both indicating that the target host is alive. [3.1.2] 
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• ICMP Echo Request Scan (-sn -PE) - for each host, the attacker sends an ICMP type 8 packet. 

If the host responds with an ICMP type 0 packet, it is up, else the host may be down or the 

packet was filtered. [3.1.3] 

• ICMP Timestamp Request Scan (-sn -PP) - for each host, the attacker sends an ICMP type 13 

packet. If the host responds with an ICMP type 14 packet, it is up, else the host may be down 

or the packet was filtered. [3.1.3] 

• ICMP Information Request (does not exist in Nmap) - for each host, the attacker sends an ICMP 

type 15 packet. If the host responds with an ICMP type 16 packet, it is up, else the host may 

be down, this service is not implemented on the end device or the packet was filtered. [3.1.3] 

• ICMP Address Mask Request Scan (-sn -PM) - for each host, the attacker sends an ICMP type 

17 packets. If the host responds with an ICMP type 18 packet, it is up, else the host may be 

down, this service is not implemented on the end device or the packet was filtered. [3.1.3] 

• UDP Ping Scan (-sn -PU) - for each host, the attacker sends a UDP request to one given port. 

If the host responds, the host is up, else the host may be down or the packet was filtered. [3.1.4] 

• TCP SYN Ping Scan (-sn -PS) - for each host, the attacker sends a TCP request with the SYN 

flag activated to one test port. If the host responds with SYN-ACK or RST, the host is up, else 

the host may be down or the packet was filtered. [3.1.5] 

• TCP ACK Ping Scan (-sn -PA) - for each host, the attacker sends a TCP packet with the ACK 

flag activated to one test port. If the host responds with SYN-ACK or RST, the host is up, else 

the host may be down or the packet was filtered. [3.1.5] 

Program Applicability: Programs that can communicate over a network can eventually be used for host 

discovery, given that the protocols used to communicate are supported by the targeted machine. 

However, we will only consider a host discovery program as such if it complies with at least one of the 

following conditions: 

• It supports sending and interpreting ARP probes for multiple hosts 

• It supports sending and interpreting IP protocol probes (raw IP packets specifying the probed 

IP protocol number on the IP header) for multiple hosts 

• It supports sending and interpreting TCP, UDP and ICMP probes for multiple hosts 

• Optionally, these programs can also support other protocols such as SCTP. Also, the existence 

of any L5-7 protocol is irrelevant for this category. 

Programs - <name> (<L1-4 protocols supported>): 

• NetDiscover (ARP) 

• UnicornScan - 3.1.1, 3.1.2, 3.1.3 (TCP, UDP, ICMP) 

• Nmap - 3.1.1, 3.1.2, 3.1.3 (ARP, raw IP, ICMP, UDP, TCP, SCTP) 

• Ncat - 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.5 (UDP, TCP, SCTP) 

• Hping3 - 3.1.1, 3.1.2, 3.1.3, 3.1.4 (raw IP, ICMP, UDP, TCP) 

• AngryIPScanner - 3.1.1, 3.1.2 (ICMP, UDP, TCP) 

• Masscan - 3.1.1, 3.1.2 (ICMP, UDP, TCP) 

• ZMap - 3.1.1, 3.1.2 (ICMP, UDP, TCP) 
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3.2. L4 Threat Class: Port Scan 

Intent: Probe multiple ports of a given host, for a given L4 protocol. 

Generic Attack Technique(s): 

• Distributed Port Scan - multiple hosts probe multiple ports of a host. [3.2] 

• FTP Bounce Scan (-b) – this method allows an attacker to use a vulnerable FTP server as a 

proxy to port scan other hosts. This option is ideally used to target hosts in the same internal 

network as the FTP server, which will recognize it and accept packets coming from it, outputting 

responses that leak information about the port’s state. [3.2] 

Specific Attack Technique(s): 

• UDP Scan (-sU) - the attacker sends a UDP packet to each port. If the target responds with 

service data, the port is open. If the target does not respond, the port is either closed or filtered. 

[3.2.1] 

• TCP Connect Scan (-sT) - the attacker sends a TCP packet with the SYN flag bit set to each 

port. If the target responds with a SYN-ACK packet, the port is open and accepting requests: 

the attacker sends an ACK packet back; the target then responds with the service's specific 

data; then, the attacker sends a RST packet and closes the connection. If the target responds 

with a RST packet, the port is closed. Else, if the target does not respond, the port is filtered. 

[3.2.2] 

• TCP SYN Scan (-sS) - the attacker sends a TCP packet with the SYN flag bit set to each port. 

If the target responds with SYN-ACK, the port is open and accepting requests: the attacker 

sends a RST packet to close the connection. If the target responds with a RST packet, the port 

is closed. Else, if the target does not respond, the port is filtered. [3.2.2] 

• TCP ACK Scan (-sA) - the attacker sends a TCP packet with the ACK flag bit set to each port. 

If the target responds with a RST packet, the port is either open or closed, meaning that the 

port is unfiltered (not blocked by any firewall). Else, if the target does not respond or if it 

responds with certain ICMP error messages (ICMP Type 3; codes 0, 1, 2, 3, 9, 10 or 13), then 

the port is filtered. [3.2.2] 

• TCP Null Scan (-sN) - the attacker sends a TCP packet with no flag set to each port. If the 

target responds with a RST packet, the port is considered closed. Else, if the target does not 

respond, the port is either open or filtered. Finally, if the target responds with an ICMP 

"Destination Unreachable" error (ICMP Type 3; codes 0, 1, 2, 3, 9, 10 or 13) then the port is 

filtered. [3.2.2] 

• TCP Xmas Scan (-sX) - the attacker sends a TCP packet with the FIN, PSH and URG flag bits 

set to each port. If the target responds with a RST packet, the port is considered closed. Else, 

if the target does not respond, the port is either open or filtered. Finally, if the target responds 

with an ICMP "Destination Unreachable" error (ICMP Type 3; codes 0, 1, 2, 3, 9, 10 or 13) then 

the port is filtered. [3.2.2] 

• TCP FIN Scan (-sF) - the attacker sends a TCP packet with the FIN flag bit set to each port. If 

the target responds with a RST packet, the port is considered closed. Else, if the target does 
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not respond, the port is either open or filtered. Finally, if the target responds with an ICMP 

"Destination Unreachable" error (ICMP Type 3; codes 0, 1, 2, 3, 9, 10 or 13) then the port is 

filtered. [3.2.2] 

• TCP Idle Scan (-sI) - the attacker sends a SYN-ACK packet to a host, which will be dubbed 

"unaware host" because its technical name, "zombie", already associates to a completely 

different meaning in the botnet context. The unexpected SYN-ACK packet sent to the unaware 

host will be responded to with a RST packet sent back to the attacker, which has a certain IP 

ID associated with it. The attacker then sends a SYN packet to the target host with the source 

IP address spoofed with the IP of the unaware host, incrementing its IP ID by 1. On this moment, 

there are three possible scenarios: (A1) The target host responds to the unaware host with a 

SYN-ACK packet. Since the unaware host was not expecting the packet, it sends a RST packet 

to the target host, incrementing its IP ID by 1 again. (A2) The target host responds to the 

unaware host with a RST packet. The unaware host did not expect the packet, but since it isn't 

a packet that tries to initiate a connection (rather, abort it), the unaware host does not respond 

with any packet, thus not incrementing its own IP ID. (A3) The target host does not respond to 

the unaware host. As such, the unaware host does not receive any packet and, more 

importantly, it doesn't send a packet back, such as in scenario A2, thus not incrementing its IP 

ID. Continuation: Once any of the previous scenarios has taken place, the attacker will send a 

SYN-ACK packet to the unaware host, to which the unaware host will respond with a RST 

packet. The IP ID of the final RST packet will then be analyzed by the attacker for the existence 

of one of the following scenarios: (B1) The IP ID was incremented by 2 since the first packet 

received from the unaware host, which means that the target host responded with a SYN-ACK 

packet to the unaware host, so the probed port is open. (B2) The IP ID was only incremented 

by 1 since the first packet received from the unaware host, which means that the target host 

responded with a RST packet or did not respond at all, since in both situations the unaware 

host does not create any response packet for the target host. As such, from the attacker's 

perspective, the probed port might be either closed (scenario A2) or filtered (scenario A3). The 

attacker then repeats this whole process for each port that he intends to scan. [3.2.2] 

• TCP Maimon Scan (-sM) - this technique is named after its discoverer, Uriel Maimon. It starts 

with the attacker sending a TCP packet with the FIN and ACK flag bits set to each port. 

According to the RFC-793 (TCP RFC), the host should generate a RST packet in response, 

independently of the fact of the port being open or closed. However, Uriel found out that many 

BSD-derived systems simply drop this packet if the port is open. [3.2.2] 

• TCP Custom Scan (--scanflags) - the attacker sends a TCP packet with a custom set of TCP 

flag bits set to each port. The analysis depends on the TCP flag set used, as this means 

different possible responses and interpretations. It can be used, for example, to find bypassable 

edge-cases for firewalls and IDSs. [3.2.2] 

• Service/Version Detection Scan (-sV). Probes open ports to determine service/version info, 

meaning that the flow will be fully initiated to allow sending test packets to try and detect the 

version of the probed service based on the responses. 
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• SCTP INIT Scan (-sY) - the attacker sends an SCTP INIT packet to each port of the target host. 

An SCTP INIT-ACK response packet indicates that the port is open and, in this case, the 

attacker aborts the connection right after. An SCTP ABORT response packet indicates that the 

port is closed and, if no response is received after several retransmissions, the port is marked 

as filtered. [3.2.3] 

• SCTP "COOKIE ECHO" Scan (-sZ) - the attacker sends an SCTP COOKIE ECHO packet to 

each port of the target host. If the target host doesn't respond, the port is either open or filtered. 

If the target host responds with an SCTP ABORT packet, then the port is closed. [3.2.3] 

Program Applicability: Any program that communicates over a network can eventually be used for 

network host discovery using a certain network protocol, given that the probed protocol is present on 

the probed machine. Given the latter, we will only consider a host discovery program as such if at least 

one of the following conditions are true: 

• It supports sending and interpreting ARP probes for multiple hosts 

• It supports sending and interpreting raw IP packets specifying the probed IP protocol number 

on the IP header for multiple hosts (IP protocol probes) 

• It supports sending and interpreting TCP, UDP and ICMP probes (given their prevalence on 

today's networks) for multiple hosts 

• Optionally, these programs can also support other much less adopted protocols such as SCTP. 

Also, the existence of any L5-7 protocol is irrelevant for this category. 

Programs - <name> (<L1-4 protocols supported>): 

• UnicornScan - 3.2.1, 3.2.2, 3.2.3 (TCP, UDP, ICMP) 

• Nmap - 3.2.1, 3.2.2, 3.2.3 (ARP, raw IP, ICMP, UDP, TCP, SCTP) 

• Ncat - 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5 (UDP, TCP, SCTP) 

• Hping3 - 3.2.1, 3.2.2, 3.2.3, 3.2.4 (raw IP, ICMP, UDP, TCP) 

• AngryIPScanner - 3.2.1, 3.2.2 (ICMP, UDP, TCP) 

• Masscan - 3.2.1, 3.2.2 (ICMP, UDP, TCP) 

• ZMap - 3.2.1, 3.2.2 (ICMP, UDP, TCP) 

 

3.3. L3 Threat Class: L3 Service Discovery 

Intent: Find out information about a target host using raw L3 requests. 

Generic Attack Technique(s): Unspecified. 

Specific Attack Technique(s): 

• IP Protocol Scan over IPv4 (-sO) - the objective of this scan is determining what IP protocols, 

running over IPv4, are available in the target host. The attacker sends an IPv4 packet to the 

target host, with the "Protocol" field filled in the IPv4 header for each targeted IP protocol 

number. For example, the attacker can send six IP packets asking for six IP protocols support: 

ICMP (protocol 1), IGMP (protocol 2), IP-in-IP (protocol 4), TCP (protocol 6), UDP (protocol 17) 

and SCTP (protocol 132). If the attacker receives a response from the target host using the 

probed protocol or an ICMP "Destination Unreachable - Port Unreachable" error (ICMP Type 
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3, code 3), the protocol is supported (open). If an ICMP "Destination Unreachable - Protocol 

Unreachable" error (ICMP Type 3, code 2) is received, the protocol is marked as unsupported 

(closed). Other ICMP "Destination Unreachable" errors (ICMP Type 3; codes 0, 1, 9, 10, or 13) 

cause the protocol to be marked filtered. If no response is received after retransmissions, the 

protocol is marked as possibly supported (open or filtered). [3.3.1] 

• IP Protocol Scan over IPv6 - the objective of this scan is determining what IP protocols, running 

over IPv6, are available in the target host. The attacker sends an IPv6 packet to the target host, 

with the "Next Header" field filled in the IP header for each targeted IP protocol number. 

Similarly to the IPv4 protocol scan, if the attacker receives a response from the target host 

using the probed protocol then the protocol is supported. However, the interpretation of the 

responses will differ since ICMPv4 and ICMPv6 responses differ. [3.3.1] 

Program Applicability: Any program that allows sending and interpreting multiple L3 service-related 

probes. 

Programs - <name> (<L1-4 protocols supported>): 

• Nmap - 3.3.1, 3.3.2, 3.3.3 (ARP, raw IP, ICMP, UDP, TCP, SCTP) 

• Hping3 - 3.3.1, 3.3.2, 3.3.3, 3.3.4 (raw IP, ICMP, UDP, TCP) 

 

3.4. L7 Threat Class: L7 Brute Force Attack 

Intent: Test multiple credential combinations in a continuous manner to find out correct ones. 

Generic Attack Technique(s): 

• Traditional Brute Force Attack - test multiple passwords per few accounts. [3.4] 

• Reverse Brute Force Attack (a.k.a. Password Spraying Attack) - test few passwords per 

multiple accounts. [3.4] 

Specific Attack Technique(s): Unspecified. 

Program Applicability: Any program that supports brute-forcing credentials associated with a L7 

protocol. 

Programs - <name> (<L1-4 protocols supported>) (<L5-7 protocols supported>): 

• Ncat (UDP, TCP, SCTP) (None in particular) 

• Patator (TCP) (FTP, SSH, Telnet, SMTP, HTTP/HTTPS, RDP, AJP, POP, IMAP, LDAP, SMB, 

SNMP) 

• ncrack (TCP) (SSH, RDP, FTP, Telnet, HTTP/HTTPS, HTTP/HTTPS WordPress websites, 

POP3/POP3S, IMAP, CVS) 

• CrackMapExec (SMB) 

 

3.5. L3+ Threat Class: L3+ Resource Exhaustion Denial of Service Attack 

Intent: Overwhelm a target system with multiple malicious L3-level control queries, with the goal of 

exhausting that system's network and/or computational resources. 

Generic Attack Technique(s): 
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• Distributed Denial of Service (DDoS) Attack - use multiple systems to attack a target system. 

[3.5] 

• Reflection and Amplification Attack - the attacker uses systems which are running specific 

network protocols that respond to small requests with large responses. This fact provides an 

attacker the possibility of sending multiple spoofed requests with the target's IP address (as 

source address) and redirect those systems' responses to the target system, resulting in a 

Distributed Denial of Service (DDoS) attack. [3.5] 

Specific Attack Technique(s): 

• ICMP Ping (Type 8) Flood - the attacker sends multiple ICMP "Echo" (ICMP Type 8) request 

packets to the target system. [3.5.1] 

• ICMP Destination Unreachable (Type 3) Flood - the attacker sends multiple ICMP "Destination 

Unreachable" (ICMP Type 3) packets to the target system. Although this ICMP packet type is 

a response, since the ICMP protocol is not stateful, the packet will still be processed. [3.5.1] 

• ICMP Time Exceeded (Type 11) Flood - the attacker sends multiple ICMP "Time Exceeded" 

(ICMP Type 11) packets to the target system. Although this ICMP packet type is a response, 

since the ICMP protocol is not stateful, the packet will still be processed. [3.5.1] 

• Smurf Attack (specific "Reflection and Amplification Attack") - the attacker broadcasts spoofed 

ICMP "Echo Request" packets on a network, so that systems which are listening on the IP 

broadcast address send ICMP "Echo Reply" response packets to the target system. [3.5.1] 

• Fraggle Attack (specific "Reflection and Amplification Attack") - the attacker sends spoofed 

UDP requests to multiple systems at ports 7 (Echo Protocol) and 19 (CHARGEN Generator 

Protocol), so that those systems send ICMP "Destination Unreachable - Port Unreachable" 

(ICMP Type 3, code 3) response packets to the target system. [3.5.1] 

Program Applicability: Every program that is able to perform multiple malicious requests against a L3-

level control service (subset of L3+ services) to cause network and computational resource exhaustion 

on the targeted system, ultimately resulting in a lack of availability to legitimate L3-level control queries. 

Programs - <name> (<L1-4 protocols supported>): Hping3 (raw IP, ICMP, UDP, TCP) 

 

3.6. L4 Threat Class: L4 Resource Exhaustion Denial of 

Service Attack 

Intent: Overwhelm a target system with multiple malicious L4-level requests directed towards a network 

service using a given L4 protocol on a given port, with the goal of exhausting the target system's network 

and/or computational resources. 

Note: Since any received packet needs to be processed by the network stack of the targeted system, a 

denial of service attack may still occur against closed ports, which is why we often use the term "system" 

rather than "server", which designates a system running a network service usable by clients. We use 

the term "server" whenever the attack is only applicable against one. 

Generic Attack Technique(s): 
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• High-Rate Attack - quickly and continuously launch multiple requests against a target system. 

[3.6] 

• Distributed Denial of Service (DDoS) Attack - the attacker uses multiple systems to attack a 

target system. [3.6] 

• Reflection and Amplification Attack - the attacker uses servers which are running specific 

network protocols that respond to small requests with large responses. This fact provides an 

attacker the possibility of sending multiple spoofed requests with the target's IP address (as 

source address) and redirect those servers' responses to the target system, resulting in a 

Distributed Denial of Service (DDoS) attack. [3.6] 

• Low-Rate Attack - the attacker launches multiple L4-level requests against a target server and, 

for each established connection, slowly sends data back to the server to keep it holding to the 

connection as long as possible. [3.6] 

Specific Attack Technique(s): 

• UDP Reflection and Amplification Attack - the attacker sends multiple spoofed UDP packets to 

appear as if these packets originated from the target's network IP address, to multiple systems 

running UDP services. This results in those multiple systems reflecting large UDP response 

packets to the target's network, resulting in a Distributed Denial of Service (DDoS) attack. DNS 

and NTP are examples of UDP services that are very usually used to perform this kind of attack, 

but many others can be used as well. More recently, in February 2018, the Memcached service 

was used for this kind of attack with an unprecedented amplification factor. [3.6.1] 

• TCP SYN-ACK Reflection and Amplification Attack - the attacker sends multiple spoofed TCP 

packets to appear as if these packets originated from the target's network IP address, to 

multiple systems running TCP services. This results in those multiple systems reflecting TCP 

SYN-ACK response packets to the target's network, resulting in a Distributed Denial of Service 

(DDoS) attack. [3.6.2] 

• TCP SYN Flood Attack - the attacker sends multiple SYN packets to a target server, resulting 

in multiple SYN-ACK responses, only to never send any ACK back to the target server. This 

results in the target server maintaining multiple sockets occupied for the initiated half-open 

connections, resulting in a denial of service for legitimate clients who want to connect to those 

ports. [3.6.2] 

• TCP "Tsunami" Flood Attack - similar to the TCP SYN Flood attack, however sent packets 

contain garbage data to cause the server additional stress when processing each request. 

