

RiverCure Portal: Exploring Geographic Features on
Context Definition and Integration with the HiSTAV

Hydrometric Tool

Jorge Miguel da Silva Marques

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Alberto Manuel Rodrigues da Silva

 Doutor Jacinto Paulo Simões Estima

Examination Committee

Chairperson: Prof. Luís Manuel Antunes Veiga

Supervisor: Prof. Alberto Manuel Rodrigues da Silva

Members of the Committee: Prof. João Luís Gustavo de Matos

January 2021

ii

iii

iv

Abstract

Flood events are becoming more prominent every day, causing serious problems to the people they

affect, such as physical, psycologycal and material harm. With the recent technological advances,

hydrometric modeling tools capable of predicting floods and quantifying their severity, like HiSTAV, are

emerging and becoming more proeminent. However, the dissemination of the results and the user

interaction with these tools is still lacking. By taking advantage of the advancement of Web and GIS

technologies, an opportunity to overcome these challenges arises. The objective of this thesis is to

develop the RiverCure Portal (RCP), a web application that, by integrating HiSTAV in its workflow, makes

it widely available to knowledgeable users, disseminates its results to the interested stakeholders, and

streamlines the user interactions necessary to use the tool. The RCP data model was specified using

the Application Specification Language (ASL), an ITLingo language focused on simplifying the

development process by defining rigorous and platform-independent specifications. This thesis details

the motivation behind the RCP, and how these methodologies and technologies were leveraged to

create a web application that integrates HiSTAV. A detailed walkthrough on how to create a HiSTAV

simulation from RCP is described together with images from the user point of view. Finally, an evaluation

and a conclusion are provided, with the former being focused on the comparison of RCP with another

similar tool called Mike 21 and, the latter containing the main takeaways from the development of RCP

and whether it fulfills its intended goals.

Keywords: RiverCure; Water Management; Geographic Information System (GIS); HiSTAV; Application

Specification Language (ASL)

v

vi

Resumo

Eventos de cheias, como inundações, causam graves problemas às pessoas afectadas por eles,

causando danos físicos, psicologicos e/ou materiais. Com o avanço da tecnologia nos dias de hoje,

surgem ferramentas de modelização hidrométricas capazes de prever inundações e de quantificar a

sua gravidade, como o HiSTAV. No entanto, a divulgação dos resultados e a interação dos utilizadores

com estas ferramentas ainda é fraca. Aproveitando a evolução e adoção da tecnologia web, surge uma

hipótese de solucionar estes aspetos. O objetivo desta tese é desenvolver o RiverCure Portal (RCP),

uma aplicação web que, ao integrar o HiSTAV no seu domínio, o torna amplamente disponível a

utilizadores especializados, dissemina os seus resultados aos stakeholders, e melhora as interações

dos utilizadores com esta ferramenta. O modelo de dados do Portal RiverCure foi definido em

Application Specification Language (ASL), uma linguagem pertencente ao projeto ITLingo destinada a

simplificar o processo de desenvolvimento, ao usar especificações rigorosas e independente da

plataforma. Esta tese detalha a motivação por detrás do desenvolvimento do RCP, e como estas

metodologias e tecnologias foram alavancadas para criar uma aplicação web que integra o HiSTAV.

Uma descrição detalhada sobre como criar uma simulação do HiSTAV a partir do RCP acompanhada

por algumas imagens do ponto de vista do utilizador é providenciada neste documento. Por último, são

fornecidas uma avaliação e uma conclusão, com a primeira a focar-se na comparação do RCP com

uma ferramenta semelhante chamada Mike 21 e, a segunda visa responder a se este cumpre os seus

objetivos pretendidos.

Palavras-Chave: RiverCure; Gestão no Dominio da Água; Geographic Information System (GIS);

HiSTAV; Application Specification Language (ASL)

vii

viii

Acknowledgments

Many challenges were faced, during this last year, to complete this research. As such I would like to

leave me my gratitude to the people who helped me walk this path.

First, I would like to thank Professor Alberto Silva and Professor Jacinto Estima, who were always

available to help and provide the necessary guidance and feedback for the completion of this

dissertation.

Second, to the RiverCure team, who provided the necessary insight, explanations, and time to make

sure this project could become a reality.

Third, to Ivo Gamito, who helped me build RiverCure Portal and was always available to discuss ideas

and solve problems that emerged during this last year.

Last, but not least, to my family and friends who accompanied me during my journey on Instituto Superior

Técnico.

To everyone involved in this project either directly or indirectly, thank you!

ix

x

Table of Contents

Abstract ... iv

Resumo.. vi

Acknowledgments .. viii

Table of Contents .. x

List of Figures ... xiii

List of Tables ... xvi

List of Specifications ... xviii

List of Acronyms ... xx

1 Introduction .. 1

1.1 Context .. 1

1.2 Work Objectives... 2

1.3 Research methodology .. 4

1.4 Research Scope .. 6

1.5 Document structure ... 7

2 Background .. 8

2.1 Model Driven Engineering ... 8

2.2 Web Engineering ... 9

2.3 IFML ... 10

2.4 ITLingo .. 11

2.5 OGC Standards – ISO 19125 .. 14

2.6 WaterML .. 17

2.7 Coordinate Reference Systems .. 17

2.8 GIS Data .. 19

2.9 Technologies .. 21

3 Related Work .. 28

3.1 SNIRH .. 28

xi

3.2 SVARH ... 29

3.3 HiSTAV .. 30

3.4 Mike 21 .. 31

4 RiverCure Portal Requirements ... 33

4.1 RiverCure Portal Interface ... 33

4.2 RiverCure Portal Context ... 34

4.3 Data Collection .. 41

4.4 HiSTAV Integration .. 42

5 RiverCure Portal – Simulation Pipeline ... 44

5.1 RCP Data Model Definition and Generation from the ASL Specification (Phase 1) 44

5.2 RCP’s Context Creation and Definition (Phase 2) ... 45

6 RCP and HiSTAV Integration (Phase 3) ... 60

6.1 Pre-processor .. 61

6.2 Paraview Web Visualizer. .. 62

6.3 Solver2D .. 62

6.4 RCP and HiSTAV integration API .. 64

6.5 Simulation Pipeline Overview .. 66

7 Evaluation ... 69

7.1 Context Definition Evaluation .. 69

7.2 Simulation Evaluation .. 69

7.3 Discussion ... 70

8 Conclusion ... 72

8.1 Conclusion ... 72

8.2 Future Work ... 72

References ... 74

Appendix A: RCP Specifications ... 74

Appendix B: RCP Images ... 78

xii

xiii

List of Figures

Figure 1. RCP simulation process in BPMN notation. .. 3

Figure 2. DSR mapped for this thesis. .. 5

Figure 3. Main phases of the research project. .. 6

Figure 4. RiverCure Portal and other associated systems. .. 6

Figure 5. Software product, platforms, transformations, and models 9

Figure 6. Example of user interface and corresponding IFML model. The user selects an item in the list

and displays its details in the same view container ... 10

Figure 7. UML diagram suggesting the relationships between RSL’s elements. 13

Figure 8. Overview of Geometry object model. .. 16

Figure 9. Geometry class operations. ... 16

Figure 10. CRS adaptation of a 3D to a 2D representation example. .. 18

Figure 11. Geometry representation of a lake. ... 19

Figure 12. Raster examples.. 20

Figure 13. A Mesh example. ... 21

Figure 14. GeoDjango Admin interface view. ... 23

Figure 15. SNIRH web portal .. 29

Figure 16. From left to right: Data Acquisition, Central Processing and Information Distribution 30

Figure 17. Mike 21 working area example, after import of land and water data. 31

Figure 18. SNIRH system monitorization network and sensor popup . .. 34

Figure 19. Context Visualization on RCP. ... 38

Figure 20. DTM example. ... 39

Figure 21. Context data architecture. ... 46

Figure 22. RCP navbar. .. 46

Figure 23. RCP admin page view of the context creation section. ... 47

Figure 24. Context List Page View. .. 48

xiv

Figure 25. Context detail page view. .. 49

Figure 26. Prompt after clicking the edit button on a Context Detail page. .. 50

Figure 27. Possible notifications after upload request examples. .. 50

Figure 28. Dropdown options for selection of geometry to define on RCP. .. 51

Figure 29. Manage Context page. .. 52

Figure 30. Popup examples .. 53

Figure 31. Geojson representation of a Boundary. ... 54

Figure 32. Success message on mesh generation request. .. 55

Figure 33. Available options for the RCP user based on whether the mesh has been generated. 56

Figure 34. Context Event List Page. ... 56

Figure 35. Event Context Detail page. .. 57

Figure 36. HiSTAV simulation results displayed on Event results page. .. 59

Figure 37. HiSTAV integration with RCP. .. 60

Figure 38. Output of a successful pre-processor request. ... 61

Figure 39. Coura context generated mesh. .. 62

Figure 40. Sensor bnd file data example. ... 63

Figure 41. Resulting VTK from a HiSTAV simulation example. .. 64

Figure 42. RCP landing page. .. 78

Figure 43. RCP about page. ... 78

Figure 44. RCP login screen. .. 79

Figure 45. RCP register screen. ... 79

Figure 46. RCP admin Backoffice. .. 80

Figure 47. RCP Context access request page. .. 80

Figure 48. RCP hydro feature page. ... 81

Figure 49. RCP sensors page. ... 81

Figure 50. RCP Context list page. .. 82

Figure 51. RCP Context detail page. .. 82

Figure 52. RCP upload Context files prompt. ... 83

Figure 53. RCP manage Context page. ... 83

Figure 54. RCP profile page. .. 84

xv

xvi

List of Tables

Table 1. Web Engineering Areas and Topics. ... 9

Table 2. Classification of RSL constructs: abstraction levels versus specific concerns. 12

Table 3. GeoDjango Spatial Datatypes. .. 15

Table 4. Spatial Lookup available in GeoDjango according to the DBS. .. 24

Table 5. Datatypes mapping from ASL to Django. .. 45

xvii

xviii

List of Specifications

Spec. 1. Data Entity example .. 12

Spec. 2. DataEntityCluster example ... 12

Spec. 3. Definition of a UIContainer in ASL example .. 13

Spec. 4. Definition of an action in ASL example ... 14

Spec. 5. Context ASL specification ... 35

Spec. 6. Sensor ASL specification. ... 41

Spec. 7. Context Sensor ASL specification. .. 42

Spec. 8. Sensor Observation ASL specification. ... 42

Spec. 9. RCP data enumerations. .. 74

Spec. 10. RCP HydroFeature specification. ... 75

Spec. 11. RCP organization specification. .. 75

Spec. 12. RCP user specification. .. 75

Spec. 13. RCP sensor alarm specification. ... 76

Spec. 14. RCP boundary line specification. .. 76

Spec. 15. RCP Context boundary point specification. .. 76

Spec. 16. RCP Context event specification. ... 77

Spec. 17. RCP Context access request specification. .. 77

xix

xx

List of Acronyms

APA Agência Portugues do Ambiente

API Application Programming Interface

ASL Application Specification Language

BPMN Business Process Model and Notation

CL Cell Length

CRS Coordinate Reference System

DB Database

DBMS Database management system

DSL Domain-specific language

DSML Domain-specific modeling language

DSR Design Science Research

DTM Digital Terrain Model

FCT Fundação para Ciência e Tecnologia

GIS Geographic Information Systems

GPS Global Positioning System

HiSTAV High performance version of Strong Transients in Alluvial Valleys

INAG Instituto Nacional da Água

INESC-ID Instituto de Engenharia de Sistemas e Computadores, Investigação e

Desenvolvimento em Lisboa

IOGP International Association of Oil and Gas Producers

IST Instituto Superior Técnico

MDE Model Driven Engineering

ML Machine Learning

MVC Model View Controller

xxi

OGC Open Geospatial Consortium

OOP Object Oriented Programming

ORM Object Relational Mapping

RCP RiverCure Portal

RSL Requirements Specification Language

SFA Simple Feature Access

SNIRH Sistema Nacional de Informação de Recursos Hídricos

SRID Spatial Reference Identifier

SVARH Sistema de Vigilância e Alerta de Recursos Hídricos

UML Unified Modelling Language

WE Web Engineering

1

1 Introduction

1.1 Context

Countries and their responsible organizations for the water management require an ever-increasing

level of sophistication to protect and provide better conditions to their citizens. Moreover, with the

advances in technology and improvement in data collection, the amount of available data is bigger than

ever, allowing the creation of richer and more complex hydrometric models to analyze these data.

However, to fully leverage the advantages provided by these models, it is necessary to build pipelines

responsible for gathering the collected data and feeding it to the models so they can correctly produce

reliable and valuable results, which can be then disseminated through the different stakeholders.

In 2018 the RiverCure project was promoted to solve this problem. RiverCure is a research project

supported by Fundação para a Ciência e a Tecnologia (FCT), developed by Instituto Superior Técnico

(IST), Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em

Lisboa (INESC-ID) and Agência Portuguesa do Ambiente (APA). It addresses the issue of reducing

uncertainty and improving forecasting capabilities of hydrodynamic and morphodynamical mathematical

models for flood simulation, water resources management and habitat protection [1]. Profiting from

recent advances in the collection and processing of crowdsourced information produced by riverine

communities and, shared through websites and social media, RiverCure intends to contribute to the

improvement of the forecasting capabilities of mathematical hydrometric models of rivers, like HiSTAV

[2], by making an efficient and systematic use of this curated crowdsourced and authoritative data

through assimilation and calibration [3]. To bring these goals into fruition a web application called

RiverCure Portal, or RCP for short, that enables the gathering and funneling of water data collected by

riverine communities and crowdsourced data into HiSTAV and, shares the results of the simulation

executions of this tool with the stakeholders, was proposed.

RCP is based on different systems (explored in chapter 3) which were partially integrated or emulated

during this research. These systems are (i) SNIRH (Sistema Nacional de Informação sobre Recursos

Hidrícos or Hydric Resources National Information System in English), a water resources monitorization

system, that saves data in APA’s databases and releases the information to the public in a web portal

(https://snirh.apambiente.pt) [4]; (ii) SVARH (Sistema de Vigilância e Alerta de Recursos Hídricos or

Hydric Resources Surveillance and Alert System in English), a subsystem of SNIRH that provides the

hydraulic state of rivers and reservoirs (i.e., water levels, flow rate, stored volumes and water quality)

and relevant meteorological information in real time, while also allowing the prediction of its possible

evolution [5]; and (iii) HiSTAV, a modelling effort aimed at delimiting the critical tsunami inundation

areas in an urban waterfront and to quantify the associated severity [6]. Moreover, RCP should also

integrate the treatment of images obtained from crowdsourcing sources, such as social networks (e.g.,

Instagram) using machine learning (ML) techniques to automatically classify these images according to

https://snirh.apambiente.pt/

2

their depicted water level. However, this integration is not part of the scope of this research and shall be

treated in future work.

Additionally, this research proposed to tackle the problem related to the fact that the creation and support

of web applications are becoming increasingly knowledge demanding, with the involved actors being

confronted by increasing demands for improved quality, increased complexity of products and services,

higher flexibility, shorter lead-times, etc. [7]. All these problems, result in an increased monetary and

temporal costs for the involved companies and individuals. In order to solve this problem, this research

takes the development of the web application a step further by first devising a specification of RCP’s

data model in ASL. Inserted in the ITLingo initiative [8], ASL is a platform-independent application

specification language that allows the user to write application specifications, from which a functional

program can be generated [9]. Using an ASL specification as a starting point for the RCP development,

ensured that the development of the RCP resulted in artifacts aligned with the stakeholder’s vision, as

these models were defined by sharing a common vision and knowledge among technical and non-

technical stakeholders, thus facilitating and promoting the communication among them. Furthermore,

they made the project planning more effective and efficient while providing a more appropriate view of

the RCP system and, allowing the project control to be achieved according to objective criteria [10]. This

development methodology is known as Model Driven Engineering (MDE) [11] .

1.2 Work Objectives

This research purpose is divided in 3 objectives. The first objective is the implementation of an initial

version of the RiverCure Portal (or RCP for short), with a special focus on the creation of the Simulation

Pipeline, which connects RCP to HiSTAV enabling bilateral communication. This implementation starts

from an ASL specification of the RCP’s data model, from which all the code related with the data models

is generated.

The second objective is the development of features for the RCP that can be used to generate valid

inputs for a HiSTAV simulation. These features are referred as “Context Definition” and, are a set of

functionalities that allow a user to define georeferenced geometries with associated properties and

names, that are later used by HiSTAV as an input for its simulation. Moreover, because the data is used

across different systems (RCP and HiSTAV), it is necessary to ensure data consistency, compatibility

and portability between these two applications through the use of standards like OGC [12] and WaterML

[13].

The third objective is the integration of HiSTAV with RiverCure through the implementation of a

communication channel. This way, HiSTAV simulations requests and its results visualization are done

on the RCP. This communication channel is a pipeline, called “Simulation Pipeline”, implemented

through the development of a REST API [14], that allows the exchange of data between the two systems.

This pipeline is invisible to the final user, who only interacts directly with RCP, by performing certain

actions that trigger requests to HiSTAV, accompanied by the necessary data defined during the “Context

3

Definition”. This simulation produces results, in the form of geoTIFF files, which are sent back to RCP

and allow a user to see the evolution of a flood according to the provided data. The pipeline starts with

a “Context Definition” by a user on the RCP and finishes with the visualization of the results of a HiSTAV

simulation, related to the Context defined previously, on RCP again. Figure 1 shows the complete

process to execute a simulation on the RCP system and the idealized data collection process. This

research focusses only on the simulation process (RCP and HiSTAV) and treats the data collection

process as future work.

Figure 1. RCP simulation process (using BPMN notation).

4

1.3 Research methodology

This research followed the Design Science Research methodology (DSR). The DSR is an iterative

methodology that combines principles, practices, and procedures. It provides guidance for research in

Information Systems (IS) and other disciplines [15], [16]. Design Science lays emphasis on systematic,

testable and communicable methods [17].

Hevner et al. [15] proposed a guideline in the application of DSR in information systems area, based on

the following aspects:

Design as an Artifact: DSR must produce a viable artifact in the form of a construct, a representation,

a technique, or an instantiation.

The relevance of the problem: The basic objective of design-science research is to develop

technology-based solutions to important and relevant business problems.

The design evaluation: The utility, the quality, and the efficacy of the design artifact must be

demonstrated rigorously through a well-executed evaluation method.

Research contribution: Effective DSR must offer a clear and provable contributions in the areas which

design artifact is apply, design foundations, and/or design methodologies.

Research Rigor: The DSR depends upon rigorous methods application in both evaluation and the

construction of the design artifact.

Design as a search process: The search for effective artifact depend the utilization of the available

ways to reach desired outputs while the laws in the problem environment are still satisfy.

Communication of research: Design-science research presentation must be effective both the

technology-oriented as well as the management-oriented consultation.

These guidelines translate into 6 phases of the DSR process [16]:

Problem identification and motivation: Define the specific research problem, justify the value of a

solution, and motivate the researcher to investigate the answer.

Define the objectives of a solution: Infer the objectives of a solution for the defined problem and the

knowledge of what is achievable.

Design and development: Create the artifactual solution. Such artifacts can be constructs, models,

methods or instantiations created to address the designated problem.

Demonstration: Demonstrate the efficacy of the artifacts to solve the problem.

Evaluation: Examine and measure how well the artifacts support the problem’s solution, comparing the

objectives to the results collected from use of the artifacts in the demonstration.

