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Abstract

Stroke is one of the leading causes of death and long-term disability in the western world. The
increasing demands concerning stroke rehabilitation and in-home exercise promotion increased the need
for adequate, affordable, and accessible Assistive Technology (AT) to promote patients’ compliance in
therapy while exercising autonomously. Independent exercise with an assistive system requires objective
methods to assess patients’ quality of movement and track their progress. In this work, we develop an
image-based Virtual Coach (VC) capable of monitoring upper extremity rehabilitation exercises focused
on motor compensation reduction. The VC proposes three exercises and assesses users’ compensation
patterns from images acquired with a webcam. It provides proper visual and audio feedback and
instructions through a User Interface (UI). We propose objective measures and classification approaches
- a Rule-based (RB) and a Neural Network (NN) based - to assess motor compensation patterns
from 2D positional data for the three exercises. For exercise 1, the RB approach assessed different
compensation patterns with F1 score of 76.69%. For exercise 2 and 3, the NN based approach revealed
F1 score of 72.56% and 79.87%, respectively. A group of seven volunteers exercised with the VC in
a small experimental session. The group found the system enjoyable and relevant for rehabilitation
administration. These results give evidence about the value of this kind of system to aid stroke patients
under rehabilitation and accurate performance assessment from 2D data. This latter enables to automate
rehabilitation programs monitorization in any device with a 2D camera, such as tablets, smartphones, or
robotic assistants.
Keywords: Stroke, Virtual Coach, Performance Assessment, 2D Positional Data

1. Introduction
With the escalating demands towards stroke re-
habilitation and the increase of in-home exercise
recommendations [5], the need for new means
to evaluate patients’ motor performance has risen
[12, 15]. In conventional assessment tests, thera-
pists assess movement quality based on observa-
tion, thus being highly subjective [12]; with the de-
gree of experience implying distinct treatment ap-
proaches [15]. Quantitative and objective methods
allow patients’ progress tracking, impaired move-
ments’ understanding, and formulation of standard
therapy regimens [12, 14]. Also, in this scenario,
assistive systems, such as Virtual Coaches, can
aid patients’ exercise autonomously. These sys-
tems are required to be adequate, affordable, and
accessible, with a complex interaction model to
keep the user engaged [19, 2, 6],

Patients’ physically impaired often exhibit com-
pensation behaviors to accomplish a task. Motor
compensation is the presence of new movement
patterns derived from the adaptation or substitu-

tion of old ones, which might help patients’ execute
a task [20, 13]. New patterns can include the use
and activation of additional or new body joints and
muscles. Most typical compensation behaviors are
trunk displacements, rotation, and shoulder eleva-
tion. These functional strategies are commonly ob-
served in reaching and are highly related to severe
impairment levels [13].

Early in the recovery process, the use of
compensation strategies promotes patients’ upper
limb participation in task performance. However,
their persistence may obstruct real motor func-
tion recovery and must be reduced during therapy
through appropriate exercise instructions [13].

In this work, we present a method to as-
sess quantitatively motor compensation from video
frames during upper limb exercise performance.
We created a labelset (Table 4) for each video
frame of the dataset regarding the observed com-
pensation patterns. We then explore two methods
to assess these patterns based on 2D pose data
enabling this kind of analysis with widely available
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RGB cameras. We develop an image-based VC
requiring a typical laptop with a built-in webcam.
The VC can provide proper exercise therapy and
interact with the user to keep ones’ interest in ther-
apy.

2. Related Work

2.1. Virtual Assistive Systems for Upper Extremity
Rehabilitation After Stroke

Previous works investigated computer-based solu-
tions for in-home rehabilitation therapy with avail-
able technological devices. They tried to give an-
swers to the main challenges regarding such sys-
tems’ development - manage proper training, be
affordable, suitable for home use, perform a re-
liable performance assessment, and interact with
patients’ to keep them motivated. Duff et al. [6] pre-
sented the AMRR, an interactive system capable of
produce visual and audio feedback from the kine-
matic analysis of patients’ movements. Brokaw et
al. [2] introduced the HAMSTER, a Kinect game
for upper limb rehabilitation, focused on compen-
sation behaviors restriction, with a graphical inter-
face displaying activities’ representation and pro-
viding error messages with audio cues. Rikakis
et al. [19] developed a Kinect-based system, with
a tablet computer, a mat, and smart objects for
reaching and grasping tasks. The tablet displays
task instructions and direct performance ratings.

To assess their systems’ usability and impact in
real patients, researchers conducted studies with
impaired subjects with light supervision [19, 2, 6].
These studies enhance the importance of systems
with a simple technical infrastructure for home use
and reliable motor assessment for independent
use. They also highlight the relevance of proper
interaction structures with visual and audio feed-
back and instructions, providing performance self-
assessment. Patients’ improved their motor func-
tion and movement quality after using the system.

