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Abstract
Stroke is one of the leading causes of death and long-term disability in the western world. The increasing

demands concerning stroke rehabilitation and in-home exercise promotion increased the need for adequate,

affordable, and accessible Assistive Technology (AT) to promote patients’ compliance in therapy while exer-

cising autonomously. Independent exercise with an assistive system requires objective methods to assess

patients’ quality of movement and track their progress. In this work, we develop an image-based Virtual

Coach (VC) capable of monitoring upper extremity rehabilitation exercises focused on motor compensa-

tion reduction. The VC proposes three exercises and assesses users’ compensation patterns from images

acquired with a webcam. It provides proper visual and audio feedback and instructions through a User

Interface (UI). We propose objective measures and classification approaches - a Rule-based (RB) and a

Neural Network (NN) based - to assess motor compensation patterns from Two-Dimensional (2D) positional

data for the three exercises. For exercise 1, the RB approach assessed different compensation patterns

with F1 score of 76.69%. For exercise 2 and 3, the NN based approach revealed F1 score of 72.56% and

79.87%, respectively. A group of seven volunteers exercised with the VC in a small experimental session.

The group found the system enjoyable and relevant for rehabilitation administration. These results give

evidence about the value of this kind of system to aid stroke patients under rehabilitation and accurate per-

formance assessment from 2D data. This latter enables to automate rehabilitation programs monitorization

in any device with a 2D camera, such as tablets, smartphones, or robotic assistants.
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Stroke; Virtual Coach; Performance Assessment; 2D Positional Data.
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Resumo

O Acidente Vascular Cerebral (AVC) é uma das principais causas de morte e invalidez de longo prazo

no mundo ocidental. As crescentes exigências em relação à reabilitação pós-AVC e recomendações de

exercı́cio em casa, aumentaram a necessidade de tecnologia assistiva adequada e acessı́vel para pro-

mover a adesão dos pacientes à terapia durante o exercı́cio autónomo. O exercı́cio independente com

um sistema assistivo requer métodos objetivos para avaliar a qualidade do movimento dos pacientes e

monitorizar o seu progresso. Neste trabalho, desenvolvemos um terapeuta virtual, baseado em imagem,

capaz de monitorizar exercı́cios de reabilitação dos membros superiores com foco na redução de movi-

mentos compensatórios. O terapeuta virtual propõe três exercı́cios e avalia os padrões de compensação

dos utilizadores a partir de imagens adquiridas com uma webcam. Ele fornece feedback, visual e de áudio,

e instruções adequados por meio de uma interface de utilizador. Propomos medidas objetivas e métodos

de classificação - um baseado em regras e outro baseado em rede neuronal - para avaliar os padrões de

compensação motora a partir de posição 2D para os três exercı́cios. Para o exercı́cio 1, o método de regras

avaliou diferentes padrões de compensação com um score F1 de 76, 69%. Para os exercı́cios 2 e 3, a abor-

dagem baseada em rede neuronal revelou um score F1 de 72, 56% e 79, 87%, respectivamente. Um grupo

de sete voluntários exercitou com o terapeuta virtual numa pequena sessão experimental. O grupo con-

siderou o sistema agradável e relevante para a administração de reabilitação. Estes resultados fornecem

evidências sobre o valor deste tipo de sistema para ajudar pacientes com AVC em reabilitação e precisão

na avaliação de desempenho a partir de dados 2D. Este último permite automatizar a monitorização de pro-

gramas de reabilitação em qualquer dispositivo com câmera 2D, como tablets, smartphones ou assistentes

robóticos.

Palavras Chave
Acidente Vascular Cerebral (AVC); Terapeuta Virtual; Avaliação da Performance; Dados posicionais 2D.
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Introduction

Virtual Coaches are intelligent agents designed to provide adequate and necessary assistance, training,

or therapy to their users. A Virtual Coach (VC) regularly monitors user’s activities and behaviors, and

the environment where one is inserted. It is aware of the user’s physical or cognitive conditions. It can

determine when should intervene, providing instructions, or offering assistance. When it turns to aid people

with a higher or lower level of incapacity, these agents can positively intervene in providing rehabilitation,

learning strategies, and illness management [10, 11].

According to the World Health Organization (WHO), every person will experience some level of disability,

directly or indirectly, due to disease, injury, or age factors [12, 13]. As the world’s population is growing older

[14] and there is a high increase of people with disability, or some limitation in functioning [15], the attention

to Assistive Technology (AT), such as virtual coaches, has risen, aiming to improve these people’s quality

of life and ease their caregivers’ work. Along with this huge benefit, it promises to provide physicians and

therapists with extra information about patients’ health state and evolution, and quantitative measures to

quantify and track disability to bring concrete consensus to the subjective evaluation usually made towards

disability [12, 13, 15]. Due to the clear evidence of AT’s positive impact, the WHO has made some efforts

regarding its access and regulations [15]. The WHO’s documents state that AT is a fundamental tool to

aid people and improve their functioning. They highlight the importance of affordable, accessible, and

appropriate AT [12, 15].

After a stroke, patients lose part of their physical capabilities and see themselves with troubles when

performing daily activities [16]. Faced with this new condition, patients tend to develop new movement

behaviors during task performance, like trunk displacement and shoulder elevation, commonly called com-

pensatory movement patterns [17, 18]. To diminish the impact of physical impairments and reduce com-

pensatory patterns, rehabilitation poses an essential strategy [1, 17], in which the upper extremity needs

special attention. During the rehabilitation process, patients face many challenges that compose barriers

[16, 19], which highlight the need for assistive agents.

The present project aims to provide solutions for stroke survivors’ main challenges during the therapy

process. We propose a Virtual Coach (VC) capable of assessing compensatory behaviors using supervised

learning methods and provide proper and engaging therapy for the upper extremity. We present a method

to assess quantitatively motor compensation from video frames during upper limb exercise performance

based on 2D pose data enabling this kind of analysis with widely available RGB cameras.

1



1.1 Motivation

Stroke is one of the leading causes of death and adult disability in the western world [16, 19, 20, 21]. Due

to stroke effects, survivors see themselves with physical/cognitive impairments [16] and often experience a

more weakened body side (right or left) [17, 21]. Such disablement has a significant impact on their lives

since they are no longer capable of accomplishing their daily tasks and perform their pre-stroke life roles

[1, 19]. To reduce this impact, prevent disability and stroke recurrence, rehabilitation poses a crucial and

effective strategy [1, 19, 20].

Rehabilitation “starts at the time of the stroke event and continues as long as required for each individ-

ual to achieve their maximum potential recovery” [1]. In this process, therapists actively promote physical

activity and provide specific exercises to improve stroke survivors’ functional abilities and, consequently,

their quality of life. Upper limb recovery, or partial recovery, is fundamental for patients, allowing them to

execute the same tasks they used to do or, at least, simple and necessary ones [1, 22]. The exercises con-

ducted can be passive or active [23]. In passive exercises, commonly applied in a primary stage, therapists

physically support and stimulate arm movements. In active exercises, which have greater results, patients

move and exercise their limbs independently without physical support or assistance, only following the ther-

apist’s instructions. For the upper extremity, Constraint-Induced Movement Therapy (CIMT), based on a

task-oriented approach, has revealed to be really effective [20, 24]. This therapy consists of an interaction

“between many systems in the brain and is organized around a goal and constrained by the environment,”

[20] in which the patient has to exercise repeatedly, giving special attention to the affected limb [24].

To have the desired outcome, rehabilitation poses a serious commitment, in which patients need to be

engaged. It demands a lot of time investment in training. Therefore, in addition to the exercises carried

out during therapy, CIMT exercises can be prescribed or recommended to fill gaps in the schedule, e.g.,

between therapy sessions, or to be performed at home [1, 22].

Rehabilitation Therapy and Recovery Challenges

During the therapy process, both patients in a post-stroke status and therapists identify facilitators and

barriers to exercise and go through a high-quality rehabilitation process and with the best outcome possible

[16, 19, 25]. With the increasing number of patients with different therapeutic demands and therapists’ time

availability, the latter cannot often give as much attention as their patients need, leading to a failure in the

rehabilitation administration, with a rupture in the performance monitoring and feedback transfer [19, 25].