[3.6.2] 

• TCP Custom Flag Floods - the attacker sends multiple TCP packets with custom sets of TCP 

flags. Some already used attacks based on custom flag combinations are: URG-PSH-SYN 

Flood, URG-PSH-RST Flood, "All TCP Flags" Flood (Xmas Flood), ACK-SYN Flood, PSH-RST-

FIN Flood, URG-ACK-FIN Flood, among others. [3.6.2] 

• TCP Connection Flood - the attacker sends multiple SYN packets to a target server, resulting 

in multiple SYN-ACK responses, to which the attacker will respond with ACK packets ideally in 

the longest time possible before the server times out from the connection attempt. This results 
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in multiple longest-time connection initiations (3-way handshakes) between the attacker and 

the server to exhaust server's resources for the longest time possible, which the attacker may 

complement with additional measures to keep the connection active for the longest time as 

well. 

• TCP Connection Flood Stress (TCP Sockstress Attack 1) - similar to the TCP connection flood. 

[3.6.2] 

• TCP Zero Window Connection Stress (TCP Sockstress Attack 2) - the attacker initiates a TCP 

connection with the target server. The attacker sends zero-sized window TCP packets, begun 

to be specified in the last ACK packet of the 3-way handshake, expressing a false unavailability 

to receive any packets with a data size greater than 0 bytes. In response to the former, the 

server stores in memory all the data it has yet to send. The attacker will then continuously 

request the expected X-byte sized chunks at a specified rate and in specified intervals, which 

will optimally be the slowest rate and intervals at which the target server keeps the connection 

active, for the longest time possible and avoiding any timeout event. Since the server will have 

to hold on to the stored data, it will incur in excessive memory consumption. [3.6.2] 

• TCP Small Window Stress Attack (TCP Sockstress Attack 3) - the attacker initiates a TCP 

connection with the target server. The attacker sends small-sized window TCP packets, begun 

to be specified in the last ACK packet of the 3-way handshake, expressing a false unavailability 

to receive packets with a data size greater than X bytes (the Sockstress's framework defines 4 

bytes as the default window size). In response to the former, the server splits up the data it has 

yet to send into multiple X-byte chunks and stores it in memory. The attacker will then 

continuously request the expected X-byte sized chunks at a specified rate and in specified 

intervals, which will optimally be the slowest rate and intervals at which the target server keeps 

the connection active, for the longest time possible and avoiding any timeout event. Since the 

server will have to hold on to the data that it is very slowly being sent, it will incur in excessive 

memory consumption. [3.6.2] 

• TCP Segment Hole Stress (TCP Sockstress Attack 4) - the attacker initiates a TCP connection 

with the target server. The attacker sends 4 bytes to the beginning of the TCP window, then 

sends 4 bytes to the end of the TCP window, and then sets the windows size to zero. The 

network stack vulnerable servers may respond to the former attack by allocating multiple pages 

of kernel memory per connection made, incurring in excessive memory consumption. Note: this 

attack is yet unclear in its execution, it would need to be further analyzed. [3.6.2] 

• TCP Req Fin Pause Stress (TCP Sockstress Attack 5) - the attacker initiates a TCP connection 

with the target server. The attacker sends a L7 application payload (e.g. HTTP GET) inside a 

TCP PSH packet. The attacker then sends a FIN packet with a zero size window, to which 

vulnerable servers will not respond with a FIN-ACK packet to close the connection, but rather 

will maintain the connection open on their side and indefinitely keep the socket occupied on the 

FIN_WAIT_1 state (which means that the socket knows the remote computer has closed the 

connection, but it is still waiting for the local application that was using the socket to 

acknowledge the end of the connection and finally allow releasing the socket). [3.6.2] 
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• TCP Activate Reno Pressure Stress (TCP Sockstress Attack 6) - the attacker initiates a TCP 

connection with the target HTTP server, sends a L7 application payload (e.g. HTTP GET) inside 

a TCP PSH packet and sends three duplicate ACK packets. Note: it would be interesting to find 

more reliable information about this attack, however I could not find any more information on it. 

[3.6.2] 

• SCTP INIT Flood - the attacker sends multiple SCTP INIT packets to a target system that 

supports SCTP. [3.6.3] 

• SCTP Address Camping - the attacker connects to an SCTP server and "camps upon" or "holds 

up" a valid peer's IP address, preventing the legitimate peer from communicating with the 

server. This technique targets the SCTP's multi-homing feature and directly affects the peers' 

ability to establish a connection with the server. [3.6.3] 

• SCTP Reflection and Amplification Attack (dubbed SCTP Bombing Attack) 1, 2, 3, 4 and 5 – 

The five attacks are specified in RFC 5062 [3.6.3] 

Program Applicability: Every program that can perform multiple malicious requests against a L4 service 

or any application running over a L4 service to cause network and computational resource exhaustion 

on the targeted server, ultimately resulting in a lack of availability to legitimate clients. 

Programs - <name> (<L1-4 protocols supported>) (<L5-7 protocols supported>): 

• Ncat (UDP, TCP, SCTP) (None in particular) 

• Hping3 (raw IP, ICMP, UDP, TCP) (None in particular) 

• DoS Goldeneye (TCP) (HTTP/HTTPS) 

• DoS Hulk (TCP) (HTTP/HTTPS) 

• DoS Slowloris (TCP) (HTTP/HTTPS) 

 

3.7. L7 Threat Class: HTTP Resource Exhaustion Denial of 

Service Attack 

Intent: Overwhelm a target HTTP server with multiple malicious HTTP requests in order to exhaust its 

network and/or computational resources. 

Generic Attack Technique(s): 

• High-Rate Attack - quickly and continuously launch multiple requests against a target HTTP 

server. [3.7] 

• Distributed Denial of Service (DDoS) Attack - the attacker uses multiple systems to attack a 

target HTTP server. [3.7] 

• Reflection and Amplification Attack - the attacker uses servers which are running specific 

network protocols that respond to small requests with large responses. This fact provides an 

attacker the possibility of sending multiple spoofed requests with the target's IP address (as 

source address) and redirect those servers' responses to the target server, resulting in a 

Distributed Denial of Service (DDoS) attack. [3.7] 
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• Low-Rate Attack - the attacker launches multiple HTTP requests against a target server and, 

for each established connection, slowly sends data back to the server to keep it holding to the 

connection as long as possible. [3.7] 

Specific Attack Technique(s): 

• Slowloris - the attacker performs multiple HTTP persistent connections with the target server 

and slowly sends partial HTTP headers to it, which will keep it waiting for the receival of the 

rest of the headers. Timeouts are avoided by periodically sending "Keep alive" (not to confuse 

with the HTTP header value "keep-alive" used on the "connection" field) packets, i.e., "PSH-

ACK" TCP packets transporting partial headers on the data field. [3.7.1] 

• R.U.D.Y (R-U-DEAD-YET) - the attacker generates multiple POST requests to fill out form fields 

and tells the server how many bytes it should expect using the "Content-Length" HTTP header 

field. Then, the attacker sends small-sized TCP packets with the expected data at very slow 

rates, which results in the server holding on to the TCP socket to receive the rest of the data 

for a long time. [3.7.1] 

• HTTP GET Flood - the attacker sends multiple HTTP GET requests to the target server. [3.7.2] 

• HTTP POST Flood - the attacker sends multiple HTTP POST requests to the target server. 

[3.7.2] 

Program Applicability: Every program that is able to perform multiple malicious requests specifically 

against an HTTP application to cause network and computational resource exhaustion on the targeted 

server, ultimately resulting in a lack of availability to legitimate clients. 

Programs - <name> (<L1-4 protocols supported>) (<L5-7 protocols supported>): 

• DoS Goldeneye (TCP) (HTTP/HTTPS) 

• DoS Hulk (TCP) (HTTP/HTTPS) 

• DoS Slowloris (TCP) (HTTP/HTTPS) 

 

3.8. L1-7 Threat Class: Logical Denial of Service Attack 

Intent: Exploit a network service or application, vulnerable to a logic flaw, running on the target system. 

Exploitation of those is performed through specific actions that highly depend on very specific 

vulnerabilities. 

Generic Attack Technique(s): Unspecified. 

Specific Attack Technique(s): 

• Specially Crafted Packets - this technique involves the exploitation of a logical flaw in a network 

service that is actively running on the target system by sending a set of packets that, far from 

the expected format, are able to create a malfunction in the network service itself. This 

technique may make use of an unforeseen vulnerability in a designed network protocol or, if 

not on the protocol itself, a vulnerability in its code implementation. "Teardrop" (L3), "Ping of 

Death" (L3+), "Land" (L4 - TCP) and "SCTP Association Redirection" (L4 - SCTP) are examples 

of this technique. [3.8.1] 
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• Application Layer Logical Exploitation - this technique leverages logical mistakes in a specific 

application to cause its unavailability. As an example, if a server requires default guest user 

credentials to provide data to any user, all users must locally own those credentials (even if 

"under the hood") to authenticate to the server. As such, users might also be able to issue a 

password change request to the server to change those credentials if this "guest user" account 

is not treated with caution server-side. If no control is put in place for this situation, a single user 

could be able to deny every other user from authenticating to and receiving data from the 

servers, since every users' locally saved guest user credentials would not be valid anymore. 

[3.8.2] 

Program Applicability / Programs: Custom exploits. 
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Chapter 4. Network Objects 

We consider four different network objects: packets, flows, talkers, and hosts. Below, we describe the 

relations between these four network objects, before studying the datasets using these: 

• Legend: PS – Protocol Stack; SH – Source Host; SP – Source Port; DH – Destination Host; DP 

– Destination Port; H – Host; FSC – Flow Separation Counter.  

• Packet: Single unit. Defined by SH, SP, DH, DP and PS. 

• Flow: gathers SH-SP<->DH-DP forward and backward packets: 

o 5-tuple Flow: Includes the protocol stack in the flow definition but does not use the 

highest-layer protocol to logically separate it. A 5-tuple flow is orderly defined by SH, 

SP, DH, DP, PS. 

o 6-tuple Flow: Includes the protocol stack and uses the highest-layer protocol to logically 

separate the flow, thus requiring a sixth parameter (which we name “inner flow counter” 

or “flow separation counter”). In this work, an example of this is the TCP flow, which 

requires separation using the TCP flags and the TCP sequence (SEQ) and 

acknowledgement (ACK) numbers. A 6-tuple flow is orderly defined by SH, SP, DH, 

DP, PS and FSC. 

• Talker: gathers SH<->DH forward and backward 6-tuple flows. A talker is orderly defined by 

SH, DH and PS. 

• Host: gathers H forward and backward talkers. A host is orderly defined by H and PS. 

The Flow, Talker and Host objects we use are bidirectional and can also be referred to as Bi-Flow, Bi-

Talker and Bi-Host. We developed a network object extraction tool dubbed “NetGenes”, which 

generates these network objects from multiple packets (captured on a PCAP or PCAPNG file). Inspired 

by CICFlowMeter, it generates a high number of Flow features, both conceptual and statistical, as well 

as Talker (flow set) and Host (talker set) data points. 

 

4.1. NetGenes: network-object feature extraction tool 

The tool we developed, dubbed NetGenes, extracts features of the previous network objects: 

• Packets - use packet metadata only, encompassing OSI layer 1 to OSI layer 4. 

• Flows - aggregate packet features into flow features, considering the protocol stack. We 

consider two main protocol stacks: eth-eth-ipv4-udp and eth-eth-ipv4-tcp. TCP is implemented 

in the RFC way, meaning that we analyze TCP flags and the Sequence/Acknowledgment 

numbers to logically separate the incomplete 5-tuple TCP flow onto multiple 6-tuple flows. 

• Talkers – aggregate flow features into talker features and create new talker-based flow-set 

features. We consider “eth-eth-ipv4” as the protocol stack for talkers and hosts, and we uniquely 

identify them using their IPv4. 



36 
 

• Hosts – aggregate talker features into host features and create new host-based talker-set 

features. Host-based flow-set features can also be created but were not implemented. We 

consider “eth-eth-ipv4” as the protocol stack for talkers and hosts, and we uniquely identify 

them using their IPv4. 

Network Object Aggregated Network-object Features 

Flow Packet-set based features 

Talker Flow-set based features 

Host Talker-set (and flow-set) based features 

TABLE 2. NETGENES NETWORK OBJECTS AND FEATURE SOURCE. 

Note about Host features: we now think that host features should aggregate flow features as well and, 

perhaps, substitute most talker features. This conclusion comes from the fact that these host features 

have not been as useful as talker features because the latter ones are flow aggregations and we can 

directly query them to understand the underlying flow sets, whereas hosts provide information about 

the underlying talker sets but there is a lot of lost information on the flow sets. As such, we consider 

that hosts should also focus on direct flow aggregation (flow sets). We think that implementing host-

based flow-set features would be beneficial because it provides insight into each host individually and 

each of their flow sets, in a similar way that the talker does for each pair of talking hosts. 

NetGenes is an unfinished prototype, as it will be for as long as every threat class’s core feature 

is not implemented. Right now, it includes a lot of conceptual and statistical features on each network 

object which may not be at all relevant to detect any network attack by their core features, and it still 

does not include all the features that it needs to properly detect every threat class. These features are 

workable with Machine Learning, and have been designed to be worked with it as well (e.g., one-hot 

encoding of Boolean values), but successfully classifying threat class traffic is not as easy as splitting 

datasets in train and test datasets based on authors’ labels and trying multiple classifiers and 

regressors, it’s much more complicated than that to implement a generically efficient classifier. 

We define core features as features that can successfully describe the core scenarios of a 

network attack (generically encompassed by its threat class), with either low possibilities of evasion or 

severely affecting the attack’s effectiveness if not detected. The purpose of the NetGenes tool is to help 

us extract relevant information for detecting all the network attacks that we want to detect, which should 

be thought about by studying the threat classes that those attacks implement to extract the core features 

needed. As such, our long-term goal with this work is to continuously improve NetGenes towards 

encompassing more threat class core features, in all its extracted network objects. We also think that, 

by including non-core features that are useful for the detection of threat class instances, using statistical 

analysis and ML classifiers, we may be able to receive hints about what core features we should be 

looking for to implement in the tool. We recommend this as future work for more threat classes. 

NetGenes’ summarized architecture is presented in figure 2 below. The currently implemented 

network-object features are presented in the following annex tables: table 15 presents the packet 

features; table 16 presents the flow features; table 17 presents the talker features; table 18 presents 

the host features (not considering flow-set based features). 
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FIGURE 2. NETGENES SUMMARIZED ARCHITECTURE. 

 

4.2. Flow-set based analysis 

Until we thought about the Port Scan detection problem properly, we tried flow classification using ML 

algorithms, which was an improvement over packet- and signature- based detections for detecting new 

network attack instances. However, these methods can become outdated due to the fact that tools 

change overtime, and also because custom parameters can be given to these tools (and other methods 

as well) to alter the generated network traffic enough to be able to evade packet-based and signature-

based detection, as well as evade flow feature analysis methods that do not solely focus on the core 

features of the threat class. Additionally, since neither CICFlowMeter nor other pure “flow” extraction 

tools extract flow-set based features, most researchers usually only use flow-based features to feed ML 

models and study threat classes, which is a big loss of perspective on the information. 

We recommend that researchers attempt to extract flow-set based features, such as talker- and 

host- based features, to not only improve their detection results but, more importantly, to find the core 

features of the threat class, to improve their results based only on those core features, and to create 

their own rule sets to detect the threat class. The current state-of-the-art alternative is relying on multiple 

statistical flow-based features and attempt to model a whole threat class around those features. This 
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may achieve great results because ML models are capable of creating very complex rule sets within 

themselves, but the main problem is that these models will most likely rely in features that do not truly 

define the threat class because the train data is not broad enough to help the algorithm ignore non-core 

features. If the train data is not broad enough to create a generic model, it will result in network attacks 

falling undetected to the generated algorithm when they completely drop said non-core features. It is a 

common problem that a ML model will overfit around multiple non-core features based on the train 

dataset and achieve great results in the test datasets because of it when, in fact, the features used are 

completely irrelevant for the threat class itself, but just happen to be commonalities within the used train 

and test datasets that allows detecting those instances. 

The previous problem is the reason why, for ML-based research for network traffic analysis 

specifically applied to network attacks, if we want to find relevant commonalities that lead us to better 

understand a threat class, it is important to use broad train and test datasets with a preference for 

multiple scenarios within the same threat class using a single label between all scenarios. It is also very 

difficult to truly understand a ML classifier (unless good explainable AI methods are employed) and we 

cannot easily outline its limitations, as there is a lack of transparency in the way classifications are 

made. To avoid this issue, we created rule sets to directly detect the threat class and its core scenarios. 

 

4.3. NetGenes-based rule set guide 

Creating a rule set based on NetGenes features should follow some guidelines:  

• Avoid using time-based flow features - time-based flow features can be inaccurate. For 

example, if a network interface is being flooded with packets, it uses its processing buffer to 

store packets that it cannot process in the current time. This causes that a packet that arrives 

at a certain moment t will only be processed by the software in the moment t+n and, 

unfortunately, t+n is the one that is stored as the packet timestamp, rather than the real packet 

arrival time t. 

• Avoid using forward non-core flow features – forward flow features are controllable by the 

adversary. When we want to detect flows using these, it is best that these features are 

necessary (core features) for the malicious activity we want to detect. This guideline is 

commonly broken with ML models, as it will be more inclined to perform a complex form of flow 

fingerprinting based on its training data, which also breaks the following guideline. 

• Avoid using too many flow features – avoid using too many features, which usually leads to 

being too specific about what flows to detect. If this is needed, we should at least be aware that 

we are being too specific about it, as it is likely that it represents flow fingerprinting, which is 

more specific than flow profiling and should not be used to detect threat class flows but, instead, 

more specific flows (e.g., flows created by specific software). Then, we should improve the rule 

set in the future to generalize it enough for the threat class, when we confirm that the flows 

filtered by this rule will, with a high probability, belong to the target threat class. 
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4.4. Network traffic analysis: packets, flows and flow sets 

Some common examples of packet- and flow- based traffic analysis are: 

• Firewall Stateless rules – packet-based filtering rules, these rules use packet metadata to 

allow and route or to block those packets. 

• Firewall Stateful rules – flow-based filtering rules, these rules use packet metadata to maintain 

track of active connections, to allow or to block those connections. 

• Deep Packet Inspection (DPI) – packet-based detection technique, it uses the information 

present in a packet to detect it based on its transport protocol’s data. This technique allows 

parsing and creating detection rules for protocols above OSI-layer 5. In the case of decrypted 

traffic, it allows for signature-based detection based on L5-7 protocol specifics, as well as 

detection based on regex filters. 

• Flow Fingerprinting – flow-based detection technique, it uses information extracted from all 

the packets of a certain flow to identify the software that generated it. It works because many 

tools are consistent in the way that they generate unique identifiable network flows. It works on 

encrypted traffic because it exclusively uses packet metadata extractable below OSI-layer 4 to 

precisely identify these flows. It allows guessing flow (and packet) contents and context, even 

if encrypted, based on multiple L1-L4 features only. 

 

Flow fingerprinting can be differentiated from the flow-based detection techniques we employ in this 

work for its stronger specificity in analyzing a significant number of features which serve as a 

“fingerprint” identification of a given flow. Thus, if the considered flow features are not core to the threat 

class, an attack’s signature may become outdated in time; additionally, an adversary has the possibility 

of tampering with those non-core flow features to avoid detection, while still maintaining attack’s 

effectiveness. 