2.2. Quality of Movement Assessment During Exer-
cise Performance

With the growth of in-home rehabilitation, the need
for objective metrics to track patients’ progress over
time enhanced the development of quantitative and
automated methods to evaluate movement qual-
ity. Body joints’ kinematic study is significant to
describe motion patterns. This study is possible
due to motion capture devices. For objective as-
sessment to gain clinical acceptance, researchers
need to prove motion capture systems and meth-
ods’ reliability and feasibility.

Murphy et al. [14] and Ozturk et al. [16] iden-
tified the kinematic variables that best describe
motion patterns and distinguish healthy partici-
pants from stroke survivors. Olesh et al. [15]
and Lee et al. [12] provided automated meth-

ods to produce assessment scores highly corre-
lated with FMA scores. With their work, they ver-
ified that, for the compensation component, post-
stroke survivors demonstrate lower inter-joint co-
ordination between elbow and shoulder and more
severe shoulder elevation and trunk displacement
patterns. The four works explored the shoulder ab-
duction and elevation angles, and trunk displace-
ment from its initial position to describe motor com-
pensation. Lee et al. [12] explored 0, 1, and 2/5
joints (Figure 4) projected trajectory, which is given
by the distance of these joints to their initial posi-
tion, at each timestamp.

Despite relevant analysis and good results from
these works, they do not provide a comprehen-
sive assessment and feedback about compensa-
tion and its different types.

3. Methodology

3.1. Virtual Coach
This section details the VC development for upper
extremity rehabilitation. Introduces requirements,
define the VC intelligent agent, and describe our
system architecture and implementation details.

From the related work and therapists’ advice, we
list a set of system requirements:

• Present an exercise demonstration;

• Propose adequate exercises;

• Give patients the possibility of exercising sit-
ting in a chair, contributing to their confidence
and physical safety;

• Display of the patient’s image while exercising
as if looking at a mirror;

• Provide clear and repetitive audio instructions,
cues for posture correction, encouragement,
and suggest task repetition;

• Display visual markers indicating the arm tar-
get position and the existence of compensa-
tion.

The VC proposes three appropriate exercises
(Table 3) and monitors user compensation behav-
iors during their execution. First, it verifies if the pa-
tient is correctly positioned to enable motion cap-
ture. Once the user is well placed, the exercise
begins and it starts evaluating one’s movements. It
gives verbal and visual instructions about the ex-
ercise and target position the user has to reach.
When the patient exhibits compensatory, the VC
suggests posture improvement. It also encourages
movement repetition and praises the user when the
target position is reached.
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State Space S Description

o→ out
Patient not placed in the correct
position

i→ in Patient placed in the correct position

e→ exercise
Exercise and movement trial
beginning

n→ normal Normal movement pattern
tr → trunk rotation Patient rotates the torso
se→ shoulder elevation Patient elevates the shoulder
td→ trunk displacement Patient displaces the torso
tg → target Patient reaches the target position

Table 1: states.

Rules Description
stateprev = o
state = o
time > thpos

Patient not well-positioned for
time > thpos: VC suggests body
repositioning; position rectangle in red color.

stateprev = o
state = i

Patient well-positioned: position rectangle in
green color; VC gives exercise directions.

stateprev = i
state = e

Exercise beginning: VC displays target
position marker (green).

stateprev = S/{i}
state = e

Patients stops moving: VC proposes
movement repetition.

stateprev = e
state = n

The VC starts evaluating patient’s
performance and asks one to reach the
target position.

stateprev =
{tr, se, td, n}
state =
{tr, se, td, n}
time > thtg

Patient takes too much time reaching the
target position: VC encourages patient
to reach the target.

stateprev =
{tr, se, td, n}
state = tg

Patient reaches the target: VC praises the
patient; target position marker in blue color.

stateprev =
{tr, se, td, n}
state = tr

Patient describes trunk rotation: VC
suggests posture correction; it displays
trunk compensation marker (red).

stateprev =
{tr, se, td, n}
state = se

Patient describes shoulder elevation: VC
suggests correction; VC displays shoulder
compensation marker (red).

stateprev =
{tr, se, td, n}
state = td

Patient describes displaces the torso: VC
suggests posture correction; VC displays
trunk compensation marker (red).

Table 2: Actions.

3.1.1. The Intelligent Agent
Our VC is a Simple Reflex Agent. It selects the
action to take based on the current environment’s
state, previous state and time. Table 1 describes
the different perceived states by the VC.