For the same reason, allied with the associated costs, public hospital facilities and rehabilitation centers

suffer high pressures around patient discharge, which can misdirect rehabilitation priorities. With this target,

lower limb functional improvement stands as a priority, leaving patients prepared to execute basic tasks and

meet discharge requirements [16, 17]. This strategy leads to a lack of essential rehabilitation for the upper
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extremity, which requires more time and specialized therapy [1, 16]. This fact implies that a patient has the

opportunity to have access to supervised and diversified therapy for a limited period of time. The continuous

availability of professional and multidisciplinary rehabilitation comprises a great economic effort made by

the patients and their families [16]. In this situation, exercising at home with the support of AT may actually

be the only solution [6].

To help patients exercise, whether in a hospital facility or at home, without supervision or just with partial

supervision, AT can be very helpful. Nevertheless, both patients and therapists have reported problems with

its availability and accessibility and difficulties in getting engaged with these technologies [16]. In fact, to

keep themselves motivated and engaged in training, to relearn the lost capabilities due to stroke, is arguably

the biggest challenge for stroke survivors. This motivation can be affected when patients see themselves

physically impaired and incapable of accomplishing rehabilitation exercises, discouraging engagement in

the prescribed activities [1, 16, 19]. Patients can also go through periods of emotional instability, depression

patterns, and denial, disturbing their predisposition to engage in treatment [16, 19, 21].

Accompanying the escalation of the demands regarding rehabilitation, the need to have new means to

evaluate patients’ performance has risen. With the increase of in-home exercise training prescriptions and

extra exercise recommendations without therapists’ guidance and monitoring, these latter require meth-

ods to track patients’ progress accurately [6, 7]. Also, conventional assessment methods are based on

therapists’ observation [6], and experience, which can lead to a mismatch between different therapists’

evaluations and consequently distinct treatment approaches [7, 26]. These assessment tests are consid-

erably subjective and qualitative, making them less valuable to track patients’ slight progress [5, 26]. Thus,

more objective assessment measures are required to trace patients’ progress [5, 6, 7], understand impaired

movements’ strategies and characteristics [5, 26], and provide standard consensus among therapists’ con-

cerning their evaluation, applied treatments [7], and adaptation of the rehabilitation therapy regimens ac-

cording to users’ improvements [6].

1.2 Objectives and Contributions

Objectives

To provide a solution that allows patients to exercise their affected limb without supervision, or with partial

supervision, and continue to have a planned, enjoyable, and encouraging therapy, this work proposes an

affordable and accessible image-based VC capable of providing proper and engaging upper limb rehabil-

itation. The VC suggests three adequate upper limb exercises. It monitors the user’s performance and

determines the compensation patterns observed during training. It gives useful instructions for posture

amelioration and encourages the patient. To gather perceptions about our VC and test the system, we aim

to conduct small therapy sessions with a group of volunteers.
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To assess different compensation patterns described while exercising, we explore two Multilabel Clas-

sification (MLC) approaches - a Rule-based (RB) method, which works as a baseline, and a Neural Net-

work (NN) based approach - based on subjects’ Two-Dimensional (2D) positional data. Performance as-

sessment from 2D data automates rehabilitation programs monitorization with any device with a 2D camera,

such as tablets, smartphones, or robotic assistants.

Contributions

Given the project objectives, this work provides a set of contributions:

• Assessment of motor compensation based only on the patient’s 2D body pose, using a simple RGB

camera, e.g., a webcam;

• Two MLC methods to detect different types of compensation patterns and, of course, the existence of

compensation at all;

• Labeling of a dataset of upper extremity exercise trials video frames, indicating different compensation

patterns and good-quality movements, enabling the application of supervised learning methods;

• A VC based on simple technical infrastructure composed only by a laptop with a built-in webcam;

• A VC which monitors exercise performance and establishes an interaction to keep the users’ engaged;

• Collection of perceptions on the system among a group of volunteer users’.

1.3 Organization of the Document

The present thesis has the following structure:

• Chapter 1 introduces the project motivations and explains why a VC could be a valuable tool;

• Chapter 2 presents the background knowledge on the rehabilitation process commonly adopted to

achieve upper limb recovery after stroke, and compensation definition. It exposes a VC’s main fea-

tures as an AT capable of fulfilling its purpose. It gives an overview of previous works on VC and

computer-based systems to assess stroke survivors’ movement quality and monitor exercise training;

• Chapter 3 describes VC’s architecture and implementation. It details compensation detection method-

ology - feature extraction, selection, and normalization, classification methods, and result filtering;

• In the Chapter 4 we present the used dataset, labeling process for supervised learning practice, data

preparation, evaluation metrics, and experiments to evaluate the compensation assessment methods.

We detail the experimental procedure to evaluate the VC through exercise sessions with volunteers;

• Chapter 5 presents the experimental results, comparison between the two assessment methods, and

VC behavior in an experimental setting;

• Finally, Chapter 6 exposes the project conclusions and future work suggestions.
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2

Background & State of the Art

This chapter presents the background knowledge and important related work. Section 2.1 presents the

common therapy process for upper extremity rehabilitation after stroke, including frequently used assess-

ment tests aiming to evaluate patients’ impairments, and defines and describes compensatory movement

patterns. Additionally, we specify the desired features of a Virtual Coach (VC). In section 2.2, we display

the relevant related work regarding virtual coaches and computer-based systems for upper extremity reha-

bilitation, assessment methods to monitor movement quality and exercise performance of stroke survivors.

2.1 Background

2.1.1 Rehabilitation Therapy Process

Rehabilitation should begin immediately after the stroke event [1]. Despite not yet existing consensus about

when it should start, strong evidence suggests that motor function improvements achieve their peak in the

first months after the stroke [20, 22]. In the first stage, the acute phase, therapists begin mobilizing patients’

limbs with hands-on exercises to initiate damaged brain sections’ reactivation. Once the patient reaches

a stable medical state, the exercise training program to recover prior capabilities occurs. At this stage,

patients go through extensive physical and occupational therapy sessions to improve motor function, upper

extremity motion and activity, and muscle strength. Therapeutic exercises can also be conducted at home

or in a community setting, with or without total supervision. After the stroke rehabilitation, it is essential to

provide tools and means to the stroke survivor to keep an active and healthy lifestyle [1, 20, 21].

The upper extremity is significant for participation in daily activities. However, it often does not have

the necessary attention during the rehabilitation process [16, 17, 27]. To manage the upper limbs following

stroke and maximize their function, Semenko et al. [1] proposed a toolkit to guide therapists, based on the

Canadian Best Practice Recommendations for Stroke Care. This toolkit gives a model to manage the upper

extremity and guidelines to approach the process steps. Figure 2.1 illustrates the model and its fundamental

elements: Screening, Assessment and Treatment.

To implement the best therapy strategy, therapists must perform an initial evaluation to determine the

patient’s level of disability, choose suitable assessment tests, set therapy goals and elect the appropriate

treatments to prevent undesirable complications and get the best outcome achievable. Screening implies

a set of questions and tests to identify the affected upper extremity and compare both limbs’ function and
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identify subluxation, pain, and edema situations. A first evaluation test categorizes the affected limb into

low, intermediate, and high levels, which works as a base knowledge for the remaining process [1].

Figure 2.1: Model of the recom-
mended process for
the upper extremity
management. Taken
from [1].

Once the upper extremity functional level is known, in the assess-

ment phase, therapists should use the related assessment tests, such

as the Wolf Motor Function Test (WMFT) and the Fugl-Meyer Assess-

ment (FMA) [1], which are described later, to adequately evaluate motor

skills: function, coordination, strength, range of motion and other pa-

rameters, as sensitivity, injury and discomfort potential. The assessment

allows therapists to define the appropriate treatments and track patients’

progress [28, 29]. Afterward, the therapist must define objectives related

to upper limb function, to be achieved in the treatment phase [1].