5

Communication: Communicate the problem, the artifacts, and the design, considering its relevance,

utility, novelty, and effectiveness to researchers and other relevant audiences.

Figure 2 shows which tasks were performed during each phase of DSR during this research. It is

important to note that the phases are cyclical resulting in several executions of the same task. The cycle

from Define Objectives & Goals to Evaluation was performed weekly, i.e., there was a weekly discussion

with the stakeholders about the tasks done during that week. A cyclical development ensured a higher

flexibility during the development of RCP, allowing for the adaptation of requirements on necessity (e.g.,

new problem is discovered). It also gave the stakeholders the opportunity to evaluate the product being

developed every week, increasing the trustworthiness of the developed features by reassuring us that

they were solving the problem correctly and, according to the stakeholders needs.

Figure 2. DSR mapped for this thesis (Adapted from [16]).

In practice, the implementation of this project was divided in three distinct phases. By the end of these

phases, two main software artifacts were developed which, together, form the Simulation Pipeline, which

is the main objective of this project. Which is the process that allows the exchange of data between

them and, the request for HiSTAV simulations from the RCP, as explained earlier.

The first two phases consisted in the development of the RCP, using different development approaches

in each phase. During phase 1, the RCP was defined in ASL and, from this specification, code generation

mechanisms were used to generate a Python/Django [18] data model for the RCP. From the generated

data model, conventional development processes (i.e., programming) were used to implement RCP’s

use cases. This implementation corresponds to phase 2 of this project and its biggest. It was during this

phase that all the functionalities and features of the Simulation Pipeline on RCP side were developed.

This consisted mainly on the implementation of the Context creation and definition features allowing

HiSTAV full integration during phase 3.

The main idea was to create a seamless workflow that any specialized user can use to simulate a given

Context on HiSTAV and, later share the results with the intended stakeholders. Ergo, phase 3 consisted

in the integration of RCP with HiSTAV by creating mechanisms that allow the communication between

them. For this effect, a simple Flask [19] API was developed, to enable communication between RCP

6

and HiSTAV. Figure 3 shows a holistic view of this research phases order and tasks. The first two tasks

are part of phase 1 and, the other two are part of phase 2 and 3, respectively, with each task consisting

of at least one entire cycle on the DSR methodology (Define Objectives and Goals to Evaluation).

Figure 3. Main phases of the research project.

Following this methodology ensured that the implemented features of the RCP are valuable to the

stakeholders and, the correct and trustworthy output of the Simulation Pipeline. Moreover, since some

stakeholders have experience with other tools similar to the RCP a comparative evaluation can be

performed assuring that the RCP takes the existent technologies one step further, resulting in a more

rigorous development and a higher quality and trustworthiness final result.

1.4 Research Scope

Figure 4 shows the architecture of the complete RCP. Since the development of the envisioned RCP

would be far too extensive for a MSc thesis it was necessary to focus on specific parts of the whole

system. The chosen focus was the creation of the Simulation Pipeline, which is comprised of the

integration of HiSTAV with RCP and the creation and definition of a Context which is an input for the

HiSTAV simulation.

Figure 4. RiverCure Portal and other associated systems.

7

Regarding the implementation of data collection, only the standardization of sensors and sensor

observations, as well as the implementation of features that allow the insertion of new sensors in RCP,

both manually and by importing a worksheet, were part of this research scope.

The scope of this research can be summarized as: (i) the standardization of sensors and its observation

from the data collection processes; (ii) the implementation of the PostGIS DB and, the implementation

of geographic features on RCP as well as the implementation of the necessary interactions users need

to leverage these features; (iii) the integration of the HiSTAV system in its whole with RCP;

1.5 Document structure

This document is structured in eight chapters, organized as follows:

Chapter 1 introduces the motivation behind this dissertation and a brief introduction to the RiverCure

project.

Chapter 2 gives an overview of all the principles and technologies that were necessary to make this

project vision come to fruition.

Chapter 3 goes over the systems that inspired and compose RCP as well as a platform that solve the

same problems as RCP, called Mike 21. This is the platform currently in use by Agência Portuguesa do

Ambiente [20], the main target audience of a tool like RCP.

Chapter 4 details the requirements of RCP, including all its features and functionalities, not limited to

this research scope.

Chapter 5 describes the implementation of the RCP described in section 4, limited to this research

scope. It provides detailed information on what features were developed and their purpose on the project

as a whole. Moreover, it contains a description of the necessary actions to use the developed RCP

features, step by step.

Chapter 6 describes the implementation of the communication mechanisms between RCP and HiSTAV.

A thorough description of the REST API that enable the communication is given, as well as an overview

of the entire Simulation Pipeline in the end.

Chapter 7 evaluates the implementation described in chapter 5 and 6 and, how it holds up against the

envisioned system of chapter 5 and the system currently being used described in chapter 3. Contains a

simple comparison of the implemented RCP and the system currently used by APA.

Chapter 8 describes the conclusion attained by developing RCP and the future work necessary so it

can reach its envisioned state and possibly surpass it.

Appendix A contains RCP ASL specification.

Appendix B contains screenshots of the RCP pages.

8

2 Background

This chapter contextualizes core concepts necessary to understand how RCP was developed and

provides the reasoning behind the main development decisions. It starts with an exploration of some

important concepts like Model Driven Engineering (MDE) and Web Engineering.

Second, IFML, RSL and ASL are introduced and contextualized. ASL is a language based on a

combination of IFML and RSL, it uses concepts from both and, in order to fully understand ASL it is

necessary to have a concept on how these language work and the architecture behind them. Then, an

overview of ASL is provided along with an explanation on how it adopts concepts from IFML and RSL.

RCP is specified in ASL language and, from this specification, RCP data model was generated. Hence

the importance of contextualizing ASL.

Third, the OGC standards, a collection of standards, WaterML and Geographic Information System

(GIS) concepts are introduced. OGC standards and WaterML are standards that have a high relevancy

on the water management field, while GIS concepts are manly focused on the available data types

necessary for the implementation are introduced. Finally, an exploration of all the core technologies

necessary to develop the first version of RCP and HiSTAV “Simulation Pipeline” is provided.

2.1 Model Driven Engineering

Model-Driven Engineering (MDE) is a software development paradigm, at its core is the use of abstract

models to describe software aspects while systematically transform these models into more concrete

ones up to executable code [21]. MDE raises the abstraction level of languages needed to develop

software [21]. It shields software developers from the complexities of underlying implementation

platforms [22]. MDE approaches offer potential benefits to software engineering including improved

productivity, portability, maintainability and interoperability [23].

A model is specified in some specific model language, known as Domain-specific modeling language

(DSML). DSML’s formalize the applications structure, behavior, and requirements. They are described

using meta-models, which define the relationships among concepts in a domain [24]. Figure 5 the

relationship between a model and a system. It is easily seen that by using MDE the business applications

developed by companies end up far less confusing and much more understandable. In turn, this makes

the applications much easier and cheaper to maintain and, requires a lower knowledge level for its

development.

MDE is not a new concept. In the last decades numerous techniques and modelling languages have

been proposed to support the design and the development of complex software systems [11]. ASL

follows MDE because of its advantages, so it is important to understand MDE in order to comprehend

the basis behind ASL.

9

Figure 5. Software product, platforms, transformations, and models (Extracted from [11]).

2.2 Web Engineering

Web Engineering is the application of systematic, disciplined, and quantifiable approaches to

development, operation, and maintenance of web-based applications. It is both a pro-active approach

and a growing collection of theoretical and empirical research in web application development [25]. Web

engineering is also a diverse field that covers extensive topics. These topics are usually related to other

disciplines, such as software engineering, hypermedia engineering, human computer interaction,

network engineering, project management, web programming, databases and information management

[25]. However, there are no commonly and clearly defined core areas in this field, a similar situation with

the field of Information Systems [26]. In table 1 it is possible to see the different areas of web

engineering.

Table 1. Web Engineering Areas and Topics (Adapted from [26]).

Web Engineering Domain Example Topics

Core Areas

Issues that directly address the

activities in general WIS

development and management.

Methodologies, requirements

engineering, modeling, web testing,

website metrics and quality,

maintenance and evolution, project

management.

Development of WIS components

Interface design, usability, information

modeling, navigation design, content

management, etc.

10

Closely Related

Areas

Development of specific WISs
Web services, semantic web, mobile

web, P2P, SoA, intranet, etc.

Domain-specific development

issues

Development of elearning, ecommerce,

virtual organization, advertising,

collaboration, etc.

Development technologies and tools
Applications framework, languages,

architectures, CASE, etc.

Distant Related

Areas

Other web related topics not directly

related to WIS development and

management activities

Agents, integration, search engine, web

mining, development behavior issues,

human and cultural aspects, education

and training, legal, privacy, security, etc.

2.3 IFML

The standard Interaction Flow Modelling Language (IFML) is designed for expressing the content, user

interaction and control behavior of the front-end of software applications [27].

Figure 6. Example of user interface (top) and corresponding IFML model (bottom). The user selects

an item in the list and displays its details in the same view container (Extracted from [28])

11

The objective of IFML is to provide system architects, software engineers, and software developers with

tools for the definition of Interaction Flow Models that describe the principal dimensions of an application

front-end: the view part of the application, made of view containers and view components; the objects

that embody the state of the application, and the references to business logic actions that can be

executed; the binding of view components to data objects and events; the control logic that determines

the actions to be executed after an event occurrence; and the distribution of control, data, and business

logic at the different tiers of the architecture [28]. RCP data model is generated from an ASL

specification. ASL uses IFML concepts hence the necessity of a basic understanding of IFML.

2.4 ITLingo

ITLingo is a long term initiative with the objective of researching, developing and applying languages of

rigorous specifications [29]. ITLingo approach has the objective of improving technical documentation,

and the knowledge extraction and conversion in order to help stakeholders gaining a better

understanding of software requirements, which are often misunderstood [30].

ITLingo brings three different languages for three different but close domains: Requirements

Engineering, with RSL (Requirements Specification Language); Testing Engineering, with TSL (Testing

Specification Language) [31]; and Project Management, with PSL (Projects Specification Language)

[32].

Recently, a fourth language, Application Specification Language (ASL) has been developed. This

language allows the developer to describe the data model and containers he intends to have in the app.

Django [18] code – Python framework for development of web applications –is then generated from this

description, originating a functional web application. By developing web apps this way, both the level of

expertise required by the developer, as well as the implementation time are decreased.

RSL

RSL is a requirement specification language inserted in the ITLingo Project. It is a process and tool-

independent language, meaning it can be used and be adapted by multiple users and organizations with

different processes/methodologies and supported by multiple types of software tools. However, in

practice, RSL has been implemented with the Xtext framework [33] in an Eclipse-based tool called

"ITLingo-Studio" so, its specifications are rigorously defined and can be automatically validated and

transformed into multiple representations and formats [32].

RSL provides several constructs logically classified according to two dimensions (see Table 2)

abstraction level and specific concerns they address. The abstraction levels are: business, application,

software and hardware levels [32]. RSL allows the definition of DataEntities and DataEntitiesCluster,

Actors, UseCases and StateMachines. It is important to understand these concepts once that ASL also

uses them.

12

Table 2. Classification of RSL constructs: abstraction levels versus specific concerns (Extracted from

[32]).

DataEntities and DataEntitiesCluster represent the structural entities that exist in an information

system. More specifically, a DataEntity denotes an individual structural entity that might include the

specification of attributes, foreign keys and other check data constraints [32] and a DataEntitiesCluster

a cluster of DataEntities and the relations they have between each other..

Spec. 1. Data Entity example (Extracted from [29])

Spec. 2. DataEntityCluster example (Extracted from [29])

Actors represent the participants of use cases or user stories. Actors represent end-users or other

information systems that interact with directly with the system under study [32].

UseCases are a sequence of actions that one or more actors perform in a system to obtain a particular

result. However, the RSL’s UseCase construct extends this general and vague definition considering

some additional aspects [32]. This makes it so that RSL offers a rigorous way to specify use cases, in

particular when compared with UML or SysML. Its users can adopt different styles in what concerns use

cases specification, depending on their needs and preferences [32].

DataEntity e_Customer "Customer": Master [

 isEncrypted

 attribute Id "Customer ID": Integer [isNotNull isUnique]

 attribute Name "Name": String(50) [isNotNull isUnique]

 attribute fiscalID "Fiscal ID": String(12) [isNotNull isUnique]

 attribute phone "Phone #": String(12) [isNotNull isUnique]

 primaryKey(Id)

 check ck_Customer1 "ValidFiscalID(fiscalID)"

 description "Customers"

]

DataEntityCluster ec_Invoice "Invoices (Complex)": Document [

 master e_Invoice

 detail e_InvoiceLine [reference e_Product, e_VAT]

 reference e_Customer

]

13

StateMachines define the behavior of DataEntities in their relationships with use cases. A StateMachine

is necessarily assigned to one DataEntity or DataEntityCluster (i.e., a DataEntityGeneric) and classified

as Simple or Complex depending on the number of involved states and transitions (e.g., a StateMachine

with more than three states might be classified as Complex). A StateMachine includes several states

corresponding to the situations that a DataEntity may be find itself during its life cycle (e.g., states like

Created, Pending, Approved, Rejected [32].

Figure 7. UML diagram suggesting the relationships between RSL’s elements (Extracted from [32]).

ASL

ASL [9] was built on top of RSL, (adding a third dimension) that allows the user to describe containers.

To understand ASL it is important to first understand RSL. It is the most recent language integrated in

ITLingo initiative. Like RSL, ASL has also been implemented with the Xtext framework [33] in an Eclipse-

based tool called “ITLingo-Studio”. So, its specifications are rigorously defined and can be automatically

validated and transformed into multiple representations and formats.

Spec. 3. Definition of a UIContainer in ASL example

ASL uses concepts from both RSL and IFML which are domain specific languages (DSL). While RSL

brings text-based requirements for what business software applications should consist of, IFML brings

a visual representation of how the applications should be presented to and manipulated by the final

users. ASL keeps RSL concepts like DataEntity, DataEntityCluster, Actors and UseCases, in order to

keep the capability of transforming text-based requirements into code. It also introduces some concepts

and elements like UIContainers from IFML. These concepts and elements follow the rules to express

UIContainer uiCt_ManageProducts: Window [

 component uiCo_ProductList: List: List_Table [

 isScrollable

 dataBinding e_Product [

 visualizationAttributes e_Product.CategoryID, e_Product.icon,

e_Product.Name, e_Product.price

 sortAttributes e_Product.CategoryID, e_ProductCategory.Name

 orderBy e_ProductCategory.Name DESC

]

 event ev_New "New": Submit: Submit_Create

 event ev_Update "Update": Submit: Submit_Update

 event ev_Delete "Delete": Submit: Submit_Delete

]

]

14

them based on the IFML PIM model. With ASL it is then possible to define containers and user

interactions with such containers according to the requirements established for the business application

in the beginning of the project by the stakeholders.

Spec. 4. Definition of an action in ASL example

ASL can then generate the business application data model in Python code on the Django framework

[18]. This gives the possibility to the developer to save enormous amount time when developing a

business application while increasing the maintainability of such applications, since the data model is

generated according to an ASL specification. Moreover, due to the fact that this specification has a high

degree of abstraction, it is possible for software engineering layman stakeholders to contribute and

understand this specification. This results in a final product, more faithful to the idealized one.

2.5 OGC Standards – ISO 19125

The Open Geospatial Consortium (OGC) [12] is an international voluntary consensus standards

organization, committed to improving access to geospatial, or location information [12]. It provides a

consensus process that communities of interest use to solve problems related to the creation, exchange

and use of spatial information. OGC standards are technical documents that detail interfaces or

encodings [34]. The most relevant of these documents, for this research, is the Simple Feature Access

(SFA), also known as ISO 19125. This standard focus on describing the common architecture for simple

feature geometry, which is Distributed Computing Platform neutral and uses UML notation [35]. The

RCP data model definition follows the SFA standards defined by this organization, in what concerns the

geospatial information. Developing the RCP data model based on these standards increases the

portability and potential cross-functionality with other systems.

The first step to implement the ISO 19125 was to look at the spatial data types defined by this standard

and compare them to the types present in GeoDjango [36], which was the framework used in this project.

Since the RCP data model was generated from an ASL specification, it was necessary to define the SFA

types in ASL for a correct mapping of geographic data types from ASL to GeoDjango. For that it was

necessary to first understand how GeoDjango and SFA data types are related.

Table 3 shows the geometry objects supported by GeoDjango. A juxtaposition for these types with

understandable concepts, for a geographic domain layperson, follows. GeometryField is the base class

from which all the other geometry fields inherit. In this case only RasterField and

GeometryCollectionField are not a geometry field, with the latter being a collection of GeometryFields.

action uiAct_Update_ShoppingCart: NotSpecified [

event ev_Ok: Other [

navigationFlowTo uiCt_ShoppingCart

]

]

action uiAct_Empty_ShoppingCart: NotSpecified [

event ev_Ok: Other [

navigationFlowTo uiAct_Empty_ShoppingCart

]

]

15

PointField corresponds to a point geometry, LineStringField corresponds to line geometries and

PolygonField corresponds to polygon geometries. The types with the prefix Multi denote a collection of

the type with the corresponding name [37]. RasterField is equivalent to a GDALRaster, often addressed

as raster [38]. By looking at Figure 8, which contains an overview of the geometry object model from

ISO 19125, a clear link can be established between SFA standards and GeoDjango spatial field types

(e.g., a Point in the geometry object model would be a PointField in GeoDjango).

Table 3. GeoDjango Spatial Datatypes (Based on [37]).

Spatial Field Types

PointField

LineStringField

PolygonField

MultiPointField

MultiLineStringField

MultiPolygonField

GeometryCollectionField

RasterField

Considering that RCP is developed using GeoDjango with PostGIS, and PostGIS follows OGC

standards there is a high degree of certainty that all the spatial types necessary for this project and the

RiverCure project are available. Geometry is the root class of the hierarchy, an abstract class [35], which

has the operations seen in Figure 9.

Mapping and defining ASL geographic types using SFA, raises the ASL abstraction level, making it

possible to develop ASL GIS capabilities independently of the target language and platform that the

code will be generated in. If the language or framework we intend to generate the code in (e.g.,

GeoDjango) also follows these standards, the transformation from ASL to the target language or

framework should be linear. Moreover, implementing the RCP data model based on ISO 19125

increases the likelihood of being able to integrate different data streams and introduce new concepts

with low effort.

16

Figure 8. Overview of Geometry object model (Extracted from [35]).

Figure 9. Geometry class operations (Extracted from [35]).

17

2.6 WaterML

WaterML 2.0 is a technical standard and information model for the representation of water observations

data that, by using the existing OGC standards [34], aims at being an interoperable exchange format,

allowing the exchange of water observations data sets across information systems [39]. It is divided in

4 parts. Part 1 is about timeseries, Part 2 about ratings gaugings and sections, Part 3 is about surface

hydrology features and Part 4 about GroundWaterML. Since RiverCure intends to manage, collect, and

distribute data coming from different sources, it is important to standardize data according to WaterML,

as interoperability is an important requirement.