Table 2 describes the VC actions and trigger cor-
responding. VC actions are conducted through the
UI. The actions include:

• Display of position markers - the rectangle in-
dicating patient’s valid positions;

• Display of the target position marker;

• Display of compensation indicator markers -
shoulder and trunk markers;

• Audio speech and respective subtitles - in-
structions, suggestions, encouragement, and
praise.

3.1.2. User Interface
To establish an interaction between the user, we
developed a UI through a web application. The
user chooses the training exercise and can watch
each exercise demonstration. To develop our web

Figure 1: Virtual Coach Menu web page.

Figure 2: Virtual Coach Main web page - display E1 target
position.

Figure 3: Shoulder elevation in E3 - display trunk compensation
marker.

application, we used Flask microframework [17].
Flask is written in Python. We created a dynamic
web application to run locally in a personal com-
puter with four web pages: Init, Menu (exercise
selection), Demo (exercise demonstration), and
Main, in which the user exercises and interects
with the system.

3.2. Compensation Assessment Methods
This section describes the proposed methods
to assess compensation patterns during exercise
performance from 2D body keypoints. This as-
sessment is composed of the following steps: Fea-
ture Extraction, Feature Selection, Data Nor-
malization, Classification, and Result Filtering.
We propose two classification approaches - Rule-
based (RB) classification approach, which works
as a baseline method, and a Neural Network (NN)
based approach.
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3.2.1. Feature Extraction and Selection
To extract the body joints’ 2D pose data, we use
the OpenPose [4], a software library that provides
the 2D location of 25 body keypoints in the image
coordinate system, {I}. Each keypoint provided by
OpenPose is denoted by otj = [ptj s

t
j = [xtj y

t
j s

t
j ]
′,

where stj is a confidence score, j denotes a body
joint (figure 4) from a set of joints J , and t the frame
number.

Figure 4: OpenPose Body keypoints.

While selecting the most relevant keypoints to
describe patients’ movements we consider three
scenarios (S1, S2, and S3) concerning patients’
position in front of the camera: facing the recording
camera (S1), with the affected arm facing the cam-
era in a perpendicular (S2) and oblique (S3) posi-
tion. For these latter just the affected side is visible
in the image. Keypoint selection follows [12]. For
S1 we select the joints Js = [0, 10] ∪ {12}. For
S2 and S3 Jsright

= [0, 2] ∪ [5, 8] ∪ {12} Jsleft
=

[0, 5] ∪ {8} ∪ {10}. These keypoints are held by
the RB and NN based approaches. The head key-
points, j ∈ [15, 18], are held for the RB method, in
addition to the selected joints, to overcome the lack
of 3D data by head size variation.

Considering a multi-person setting (with the pa-
tient under evaluation and a caregiver), we select
the patient assuming he/she is the closest person
to the center of the image. Thus, given an image
with a resolution of 640×480, we consider an imag-
inary disk in the image center defined by D(cd, r),
which is a set of points in the image of the form
{p ∈ [0, 640] × [0, 480] : ‖p − cd‖ = r}, where cd =
[320 240]′ is the disk center, p ∈ [0, 640] × [0, 480]
and r is the disk radius. The euclidean distance
between the subject and the disk center is given
by d(p8, cd) = ‖p8 − cd‖.

3.2.2. Data Normalization
In a real-world setting, subjects have body parts’
of different sizes and are not placed at the same
place regarding the camera. For this reason, we
normalize the keypoints. Our feature normalization
approach consists of three steps: transformation,
normalization, mirror. First, we apply rigid body
transformation from the image coordinate system,
{I}, to the body coordinate system, {B}, in which
the patient’s joint 8 is the origin. This step consid-
ers the patients’ affected side. For S1, the BX axis
is directed to the affected side. For S2 and S3, the
BX axis is directed to the patients’ front. Addition-

ally, we normalize each resultant keypoint coordi-
nates to the spine length, d1(p1, p8), measured in
t = 1. For the NN, to give the healthy side as a ref-
erence, we mirror the joints to the BX axis positive
side, aligning both sides. For RB, each keypoint
moves regarding other specified keypoint.

3.2.3. Kinematic Variables
For the RB classification approach we consider as
features kinematic variables as in related work [12].
However, since we only have 2D positional data,
we hypothesize measures to assess some com-
pensation patterns for the three scenarios. We in-
tend to identify four types of compensation: trunk
forward (TF), trunk rotation (TR), shoulder el-
evation (SE), and other (O) trunk compensation
patterns, such as trunk moving backward and trunk
tilt. Normal movements we call normal (N) To cal-
culate the kinematic variables the mirror keypoint
normalization step is not applied. More specifi-
cally, for scenarios S1, S2, and S3 - the formulated
hypotheses and respective kinematic variables are
summarized as follows.
Trunk Forward/Backward: S1 - observed
changes in patient’s head size, ∆Ht (Ht - head
area in t > 1); S2 and S3 - spine angular and
linear displacements, at(p18, p11, pt1) (at - angle be-
tween three joints) and ∆xt(pt1, p