Therapists select the treatments to apply according to screening,

assessment results, and defined goals [1]. For upper limb recovery,

Constraint-Induced Movement Therapy (CIMT) based on a task-oriented

approach has proven very effective [1]. CIMT refers to regular, repeated,

and intensive training of the affected limb, constraining the less affected

one, promoting its participation and boosting its recovery [1, 20, 24]. The

exercises must be oriented to a meaningful task for the patient, with an

objective, keeping patients engaged and motivated [1, 20, 21]. The right

amount of exercise intensity is not something established or agreed, how-

ever intense and prolonged exercising, as well as extra exercising, resulted in positive progress of the upper

limb function [20, 22, 27]. Another relevant exercise is mental imagery. In this practice, patients receive

instructions to imagine a task or activity and simulate ones’ participation in it with the affected limb [1, 20].

Table 2.1 displays some examples of these exercise treatments. Along with these treatments, there are

other approaches to stimulate limb’s participation in various activities, improve functioning, and prevent

possible injuries, such as functional electric stimulation, mirror therapy, and edema management.

CIMT task-related Mental Imagery

“Use a fork / spoon to eat” “Throwing a ball”

“Brush teeth” “Grabbing a tissue and bringing it up to the nose”

“Drink from a cup” “Reaching for a towel and drying the other arm with it”

“Brush hair” “Picking up a pen and positioning it in the hand for writing”

“Turn on light switches” “Reaching for the cup”

Table 2.1: Examples of upper extremity exercises. Adapted from [1].

Once a sequence of treatment is applied, it is fundamental to reassess patients’ upper extremity per-

formance. This reassessment will verify one’s progress, achieved goals, and how the treatment should be
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adapted. Therapists repeatedly apply this process in a loop until patients reach a desirable state, intending

to get the best outcome possible [1]. It is also important to refer that the used rehabilitation strategy and

approach must take into consideration not only patients’ physical and cognitive state but also their context,

psychological and emotional state, familiar and social environments [1, 20, 21].

Assessment Tests

For the upper extremity, the Wolf Motor Function Test (WMFT) and the Fugl-Meyer Assessment (FMA) are

assessment tests often referred in literature [1, 6, 17, 20]. Both are performance tests based on therapists’

direct-observation of high reliability and consistency, and highly used in a clinical context [28, 29].

The WMFT addresses upper extremity motor capabilities and quantifies them while performing a func-

tional task in a certain period. Its modified version, the most widely used, is composed of a set of 17 exer-

cises - e.g., ‘forearm to table’, ‘reach and retrieve’, and ‘lift can’. It allows the evaluation of functional ability,

strength, and movement quality [28, 30], mainly smoothness, movements’ precision, and the existence of

compensation [6]. Therapists classify each item on a 6-point scale called Functional Ability Scale [28, 30],

which considers limb participation, need for assistance, task accomplishment, and movement quality.

The FMA, unlike WMFT, is not upper limb exclusive. It has 155 items divided into five domains: motor

function, sensation, balance, joint range of motion and joint pain. Each task item is scored on a 3-point

scale (‘0: cannot perform’, ‘1: performs partially’, and ‘2: performs fully’). Examples of FMA task items are:

‘Shoulder Elevation’, ‘Shoulder Abduction’, and ‘Elbow Extension’ [29, 31].

2.1.2 Motor Compensation

In a functional and performance domain, the definition of compensation is the presence of new movement

patterns derived from the adaptation of old motion patterns or substitution of these for alternative motion

strategies, which might help task accomplishment [1, 17, 18, 32]. These new patterns can include the use

and activation of additional or new body joints and muscle groups. Figure A.1 (appendix A) illustrates typical

compensation patterns: trunk displacement and rotation, and shoulder elevation. For example, during both

reaching and grasping tasks, these compensation patterns are often observed and can be considered a

new strategy that allows the patient to perform the activity effectively, achieving its goals [17, 18].

Although the use of compensation mechanisms is authorized in a primary phase to enable patients’

participation, these can later become damaging and obstruct patients’ real motor function recovery [1, 17,

18]. Moreover, the excessive use of compensatory movement patterns is highly related to severe limb

impairments. Taking again reaching and grasping tasks as examples: patients with acute limb weakness

and paralysis tend to have a reduced elbow extension and excessive use of trunk forward movement and

shoulder elevation [17, 18]. Given this, studies have been conducted to distinguish these compensation

patterns, adopted to carry out tasks and have a higher participation rate, from real functional recovery and
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old movement patterns relearning. Rehabilitation should not only focus on the capability to perform a task

successfully but also on the quality of movement during task execution [17].

Among the different methods used to reduce compensatory patterns, exercises with clear instructions,

appropriate feedback, and trunk displacement restriction, promoting the correct use of body joints to execute

a task, pose an approach with excellent outcomes [17, 18, 32].

2.1.3 Virtual Coaches

VCs are intelligent agents designed to provide suitably and required support, training, or therapy to their

users. Since our project goals include a VC for rehabilitation post-stroke, understanding and getting familiar

with its predominant features is essential. Siewiorek et al. [11] declare that a VC should monitor the user’s

performance while executing an exercise or task, provide proper feedback and instructions, and encourage

one to keep engaged in the activity. It has to be aware of the user’s context, update its actions according to

the user’s performance and progress, and a caregiver or therapist could customize its features.

Recently, technological advances enabled the emergence of alternative solutions requiring a limited

intervention of the therapist. Robotic and computer-based therapy providers and games can work as a tool

of primary treatment or as additional support to traditional treatment strategies [3, 4, 11]. Smartphones

and computer tablets allow easy and fast access to users’ relevant data, and their touch screens and voice

control systems ease the interaction with the user [4, 11]. Low-cost microelectromechanical sensors, RGB

and depth cameras, such as Kinect [33], allow users’ environment awareness and recognize and track

users’ behaviors [3, 4, 11]. According to user context and actions, these systems can intervene properly.

Nevertheless, interactive systems for rehabilitation therapy confront many challenges [4, 11]:

• Propose and manage appropriate exercises regarding patients’ diagnosis;

• Imitate therapists’ functions and provide an adaptive therapy program;

• Suit to domestic environments being the less invasive as possible;

• Be affordable, and user-friendly, with a simple technical infrastructure, promoting its accessibility;

• Accomplish a reliable, accurate, and significant user performance evaluation;

• Have an interaction model to keep the users motivated and engaged in therapy and improving their

physical capabilities.

2.2 State of the Art

2.2.1 Virtual Assistive Systems for Upper Extremity Rehabilitation After Stroke

This section presents a set of computer-based solutions combining desired attributes into a complex system

that engages patients in upper limb rehabilitation therapy and findings on their impact on patients’ recov-
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ery. Unlike these works, we mainly focus on compensation behaviors, one component of upper extremity

movement performance.

Adaptive Mixed Reality Rehabilitation (AMRR)

Trying to address upper extremity rehabilitation therapy challenges, such as address a significant variety of

impairments and motivate patients to execute repetitive exercises promoting motor function recovery, Duff

et al. [2] developed the Adaptive Mixed Reality Rehabilitation (AMRR). The AMRR is an interactive system

that trains the user to perform repetitive reaching tasks with smart objects. It assesses users’ movement

quality and impairments through motion kinematic analysis. It generates audio and visual feedback based

on the kinematic data to give the users information on performance. A screen displays the feedback [34].

Duff and her team [2] analyzed the functional and kinematic results from two groups of stroke survivors.

One group received traditional therapy and the other held therapy with the AMRR (figure 2.2). Participants

were evaluated with conventional assessment tests, such as FMA and WMFT, and reaching tasks before

and after the therapy. The latter was a set of trained and untrained reaching tasks. In the trained tasks, par-

ticipants reached and grasped cones in different known locations. In the untrained tasks, patients reached

and touched one of nine buttons. Each button lit up in a random order (unknown location) to stimulate the

reach and touch. Once the button was successfully touched, the light turned off. Both groups received the

same amount of therapy time. The control group performed pegboard, bead threading, cone reaching tasks,

and range-of-motion and coordination exercises. For this group, therapists provided all the feedback and

verbal instructions. The AMRR group executed reaching tasks with three objects: a virtual point, a physical

button, and a cone. AMRR gave real-time audio and visual feedback and cues, performance and progress

evaluation, and therapy adaptation through kinematic variables. Cues provide information on incorrect arm

movements and successful task completion.