Water domain data collection is an important concern in this research. WaterML Part 1 description can

be broke down in the representation of hydrological observations data with a specific focus on time

series structures [13]. RCP sensors, capture data based on this observation concept (i.e., each data

point is an observation). Later, these observations are transformed in a file to be read by the HiSTAV

simulation. Observations are defined by Observations and Measurements (O&M) [40] as “...an act

associated with a discrete time instant or period through which a number, term or other symbol is

assigned to a phenomenon. It involves application of a specified procedure, such as a sensor,

instrument, algorithm or process chain. The procedure may be applied in-situ, remotely, or ex-situ with

respect to the sampling location. The result of an observation is an estimate of the value of a property

of some feature.” [13].

2.7 Coordinate Reference Systems

To define a location on the planet, it is necessary to use a coordinate reference system (CRS). With the

help of a CRS, every place on the earth can be specified by a set of two or three numbers (2D or 3D),

called coordinates. CRS can be divided into 2 distinct systems, projected coordinate systems, also

called Cartesian or rectangular coordinate systems, and geographic coordinate systems [41].

Geographic coordinate systems use degrees of latitude and longitude and sometimes also a height

value to describe a location on the earth’s surface. The locations are determined based on the well-

known latitude and longitude lines [41]. Projected coordinate systems use two-dimensional CRS

which, are commonly defined by two axes. At right angles to each other, these axis, form a XY-plane,

with the horizontal axis being normally labelled X, and the vertical axis labelled Y [41]. Since this CRS

is 2-dimensional, and the planet Earth is a 3-dimensional “object” that happens to be approximately

“round”, these CRS need to adapt to the Earth’s shape (as seen on Figure 10), in order to correctly

locate objects on the map [42].

A CRS has 5 key components [42]: Coordinate system: The X, Y grid upon which your data is

overlayed and how you define where a point is located in space; Horizontal and vertical units: The

units used to define the grid along the x, y (and z) axis; Datum: A modeled version of the shape of the

Earth which defines the origin used to place the coordinate system in space; Projection

Information: The mathematical equation used to transform locations that are on the surface of the Earth

18

to a flat surface (e.g., computer screens or a paper map). These approaches are designed to increase

the accuracy of the data in terms of length or area.

Individual CRS can be referred to by using Spatial Reference Identifiers (SRID) , including EPSG

codes defined by the International Association of Oil and Gas Producers (IOGP). The IOGP's EPSG

Geodetic Parameter Dataset is a collection of definitions of coordinate reference systems maintained

by the Geodesy Subcommittee of the IOGP Geomatics Committee [43]. Each entity is assigned an

EPSG code between 1024 and 32767, and can be used to access the mathematical approach of each

CRS. A well-known CRS is that of EPSG 4326, also known as WSG 84 which uses latitude and longitude

and, is the reference system used by the Global Positioning System (GPS).

Figure 10. CRS adaptation of a 3D to a 2D representation example (Extracted from [42]).

Since RCP deals with geographic data, choosing the appropriate CRS according to the current situation

and, the capability to correctly transform between CRS systems is crucial. Having data from the same

location that are stored in different CRS, will result in them not lining up in any GIS or other program

unless they are transformed to the same CRS [42].

For this effect, RCP uses 3 different EPSGs. For the base tiles of every map represented in RCP, EPSG

3857 is used, as this EPSG has by far the most available tiles on the web. It is also the most used EPSG

for tiles by different web GIS software. However, for the coordinates of all the vertex geometries “drawn”

on these maps EPSG 4326 is used. It can be considered an industry standard, when it comes to web

applications, to use EPSG 3857 for the map tiles, as it is the easiest to render on the web context and,

EPSG 4326 for the coordinates values, as most people think in latitude and longitude when faced with

the word coordinates, due to the widespread use of GPS. The used technology for the map

representation, leaflet [44] (explored in the next section) is capable of transforming these coordinates to

EPSG 3857 on the fly for representation. Finally, for operations related with the HiSTAV simulations

EPSG 3762 (EPSG used in Portugal) is the appropriate system, due to the fact that HiSTAV simulations

https://en.wikipedia.org/wiki/SRID
https://en.wikipedia.org/wiki/EPSG_code
https://en.wikipedia.org/wiki/EPSG_code
https://en.wikipedia.org/wiki/International_Association_of_Oil_and_Gas_Producers

19

are done using this EPSG as it was developed primarily for simulations occurring in Portugal. Given that

each geographic projection of a country and its spheric reality onto a plane surface generate specific

and well-known distance, shape and, area deformations, country needs are different from each other in

order to reduce these distortions [45]. Portugal uses EPSG 3762 as it is more adequate for its terrain.

2.8 GIS Data

A web application like RCP is highly dependent on GIS functionalities. RCP needs to handle a high

number of GIS data formats. These data types are known as spatially referenced data and can be

separated into two categories, vector and raster formats (including imagery) [46]. Additionally, there is a

third data format used by RCP, called mesh, which is an input needed to perform HiSTAV simulation.

Vector data is a way to represent real world features within a GIS environment. Things like roads, trees,

rivers can be represented by a vector feature. Vector features are shapes represented by geometries

such as point, line and polygon [47], with every point coordinate value being dependent on the CRS in

use. Looking at SFA standards already gives a good idea of what each feature is, however, they are

detailed individually next. A point feature is self-explanatory, it is a point with x and y coordinates,

optionally z. In the scope of this project a point can be used to represent, for example, a sensor. A line

feature or, more commonly referred to as polyline, is a group of ordered points, connected by lines.

Once again, each point has a x, y and optionally z coordinate and, is connected to another point forming

what is more commonly known as a line. In RiverCure, a polyline can be used to represent, for example

a river.

Figure 11. Geometry representation (green line) of a lake (Extracted from [47]).

20

Lastly, a polygon feature is, like a polyline, a series of points, with x, y and optionally z coordinates, that

are connected with a continuous line but, where the coordinates of the last point are the same of the

first point, forming a closed shape. A polygon can be used to define, an area to test for flood possibility,

such as the Domain are of a given Context in RCP. On Figure 11, delimited by a green line, a geometry

example, more specifically a polyline, is seen.

Moreover, each of these features has associated attributes to describe them. These attributes can be a

timeseries in the case of sensors (point), a type in the case of a boundary (polyline) or a cell length (CL)

in the case of the Domain (polygon). CL is used to divide the Domain area in smaller cells by HiSTAV

for the computation of simulations. These features, besides being stored in a GIS DB, can also be stored

in file formats such as geojson [48] and shapefiles [49], which are both used by RCP.

A Raster is a matrix of cells (i.e., pixels) organized into rows and columns (i.e., a grid) where each cell

contains a value representing a variable, such as temperature or height [50] (example on Figure 12).

Rasters are well suited for representing data that changes continuously across a landscape (surface).

A digital terrain model (DTM) is a popular example of a raster representation. DTMs are an important

input for both the HiSTAV Simulation pipeline and the user of RCP.

Figure 12. Raster examples (Extracted from [50]).

A Mesh is an irregular triangle network, usually with temporal and spatial components. It provides

information about the spatial structure that contains a collection of vertices, edges and faces in 2D or

3D space [51] and, can have datasets that assign a value to every vertex. A vertex is a XY(Z) point, an

edge is a line connecting two vertices and, a face is a set of edges forming a closed shape. Each vertex

21

can store different datasets with or without a temporal dimension [51], containing information like, for

example, wind speed through time. HiSTAV needs a mesh as input for the execution of a simulation,

and in RCP Context, a program is used to generate a mesh from a combination of vector and raster

data, as is explained in section 5.3. A Mesh example can be seen on Figure 13.

Figure 13. A Mesh example.

2.9 Technologies

To develop a web application like RCP, it is necessary to leverage a substantial number of technologies.

These are technologies for geographic operations in the web context. In this section the technologies

used in the development of RCP are explained, as well as the reasoning behind their needs.

Python

Python is a general-purpose interpreted programming language used for web development, machine

learning, and complex data analysis. Python is a perfect language for beginners as it is easy to learn

and understand [52]. Moreover, Python has a vast set of open source standard. RCP requires

functionalities like creating geojson files programmatically, as geojson is the standard format chosen for

geographic data exchange between RCP and HiSTAV, which are covered by these libraries. Additionally,

Python has compatibility with major platforms and paradigms. Since RCP wants to leverage external

systems this interoperability attribute might be important in the future. Due to the nature of RCP, these

Python qualities are essential to a correct implementation in reasonable time.

22

However, the main reason Python was chosen was because it is the language used by Django

framework [18], a Python web framework capable of developing complex web application like RCP.

Moreover, Django has an extension, called GeoDjango, which introduces spatial data types and spatial

operations, significantly facilitating the development of RCP. Both Django and GeoDjango are introduced

in the next two sections.

Django

Django is a high-level Python web framework that encourages rapid development and clean, pragmatic

design [18]. It is focused in developing web application following a Model-View-Controller (MVC) [53]

architecture and has 3 main principles [54]: Don’t repeat yourself (DRY), explicit is better than

implicit and, loosely coupled architecture.

These principles are advantageous both in the development of RCP and, in ASL code generation. DRY

simplifies the development process as the developer does not need to rewrite the same code, and an

explicit approach makes the code more readable and easier to transfer to another person. Finally, a

loosely coupled architecture contributes to an easier change and expansion process, making it easier

for the developers to focus on specific parts of RCP that need to be improved or changed. All these

characteristics lead to a more resilient application, with higher maintainability, scalability and code

readability. As for ASL, no hidden features, a high degree of segregation of features and simplicity and

readability of Django code, makes it easier to design the code generation mechanisms for Django and

outline its development process, making ASL the abstract and platform-independent language it ought

to be. Additionally, a vast set of data formats, especially GIS formats are contained in a Django extension

called GeoDjango [55] (this extension is detailed in the next section) making it easier to develop the

equivalent of these types in ASL, turning it in a more complete and holistic language, while keeping its

main principles intact, its abstraction and platform independence.

Django inherited Python’s “batteries-included” approach and includes out-of-the box support for

common tasks in web development [56]: user authentication, templates, routes, views, an admin

interface, robust security and, support for multiple database backends. The admin interface is

particularly important as it is an automatically generated, user-friendly interface that allows a user to

make CRUD operations without writing code. With respect to support for multiple database backends,

Django has a database abstraction API [57], known as object relational mapping (ORM) [58], which

simplifies DB interaction by allowing the developer to use object oriented programming (OOP) principles

to access the DB, instead of using traditional SQL queries (i.e., each table is an object type and each

entry an instance of the said object). The existence of ORM is also advantageous for ASL, as it allows

the scoping of code generation, in the context of this project, solely for Python language and Django

framework. Both the admin interface and ORM are inherited and expanded by the GeoDjango [36],

which is explored in more detail in the next section.

As of 2018 Django has been under active development for over 13 years, making it a grizzled veteran

in software years, and has a big user base, which further attests to the maturity of the software. Web

development is hard. It does not make sense to repeat the same code and mistakes, when a large

23

community of developers has already solved these problems. At the same time, Django has extensive

documentation and support forums while remains under active development and has a yearly release

schedule. The Django community is constantly adding new features and security improvements [56].

GeoDjango

GeoDjango [36] is an included contributed module for Django [18] that turns it into a world-class

geographic web framework. Since RCP needs to include geographic functionalities and deals with

different data formats, GeoDjango functionalities integration is a right decision. Moreover, GeoDjango

strives to make it as simple as possible to create geographic web applications like location-based

services [55]. Its features include: (i) Django model fields for OGC geometries and raster data; (ii)

extensions to Django’s ORM for querying and manipulating spatial data; (iii) a loosely coupled, high-

level Python interfaces for GIS geometry and raster operations and data manipulation in different

formats.

Figure 14. GeoDjango Admin interface view.

The ORM extension adds functionalities from the GIS DBMS chosen as the backend. In this project the

chosen backend was PostgreSQL with PostGIS, as it is the DBMS with the highest compatibility with

GeoDjango [59]. There are different levels of compatibility, but most GIS DBMS allow geographic

operations like intersection of polygons, checking if a geometry is contained inside another, retrieving

https://www.opengeospatial.org/

24

the overlapping area of different polygons or transforming between different CRSs. All these operations

are performed on the DBMS layer. However, it is necessary to be able to perform these operations on

the application layer as well. Either because the data must be treated before being stored on the DB or

because the information being calculated is of temporary nature and is not stored on the DB. For this

purpose Geodjango integrates geospatial libraries capable of manipulating spatial data like GDAL [60]

and PROJ [61]. The GIS DBMS and geospatial libraries used are explained in the next sections.

GeoDjango also features a powerful built-in admin interface inherited from Django [18], adding

geographical types and operations to it. This interface is generated automatically when a developer

starts a Django project and allows a user, normally an admin, to perform CRUD operation on the defined

models, just like the admin interface inherited from Django. Figure 14 shows an example of the

GeoDjango Admin interface where all fields are editable, including a geometry field (i.e., a point in this

case).

PostGreSQL and PostGIS

As seen in the last section, the geographic operations available on GeoDjango are highly dependent on

the chosen DBMS, as GeoDjango ORM merely bridges the GIS DBMS functions to a Python equivalent,

treating each table as an object type. It is necessary to choose a complete DBMS in terms of geographic

functionalities to fully leverage this advantage.

PostGreSQL DBMS is a powerful, open source object-relational database system with over 30 years of

active development that has earned a strong reputation for reliability, feature robustness, and

performance [62]. Moreover, it has an extension, known as PostGIS [63], that has a vast set of

geographic operations based on the OGC standards (e.g., CRS transformations, geometries

intersection) while having the highest compatibility level, of all DBMS, with GeoDjango as seen on Table

4 [59].

Table 4. Spatial Lookup available in GeoDjango according to the DBS (Extracted from [59]).

25

It is important to use a DBMS that follows some widely used and accepted standards, as this allows the

application of these same standards to the environment being developed, increasing its maintainability,

flexibility and, interoperability. In this research case, developing ASL with these standards in mind,

makes it compatible with any DBMS that also follows these standards like PostgreSQL and PostGIS,

creating the desirable platform-independent characteristic.

In sum, PostgreSQL + PostGIS is the DBMS that offers a vast set of spatial lookups operations,

database functions and aggregate functions [63] and, a high degree of compatibility with GeoDjango

framework [59], when compared to other DBMS used in the software GIS software scope.

Geospatial Libraries

Like explained on the previous section about GeoDjango, in order to be able to perform geographic

operations on the application layer, it is necessary to integrate a set of libraries for the effect, namely

GDAL/OGR [38], GEOS [64] and PROJ [61]. The importance of each individual library is explained

below.

GDAL/OGR stands for Geospatial Data Abstraction Library and is a veritable “Swiss army knife” of GIS

data functionality. OGR Simple Features Library is a subset of GDAL, which specializes in reading and

writing vector geographic data in a variety of standard formats [38]. It presents a single raster abstract

data model and single vector abstract data model to the importing application for all its supported formats

[60]. Most relevant data and datasets available use GDAL/OGR. So, by using GDAL/OGR we ease the

handling of such formats (e.g., importing and analyzing files). Importing a water basin border to

Rivercure, is an example of a situation where using GDAL/OGR allows for a deeper and more curated

analysis of a vector file contents, in this case a file containing the water basin borders, it

programmatically extracts the shape of the basin as well as any properties associated in the file, allowing

the data to be treated, changed and stored according to the requirements. This library, when integrated

with GeoDjango, also facilitates the creation of scripts for batch handling this kind of data, allowing, for

example, the batch load of several files in one operation.

https://gdal.org/user/vector_data_model.html

26

GEOS (Geometry Engine - Open Source) is a C++ port of the JTS Topology Suite (JTS), an API for

modelling and manipulating 2-dimensional linear geometries [65]. It aims to contain the complete

functionality of JTS in C++. This includes all the OpenGIS Simple Features for SQL spatial predicate

functions and spatial operators, as well as specific JTS enhanced functions [64]. It is owned by OSGeo

[66]. Moreover, GeoDjango implements a high-level Python wrapper for the GEOS library, including the

following features [67]: (i) a BSD-licensed interface to the GEOS geometry routines, implemented purely

in Python using ctypes; (ii) it is loosely-coupled to GeoDjango (e.g., GEOSGeometry objects may be

used outside of a Django project/application); (iii) it has mutability: GEOSGeometry objects may be

modified; (iv) it is cross-platform and tested (i.e., compatible with Windows, Linux, Solaris, and macOS

platforms).

Simply put, this library allows the seamlessly creation of geometries in GeoDjango with simple predicate

functions for simple geographical operations (e.g., checking if 2 geometries intersect one another). Thus,

RCP geometries have great flexibility and portability, while guaranteeing the strong confidence a library

owned by OSGeo [66] provides.

PROJ is a generic coordinate transformation software that transforms geospatial coordinates from one

coordinate reference system (CRS) to another [61], based on SRID or EPSG code recognized by OGC.

PROJ is a crucial library to enable RCP to transform geometries and rasters between the necessary

CRSs. Integrating PROJ in the RCP increases its flexibility when dealing with different spatial references

systems, making it a holistic geographic platform.

Leaflet and Django-leaflet

Since RCP is heavy on geographic data functionalities, there is a necessity for a way to visually

represent this data in an understandable way for the user. A common solution for this problem is to use

a map renderer. In this research the chosen renderer was leaflet [44]. Leaflet is the leading open-source

JavaScript library for mobile-friendly interactive maps and has all the mapping features most developers

need [44]. Moreover, leaflet also provides high portability between platforms, which is highly desirable,

and an extensive and thorough API. This API allows the creation of elegant maps and geometries

representations, which can be used to easily analyze or define georeferenced geometries. This is done

by using mainly 2 concepts, the base layers and the overlay layers. The base layers are mutually

exclusive [68] and, in the context of this project, are usually represented by a world map seen from the

top. These layers are usually seen from anywhere inside the renderer as they serve to offer geographic

context to the user on the definition of the overlay layers, which are all the other geometries (e.g

polygons, points, polylines) defined inside the renderer. The base layer is always underneath the overlay

layers which are not mutually exclusive. Overlay layers have a Z parameter which define the order of

the layers from a vertical perspective.

Leaflet base layer uses EPSG 3857 and, as such, all the representations rendered by leaflet are done

so in the same EPSG for simplicity sake. However, on RCP all the geometries are stored in EPSG 4326

as it is a more commonly used coordinate system, when working with maps, because it is the system

http://tsusiatsoftware.net/jts/main.html
http://www.opengeospatial.org/standards/sfs
https://docs.djangoproject.com/en/3.1/ref/contrib/gis/geos/#django.contrib.gis.geos.GEOSGeometry
https://docs.djangoproject.com/en/3.1/ref/contrib/gis/geos/#django.contrib.gis.geos.GEOSGeometry
https://leafletjs.com/#features

27

used by the GPS. This means all the geometries visualized on leaflet must be transformed on the fly, in

order for the location of the different geometries to be correctly represented on the world map.

Additionally, it was necessary to integrate leaflet with Django [18]. We used a library called Django-

leaflet [69] which simplifies this process by making all leaflet functionalities available in Django projects

but and adding some functionalities for the powerful Django admin interface, for instance to allow the

rendering of geometry fields and spatial data.

Paraview Web Visualizer

ParaView Visualizer is a standalone application that leverages ParaView by Kitware, Inc. [70]

capabilities on the backend to produce interactive visualizations over the web [71]. It is able to show

interactive visualizations of VTK files. The VTK format is a format associated with Paraview [72], offering

a consistent data representation scheme for a variety of dataset types, and to provide a simple method

to communicate data between software, especially when dealing with large datasets [73].