1
1) (∆xt - displace-

ment in BX).
Trunk Rotation: S1 - simultaneous angular dis-
placements of both shoulders, at(p12, p11, pt2) and
at(p15, p

1
1, p

t
5); S2 - shoulder displacement regard-

ing joint 1 in BX, ∆xt(pt2/5, p
t
1); S3 - absolute

changes in the observed chest length, |∆dt(pt2, pt5)|
(dt - Euclidean distance between two joints).
Shoulder Elevation: S1 - shoulder elevation angle
at(p12/5, p

1
1, p

t
2/5); S2 and S3 - shoulder displace-

ment regarding joint 1 in Y , ∆yt(pt2/5, p
t
1) (∆yt -

displacement in BY ).
Trunk Tilt: S1 - spine angular displacement
at(p18, p

1
1, p

t
1); S2 and S3 - absolute changes in pa-

tient’s head size, |∆Ht|.

3.2.4. Classification Approaches
Multilabel Classification (MLC) is a specific type of
classification task, in which output is not a unique
output value but an array of outputs [9]. We con-
sider our problem of determine distinct compensa-
tion patterns from video frames a MLC problem.
While dealing with this kind of problem we consider
label dependency (when a label is active other is
active too) and label imbalance (labels more fre-
quent then others). To deal with this problem, we
apply the binarization technique [10, 11] One-vs-
Rest, which trains classifier for each label against
all others [18], thus one label prediction does not
influence the other. Applying this method to the
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original dataset generates as many predictions as
the number of labels, which are then combined to
produce the multilabel response.

RB classification models are a set of if-then rules
applied to a collection of features and providing a
predicted label. This kind of model has the advan-
tage of easy comprehension and result interpreta-
tion [1, 9]. We apply a set of independent rules
to the hypothesized kinematic variables in section
3.2.3. We define rules for each pattern and each
scenario S1, S2, and S3, as follows:
Trunk Forward/Backward: S1 - ∆Ht < thTB

1 →
P 2 = ‘O’, ∆Ht > thTF → P = ‘TF ’, P = ‘N ’
otherwise ; S2 and S3 - at(p18, p11, pt1) > thTF ∧
∆xt(pt2/5, p

t
1) > 0 → P = ‘TF ’, at(p18, p11, pt1) >

thTF ∧ ∆xt(pt2/5, p
t
1) < 0 → P = ‘O’, P = ‘N ’

otherwise.
Trunk Rotation: S2 - ∆xt(pt2/5, p

t
1) > thTR →

P = ‘TR’, P = ‘N ’ otherwise; S3 - |∆dt(pt2, pt5)| >
thTR → P = ‘TR’, P = ‘N ’ otherwise.
Shoulder Elevation: S2 and S3 - ∆yt(pt2/5, p

t
1) >

thSE → P = ‘SE’, P = ‘N ’ otherwise.
Trunk Tilt: S1 - at(p18, p11, pt1) > thTI → P = ‘O’,
P = ‘N ’ otherwise; S2 and S3 - |∆Ht| > thTI →
P = ‘O’, P = ‘N ’ otherwise.
Trunk Rotation & Shoulder Elevation
S1: (1) at(p12/5, p

1
1, p

t
2/5) > thshaffected

∧
(2) at(p15/2, p

1
1, p

t
5/2) < thshopposite → P = ‘SE’,

(1) > thshaffected
∧ (2) > thshopposite

∧ (1) − (2) <
thshaffected

− thshopposite
→ P = ‘TR’,

(1) > thshaffected
∧ (2) > thshopposite ∧ (1) − (2) >

thshaffected
− thshopposite → P = ‘TR’&‘SE’,

P = ‘N ’ otherwise.
For the NN based approach we adopt an ap-

proach to overcome label dependency issues.
When we appraise Normal movement patterns
(without compensation), we desire that our multi-
label classifier is robust enough to not assign a la-
bel to a frame denoting compensation as it con-
firms the good movement quality. With this de-
sire, we divide our problem into two problems, a
binary and a multilabel. First, a binary classifier
(C1) determine compensation existence. Second,
a multilabel classifier (C2) concludes the described
compensation patterns from the frames with com-
pensation detected by C1. Figure 5 represents our
proposed approach.

C1
Binary Classifier

C2
Multilabel Classifier

Normalized
Keypoints

Frames with
Compensation

Type of
Compensation

Figure 5: NN based approach to assess compensation.

1thc - Threshold value, c denotes a compensation pattern,
e.g., c = TB = trunk backward.

2Predicted Label.