As a study result, Duff et al. [2] verified that the AMRR group participants presented significant progress

in most kinematic categories. The results revealed that therapy with AMRR enhances movement quality

improvement. AMRR group progressed performance in the untrained reaching tasks, which means that

subjects executed learned motor strategies in this post-therapy evaluation. On the contrary, traditional

therapy had no significant influence in both trained and untrained tasks results. Duff and her team mention

as a possible reason that traditional therapy is commonly directed to motor function recovery and not so

focused on movement quality improvement - thus on diminishing compensatory movement patterns - and

the recovery of pre-stroke movement patterns. Both groups showed identical relevant improvements in the

WMFT, possibly because both had the same amount of therapy time and went through repetitive and varied

exercise training. The two groups also had an increase in FMA Motor Function scores. With the results

obtained with the clinical assessment tests, the authors consider that the AMRR would become better

with a graphical interface to display information about the therapy procedure and motivate the participant.
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Although the really positive results, Duff et al. [2] assume that the full added value of the AMRR only can

be proved with an evaluation of its impact in long-term therapy, and with more participants to reach a larger

sample of individuals with distinct impairments and characteristics.

Figure 2.2: Patient (left) exercising with the AMRR and the supervisor therapist (right). Taken from [2].

Home Arm Movement Stroke Training Environment for Rehabilitation (HAMSTER)

The Home Arm Movement Stroke Training Environment for Rehabilitation (HAMSTER) [3] is a Kinect game

for upper extremity rehabilitation after stroke, aiming to provide adequate and engaging therapy at home for

motor recovery. Commercially available rehabilitation games are not well suited to impaired subjects due

to their complexity, fast progress, and lack of compensation patterns restriction, impacting the full recovery

negatively. In opposition, the HAMSTER promises to be fully directed to stroke impaired individuals, focused

on the limitation of compensation behaviors.

The games follow a specific order promoting evolution in training, going from single joint training to multi-

ple joint training and speed control exercises. To create a direct visual interaction with the user, researchers

developed a graphical interface. It displays each game’s graphical representation and triggers audio effects

to keep patients’ interest. Figure 2.3 shows the game set up and a stroke survivor exercising.

Figure 2.3: A patient exercising (A), HAMSTER setup (B), and games’ graphical representation (C-G). Taken from [3].

The games restrict compensation movements by considering incorrect task accomplishment involving

compensation - trunk displacements and aid with the unaffected arm - when assessing subjects’ joint angles

and provides error messages. Thus, in the games, impaired subjects are prone to use compensation [3].
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The initial clinicians’ system evaluation reported good usability and high relevance for in-home therapy

since it could benefit stroke patients. Brokaw et al. [3], evaluated HAMSTER usability and its safety for

autonomous home use. In an initial test phase, 10 stroke survivors evaluated the system in interviews.

Subjects provided information about their exercise habits, rehabilitation goals, and stroke impact in their

lives. According to a 5-point Likert scale, they gave answers about their motivation regarding a home

rehabilitation program and compliance level if they were enrolled in it. Participants played the HAMSTER

games with the affected arm for some minutes. At the end of the session, they provided feedback, a score

on game usability, and opinion on the system’s application as an in-home therapy system.

For deeper evaluation, one subject in a post-stroke status received a month of home therapy with the

HAMSTER and an additional hand training device. Before the treatment, participant’s impairments were

assessed by a therapist with the FMA for the upper extremity and other popular assessment tests. Also, the

impact of the stroke on the subject’s life was determined. As in the HAMSTER initial evaluation, the par-

ticipant provided information about one’s motivation to enroll in a home therapy program and the perceived

compliance in it. The researcher supervised the first therapy sessions.

The initial tests with stroke survivors revealed that stroke impairments interfered with their daily activi-

ties. All participants mentioned a large set of affected tasks, home exercises, and rehabilitation objectives.

Subjects exposed an interest in therapy at home and believed they would comply in a treatment program.

They considered the system suitable for home therapy. For the HAMSTER’s long-term use, the subject, who

suffered a severe stroke impact, expressed no interest in therapy at home but revealed that she would feel

complied in such treatment. The participant reported some struggles using the HAMSTER independently

and satisfaction towards the system. Additionally, she reported improvements in her arm movements with

the treatment, which were supported with clinical tests [3].

Semi-automated home-based therapy

Rikakis et al. [4] highlight the challenges faced when developing computer-based therapy providers for

home use - the need for affordable systems to administer engaging therapy with an interaction model and

the lack of standard quantitative measures to assess motor performance. Moreover, the authors state

as a major challenge the supply of a continuously adaptive therapy at home without therapists’ regular

intervention to promote patients’ compliance. To provide a suitable solution for home-based rehabilitation

therapy, Rikakis et al. [4] developed a system for in-home rehabilitation.

Based on the findings from their previous works, Rikakis et al. [4] developed a more proper and adapt-

able solution to different home environments and lower cost with a less complex technical setup. Figure 2.4

shows the system composed of a laser etched mat, six smart objects, a Kinect camera, a mini-computer,

and a tablet, all of adjustable positioning. With lightweight and easy to handle components, this technical

setup can be placed in any typical table. The mat works as a platform where the patient performs the exer-
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cises, manipulating one or more objects. Visual markers are displayed on the mat to guide the exercise, and

Kinect allows motion capture. The tablet runs a web application with therapy protocol and task instructions.

Figure 2.4: The technical infrastructure of the rehabilitation system (A), set of smart objects (B), and the combination
of two objects in a task (C). Taken from [4].

Through Kinect Rikakis et al. [4] assessed hand activity and trunk movements providing information

on major movement components: end-effector movements over space and time, hand shape for grasping

analysis, trunk compensation from shoulders’ Three-Dimensional (3D) positional data, and object manip-

ulation. They aimed to assess performance errors: low speed, lengthy trajectory, object dropping, object

misplacement, lack of task completion, and trunk compensation observation.

Rikakis et al. [4] evaluated the system through two pilot studies with unimpaired and impaired subjects.

The training protocol was based on standard clinical tests analysis, such as the WMFT. Through this anal-

ysis, researchers identified 12 tasks involving object reaching, grasping, transportation, and manipulation.

The first pilot study seized to evaluate system functionality, participants’ ability to use and comprehend

it, and movement assessment efficiency. In the sessions, unimpaired participants repeated each task four

times. In the third and fourth repetitions, they simulated performance errors. Researchers reported good

functionality, without technical failures and correct motion detection. Precision and recall metrics revealed

accurate performance errors’ detection for the recorded videos. Participants demonstrated growing confi-

dence using the system while stepping forward through the exercises, progressing quickly and actively.

The second pilot study, with stroke survivors, had semi-supervision. Participants followed the same

protocol but without error simulation. In this phase, the team included simple and direct feedback, giving

information about users’ performance and encouragement. Thus, the feedback system consisted of a per-

formance rating displayed on the tablet. For small and few performance errors, task completion errors and

object misplacement, and significant errors, it displays ”excellent”, ”very good”, and ”nice try”, respectively.

The study demonstrated accurate performance evaluation. As with healthy participants, patients re-

vealed growing confidence exercising with the system. They reported that task understanding could in-

crease with audio directions in video instructions. The smart objects positively promoted reasoning and

creativity during exercise performance since their usability purpose was not intuitive. Since impaired pa-

tients had difficulties executing tasks and resorted to the unaffected limb, occlusion situations in motion

detection sometimes occurred. Patients found performance ratings a motivating feature for task compli-
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ance. When the system provided erratic ratings, such as a good rating in occlusion situations, therapists

intervened to diminish these inconsistencies. This situation emphasizes the need for robust motion detec-

tion and performance evaluation in systems for in-home use, where therapists’ intervention is impossible.