In this work, we employ flow-based detection methods focused on core flow features, aided by 

talker- and host- based detection methods that allow logically grouping flows by core flow-set features. 

We call this flow-set based detection. 

In this matter, perspective is a key element. Packet-based detection is comparable to trying to 

solve a labyrinth in the view of the player. Flow-based detection is like having a limited perspective of 

the labyrinth from above. Flow-set based detection is comparable to viewing the whole labyrinth, 

providing the context that is needed to improve the abstraction level and consequently facilitate problem 

solving. 

As an example, for port scan detection, a flow-based detection method does not retrieve or 

otherwise consider data points that are core to its detection, like the unique destination port count based 

on source host - destination host pairs (talker-based detection) or destination hosts (host-based 

detection), which flow-set based detection provides by default. 

 



40 
 

4.5. NetGenes: Limitations and Considerations 

Regarding talker features, we defined the direction of forward and backward flows using the talker’s 

direction as reference, which by convention is set as the direction of the first flow of the talker. On the 

other hand, regarding host features, we defined the direction of forward and backward talkers using 

each host as its own reference. This means that the number of forward talkers in a host represents the 

number of talkers whose first flow was initiated from/by the current host, while the number of backward 

talkers represents the number of talkers whose first flow was initiated to the current host. Although this 

convention is needed to properly define the talker and the host object, we should have also kept flow-

derived features in host features as they would allow us to answer simple host queries that cannot 

otherwise be answered by talker-derived features. For example, implementing flow aggregation by host 

enables us to answer the question “How many services did host A have accessed by other hosts?”. 

Answering the previous question is like answering the question “How many services did host B attempt 

to access on host A?”, already answered by “bitalker_fwd_biflow_n_unique_dst_ports” and 

“bitalker_bwd_biflow_n_unique_dst_ports” talker features, but it is relative to detecting a single host’s 

probed ports, which is only doable using the “bihost_bwd_biflow_n_unique_dst_ports” host feature. 

Why does this not work with talker’s unique destination ports data? Because, if there are multiple talkers 

for one host, we will not be able to determine the unique destination ports of each talker that overlap 

with one another; we need to use the flow object to directly fetch this data. 

 NetGenes TCP flows may disregard several packets because their flows were not initiated 

within the packet capture. This is not a limitation, but rather a choice of disregarding incomplete flows 

from the generated traffic data. 

The Talker and Host network objects, both considering flow-set and talker-set features, are not 

considered in most works, mainly due to the prevalence of ready-to-use data using only flow extraction 

tools. By performing flow aggregation, NetGenes facilitates traffic analysis.  
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Chapter 5. CIC-IDS-2017 analysis 

Based on the threat class definitions, we can define rule sets based on the extracted features to detect 

network attacks while leaving out benign traffic. 

Through-out this chapter, we will always sum 3 hours to the times defined by the Canadian 

Institute for Cybersecurity (CIC) in their CSV files and official website [145]. The times we consider are 

the ones that the PCAP files we used to extract the data show, which are in relation to the Lisbon time 

zone (WET). 

The CSV files we always refer to are the ones in the “GeneratedLabelledFlows.zip” file (md5: 

“5ca3f8f69e3514950681615824149973”, last seen 2020/12/10), since the “MachineLearningCSV.zip” 

(md5: “4f83860afbf29cac8163854095bf6cf7”, last seen 2020/12/10) file just contains the same CSV 

files with 79 columns instead of the original 85 columns, and we need the 6 removed columns (“Flow 

ID”, “Source IP”, “Source Port”, “Destination IP”, “Protocol” and “Timestamp”) to correctly map 

CICFlowMeter-generated flows to NetGenes-generated flows. There are 83 features in these 85 

columns, as “Flow ID” and “Label” are not considered features. 

We found there are CIC-IDS-2017 flows that are mislabeled in files that have mixed benign and 

malicious traffic, i.e., all files except Monday’s file. The following information was used to check the CIC-

IDS-2017 CSV dataset files for errors in labels, to crosscheck with the information supplied in the official 

CIC-IDS-2017 website [145], the official CIC-IDS-2017 paper [146] and their dataset: 

• TCP regular expression for CIC-IDS-2017 flow CSV files (IP protocol number “6”): “^[0-9]+\.[0-

9]+\.[0-9]+\.[0-9]+\-[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+\-.*\-6\,.*<CIC-IDS-2017 Label>” 

• UDP regular expression for CIC-IDS-2017 flow CSV files (IP protocol number “17”): “^[0-9]+\.[0-

9]+\.[0-9]+\.[0-9]+\-[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+\-.*\-17\,.*<CIC-IDS-2017 Label>” 

• NetGenes-generated bi-flows, bi-talkers and bi-hosts, and threat-class rule sets. 

Furthermore, the way we study the CIC-IDS-2017 dataset is per weekday. We use our different rule 

sets to understand what is going on each day and interpret the network traffic. We also point out some 

mislabeled network traffic that we have detected along the way, which we hope the Canadian Institute 

for Cybersecurity notices and eventually correct for future researchers. 

 

5.1. Metrics 

In this subsection, we define metrics for a binary classification contemplating only class and non-class 

results. A class may be represented any labelable object, such as a threat class, a threat, or a tool. A 

result may be represented by any network object, such as a host, a talker, or a flow. 

The classification results are grouped in: 

• True Positive results (abbreviated TP) are results correctly classified as class results. 

• True Negative results (abbreviated TN) are results correctly classified as non-class results. 

• False Positive results (abbreviated FP) are results incorrectly classified as class results. 

• False Negative results (abbreviated FN) are results incorrectly classified as non-class results. 

The classification results are made comparable by calculating the following metrics: 
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• Sensitivity or True Positive Rate (abbreviated TPR) is the rate of results correctly classified 

as class results among class results. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(1) 

• Specificity or True Negative Rate (abbreviated TNR) is the rate of results correctly classified 

as non-class results among non-class results. 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(2) 

• Fallout or False Positive Rate (abbreviated FPR) is the rate of results incorrectly classified as 

class results among non-class results. 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
(3) 

• Miss Rate or False Negative Rate (abbreviated FNR) is the rate of results incorrectly classified 

as non-class results among class results. 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
(4) 

We also calculate and use the following metrics: 

• Overall Accuracy is the rate of correctly classified results among all results. It can be 

interpreted as the probability that a classification is correct.  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(5) 

• Precision is the rate of correctly classified class results among results classified as class 

results. It can be interpreted as the probability that a class classification is correct. The higher 

the precision is, the more probable it is that a class-flagged instance is correctly classified, 

which means that a class classification will yield a high relevance. This is the most important 

metric to us because we only want to flag a network attack when we are certain that it occurred. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6) 

• F1-Score is the harmonic mean of Sensitivity and Precision. It weighs false positive and false 

negative results altogether. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(7) 

• Matthews Correlation Coefficient, abbreviated MCC, is used as a measure of the quality of 

binary (two-class) classifications. The classifications we perform are binary classifications 

because, even though we distinguish between multiple classes, our rule sets only consider 

class and non-class instances. The MCC is a very important metric to us because it takes into 

account the four result groupings (TP, TN, FP and FN) and weighs their sizes to provide a 

balanced metric. It shows that we can output a high number of suspicious instances (less FN, 

more TP), without compromising the TN and FP. Unlike the other considered metrics, the MCC 

varies between -1 (-100%) and 1 (100%). The higher the MCC is, the best we can provide 

correct (high TP over TP+FP results; high TN over TN+FN results) and complete (high TP over 

TP+FN results; high TN over TN+FP results) class and non-class classifications. 
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𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
(8) 

We are interested in maintaining a balance between all metrics and getting great results for those 

metrics. However, in many cases, it is not possible to do both, so we must focus on this thesis’s 

objective: “Helping network threat analysts studying and detecting network attacks”. We want to make 

sure that we can present the analyst with malicious instances only, ignoring others. As such, we want 

to maximize precision as much as possible, by maximizing TP and minimizing FP. 

5.1.1. Metrics applied to rule sets 

In practice, what does it mean to have a high-precision rule set and why is it so relevant? It 

means that what we care about the most is the true positives (TP) and false positives (FP). This happens 

because TP and FP results are the ones that an analyst will actually see when a rule set is applied. 

A rule set with a high precision will likely retrieve most output class flows, but may not retrieve 

a high rate of class flows in relation to all available class flows (i.e., high FNR). It provides enough 

information to pursue an investigation on more class flows (in other words, a high rate of true maliciously 

classified flows in relation to all truly malicious flows) by successfully identifying the talker and the hosts 

involved, as well as the identified set of malicious flows. Precision is our most important metric. 

On the other hand, a rule set with a high sensitivity (TPR) will likely retrieve a high rate of class 

flows in relation to all available class flows, but may result in a higher fallout (FPR). As such, we instead 

use the F1-Score (harmonic mean of the precision and the sensitivity) as our second most important 

metric. The F1-Score helps us evaluate rule sets in their ability to be correct (precision) at the same 

time that they are complete (sensitivity). 

Finally, we use the MCC as our third most important metric, to measure the rule set’s ability of 

correctly and completely classify class and non-class instances. 

 

5.2. Network Object Statistics 

From this point on, to avoid repetition, we implicitly refer to TCP network objects when referring to 

network objects, unless we explicitly refer to the UDP protocol. 

Using three different tools, NetGenes, Wireshark and CICFlowMeter, we generate statistics 

about this dataset in table 3. The following acronyms are used for this table: BT – Bi-Talker, UT – Uni-

Talker, T – Talker, C – IPv4 Conversation (Wireshark) w/ “eth && tcp” filter, F – Flow, P – Packet. 

By analyzing table 3, we can see that the way that we implemented the network objects we 

implemented in NetGenes is practically paired with Wireshark. Like Wireshark, we create a TCP flow 

considering the usual flag combinations that matter in the flow initiation and termination phases, i.e., 

SYN, ACK, RST and FIN packets. We also consider the TCP sequence and acknowledgement numbers 

to not only validate subsequent packets but, also, to find incorrectly ordered packets in the current 5-

tuple flow (excluding previously separated 6-tuple flows within it) and ignore the timestamp order. 

Considering the SEQ/ACK numbers significantly improved our TCP flow parsing and extraction. One 

key difference between our tool and Wireshark is that we chose to only consider the packets that belong 

to a valid detected flow, i.e., we only consider a flow and its packets if the flow has been initiated within 
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the current capture, so we will explicitly discard all flows and their packets if no initiation has been seen. 

This choice of ours might be able to explain the subtle difference between our network objects and 

Wireshark’s network objects, but since we want to be consistent in multiple data points, we choose to 

discard those incomplete flows. 

 

Day 

TCP/IPv4 (Eth-Eth-IPv4-TCP protocol stack) 

NetGenes Wireshark CICFlowMeter 

UT BT F P T / C F P T F P 

M
o

n
d

a
y

 

2
1
5
6

2
 

2
1
5
5

7
 

1
3
2
2

1
8

 

1
0
6
5

6
5
0

5
 

2
1
5
6

3
 

1
3
1
7

6
5

 

1
0
7
1

8
4
8

5
 

N
/A

 

3
0
5
4

2
3

 

1
0
6
6

5
3
3

2
 

T
u

e
s
d

a
y

 

1
9
1
8

7
 

1
9
1
8

3
 

1
0
9
1

6
4

 

1
0
6
5

8
2
9

6
 

1
9
1
8

8
 

1
0
8
1

9
5

 

1
0
7
1

0
3
2

0
 

N
/A

 

2
4
5
7

8
1

 

1
0
6
7

0
0
8

8
 

W
e
d

n
e

s
d

a
y

 

1
9
6
6

6
 

1
9
6
6

3
 

2
7
3
8

5
8

 

1
2
7
0

1
2
0

8
 

1
9
6
6

9
 

2
7
8
2

0
9

 

1
2
9
4

3
3
8

1
 

N
/A

 

4
8
9
4

5
0

 

1
2
8
9

6
5
2

0
 

T
h

u
rs

d
a
y

 

1
8
3
9

4
 

1
8
3
8

7
 

1
6
7
9

0
3

 

8
4
6
6

1
8
7

 

1
8
3
9

4
 

1
5
9
8

1
0

 

8
5
3
8

1
8
5

 

N
/A

 

2
7
4
6

2
4

 

5
6
8
9

8
6
5

 

F
ri

d
a
y

 

1
7
5
5

9
 

1
7
5
5

4
 

3
4
7
9

9
4

 

9
1
4
0

2
4
9

 

1
7
5
6

3
 

3
4
5
0

6
0

 

9
1
9
2

3
5
4

 

N
/A

 

5
1
4
2

7
6

 

9
1
5
5

1
6
9

 

TABLE 3. NETGENES, WIRESHARK AND CICFLOWMETER: PER-DAY TCP NETWORK-OBJECT 

STATISTICS. 

 

As for CICFlowMeter, our tool was initially inspired by it to make the most out of packet metadata. We 

grew our flow features and, further, we created two more network objects above the flow with their own 

features. In terms of network object parsing and extraction, CICFlowMeter does not implement the 

“Talker” network object and, by analyzing table 3 results, we can see that CICFlowMeter was not 

consistent with NetGenes and Wireshark results. Hence, since Wireshark is a tool that is in the industry 

for years and is commonly accepted by network and cybersecurity specialists, we consider this a good 

sign that NetGenes is on the right track of achieving a good flow definition. 
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Day Label 
TCP/IPv4 (Eth-Eth-IPv4-TCP protocol stack) Network Objects 

(Bi-)Talkers* Flows Packets 
M

o
n

d
a
y

 None 7 uni- and bi-talkers 10 10 

BENIGN 21561 uni-talkers and 21556 bi-talkers 132208 10656495 

T
u

e
s
d

a
y

 

FTP-Patator 172.16.0.1-192.168.10.50-TCP 2505 65004 

SSH-Patator 172.16.0.1-192.168.10.50-TCP 2935 161332 

None 13 uni- and bi- talkers 31 31 

BENIGN 19180 uni-talkers and 19177 bi-talkers 103693 10431929 

W
e
d

n
e

s
d

a
y

 

DoS slowloris 172.16.0.1-192.168.10.50-TCP 2089 41181 

DoS 

Slowhttptest 
172.16.0.1-192.168.10.50-TCP 1245 17524 

DoS Hulk 172.16.0.1-192.168.10.50-TCP 154659 2028799 

DoS GoldenEye 172.16.0.1-192.168.10.50-TCP 7458 105160 

None 14 uni- and bi- talkers 22 38 

BENIGN 19666 uni-talkers and 19663 bi-talkers 108384 10459210 

T
h

u
rs

d
a
y

 

Web Attack – 

Brute Force 
172.16.0.1-192.168.10.50-TCP 143 22371 

Web Attack – 

XSS 
172.16.0.1-192.168.10.50-TCP 23 5416 

Web Attack – 

Sql Injection 
172.16.0.1-192.168.10.50-TCP 9 94 

Infiltration 192.168.10.8-205.174.165.73-TCP 20 59754 

None 24 uni- and bi-talkers 95 192 

BENIGN 18387 uni-talkers and 18383 bi-talkers 167613 8378360 

F
ri

d
a
y

 

PortScan 172.16.0.1-192.168.10.50-TCP 158980 320401 

DDoS 172.16.0.1-192.168.10.50-TCP 68212 891556 

Bot 

192.168.10.12-52.6.13.28-TCP (label only) 

192.168.10.14-205.174.165.73-TCP 

192.168.10.15-205.174.165.73-TCP 

192.168.10.5-205.174.165.73-TCP 

192.168.10.8-205.174.165.73-TCP 

192.168.10.9-205.174.165.73-TCP 

192.168.10.17-52.7.235.158-TCP (label only) 

2208 12853 

None 5 uni- and bi- talkers 173 213 

BENIGN 17556 uni-talkers and 17552 bi-talkers 118421 7915226 

TABLE 4. NETGENES: PER-DAY PER-LABEL TCP NETWORK-OBJECT STATISTICS. 
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*The malicious bi-talkers are specified in this column, considering the dataset authors’ labels 

*The “label only” tag means that the malicious talker was not provided in the CIC-IDS-2017’s official 

website, but was present in the CIC-IDS-2017 authors’ labels 

CIC-IDS-2017 original dataset presents 158930 port scan flows, 158923 TCP flows (protocol field = 6), 

1 UDP flow (protocol field = 17) and 6 unspecified-protocol flows (protocol field = 0). Table 4 shows the 

TCP network-object statistics based on the mapping between CICFlowMeter and NetGenes flows 

before correcting any label: 

• Thursday’s traffic was corrected to 71809 port scan flows and 95804 benign flows 

• Friday’s traffic was corrected to 2206 bot flows and 118423 benign flows 

As for UDP, Friday’s flows were also corrected, from 1 labeled port scan flow to 195 port scan flows 

that should have been labeled as port scan. We talk about all these flows in more detail further. 

 

5.2.1. Benign Traffic Overview 

The issue with port-protocol correlation is not detecting an adversary that is making use of a certain 

protocol’s commonly used port to communicate using an unexpected protocol; if the traffic was 

decryptable, there would be no issue in this since we can validate the L5-7 traffic according to the used 

L5-7 protocol specification. However, since we assume encryption, we would not be able to validate 

this specification and would have to resort to flow fingerprinting to detect common L5-7 events in each 

supported protocol to provide us with some level of comfort about the fact that it is that protocol which 

is running. Even so, because we have considered Monday’s benign traffic as ground truth and we are 

interested in showing what CIC-IDS-2017’s benign traffic is constituted of, and not anything more, we 

assume port-protocol correlation in this subsection. 

For providing a small overview of CIC-IDS-2017’s traffic, we strictly overviewed Monday’s 

traffic, which according to the dataset authors is comprised only of benign traffic and is labeled as such 

in the dataset. Monday’s TCP benign traffic overview is presented in table 19 (annex), while Monday’s 

UDP benign traffic is presented in table 20 (annex). 

As can be seen in table 20, the most common UDP traffic was DNS traffic (UDP/53), as well as 

protocols such as Kerberos (UDP/88), NetBIOS (UDP/137), LDAP (UDP/389), NTP (UDP/123) and 

SSDP (UDP/1900). As for UDP/443 traffic, which produced the highest number of flows after DNS 

traffic, these communications were performed to external servers whose public IPs belong to Google, 

according to the WHOIS records at the time of writing. 

On the other hand, as can be seen in table 21, the most common TCP traffic was HTTPS 

(TCP/443) and HTTP (TCP/80) traffic, as well as protocols such as SSH (TCP/22), LDAP (TCP/389 

and TCP/3268), FTP (TCP/21), SMTP over SLL (TCP/465), Kerberos (TCP/88), SMB (TCP/445) and 

NetBIOS (TCP/139). 

  



47 
 

5.2.2. Bot ARES Traffic 

We have successfully converted the CTU-13 original dataset to a NetGenes-based dataset, as we did 

with CIC-IDS-2017. However, time restraints did not allow analyzing the CTU-13 dataset and properly 

defining the “Bot” threat class. Since we were also initially targeting this threat class, we present a 

simple run-down of the CIC-IDS-2017’s Bot flows based on flow connection states, which logically 

divides the traffic of the 5 bi-talkers marked as “Bot” by CIC-IDS-2017’s official website (5 out of 7) in 

two time-ranges: 13:04-14:02 and 14:03-15:59. The following are the Bot uni-talkers found: 

• 192.168.10.12-52.6.13.28-TCP Uni-Talker (UT-1) – 12:34:14-12:35:14, 1 flow, three-way-

handshake initiation & full-duplex connection established & graceful termination. Flow labeled 

as “Bot”, but it is not mentioned in the CIC-IDS-2017’s official website. 