3.2.5. Result Filtering
Given the classification results we filter them to
produce a final decision. Classifying frames with a
frame rate of 30 fps is extremely exhaustive and in-
compatible with our human perception. To produce
a final decision we establish a window of frames
from which we compute its median predicted label.
The median is computed for each label.

4. Experiments
This section presents all the experimental proce-
dures conducted to evaluate the Virtual Coach
(VC) and validate the compensation assessment
approaches.

4.1. The Dataset
To train and validate our classification models, we
use the dataset from Lee et al. [12] work. This
dataset is of videos of a set of 15 post-stroke sur-
vivors performing three exercises. The 15 partici-
pants, with an average age of 63± 11.43 years old,
suffered a stroke and were left with a more affected
body side (left or right) [12]. Each participant per-
formed an average of 10 trials for each exercise.
The three upper limb exercises (E1, E2, and E3)
are introduced in Table 4. Also, the table corre-
sponds a scenario concerning patients positioning
to each exercise.

(a) E1 - S1 (b) E3 - S2 (c) E3 - S3

Figure 6: Scenarios and Exercises.

4.1.1. Labeling Process
To perform MLC, we labeled each dataset video
frame. For this labeling process, we followed Phys-
ical therapist and an Occupational advices.

Acknowledging the distinct compensation pat-
terns mentioned in section 3.2.3 we specify five
labels presented in Table 4. For E1 and E2 we
assigned labels ‘1’, ‘2’, ‘3’, and ‘4’. For E3, we as-
signed labels ‘0’, ‘2’, and ‘4’. We assigned labels
to each frame in which a compensation patterns
is visible even to the frames in which the behavior
was only beginning or ending. In these frames the
patterns are not extremely obvious. Since these
set of frames correspond to movement patterns
transitions we call them borders.

4.1.2. Data Cleansing
After keypoint extraction with OpenPose, it is im-
portant to consider three different situations: the
presence of other people in the image beside the
patient, extra skeletons detected, which do not
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necessarily belong to a person, and keypoint mis-
detection. Figure 7 illustrates each one.

(a) Extra person (b) Extra skele-
ton

(c) Misdetection

Figure 7: OpenPose incorrect detection and extra person.

Extra people in the image is easily overcome
with the method proposed in section 3.2.1. Extra
skeletons often do not have spine joins, {0, 1, 8},
and thus since their confidence score is zero we
remove them. For keypoint misdetection, we con-
sider as relevant joints of the affected side and op-
posite shoulder. This joints good detection corre-
spond to a confidence score higher then a defined
value. The remaining joints must have stj > 0.
Other misdetections with a good confidence score
were corrected.

4.1.3. Multilabel Dataset Characteristics
Before developing a classification model and train-
ing it, we have to know our Multilabel Dataset
(MLD) characteristics concerning its multilabel na-
ture. We use two metrics: Pmin which is the per-
centage of the data samples with only one label
active. A high Pmin percentage means that most
samples are single labeled, and the dataset is not
greatly multilabel. As shown in Table 3, the dataset
is almost single labeled - high percentage of single
labeled frames, Pmin. Regarding label imbalance,
in Table 4, the IRLbl metric shows the ratio be-
tween the occurrences of the most frequent label
and each label. We can see that, for the three exer-
cises, label ‘4’ is the most frequent, IRLbl = 1. For
E1 and E2, ‘1’ is poorly represented, IRLbl � 1,
with only one patient exhibiting this compensation
pattern. For E3, the less representative label is ‘2’.

Exercise Scenario Pmin

E1 ‘Bring a Cup to the Mouth’ S1 83.83%
E2 ‘Switch a Light On’ S1 91.4%
E3 ‘Move a Cane Forward’ S2 & S3 98.15%

Table 3: The three exercises and percentage of single labeled
frames.

IRLbl
Label E1 E2 E3
‘0: Trunk Forward’ - - 3.54
‘1: Trunk Rotation’ 16.23 19.25 -
‘2: Shoulder Elevation’ 2.15 3.03 15.77
‘3: Other’ 4.93 5.55 -
‘4: Normal’ 1 1 1

Table 4: Considered labels and IRLbl metric for each one.

4.2. Classification Methods
Once we have the data of our MLD cleaned, key-
points normalized, and we have perfect knowledge
about its characteristics, we can set the threshold
values for the RB method and train the NN based
classifier, and validate our models. This section de-
scribes the adopted metrics to evaluate our mod-
els’ performance and validation method. For the
RB method, we validate the kinematic variables
presented and hypothesized in section 3.2.3. For
the NN, we describe the explored hyperparame-
ters. Additionally, we describe two experiments to
applyied to the obtained classification results.

We apply the classification methods to the nor-
malized keypoints raw and filtered signal. Applying
a moving average filter with a window of five frames
as in [12], we reduce signal noise.