Summary and Work Contributions

Previous works investigated solutions for in-home rehabilitation therapy for the upper extremity with recently

available devices. They tried to give answers to rehabilitation problems, which motivated their work, and

to overcome the main challenges regarding such systems’ development - manage proper training given

patients’ diagnosis, replicate therapists’ role, be affordable, adaptable to a domestic environment, easy to

use, perform a reliable and accurate performance assessment, and include an efficient interaction model

to keep patients’ motivation and interest in therapy. Duff et al. [2] presented the AMRR, a system capable

of produce visual and audio feedback from patients’ movements’ kinematic analysis. Brokaw et al. [3]

introduced the HAMSTER, a Kinect game for upper limb rehabilitation, focused on compensation behaviors

restriction, with a graphical interface displaying activities’ representation and providing error messages with

audio cues. Rikakis et al. [4] developed a Kinect-based system, with a tablet computer, a mat, and smart

objects for reaching and grasping tasks. The tablet displays task instructions and direct performance ratings.

To assess their systems’ usability and impact in real patients, the researchers conducted studies with

unimpaired and impaired subjects with semi supervision [2, 3, 4]. These studies intensified the importance

of systems suited to home use, with a simple technical setup, and a highly robust and reliable motor as-

sessment to avoid errors in occlusion situations in independent use. They also highlight the relevance

of proper interaction structures with visual and audio feedback and instructions, providing performance

self-assessment. The studies’ results revealed that patients’ improved their motor function and movement

quality. However, to determine the real impact of training with these systems in motor skill learning systems,

which influences patients’ daily activities, more studies need to be conducted with long-term treatment pe-

riods and more stroke-impaired individuals.

In our work, we present an interactive web application to monitor upper limb exercises. Our system

provides audio, visual, and written instructions and feedback to keep subjects interested. The produced

feedback follows patients’ compensation movements performance. Our motion analysis is based on 2D

body positional data, acquired from RBG images. This way, the technical infrastructure is only a laptop, and

it tracks patients’ movements with the laptop’s webcam.

2.2.2 Quality of Movement Assessment During Exercise Performance

This section reveals kinematic variables relevance in describing movement quality and assess impairment.

It briefly presents motion capture devices that powered these variables study. The section describes per-
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tinent previous works in two parts: Kinematic Variables to Describe Post-Stroke Impairments and Au-

tomated Methods to Assess Movement Quality During Exercise Performance. The first part presents

articles that prove kinematic variables’ utility to measure impairment and some motion capture devices’

reliability and feasibility. The second part exposes previous works that relate conventional assessment

measures with the proposed automatic methods, revealing their clinical relevance and reliability. Finally, we

provide a section summary and present our contributions.

Given the lack of objective assessment methods, the kinematic study of 3D body positional data has

been upon the table to characterize stroke patients’ biomechanical behavior and develop feasible solutions

[5, 6, 7, 26] to track their motor function improvement. These solutions can enhance in-home training and

provide an objective and evidence-based assessment to aid therapists’ evaluation [26]. Kinematics delin-

eate body movements over space and time, giving insights about linear and angular displacements, velocity,

and acceleration [5]. Joint angular motion - shoulder flexion/extension, shoulder abduction/adduction, elbow

flexion/extension, and wrist flexion/extension - is commonly explored [5, 6, 7, 26] since it is highly correlated

with arm degrees of freedom and encompasses relevant data about patients’ movement restrictions [7].

Additionally, due to its clinical significance, trunk displacement patterns are also considered to describe

motor limitations. Studies suggest that the excessive use of trunk shifts during task performance is highly

related to impairment severity and is very significant when monitoring patients’ progress [5, 26].

Nowadays, kinematic analysis is possible due to motion capture systems like “visual markers based

sensors (optoelectronic system based on active and passive markers), robotic devices, electromagnetic

sensors, and inertial sensors,” [26] such as accelerometers, and cameras. Microsoft Kinect sensor is

popular in this research domain due to its low cost, compactness, and unrequired use of markers for body

skeleton tracking [6, 26, 33], and thus considered proper for a clinical or home setting [7, 26, 33]. To be

accepted as a rehabilitation tool to assess patients’ motor function, these systems should be very accurate,

reliable, and acquired data should have proven clinical relevance [7, 26].

Therefore, it is appropriate and of extreme importance to:

• Prove motion capture systems reliability and feasibility, which contribute to the acceptance of these

systems in the rehabilitation context [5, 6, 7, 26];

• Explore different movement categories, identify kinematic variables and determine which better de-

scribe movement restrictions, differentiating healthy subjects from post-stroke patients [5, 26], and

thus prove kinematic variables’ utility and relevance [5, 6, 7, 26];

• Find a relation between these quantitative metrics and conventional qualitative assessment to help

interpret kinematic variables and provide additional evidence of their clinical pertinence [6, 7].
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Kinematic Variables to Describe Post-Stroke Impairments

To identify valuable and precise kinematic variables to describe upper limb motor function, and discriminate

between healthy subjects from stroke survivors, Murphy et al. [5] and Ozturk et al. [26] conducted a study

with participants from both groups. These works present a factor analysis resorting to Principal Component

Analysis (PCA), determining which kinematic variables better describe motor impairment and how they

relate with each other in a meaningful way. In addition to distinguishing between healthy participants and

subjects in a post-stroke status, Murphy et al. [5] aimed to differentiate distinct levels of impairment among

stroke patients, mild (FMA scores of 58-64; less severe), and moderate (FMA scores of 39-57; more severe).

Murphy et al. [5] instructed participants to perform the “drinking from a glass” task without movement

constraint, enabling the occurrence of any movement pattern such as compensation. This task had five

stages: reaching the glass, moving it towards the mouth, drinking, placing the glass back to its initial po-

sition, and return the hand to its starting point. Participants were initially seated near a table with the

drinking glass on top, surrounded by five motion capture cameras and with retroreflective markers on rele-

vant body joints to compute their 3D coordinates (figure 2.5). The markers were set on the hand and elbow

of the arm under evaluation, both shoulders, thorax, face, and also on the glass. Throughout the experi-

ment, researchers used kinematic variables to describe movement strategy, initial motion effort in reaching,

movement smoothness, joints’ angular behavior, trunk compensation, and inter-joint coordination.

Figure 2.5: Setup for the drinking task with the 5-camera capture system: the participant’s arm is in its initial position,
and the black dots represent the retroreflective markers. Taken from [5].

To describe movement strategy and initial effort in reaching, the authors calculated the time and per-

centage of time to peak and first peak hand and elbow joint velocity. Murphy et al. [5] quantified movement

smoothness by repetitive hand acceleration and deceleration - number of movement units (NMUs). Joints’

angular motion described maximal elbow extension and shoulder flexion during reaching and maximal

shoulder abduction and flexion during drinking. Thorax displacements, regarding its initial position, deter-

mined trunk compensatory behaviors. Shoulder and elbow inter-joint coordination was analyzed through

cross-correlation. The authors also identified movement onset and offset and defined different task phases.

Onset and offset corresponded to the time that hand velocity achieved 2% of its peak velocity in reaching
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and returning phases. The beginning of the glass lift and the returning phase corresponds to the moment

that glass’s tangential velocity surpasses or goes beneath a 15 mm/s and 10 mm/s, respectively. The

drinking step agrees with an increase or decrease of the face-glass distance in steady-state.

Having identified all the relevant measures in task execution, Murphy et al. [5] performed a PCA, which

provides the number of necessary kinematic variables (components) to seize kinematic variance over time.

The PCA’s correlation matrix gives insight into how the variables meaningfully cluster together and quan-

tify elements of the same dimension (factor). Researchers selected a group of variables, which clustered

together into two major factors identified within the result analysis: movement time and smoothness, com-

pensation patterns (arm flexion and elbow extension in reaching, and arm abduction and flexion in drinking)

and inter-joint coordination. Trunk displacement was also extracted due to its clinical relevance.