• 192.168.10.5-205.174.165.73-TCP Uni-Talker (UT-2) – 13:29:01-14:01:44, 109 flows, three-

way-handshake initiation & full-duplex connection established & (graceful termination | null 

termination); 14:03:24-15:59:35, 210 flows, two-way-handshake initiation & rejected connection 

& abort termination (forward “syn” + backward “rst-ack”). 

• 192.168.10.8-205.174.165.73-TCP Uni-Talker (UT-3) – 13:36:11-14:02:03, 117 flows, three-

way-handshake initiation & full-duplex connection established & (graceful termination | null 

termination); 14:03:17-15:59:53, 420 flows, two-way-handshake initiation & rejected connection 

& abort termination (forward “syn” + backward “rst-ack”) 

• 192.168.10.9-205.174.165.73-TCP Uni-Talker (UT-4) – 13:04:14-14:01:44, 151 flows, three-

way-handshake initiation & full-duplex connection established & (graceful termination | null 

termination); 14:03:24-15:59:36, 210 flows, two-way-handshake initiation & rejected connection 

& abort termination (forward “syn” + backward “rst-ack”) 

• 192.168.10.14-205.174.165.73-TCP Uni-Talker (UT-5) – 13:24:29-14:01:43, 139 flows, three-

way-handshake initiation & full-duplex connection established & graceful termination; 14:03:23-

15:59:34, 210 flows, two-way-handshake initiation & rejected connection & abort termination 

(forward “syn” + backward “rst-ack”) 

• 192.168.10.15-205.174.165.73-TCP Uni-Talker (UT-6) – 13:06:55-14:01:59, 220 flows, three-

way-handshake initiation & full-duplex connection established & (graceful termination | null 

termination); 14:03:14-15:59:51, 420 flows, two-way-handshake initiation & rejected connection 

& abort termination (forward “syn” + backward “rst-ack”) 

• 192.168.10.17-52.7.235.158-TCP Uni-Talker (UT-7) – 14:20:40-14:21:41, 1 flow, three-way-

handshake initiation & full-duplex connection established & graceful termination. Flow labeled 

as “Bot”, but it is not mentioned in the CIC-IDS-2017’s official website. 

• All “Bot” flows were initiated to destination port TCP/8080, where the C2 server ran. 
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Timeline Uni-Talker Full-duplex 

Connection Flows 

Rejected Connection 

Flows 

12:34:14-12:35:14 UT-1 1 0 

13:04:14-14:01:44 UT-4 151 0 

13:06:55-14:01:59 UT-6 220 0 

13:24:29-14:01:43 UT-5 139 0 

13:29:01-14:01:44 UT-2 109 0 

13:36:11-14:02:03 UT-3 117 0 

14:03:14-15:59:51 UT-6 0 420 

14:03:17-15:59:53 UT-3 0 420 

14:03:23-15:59:34 UT-5 0 210 

14:03:24-15:59:35 UT-2 0 210 

14:03:24-15:59:36 UT-4 0 210 

14:20:40-14:21:41 UT-7 1 0 

TABLE 5. BOT ARES: UNI-TALKER TIMELINE ANALYSIS BASED ON FLOW STATES. 

Table 5 shows the Uni-Talker timeline of Bot ARES based on the full-duplex connection and rejected 

connection states: 

• The first (UT-1) and last uni-talker (UT-7) traffic, marked red, is labeled as belonging to Bot 

ARES traffic, but is never mentioned by the authors neither on CIC-IDS-2017 website nor on 

their support paper. 

• In the first time-range (13:04-14:02), marked bold, the C2 server is accepting connections from 

its bot victims and providing the fetched commands. The bot was fetching commands from the 

C2 server in 10-second intervals (occasionally using 100-second intervals instead). 

• In the second time-range (14:03-15:59), the C2 server was shut down and the system in which 

it was run now has closed the port; when the bot victims contact the system’s closed port, it 

responds with rst2-ack2 packets, rejecting all incoming connections. This traffic is correctly 

labeled in the dataset, but not mentioned on the website or the paper. The presented data 

indicates that the bot software continued to run on the victim hosts, consistently attempting to 

connect to the C2 server at port TCP/8080 even after 14:02. When a bot got their first rejected 

connection, they started consistently attempting to reach the C2 server in 100-second intervals 

instead, which kept consistently rejecting the connections. Curiously, in this time-range, each 

internal host repeatedly initiated a 210-multiple number of rejected-connection flows to the C2 

server (a single outside host), initiating and terminating flows at approximately the same 

timestamps between each other. 
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Bot ARES Discussion 

CIC-IDS-2017’s “Bot” traffic is very limited in comparison to CTU-13, but it allows understanding that 

there are noticeable patterns that may be exploited even though most of these patterns are based on 

the “Bot ARES” tool specificities and used configurations, rather than the “Bot” threat class itself. 

It could be interesting to consider detecting fixed communication timings (considering flow inter-

initiation and inter-termination timings), since these timings would give away the automated nature of 

the network traffic, but timings could eventually be randomized enough to make the bot traffic 

undistinguishable from human-generated traffic. Assuming that fixed timings are maintained and we 

just detect the traffic by timing, other benign automated tools would be detected that way as well. If we 

chose to detect bot traffic this way, all the rest of the benign automated network traffic would have to 

eventually be whitelisted for this type of analysis to be useful for an analyst. As such, this type of analysis 

based on timing would be perfect for a network that is continuously monitored by an analyst, who can 

whitelist the benign automated traffic of the network over time, in order to be able to distinguish and 

detect the malicious automated traffic as well based on this communication timing indicator (in this case, 

the network traffic generated by a bot). A more core indicator, however, would be the fact that a bot will 

try to consistently connect to its C2 server, independently of it being up or down (bot always needs to 

re-check if it is up again). This latter might be the most relevant takeaway from CIC-IDS-2017 Bot ARES 

traffic, as every other parameter results from specific configuration. 

 

5.3. Port Scan 

We start by remembering that a Port Scan’s intent is to “probe multiple ports of a given host, for a given 

L4 protocol”, leading us to create the TR-1 rule and filter talkers by their unique destination ports count 

using a fixed threshold. We use the previous rule to create the FR-TR-Default rule and filter flows for 

those talkers. Then, we create other flow rules to logically narrow down relevant flows within the talkers, 

given flow initiations and terminations, connection states, and more, that are common in port scans. 

5.3.1. Used nmap parameters 

The CIC-IDS-2017 authors mention that they have used the following nmap flags in the Friday’s flows: 

“-sS, sT, -sF, -sX, -sN, -sP, -sV, -sU, -sO, -sA, -sW, -sR, -sL, -sI, -b”. In the “Port Scan” threat class 

context, all these nmap flags used were previously mentioned/described, except for: 

• List Scan (-sL) – this option simply prints a list of hosts in the specified network range, so no 

traffic is generated. 

• TCP Window Scan (-sW) – this option does not generate new traffic, it just changes the 

interpretation of the scanned ports. Using this analysis method, the attacker may analyze the 

response packet to check whether a port is open: a positive window size indicates an open port 

and a zero-size window indicates a closed port; if the response packet time to live (ttl) is lower 

than the rest of the received RST packets the port is likely to be open. This applies to most 

systems, but there are other systems that may return the inverse. 
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• IP protocol scan (-sO) – traffic generated by this option belongs to the “L3 Service Discovery” 

threat class, since it consists of raw IPv4 packets (no L4 traffic) with no capabilities of probing 

a port (which is a L4 concept). 

• Ping scan (-sn): this option tells nmap to not do a Port Scan after host discovery. The “-sP” flag 

is just an alias for the “-sn” flag, which we use in the “Host Discovery” threat class. By default, 

it sends an ICMP echo request, TCP SYN to port 443, TCP ACK to port 80, and an ICMP 

timestamp request. 

• Service/Version Detection (-sR) – the “-sR” flag is just an alias for the previously described “-

sV” flag (Service/Version Detection) since March 2011 (before, it was used for the “RPC Scan”, 

which is now implicitly included in this option). 

5.3.2. Defining rules 

“Port Scan” Host rules: 

• (Unused rule) HR-1 – “Other hosts tried to access more than n network services of the host.”: 

(bihost_bwd_biflow_n_unique_dst_ports>n) 

“Port Scan” Talker rules: 

• TR-1 – “Source host tried to access more than n network services of destination host, or 

destination host tried to access more than n network services of source host.”: 

(bitalker_fwd_biflow_n_unique_dst_ports>n) | (bitalker_bwd_biflow_n_unique_dst_ports>n) 

Default Flow rules: 

• (Unused rule) FR-HR-Default – Filter flows for relevant backward uni-hosts: (bihost_bwd_id 

==bihost_id) 

• FR-TR-Default – Filter flows for relevant bi-talkers (dividable in forward and backward uni-

talkers): (unitalker_id==unitalker_fwd_id) | (unitalker_id==unitalker_bwd_id) 

“Port Scan” Flow rules: 

• FR-1 – “Flow was initialized by an unacknowledged connection request. Either the initialization 

packet did not properly reach the destination host, or any host in-between the source host 

(exclusive) and the destination host (inclusive) dropped the packet. No connection was 

established.”: biflow_eth_ipv4_tcp_initiation_requested_connection==1 

• FR-2 – “Flow was initialized in an incomplete manner, only completing a two-way handshake. 

In other words, source host requested a connection (syn1) and destination host acknowledged 

it (ack2), encompassing two connection possibilities: 1 – connection rejected, 2 – half-duplex 

connection established.”: biflow_eth_ipv4_tcp_initiation_two_way_handshake==1 

• FR-2.1 – “The destination host rejected the connection (rst2-ack2).”: FR-2 & 

biflow_eth_ipv4_tcp_connection_rejected==1 

• FR-2.2 – “A half-duplex connection was established, i.e., although the destination host 

accepted the connection request (syn2-ack2), the source host never acknowledged it (!ack3), 

as the third step of the three-way-handshake mandates.”: 

FR-2 & biflow_eth_ipv4_tcp_connection_established_half_duplex==1 
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• FR-2.2.1 – “The source host established a half-duplex TCP connection, just to abort it 

afterwards.”: 

(biflow_eth_ipv4_tcp_connection_established_half_duplex==1) & 

(biflow_eth_ipv4_tcp_termination_abort==1) & 

(biflow_fwd_eth_ipv4_tcp_n_active_rst_flags>0) 

• FR-3 – “A full-duplex connection was established and there was only 1 packet (syn2-ack2) that 

was sent by the destination host, before the source host aborted the connection.”: 

(biflow_eth_ipv4_tcp_connection_established_full_duplex==1) & 

(biflow_bwd_n_packets==1) & 

(biflow_eth_ipv4_tcp_termination_abort==1) & 

(biflow_fwd_eth_ipv4_tcp_n_active_rst_flags>0) 

We note that TR-1 source and destination hosts/ports are not based on packet direction, but on flow 

direction. Packet direction varies in a flow, so it would be a mistake to directly consider unique 

destination port counts if it was based in the packets, as you would capture both the source and the 

destination ports of the flow. As such, only after you have achieved a flow definition can you correctly 

define and extract talker features, and the same applies to flow-set based host features, such as the 

one presented in HR-1. 

The factor that makes the features in HR-1 and TR-1 core features is the fact that they are 

directly extrapolated from the very definition of port scan, which very basically consists in 

communicating with various ports to unveil their status. Similarly, all the flow rules define the core 

scenarios of a port scan: filtered port scans, closed port scans and open port scans. 

Results obtained using the host rules we defined, HR-1 and FR-HR-Default, are not presented, 

because the talker-based rules we defined, TR-1 and FR-TR-Default, were enough to achieve great 

results. Despite this, we further discuss this matter because the host rules can top the talker features 

when a single network attack is performed using multiple source IPs. 

5.3.3. Defining rule sets 

For studying the “Port Scan” threat class, we use the following flow rule sets: 

• RS1 – “TR-1 n=100, FR-TR-Default” – Flows whose bi-talkers have more than 100 unique 

destination ports. This rule is used in all further rule sets. 

• RS2 – “TR-1 n=100, FR-TR-Default & FR-1” – Flows that feature an unanswered connection 

request as flow initiation. It captures probes against filtered ports, which result in dropped 

connections. 

• RS3 – “TR-1 n=100, FR-TR-Default & FR-2” – Flows that feature a two-way-handshake as flow 

initiation. It captures probes against closed ports, which result in rejected connections, as well 

as probes against open ports, which result in half-duplex connections in most cases that do not 

require a full-duplex connection (e.g., Connect scan, Version scan, custom adversarial scan). 

• RS4 – “TR-1 n=100, FR-TR-Default & FR-3” – Flows that are initiated using a three-way 

handshake and result in an established full-duplex connection that is later aborted by the source 

host (who initiated it), without the destination host ever sending another packet other than the 
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syn2-ack2 packet. It captures “Connect Scan” and similar probes against open ports that are 

not very well known, which causes just a TCP full-duplex connection and nothing more except 

abort-terminating the flow. 

• RS5 – “TR-1 n=100, FR-TR-Default & FR-2.1” – Flows that feature a rejected connection. It 

captures probes against closed ports. 

• RS6 – “TR-1 n=100, FR-TR-Default & FR-2.2” – Flows that feature a half-duplex connection. It 

captures probes against open ports (except previously mentioned cases). 

• RS7 – “TR-1 n=100, FR-TR-Default & FR-2.2.1” – Flows that feature a half-duplex connection 

and, at the same time, are aborted by the same host that initiated the flow. It captures probes 

against open ports (except previously mentioned cases). 

• RS8 – “TR-1 n=100, FR-TR-Default & (FR-1 | FR-2)” – Flows that feature an unanswered 

connection request, a rejected connection, or a half-duplex connection. It captures probes 

against closed ports, filtered ports and open ports (except previously mentioned cases that 

require a full-duplex connection). 

• RS9 – “TR-1 n=100, FR-TR-Default & (FR-1 | FR-3)” – Flows that feature an unanswered 

connection request or a full-duplex connection. It captures probes against filtered ports and 

open ports. 

• RS10 – “TR-1 n=100, FR-TR-Default & (FR-2 | FR-3)” – Flows that feature a rejected 

connection, a half-duplex connection, or a full-duplex connection. It captures probes against 

closed ports and open ports. 

• RS11 – “TR-1 n=100, FR-TR-Default & (FR-1 | FR-2 | FR-3)” – Flows that feature an 

unanswered connection request, a rejected connection, a half-duplex connection or a specific 

full-duplex connection. It captures probes against closed ports, filtered ports and open ports 

(including a specific full-duplex connection case). 

 

PS Rule Set PS Flow Rules 
Port State 

Closed Port Filtered Port Open Port 

RS1 None N/A N/A N/A 

RS2 FR-1 NO YES NO 

RS3 FR-2 YES NO YES 

RS4 FR-3 NO NO YES 

RS5 FR-2.1 YES NO NO 

RS6 FR-2.2 NO NO YES 

RS7 FR-2.2.1 NO NO YES 

RS8 FR-1 | FR-2 YES YES YES 

RS9 FR-1 | FR-3 NO YES YES 

RS10 FR-2 | FR-3 YES NO YES 

RS11 FR-1 | FR-2 | FR-3 YES YES YES 

TABLE 6. PORT SCAN RULE SET SUMMARY. 
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5.3.4. File investigation 

Using the previously defined rule sets, we investigated each day’s file: 

• Monday: 

o UDP “Benign” traffic: we determined that a benign NetBIOS name service had been responding 

over udp/137, from time “12:01:14” to time “19:58:53”, from source host “192.168.10.12” to 

destination host “192.168.10.25”, from source port “137” to 161 different destination ports in the 

range “49173-49295”, as well as a more consistent flow of data to destination port “137”. See 

the “NetBIOS note” below the bullet points for further details. 

o No malicious activity was detected. 

• Tuesday: 

o UDP “Benign” traffic: we determined that a benign NetBIOS name service had been responding 

over udp/137, from time “12:02:18” to time “19:59:19”, from source host “192.168.10.50” to 

destination host “192.168.10.25”, from source port “137” to 188 different destination ports in the 

range “49184-49605”, as well as a more consistent flow of data to destination port “137”. See 

the “NetBIOS note” below the bullet points for further details. 

o No malicious activity was detected. 

• Wednesday: 

o UDP “Benign” traffic: we determined that a benign NetBIOS name service had been responding 

over udp/137, from time “11:46:29” to time “20:01:29”, from source host “192.168.10.50” to 

destination host “192.168.10.25”, from source port “137” to 167 different destination ports in the 

range “49184-49353”, as well as a more consistent flow of data to destination port “137”. See 

the “NetBIOS note” below the bullet points for further details. 

o No malicious activity was detected. 

• Thursday: 

o UDP “Benign” traffic: we determined that a benign NetBIOS name service had been responding 

over udp/137, from time “12:23:16” to time “20:01:55”, from source host “192.168.10.19” to 

destination host “192.168.10.25”, from source port “137” to 128 different destination ports in the 

range “49194-49401”, as well as a more consistent flow of data to destination port “137”. See 

the “NetBIOS note” below the bullet points for further details. 

o TCP “Port Scan” mislabeled traffic: we determined that a TCP Port Scan occurred, from time 

“17:00:32” to “17:00:46”, from host “172.16.0.1” to host “192.168.10.51”, from source port 

“50122” and “50133” to 997 different destination ports in the range “1-65389”. This occurrence 

was never mentioned by the authors. Regarding the rest of the traffic in the “172.16.0.1-

196.168.10.51-TCP” talker, 5 flows marked “Benign” were created to the HTTP port (tcp/80) 

from “16:14:21” to “16:14:22”, which are in fact “Benign” flows. Hence, in this 1 talker, we caught 

998 mislabeled NetGenes-generated flows which should have been marked as “Port Scan” 

instead of “Benign”. By using the TR-1 rule, we have successfully detected an unmentioned 

TCP port scan. We manually corrected these 998 flows as “Port Scan” afterwards. 

o TCP “Port Scan” mislabeled traffic: in the official CIC-IDS-2017 website, the authors state that 

the third “Infiltration” attack, dubbed “Infiltration – Dropbox Download”, divided in two steps, 
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occurs in Thursday’s “18:04-18:45” time range. The first step was correctly marked as 

“Infiltration”, but the second step, which was supposed to be a “Port Scan” using “nmap”, was 

marked as “Benign”. We determined that there were 11 TCP port scans launched against 11 

hosts, from time “18:05:14” to time “18:44:35”, from host “192.168.10.8” to 11 different internal 

hosts ("192.168.10.5", "192.168.10.9", "192.168.10.12", "192.168.10.14", "192.168.10.15", 

"192.168.10.16", "192.168.10.17", "192.168.10.19", "192.168.10.25", "192.168.10.50", 

"192.168.10.51"), from 451 different source ports in the range “33264-65243” to 1038 different 

destination ports in the range “1-65389”. The 11 bi-talkers encompass 73150 flows, of which 

2265 flows are not in the “18:05:14-18:44:35” time range, of which 74 flows that target the 

destination port 5060 (Session Initiation Protocol, SIP) are seemingly “Benign”. Hence, in these 

73150 flows, there were several mislabeled NetGenes-generated flows which should have 

been marked as “Port Scan” instead of “Benign”, which according to our previously mentioned 

manual labelling might be 70811 (73150 – 2265 – 74) “Port Scan” flows. In this manual labelling, 

on the filtered bi-talkers, we stumbled upon 813 flows with the source port range 1266-3215, 

which we were not sure about, so we still classified these as “Port Scan” as our base criteria 

only directed us to bi-talkers with the source host “192.168.10.8”, within the timings presented 

in CIC-IDS-2017’s official website. Since we are dealing with a very significant number of flows, 

it is quite difficult to manually label them in the most accurate way. We would either need the 

authors’ labels corrected or more specific details on this traffic to be able to be perfectly 

accurate. The TR-1 rule helped us detecting the network pivoting step (11 TCP port scans) of 

an on-going infiltration, along with the TCP port scan we described in the previous bullet-point. 