4.2.1. Evaluation Metrics
To evaluate our classification models’ performance
on predicting compensation patterns from video
frames, we use a set of performance metrics ap-
propriate to a MLC problem. While in the binary
context, the output result from a classifier can only
be considered correct or incorrect, in the multilabel
field, the provided output is a set of labels (vector
of 0s and 1s), being considered completely correct,
partially correct, or totally incorrect [8]. This way,
we need adequate metrics that acknowledge these
possibilities. We use Precision, Recall, F1 score,
and HammingLoss [8, 18] to evaluate our mod-
els. The first four are calculated according micro-
averaging strategy. In micro-averaging, the coun-
ters of correct and incorrect predictions are joined
together and then the metric is calculated, this way
rare labels are diluted between the most frequent
labels [8, 18].
Precision is the percentage of predicted labels

truly significant for the sample. Recall refers to
the classifier’s ability to detect all positive sam-
ples. F1 is the result of combining Precision
and Recall metrics in an weighed harmonic mean.
HammingLoss is the portion of mispredicted la-
bels.

4.2.2. Validation Method
After defining our classification methods, we need
to select the best model hyperparameters that reg-
ulate our learning model’s behavior and validate it.
We split the MLD into a training set and validation
set [7, 18].

Since we have a pretty small dataset with some
labels poorly or nothing represented, we resort to
cross-validation to evaluate our models’ predictive
ability and ensure generalization. Cross-validation
consists of partitioning the dataset into small sub-
sets. In the validation loop, all the sets except
one are used for training, and the remaining set
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is used for validation [7, 18]. In the end, the per-
formance measure determined in each loop, is av-
eraged. Since all patients in a post-stroke status
present their own motor pattern, we apply Leave-
One-Subject-Out (LOSO) cross-validation. Vali-
dating the models on each patient compensation
pattern enables a better understanding of their
classification performance and generalization ca-
pacity.

4.2.3. Kinematic Variables Validation
At this stage, we validate the formulated hypothe-
ses regarding the kinematic variables defined in
section 3.2.3. This step is crucial to prove our hy-
potheses’ efficiency to assess motor compensation
from 2D data. Also, kinematic variables’ analysis
allows us to determine the thresholds values for
the RB method. We validate this measures for the
patterns observed in the dataset.

Given the rules in section 3.2.4, in the following
figures we can observe that our hypotheses to as-
sess compensation (section 3.2.3) are valide.

Figure 8: Head area over time of a trunk tilt (Other) simulation
in similar conditions of the dataset for E3.

Figure 9: Head area over time, revealing trunk moving back-
ward (Other) observed in the dataset for E2.

Figure 10: Patient affected shoulder elevation angle revealing
Shoulder Elevation for E2.

Figure 11: Patient tilted angle of the torso describing a trunk tilt
(Other) for E2.

4.2.4. Filtering of the Classification Results
For the filtering of classification results describe
in section 3.2.5, we experiment this procedure for
sets of 5, 7, 9, and 11 frames. Additionally we per-
form another experiment with the predicted labels.

From the video frames’ labeling process de-
scribed in 4.1.1, another issue emerges regard-
ing the classification results. While labeling the

Figure 12: Patient P06 tilted and of the spine and shoulder
displacement over time, describing Trunk Forward in E3.

Figure 13: Patient P05 shoulder displacement over time, de-
scribing Shoulder Elevation in E3.

dataset, we assign labels to frames indicating com-
pensation patterns, in which those patterns are vis-
ible. This labeling includes the frames in which
the patient starts or ends describing a compensa-
tion pattern, and thus this pattern is not very pro-
nounced. These frames are called borders. Given
this, we assume a high probability of our classifiers
reveal low performance when classifying these mo-
tion patterns transitions. we consider borders of 5
and 10 frames.

4.3. Virtual Coach
To evaluate the VC we performed a set of empirical
experiments with a group of volunteers. We aim to
investigate the system’s hedonic (H) and utilitar-
ian (U) value, systems’ performance (SP), and
users’ use intention (IU). Thus, we introduce the
following hypotheses:

H1 There is a disparity between stroke survivors
volunteers and the other volunteers among the
different perceptions about the system;

H2 There is a difference in the perceived Virtual
Coach utilitarian value between older adults
and younger adults since stroke is common
among older adults and the elderly;

H3 Hedonic value perceptions are affected by
the Virtual Coach performance monitoring ex-
ercise performance, detecting compensation,
and interaction model awarenesses;

H4 Hedonic and utilitarian value perceptions af-
fect users’ intention to exercise with the Virtual
Coach.