With an independent-samples t-test or Mann-Whitney U-Test, Murphy et al. [5] compared both groups of

healthy and chronic stroke participants. The results validated their clinical significance. Briefly, they showed

that stroke survivors revealed slower and oscillatory movement profiles (many NMUs). They had lower inter-

joint coordination, mainly among moderate impaired, expressing difficulties moving the elbow and shoulder

simultaneously in a continuous movement, as observed in healthy participants. Stroke patients manifested

pronounced compensation patterns in the drinking - considerable shoulder abduction and elevation angles

- and reaching phases - reduced maximal elbow extension and more evident forward trunk displacement.

Similarly, Ozturk et al. [26] determined which kinematic variables better describe motor impairment and

differentiated healthy subjects from individuals in a post-stroke status. Ozturk et al. [26] used a Microsoft

Kinect sensor to acquire joints’ 3D pose data and pursued to find evidence of its easy usability, robustness,

and reliability to delineate and monitor motor limitations in a clinical context. In their work, participants’

motor ability was previously assessed with WMFT (section 2.1.1). Participants had to perform a reaching

movement from a neutral position to a random point in a table placed next to them, executing an elbow

extension with the arm under evaluation.

Figure 2.6: Joints acquired with a
Kinect Sensor. Taken
from [6].

From 3D positional data, illustrated in figure 2.6, Ozturk et al. [26]

selected eight joints to describe movement - spine shoulder, spine mid,

and both shoulders, elbows, and wrists. Then, to overcome noise, they

filtered the raw signal through singular spectrum analysis. To evaluate

motor control and the wrist’s ability to follow a straight path to its reaching

point, the authors calculated the wrist’s speed profile and curvature index

to quantify its deviation from the path. To describe movement smooth-

ness, the researchers used the spectral arc-length metric based on the

Fourier magnitude spectrum. Trunk displacement, calculated from the

3D data of the spine shoulder joint, and inter-joint coordination identified

compensation patterns. Shoulder and elbow coordination was assessed
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by the temporal coordination index and through PCA. PCA was used to convert several correlated variables

into a reduced number of principal components, which comprise the main kinematic variability, describing

movement accurately.

In their analysis, Ozturk et al. [26] observed that the metrics describing smoothness and straightness

were pretty close to each other. They recognized that stroke survivors had lower maximum speed and more

compensatory behaviors with pronounced trunk displacement. The authors also observed more complex

elbow movements in patients revealing disturbance in inter-joint coordination. Additionally, with PCA, re-

searchers verified that healthy subjects and stroke survivors clustered together into two separate groups

and inter-joint coordination reflected the main difference between their physical capabilities. For stroke pa-

tients, they compared the WMFT with the kinematic metrics projected on the principal components. They

noticed that the resultant scores were able to distinguish different levels of impairment. By demonstrating

that this analysis assesses accurately motor impairment, Ozturk et al. [26] also prove that the Kinect sensor

is a reliable and feasible system and thus useful in a clinical setting.

Automated Methods to Assess Movement Quality During Exercise Performance

Aiming to develop an automated method to assess movement quality during exercise performance, to

standardize clinical impairment assessment, and apply it to home-based therapy, Olesh et al. [7] conducted

a study with a group of chronic stroke patients. Participants had to perform several trials of 10 unconstrained

arm movements, with the affected and non-affected limbs, from tests such as FMA (section 2.1.1). To record

participants’ movements and acquire positional data, the authors simultaneously used a high-definition

Samsung camera aided by LED markers in relevant joints (standard system) and a Microsoft Kinect sensor.

Figure 2.7 shows the studied movements and the body points tracked by both systems.

Figure 2.7: A. Illustration of the analyzed movements; red lines and arrows represent movement direction and joint
angles. B. Keypoints detected by both motion capture system, Kinect (red dots) and LED markers (blue
dots). Adapted from [7].

Olesh et al. [7] filtered the recorded data with a Butterworth low-pass filter, calculated joints’ angles

(shoulder, elbow, and wrist), and completed a temporal alignment of the analogous movements of affected

and non-affected arms for all movements. To quantify movement quality accurately, they estimated the
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minimum number of movement repetitions needed for precise motion capture. This way, the authors could

have their evaluation supported by many movement trials, contrary to therapists’ traditional qualitative as-

sessment, based only on a unique movement. To do so, the authors bootstrapped the data to estimate

the errors of averaging one or more trials of the same movement for each exercise and participant. The

minimum number of movement repetitions of the same movement necessary to evaluate movement perfor-

mance accurately corresponds to the number of trials with a lower bootstrapped error.

The authors applied PCA to the averaged unaffected arm joints’ angles across trials and determined

principal components. Based on the principal components, Olesh et al. [7] reconstructed affected arm joint

angles’ temporal profiles, which revealed that the chosen components described very well the kinematic

behavior. When comparing the reconstructed profile with the affected limb’s original profile with the coeffi-

cient of determination, they determined how the unaffected arm kinematic pattern can describe the affected

arm’s kinematic behavior. Thus, the coefficient of determination served as a score to quantify impairment.

To determine quantitative scores’ reliability, a group of therapy students performed FMA assessment

of each recorded movement. The authors used linear regression to relate quantitative scores from both

motion capture systems and the Pearson correlation coefficient to relate quantitative and qualitative scores.

Regression was also used to develop a performance decoding model, which converted the obtained quan-

titative scores into the students’ corresponding qualitative scores.

Olesh et al. [7] verified a strong correlation between the scores from the standard system motion

data and Kinect data, meaning that both systems are equivalent. The researchers also proved Kinect’s

clinical feasibility estimating that is needed nearly one movement trial to compute accurately kinematic

metrics, which relates to therapists’ qualitative evaluation. Additionally, the analysis of the root squared

errors between the joints angles, calculated from systems’ data, determined Kinect’s accuracy in motion

detection. Although Kinect’s sensitivity to noise, the quantitative assessment with PCA was successful

since the quantitative scores strongly correlated with qualitative scores. Olesh and her team concluded that

this automated method is a good tool to track patients’ progress during unsupervised therapy.

Identically, Lee et al. [6] explored automated methods to assess movement quality in rehabilitation

therapy. This work seizes to overcome the difficulty found by therapists to interpret kinematic variables,

promote in-home rehabilitation, and provide patients with a performance score, enhancing their motivation

and engagement during exercise practice. Lee and his team proposed a method to evaluate stroke rehabil-

itation exercises with Machine Learning (ML) algorithms and a threshold model providing a quantitative and

qualitative assessment. To validate their approach, the authors collected a dataset of 3D positional data,

acquired with a Kinect, in an experiment with 11 healthy subjects and 15 post-stroke survivors.

After a discussion with therapists, Lee et al. [6] identified three performance components to provide

more comprehensive evaluation and feedback instead of only a global performance score. As in previous

works, sets of kinematic variables characterize these components. Table 2.2 introduces them.
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Performance Component Description

Range of Motion (ROM)
Evaluates task accomplishment performing a particular movement pattern and represents

a particular joint activity

Smoothness Investigates the presence of trembling motion patterns and abrupt transitions

Compensation
Verifies the existence of compensatory patterns, commonly used to achieve target

positions during upper extremity training, such as torso inclination and shoulder elevation

Table 2.2: Performance components under evaluation. Adapted from [6].

Lee et al. [6] explored three upper extremity exercises similar to usual daily activities. Exercise 1 (E1) is

‘Bring a Cup to the Mouth’, in which the participants simulate holding a cup and brings it to the mouth as

drinking. Exercise 2 (E2) is ‘Switch a Light On ’, in which the participants simulate turning on a light switch.

In exercise 3 (E3), ‘Move a Cane Forward’, participants move a cane forward and move it back to its initial

position. The team selected these exercises due to their characteristics, and high relation with FMA and

WMFT items (section 2.1.1). Table 2.3 relates the three exercises and the task items from FMA and WMFT.

Exercises FMA WMFT

E1. Bring a Cup to the Mouth Elbow Extension Lift can

E2. Switch a Light On Shoulder Flexion Hand to a box

E3. Move a Cane Forward Elbow Extension Extend Elbow

Table 2.3: Upper extremity exercises and respective FMA and WMFT taks items. Adapted from [6].