The results of a mesh generation and of a HiSTAV simulation are, a single VTK file in the case of the

former, and a collection of VTK files in the case of the latter. This makes this file format an important

part of the simulation process as is explained later in the RCP (Simulation Pipeline section). The user

might need to validate these VTK files and, as such, it was necessary to implement a way to visualize

these VTK files in the web, without the necessity for the user to download the file and visualize them in

a desktop application. Paraview Web Visualizer serves this purpose by providing a VTK visualizer that

can be setup in the web.

28

3 Related Work

RCP is, in essence, an integration and streamlining of certain features and functionalities of systems in

use today. There are 3 main systems that need to be understood, SNIRH [4], SVARH [5], and HiSTAV

[2]. The first two serve both as a feature requirement collection and a data collection location. When it

comes to features, these systems have functionalities that were emulated in RCP like the visualization

of sensors on the map, where the user can collect all the information about the sensors by clicking on

them. In terms of data, these systems have a vast network of sensors spread around Portugal that

collect hydrometric data. These sensors should be integrated with RCP in the future, allowing the flow

of data from these sensors to RCP. As for HiSTAV, a system that simulates a Context design on RCP, it

is fully integrated with RCP, allowing the full leverage of all its functionalities, in a way that is

imperceptible for the user (i.e., the user does not interact with HiSTAV directly).

Moreover, to validate RCP and its utility, it is necessary to compare its features with existing tools

available in the market. One of such tools is Mike Powered by DHI [74]. Mike offers several suits to solve

different problems, but in the scope of this research, the main focus is on Mike 21 [75], as this suit is the

most similar to HiSTAV. In this section a detailed description of the aforementioned tools is provided.

3.1 SNIRH

Sistema Nacional de Informação sobre Recursos Hidrícos (SNIRH) or Hydric Resources National

Information System in English, was announced on October first ,1995 by Instituto da Água (INAG) and

is a water resources monitorization system, that saves data in APA’s SQL-Server DB and releases the

information to the public in a web portal (https://snirh.apambiente.pt). The portal gets 600 visits per day,

between teachers, students, researchers, journalists and public administration personal and is divided

in three sub-systems, SNIR-Lit, SNIRH-Júnior and, SVARH [4].

The web portal shares relevant information, like reports and maps of flood areas. However, it is quite

old, and the user interaction is poor. RCP emulates the most relevant functionalities of SNIRH, mainly

the display and availability of the vast amount of information collected in APA’s SQL DB, while

significantly improve the usability for the user. RCP then further expands on SNIRH’s concept by

integrating a hydrometric model known as HiSTAV (explored in section 3.3) creating the ability to perform

simulation through interaction with the portal, strengthening the amount of data available on the RCP.

In summary, SNIRH’s concept is the base from which RCP was built. Both systems share a great deal

of requirements and functionalities. The main differences being the improvement of user interaction,

visual appeal and the integration of HiSTAV in RCP. A screenshot of SNIRH web portal is seen on Figure

15.

29

Figure 15. SNIRH web portal (Extracted from [4]).

3.2 SVARH

Sistema de Vigilância e Alerta de Recursos Hídricos (SVARH) or Hydric Resources Surveillance and

Alert System in English is a subsystem of SNIRH that provides the hydraulic state of rivers and reservoirs

(i.e., water levels, flow rate, stored volumes and water quality) and relevant meteorological information

in real time, while also allowing the prediction of its possible evolution. It is composed by a network of

stations with autonomous transmissions, that measure several hydrological variables and water quality,

and by a technology infrastructure for storage and dissemination of the data collected by the stations.

This network is composed by three types of automated stations 311 hydrometric and 620 meteorological,

totalizing approximately 931 stations [76]. The data collected by each station is related with the station

type (e.g., meteorological measures water level, wind speed and direction, air temperature, relative

humidity, and water temperature). A station is composed by sensors, a datalogger, a power supply

(battery and solar panel), and a communication system (usually GSM modem) [77]. The flow of the

collected data between these components is seen on Figure 16. These stations are located in critical

points for surveillance of floods, droughts and pollution accidents [5]. The whole system is divided in

three parts.

• Data Acquisition – Automatic stations with transmission.

• Central Processing – Data gathering informatic system from the automatic stations, and its storage

with hydric and hydraulic models.

• Information Distribution – Real-time information distribution software from the automatic stations.

30

Figure 16. From left to right: Data Acquisition, Central Processing and Information Distribution

(Extracted from [5]).

The main relevance of this system in RCP context is the possibility to leverage the data distribution of

SVARH and funnel the data to RCP. The higher the amount of quality data available on RCP, the higher

the amount of data that can be fed to HiSTAV for simulations, resulting in a higher quality and trustworthy

simulation. More data should result in more geographic areas with available data that can be used by

HiSTAV simulations. This makes it possible to define distinct Contexts for these areas, increasing the

number of areas being simulated by HiSTAV. Hence, RCP’s stakeholders would have more precise and

trustworthiness results, as well as more distinct Contexts available on RCP (i.e., more area is

covered/protected by RCP).

3.3 HiSTAV

HiSTAV is a modelling effort aimed at delimiting the critical tsunami inundation areas in an urban

waterfront and to quantify the associated severity [6]. Concretely, it is a reliable and performant tool for

faster than real time (FTRT) high-resolution simulations, leveraging parallel, distributed and graphics-

based computing technologies for this effect. Moreover, HiSTAV was released as a standalone product,

available to both engineering and research communities, by supporting a close integration with open-

source Geographic Information Systems and scientific visualization toolkits for complex data handling

and analysis. Its applicability remains valid for multiple fields in water resources [2].

For its simulation, HiSTAV needs a collection of geometries and rasters known as Context as input. This

Context is composed by 5 geometries known as Domain, Refinement, Alignment, Boundaries and,

Boundary Points, and 2 raster known as Digital Terrain Model (DTM) and Friction Coefficient. These are

all explained in section 5, but for now it is important to understand that all these components are

georeferenced and have associated properties. They are necessary for a correct execution of a HiSTAV

simulation.

RCP integrates this tool by implementing features that allow a user to define or upload the Context

described above, as well as its corresponding properties, and establishing a pipeline between itself and

HiSTAV enabling bidirectional data exchange. This pipeline allows RCP users to execute simulations

based on defined “Contexts” and visualize the results.

31

3.4 Mike 21

Mike 21 is a versatile desktop tool for 2D coastal and sea modelling. It is capable of simulating physical,

chemical, and biological processes in these contexts. The hydrodynamic model in the MIKE 21 Flow

Model is a general numerical modelling system for the simulation of water levels and flows in estuaries,

bays and coastal areas. It simulates unsteady two-dimensional flows in one layer (vertically

homogeneous) fluids and has been applied in a large number of studies [78]. It is capable of considering

different flood factors like Boundary Conditions, Flooding and Drying, Infiltration and Leakeage,

and Multi-Cell Overland Solver. Additionally, it contains a Flood Screening Tool [78]. It has a proven

track record as it has been used for many costal and marine engineering projects around the world [75].

Some of its benefits and typical applications, according to its developer, are [75]: Benefits: (i) proven

technology and more than a 25-year track record of successful applications; (ii) offers maximum

flexibility, higher productivity, and full confidence in the results; (iii) is modular; (iv) it comes with a wealth

of first-class tools that enhance and ease modelling possibilities; In terms of typical applications: (i)

design of data assessment for coastal and offshore structures; (ii) optimisation of port layouts and

coastal protection measures; (iii) cooling water, desalination, and recirculation analysis; (iv) optimisation

of coastal outfalls; (v) environmental impact assessment of marine infrastructures; (vi) ecological

modelling including optimisation of aquaculture systems; (vii) optimisation of renewable energy systems;

(viii) water forecast for safe marine operations and navigation; (ix) coastal flooding and storm surge

warnings; (x) inland flooding and overland flow modelling;

Figure 17. Mike 21 working area example, after import of land and water data (Extracted from [79]).

32

As for the user interaction, to correctly use Mike 21, the user needs a background in coastal hydraulics

and oceanography, which is sufficient to check whether the results are reasonable or not [80]. The

general steps taken to simulate an area in Mike 21 are [79]: (i) the bathymetry needs to be setup by

importing all the necessary geographical data with soundings based on a survey or digitized from

nautical chart; (ii) the user needs to create the boundary conditions by setting the water levels at the

boundaries; (iii) define a data set with all the values to simulate (e.g., water level through time); Figure

17 shows an example of a Mike 21 working area.

There are several similarities between Mike 21 and RCP, both in user qualifications, general guidelines

to simulate an area and, business goals. Chapter 6 provides a detailed comparison between the two

tools.

33

4 RiverCure Portal Requirements

This research only covers a part of the entire RCP system. To have a better understanding of what was

developed in this research and its purpose, it is necessary to have a better idea of the entire RCP

system. For this effect, the RCP requirements are detailed in this chapter followed by a description of

what part of RCP was implemented in the scope of this research.

The RCP intends to integrate SNIRH and SVARH functionalities with HiSTAV itself in one web

application [81]. As such, there are four main points that need explaining. First, the RCP interface, i.e.,

which interactions should be available to the user and the general structure of the data visualization.

Second, the definition of the Context concept, which is the main focus of this research and is the input

for HiSTAV simulations. Third, how data is collected and funneled to RCP, as well as what RCP does

with it. Fourth, how RCP should integrate HiSTAV into its workflow, and what are the data flows between

these two systems. Additionally, a last section is provided detailing which components were developed

within this research project.

4.1 RiverCure Portal Interface

RCP interface is inspired on SNIRH [4] interface. However, it intends to significantly improve the user

interaction as well as the overall appearance of the site. For this effect, RCP shall contain less navigation

buttons and the information available shall be more selective and curated. RCP also relies on the

segregation of responsibilities between users according to their specific roles (e.g., a visitor will not have

access to the HiSTAV simulation request but, a Context Admin will). In terms of user interaction, this

segregation is leveraged by providing a custom interface for each user role (i.e., each navigation button

is only available to a user which role can use the associated functionality).

The information and functionalities that should be available in RCP are the following: (i) information

about all the created “Contexts”, and a set of actions to create such “Contexts”; (ii) information about all

the sensors associated with RCP system, and functionalities to associate new sensors. The sensor

information should contain the details of the sensor itself (e.g., code, location, type) as well as the data

being collected, in the form of observations; (iii) information about past, present and future flood events,

as well as a way to create such events; (iv) full integration with HiSTAV, allowing the user to use its

functionalities without interacting with it directly.

RCP information and functionalities are geographically heavy. As such, there is a particular interface

element that requires special attention. This element is the map, which allows the user to geographically

contextualize spatial information being defined or available on RCP. Figure 18 left image shows an

example of SNIRH interface. RCP should contain a similar view. Each blue circle corresponds to a

hydrometric station. The letter inside each circle represents the type of the station (e.g., hydrometric,

weather station). Clicking on a circle results in a popup containing information about the data being

collected by the corresponding sensor, in a defined time interval, as seen on the right of Figure 18. The

RCP sensors representation shall follow a similar principle.

34

Figure 18. SNIRH system monitorization network (left) and sensor popup (right) (Extracted from [4]).

4.2 RiverCure Portal Context

An authorized user should be able to define a Context. This Context is the input for a HiSTAV simulation.

Before understanding how to define a Context it must be first understood what a Context is. The Context

concept is composed of several features, which are divided into 2 different groups: Context Geometries

and Context Attributes. Context Geometries are composed of distinct geometries named: Domain,

Refinement, Alignment, Boundary and Boundary Point. On the other hand, Context Attributes are:

DTM Raster, Context Sensor, Hydro Feature, and Context Event. Spec. 5 shows the rigorous Context

specification in the ASL language.

All these concepts are further explained in this section. The division of these features into 2 groups is

due to purpose and structural differences between them, which, come up when preparing the data for a

HiSTAV simulation. The first 5 concepts, under the geometries section, are geometries that, have a

visual representation, and need to be defined or imported by the user on RCP. These concepts are

known by HiSTAV as Context files and, are the core input for its simulation. The other 4 are either defined

through associations of concepts (e.g., associating a sensor to a Context, in the case of the Context

Sensor, or associating an Event to a Context, in the case of Context Event), are an imported file (DTM

Raster) or were defined previously and are transversal to the entire system (Hydro Features). Except

for the DTM Raster, whose file representation is needed by HiSTAV, all the other three concepts are not

used directly by HiSTAV and are instead used by RCP to configure a simulation request.

35

Spec. 5. Context ASL specification

Context Geometries

The definition of these geometries is the bulk of the work related to the definition of a Context. These

geometries represent the visual part of a Context. When the user is visualizing a Context what the user

is seeing is these 5 geometries definition. The DTM also has a visual representation within a Context,

however, since it is not a geometry, but a raster, it cannot be defined by the user, only uploaded in a

raster file format form, and is treated differently by HiSTAV, it is under a different section as it is not

considered primary in a Context definition.

In a structural sense, these geometries are similar because they follow the same design principles, as

they are all geometries and can be defined by the user by drawing on a map. These geometries are

stored in a PostGIS DB [63] and have a corresponding geojson file [48] representation, which is not

stored but generated on demand.

Lastly, the definition of these geometries is subject to 2 geographic constraints: (i) the Domain geometry

must contain, inside its boundaries all the other geometries; (ii) the boundaries of these geometries

cannot intersect each other under any circumstance.

1. Domain

The layman definition of Domain is that of a general area which is under analysis for the potential risk

of flood. In most cases, this is the first geometry defined by the specialized user. The refinement and

alignment geometries must be contained inside this geometry while the other 2 geometries, boundary

and boundary points, must be on the boundary line. An example can be seen on Figure 19, where the

Domain is defined by a grey polygon.

A Domain geometry is stored in the DB as a Polygon. Each Context can only have 1 Domain that is

defined by a single Polygon. For the geojson file representation, the entire Domain geometry is

DataEntity e_Context "Context": Master [

 attribute id "Id": Integer [constraints (PrimaryKey)]

 attribute code "Code": String [constraints(NotNull Unique)]

 attribute Name "Name": String [constraints(NotNull Unique)]

 attribute hydroFeature "HydroFeature": Integer [constraints(NotNull

ForeignKey(e_HydroFeature))]

 attribute geomExternalBoundary "Domain" GeoPolygon

 attribute CLExternalBoundary "Domain CL": Double

 attribute geomRefinement "Refinement": GeoPolygon [constraints(multiplicity"1..*")]

 attribute CLRefinement "Refinement CL": Double [constraints(multiplicity"1..*")]

 attribute geomAlignment "Alignment": GeoPolyline [constraints(multiplicity"0..*")]

 attribute CLAlignment "Alignment CL": Double [constraints(multiplicity"1..*")]

 attribute userResponsible "User Responsible": Integer [constraints(NotNull

ForeignKey(e_User))]

 attribute isPublic "Context Access Restrictions": Boolean [defaultValue "False"

constraints (NotNull)]

 tag (name "tenant-main" value "true")

]

36

converted into a geojson feature that contains a polygon geometry definition. This geometry only has 1

property, cell length (CL), which is a Float, and is defined by the user, after defining the Domain Polygon.

In summary: Geometry Type: Polygon; Properties: CL (Float); Multiplicity: 1;

2. Refinement

A Refinement geometry is a Polygon. It must be contained inside the Domain geometry and, it is usually

defined around the area of interest of a river, resulting in said river being contained inside the polygon.

However, rivers can have tributaries, or other features, requiring more than 1 polygon to be represented

as a correct pre-processor geometry and input. Thus, unlike the Domain, for a given Context there can

be several refinement definitions, optionally nested inside each other, each defined by a polygon with

individual property values. Therefore, a Context, can have several refinements, stored as Polygons in

the DB.

The only property of this geometry is also named CL and, in case there are several refinements defined

for the same Context, each refinement has its own CL value. For the geojson representation, each

refinement is converted in a feature containing a polygon geometry and corresponding CL value (Float)

as a property.

In summary: Geometry Type: Polygon; Properties: CL (Float); Multiplicity: 1..* (As long as they are

inside the Domain definition and their boundaries don’t intersect any other geometry boundaries);

3. Alignment

An Alignment is defined by a LineString (GeoPolyline in ASL). It must be contained inside the Domain

and, it usually outlines a river. In a way, it can be seen as drawing the river on the map as a LineString.

Like explained in the refinement section, it might be necessary to define several alignments for a Context

due to the existence of tributaries and other features of a river. It is possible to define several alignments

for a given Context, as long as these alignments do not intersect each other. However, contrary to the

refinements, whose definition of at least 1 is mandatory, the definition of alignments is not, as long as

the refinements have a sufficient level of detail to form the Mesh grid. Like the geometries described

before, the alignments are also stored in a PostGIS database, but in this case, they are stored as

LineStrings.

The only property of the alignment geometries is CL, defined by the user after defining the geometry

points. Alignments follow the same principles of the Domain and Refinements when being converted to

geojson. This means each geometry is converted to a feature, and each feature has a LineString

geometry and, 1 property named CL (Float), which is defined by the user for each individual LineString.

In summary: Geometry Type: LineString; Properties: CL (Float); Multiplicity: 0..* (As long as they

are inside the Domain definition and their boundaries don’t intersect any other geometry boundaries);

4. Boundary

A Boundary is defined by a LineString. Its definition must be overlaid on the Domain boundaries and all

its points must be points from the Domain definition. Consequently, it is defined by joining at least 2

sequential points from the Domain. If the points are not sequential, the simulation will not be performed

37

correctly. In almost all cases a Context will have more than 1 Boundary, the user can therefore define

several Boundaries for a Context as long as they don’t overlap or share any points. Since a Boundary

is defined by connecting different sequential points of the Domain, not sharing any Domain points is a

good enough safeguard against intersection when defining more than 1 Boundary for one Context.

Each Boundary is stored in a PostGIS DB as a LineString along with 2 properties, the Type and the Data

Type. Both properties are multiple choice fields and are defined by the user after defining the boundaries.

The Type can be either Input, Output or InputOutput. Regarding the Data Type the choices are H for

depth, Q for discharge, Z for elevation and V for velocity. When converting this geometry to geojson,

once again, each geometry is transformed to a feature, and each feature has its LineString geometry

and properties with corresponding values.

In summary: Geometry Type: LineString; Properties: Type (Input, Output, InputOutput), Data Type (H

– Depth, Q – Discharge, Z – Elevation, V – Velocity); Multiplicity: 1..
𝑛𝑟 𝑑𝑜𝑚𝑎𝑖𝑛 𝑝𝑜𝑖𝑛𝑡𝑠

2
 (rounded down);

5. Boundary Point

A Boundary Point is a point from a Boundary. These points are not defined by the user directly but

instead automatically created when the user defines a Boundary, 1 Boundary Point for each point of the

Boundary. Since this is an automatically generated geometry, all the possible constraints are

automatically addressed.

A Boundary Point only has 1 property named series, which can be defined multiple times. This property

represents an association of a boundary point to a sensor, which becomes a Context Sensor after the

fact (Context Sensor concept is explained next, in the Context Attributes section). The association is

done by selecting a sensor, which is within a defined distanced to the Boundary, from a boundary point

popup interface. The distance for possible sensors association is also defined in this popup interface.

The reason for the choice of the property name series is that what is important to HiSTAV is the data

series of the sensor and not the sensor itself. In the end, what is really associated with the boundary

point is a file with the data of said sensor in a given time interval. This file is a text file with the name of

the corresponding sensor as its name and a bnd extension. For now, it is enough for the reader to know

that every Boundary Point must have at least 1 sensor associated, and that it is possible for a Boundary

Point to have more than 1 sensor associated, resulting in several series properties, the rest is explained

in the HiSTAV Integration section. The sensor will also be automatically associated to the Context when

associated with a Boundary Point (this will become relevant later).