As a final step, we manually labeled the incorrect 70811 flows as “Port Scan” afterwards. 

• Friday: 

o UDP “Port Scan” mislabeled traffic: In the official CIC-IDS-2017 website, the authors state that 

the flag “sU” was used in Friday’s “18:11-18:12” time range, even though only 1 UDP flow that 

targeted the destination port tcp/123 was marked as “Port Scan” (CIC flow id “172.16.0.1-

192.168.10.50-38260-123-17”) in this file. We determined that a UDP port scan (“nmap” with 

“sU” flag) did occur, from time “18:11:11” to time “18:12:32”, from host “172.16.0.1” to host 

“192.168.10.50”, from source port ranges “38260-38268” and “38271-38276” (15 source ports) 

to 82 different destination ports in the range “42-65024”. Regarding the rest of the traffic in the 

“172.16.0.1-192.168.10.50-UDP” talker, 39 flows marked “None” targeted udp/21 and udp/22 

from “17:17:10” to “17:19:09”, while the remaining 34 flows marked “None” targeted udp/40125 

from “18:13:14” to “18:21:28”. Hence, in this 1 talker, there were 195 mislabeled NetGenes-

generated flows which should have been marked as “Port Scan” rather than “None” (meaning 

a lack of existence in the original dataset) to join the 1 flow correctly classified as a “Port Scan”. 

The TR-1 rule, once again, proved useful to finding labeling errors in the dataset. Weirdly, the 

1 UDP “Port Scan” flow was the only maliciously tagged traffic in the whole CIC-IDS-2017 

dataset. 

o UDP “Benign” traffic: we determined that a benign NetBIOS name service had been responding 

over udp/137, from time “12:01:23” to time “20:01:22”, from source host “192.168.10.50” to 
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destination host “192.168.10.25”, from source port “137” to 161 different destination ports in the 

range “49184-49401”, as well as a more consistent flow of data to destination port “137”. See 

the “NetBIOS note” below the bullet points for further details. 

o TCP “Port Scan” traffic: we determined that there was 1 TCP port scan launched, from time 

“16:05:34” to time “18:23:53”, from host “172.16.0.1” to host “192.168.10.50”, from 14140 

different source ports in the range “32768-64915” to 998 different destination ports in the range 

“1-65389”.  Finally, since this “Port Scan” is the only one that is correctly labeled by CIC, we 

tested our results with the original CIC-IDS-2017 labeled flows. 

“Benign” NetBIOS traffic: Even though there was more NetBIOS traffic, the above-mentioned 

NetBIOS flows were the ones that generated, by far, the most traffic to different multiple destination 

ports within the same bi-talkers. For an average of 8 hours per day, a new UDP flow was created within 

an exact 3-minute time span. NetBIOS traffic can be distinguished from a typical UDP port scan due to 

its UDP communication coming from NetBIOS reserved port “137” to dynamic destination ports over a 

significantly high time span, while maintaining a communication flow between source and destination 

ports udp/137. Since port scans may also be spanned over greater periods of times and be made to 

simulate the above port conditions, the rule is that any non-dynamic destination port different than 

udp/137 that is scanned from source port udp/137 of the same host should be flagged. This represents 

automated benign behavior that should either be treated in a higher layer than OSI layer 4 or be treated 

as an exception, given a real-world scenario where we may know where NetBIOS instances are 

running. This traffic can be seen marked yellow in table 22. 

Mislabeled “Port Scan” traffic: None of the previously mentioned mislabeled “Port Scan” traffic was 

detected or referenced by any related work that studied the CIC-IDS-2017 dataset. 

5.3.5. Applying the rule sets 

Before we apply our rule sets, we note that the threshold could be put lower in a real-world scenario, 

where we would know which exception cases needed to be handled. It is highly unusual that a source 

host accesses a lot of network services on a destination host (bi-talker level). Even a single destination 

host running more than 5 network services is not usual (bi-host level). In CIC-IDS-2017 files, we have 

traffic classified as “Benign” that is a product of CIC’s ML-based B-Profile tool, which is meant to 

generate “Benign” traffic. Unfortunately, by not considering source and destination hosts, although this 

tool seems to create a highly accurate definition of a “Benign” bi-flow, it does not create the most 

accurate “Benign” definition of bi-talkers and bi-hosts. In this file, among the 17554 bi-talkers, 4 bi-

talkers have [5-10] ports, 7 bi-talkers have [11-50] ports and 4 bi-talkers have [51-100] ports, with all 

their bi-flows marked as “Benign”. We still want to be able to detect these types of cases, so we believe 

that a fair threshold would be a maximum of 5 ports. With such a low threshold, a positive hit would not 

directly be considered as a “Port Scan” at the talker level, but rather a suspicion of a “Port Scan” that 

needs to be validated by an analyst and can lead to finding automated benign exceptions. Furthermore, 

the flow rules we implemented may also be applied to help the analyst distinguish benign bi-talkers from 

port scan bi-talkers. As for the B-Profile tool’s case, the fact that it constantly communicates with the 

same host for multiple network services should be handled as an exception put by an analyst who 

knows (or, a posteriori, gets to know) such a tool is performing queries from the same IP to multiple 
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services on a single host, as well as knowing the hosts which are running more than 5 network services 

and that, consequently, are prone to receive benign traffic in more than 5 ports. 

As a first step, we filter bi-talkers for the number of unique destination ports (TR-1 rule) using a 

threshold of 100. This means that talkers with bitalker_fwd_biflow_n_unique_dst_ports>100 or 

bitalker_bwd_biflow_n_unique_dst_ports>100 will match. Among the 17554 Friday talkers, there is only 

1 talker that matches this rule: “172.16.0.1-192.168.10.50-TCP”, active from “14:47:47” to “19:16:12”, 

with bitalker_fwd_biflow_n_unique_dst_ports=999. On Friday, this 1 talker is the only one that is marked 

as “Port Scan”, according to CIC-IDS-2017 labels and their official website. At this point, we have 

already determined that the host “172.16.0.1” was likely responsible for launching a Port Scan against 

the host “192.168.10.50”, filtering out 17553 (99.994%) of Friday’s talkers. 

If we use a threshold of 5 instead in the first step, we match 17 talkers. Here, in the worst-case 

scenario, the analyst does not know anything at all about the network and does not consider that there 

are multiple automated “Benign” network scripts running and accessing multiple network services on 

specific hosts. In this scenario, 17537 talkers (99.903%) are still filtered out. 

As a second step, we use the “bitalker_id” talker data column as filter for the flows (FR-TR-

Default rule), by filtering the “unitalker_id” flow data column for the bi-talker “172.16.0.1-192.168.10.50-

TCP” or, practically, filtering for both uni-talkers “172.16.0.1-192.168.10.50-TCP” and “192.168.10.50-

172.16.0.1-TCP” (in this case, the only uni-talker that exists is the first one, since this bi-talker doesn’t 

encompass any backward flow). Out of the 347994 flows, the bi-talker filter leads to 255794 filtered 

flows, which is an unusually high number of flows for a single bi-talker. 

Third, the “biflow_eth_ipv4_tcp_initiation_two_way_handshake” flow feature (FR-2 rule) is used 

to filter flows with a two-way handshake initiation (FR-2 rule), filtering flows whose connection is rejected 

by the server (port is closed, hence the connection is rejected with a RST packet), as well as flows that 

establish a half-duplex connection (port is open, server accepts the connection but client closes it before 

finalizing the three-way handshake). Additionally, in Port Scan scenarios, this half-duplex connection is 

usually aborted by the source host. The filter returns 158485 flows, of which 39 flows are marked 

“None”, 32 flows are marked “Benign”, and 158414 flows are marked “Port Scan”. 

With the previous filters (“TR-1 n=100, FR-TR-Default & FR-2” rules), we have successfully 

detected 158414 (99.644%) flows out of the 158980 “Port Scan” flows. The reason why we are not 

detecting the remaining 566 (0.357%) “Port Scan” flows is that the scans that require a three-way-

handshake initiation and a full-duplex connection will not be caught if the previous flow filter is applied, 

such as, for example, the “Connect Scan” and the “Service/Version Detection Scan”, which account for 

565 “Port Scan” flows, together with only 1 dropped “Port Scan” flow. 

Furthermore, if we further filter the 158485 flows, we can see that 158000 were rejected 

connections, while only 485 were established half-duplex connections: 

• Regarding half-duplex connections, the half-duplex connection filter returned 484 flows (due to 

a bug regarding corrupted packet timestamps messing with correct packet order, we suspect). 

This sole missing flow shares the same TCP flag features of the captured half-duplex 

connection flows, so we suspect it is a half-duplex connection like the others. The 1 sole flow 

we mentioned is marked “Benign”, while the initially filtered 484 flows are marked “Port Scan”. 
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• Regarding rejected connections, 39 flows are marked “None”, 31 are marked “Benign” and 

157930 are marked “Port Scan”. 

Above, we detailed the “TR-1 with n=100” rule, joined with the “FR-TR-Default” and “FR-2” rule 

variations, for detecting Friday’s correctly labeled “Port Scan” flows. We summarize the results we 

obtained for all rule sets which we automatically applied to the dataset, in the subsections below. We 

analyze Thursday traffic as well, using Thursday’s mislabeled “Port Scan” flows, which we manually 

corrected. After manually having manually labeled Thursday’s mislabeled port scan flows based on the 

file investigation we previously carried out, we can analyze our flow rule sets in the Thursday’s file as 

well. 

5.3.5.1. “Port Scan” Rule sets applied to Thursday 

 #Flows 

 TP TN FP FN 

RS1 71809 93748 2346 0 

RS2 30174 94060 2034 41635 

RS3 40987 96014 80 30822 

RS4 0 96094 0 71809 

RS5 40593 96041 53 31216 

RS6 393 96067 27 71416 

RS7 1 96094 0 71808 

RS8 71161 93980 2114 648 

RS9 30174 94060 2034 41635 

RS10 40987 96014 80 30822 

RS11 71161 93980 2114 648 

TABLE 7. THURSDAY: “TR-1 N=100” FLOW RULE SET RESULTS. 

 Flow Classification Metrics (%) 

 TPR TNR FPR FNR 
Overall 

Accuracy 
Precision 

F1-
Score 

MCC 

RS1 100.000 97.559 2.441 0.000 98.603 96.836 98.393 97.197 

RS2 42.020 97.883 2.117 57.980 73.992 93.685 58.017 50.140 

RS3 57.078 99.917 0.083 42.922 81.595 99.805 72.623 65.600 

RS4 N/A 100.000 N/A 100.000 57.232 N/A N/A N/A 

RS5 56.529 99.945 0.055 43.471 81.337 99.870 72.194 65.228 

RS6 0.547 99.972 0.028 99.453 57.450 93.571 1.088 5.142 

RS7 0.001 100.000 0.000 99.999 57.232 100.000 0.003 0.282 

RS8 99.098 97.800 2.200 0.902 98.355 97.115 98.096 96.664 

RS9 42.020 97.883 2.117 57.980 73.992 93.685 58.017 50.140 

RS10 57.078 99.917 0.083 42.922 81.595 99.805 72.623 65.600 

RS11 99.098 97.800 2.200 0.902 98.355 97.115 98.096 96.664 

TABLE 8. THURSDAY: “TR-1 N=100” FLOW RULE SET METRICS. 

We only compare “TR-1 n=100” to avoid comparing both talker rules, which present very similar results. 

More information on the “TR-1 n=100” filtered bi-talkers can be found in table 21 (annex). 

Considering only the “TR-1 n=100” talker rule, we compare every flow rule set using three metrics. 

The results using “TR-1 n=100, FR-TR-Default”, which considers all flows of the filtered bi-talkers, 

achieves a high precision (96.836%) and the highest MCC (97.197%) in this case because most flows 

in the filtered bi-talkers are “Port Scan” flows. Amongst the “Port Scan” flow rule sets: 
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• The RS7 rule set (“FR-2.2.1”) achieved a perfect precision. In the context of Thursday’s flows, 

the only flow that had a half-duplex connection whose source host aborted it afterwards (“FR-

2.2.1”), was a Port Scan flow. 

• The RS11 (“FR-1 | FR-2 | FR-3”) and RS8 (“FR-1 | FR-2”) rule sets generically performed the 

best for Thursday’s flows with a shared MCC of 96.664%, with a precision of 97.115% and F1-

Score of 98.096%, and with a sensitivity of 99.098%. This means that Thursday’s Port Scan 

flows are mostly comprised of dropped (“FR-1”) and rejected (“FR-2”) packets. 

These mislabeled Thursday port scans were never found or evaluated by the considered related work. 

At the time of writing, we did not find any other paper that referenced this traffic as having been 

mislabeled, even though the authors talk about this traffic in their paper and in the dataset’s website. 

5.3.5.2. “Port Scan” Rule sets applied to Friday 

 #Flows 

 TP TN FP FN 

RS1 158980 92200 96814 0 

RS2 1 188089 925 158979 

RS3 158414 188943 71 566 

RS4 474 189013 1 158506 

RS5 157930 188944 70 1050 

RS6 484 189014 0 158496 

RS7 484 189014 0 158496 

RS8 158415 188018 996 565 

RS9 475 188088 926 158505 

RS10 158888 188942 72 92 

RS11 158889 188017 997 91 

TABLE 9. FRIDAY: “TR-1 N=100” FLOW RULE SET RESULTS. 

 Flow Classification Metrics (%) 

 TPR TNR FPR FNR 
Overall 

Accuracy 
Precision 

F1-
Score 

MCC 

RS1 100.000 48.779 51.221 0.000 72.179 62.152 76.659 55.061 

RS2 0.001 99.511 0.489 99.999 54.050 0.108 0.001 -4.726 

RS3 99.644 99.962 0.038 0.356 99.817 99.955 99.799 99.631 

RS4 0.298 99.999 0.001 99.702 54.451 99.789 0.595 4.016 

RS5 99.340 99.963 0.037 0.660 99.678 99.956 99.647 99.353 

RS6 0.304 100.000 0.000 99.696 54.454 100.000 0.607 4.069 

RS7 0.304 100.000 0.000 99.696 54.454 100.000 0.607 4.069 

RS8 99.645 99.473 0.527 0.355 99.551 99.375 99.510 99.097 

RS9 0.299 99.510 0.490 99.701 54.186 33.904 0.592 -1.504 

RS10 99.942 99.962 0.038 0.058 99.953 99.955 99.948 99.905 

RS11 99.943 99.473 0.527 0.057 99.687 99.376 99.659 99.372 

TABLE 10. FRIDAY: “TR-1 N=100” FLOW RULE SET METRICS. 

We only compare “TR-1 n=100” to avoid comparing both talker rules, which present very similar results. 

More information on the “TR-1 n=100” filtered bi-talkers can be found in table 21 (annex). 

Considering only the “TR-1 n=100” talker rule, we compare every flow rule set using three 

metrics. The results using “TR-1 n=100, FR-TR-Default”, which considers all flows of the filtered bi-
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talkers, is not enough to achieve a high precision in this case because there are a lot of other flows in 

the same bi-talker that are not “Port Scan” flows, specifically flows belonging to the DDoS attack 

generated with the LOIC tool (the tool’s acronym is mistaken twice, one in the CIC-IDS-2017’s official 

website and one in their paper). 

Additionally, note that the RS10 rule set (“FR-2 | FR-3”) generically performed the best for 

Friday’s flows. This means that most Friday flows are either rejected connections or full-duplex 

connections that were established and immediately terminated. We can also see that “FR-2” is the 

dominant flow rule, as its individual rule set (RS3) correctly classified many more flows than the “FR-3” 

rule set (RS4). Despite that fact, in the real world, flows are not always rejected when a Port Scan 

occurs. In this case, the authors turned off the firewall rules which would have normally caused more 

dropped packets. 

Friday’s flows are the only “Port Scan” flows that were correctly labeled and are also the only 

ones that are evaluated by other works. Since only Friday flows are considered for training and testing 

data, there is a chance that they might miss other types of Port Scan flows. For example, they might 

miss flows that are dropped since only 1 dropped Port Scan flow was presented in Friday’s flows. 

5.3.5.3. Common (Thursday + Friday) rule set evaluation 

 #Flows 

 TP TN FP FN 

RS1 230789 185948 99160 0 

RS2 30175 282149 2959 200614 

RS3 199401 284957 151 31388 

RS4 474 285107 1 230315 

RS5 198523 284985 123 32266 

RS6 877 285111 27 229912 

RS7 485 285108 0 230304 

RS8 229576 281998 3110 1213 

RS9 30649 282148 2960 200140 

RS10 199875 284956 152 30914 

RS11 230050 281997 3111 739 

TABLE 11. THURSDAY & FRIDAY: “TR-1 N=100” FLOW RULE SET RESULTS. 

 Flow Classification Metrics (%) 

 TPR TNR FPR FNR 
Overall 

Accuracy 
Precision 

F1-
Score 

MCC 

RS1 100.000 65.220 34.780 0.000 80.779 69.947 82.316 67.542 

RS2 13.075 98.962 1.038 86.925 60.540 91.070 22.867 24.413 

RS3 86.400 99.947 0.053 13.600 93.887 99.924 92.671 88.156 

RS4 0.205 100.000 0.000 99.795 55.356 99.789 0.410 3.361 

RS5 86.019 99.957 0.043 13.981 93.722 99.938 92.458 87.851 

RS6 0.380 99.991 0.009 99.620 55.432 97.013 0.757 4.405 

RS7 0.210 100.000 0.000 99.790 55.359 100.000 0.419 3.410 

RS8 99.474 98.909 1.091 0.526 99.162 98.663 99.067 98.309 

RS9 13.280 98.962 1.038 86.720 60.632 91.193 23.184 24.665 

RS10 86.605 99.947 0.053 13.395 93.978 99.924 92.789 88.326 

RS11 99.680 98.909 1.091 0.320 99.254 98.666 99.170 98.496 

TABLE 12. THURSDAY & FRIDAY: “TR-1 N=100” FLOW RULE SET METRICS. 
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According to CIC-IDS-2017’s labels, only Friday featured a port scan, however, according to CIC-IDS-

2017’s official website and our rule set, both days featured a port scan. Nevertheless, the above metrics 

join the only two days where a port scan was detected by our rule sets (the other three days were 

correctly discarded by the rule sets). We recall the simplified interpretations of the above listed metrics: 

• High Precision: in the studied context, most flows that are filtered by the rule set are Port Scan 

flows. 

• High F1-Score/MCC: in the studied context, most flows that are filtered by the rule set are Port 

Scan flows and there are not much more Port Scan flows left to detect. 

 

We summarize each “Port Scan” flow rule set (considering “FR-TR-Default” applied with “TR-1 n=100”): 

• The RS1 rule set (lack of flow rules), which captures every flow within the filtered talkers, has 

a precision of 69.947%. It has an F1-Score of 82.316%. It detects every Port Scan flow, but 

also wrongfully considers 34.780% of all Port Scan flows. 