Data collection and storage is in agreement with
the General Data Protection Regulation (GDPR).
To ensure these conditions, the Instituto Superior
Técnico Ethics Committee reviewed and approved
our experimental protocol. For this stage we follow
a previous work [3].
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VID Age Sex ND/A side (a) (b) (c) (d)
V01 25-34 M Left Y Y Y Y
V02 55-64 F Left Y N Y Y
V03 65-74 F Left Y N Y Y
V04 65-74 M Left Y N Y Y
V05 25-34 M Left Y N Y N
V06 55-64 M Left Y N Y N
V07 25-34 F Left Y N N N

Table 5: Profiles of the volunteers. General information: (a)
Knows what a stroke is (b) Had a stroke (c) Some relative or
close friend had a stroke (d) Followed the rehabilitation process
closely. VID - Volunteer ID; ND - Non-Dominant; A - Affected; F
- Female; M - Male; Y - Yes; N - No.

4.3.1. Volunteers
We recruited seven volunteers to exercise their
limbs with our system. Given the pandemic situ-
ation of the COVID-19, volunteers are among our
closest social groups, such as family and close
friends. When selecting the participants, we aimed
to gather a diverse group concerning age, sex,
and experience with the stroke thematic. Volun-
teers signed an Informed Consent authorizing the
recording of their image necessary to the normal
system operation. Table 5 present the volunteers’
profiles and general information.

4.4. Experimental Setup
Motivated to provide an affordable and accessible
solution with a simple technical infrastructure, we
only use a laptop with a built-in webcam in this ex-
periment. To we use the RB classification algo-
rithm, which enables an easy result interpretation
and adjust the rules’ threshold values. The ses-
sions took place in a domestic environment spa-
cious enough to assure the laptop was placed in
from the volunteer with an ideal distance to cap-
ture the participant’s relevant body joints.

4.5. Experimental Procedure
At the beginning of the session, the researcher in-
troduced the study and properly explained the en-
tire procedure and introduced the UI to the volun-
teer giving an overview of its functionalities. The
volunteers were asked to perform the three upper
extremity exercises with their arm - from their af-
fected side due to stroke if it was the case, or
from their non-dominant body side. During the
exercises, patients had to simulate the different
compensation strategies mentioned in the previous
sections. Volunteers repeated the movements at
least five times. The session did not exceed 30
minutes. In the end, each participant answered a
questionnaire giving their feedback about the VC
and the interaction with it.

4.6. Data Collection
The questionnaire to volunteers provided quanti-
tative and qualitative data. The participants re-
sponded to each question on a five point Likert
scale (quantitative) - from ‘1 = Strongly Disagree’

to ‘5 = Strongly Agree’ - and a question with open
answer for each item - e.g., ”tell me more about it”
- to gather more information (qualitative).

5. Results & discussion
This section presents the experimental results.
First, we evaluate the two proposed MLC ap-
proaches and analyze experiments applied to
both methods’ classification results. Second, we
present the information collected from question-
naire respondents and a statistical analysis which
validates the hypotheses raised in section 4.3.
These results validate our system for autonomous
upper extremity rehabilitation therapy, mainly its ef-
ficiency and relevance.

5.1. Classification Results Analysis
In this section, we compare the results obtained in
the evaluation metrics among the different meth-
ods and exercises.

For the NN approach we used the hyperparam-
eters from Table 6 for both C1 and C2 classifiers.

C1
#layers #units/layer Learning Rateinit

E1 1 16 0.001
E2 2 16 0.001
E3 1 96 0.01

C2
#layers #units/layer Learning Rateinit

E1 1 64 0.001
E2 1 16 0.01
E3 1 16 0.001

Table 6: NN based approach classifiers’ hyperparameters.

We gather in Table 7 the results obtained for both
approaches. For the RB filtered signal revealed
better results, as expected. With the noise re-
duced, and without abrupt changes in the acquired
keypoints’, the application of the conditions based
on a threshold value limiting the existence of com-
pensation works better. The NN based revealed
better results for raw signal.

Looking at Table 7 we can notice that for E1
RB approach performs better and for E2 and E3
the NN based approach presents better results.
An evident difference between these exercises’
datasets is their percentage of single labeled sam-
ples, Pmin. For E1 has 83.83% of the samples are
single labels. For E2 and E3, 91.4% and 98.15%
of the samples are single labeled. This makes us
believe that the RB method handles better a sce-
nario with a not so poor multilabel nature. On the
other hand, the NN based approach is more ef-
ficient for a binary problems. A particular case
is E3. Although for this exercise the NN based
approach performs better it has a higher value of
HammingLoss, meaning that this approach pro-
vides more mispredictions.