The defined geometries are stored in a PostGIS DB, and their associated sensors are also stored in

said database but on their own table. There is a table called e_ContextSensor dedicated to storing the

association of a Boundary Point to a sensor.

This geometry follows the principles of the previous geometries when converting to geojson. This means

each geometry is transformed into a geojson feature with its own properties, which, in this case, is called

series and corresponds to the name of the bnd file with the data from the associated sensors.

38

In summary: Geometry Type: Point; Properties: Series - Sensor bnd file; Multiplicity: 2..sum of all

points of the defined boundaries;

Figure 19. Context Visualization on RCP.

Context Attributes

In this section the Context attributes are explained. The name attributes was chosen to distinguish these

Context properties from the Context geometries. While the Context geometries are structurally similar,

and, are defined by the user drawing geometries on a map, these attributes are more distinct between

themselves. Not all of them are essential (as the reader will see later) and they are defined in a more

linear way by the user (e.g., filling a form).

Moreover, while the Context geometries can be considered the main components of a Context, the

attributes are more akin to support data, even being directly related with the Boundary Points in the case

of the Context Sensor, as it is explained later. For simplicity sake, let us consider the geometries as the

Core properties of a Context, with the attributes being the secondary properties.

1. DTM Raster

The digital terrain model (DTM) is a topographic model of the bare Earth that can be manipulated by

computer programs. The dataset contain the elevation data of the terrain in a digital format which relates

to a rectangular grid [82].

Domain

Boundary

Boundary

Point

Refinement

Sensor

Alignment

(yellow line)

Boundary

Point

Cluster

39

A DTM is very useful visual aid for a specialized user when defining a Context. As such, it is important

for such user to be able to add a DTM and have a representation of it on the same map where he is

supposed to draw the Context.

Moreover, the DTM is used by the Pre-processor to generate a mesh, that is used by the HiSTAV

simulator, making the capability to associate a DTM to a Context essential. The mesh generation and

its use by the Pre-processor is further explained in the HiSTAV integration section. Adding a DTM is, by

consequence, mandatory before proceeding with the HiSTAV Simulation. On Figure 20 the reader can

see a DTM where a whiter color corresponds to higher altitudes and darker to lower altitudes.

Figure 20. DTM example (as seen on RCP).

In summary: Geometry Type: Raster; Properties: None; Multiplicity: 1; Purpose: Visual aid for the

user during the definition of a Context, used by the Pre-processor for mesh generation, which is an input

for the HiSTAV simulator.

2. Context Sensors

In theory, a Context Sensor is a Sensor that is associated with a Context. This association is not done

directly, instead it is done by associating a Sensor to a Boundary Point. The Sensor is then automatically

considered as a Context Sensor. The Sensor itself, can be described as a point on the map, that collect

data through observations in the form of a timeseries. These procedure of collecting data is the

adaptation from the WaterML standards [13].

40

A Context Sensor, in practice, is just a concept representing a link between a Boundary Point and a

Sensor, keeping track of which sensors are associated to which boundary points. Keep in mind that a

Boundary Point can have more than 1 Sensor associated and 1 Sensor can be associated to more than

1 Boundary Point. A Boundary Point cannot be however associated with the same Sensor more than

once. This link is relevant so that it is possible to associate the correct series to a Boundary Point. The

series property of Boundary Point is explained in detail in the previous section Context Geometries

under Boundary Point section.

In summary: Geometry Type: None; Properties: Boundary Point, Sensor; Multiplicity: 1..*; Purpose:

Linking a Boundary Point to a Sensor;

3. HydroFeature

A HydroFeature is a type of terrain related with water (e.g., a river). At the time of writing the defined

HydroFeatures are: River, Estuary, Lake, River Basin, Drainage Basin and Dam. There is the possibility

of extending these types as necessary in the future.

Like the Context Geometries, a HydroFeature also has a georeferenced geometric definition. However,

in this case, this definition is not done by the user, it is instead loaded from a shapefile [49] through a

script developed specifically for this purpose. Moreover, it is not visible to the specialized user, who will

define the Context and it is not used by the HiSTAV Simulation. The purpose of a HydroFeature is solely

for the admin who creates the Context to have a way to specify for the specialized user defining the

Context, where it should be defined and what HydroFeature is supposed to be analyzed later in the

HiSTAV Simulation.

In summary: Geometry Type: Polygon; Properties: Type (River, Estuary, Lake, River Basin, Drainage

Basin, Dam) with possibility for the addition of more types; Multiplicity: 0..1;

4. Context Event

A Context Event is a time bounded Event, created by an authorized user and associated with a specific

Context. A given Context can have as many Events as necessary. It is through a Context Event creation

that a simulation is requested for the said Context. A Context Event has several properties that can be

divided in 2 groups, with all properties being defined at the time of the Context Event creation.

The first group are properties necessary for the HitStav simulation request. These properties will

influence the outcome of a simulation and the user that creates the Context Event must be very

considerate when defining its values. These properties include: (i) the Context, the only property defined

automatically, since the user is creating a Context Event and not an Event; (ii) start and end date, and

time interval for which the HiSTAV Simulation should be performed; (iii) writing periodicity, which

represents the frequency the user wants HiSTAV to write the results of the simulation; (iv) and finally the

update maximum values periodicity, which represents how frequently the user wants HiSTAV to update

its maximus. These values have a high degree of complexity and as such must be defined by a

specialized user with knowledge of HiSTAV Simulator which has the corresponding authorization given

by an RCP admin.

41

The second group of properties aim to provide a precise classification of the Context Event. Properties

like name, description, type, subtype, and state are all present in a Context Event even though they are

not used by the HiSTAV simulation. However, these properties are of the utmost importance when

analyzing a complete event and its results in retrospective. A pundit user can quickly understand the

reasoning behind the creation of a certain Context Event by looking at these properties, as well as

interpret the results from the associated HiSTAV simulation.

In summary: Geometry Type: None; Properties: For HiSTAV Simulation: Context, Start Date and Time

(2 fields, 1 for date and 1 for time); End Data and Time (2 fields, 1 for date and 1 for time); Writing

Periodicity (uses hz for computation but the user can define it in hours, minutes, or seconds); Update

Maximum Values Periodicity (uses hz for computation but the user can define it in hours, minutes, or

seconds); For descriptive purposes: Name (String); Description (String); Type (Flood, Heavy

Precipitation, Hydrological Drought, Meteorological Drought, Hurricane, Tsunami, Storm, Landslide);

SubType (Forecast, Hindcast, Planning); State (Announced, Occurring, Concluded); Multiplicity: 0..*;

Purpose: Starting a simulation bounded by the time frame provided by the user who created the event;

The Context definition is the first step in the long simulation pipeline which will finish with the HiSTAV

simulation and its output, which allows a specialized user to infer if the area from the Context under

simulation is in risk of being flooded.

The Simulation Pipeline steps are as follows: (i) Context creation by an authorized user and attribution

of a Context owner. (ii) Context definition by the Context owner; (iii) pre-processing request by the

Context owner; (iv) an authorized user creates a Context simulation event.

4.3 Data Collection

The RCP result trustworthiness is dependent on the quality and quantity of data available on it. RCP

intends to leverage SNIRH and SVARH sensors and use them as its own sensors. The RCP users

should be able to associate these sensors to their created Contexts.

Spec. 6. Sensor ASL specification.

DataEntity e_Sensor "Sensor": Master [

 attribute id "Id": Integer [constraints (PrimaryKey)]

 attribute code "code": String [constraints (NotNull Unique)]

 attribute Name "name": String [constraints (NotNull)]

 attribute type "Type": DataEnumeration SensorKind [constraints (NotNull)]

 attribute modalityType "Modality Type": DataEnumeration SensorModalityKind

[constraints (NotNull)]

 attribute Description "Description": Text

 attribute Version "Version": String

 attribute responsible "User Responsible": Integer [constraints (NotNull

ForeignKey(e_User))]

 attribute geom "Geometry": GeoPoint

]

42

In the future, it should be possible to add new sensors to RCP from any source as long as they follow

the OGC standards [35]. Spec. 6 and 7 show the Sensor and the Context Sensor ASL specifications

respectively. These two specifications together form the RCP Sensor concept.

Spec. 7. Context Sensor ASL specification.

All the data is collected as an observation according to the WaterML specification [13] as to standardize

the data collected by different sensors. For this effect, a Sensor Observation ASL specification was

defined as shown on Spec. 8.

Spec. 8. Sensor Observation ASL specification.

Additionally, the possibility for Social Sensors should be implemented. A Social Sensor is, simply put, a

geo-referenced photo uploaded by a user. Ideally, the photos would be scrapped from social media

platforms or directly uploaded by an user to the RCP. This photo would then be submitted to a machine

learning algorithm [83] that estimates the water height depicted on the photo. The resulting classification

results would be stored on RCP. This would result in a significant increase of data available on RCP.

4.4 HiSTAV Integration

RCP needs to communicate with HiSTAV to request simulations and receive their results to be displayed

to the user. The exchange of data between these two systems is done through the implementation of a

REST API in each of them. Most requests sent to HiSTAV use geojson files [48] in their bodies,

containing the definition of the Context to simulate. The results of HiSTAV simulations are raster images

sent in TIFF format and, are processed in RCP side, which involves their transformation in tiles in PNG

format so they can be displayed in the implemented leaflet map as an overlay layer.

RCP should leverage all the data observed by the sensors and funnel it to HiSTAV Model. The result

should then be sent back to RCP where the users can see them. Ideally this data feed to RCP is

DataEntity e_ContextSensor "ContextSensor": Master [

 attribute id "Id": Integer [constraints (PrimaryKey)]

 attribute context "Context": Integer [constraints (NotNull ForeignKey(e_Context))]

 attribute Sensor "Sensor": Integer [constraints (NotNull ForeignKey(e_Sensor))]

 attribute Description "Description": Text

 attribute associateDatetime "Associate Datetime": Datetime [constraints(NotNull)]

 attribute associateUser "Associate User": String [constraints(NotNull ForeignKey

(e_User))]

]

DataEntity e_SensorObservation "Sensor observation": Document [

 attribute id "Id": Integer [constraints (PrimaryKey)]

 attribute sensorId "Sensor": Integer [constraints (NotNull ForeignKey (e_Sensor))]

 attribute sensorType "Sensor Type": DataEnumeration SensorKind [constraints

(Derived ("sensorId.type"))]

 attribute startDatetime "Start Datetime": Datetime [constraints (NotNull)]

 attribute endDatetime "End Datetime": Datetime [constraints (NotNull)]

 attribute date "Date": Date [constraints (NotNull)]

 attribute time "Time": Time [constraints (NotNull)]

attribute data "Data": String

]

43

constant, enabling the HiSTAV Model to be constantly running in a powerful enough machine. Having

this constant data feed enables the automatic creation of noteworthy events. These events should be

time bounded (i.e., have a start time and end time) and be highly detailed. They should also have a

Context and simulation results associated with them. This way users can analyze past and current

events and understand what impact they had on the associated Context area. The last feature would

be the possibility of predicting future events. Allowing the organizations using RCP to better protect the

population of areas in risk of flooding and their belongings.

44

5 RiverCure Portal – Simulation Pipeline

As explained in section 1.3, this research development was divided in three phases. The first two

consisting on the specification and implementation of RCP, and the last phase on the integration of RCP

with HiSTAV. In this chapter, the 2 phases related with RiverCure development and implementation

decisions, as well as the reasoning behind these decisions, are looked into in depth starting from phase

1. Last phase is covered on chapter 6 – HiSTAV Integration.

5.1 RCP Data Model Definition and Generation from

the ASL Specification (Phase 1)

The goal of phase 1 was to specify the RCP using the ASL language (contextualized on section 2.4)

and, from this specification, generate a data model in Django/GeoDjango/Python code [18] (GeoDjango

and Django terms are used interchangeably from this point onwards) from which RCP use cases could

be implemented.

However, at the time of this generation ASL lacked spatial data types and a corresponding mapping to

equivalent types in GeoDjango [36]. Thus, the first step was to decide which spatial types were

necessary in ASL, so it could fully specify the intended RCP and, after completing this step, how to map

these types into the spatial types of GeoDjango.

Since the scope of this project does not include the specification process of RCP in the ASL language,

this phase is short, including only the tasks described in the previous paragraph. The ASL geometry

data types definition and the exploration on how to transform these ASL geometries data types to

GeoDjango data types.

ASL Data Types

After analyzing the objectives and goals of RCP four spatial data types, based on OGC standards [35],

were chosen. These data types are generalist to provide the necessary flexibility for the development of

a web application of this kind, as well as allowing the exploration of ASL geographic code generation

mechanisms for other programming languages in the future, since ASL is a platform-independent

language. These types were named: GeoPoint; GeoPolyline; GeoPolygn; GeoRaster.

These four spatial types have enough flexibility to cover a plethora of use cases necessary for geo

applications. Specifically, the Context definition, which is the main feature of RCP on the scope of this

project. This definition is explained in detail in section 5.2.

45

Data Types Mapping

After settling on the necessary data types for the holistic RCP definition, all that was left to do was to

map these types to the equivalent in Django/Python datatypes, known as field types [37], based on SFA

[35]. Table 2 shows the chosen mapping, along with a short description of the datatype in Django.

It is important to note that in the case of the GeoPolyline and GeoPolygn a field type capable of storing

multiple polygons was chosen. The reason behind this choice is that it is extremely common, in the

cases where a data entry is a geometry field like a polygn or a polyline, for this geometry field to be

represented by multiple spatially independent polygons or polylines. This is not true for the cases where

the geometry field is a point, and so it was decided to keep the GeoPoint as a PointField, and the

GeoPolyline and GeoPolygn as MultiGeomFields. When it comes to raster, we picked the only available

field type in Django for raster data type, i.e., RasterField.

Table 5. Datatypes mapping from ASL to Django (Python).

ASL Data Type GeoDjango Data Type GeoDjango Data Type Description

GeoPoint PointField Stores a Point

GeoPolyline MultiLineStringField Stores a MultiLineString

GeoPolygn MultiPolygonField Stores a MultiPolygon

GeoRaster RasterField Stores a GDALRaster

5.2 RCP’s Context Creation and Definition (Phase 2)

In this phase the first iteration of RCP was developed, from its ASL generated data model. Focused

mainly on the creation of the capability of designing and simulating a Context all in the same application

from the user point of view.

To achieve this goal, it was necessary to integrate the HiSTAV simulation, the simulation software that

predicts and calculates water levels based on a given Context and data from related sensors, with RCP.

For this effect, it was necessary to develop mechanisms that allow a user to create the necessary input

required by HiSTAV and integrate it with RCP through the creation of communication mechanisms, in a

way that it is seamless and effortless for the user.

The HiSTAV simulation uses as input the Context, described on section 4.2, which is a collection of

geometries and rasters with associated properties. The first step on the development of features

associated with Contexts was its specification, seen of section 4.2. From this specification, it was

necessary to transform it into a Django model that is automatically transformed in SQL tables. On Figure

46

21, the chosen structure is represented in UML. After rigorously defining the Context concept in a data

model, the implementation of features that allow a user to define and create Contexts was performed.

Both the creation and definition of a Context is covered in depth both in the perspective of the developer

and of the user.

Lastly, it was necessary to have in mind that RCP would need to communicate with HiSTAV. So, there

was a necessity to establish a format for communication between the two system later on. The chosen

format was geojson file [48]. The representations for each geometry of Context in geojson is covered in

this section.

Figure 21. Context data architecture (ER notation).

Context Creation

In this section the creation of a Context workflow is explained in detail.

When accessing RCP, an authorized user should have a navbar similar to the one seen on Figure 22.

Figure 22. RCP navbar.

From here the user can select Create Context from the Context dropdown list. This option will only show

up in case the user has a role and permission that allow for Context creation. After clicking the Create

47

Context option, the user is redirected to the admin panel of RCP, to a section where a Context creation

is possible. An example of such a section can be seen on Figure 23.

Figure 23. RCP admin page view of the Context creation section.

In this view the user can create a Context by defining a code, a name and defining an owner for the

Context. It is possible to define other properties during the Context creation but these 3 are the only

mandatory ones for a successful creation. The Context owner will be the user responsible for the

definition of the Context. After all mandatory properties are defined the user can click save (the blue

button on the top right corner) and conclude the Context creation. For the purpose of this demonstration

we will assume that a Context named Coura has been created.

Context Definition

In this section the definition of a Context workflow on RCP is explained in detail, as well as all the

necessary actions in each step to achieve the intended outcome.

By the end of this section the reader should have a good grasp of how a Context is created and defined

in addition to what a Pre-processing ready Context looks like. For the purpose of this demonstration,

RCP interface is shown as is when the user is logged in as a user with all the permissions.

Context List

After the Context is created, the Context owner, defined at Context creation, can now access it with the

intent of defining it. On the Context navbar dropdown (Figure 22) there is an option called Contexts Lists.

By clicking on this option, the user is redirected to a page looking like the one shown on Figure 24.

48

Figure 24. Context List Page View.

Here the user can see a list of the “Contexts” he owns. There is also a filter feature in case the user

wants to search for an owned Context either by Name or HydroFeature. The Other Context button

redirects the user to a similar list but where the “Contexts” present are not owned by him or her as long

as the Contexts are public. The Context has a Boolean property named isPublic, seen on Figure 23,

which defines if the Context should be visible for non-owner users.

The user can select one Context from his “Contexts” list, by clicking on the Context name. This will

redirect the user to the Context Manage page, where he can see its definition in detail and, if necessary,

edit the current definition. Assuming the user selected the Coura Context that was created during the

creation phase, he would be redirected to a page similar to the one seen on Figure 25. The next section

details the use cases of this page.

Context Manage Page

Figure 25 shows our hypothetical Context Definition, which is empty, as the Context has just been

created. If some geometry was already defined, the map would show the geometries defining the

Context. The only visual representation available on the map is that of Sensors. It is important to note

that these Sensors are not yet Context Sensors at this point. The number on the circles relates to the

code of the Sensor, which in this hypothetical case correspond to the codes 1, 2, 3, 4 and 5.

The Context Manage Page is where the heavy lifting of the Context Definition is done. This workflow is

long. As such for readability sake, it is defined in the following distinct numbered sections.

49

Figure 25. Context detail page view.

1. Starting a Definition & Upload Option

On the bottom of Figure 25 a wide selection of buttons is visible. Having an empty definition, the user

would want to define the Context. For that he must click on the edit button. After clicking the edit button,

a form prompt is displayed under the Context Detail map as seen on Figure 26. Since the scope of this

section is to explain how a Context is defined, only the Edit button is relevant for now. The other options

relevant for the scope of this dissertation are explained later in this document.

The purpose of this prompt is to allow the user to upload any definition of a Context Geometry he might

have in the geojson file format before starting a manual edit. In case the user has a complete definition,

a manual edit might not even be necessary. Besides the Context Geometries, the user can also upload

a DTM file and a Contour lines file for visual aid when defining the Context, and in the case of the DTM,

as an input for the HiSTAV Simulation. The upload of these files must be done in this phase as there is

no other place where the user can upload them.

As for the buttons in the form prompt, their names are self-explanatory. The Upload button uploads the

files and redirects the user to the Context Detail page. The Upload & Define Manually button uploads

the files and redirects the user to the Context Manage page (this page detailed next). Finally, the Define

Manually skips the upload and redirects the user directly to the Context Manage page. In case of the

execution of an upload, a message alert is displayed on top of the page to which the user is redirected

50

to, notifying the user of the result of the upload. The two messages possibilities can be seen on Figure

27.