• The RS2 rule set (“FR-1”), which captures every flow with an unanswered requested connection 

(likely dropped), has a precision of 91.070%. Its low F1-Score (22.867%) reflects the fact that 

it only detects 13.075% of all Port Scan flows. 

• The RS3 rule set (“FR-2”), which captures every flow initiated with a two-way handshake, has 

a precision of 99.924%. It has an F1-Score of 92.671%, the highest F1-Score for a single flow 

rule, detecting 86.400% of all Port Scans. 

• The RS4 rule set (“FR-3”), which captures every flow that had a full-duplex connection that is 

later aborted by the source host, without the destination host ever sending another packet other 

than the three-way-handshake’s second packet, has a precision of 99.789%. Its low F1-Score 

of 0.410% reflects the fact that it only detects 0.205% of all Port Scan flows. 

• The RS5 rule set (“FR-2.1”), which captures every flow that was rejected, has a precision of 

99.938%. it has an F1-Score of 92.458%, detecting 86.019% of all Port Scan flows. 

• The RS6 rule set (“FR-2.2”), which captures every flow that had a half-duplex connection, has 

a high precision, so most instances classified as a Port Scan with this rule set were, in fact, a 

Port Scan. Its low F1-Score is low reflects the fact that it only detects 0.380% of all Port Scan 

flows. 

• The RS7 rule set (“FR-2.2.1”), which captures every flow that had a half-duplex connection 

whose source host aborted it afterwards, seems to be the most specific to port scan situations, 

and its 100.000% precision indicates just that. In fact, there might be no other reason for a host 

to open a half-duplex connection and abort it afterwards unless it was simply checking if the 

port was accepting connections. Its low F1-Score of 0.419% reflects the fact that it only detects 

0.210% of all Port Scan flows. 

• The RS8 rule set (“FR-1 | FR-2”) has a precision of 98.663%. It has an F1-Score of 99.067%, 

detecting 99.474% of all Port Scan flows. 

• The RS9 rule set (“FR-1 | FR-3”) has a precision of 91.193%. Its low F1-Score of 23.184% 

reflects the fact that it only detects 13.280% of all Port Scan flows. 
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• The RS10 rule set (“FR-2 | FR-3”) has a precision of 99.924%. It has an F1-Score of 92.789%, 

detecting 86.605% of all Port Scan flows. 

• The RS11 rule set (“FR-1 | FR-2 | FR-3”) has a precision of 98.666%. With an F1-Score of 

99.170%, it has the highest F1-Score among all rule sets, detecting 99.680% of all Port Scan 

flows. 

Table 13 shows the “TR-1 n=5” talker rule being test tested with the most generically performant flow 

rule sets for each day: the “FR-TR-Default & (FR-2 | FR-3)” rule set for Friday and the “FR-TR-Default 

& (FR-1 | FR-2 | FR-3)” rule set for Thursday. The “TR-1 n=5” talker rule can be overviewed using table 

21 (annex) results to see how different thresholds affect the number of filtered talkers and filtered flows, 

while a more in-depth analysis is only possible through directly testing with the dataset. 

The results between bi-talker filters “TR-1 n=100” and “TR-1 n=5” were not very different, but 

we recall that it is important that an analyst should be aware of any “Benign” automated behavior in a 

network that they may need to analyze or monitor, in order to create relevant exceptions and obtain the 

best results out of the automated analysis. Given these exceptions, a threshold of 5 would still be able 

to match only the relevant bi-talkers. In conclusion, in a real-world scenario where an analyst is able to 

whitelist benign automated traffic, we could lower the threshold down and incur in no loss at all. 

5.3.6. Rule set discussion 

If we use an hourly time window for defining bi-talkers (and bi-hosts, if we use HR-1) rather than the 

daily time window used in this work, we can achieve better results because most traffic that correlates 

to each other is often very close in time, including in this dataset. For example, Friday’s “Port Scan” 

flows span over 41 minutes and, since the first few seconds, it is already detectable by the unique 

destination port count rule (TR-1 rule). 

In a real-world setup, a smaller time window can be used to greatly improve the classification 

overall metrics and precision, but it is very important that the smaller window does not become a 

“blindfold”: if not combined with lengthier time windows, such as the daily time window or an even 

Port Scan: Thursday, TR-1 n=5, FR-TR-Default & (FR-1 | FR-2 | FR-3) 

Results Flows Metric Value (%) Metric Value (%) 

TP 71161 Sensitivity / TPR 99.098 Overall Accuracy 98.354 

TN 93979 Specificity / TNR 97.799 Precision 97.114 

FP 2115 Fallout / FPR 2.201 F1-Score 98.096 

FN 648 Miss Rate / FNR 0.902 MCC 96.662 

Port Scan: Friday, TR-1 n=5, FR-TR-Default & (FR-2 | FR-3) 

Results Flows Metric Value (%) Metric Value (%) 

TP 158888 Sensitivity / TPR 99.942 Overall Accuracy 99.952 

TN 188940 Specificity / TNR 99.961 Precision 99.953 

FP 74 Fallout / FPR 0.039 F1-Score 99.948 

FN 92 Miss Rate / FNR 0.058 MCC 99.904 

TABLE 13. THURSDAY & FRIDAY: “TR-1 N=5” FLOW RULE SET METRICS FOR THE MOST 

GENERICALLY PERFORMANT “PORT SCAN” FLOW RULE SET ON EACH DAY. 
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lengthier one, a smaller window may miss network attacks spanned over greater time ranges. CIC-IDS-

2017 does not include any port scan that may be considered slow, but even if it did, as long as it 

scanned more than TR-1’s threshold ports per day, we would be able to detect it. If we want to be 

completely safe about detecting all port scan instances, a lengthier time window may be implemented, 

as well as working towards minimizing the TR-1’s threshold in each time window by correctly white-

listing all the “Benign” exceptions detected overtime. 

The metrics that we calculated tell us how our rule sets correlate with the classification problem 

at hand, given the studied datasets. The best part about using rule sets is that we know exactly what 

we are looking for and detecting, so we have complete control over what we want to detect. The hardest 

part about rule sets is that we need to effectively find the threat class’s core features and explicitly 

implement them; else, the reliable way to create performant classification systems would still be ML 

classifiers, even though they would be more prone to be bypassed by an adversary capable of 

customizing their flows. Examples of adversarial evasion to our rule sets are considered in the next 

subsection (5.3.7). 

Training ML models with network attack data that is inherently limited leads to limiting the ML 

models to that same inherently limited data. A ML model will train and test itself with data that is not 

broad enough to successfully measure its performance, by not considering unforeseen edge cases. 

This limitation issue does not come from a misconfiguration of the ML classification system, but from 

the train data which is not enough to emulate the data that an adversary would be able to try out to 

confuse the classifier. In this scenario, unless the ML model only attributes feature importance to threat 

class core features (which is very unlikely given that many statistical features are strongly correlated to 

these core features and NetGenes includes plenty statistical features), train data may not be enough to 

help the classifier correctly unmix these features. As such, in this same scenario, the only way to make 

the ML model focus on the core features would be doing manual feature selection, so we would still 

have to go through our threat class definitions to find their core features and explicitly implement core 

features from scratch. This results in not needing to deduce unimplemented core features anymore, as 

well as creating detection systems that can detect network attacks without having random vulnerabilities 

(against knowledgeable attackers, or simply against tools that do not respect the same non-core rules 

that the classifier incorrectly employs). However, the truth is that ML-based approaches can lead to 

great results detecting the class instances in the test datasets, while at the same time not yielding a 

true relevance of the used features and algorithms to really detect the network attack by its root causes, 

mainly due lack of data and a lot of non-core features. This means the measured classification results 

can be high for the considered data but will fail to flag different traffic that represents the same 

fundamental threat class while maintaining the same attack effectiveness. If the previous issue was not 

enough, there is also a need to make sure that class imbalance is not an issue by resampling (for 

example, reducing class samples to the least common denominator, as it was done in the previous 

work). The lack of data broadness issue and subsequent limitations will be there as long as there are 

endless traffic possibilities that do not affect attack effectiveness using non-core features. 

In summary, in a non-adversarial scenario, the train/test data will likely not be broad enough to 

detect every variation of a network attack, and, inclusively, may lead to a misclassification of similar 
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non-class traffic based on the non-core features it uses. In an adversarial scenario, this means that the 

utilized weaker features can eventually be tampered with by an adversary to make network attacks 

invisible to the classification system while still maintaining their effectiveness. 

A practical example of the previous issue is a ML model that trains with TCP flag counts from 

multiple datasets and will classify every flow that has certain combinations of TCP flag count ranges as 

malicious. While these combinations may be true for the contemplated training and test cases, an 

adversary can fool this classifier by, for example, sending more packets with the accounted TCP flags 

activated, or messing around with other random features if the training data (and, consequently, the 

classifier as well) had a strong bias towards these. With flow initiation, flow connection flow end states 

being correctly implemented in the data extraction phase, this is no longer an issue. Another practical 

example is the TCP SYN Flood Attack, which considering only flow features can be incorrectly detected 

as a Port Scan for its packet-set (flow) similarities, as we saw during the test phase of our previous 

work. However, by simply analyzing flow-set (talker/host) based data, which not many related works 

did, we can see that the considered flows consistently contact a specific port, which may or may not 

have an active service in this case. 

The solution to solve the previous issues is undertaking manual feature selection before 

employing any type of Machine Learning, as the real issue can be narrowed down to the automated 

feature selection that does not know any better other than the data that it is presented with and will 

choose features solely based on this data, so the issue is not the Machine Learning usage per se, but 

the assumption that the utilized data is complete enough to make the ML algorithm select the correct 

core features only among all the considered features. 

Moreover, without the correct extracted data features, as well as broad train and testing data, 

there could be many unforeseen blind spots to a classifier. Defining broad testing data is difficult for 

network attacks due to so much customization (switching tools, customizing parameters or customizing 

the sent network traffic in any given way) that is possible and, on the other hand, it is assumed that an 

adversary will try every possible way to bypass the detection mechanisms. Since we do not want to be 

blindly playing mouse and cat with our detection mechanisms, we avoid using classifiers which we do 

not have our complete control over. 

Also, it is of utmost importance that we think from scratch about possible adversarial moves 

against our detection mechanisms, independently of the detection mechanisms being rule sets or more 

complex ML algorithms. A critical difference between the last two is that rule sets are easier to 

understand and debug, and they also allow us to have a more fine-grained control over what exactly 

we want to detect. Although ML can help us detect useful features which hold a significant logical value 

for the classification problem, it will not do so unless we have implemented this feature at least partially: 

for example, if we had not implemented flow states, a well-trained performant ML model could indicate 

us that the syn and ack counts are relevant features, which may be seen as a hint that flow states are 

relevant. If we had not implemented the TCP flow flag counts, there would be no way that we could 

deduce that flow states were useful for detection by means of Machine Learning. However, in our case, 

the TCP flow state features were implemented because we thought that flag counts were not enough 

to tell what was happening for the TCP connection itself, and we wanted to be able to filter flows as if 
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we were working with blocking packets and connections in iptables. At the same time, by better studying 

how a port scan worked, we were able to logically match the important port scan scenarios to their 

associated core features. 

At the flow level, flow initiation types, connection states and termination types needed to be 

extracted because using TCP flag counts only is not enough to properly query the data for these types 

of features. However, we must note that even though the classifier may not have knowledge about the 

order in which the flags were used, as well as all their possible combinations between one another, it is 

very possible that a ML model can find a correlation between TCP flag counts and each type of 

connection state, which ultimately leads to correctly classifying a “Port Scan” flow correctly in most 

cases where an adversary does not properly customize their traffic. With these features explicitly 

implemented, a ML model could now use these features instead but, as we already mentioned, the 

used training/testing data would have to be broad enough to show us a clear difference in terms of 

tangible results. 

Finally, one important thing that needs to be pointed out is that the false-positive ratio in flow 

classifications is not as important anymore when using flow-set based rules. This is because the number 

of alerts regarding malicious talkers and hosts is going to become very limited now, whereas if we only 

apply flow classification, we may have a low false-positive ratio and still capture non-malicious talkers 

and hosts, creating the possibility of false alerts. Flows need to be analyzed in sets, not only individually. 

5.3.7. Adversarial evasion 

“Attackers could span the port scan over lengthy periods of time.” – solved by increasing the bi-talker 

time window. These lengthier bi-talkers should complement smaller time window bi-talkers, rather than 

replace them, as we have discussed before. 

“Attackers could start performing full-duplex connections for every open port.” – This situation messes 

with the FR-2.2 and FR-2.2.1 rules, which only detect half-duplex connections. We will still detect every 

closed port (FR-2.1 - rejected connection) and filtered port (FR-1 – dropped connection) attempts, which 

make up most of the flows. The FR-2.2 and FR-2.2.1 rules are very precise rules, but they depend on 

the source host to be fulfilled because only the source host has the power to decide if he wants to close 

the connection in this state, or if he wants to acknowledge the connection, thus creating a full-duplex 

connection, and only then terminating it. 

“The attacker could use multiple of their owned IPs to perform the port scan” – This situation requires 

using host’s backward flows’ unique destination port counts, while maintaining the same flow rule set.  

By answering the question “How many services did host A have accessed by other hosts?”, the 

“bihost_bwd_biflow_n_unique_dst_ports” host feature would be the most relevant feature to detect a 

distributed port scan. Since this type of port scan requires focusing on a single host’s destination ports, 

independently of the source host, it can only be reliably detected using host-based rules. Based on the 

CIC-IDS-2017 authors’ labels, the official website and our dataset analysis, a distributed port scan 

attack does not seem to have happened. 

“The attacker could perform a port scan to a limited number of ports only, enough to evade detection.” 

– this case would not be detected, but the effectiveness of the Port Scan is very limited. The adversary 

may only scan n-1 ports before the port scan is detected. To detect this, TR-1’s threshold would need 
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to be lowered. The lower the threshold, the lower the effectiveness of the Port Scan will be without it 

being flagged. However, it is expected that more false-positive results arise, especially false-positive 

talker results. For example, if false-positive flow results increase by 100, this is not a big deal given the 

flows’ order of greatness (FPR will slightly increase here), but if the talker rule set TR-1 is a weak rule 

set, false-positive talker results will also increase by a similar value, which means the FPR will greatly 

increase and, consequently, that would mean the analyst would have a lot of hosts to validate. 

“The attacker customizes multiple port scan packets in every possible way they can (e.g., add garbage 

data, use multiple flag combinations, slow-down the packet pace, all of the above, etc.)” – we attribute 

zero relevance to features other than the core features considered in the various port scan rule sets, 

and our classification will either remain the same in every rule set that is not slightly controllable by the 

adversary, or simply not output anything in the rule sets that are. Among the rule sets we defined, the 

high-precision flow rules “FR-3”, “FR-2.2.1” and “FR-2.2” can be fooled by a knowledgeable adversary: 

in order to bypass FR-3, the adversary needs to receive at least 1 packet after the full-duplex connection 

is established, which is achievable if he sends more packets (or by performing a graceful termination, 

which would require at least a second packet from the destination host); similarly, to bypass FR-2.2 and 

FR-2.2.1, the adversary may choose to perform full-duplex connections whenever a port is open, rather 

than the usual half-duplex connection, and send more packets each time to bypass the FR-3 rule as 

well again. Finally, bypassing a TR-1 with a low threshold, as well as the FR-1, FR-2 and FR-2.1 rules, 

is much more difficult for a scan that intends to find open ports on the network, unless the adversary 

can successfully guess the ports that are open (which obviously defeats the purpose of the port scan) 

all the times. This is why core features work very well. Also, in real-world scenarios, TR-1’s threshold 

can be safely lowered because most hosts will not usually access more than 1 or 2 different ports of a 

destination host in one single day (let alone in 1 hour, or any other smaller time window that we might 

want to use); in the cases where they go up the threshold, the flow rule sets can effectively eliminate 

false-positive results. 

 

5.5. Chapter Conclusions 

Works Detected Port Scans 
in CIC-IDS-2017 

Best Overall Accuracy for 

CIC-IDS-2017 Friday’s “Port 

Scan” Flow Classification 

Previous work (2018) [10] 1 99.73% 

Singh et. al, 

ICAESMT-2019 (2019) [148] 
1 99.9815% 

Stiawan et. al, 

IEEE Access 8, 132911–132921 

(2020) [149] 

1 99.7% 

Current work (2020) 13 99.953% 

TABLE 14. WORK COMPARISON IN CIC-IDS-2017 PORT SCAN DETECTION. 
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As we have already defined earlier in the previous chapter, core features are features that can 

successfully describe the core scenarios of a threat class, with either low possibilities of evasion or 

severely affecting that class’s effectiveness if not detected. We believe we have achieved this for the 

Port Scan threat class, as you can see by analyzing each rule’s effectiveness and the fact that the rules 

that can be evaded by the attacker represent the detection of a low percentage of flows – open port 

rules, which can always be made to look benign by truly accessing and using the service as a normal 

user would just to evade those rules at the L1-L4 level if the adversary intends to do so. The other rules, 

however, are more resilient, as they do not depend on L5-7 behavior. 

Table 14 shows a comparison between our current work and three other works that have 

applied their detection mechanisms to the CIC-IDS-2017 dataset. Our work detected the 12 port scans 

that occurred Thursday and were incorrectly labeled in the dataset, of which 11 were referenced by the 

dataset authors [145,146], when they refer to Thursday’s infiltration 2nd step in which 192.168.10.8 

performs a port scan to “all other clients”, and 1 port scan that was not referenced at all. NetGenes-

generated data and the rules we employed were effective to spot these types of imprecisions in the 

dataset. 

Furthermore, as other works, we detected the Port Scan that occurred on Friday, correctly 

detecting the only 2 hosts involved in this interaction. Even though our flow classification results were 

not as great as Singh et. al results [148], we tried hard to not flow fingerprint any flow, which is very 

hard to not do when working with Machine Learning unless manual feature selection is performed, due 

to the already explained issues with train and test datasets that do not allow accounting for many 

variants. 

Additionally, this work’s flow definition is different from the flow definition considered by most 

other works, as we have already shown in the beginning of this chapter: namely, for Friday’s TCP port 

scan flows, we are accounting a total of 158980 Friday TCP port scan flows extracted by NetGenes, 

while other works consider 158930 original port scan flows extracted by CICFlowMeter (158923 of 

which are TCP flows, 6 are marked as unidentified and 1 is the only correctly labeled UDP flow, as we 

have already detailed in subsection 5.2). Moreover, we also note that we did not detect the version 

detection scans, which would result in many rules that are essentially flow fingerprinting and would steer 

away from using core features only. If this traffic exists unencrypted, we should instead gather L5-7 

features by default and assess these new features as indicators rather than performing flow 

fingerprinting, as at that abstraction level they could be core features. We propose that as future work. 

Finally, even though the metrics we defined are important, it is more relevant to understand 

why we are getting such results. Understanding what our rules do is more important than the metrics 

they achieve in correctly classifying flows. Additionally, what we really want to do is to be able to safely 

state that a certain network attack has occurred, identify the attacker(s) and identify the victim(s), which 

can be performed using flow-set information (as we do with Port Scan’s HR-1 and TR-1). Additionally, 

a set of flows filtered by high-precision rule sets indicates that they are malicious with a very high 

certainty (even if those are not the only malicious flows), and this information will help the analyst further 

narrow down the network traffic that they need to focus on to undertake a deeper network analysis. 
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Chapter 6. Conclusion 

6.1. Main contributions and takeaways 

We developed our own tool, dubbed NetGenes, to extract useful information from the packets captured 

inside a network trace-file. The extracted information is independent of encryption because only the 

packet metadata is used to generate it. This information is then hierarchically organized in three abstract 

network concepts, which we dubbed “network objects”, responsible for logically aggregating traffic, each 

one with its own features. NetGenes provides a lot of conceptual and statistical network features, to 

arm an analyst or researcher with a readable feature format. This feature format enables a researcher 

to quickly acknowledge the fundamentals of the network communications captured inside the network 

trace-file, while each network-object features provide deeper insight on the network data. 