Figure 2.6 illustrates the joints detected by the Kinect sensor. Lee et al. [6] applied a moving average

filter with a window of five frames to overcome noise in the acquired keypoints with Kinect. With the filtered

data, Lee et al. [6] processed joints’ position and normalized them to diminish any physical variabilities,

such as the patient-camera distance, body parts dimensions, and subject’s placement in the image. For

the ROM performance component, the authors computed limbs’ joint angles, normalized relative trajectory,

and normalized projected trajectory. For smoothness, they determined wrist and elbow speed, acceleration,

and jerk. They also used normalized and mean arrest period ratio speed and jerk, and zero-crossing ratio

[6] Table 2.4 presents the kinematic features for compensation.

Compensation Normalized Features

Joint Angle
Angles between vectors defined by three joints: ShoulderSpineinit → SpineBaseinit → ShoulderSpine,

Shoulderinit → ShoulderSpineinit → Shoulder, Hip→ Shoulder → Elbow

Projected

Trajectories

Difference between the current and initial distance of two joints in X, Y , Z axis:

Headinit → Head, SpineShoulderinit → SpineShoulder, Shoulderinit → Shoulder

Table 2.4: Normalized features for the compensation performance component. Joints’ names are in accordance with
figure 2.6. Adapted from [6].

Lee et al. [6] used as baseline regression and multi-class classification methods, which predict cate-

gorical performance score (e.g. ‘0: no movement perform’, ‘1: limited movement’, ‘2: normal movement’)
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as the FMA. The authors proposed approach, ‘BinToMulti ’, is composed of a threshold model with binary

classification to evaluate movement quality. Threshold models consider that each category has an inherent

value that distinguishes and separates different categories. Threshold models learn a function capable of

predicting these inherent values (thresholds) and estimate the categorical response based on them. Figure

2.8 shows that binary classifiers determine correct and incorrect movements (qualitative assessment). The

threshold model transforms the binary classification confidence score into a performance score (quantitative

assessment). To evaluate the proposed approach, the authors compared it with the baseline methods.

Figure 2.8: Flow diagram of the proposed method. Taken from [6].

The team explored different ML algorithms, non-sequential - Decision Trees, Linear Regression, Support

Vector Machine, and NN - and sequential models - Long Short Term Memory (LSTM) Network -, with

cross-entropy loss for classification and Mean Squared Error (MSE) loss for regression. Each algorithm

was trained for each performance component and each exercise. For the NN, researchers explored the

hyperparameters from table 2.5. The LSTM model was chosen given that therapists assign a score after

observing patients’ entire movement. Given this, the chosen architecture for the LSTM was many-to-one,

which produces a unique output for a sequential set of frames.

Architecture one to three layers of {16, 32, 64, 128, 256, 512} hidden units

Learning Rate Adaptive with {0.005, 0.001, 0.01, 0.1} as initial learning rate

Activation Function ‘Relu’

Solver ‘AdamOptimizer’ with mini-batch size of 5

Table 2.5: NN Explored Hyperparameters. Adapted from [6].

To validate the proposed method, the authors needed to create ground truth scores. Two therapists

(primary and secondary) assessed post-stroke participants’ recorded movements with FMA and then dis-

cussed their evaluations to generate ground truth scores. Since, in a real context, a patient is only evaluated

by a therapist, Lee et al. [6] only tried to reach a score agreement with the primary therapist’s assessment

scores. The authors determined the agreement level of all methods - regression, multi-class classification,

and ’BinToMulti’ - and then compared them. To do this evaluation, the authors handled Leave-One-Subject-

Out (LOSO) cross-validation. It consists of using all the post-stroke patients’ data, except one, to train the

models and use the left-out patient’s data to test the method.
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Lee et al. [6] approach, ’BinToMulti’, had better performance, specially with the NN. It performed better

compared with other methods and secondary therapist’s assessment. Researchers used linear regression

to determine the relationship between the predicted and FMA scores. It showed a high relation between

both scores, concluding that it is possible to estimate FMA scores with this approach. The authors conclude

that their method is feasible to replicate closely primary therapist’s assessment and to estimate FMA scores.

Summary and Work Contributions

With the growth of in-home rehabilitation, the need for objective metrics to track patients’ progress over time

enhanced the development of quantitative and automated methods to evaluate movement quality. These

methods can bring more consensus between therapists’ assessments and provide standard knowledge

to aid in the selection of rehabilitation treatment. Explored objective automatic assessment methods are

based on body joints’ kinematic study, which significantly describes motion patterns. This study is possible

due to technological advances concerning motion capture devices. These are more suitable for clinical or

home settings, such as Kinect. For objective assessment to gain clinical acceptance, researchers need to

prove motion capture systems and methods’ reliability and feasibility.

Murphy et al. [5] and Ozturk et al. [26] identified the kinematic variables that best describe motion

patterns and distinguish healthy participants from stroke survivors. Olesh et al. [7] and Lee et al. [6]

provided automated methods to produce assessment scores highly correlated with FMA scores. These

works explored the shoulder abduction and elevation angles, and trunk displacement from its initial position

to describe motor compensation. The authors verified that stroke survivors demonstrate lower elbow and

shoulder inter-joint coordination, more severe shoulder elevation, and pronounced trunk displacement. Lee

et al. [6], whose work we mainly follow, also explored head, spineshoulder, and shoulder joints (figure 2.6)

projected trajectory, which is the distance of these joints to their initial position, at each timestamp.

Despite relevant analysis and great results, these works do not provide a detailed assessment and feed-

back about different types of compensation. They only give a global performance score and indicate the

existence of compensation through joint angles, which describe it. Also, 3D analysis is still dependent on

sensors capable of acquiring 3D pose data and implies higher processing complexity. We conduct a 2D

analysis to assess compensation using a simple RGB camera in our work. We explore Multilabel Clas-

sification (MLC) to determine different compensation patterns, such as trunk displacements and shoulder

elevation, allowing the Virtual Coach (VC) to provide the user comprehensive and directed feedback.
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3

Methodologies

In this chapter, we present the methodologies used to develop the Virtual Coach (VC) and assess motor

compensation. First, in section 3.1, we describe the VC intelligent agent, its features and architecture, and

the User Interface (UI) developed to establish an interaction with the user. Second, in section 3.2, we de-

tail all the workflow to assess compensation during exercise performance. This workflow includes feature

extraction, feature selection, data normalization, classification, and results filtering. Regarding the classi-

fication phase, we introduce the Multilabel Classification (MLC) domain, inherent issues, and approaches

to learning from a Multilabel Dataset (MLD). Additionally, we present three different algorithms to perform

MLC to determine the distinct compensation patterns.

3.1 Virtual Coach

In this work, we propose a computer-based Virtual Coach (VC) to monitor upper extremity exercise training.

The VC proposes three appropriate exercises (table 2.3) and monitors user compensation behaviors during

their execution. First, it verifies if the patient is correctly positioned to enable motion capture. Once the

user is well placed, the exercise begins and it starts evaluating one’s movements. It gives verbal and

visual instructions about the exercise and target position the user has to reach. When the patient exhibits

compensatory, the VC suggests posture improvement. It also encourages movement repetition and praises

the user when the target position is reached.

This section details all the considerations and procedures to develop our VC for upper extremity re-

habilitation. We introduce project requirements, define the coach intelligent agent and its behavior in the

environment where it is inserted, and describe our system architecture and implementation details.

3.1.1 Requirements

In addition to previous works’ findings, to define the requirements for our VC we followed physical and

occupational therapy sessions with real patients and sought rehabilitation professionals’ advice. We learned

that patients require clear and detailed task instructions and even an exercise demonstration. Patients

with cognitive deficits, such as reduced attention or slowed functional execution, need extra and repetitive

directions and constant help redirecting their focus to the exercise. The exercise approach needs to be

aligned with patients’ physical and cognitive state to avoid injury or accidents, like falls. Patients may fear
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falling or hurting themselves, limiting their participation in the exercise, or slows down execution. During the

sessions, patients’ necessity for motivation is permanent. Additionally, we were able to record some of the

instructions, feedback, and encouragement that therapists gave. From our meeting with the therapists, a

series of potential features for the VC were discussed. Patients should be able to watch themselves while

exercising, like when they are looking at a mirror. In their displayed image, the VC should provide visual

markers to guide the patient to reach the desired positions and indicate compensation. Additionally, since

repetitive movements and tasks are fundamental, the system should stimulate movement repetition.