From Table 8 we can infer that filtering and re-
moving borders produces better performance met-
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E Precision Recall F1
Hamming

Loss
1RB 0.76 ± 0.14 0.78 ± 0.12 0.77 ± 0.12 0.11 ± 0.06
2RB 0.56± 0.17 0.67± 0.17 0.60± 0.17 0.19± 0.08
3RB 0.70± 0.27 0.71± 0.26 0.70± 0.26 0.13 ± 0.11
1NN 0.71± 0.23 0.70± 0.25 0.70± 0.24 0.18± 0.15
2NN 0.73 ± 0.21 0.73 ± 0.19 0.73 ± 0.19 0.15 ± 0.11
3NN 0.80 ± 0.22 0.80 ± 0.21 0.80 ± 0.22 0.14± 0.14

Table 7: Average results and standard deviation for the Rule-
based (RB) and Neural Network (NN) methods. E - Exercise.

Filtering No Borders
Window F1− score Window F1− score

E1RB 11 0.78± 0.13 10 0.79± 0.13
E2RB 7 0.61± 0.17 10 0.61± 0.18
E3RB 9 0.70± 0.27 10 0.72± 0.27
E1NN 9 0.70± 0.23 10 0.71± 0.24
E2NN 9 0.74± 0.20 10 0.76± 0.18
E3NN 11 0.80± 0.22 10 0.83± 0.22

Table 8: Average results and standard deviation for the RB and
NN based methods after filtering.

rics values. This means that if we apply the fil-
tering to obtain a final decision, our decision is
more accurate than the initial one. From border
removal, we see that classifiers had difficulty clas-
sifying these regions. Without them, the metrics
are not penalized.

5.2. Virtual Coach Validation Results
Table 9 presents the mean quantitative results
gathered from the questionnaires. The results re-
veal that most volunteers enjoyed exercising with
the VC, felt motivated and interested in the exer-
cises the interaction established pleasurable. Vol-
unteers find the system useful to help patients im-
prove their upper extremity movement quality and
valuable for when they cannot have therapists’ su-
pervision. Subjects revealed that they would confi-
dently keep using the system to exercise. Volun-
teers’ perception of the system’s performance is
that it performed really well and fulfills its purpose
and they expressed that they could trust the sys-
tem evaluation of their motor performance. How-
ever, some details can be improved, such as the
VC response velocity and more flexibility regarding
users’ initial position. Qualitative information sup-
ports these results.

Following we investigate the raised hypotheses
in section 4.3: H1 Stroke survivor volunteer was
more critical with the system, giving a lower mean
score for U (mean = 4) and SP (mean = 3) and
showing a less IU (mean = 4). However, this dif-
ference is very small. Other volunteers present
a mean score for U value of 5.0 ± 0.0, for IU of
5.0 ± 0.0, and for SP of 4.58 ± 0.58. Concerning
H perception, the stroke survivor and other volun-
teers equally enjoyed the training and interact with
the system.

H2 Older adults with age over 55 years old find
the system more relevant and useful (U mean =
5.0± 0.0). Also, they express a clearer intention to

H U IU SP
H 1 0.03 1.00 0.53
U 0.03 1 1.00 0.75
IU 1.00 1.000 1 1.00
SP 0.53 0.75 1.00 1

Minimum 3.75 4.00 4.00 3.00
Maximum 5.00 5.00 5.00 5.00

Mean 4.54 4.86 4.75 4.36
SD 0.51 0.38 0.50 0.80

Table 9: Descriptive Statistics and Pearson Correlation. SD -
Standard Deviation.

keep using the system (IU mean = 5.0± 0.0).
H3 & H4 Table 9 presents a summary of descrip-

tive statistics and the Pearson correlation between
H, U, IU, and SP. The Pearson correlation coef-
ficient (ρ) measures the degree of correlation of
the distinct dimensions. Table shows a correlation
between H and SP with a coefficient of ρ = 0.53,
revealing that these dimensions are linearly corre-
lated. If the mean value of the perceived SP in-
creases, it positively influences the perceived H,
supporting H3. IU has a perfect linear correlation
with all the other dimensions (ρ = 1). If the mean
perceived H and U increase, IU grows, supporting
H4.

6. Conclusions
Given the presented results, it is possible to infer
that we achieved the project objectives: we were
able to assess motor compensation from 2D posi-
tional data with pretty good accuracy and our VC
fulfilled its purpose and met all the requirements
concerning this kind of system. Given this, we for-
mulated some improvements and future work sug-
gestions.

To continue the investigation methods to de-
tect motor compensation from 2D positional data,
we suggest the development of a Recurrent Neu-
ral Network based method considering keypoints
in sequential order. Concerning the assessment
methods, our RB approach could be improved, giv-
ing priority to trunk displacements over shoulder el-
evation patterns, to overcome some misdetections.
To evaluate the real impact of the VC in real stroke
survivors under a rehabilitation process and gather
more solid perception about the system.
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