Figure 26. Prompt after clicking the edit button on a Context Detail page.

Figure 27. Possible notifications after upload request examples.

In case the user clicks a button that leads to a manual edit, the user will be redirected to the Context

Manage page, where he can make all the necessary adjustments to the definition of the Context. Let us

assume that we have uploaded all the geometry files, for our previously created Context Coura, except

the Refinement. The resulting Context Manage page would look similar to the one seen on Figure 29.

2. Map Tiles & Layering

All distinct geometries have their own layer on the map. This makes it possible to hide a certain Context

geometry type. This is done by toggling the types on the dropdown list present on the top right corner of

the map.

By looking at this dropdown it is possible to see that there are 3 options which are a radio option while

the rest are a toggle. This is due to the fact that these 3 options are base layers, while the others are

overlay layers (the distinction between layers is provided in section 2.9 under leaflet). The presence of

a contour lines base layer is intended to provide the user with a lightweight version of contour lines for

51

the world. If the users prefer to use their own contours lines, he can do so by uploading them as

described before.

3. Drawing the Geometries

If the user does not have a geojson file definition for the different Context geometries, he needs to define

them manually. This is done through the drawing of identified geometries directly on the map.

Before beginning to describe how to manually define the different Context geometries, the reader should

notice the dropdown under the map, on the Manage Context view (seen on Figure 29) with the

placeholder “Select the polygon to define”. The options available in the dropdown are shown on Figure

28. From the four options only the Boundary option needs special attention explaining. So, it will be left

for last.

Figure 28. Dropdown options for selection of geometry to define on RCP.

The user starts by choosing which geometry to define. It is mandatory to define the Domain before all

others and, some controls were implemented to guarantee that the user cannot define any other

geometry before defining the Domain.

Counting from the top left corner of the map, the third and fourth square, allow the user to select a

geometric shape to draw. The third square is for a LineString and the fourth for a Polygon. Once again,

the user choices are limited, as he can only choose the corresponding geometric shape for the selected

Context Geometry, Polygon for Domain and Refinement, LineString for Alignment. This constraint is also

assured by controls limiting and warning the user in case of invalid choices. After selecting a shape, the

user can draw it by just clicking on the map, as long as the shapes don’t intersect each other or

themselves.

The Boundaries are defined in a different way. When defining the Domain, all its points stay drawn on

the map. The user can then define the Boundaries by selecting Boundary from the dropdown and linking

sequential points of the Domain, clicking on an empty spot on the map when the Boundary is complete.

52

Figure 29. Manage Context page.

There is also an option to edit or remove any geometry from the map. This is done by selecting the fifth

and sixth squares. The fifth square is for editing and the sixth for deleting. The meaning of editing here

is related to the change of position or the addition of points to a geometry. These operations are

independent from the currently selected geometry on the dropdown. Every time an edit or deletion is

performed, it is mandatory for the user to redefine the Boundaries of the Context and, as such, the edit

functionalities are not available for the Boundaries. Deletion is however possible by double clicking a

Boundary.

As the reader can see, the workflow for drawing of the Context geometries is relaxed and flexible while

having controls to keep the user on the right path. There are also some visual aids as to whether the

Context is complete or not, as explained later in the Saving a Context subsection.

Geometry to

define selection

Polygon draw

LineString draw

Layers

hide/show

Geometries

Tree

Edit geometry

Delete geometry

Fullscreen

Zoom options

53

4. Boundary Points and Sensors Clustering

Both the Sensors and Boundary Points are clustered when the user is zoomed out (e.g., the green

circles seen on Figure 29 are clusters of Boundary Points). These properties are not clustered together

but in their own distinct group.

5. Geometry properties definition

On the right side of the map, a list of all the geometries defined on the map is available. Each entry on

the list has input(s) field(s) according to its type of Context geometry. This input fields can be used to

change the value of each geometry property (e.g., CL in the case of Domain, Refinements or

Alignments). In alternative, the user can also click on the geometry directly on the map, which will trigger

a popup to appear. This popup is designed according to the properties of its geometry. Since Domain,

Refinements and Alignments have the same property, their popups are the same, changing only the

name on top that identifies the geometry to which the popup belongs. An example of the different

possible popups can be seen on Figure 30.

Figure 30. Popup examples (from left to right; Domain/Refinement/Alignment; Boundary; Boundary

Point).

In the Domain/Refinement/Alignment popups the reader can notice that there is a button named Send

to Back. Since a Context can have several different geometries that can be nested inside each other,

there is a possibility of a geometry being defined on top of a smaller geometry. This will result in the

smaller geometry being under the larger geometry making it non selectable for editing. The button Send

to Back addresses this problem by allowing the user to reorder the different geometries in the Z axis.

Other noteworthy difference is on the rightmost popup, where there are 2 buttons. The difference is

simple: the Add to Point button adds the selected Sensor to the Boundary Point to which the open popup

belongs, while the Add to Boundary adds the Sensor to every Boundary Point that belong to the same

Boundary as the Boundary Point to which the open popup belongs.

54

Moreover, by hovering any entry on this list or on the geometry itself, the corresponding geometry is

highlighted making it easier for the user to identify and distinguish each geometry. Moreover, each

geometry has an id on the right of its name to further help distinguish it from the other geometries.

6. Saving a Context Definition

The last feature of note on this page is the alert at the bottom of the page, informing the user that the

Refinement is not defined. This alert is dynamic and will notify the user of which are the missing

geometries, or in case nothing is missing, that the Context is complete. The reader should also notice

the 2 buttons near the alert bar named Validate Context and the Validate Context Before Submitting.

Both buttons change color according to the state of the Context definition (e.g., green for complete,

yellow for incomplete) with the latter changing the text to Save Context after the user successfully

validates the Context under definition by clicking the former button. It is possible to validate and save

the current progress at any time.

The reader will also notice that it is possible for the Context owner to change the HydroFeature and the

Name of the Context. This is done by just writing a new name for the case of the Name and, for the

HydroFeature the user can just select from from a dropdown list. At the moment of writing the

HydroFeatures present in the dropdown are all the HydroFeatures in the system database.

Context Download

It is possible for the user to download a Context definition in the form of geojson files by clicking the

Download button seen on Figure 25. By clicking this button, the user will get a prompt to download a

compressed folder with 5 geojson files inside (one for each Context Geometry).

Figure 31. Geojson representation of a Boundary.

An example of a Boundary geojson file can be seen on Figure 31. All the other files follow the same

principles. A feature for each independent geometry, with the geometry type, coordinates, and its

55

properties. In the case of the Boundary, the properties are the type of geometry in the Context, the Type,

and the Data Type. All the coordinates values are in the EPSG 3763 as this is standard is mandatory for

the HiSTAV Simulation.

Pre-processor Request

In this section the request is explained from the optic of a RCP user. The implementation on HiSTAV

side is explained in the Phase 3 section.

Looking back at the buttons on the bottom of Figure 25, the reader can see a green button named

Generate Mesh. By clicking this button, the user can request a mesh generation. This generation is

done by an application independent from RCP (this application is covered on Phase 3 section). This

means that on the scope of RCP the pre-processing is just a POST request.

After clicking the Generate Mesh button RCP will transform the Context Geometries in several different

serialized geojsons, one file for each geometry type that are sent in the request body. The user receives

a response from the other application indicating whether the pre-processing request was successful or

not. A visual example of this response can be seen on Figure 32.

Figure 32. Success message on mesh generation request.

Since the pre-processing is an asynchronous operation, the user does not get immediate feedback of

whether the pre-processing was successful or not. Instead, the other application will notify RCP when

the mesh generation is finished. This notification is done through a RCP endpoint detailed on section

4.2.6.

The user can find out if a mesh for a given Context is generated after loading the respective Context

Detail page. Here, the Generate Mesh button can have the color yellow and the name Regenerate Mesh,

instead of the green color and Generate Mesh name, indicating that this detailed Context already has a

generated mesh. In this case, there is an additional button on the page called View Mesh, which will

redirect the user to a Paraview Web Visualizer [71] instance, where the user can manually validate

whether the mesh was correctly generated. The two possible variations of buttons combinations can be

seen on Figure 33.

56

Figure 33. Available options for the RCP user based on whether the mesh has been generated.

Context Event Simulation

Requesting a HiSTAV Simulation is not as linear as requesting a Pre-Processing. For the simulation it

is necessary for the user to create a Simulation Event. This Event will be associated to a Context as we

will see later. Looking at Figure, 33 the reader can see a button called Events. Clicking on this button

will direct the user to a list with all the Events associated with the Context detailed on the page Context

Detail that contains this button. An example of such list is seen on Figure 34.

Figure 34. Context Event List Page.

On the Context Event List page there is a button called Add Event that allows the user to create a new

Context Event. Alternativity the user can click on a Context Event from the list to inspect the details of

the clicked Context Event. Both options are covered on this section starting with the Event Creation.

By clicking on the Add Event the user is redirect to a page with a form with the fields of a Context Event

properties. These properties were detailed on section 4.2.1 on the Context Event section. It is important

to note that the user decision related with the start and end date and time, as well as the writing

periodicity and update maximums will influence the results of the simulation. After filling all the

mandatory fields, the user can click a button named create to create the Context Event.

57

This action will trigger a POST request to the HiSTAV Simulation API similar to the one described in the

previous section. But this time instead of submitting the geojson representation of the Context

geometries, RCP creates a text file, with the bnd extension, for each Context Sensor, with the Sensor

Observations values found inside the time interval defined by the user. An example of such a file is

shown Figure 40, on the Solver2D section. Additionally, another text file with the bnd extension, called

output, is created with both update periodicities with one value per line, meaning the file has only two

lines. Both the output file and the Sensors data files are submitted to the HiSTAV Simulator. The

simulation can take hours to complete, so, just like the Pre-processing its execution is asynchronous. At

the moment of request, the user is only notified on the successful start of the simulation. Only after

HiSTAV finishes the simulation, does it notify RCP.

In case the user wants to inspect an already created Context Event, he can click on the Context Event

name as described before. The user is then presented with a page with all the Context Event properties

(example on Figure 35).

Figure 35. Event Context Detail page.

From this page the user can choose to update the Context Event or download the results, if they exist,

by clicking on the respective description buttons located at the bottom of the page. Updating the

properties does not change the simulation performed or being performed. However, this it is intended to

implement this feature in future work.

58

Endpoints for HiSTAV Simulation

The execution of an external simulation known as HiSTAV. External meaning it is executed by a different

and decoupled software on another machine, requiring the implementation of some endpoints for the

communication between the two machines, these endpoints are addressed in this section. Some

executions resulting from requests to this API can take hours to complete (e.g., HiSTAV Simulation) so,

in order to avoid locking the user from performing other actions while the execution is underway, or,

possible https timeouts by the requests, these executions were made asynchronous, as.

In order for the user to have some feedback and status information on these requests, it was necessary

to implement 2 endpoints, one for each request available on the API. This API uses these endpoints to

change the status of the executions resulting from the requests. Each of these endpoints is further

explained in the subsequent sub sections.

Pre-processor endpoint

This endpoint is used by the Simulation API to update the status of the mesh generation, known also as

pre-processing, of a Context.

The Context model has a Boolean field named hasMesh which indicates if the Context as an updated

and valid mesh generated on the Simulation API side. This mesh is a pre-requirement for a simulation

request on this Context.

Summary:

Url: {RivercurePortal_url}/contexts/mesh-status/<context_name>?status=<value>

(e.g., https://RivercurePortalURL/contexts/mesh-status/Coura?status=True)

Type: GET

Arguments:

• Context name – name of the Context to pre-process

• Value – either true or false, true if pre-processing completed successfully, false otherwise.

Solver2D endpoint

This endpoint is used by the Simulation API after a HiSTAV Simulation finishes. This endpoint signals

RCP that the results for a specific event are available. The event identification is done through its id,

and the simulation API knows the RiverCure internal event id because it is provided with the simulation

request as seen in section 4.3.3.

Receiving a request on this endpoint will trigger the RCP to make a request to the Simulation API for

the maximums results of said Simulation Event. The endpoint available for the results download is

explored on section 4.3.4 under Simulation Results. After concluding the download of the maximums

results RCP transforms the results into tiles that can be used to overlay the leaflet [44] map used on

59

RCP using Django Raster [84]. On Figure 36 an overlay example of the maximums results can be seen.

The reader can see there are 4 maximums. Each of these maximums can be hidden enabling the user

to examine each maximum individually.

Summary:

Url: {RivercurePortal_url}/contexts/results/handle/<event_id>

(e.g., https://RivercurePortalURL/results/handle/7)

Type: GET

Arguments:

• Event Id – internal RCP identifier of the event to which the simulation results belong to

Figure 36. HiSTAV simulation results displayed on Event results page (maximums only).

60

6 RCP and HiSTAV Integration (Phase 3)

The Simulation pipeline consists of 2 parts. Firstly, a pre-processing of the Context is necessary, followed

by the simulation using a software called solver2D. In the pre-processing part, a user needs to make a

request and provide the 5 geometries files: (i) Domain; (ii) refinement; (iii) alignment; (iv) boundary; (v)

and boundary points. This is done by simply clicking a button as seen on the previous Pre-processing

request section. These files are used by a software called mesh to generate a raster (example shown

on Figure 39), saved in VTK format, which is an input for the solver2D software. From this point onward

this mesh software will be addressed as pre-processor. After this VTK file is created, the Context is

ready for the simulation by solver2D (explained in section 6.2). It is possible for the user to verify and

validate the output of mesh by using Paraview Web Visualizer. Although it is not part of the simulation

pipeline directly, it is an important validation tool, and, as such, it is addressed in this section.

The executions of the pre-processor and solver2D are independent of each other. This means that, in

theory, the execution of the solver2D does not have to be preceded mandatorily by the execution of the

pre-processor. However, since the output of the pre-processor is an input for the solver2D, in practice,

the pre-processor needs to be executed at least once before executing the solver2D. After generating

the mesh, solver2D can be execute as many times as needed with different constraints (e.g., time

intervals or frequency outputs), without the need to execute the pre-processor again, as long as the

Context definition does not change. A more detailed BPMN of this pipeline, following the structure of

Figure 1, can be seen on Figure 37.

Figure 37. HiSTAV integration with RCP.

61

Both the pre-processor and solver2D, are part of HiSTAV and are done using external programs, mesh

software for the pre-processing and solver2D. Architecturally, it makes sense to decouple RCP from the

software that executes these 2 steps. This way overloading RCP is avoided, as some simulations can

take hours to complete, and the flexibility is increased in the case of designing or redesigning the Portal,

as we can worry more about the usability of the Portal for the end-user and less about the heavy back-

office simulation operation. By consequence, it was necessary to create a simple REST API [14], that

RCP can use to request the pre-processing and simulation operations.

In the next 3 section these 3 main parts of the whole simulation are addressed, starting with the pre-

processor and finishing with the API. After, a concise overview of Paraview Web Visualizer role on the

simulation pipeline is provided.

6.1 Pre-processor

The objective of the pre-processor is to generate a mesh called meshQuality.vtk. This VTK file is an

input for a Solver2D execution is requested. Without this file, Solver2D cannot execute successfully and,

as such, our value stream is compromised. As a consequence, the end-user should always verify if a

given Context has an updated mesh before requesting a simulation for such Context. The pre-

processing inputs and output are detailed in the next paragraphs.

The Geometry files are geojson files that contain the geo-information and its properties of the several

geometries designed on RCP and analyzed in the previous section. Each file contains the information

corresponding to its name. Since we already went over these geometries in detail and their geojson

representation on the previous section, 5.2 Context definition, we refrain from doing it again here. An

enumeration of the different files follows: (i) domain.geojson; (ii) alignments.geojson; (iii)

refinements.geojson; (iv) boundaries.geojson; (v) boundaries_points.geojson;

The DTM is a file, called dtm.tif, that contains a raster in geoTIFF format known as the digital terrain

model or for short, DTM. The end-user is responsible for uploading this file to RCP, and it should

correspond to an area overlapping and slightly larger than the Domain geometry area.

The Friction Coefficient is a file, called frictionCoef.tif, that contains a raster in geoTIFF where each

pixel has the friction coefficient value of the terrain located in the same coordinates as the pixel.

On Figure 38, the reader can see the console output of a successful pre-processor execution.

Figure 38. Output of a successful pre-processor request.

62

The output of the pre-processor is a mesh file, containing a triangular grid, corresponding to the

Context given as input. Figure 39 shows an example of a successful mesh generation.

6.2 Paraview Web Visualizer.

As we have seen, before performing the HiSTAV simulation, the user needs to perform a pre-processing

task to generate a mesh for the Context under simulation. This mesh is generated and saved in a VTK

format and is an important input for the HiSTAV simulation. As such, the user might want or need to

check if it was correctly generated before starting a simulation. Hence a tool that allows the visualization

and interation with such a file was necessary. For this project Paraview Web Visualizer [71] was chosen

as it provides all the necessary features for the validation of the mesh. A user can easily access this

visualizer by clicking View Mesh in the Context Detail page in RCP as seen in the previous section.

Figure 39 shows an example of a visualization of a mesh on Paraview Web Visualizer.

Figure 39. Coura Context generated mesh (seen on Paraview Web Visualizer).

6.3 Solver2D

Solver2D is the software responsible for simulating a given Context. The execution is the last step on

the value stream this project set out to achieve. Solver 2D has two inputs, which are named

sensor.bnd(s) and output.cnt, and a series of outputs explained in the next paragraphs.

Sensor bnds are several text files, each corresponding to a certain sensor associated with a Context

point of the Context under simulation. In order to distinguish to which sensor belongs each file, the files

are named after the sensors (e.g., sensor_mare.bnd, where mare is the name of the sensor). The file

data is comprised of 2 columns, separated by a tab. The column on the left contains the instant

corresponding to a value on the right of a reading by the sensor, of for example, a discharge. Every file

left column starts on instant 0 adding 60 seconds per each row until reaching the duration of the

63

simulation. The instant 0 is the instant of the beginning of the simulation and contains the value of the

sensor observation with the corresponding timestamp, e.g., if the simulation was configured to start at

01/12/2021 at midday, then the value on the right of 0 would be the sensor observation with the date

01/12/2021 and time 12:00. The same principle applies for all the other values. The start and end

datetime of the simulation are defined by the user on RCP when creating a simulation event through a

form (seen in section 5.2 Context Event Simulation). Figure 40 shows an example of a complete Sensor

bnd file contents.

Figure 40. Sensor bnd file data example.

Output.cnt file is comprised of two lines. Each line contains one value in hz. The first line corresponds

to the frequency at which the user wants to write to the files being generated. The second line

corresponds to the frequency at which the user wants to update the maximums during the simulation.

Both output.cnt values and sensors.bnd(s) are provided during an event generation in RCP just like the

start and end datetime.

Solver 2D Output is a VTK file. An example can be seen on Figure 41. A specialized user can analyse

this file to assess the risk of flood for the Context Event from which the Simulation resulted. Additionally,

there is the possibility of transforming this VTK into the following four different TIFF: (i) max depth; (ii)

max level; (iii) max q; (iv) max vel. This transformation is made using a python script named

stavResults.py that was not developed in the scope of this project. These TIFFs allow the specialized

user to reach the same conclusion with the advantage of being significantly smaller in size, resulting in

the decision to use these TIFFs instead of the VTK to increase performance.