By developing NetGenes, we can use a set of flow features that is lengthier than many flow 

extraction tools, including conceptual and statistical features, usable to study and handle the data in the 

most complete way that we possibly can (considering the multiple tool’s development cycles this year). 

We also developed and extensively use the “Talker” network object as a flow aggregator, as well as the 

“Host” network object as a talker and flow aggregator, as well as their respective features. NetGenes is 

a tool that was inspired by CICFlowMeter (a tool made by researchers at the Canadian Institute for 

Cybersecurity, CIC), but at the moment includes slightly more flow features and adds the concept of 

flow-set based features on top, which is already present in tools that are used more by the network 

community like tranalyzer2 (which includes the “top talkers” concept and possibility of flow aggregation 

scripts) and WireShark (IPv4 and IPv6 “Conversations”). Summarily, Wireshark (and tshark for that 

matter) has the various network-object definitions well implemented, however it does not present us a 

set of features as rich as CICFlowMeter (as well as tranalyzer-2 and other tools that we’ve talked about) 

does, as it provides us a more human-friendly and efficient real-time visualization that does not consider 

the same number of features that we can consider to better study traffic. Our solution was to develop 

our own tool that tries to combine the best of Wireshark, which has a good definition of the concepts of 

flow, talker and host, to the best of CICFlowMeter, which gives us a vast set of data ready to analyze. 

The Talker object proved to be an important concept to analyze network traffic. It provides a 

relevant context for flows, grouping them by source host and destination host, and allows filtering useful 

flows based on talker-based flow-set features. 

Similarly, the Host object, also proved to be an important concept to analyze network traffic. It 

provides a relevant context for talkers and flows, grouping them by Host, and allows filtering useful 

flows based on host-based talker-set and flow-set features. 

With this work, we proved that ML-based classification is not a necessary requirement to 

achieve good results in network traffic analysis; in fact, we argue that it may lead to weaker classification 

systems in what it comes to being generic, not because of the algorithms, but because of the inherent 

lack of broadness in train and test data and leading to use non-core features. The features we 

implemented for flows, talkers, and hosts, provide a simple and effective way of querying and quickly 

analyzing traffic data. Machine Learning algorithms can always still be used for flow fingerprinting using 
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all the features that NetGenes provides (the only Boolean values are even provided one-hot encoded 

for this reason), but avoid providing higher relative importance to features other than the threat class’s 

previously thought-out and explicitly implemented core features. Moreover, we have not found any 

related work that tackles the correct classification of hosts against the false-positive flow results, except 

for us in the context of the previous work, where we recognized that we were correctly identifying most 

test dataset flows using ML models, as many other related works were doing (at the time, for other 

datasets), but a high number of hosts would still be incorrectly tagged as malicious as a result of the 

false-positive flow classifications. The “Talker” and “Host” object introduced in this work provide the 

needed features to avoid false-positive talker and host classifications. This matter is very important 

because a human analyst should be given a low number of alerts regarding hosts, talkers or flows, to 

further investigate only alerts that are truly relevant; if we often output incorrect alerts, a correct alert 

will likely be discarded with the rest (like the story “The Boy Who Cried Wolf”). The highest the precision 

of a rule set (given that it is correctly built with the specifics of the threat class in mind) is, the higher 

relevance an output alert has. Furthermore, by using manually created rule sets that directly query the 

data, we were able to study how each rule set can individually contribute to achieve great flow 

classification results. 

We do not need to worry about getting broad train datasets to prepare ML models for multiple 

tools. By focusing on the core features of a threat class, we do not require network traffic from multiple 

tools to model their common threat or threat class. Based on our previous work results, ML would be 

only able to help if we could gather a broad-enough dataset for every threat class we have to study; 

however, the problem is that software tools can be customized in endless ways, so the network traffic 

that is generated is different each time but still maintains the effectiveness of the malicious tool. This 

means that, to detect anomalous instances, it is not sufficient to extract multiple statistical features and 

delegate the classification job to the Machine Learning algorithm. It is our job to ensure the Machine 

Learning algorithms are being explicitly fed with broad data but, also, with core features that enable the 

“correct” detection of the threat class. Thus, rather than focusing on the algorithms we should use, we 

focused more on extracting important traffic features to best detect the threat classes we ought to 

detect. By successfully detecting the threat class itself, we are creating generic rules to detect threats 

and software tools that implement those threat classes, including new software tools that implement it 

which may not even have been created by someone. The practical application of a new tool or threat 

results in a completely new network attack, but we can still detect it because it is bound to maintain the 

threat class’s core features. This shows our work’s intent to fit in the anomaly detection category the 

best possible way that we can. 

Additionally, our rule sets are not restrained by class-imbalanced datasets, nor is it restrained 

by the relative size of different, often mutually exclusive, types of instances (e.g., the difference between 

the number of dropped, rejected and accepted connections in the “Port Scan” threat class). The first 

often results in a classification bias towards higher-sized classes, while the latter results in a modelling 

bias of the class towards higher-sized types of instances within the same class. The first is a widely 

researched issue in related works about ML-based network traffic analysis, while the latter is a more 

hidden issue. 
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Another important aspect of the proposed method is that we can more easily understand what 

went wrong with our classification system, when it misses TP results in favor of FN ones, by directly 

applying the individual rule set responsible for the results and analyzing the flows that are left out by it. 

Additionally, an analyst could also think about new rule sets that would be better for their case and 

easily modify the classification system to their liking, by considering new custom rules, tuning rule 

parameters and/or deactivating default rules. On the other hand, a classification system based on pre-

trained ML algorithms provides less of this type of flexibility. Additionally, a classification system based 

on our proposed flow rule sets provides more transparency than most ML-based works. Rather than 

specifying statistical features importance, we specify how we use them in high-precision rule sets. 

By filtering out irrelevant flow sets, talker-based and host-based rule sets not only improve the 

detection results at the flow level, but more important, substantially reduce suspicions on benign talkers 

and hosts. The previous matter is very important because when a single flow is deemed as malicious, 

it could be incorrectly assumed that its talker and the two hosts are malicious, when that flow cold have 

just been a false positive. This is the reason why false-positive results in anomaly-based intrusion 

detection systems is an issue, and we propose that talker features and host features are used in order 

to avoid misclassifications of talkers and hosts solely based on flow rule sets. 

 

6.2. Future Work 

As future work, we propose to associate other L1-4 threat classes to specific L1-4 network object 

features. If the previous network object features are not implemented, implement those features, create 

the rule sets and experiment with datasets. If no new ideas come up on how to best detect those threat 

classes, even after extensively studying them, we propose to try to use ML classifiers to study the 

targeted threat class by studying how the ML model classifies it with great accuracies. If the ML model 

has not overfit to the training dataset, the feature importance values can provide hints about the core 

features (e.g., SYN/ACK flag counts can hint about the importance of the flow initiation, among others). 

Finally, we enumerate other future work that is performable based on this work: 

• Further develop NetGenes: first, continuously include more L1-4 protocols and features; 

second, parse and extract relevant conceptual and statistical features from L5-7 protocols as 

well to enable working on the network behavior analysis capabilities of endpoint agents such 

as a HIDPS (Host-based Intrusion Detection and Prevention System) for a real-time use-case, 

or a malware sandbox analysis tools for a threat hunting use-case. Examples of this extraction 

can be seen in Cisco StealthWatch solution, which investigates TLS, DNS and HTTP in more 

depth to create conceptual features which are useful for threat identification. In theory, this will 

allow starting to tackle the detection of L5-7 threat classes by their core features rather than 

using ML-based classification to flow-fingerprint these threat classes. 

• For rule sets concerned with data from specific ports and the L5-7 protocols used: implement 

L5-7 protocol fingerprinting to validate direct protocol-port correlation, using L5-7 parsers for 

decrypted traffic and using statistical analysis- or ML- based L1-4 detection for encrypted traffic, 

similar to TCP/IP stack fingerprinting. 
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• Implement a THP (Threat Hunting Platform): an integrating part of a larger Threat Intelligence 

Platform (TIP), it intends to automate and facilitate most of the work performed by threat 

researchers when analyzing threat-related network traffic (in the form of a trace-file), mostly by 

simplifying common data science and artificial intelligence use cases specifically applied to 

threat analysis. It should integrate NetGenes data output into a database and should also allow 

applying semi-automated labelling (e.g., labelling by host, by talker or by flow) in a user-friendly 

way. Finally, by using datasets with a common feature set, researchers would be able to 

compare their training-set network traffic and labelling methods more easily, rather than 

focusing on getting comprehensive and logically organized feature sets, which is a very big 

challenge by itself. Furthermore, this platform should also allow researchers to assess what 

features of the supported ones are relevant for their specific threat-related use-cases. Finally, 

this would also enable researchers to deeply study network attacks without needing to program 

or script anything, but rather simply use the platform. 

• Generate explicit behavior-based classification rules to obtain white-box classification systems 

using advanced explainable AI methods [58, 59]. It could accelerate the discovery of core 

features by making the classification process as transparent as possible, while maintaining the 

great classification results ML offers for the default cases considered in the train dataset. The 

resulting rule sets would still need to be assessed against adversarial evasion. 

• Implement a low-level TIP: real-time system with an involved community capable of generating 

shareable behavior-based and signature-based rulesets and integrating a THP capability. 

• Implement a real-time NIDPS capable of using NetGenes’s extracted network-object features 

as a basis for building behavioral classification rules capable of operating at the flow-, talker- 

and host- levels. Furthermore, when it is available a real-time TIP with an involved community 

and support for shareable IoCs and signature and behavioral classification rules, add extra 

capability to the platform by integrating the NIDPS to enhance each constituency’s detection 

capabilities, with automatically updatable classifiers based on the collaborative threat 

intelligence gathering performed in each network. Such a capability aims to automatically 

protect each constituency network from threats detected in collaborative constituencies, thus 

unifying security among all entities. More in-depth, Packet-based filtering will be performed by 

the usual signature-based methods, using external blacklists and threat intelligence feeds, but 

its rules will be continually updated by the community because IoCs (IPs, domains and malware 

signatures) will be shared between constituencies when a real detection occurs, given a 

confirmation. Behavioral classification rules, at the flow, talker and host levels, obtained through 

explainable AI methods and signature-based packet-level rules will be automatically generated 

locally and shared with the TIP community, preventing the infection of collaborative networks. 

• Design a fully functional centralized SIEM architecture and implement it. It must be capable of 

integrating with the previous systems and being interoperable with other commonly used tools 

and standards. 
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Annex 

The annex is organized as follows 

Table 15. NetGenes Packet features. 

Table 16. NetGenes Flow features. 

Table 17. NetGenes Talker features. 

Table 18. NetGenes Host features (without flow-set based features). 

Table 19. Monday: TCP Benign Traffic Overview. 

Table 20. Monday: UDP Benign Traffic Overview. 

Table 21. TCP Bi-Talker Forward and Backward “Unique Destination Port Count” analysis. 

Table 22. UDP Bi-Talker Forward and Backward “Unique Destination Port Count” analysis. 

Table 21 and Table 22 Legend: 

• Abbreviations: V – Values; T – Talkers; F – Flows 

• Colors: Color Absence – Not “Port Scan”; Yellow – “Port Scan” Exception; Red – “Port Scan” 
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biflow_bwd_eth_ipv4_l4_n_data_packets biflow_any_eth_ipv4_l4_data_packets_per_sec 

biflow_fwd_eth_ipv4_l4_data_packets_per_sec biflow_bwd_eth_ipv4_l4_data_packets_per_sec 

biflow_any_eth_ipv4_l4_header_len_total biflow_any_eth_ipv4_l4_header_len_mean 

biflow_any_eth_ipv4_l4_header_len_std biflow_any_eth_ipv4_l4_header_len_var 

biflow_any_eth_ipv4_l4_header_len_max biflow_any_eth_ipv4_l4_header_len_min 

biflow_fwd_eth_ipv4_l4_header_len_total biflow_fwd_eth_ipv4_l4_header_len_mean 

biflow_fwd_eth_ipv4_l4_header_len_std biflow_fwd_eth_ipv4_l4_header_len_var 

biflow_fwd_eth_ipv4_l4_header_len_max biflow_fwd_eth_ipv4_l4_header_len_min 

biflow_bwd_eth_ipv4_l4_header_len_total biflow_bwd_eth_ipv4_l4_header_len_mean 

biflow_bwd_eth_ipv4_l4_header_len_std biflow_bwd_eth_ipv4_l4_header_len_var 

biflow_bwd_eth_ipv4_l4_header_len_max biflow_bwd_eth_ipv4_l4_header_len_min 

biflow_any_eth_ipv4_l4_data_len_total biflow_any_eth_ipv4_l4_data_len_mean 

biflow_any_eth_ipv4_l4_data_len_std biflow_any_eth_ipv4_l4_data_len_var 

biflow_any_eth_ipv4_l4_data_len_max biflow_any_eth_ipv4_l4_data_len_min 

biflow_fwd_eth_ipv4_l4_data_len_total biflow_fwd_eth_ipv4_l4_data_len_mean 

biflow_fwd_eth_ipv4_l4_data_len_std biflow_fwd_eth_ipv4_l4_data_len_var 

biflow_fwd_eth_ipv4_l4_data_len_max biflow_fwd_eth_ipv4_l4_data_len_min 

biflow_bwd_eth_ipv4_l4_data_len_total biflow_bwd_eth_ipv4_l4_data_len_mean 

biflow_bwd_eth_ipv4_l4_data_len_std biflow_bwd_eth_ipv4_l4_data_len_var 

biflow_bwd_eth_ipv4_l4_data_len_max biflow_bwd_eth_ipv4_l4_data_len_min 
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biflow_eth_ipv4_tcp_initiation_requested_connection biflow_eth_ipv4_tcp_initiation_two_way_handshake 

biflow_eth_ipv4_tcp_initiation_three_way_handshake biflow_eth_ipv4_tcp_connection_redropped 

biflow_eth_ipv4_tcp_connection_rejected 
biflow_eth_ipv4_tcp_connection_established_half_du

plex 

biflow_eth_ipv4_tcp_connection_established_full_duplex biflow_eth_ipv4_tcp_termination_abort 

biflow_eth_ipv4_tcp_termination_null biflow_eth_ipv4_tcp_termination_graceful 

biflow_any_eth_ipv4_tcp_n_active_fin_flags biflow_any_eth_ipv4_tcp_n_active_syn_flags 

biflow_any_eth_ipv4_tcp_n_active_rst_flags biflow_any_eth_ipv4_tcp_n_active_psh_flags 

biflow_any_eth_ipv4_tcp_n_active_ack_flags biflow_any_eth_ipv4_tcp_n_active_urg_flags 

biflow_any_eth_ipv4_tcp_n_active_ece_flags biflow_any_eth_ipv4_tcp_n_active_cwr_flags 

biflow_fwd_eth_ipv4_tcp_n_active_fin_flags biflow_fwd_eth_ipv4_tcp_n_active_syn_flags 

biflow_fwd_eth_ipv4_tcp_n_active_rst_flags biflow_fwd_eth_ipv4_tcp_n_active_psh_flags 

biflow_fwd_eth_ipv4_tcp_n_active_ack_flags biflow_fwd_eth_ipv4_tcp_n_active_urg_flags 

biflow_fwd_eth_ipv4_tcp_n_active_ece_flags biflow_fwd_eth_ipv4_tcp_n_active_cwr_flags 

biflow_bwd_eth_ipv4_tcp_n_active_fin_flags biflow_bwd_eth_ipv4_tcp_n_active_syn_flags 

biflow_bwd_eth_ipv4_tcp_n_active_rst_flags biflow_bwd_eth_ipv4_tcp_n_active_psh_flags 

biflow_bwd_eth_ipv4_tcp_n_active_ack_flags biflow_bwd_eth_ipv4_tcp_n_active_urg_flags 

biflow_bwd_eth_ipv4_tcp_n_active_ece_flags biflow_bwd_eth_ipv4_tcp_n_active_cwr_flags 

TABLE 16. NETGENES FLOW FEATURES. 
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bitalker_any_duration bitalker_any_n_biflows 

bitalker_fwd_n_biflows bitalker_bwd_n_biflows 

bitalker_any_biflows_per_sec bitalker_fwd_biflows_per_sec 

bitalker_bwd_biflows_per_sec bitalker_any_biflow_bytes_per_sec 

bitalker_fwd_biflow_bytes_per_sec bitalker_bwd_biflow_bytes_per_sec 

bitalker_any_biflow_n_packets_total bitalker_any_biflow_n_packets_mean 

bitalker_any_biflow_n_packets_std bitalker_any_biflow_n_packets_var 

bitalker_any_biflow_n_packets_max bitalker_any_biflow_n_packets_min 

bitalker_fwd_biflow_n_packets_total bitalker_fwd_biflow_n_packets_mean 

bitalker_fwd_biflow_n_packets_std bitalker_fwd_biflow_n_packets_var 

bitalker_fwd_biflow_n_packets_max bitalker_fwd_biflow_n_packets_min 

bitalker_bwd_biflow_n_packets_total bitalker_bwd_biflow_n_packets_mean 

bitalker_bwd_biflow_n_packets_std bitalker_bwd_biflow_n_packets_var 

bitalker_bwd_biflow_n_packets_max bitalker_bwd_biflow_n_packets_min 

bitalker_any_biflow_duration_total bitalker_any_biflow_duration_mean 

bitalker_any_biflow_duration_std bitalker_any_biflow_duration_var 

bitalker_any_biflow_duration_max bitalker_any_biflow_duration_min 

bitalker_fwd_biflow_duration_total bitalker_fwd_biflow_duration_mean 

bitalker_fwd_biflow_duration_std bitalker_fwd_biflow_duration_var 

bitalker_fwd_biflow_duration_max bitalker_fwd_biflow_duration_min 

bitalker_bwd_biflow_duration_total bitalker_bwd_biflow_duration_mean 

bitalker_bwd_biflow_duration_std bitalker_bwd_biflow_duration_var 

bitalker_bwd_biflow_duration_max bitalker_bwd_biflow_duration_min 

bitalker_any_biflow_iit_total bitalker_any_biflow_iit_mean 

bitalker_any_biflow_iit_std bitalker_any_biflow_iit_var 

bitalker_any_biflow_iit_max bitalker_any_biflow_iit_min 

bitalker_fwd_biflow_iit_total bitalker_fwd_biflow_iit_mean 

bitalker_fwd_biflow_iit_std bitalker_fwd_biflow_iit_var 

bitalker_fwd_biflow_iit_max bitalker_fwd_biflow_iit_min 

bitalker_bwd_biflow_iit_total bitalker_bwd_biflow_iit_mean 

bitalker_bwd_biflow_iit_std bitalker_bwd_biflow_iit_var 

bitalker_bwd_biflow_iit_max bitalker_bwd_biflow_iit_min 

bitalker_any_biflow_itt_total bitalker_any_biflow_itt_mean 

bitalker_any_biflow_itt_std bitalker_any_biflow_itt_var 

bitalker_any_biflow_itt_max bitalker_any_biflow_itt_min 

bitalker_fwd_biflow_itt_total bitalker_fwd_biflow_itt_mean 

bitalker_fwd_biflow_itt_std bitalker_fwd_biflow_itt_var 

bitalker_fwd_biflow_itt_max bitalker_fwd_biflow_itt_min 

bitalker_bwd_biflow_itt_total bitalker_bwd_biflow_itt_mean 

bitalker_bwd_biflow_itt_std bitalker_bwd_biflow_itt_var 

bitalker_bwd_biflow_itt_max bitalker_bwd_biflow_itt_min 
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bitalker_any_biflow_eth_ipv4_data_lens_total bitalker_any_biflow_eth_ipv4_data_lens_mean 

bitalker_any_biflow_eth_ipv4_data_lens_std bitalker_any_biflow_eth_ipv4_data_lens_var 

bitalker_any_biflow_eth_ipv4_data_lens_max bitalker_any_biflow_eth_ipv4_data_lens_min 

bitalker_fwd_biflow_eth_ipv4_data_lens_total bitalker_fwd_biflow_eth_ipv4_data_lens_mean 

bitalker_fwd_biflow_eth_ipv4_data_lens_std bitalker_fwd_biflow_eth_ipv4_data_lens_var 

bitalker_fwd_biflow_eth_ipv4_data_lens_max bitalker_fwd_biflow_eth_ipv4_data_lens_min 

bitalker_bwd_biflow_eth_ipv4_data_lens_total bitalker_bwd_biflow_eth_ipv4_data_lens_mean 

bitalker_bwd_biflow_eth_ipv4_data_lens_std bitalker_bwd_biflow_eth_ipv4_data_lens_var 

bitalker_bwd_biflow_eth_ipv4_data_lens_max bitalker_bwd_biflow_eth_ipv4_data_lens_min 