Additionally, during the simulation, other VTK files related with hydrodynamics are generated on HiSTAV.

The number and size of these files is large and, dependent on the Writing Periodicity defined by the user

during Context Event creation (i.e., the higher the frequency, the higher the number of files). This makes

64

these files not suitable for display on RCP. As such, these files are only available to users with access

to the HiSTAV machine. Possibly, in the future, these files could be made available on the Paraview

Web Visualizer since they are VTKs.

Figure 41. Resulting VTK from a HiSTAV simulation example.

6.4 RCP and HiSTAV integration API

This API serves as the communication medium between RCP and HiSTAV, and is built with Flask [19].

It has three available requests, which are pre-processing, simulate and, simulation results request. It is

important to note that the call and execution of both the pre-processing and the simulation programs are

asynchronous, while the simulation result is not. This implies that the API, in the asynchronous cases,

will respond to the RCP request before the end of the execution and, by consequence it was necessary

to implement the capability for bilateral requests to inform RCP of the asynchronous processes’

completion. The RCP has two endpoints that HiSTAV can use for this effect, described on RiverCure

section.

Pre-processing

This endpoint enables RCP to request a mesh generation for a given Context. For this effect RCP must

provide the geojson files representation of the five “Context Geometries”, one file for each geometry, on

the request body. The request will return a string with either “success” or “fail” value, with the former

representing a successful mesh generation process start and the latter the contrary. Since the mesh

65

generation is done asynchronously, this request also makes a request of its own to the RCP. Its purpose

is to signal RCP that the Context pre-processing has been finalized and has a valid generated mesh.

This request is made using cURL [85] after the mesh program exits with a successful code. In case the

processing is unsuccessful, no request is made.

Summary:

Url: {API_Location_url}/process/

(e.g., https://HiSTAVURL/process/?context_name=Coura&event_id=7)

Type: POST

Data: Geojson files

Arguments:

• Context name – name of the Context to pre-process

• Event Id – internal RCP identifier of the event requesting the simulation

Response:

• Type: string

• Successful: “success”

• Failed: “fail”

Simulate

This endpoint enables RiverCure to request a simulation for a given Context Event. For this effect RCP

must provide a text file named output.cnt and the collection of bnds files with the Context Sensors

Observations data. The request will return a string with either “success” or “fail” value. The former

representing a successful mesh generation process start and the latter the contrary. Since the mesh

generation is done asynchronously, HiSTAV also makes a request of its own to the RCP to signal the

end of the simulation using cURL. This request will trigger RCP to request HiSTAV the Simulation

Results.

Summary:

Url: {API_Location_url}/simulate/

(e.g., https://HiSTAVURL/simulate/?context_name=Coura&event_id=7)

Type: POST

Data: Frequency file & sensor data files

Arguments:

• Context name – name of the Context to pre-process

66

• Event Id – internal RCP identifier of the event requesting the simulation

Response:

• Type: string

• Successful: “success”

• Failed: “fail”

Simulation Results

This endpoint provides the requester with a zip folder containing the 4 tifs generated from the

maximum.VTK with the stavResults.py. This transformation was explained in section 4.3.2. The

generation from VTK to TIFF is done after the request to this endpoint is made. The arguments serve

as identifiers of which Context and Context Event belong the results being requested.

Summary:

Url: {API_Location_url}/simulation/results

(e.g., https://HiSTAVURL/simulation/results/?context_name=Coura)

Type: GET

Arguments:

• Context name – name of the Context to pre-process

• Event Id – internal RCP identifier of the event requesting the simulation

Response:

• Type: zip

• Contents: The 4 tifs generated from the maximum VTK

6.5 Simulation Pipeline Overview

The simulation pipeline is one of the main value streams created by RCP, and the main focus of this

project. It leverages the capabilities of the HiSTAV simulation to allow a user to design a Context,

simulate it, and analyze the simulation results without interacting with HiSTAV directly. From the result

analyzes a specialized user can make decisions and protect the populace of these areas with the

necessary confidence. All while providing a seamless user experience in the definition of the Contexts

necessary for these simulations, along with the accessibility the web has provided all these years.

Ergo, it is important that the reader has an understanding on how all the three phases come together to

form the simulation pipeline. For this purpose, an overview of the complete pipeline is provided, with

general steps and rules for each step. This pipeline consists in the following steps:

67

1. Context creation by an authorized user and attribution to a Context owner

a. When creating a Context, the authorized user will only define a code and a name followed

by attributing the Context to an user who will be responsible by point 2 of the simulation

pipeline. This user is known as the Context owner.

2. Context definition by the Context owner

a. It is required to have a complete Context definition to move on to the next point of the

simulation pipeline, but a Context can be saved and stored in an incomplete state at any time.

b. A Context is considered complete when all the different geometries and each respective

properties have been defined, with the exception of the alignment, which is optional.

c. All the Context information defined by the user is stored in a geographic database, in this case

a PostGIS DB, when submitted by the user in a valid state to the web server.

d. The developed system, RCP, can then transform this information into five different geojson

files, each containing one type of geometry and the corresponding properties. Inside the

properties tag, in a key/value pair format, where key is the name and identifier of the property

and value the corresponding value.

3. Pre-processing request by the Context owner

a. The Context definition must be complete before requesting the pre-processing.

b. The purpose of the pre-processing is to generate a mesh for a given Context, which will be

used as an input for the HiSTAV simulation.

c. The pre-processing is executed by an independent application that is part of HiSTAV.

d. This independent application has an API RiverCure uses to make the pre-processing requests.

e. The request is a POST request, in which the five geometries (Domain, refinements,

alignments, boundaries, boundaries points) are sent in its body as a geojson files.

f. These geojson files are generated at the moment of the request from the data in the PostGIS

database.

g. The pre-processing is asynchronous and can take some time, so the user will not get

immediate feedback as on if the pre-processing was successful. It will however receive

feedback on if the request was successful and the pre-processing was started.

h. After concluding the pre-processing, the processor will use a RCP endpoint update the status

of the pre-processing for the Context.

i. In the Context detail page, the user has a visual confirmation as of whether the mesh for the

Context is generated or not.

j. The user has a button in the Context detail page for redirection to an instance of Paraview

Web Visualizer [71], where visualization and subsequent evaluation of the generated mesh is

possible.

4. A user creates a Context simulation event

a. The event must have a start and end date and time.

68

b. The simulation is executed by an independent application that is part of HiSTAV.

c. This independent application has an API RiverCure uses to make the simulation requests.

d. The request is a POST requests, in which an output file and the sensors data files are sent in

its body.

e. All the files are text files generated at the moment of the event creation. This includes the

output writing periodicity file, and the sensor data files.

f. The file with the data of the frequency of output writing is based on the writing periodicity and

the update maximums frequency defined by the user at the event creation

g. The file with the data of the Context sensors is defined based on the sensor observations in

the interval between the start and end date and time interval defined by the user at the time of

the event creation.

h. The simulation is asynchronous and takes a long time, so, just like on the pre-processing

request, the user does not get feedback as to whether the simulation was successful

immediately, only if the simulation started correctly. The RCP is informed by HiSTAV when the

simulation finishes. After being notified the RCP request the results to HiSTAV.

For a full execution of the Simulation Pipeline, a given Context must have a created Event and this Event

must have results, that are generated by the execution of HiSTAV with values defined during the creation

of the Event, and the mesh generated from the Context geometries definition by the pre-processor.

69

7 Evaluation

This chapter describes in detail how the evaluation of this thesis was tackled. This evaluation is focused

mainly on the comparison between RCP and Mike 21 [75], as Mike 21 is considered an important

competitor of RCP. As explained in section 1.3, RCP was evaluated almost every week by a majority of

stakeholders. In the context of this thesis, this evaluation is focused on the entire pipeline necessary to

simulate a flood impact in a given Context, which integrates HiSTAV. This pipeline is divided in 2 main

tasks. First it is necessary to define the Context, and only after that, can the simulation be performed.

These tasks are evaluated independently in this chapter.

7.1 Context Definition Evaluation

The first part of the evaluation was focused on the use case of the Context Definition. This definition, as

described in section 5.2, is essentially the definition of the different required geometries. On Mike 21,

this definition is done on the desktop application itself. For RCP, a different approach was selected. The

main idea was to join every operation in the same program from the user perspective, so that he only

has to interact with one application. This application is RCP. For this effect, every week, RCP features

were implemented that fulfill the smaller use cases of the Context Definition, (e.g., Domain definition,

Boundary definition…) until fulfilling 100% of the Context definition requirements. Tools like ArcGIS [86]

or QGIS [87] can also be used to treat or define data to be uploaded to RCP, bypassing some of its

limitations, but sacrificing some interaction streamlining (i.e., an additional step is added), or Mike 21.

The implementation of these features was considered successful when the output from the Context

Definition on ArcGIS and RCP produced the same output. This means both definition outputs could be

fed to either HiSTAV or Mike 21 for a simulation with confidence that the result would be valid.

In the definition of auxiliary files (e.g., the DTM) RCP is severely limited, requiring the user to upload an

already existing file, previously defined elsewhere. With Mike 21 the user uses ArcGIS, which does not

have this limitation, as it is possible to define such files on ArcGIS. In RCP favor is the fact that it is a

web application, contrary to ArcGIS which is a desktop application. This results in a high availability of

RCP as it is accessible to anyone, with an authorized account, from anywhere where internet is

available. It is also possible to easily share defined Contexts between users. Moreover, the introduction

of new sensors in the system is more linear on RCP. Sensors can be added to the RCP with the

corresponding data and associate such sensor to a Boundary Point in a streamlined way. In Mike 21 it

is required for the user to find and associate the sensor data manually.

7.2 Simulation Evaluation

In both RCP and Mike 21 pipeline cases, after the Context is defined, the user should proceed with a

simulation execution. This step is performed differently depending on the system in use.

70

On Mike 21, the user gets the output from the ArcGIS definition, consisting mainly of shapefiles and

TIFFs. Additionally, the user must also get a timeseries file for each sensor associated with the Boundary

Points and define some parameters like the writing of new maximums frequency. Only after these steps

are taken, can the user initialize Mike 21, providing these files as input for a simulation. As the reader

can understand, these steps are error prone as there are too many manual definitions which can result

in an invalid simulation.

To solve these problems, the simulation execution in RCP has been streamlined. Each sensor timeseries

is automatically created, based on the time interval defined by the user when creating a simulation

Event. Since each sensor was associated to a Boundary Point during the Context Definition phase, the

association of each timeseries files to the corresponding geometry is also done automatically. As for

values like the frequency of writing of new maximums, they are also provided by the user on the

simulation Event creation. From the user point of view this involves clicking 2 buttons and filling out a

small form. On RCP simulation pipeline the simulation execution process is much more streamlined than

in Mike 21. This results in a more trustworthy result for each simulation as well as a much better user

experience, since the user does not have to perform as many steps on RCP.

7.3 Discussion

Overall, the differences between RCP and Mike 21 are considerable. Whereas Mike 21 provides a more

complete set of simulations, RCP focus more on the user experience and dissemination of results in

real time. Most importantly, however, is the fact that RCP can produce a valid and complete simulation

output. For these reasons, the evaluation performed is positive, as the primary goal was to prove that it

was possible to build a valid web-based simulation tool. A more detailed comparison between the two

systems will be needed in the future, when RCP is further polished, with more users and rigorous

Context definition use cases. Summarizing, the pros and cons of RCP are as follows:

Pros:

• Accessible from anywhere since it is a web application.

• Easy sharing of Contexts and other data between different users.

• Introducing new sensors and associating them with a Boundary Point is streamlined.

• No installation required, due to RCP being a web application that supports multiple organizations.

• Seamless integration with the simulator.

• Possibility of integrations of data streams from different sources.

• Simulations results available to every authorized user.

• Possibility of continuous execution of simulations in the future.

• Better user interaction and experience.

• All data is stored in a GIS Database (in this case PostGIS).

• Potential to implement new features like continuous simulation.

71

Cons:

• RCP’s Context definition only allows the manual definition of geometries and sensors, with every

other data file having to be uploaded by a user (e.g., DTM).

• HiSTAV simulator is not as complete and extensive as Mike 21 (RCP is focused on a single type of

simulation, at the moment of writing).

• RCP does not have a proven track record or the level of professional support available on Mike 21

• Overall RCP is a less fledged system in terms of simulation options

72

8 Conclusion

This chapter covers the conclusion achieved after completing this first iteration of RCP and, the possible

future work that can be performed to further improve RCP.

8.1 Conclusion

The necessity of tools such as RCP is more relevant than ever. However, there has been a lack of

leverage of the web from existing tools. RCP successfully solves this problem. The fact that it is a web

application with a PostGIS Database makes it easier to share and develop results and opens the door

to the integrations of diverse data streams due to the use of OGC standards.

Moreover, RCP streamlines the interaction of the user with Water Management tools by automating

some crucial steps that had to be done manually in other tools. This results in an improved user

experience, which results in a higher likelihood of the specialized user performing a good job.

It is important to not forget that, at the moment of writing, RCP is still in its first iteration, still missing

some of its envisioned features like the constant stream of data to the Portal. A fully fledged RCP would

constantly simulate, requiring user interference only when defining new rules or Contexts.

A tool like RCP can change how governments and civil protection organizations protect their citizens,

allowing these organizations to predict moderate to serious flood events. With these predictions these

organizations can act in order to minimize damage and save lives.

Additionally, it was also proved with this work that an ASL specification can generate a valid data model,

from which an entire application can be developed. By having a transversal specification that can be

understood by most stakeholders, like ASL, we are minimizing the risk that the software under

development does not correspond to the expectations of all stakeholders.

8.2 Future Work

The potential for a collaborative web application like RiverCure is almost limitless. However, during the

development and discussion of RCP, some of the potential features were left out due to time constraints.

Some of these features have high potential of increasing the value of the RCP in the future. These

features are:

Standardize Sensor Data. A stronger and more precise standardization of the data present in the

sensor could bring a big advantage in terms of maintainability, portability, and compatibility to RiverCure

in the future. By implementing a standard (e.g., the OGC standard [12]) to the sensors present in RCP,

new sensors can be easily added almost indefinitely. Easily because the probability of the candidate

new sensor also following a standard is high. Indefinitely because, since if all the sensor data follows

the same metadata, a single task can be implemented to handle the data coming from the sensors.

73

Creation of a continuous data stream from the sensors. If RCP could access or receive a data

stream from each sensor, its potential would increase by a wide margin. In that way, RiverCure could

treat and send this data continuously to HiSTAV, where it would be used to perform continuous

simulations, significantly increasing flood predictability accuracy. This feature requires the participation

of several stakeholders and as such requires a high amount of effort to implement.

Implementation of “Social Sensors”. Previously, a machine learning algorithm that classifies water

heights was developed [83] to be integrated in RCP. By allowing users to upload georeferenced and

timestamped images and photos of floods, we could leverage this algorithm to extract standardized data

from these pictures. Such pictures would then serve as sensors, aka “Social Sensors”.

Automation of Event Creation. Right now, all events are user created. Moreover, in practice there is

only one kind of event, which is the HiSTAV Simulation. If some of the points talked about on this section

were implemented, the automatic creation of certain events under certain conditions (e.g., sudden rise

of water level on an area with a defined Context resulting in the creation of an ongoing flood event and

alert to relevant stakeholders of RCP), could also elevate the value of RCP. This way an authorized user

would have a lot more information about the past, present and maybe even the future (i.e., prediction)

of an event.

Insertion of new data in an occurring simulation. To leverage 6.2.2. it is necessary to implement a

way to introduce new data into an ongoing simulation. This is however, beyond the scope of RCP as it

most certainly needs some structural changes to HiSTAV.

Specify RCP use cases in ASL and explore code generation mechanisms for the specification.

As explained earlier, RCP was specified in ASL language. However, this specification was only used to

generate the data model used to develop RCP. To fully flesh ASL it would be important to reverse

engineer RCP and define its use cases in ASL language. This specification should be followed by the

exploration of code generation mechanisms to enable the generation of code, from the use cases

specification, functionally equivalent to the one developed during this dissertation.

74

Appendix A: RCP Specifications

Spec. 9. RCP data enumerations.

DataEnumeration SensorKind "Sensor Kind" values ("HydrometricSensor",

"WeatherSensor", "SocialNetworkScanner", "HumanSensor", "TBD Sensor")

DataEnumeration SensorModalityKind "Sensor Modality Kind" values ("PhysicalFixed

", "PhysicalMobile", "DigitalSocialNetworkScanner", "DigitalHumanUpload")

DataEnumeration TimeserieType "Timeserie type" values ("Continuous",

"Discontinuous", "Statistical")

DataEnumeration HydroFeatureKind "HydrometricFeature Kind" values ("River",

"Estuary", "Lake", "RiverBasin", "DrainageBasin", "Dam")

DataEnumeration SimulationKind "Simulation Kind" values ("Simulation",

"Scenario")

DataEnumeration InformationKind "Information Kind" values ("Simulation", "Event",

"Sensor", "Alarm")

DataEnumeration OrganizationKind values ("WaterAuthority", "Municipality",

"ResearchLab", "Partner", "Other")

DataEnumeration UserState "User State" values ("Suspended", "Active", "Inactive",

"Deleted")

DataEnumeration AlarmPermission "Alarm Permission" values ("Yes", "Yes (only

authorities alarms)", "No", "Depend on secondary role")

DataEnumeration MetricKind "Metric" values ("Sec", "Min", "Hour", "Day", "Week",

"Month", "Year")

DataEnumeration ColourKind "Colour" values ("Red", "Yellow", "Green")

DataEnumeration ContextBoundaryLineKind values ("Input", "Output", "InputOutput")

DataEnumeration ContextBoundaryLineDataKind values ("Depth (H)", "Discharge (Q)",

"Velocity (V)", "Elevation (Z)")

DataEnumeration EventKind values ("Flood", "HeavyPrecipitation",

"HydrologicalDrought", "MeteorologicalDrought", "Hurricane", "Tsunami", "Storm",

"LandSlide")

DataEnumeration EventState values ("Announced", "Occurring", "Concluded")

75

Spec. 10. RCP HydroFeature specification.

Spec. 11. RCP organization specification.

Spec. 12. RCP user specification.