L
4

 

 

bitalker_any_biflow_n_unique_dst_ports bitalker_fwd_biflow_n_unique_dst_ports 

bitalker_bwd_biflow_n_unique_dst_ports bitalker_any_biflow_n_unique_src_ports 

bitalker_fwd_biflow_n_unique_src_ports bitalker_bwd_biflow_n_unique_src_ports 

bitalker_any_eth_ipv4_l4_biflow_n_data_packets_total bitalker_any_eth_ipv4_l4_biflow_n_data_packets_mean 

bitalker_any_eth_ipv4_l4_biflow_n_data_packets_std bitalker_any_eth_ipv4_l4_biflow_n_data_packets_var 

bitalker_any_eth_ipv4_l4_biflow_n_data_packets_max bitalker_any_eth_ipv4_l4_biflow_n_data_packets_min 

bitalker_fwd_eth_ipv4_l4_biflow_n_data_packets_total bitalker_fwd_eth_ipv4_l4_biflow_n_data_packets_mean 

bitalker_fwd_eth_ipv4_l4_biflow_n_data_packets_std bitalker_fwd_eth_ipv4_l4_biflow_n_data_packets_var 

bitalker_fwd_eth_ipv4_l4_biflow_n_data_packets_max bitalker_fwd_eth_ipv4_l4_biflow_n_data_packets_min 

bitalker_bwd_eth_ipv4_l4_biflow_n_data_packets_total bitalker_bwd_eth_ipv4_l4_biflow_n_data_packets_mean 

bitalker_bwd_eth_ipv4_l4_biflow_n_data_packets_std bitalker_bwd_eth_ipv4_l4_biflow_n_data_packets_var 

bitalker_bwd_eth_ipv4_l4_biflow_n_data_packets_max bitalker_bwd_eth_ipv4_l4_biflow_n_data_packets_min 
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bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_total bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_mean 

bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_std bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_var 

bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_max bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_min 

bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_total bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_mean 

bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_std bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_var 

bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_max bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_min 

bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_total bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_mean 

bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_std bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_var 

bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_max bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_min 

bitalker_eth_ipv4_tcp_biflow_connections_redropped_total bitalker_eth_ipv4_tcp_biflow_connections_redropped_mean 

bitalker_eth_ipv4_tcp_biflow_connections_redropped_std bitalker_eth_ipv4_tcp_biflow_connections_redropped_var 

bitalker_eth_ipv4_tcp_biflow_connections_redropped_max bitalker_eth_ipv4_tcp_biflow_connections_redropped_min 

bitalker_eth_ipv4_tcp_biflow_connections_rejected_total bitalker_eth_ipv4_tcp_biflow_connections_rejected_mean 

bitalker_eth_ipv4_tcp_biflow_connections_rejected_std bitalker_eth_ipv4_tcp_biflow_connections_rejected_var 

bitalker_eth_ipv4_tcp_biflow_connections_rejected_max bitalker_eth_ipv4_tcp_biflow_connections_rejected_min 

bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_total bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_mean 

bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_std bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_var 

bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_max bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_min 

bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_total bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_mean 

bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_std bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_var 

bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_max bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_min 

bitalker_eth_ipv4_tcp_biflow_abort_terminations_total bitalker_eth_ipv4_tcp_biflow_abort_terminations_mean 

bitalker_eth_ipv4_tcp_biflow_abort_terminations_std bitalker_eth_ipv4_tcp_biflow_abort_terminations_var 

bitalker_eth_ipv4_tcp_biflow_abort_terminations_max bitalker_eth_ipv4_tcp_biflow_abort_terminations_min 

bitalker_eth_ipv4_tcp_biflow_null_terminations_total bitalker_eth_ipv4_tcp_biflow_null_terminations_mean 

bitalker_eth_ipv4_tcp_biflow_null_terminations_std bitalker_eth_ipv4_tcp_biflow_null_terminations_var 

bitalker_eth_ipv4_tcp_biflow_null_terminations_max bitalker_eth_ipv4_tcp_biflow_null_terminations_min 

bitalker_eth_ipv4_tcp_biflow_graceful_terminations_total bitalker_eth_ipv4_tcp_biflow_graceful_terminations_mean 

bitalker_eth_ipv4_tcp_biflow_graceful_terminations_std bitalker_eth_ipv4_tcp_biflow_graceful_terminations_var 

bitalker_eth_ipv4_tcp_biflow_graceful_terminations_max bitalker_eth_ipv4_tcp_biflow_graceful_terminations_min 

TABLE 17. NETGENES TALKER FEATURES. 
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 bihost_any_duration bihost_any_n_bitalkers 

bihost_fwd_n_bitalkers bihost_bwd_n_bitalkers 

bihost_any_bitalkers_per_sec bihost_fwd_bitalkers_per_sec 

bihost_bwd_bitalkers_per_sec bihost_any_bitalker_bytes_per_sec 

bihost_fwd_bitalker_bytes_per_sec bihost_bwd_bitalker_bytes_per_sec 

bihost_any_bitalker_n_biflows_total bihost_any_bitalker_n_biflows_mean 

bihost_any_bitalker_n_biflows_std bihost_any_bitalker_n_biflows_var 

bihost_any_bitalker_n_biflows_max bihost_any_bitalker_n_biflows_min 

bihost_fwd_bitalker_n_biflows_total bihost_fwd_bitalker_n_biflows_mean 

bihost_fwd_bitalker_n_biflows_std bihost_fwd_bitalker_n_biflows_var 

bihost_fwd_bitalker_n_biflows_max bihost_fwd_bitalker_n_biflows_min 

bihost_bwd_bitalker_n_biflows_total bihost_bwd_bitalker_n_biflows_mean 

bihost_bwd_bitalker_n_biflows_std bihost_bwd_bitalker_n_biflows_var 

bihost_bwd_bitalker_n_biflows_max bihost_bwd_bitalker_n_biflows_min 
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bihost_any_bitalker_any_biflow_eth_ipv4_data_lens_total bihost_any_bitalker_any_biflow_eth_ipv4_data_lens_mean 

bihost_any_bitalker_any_biflow_eth_ipv4_data_lens_std bihost_any_bitalker_any_biflow_eth_ipv4_data_lens_var 

bihost_any_bitalker_any_biflow_eth_ipv4_data_lens_max bihost_any_bitalker_any_biflow_eth_ipv4_data_lens_min 

bihost_fwd_bitalker_any_biflow_eth_ipv4_data_lens_total bihost_fwd_bitalker_any_biflow_eth_ipv4_data_lens_mean 

bihost_fwd_bitalker_any_biflow_eth_ipv4_data_lens_std bihost_fwd_bitalker_any_biflow_eth_ipv4_data_lens_var 

bihost_fwd_bitalker_any_biflow_eth_ipv4_data_lens_max bihost_fwd_bitalker_any_biflow_eth_ipv4_data_lens_min 

bihost_bwd_bitalker_any_biflow_eth_ipv4_data_lens_total bihost_bwd_bitalker_any_biflow_eth_ipv4_data_lens_mean 

bihost_bwd_bitalker_any_biflow_eth_ipv4_data_lens_std bihost_bwd_bitalker_any_biflow_eth_ipv4_data_lens_var 

bihost_bwd_bitalker_any_biflow_eth_ipv4_data_lens_max bihost_bwd_bitalker_any_biflow_eth_ipv4_data_lens_min 
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bihost_any_bitalker_any_biflow_n_unique_dst_ports_total bihost_any_bitalker_any_biflow_n_unique_dst_ports_mean 

bihost_any_bitalker_any_biflow_n_unique_dst_ports_std bihost_any_bitalker_any_biflow_n_unique_dst_ports_var 

bihost_any_bitalker_any_biflow_n_unique_dst_ports_max bihost_any_bitalker_any_biflow_n_unique_dst_ports_min 

bihost_fwd_bitalker_any_biflow_n_unique_dst_ports_total bihost_fwd_bitalker_any_biflow_n_unique_dst_ports_mean 

bihost_fwd_bitalker_any_biflow_n_unique_dst_ports_std bihost_fwd_bitalker_any_biflow_n_unique_dst_ports_var 

bihost_fwd_bitalker_any_biflow_n_unique_dst_ports_max bihost_fwd_bitalker_any_biflow_n_unique_dst_ports_min 

bihost_bwd_bitalker_any_biflow_n_unique_dst_ports_total bihost_bwd_bitalker_any_biflow_n_unique_dst_ports_mean 

bihost_bwd_bitalker_any_biflow_n_unique_dst_ports_std bihost_bwd_bitalker_any_biflow_n_unique_dst_ports_var 

bihost_bwd_bitalker_any_biflow_n_unique_dst_ports_max bihost_bwd_bitalker_any_biflow_n_unique_dst_ports_min 

bihost_any_bitalker_any_biflow_n_unique_src_ports_total bihost_any_bitalker_any_biflow_n_unique_src_ports_mean 

bihost_any_bitalker_any_biflow_n_unique_src_ports_std bihost_any_bitalker_any_biflow_n_unique_src_ports_var 

bihost_any_bitalker_any_biflow_n_unique_src_ports_max bihost_any_bitalker_any_biflow_n_unique_src_ports_min 

bihost_fwd_bitalker_any_biflow_n_unique_src_ports_total bihost_fwd_bitalker_any_biflow_n_unique_src_ports_mean 

bihost_fwd_bitalker_any_biflow_n_unique_src_ports_std bihost_fwd_bitalker_any_biflow_n_unique_src_ports_var 

bihost_fwd_bitalker_any_biflow_n_unique_src_ports_max bihost_fwd_bitalker_any_biflow_n_unique_src_ports_min 

bihost_bwd_bitalker_any_biflow_n_unique_src_ports_total bihost_bwd_bitalker_any_biflow_n_unique_src_ports_mean 

bihost_bwd_bitalker_any_biflow_n_unique_src_ports_std bihost_bwd_bitalker_any_biflow_n_unique_src_ports_var 

bihost_bwd_bitalker_any_biflow_n_unique_src_ports_max bihost_bwd_bitalker_any_biflow_n_unique_src_ports_min 
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bihost_any_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_total bihost_any_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_mean 

bihost_any_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_std bihost_any_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_var 

bihost_any_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_max bihost_any_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_min 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_mean 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_var 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_min 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_mean 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_var 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_requested_dropped_connection_initiations_min 

bihost_any_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_total bihost_any_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_mean 

bihost_any_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_std bihost_any_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_var 
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bihost_any_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_max bihost_any_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_min 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_mean 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_var 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_min 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_mean 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_var 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_two_way_handshake_initiations_min 

bihost_any_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_total bihost_any_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_mean 

bihost_any_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_std bihost_any_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_var 

bihost_any_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_max bihost_any_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_min 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_mean 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_var 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_min 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_mean 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_var 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_three_way_handshake_initiations_min 

bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_redropped_total bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_redropped_mean 

bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_redropped_std bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_redropped_var 

bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_redropped_max bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_redropped_min 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_mean 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_var 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_min 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_mean 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_var 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_redropped_min 

bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_rejected_total bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_rejected_mean 

bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_rejected_std bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_rejected_var 

bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_rejected_max bihost_any_bitalker_eth_ipv4_tcp_biflow_connections_rejected_min 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_mean 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_var 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_min 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_mean 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_var 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_connections_rejected_min 

bihost_any_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_total bihost_any_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_mean 

bihost_any_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_std bihost_any_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_var 

bihost_any_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_max bihost_any_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_min 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_mean 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_var 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_min 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_mean 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_var 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_half_duplex_connections_established_min 

bihost_any_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_total bihost_any_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_mean 

bihost_any_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_std bihost_any_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_var 

bihost_any_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_max bihost_any_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_min 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_mean 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_var 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_min 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_mean 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_var 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_full_duplex_connections_established_min 

bihost_any_bitalker_eth_ipv4_tcp_biflow_abort_terminations_total bihost_any_bitalker_eth_ipv4_tcp_biflow_abort_terminations_mean 

bihost_any_bitalker_eth_ipv4_tcp_biflow_abort_terminations_std bihost_any_bitalker_eth_ipv4_tcp_biflow_abort_terminations_var 

bihost_any_bitalker_eth_ipv4_tcp_biflow_abort_terminations_max bihost_any_bitalker_eth_ipv4_tcp_biflow_abort_terminations_min 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_mean 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_var 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_min 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_mean 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_var 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_abort_terminations_min 

bihost_any_bitalker_eth_ipv4_tcp_biflow_null_terminations_total bihost_any_bitalker_eth_ipv4_tcp_biflow_null_terminations_mean 

bihost_any_bitalker_eth_ipv4_tcp_biflow_null_terminations_std bihost_any_bitalker_eth_ipv4_tcp_biflow_null_terminations_var 

bihost_any_bitalker_eth_ipv4_tcp_biflow_null_terminations_max bihost_any_bitalker_eth_ipv4_tcp_biflow_null_terminations_min 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_mean 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_var 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_min 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_mean 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_var 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_null_terminations_min 
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bihost_any_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_total bihost_any_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_mean 

bihost_any_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_std bihost_any_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_var 

bihost_any_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_max bihost_any_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_min 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_total bihost_fwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_mean 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_std bihost_fwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_var 

bihost_fwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_max bihost_fwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_min 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_total bihost_bwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_mean 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_std bihost_bwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_var 

bihost_bwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_max bihost_bwd_bitalker_eth_ipv4_tcp_biflow_graceful_terminations_min 

TABLE 18. NETGENES HOST FEATURES (WITHOUT FLOW-SET BASED FEATURES). 
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#Flows Destination Port Port to L5-7 Protocol 

94203 443 HTTPS 

34113 80 HTTP 

1054 22 SSH 

537 8313-65490 Multiple applications 

476 389 LDAP 

458 21 FTP 

367 465 SMTP over SSL 

327 88 Kerberos 

218 3268 LDAP Global Catalog 

181 445 SMB 

108 139 NetBIOS Session Service 

71 8080 HTTP alternative port 

70 135 RPC 

29 4502-7905 Multiple applications 

4 8081 HTTP alternative port 

1 53 DNS 

1 843 Unidentified 

TABLE 19. MONDAY: TCP BENIGN TRAFFIC OVERVIEW. 
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#Flows Destination Port Port to L5-7 Protocol 

114707 53 DNS 

844 443 Application Traffic (Google) 

582 88 Kerberos 

388 137 NetBIOS Name Service 

246 389 LDAP 

148 123 NTP 

126 19302-63056 Multiple applications 

111 1900 SSDP  

66 5355 LLMNR 

40 1124 HP VMM Control 

40 3289 Citrix 

35 3478 VoIP STUN 

9 138 NetBIOS Datagram Service 

8 5353 MDNS 

5 7725 Nitrogen Service 

5 8612 Canon BJNP Port 2 

3 8610 Canon MFNP Service 

1 42 WINS 

TABLE 20. MONDAY: UDP BENIGN TRAFFIC OVERVIEW. 
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TCP Protocol 

“bitalker_fwd_biflow_n_unique_dst_ports” – Talker Feature 

V 
Monday Tuesday Wednesday Thursday Friday 

T F T F T F T F T F 

[1
,5

] 

21542 129769 19167 106421 19647 271091 18360 91294 17538 89530 

[6
,1

0
] 

4 474 5 656 4 423 1 114 4 521 

[1
1
, 

5
0
] 

10 1778 10 1889 6 1032 7 1116 7 1267 

[5
1
,1

0
0
] 

1 197 1 198 6 1312 4 844 4 882 

[1
0
1
, 

5
0

0
] 

0 0 0 0 0 0 0 0 0 0 

[5
0
1
, 

+
∞

 [
 

0 0 0 0 0 0 12 74155 1 255794 

bitalker_bwd_biflow_n_unique_dst_ports – Talker Feature 

[0
,5

] 

21556 132086 19182 108975 19662 273753 18386 167590 17553 347868 

[6
,1

0
] 

1 132 0 0 1 105 1 313 1 126 

[1
1
, 

5
0
] 

0 0 1 189 0 0 0 0 0 0 

[5
1
,1

0
0
] 

0 0 0 0 0 0 0 0 0 0 

[1
0
1
, 

5
0

0
] 

0 0 0 0 0 0 0 0 0 0 

[5
0
1
, 

+
∞

 [
 

0 0 0 0 0 0 0 0 0 0 

TABLE 21. TCP BI-TALKER “UNIQUE DESTINATION PORT COUNT” ANALYSIS. 
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UDP Protocol 

“bitalker_fwd_biflow_n_unique_dst_ports” – Talker Feature 

V 
Monday Tuesday Wednesday Thursday Friday 

T F T F T F T F T F 

[1
,5

] 

636 117244 593 103246 151 96174 205 98625 191 102363 

[6
,1

0
] 

0 0 0 0 1 12683 10 236 0 0 

[1
1
, 

5
0
] 

1 18 0 0 0 0 0 0 0 0 

[5
1
,1

0
0
] 

0 0 0 0 0 0 0 0 1 268 

[1
0
1
, 

5
0

0
] 

1 105 1 188 1 167 1 129 1 162 

[5
0
1
, 

+
∞

 [
 

0 0 0 0 0 0 0 0 0 0 

“bitalker_bwd_biflow_n_unique_dst_ports” – Talker Feature 

[0
,5

] 

638 117367 594 103434 152 98263 216 98990 193 102793 

[6
,1

0
] 

0 0 0 0 1 10761 0 0 0 0 

[1
1
, 

5
0
] 

0 0 0 0 0 0 0 0 0 0 

[5
1
,1

0
0
] 

0 0 0 0 0 0 0 0 0 0 

[1
0
1
, 

5
0

0
] 

0 0 0 0 0 0 0 0 0 0 

[5
0
1
, 

+
∞

 [
 

0 0 0 0 0 0 0 0 0 0 

TABLE 22. UDP BI-TALKER “UNIQUE DESTINATION PORT COUNT” ANALYSIS. 