DataEntity e_HydroFeature "Hydrometric feature": Master [

 attribute id "Id": Integer [constraints (PrimaryKey)]

 attribute code "HydroFeature Code": Regex [constraints (NotNull Unique)]

 attribute Name "Name": String [constraints (NotNull)]

 attribute type "Type": DataEnumeration HydroFeatureKind [constraints (NotNull)]

 attribute area "Area": Decimal

 attribute length "Length": Decimal

 attribute PartOf "PartOf": Integer [constraints(ForeignKey (e_HydroFeature))]

 attribute flowsInto "Flows Into": Integer [constraints (

ForeignKey(e_HydroFeature))]

 attribute geom "Geometry": GeoPolygon

 constraints (showAs (Name))

]

DataEntity e_Organization "Entity": Master [

 attribute id "Id": Integer [constraints (PrimaryKey)]

 attribute Name "Name": String [constraints(NotNull Unique)]

 attribute type "Type": DataEnumeration OrganizationKind [constraints(NotNull)]

 attribute sector "Sector": String [constraints(NotNull)]

 attribute address "Address": String [constraints(multiplicity "0..2"

DataEnumeration)]

 attribute city "City": Integer [constraints(ForeignKey(e_City))]

 attribute country "Country": Integer [constraints(NotNull Encrypted

ForeignKey(e_Country))]

 attribute email "Email": Email [constraints(multiplicity "0..2" Encrypted)]

 attribute phone "Telephone": String [constraints(multiplicity "0..2" Encrypted)]

 attribute geom "Geometry": GeoPoint [constraints (NotNull)]

 constraints (showAs (Name))

]

DataEntity e_User "User": Master [

attribute id "ID": Integer [constraints (PrimaryKey)]

attribute login "Login": String [constraints (NotNull Unique)]

attribute password "Password": Regex [constraints (NotNull Encrypted Check

(RegexValidationExpression "r'[A-Za-z0-9@#$]{6,12}'"))]

attribute Name "Name": Text [constraints (NotNull Encrypted)]

attribute email "Main Email": Email [constraints (Unique Encrypted)]

attribute state "State": DataEnumeration UserState [constraints(NotNull)]

attribute emails "Email address(es)": Email [constraints(multiplicity "0..3"

NotNull Unique Encrypted)]

attribute phoneNumbers "Telephone number(s)": Regex [constraints(

multiplicity "0..3" NotNull Unique Encrypted Check (RegexValidationExpression

"r'^([0-9]{9}"))]

constraints (showAs (login))

tag (name "tenant" value "user")

]

76

Spec. 13. RCP sensor alarm specification.

Spec. 14. RCP boundary line specification.

Spec. 15. RCP Context boundary point specification.

DataEntity e_SensorAlarm "Sensor Alarm": Master [

 attribute id "Id": Integer [constraints (PrimaryKey)]

 attribute sensorId "Sensor": Integer [constraints (NotNull ForeignKey

(e_Sensor))]

 attribute Name "Name": String [constraints (NotNull)]

 attribute Action "Action": String

 attribute Description "Description": Text

 attribute colour "Colour": DataEnumeration ColourKind [constraints (NotNull

Derived ("TBD"))]

 attribute redMinthreshold "Low threshold": Decimal [constraints (NotNull)]

 attribute redMaxthreshold "Up threshold": Decimal [constraints (NotNull)]

 attribute yellowMinthreshold "Low threshold": Decimal [constraints (NotNull)]

 attribute yellowMaxthreshold "Up threshold": Decimal [constraints (NotNull)]

 attribute greenMinthreshold "Low threshold": Decimal [constraints (NotNull)]

 attribute greenMaxthreshold "Up threshold": Decimal [constraints (NotNull)]

]

DataEntity e_ContextBoundaryLine: Master [

 attribute id "Id": Integer [constraints (PrimaryKey)]

 attribute context "Context": Integer [constraints(NotNull

ForeignKey(e_Context))]

 attribute geom: GeoPolyline [constraints (NotNull Check (superimposed "must be

a line superimposed on context.geomExternalBoundary"))]

 attribute type: DataEnumeration ContextBoundaryLineKind [constraints

(NotNull)]

 attribute dataType: DataEnumeration ContextBoundaryLineDataKind

]

DataEntity e_ContextBoundaryPointSensor: Master [

 attribute id "Id": Integer [constraints (PrimaryKey)]

 attribute point "Context BoundaryPoint": Integer [constraints(NotNull

ForeignKey(e_ContextBoundaryPoint))]

 attribute Sensor "Sensor": Integer [constraints(NotNull

ForeignKey(e_ContextSensor))]

]

77

Spec. 16. RCP Context event specification.

Spec. 17. RCP Context access request specification.

DataEntity e_ContextEvent "Event": Master [

 attribute id "Id": Integer [constraints (PrimaryKey)]

 attribute context "Context": Integer [constraints(NotNull

ForeignKey(e_Context))]

 attribute Name "Name": String [constraints (PrimaryKey)]

 attribute type "Event Type": DataEnumeration EventKind

[constraints(NotNull)]

 attribute subType "Event SubType": DataEnumeration EventSubKind

[constraints(NotNull)]

 attribute state "State": DataEnumeration EventState [constraints(NotNull)]

 attribute startDatetime "Start Event": Datetime [constraints(NotNull)]

 attribute endDatetime "End Event": Datetime [constraints(Check

(ck_datesValidation "endDatetime >= startDatetime"))]

 attribute Description "Description": Text

 // Attributes for "Flood Simulation" event, with HiStav

 attribute returnPeriod "Return Period": Integer

 attribute warmUp "Warm up": Boolean

 attribute simulationType "Simulation Type": DataEnumeration EventKind

[constraints(NotNull)]

]

DataEntity e_ContextAccessRequest "Context Request Access": Parameter [

 attribute context "Context": Integer [constraints(NotNull

ForeignKey(e_Context))]

 attribute access_granted "Access granted": Boolean [defaultValue "False"]

 attribute state "request state": DataEnumeration AccessRequestState

[constraints (NotNull)]

 attribute requestUser "request user": String [constraints(NotNull

ForeignKey(e_User))]

 attribute type "access type": DataEnumeration ContextUserKind [constraints

(NotNull)]

]

78

Appendix B: RCP Images

Figure 42. RCP landing page.

Figure 43. RCP about page.

79

Figure 44. RCP login screen.

Figure 45. RCP register screen.

80

Figure 46. RCP admin Backoffice.

Figure 47. RCP Context access request page.

81

Figure 48. RCP hydro feature page.

Figure 49. RCP sensors page.

82

Figure 50. RCP Context list page.

Figure 51. RCP Context detail page.

83

Figure 52. RCP upload Context files prompt.

Figure 53. RCP manage Context page.

84

Figure 54. RCP profile page.

85

References

[1] “About – RiverCure Project.” https://www.inesc-id.pt/projects/II11041/ (accessed Dec. 10, 2020).

[2] D. Conde, “High-Performance Modelling of Tsunami Impacts on Built Environments,” PhD

dissertation, Instituto Superior Tecnico, Universidade de Lisboa, 2018.

[3] “INESC-ID.” https://www.inesc-id.pt/ (accessed Dec. 27, 2020).

[4] “APA SNIRH :: Sistema Nacional de Informação de Recursos Hídricos.”

https://snirh.apambiente.pt/index.php?idMain=5&idItem=5 (accessed Dec. 07, 2020).

[5] R. Gomes, M. Saramago, and R. Rodrigues, “Svarh – Sistema de Vigilância e Alerta de Recursos

Hídricos,” Technical Report, Instituto da Água, Lisboa, 2003.

[6] D. Conde, M. Telhado, M. Viana Baptista, and R. Ferreira, “Severity and exposure associated

with tsunami actions in urban waterfronts: the case of Lisbon, Portugal,” Natural Hazards, vol.

79, no. 3, pp. 2125–2144, 2015, doi: 10.1007/s11069-015-1951-z.

[7] P. H. Carstensen and L. Vogelsang, “Design of Web-Based Information Systems - New

Challenges for Systems Development?,” in Proceedings of Ecis, 2001, pp. 536–547.

[8] A. R. da Silva, “ITLingo Research Initiative,” Technical Report, Instituto Superior Técnico,

Universidade de Lisboa, 2017.

[9] I. Gamito and A. R. da Silva, “From rigorous requirements and user interfaces specifications into

software business applications,” Communications in Computer and Information Science, vol.

1266 CCIS, pp. 459–473, 2020, doi: 10.1007/978-3-030-58793-2_37.

[10] D. Ince, Object oriented design with applications, 2nd ed., vol. 34, no. 9. Addison Wesley

Longman, Inc., 1992.

[11] A. R. da Silva, “Model-driven engineering: A survey supported by the unified conceptual model,”

Computer Languages, Systems and Structures, Elsevier, vol. 43, pp. 139–155, 2015, doi:

10.1016/j.cl.2015.06.001.

[12] “OGC.” https://www.ogc.org/ (accessed Dec. 10, 2020).

[13] C. OGC, “OGC WaterML 2.0: Part 1- Timeseries,” 2011. [Online]. Available:

http://www.opengeospatial.org/.

[14] “REST API Tutorial.” https://restfulapi.net/ (accessed Dec. 10, 2020).

[15] A. Hevner, S. March, J. Park, and S. Ram, “Design Science in Information Systems Research,”

MIS Quartly, vol. 28, no. 1, pp. 75–105, 2004, doi: 10.1007/BF01205282.

[16] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chatterjee, “A Design

Science Research Methodology for Information Systems Research,” Journal of Management

86

Information Systems, vol. 24, no. 3, pp. 45–77, 2007.

[17] F. Gacenga, A. Cater-Steel, M. Toleman, and W. Tan, “A proposal and evaluation of a design

method in design science research,” Electronic Journal of Business Research Methods, no. 10,

pp. 89–100, 2012.

[18] “The Web framework for perfectionists with deadlines | Django.” https://www.djangoproject.com/

(accessed Dec. 10, 2020).

[19] “Welcome to Flask — Flask Documentation (1.1.x).”

https://flask.palletsprojects.com/en/1.1.x/foreword/ (accessed Dec. 10, 2020).

[20] “Agência Portuguesa do Ambiente.” https://www.apambiente.pt/ (accessed Oct. 19, 2020).

[21] G. Early, “Celebrating knowledge,” Proceedings of the American Philosophical Society, vol. 151,

p. 74, 2007.

[22] R. France and B. Rumpe, “Model-driven development of complex software: A research

roadmap,” International Conference on Model-Driven Engineering and Software Development,

pp. 37–54, 2007, doi: 10.1109/FOSE.2007.14.

[23] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven Architecture : Practice

and Promise. 2003.

[24] M. Voelter, DSL Engineering - Designing, Implementing and Using Domain-Specific Languages.

CreateSpace Independent Publishing Platform (January 23, 2013), 2013.

[25] S. P. Christodoulou and T. S. Papatheodorou, “Web Engineering Resources Portal (WEP): A

Reference Model and Guide,” Web Engineering Principles and Techniques, pp. 31–74, 2005.

[26] J. G. Zheng, “A Historical Perspective of Web Engineering,” Encyclopedia of Networked and

Virtual Organizations. IGI Global, pp. 660–667, 2008, [Online]. Available: http://www.igi-

global.com/chapter/historical-perspective-web-engineering/17673.

[27] “IFML: The Interaction Flow Modeling Language | The OMG standard for front-end design.”

https://www.ifml.org/ (accessed Dec. 12, 2019).

[28] M. Brambilla and P. Fraternali, “Implementation of applications specified with IFML,” Interaction

Flow Modeling Languages, pp. 279–334, 2015, doi: 10.1016/b978-0-12-800108-0.00010-2.

[29] R. Pereira, “Técnicas Avançadas de Modelação e Produção Semi-Automática de Aplicações

Web Responsivas,” MSc dissertation, Instituto Superior Tecnico, Universidade de Lisboa, 2019.

[30] I. Gamito, “From Rigorous Requirements and User Interfaces Specifications into Software

Business Applications: The ASL Approach,” MSc dissertation, Instituto Superior Técnico,

Universidade de Lisboa, 2020.

[31] A. R. da Silva, A. Paiva, and V. Silva, “Towards a test specification language for information

87

systems: Focus on data entity and state machine tests,” Model. 2018 - Proc. 6th International

Conference on Model-Driven Engineering and Software Development, pp. 213–224, 2018, doi:

10.5220/0006608002130224.

[32] A. R. da Silva, “Rigorous Requirements Specification with the RSL Language: Focus on Uses

Cases,” in ISD’2019, AIS, 2018, pp. 1–32.

[33] “Xtext - Language Engineering Made Easy!” https://www.eclipse.org/Xtext/ (accessed Dec. 10,

2020).

[34] “OGC Standards.” https://www.ogc.org/standards (accessed Dec. 10, 2020).

[35] OGC, OpenGIS® Implementation Standard for Geographic information - Simple feature access

- Part 1: Common architecture. 2011, p. 93.

[36] “GeoDjango | Django documentation | Django.”

https://docs.djangoproject.com/en/3.0/ref/contrib/gis/ (accessed Dec. 04, 2020).

[37] “GeoDjango Model API | Django documentation | Django.”

https://docs.djangoproject.com/en/3.0/ref/contrib/gis/model-api/ (accessed Dec. 04, 2020).

[38] “GDAL API | Django documentation | Django.”

https://docs.djangoproject.com/en/3.1/ref/contrib/gis/gdal/ (accessed Dec. 10, 2020).

[39] “OGC® WaterML | OGC.” https://www.ogc.org/standards/waterml#overview (accessed Oct. 27,

2020).

[40] “Observations and Measurements | OGC.” https://www.ogc.org/standards/om (accessed Oct.

27, 2020).

[41] “Coordinate Reference Systems — QGIS Documentation documentation.”

https://docs.qgis.org/3.16/en/docs/gentle_gis_introduction/coordinate_reference_systems.html

(accessed Dec. 07, 2020).

[42] “Coordinate Reference System and Spatial Projection | Earth Data Science - Earth Lab.”

https://www.earthdatascience.org/courses/earth-analytics/spatial-data-r/intro-to-coordinate-

reference-systems/ (accessed Oct. 28, 2020).

[43] “EPSG Geodetic Parameter Dataset.” https://epsg.org/home.html (accessed Oct. 29, 2020).

[44] “Leaflet - a JavaScript library for interactive maps.” https://leafletjs.com/ (accessed Dec. 10,

2020).

[45] “Spatial Reference List -- Spatial Reference.” https://spatialreference.org/ref/epsg/ (accessed

Dec. 29, 2020).

[46] “Types of GIS Data Explored: Vector and Raster - GIS Lounge.”

https://www.gislounge.com/geodatabases-explored-vector-and-raster-data/ (accessed Dec. 10,

88

2020).

[47] “Vector Data.” https://docs.qgis.org/2.8/en/docs/gentle_gis_introduction/vector_data.html

(accessed Dec. 10, 2020).

[48] “GeoJSON.” https://geojson.org/ (accessed Oct. 16, 2020).

[49] “What is a shapefile?—Help | ArcGIS for Desktop.”

https://desktop.arcgis.com/en/arcmap/10.3/manage-data/shapefiles/what-is-a-shapefile.htm

(accessed Oct. 20, 2020).

[50] “What is raster data?—Help | ArcGIS for Desktop.”

https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/what-is-raster-

data.htm (accessed Oct. 28, 2020).

[51] “Working with Mesh Data — QGIS Documentation documentation.”

https://docs.qgis.org/3.10/en/docs/user_manual/working_with_mesh/mesh_properties.html#wh

at-s-a-mesh (accessed Oct. 28, 2020).

[52] “10 Best Python Books for Beginners & Advanced Programmers.” https://hackr.io/blog/best-

python-books-for-beginners-and-advanced-programmers (accessed Dec. 10, 2020).

[53] “MVC Framework - Introduction - Tutorialspoint.”

https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm (accessed

Dec. 10, 2020).

[54] D. Rubio, Beginning Django. Apress, 2017.

[55] “GeoDjango Tutorial | Django documentation | Django.”

https://docs.djangoproject.com/en/3.0/ref/contrib/gis/tutorial/#introduction (accessed Dec. 10,

2020).

[56] W. S. Vincent, Django for Beginners. 2018.

[57] “Making queries | Django documentation | Django.”

https://docs.djangoproject.com/en/3.1/topics/db/queries/ (accessed Dec. 04, 2020).

[58] “Django ORM Cookbook — Django ORM Cookbook 2.0 documentation.”

https://books.agiliq.com/projects/django-orm-cookbook/en/latest/ (accessed Dec. 04, 2020).

[59] “GeoDjango Database API | Django documentation | Django.”

https://docs.djangoproject.com/en/3.0/ref/contrib/gis/db-api/ (accessed Dec. 04, 2020).

[60] “GDAL-2.” https://gdal.org/ (accessed Dec. 10, 2020).

[61] “PROJ - PROJ 7.2.0 documentation.” https://proj.org/ (accessed Dec. 10, 2020).

[62] “PostgreSQL: The world’s most advanced open source database.” https://www.postgresql.org/

(accessed Dec. 04, 2020).

89

[63] “PostGIS — Spatial and Geographic Objects for PostgreSQL.” https://postgis.net/ (accessed

Oct. 19, 2020).

[64] “GEOS.” https://trac.osgeo.org/geos/ (accessed Dec. 10, 2020).

[65] “JTS Topology Suite.” https://sourceforge.net/projects/jts-topo-suite/ (accessed Dec. 10, 2020).

[66] “About OSGeo - OSGeo.” https://www.osgeo.org/about/ (accessed Dec. 10, 2020).

[67] “GEOS API | Django documentation | Django.”

https://docs.djangoproject.com/en/3.1/ref/contrib/gis/geos/ (accessed Dec. 10, 2020).

[68] “Layer Groups and Layers Control - Leaflet - a JavaScript library for interactive maps.”

https://leafletjs.com/examples/layers-control/ (accessed Dec. 04, 2020).

[69] “Django-Leaflet.” https://github.com/makinacorpus/django-leaflet (accessed Dec. 10, 2020).

[70] “ParaView.” https://www.paraview.org/ (accessed Dec. 04, 2020).

[71] “Documentation | Visualizer.” https://kitware.github.io/visualizer/docs/ (accessed Oct. 12, 2020).

[72] “VTK File Extension - What is it? How to open a VTK file?” https://filext.com/file-extension/VTK

(accessed Dec. 04, 2020).

[73] “File Formats for VTK Version 4.2 VTK File Formats.” Accessed: Dec. 04, 2020. [Online].

Available: www.kitware.com.

[74] “MIKE 2020.” https://www.mikepoweredbydhi.com/mike-2020 (accessed Nov. 01, 2020).

[75] “MIKE 21.” https://www.mikepoweredbydhi.com/products/mike-21 (accessed Nov. 01, 2020).

[76] M. Saramago, “Redes de Monitorização Hidrometeorológicas,” Revista Recursos Hídricos,

APRH, vol. 38, no. 1, pp. 33–39, 2017.

[77] M. Saramago, “Hydrologic Surveillance System Using Wireless Technologies,” 2006, [Online].

Available: http://projects.knmi.nl/geoss/ICEAWS/ICEAWS-4/CD/docs/ORAL/17_oral.pdf.

[78] “Mike 21 Flow Model & Mike 21 Flood Screening Tool.” DHI, Horsholm, 2017, Accessed: Dec.

08, 2020. [Online]. Available: www.mikepoweredbydhi.com.

[79] DHI, “Mike 21 Hd.” DHI, 2011.

[80] DHI, “MIKE 21 Flow Model User Manual.” DHI, p. 120, 2017.

[81] M. Gonzalez, “RiverCure Portal : Collaborative GeoPortal for Curatorship of Digital Resources in

the Water Management Domain,” Instituto Superior Tecnico, Universidade de Lisboa, 2020.

[82] “Digital Terrain Model — European Environment Agency.”

https://www.eea.europa.eu/help/glossary/eea-glossary/digital-terrain-model.

[83] J. Pereira, “Classifying Geo-Referenced Photos and Segmenting Satellite Imagery for the

90

Assessment of Flood Severity,” Instituto Superior Técnico, Universidade de Lisboa, 2019.

[84] “Django Raster — Django Raster 0.3 documentation.” https://django-

raster.readthedocs.io/en/latest/ (accessed Oct. 26, 2020).

[85] “curl - Documentation Overview.” https://curl.haxx.se/ (accessed Dec. 10, 2020).

[86] “ArcGIS Desktop | Documentation.” https://desktop.arcgis.com/en/ (accessed Dec. 27, 2020).

[87] “Discover QGIS.” https://www.qgis.org/en/site/about/index.html (accessed Dec. 10, 2020).

91