Given these discoveries, we list a set of requirements that our system should include:

• Present an exercise demonstration;

• Propose adequate exercises;

• Give patients the possibility of exercising sitting in a chair, contributing to their confidence and safety;

• Display of the patient’s image while exercising as if looking at a mirror;

• Provide clear and repetitive audio instructions, cues for posture correction, encouragement, and sug-

gest task repetition;

• Display visual markers indicating the arm target position and the existence of compensation

3.1.2 The Intelligent Agent

In our work, the Virtual Coach (VC) perceives its environment completely through an RGB camera (sensor )

and gathers image data on patient’s body movements, more precisely, user’s arms and torso motor patterns.

We can describe the VC environment as a regular space, such as a domestic or hospital room, with a

patient performing a set of upper extremity exercises, maybe accompanied by a caregiver. Given an image,

the coach builds an idea of the environment state. The agent establishes an interaction with the user

giving qualitative feedback on performance - concerning compensation and target reaching - to keep one

engaged. Section 3.2 details the motor performance assessment methods proposed in this work. VC

actions are managed through a UI, described in section 3.1.4, which has the role of an actuator to interact

with the user.

We define our VC as a Simple Reflex Agent [35]. The agent selects the action to take based on the

current environment’s state, previous state, and time interval, through a condition-action rule. The set of

condition-action rules that holds the action selection procedure compose the agent’s built-in knowledge.

The VC action selection procedure is considered a decision process problem. We detail this process

introducing the set environment states, the coach actions and respective condition-action rules, and state

transition conditions. Table 3.1 presents the system space state, S, and a description of each state, which

are intrinsically correlated with patients’ motion behaviors.

Given the states, it is fundamental to detail what we mean by patient correct position, movement begin-

ning, target position, and how these different stages are determined.
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State Space S Description

o→ out Patient not placed in the correct position

i→ in Patient placed in the correct position

e→ exercise Exercise and movement trial beginning

n→ normal Normal movement pattern

tr → trunk rotation Patient rotates the torso as compensation movement

se→ shoulder elevation Patient elevates the shoulder as compensation movement

td→ trunk displacement Patient displaces the trunk as compensation movement

tg → target Patient reaches the target position

Table 3.1: Environment States S.

A patient is correctly positioned when has the hips, shoulders, and head visible. A rectangle in the

patient’s image center bounds the correct position, concerning a distance of approximately 2.5 m between

the subject and camera. When the patient’s relevant joints are outside the rectangle, the system state

is out. Individual correct positioning in the acquired image enables accurate motion capture and motor

performance assessment. Once the patient is well located, the system transits to state in.

Every single time the user executes a movement, it is considered a movement trial. To distinguish

different movement repetitions, we track the patient’s wrist displacement regarding its initial position. Once

the wrist moves significantly away from its starting point, a new movement trial begins. When the subject

returns the wrist to its initial position, the movement trial ends. Euclidean distance defines the distance

between the wrist current and initial positions.

Once the exercise begins, the VC indicates the exercise target position, i.e., the position that the hand

should reach. This position is conveniently determined concerning the patient’s positioning in the image

and arm length. When the patient reaches the target, the system state is tg. This is monitored by the

euclidean distance between the patient’s wrist and the target.

Table 3.2 presents the VC actions, corresponding condition-action rules, and action description. VC

actions are conducted through the UI, described later in section 3.1.4. The actions include:

• Display of position markers - the rectangle indicating patient’s valid positions;

• Display of the target position marker;

• Display of compensation indicator markers - shoulder and trunk markers;

• Audio speech and respective subtitles - instructions, suggestions, encouragement, and praise.

Figure 3.1 describes the system’s state transition. For each video frame acquired with the RGB camera,

there is a corresponding state. When the patient is outside the rectangle defining correct body positioning,

the system state is ‘o’. Every state can transit to ‘o’ state, except state ‘e’, as depicted by the green dashed

arrows. Once the patient is correctly positioned, the system transits to ‘i’ state, in which it must remain

for 60 frames before transiting to ‘e’ and with the position rectangle in green. State ‘e’ defines exercise and
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Action

Space A

Condition-Action

Rules

Action

Description

pos : ‘position ’
stateprev = o, state = o,

time > thpos

Patient not well-positioned for time > thpos: VC suggests

body repositioning; position rectangle in red color.

ins : ‘instruction ’
stateprev = o,

state = i

Patient well-positioned: position rectangle in green color;

VC gives exercise directions.

mar : ‘marker ’ stateprev = i, state = e Exercise begins: VC displays target position marker (green).

tri : ‘trials ’
stateprev = S/{i},

state = e
Patients stops moving: VC proposes movement repetition.

tar : ‘target ’
stateprev = e,

state = n

The VC starts evaluating patient’s performance and asks one

to reach the target position.

enc :

‘encouragement ’

stateprev = {tr, se, td, n}

state = {tr, se, td, n},

time > thtg ,

Patient takes too much time reaching the target position: VC

encourages patient to reach the target.

con :

‘congrats ’

stateprev = {tr, se, td, n},

state = tg

Patient reaches the target: VC praises the patient;

target position marker in blue color.

trr :

‘trunk rotation ’

stateprev = {tr, se, td, n},

state = tr

Patient describes trunk rotation: VC suggests posture

correction;it displays trunk compensation marker (red).

she :

‘shoulder elevation ’

stateprev = {tr, se, td, n},

state = se

Patient describes shoulder elevation: VC suggests

correction;VC displays shoulder compensation marker (red).

trd : ‘trunk

displacement ’

stateprev = {tr, se, td, n},

state = td

Patient describes displaces the torso: VC suggests posture

correction; VC displays trunk compensation marker (red).

Table 3.2: Agent Actions A, respective condition-action rules, and action description.

moment trial beginning, and thus performance evaluation, t = 1 (t denotes the number of frames included in

the performance evaluation process). State ‘e’ transits directly to state ‘n’, which corresponds to observed

normal movement patterns. Once the movement evaluation begins, the system jumps between states

corresponding to performance classification results - states ‘tr’, ‘se’, ‘td’, and ‘n’. Red dotted bi-directional

arrows represent these transitions. When the patient reaches the target position, the system transits to state

‘tg’ (blue dotted arrows). When the patient moves the hand from this position, the movement evaluation is

resumed. When the patient is finishing a movement trial, with the wrist returning to its initial position, the

motor pattern is considered ‘n’ (rest position). At this point, the system shifts to state ‘e’, initiating a new

movement trial.

3.1.3 System Architecture

To establish an interaction between the user and the Virtual Coach (VC), we develop a UI through a web

application, whose implementation is detailed in section 3.1.4. In this section, we describe the architecture

of the entire system. First, we introduce the web app pages and their purpose. Second, we describe the

architecture of the VC.

25



 

 

Patient out
of rectangle

Movement
Evaluation

Result

Patient
Achieves

Target

 

Movement 
Evaluation

Init.

Movement
trial ends

Patient
inside

rectangle

Figure 3.1: State transition diagram.

Figure 3.2 illustrates the web application pages and the connection between them. The Init page has

the role of application opening screen, and connects directly to the Menu page. In the Menu, the user

chooses the training exercise and can watch each exercise demonstration in the Demo page. Once in the

Demo page, the user can return to the Menu. In the Menu page, along with the exercise preference, the

user should select the affected side due to stroke, which is the one that needs to be exercised and go under

performance evaluation. After selecting these two parameters, the exercise and the affected side, the user

can skip to the Main page where the VC operates. In the Main page the user can rewatch the selected

exercise demonstration in the Demo page and then return back to the Main page.

Init

Demo

Menu Main

Web Application

Figure 3.2: Web application pages.

Figure 3.3 details the VC architecture, operating in the Main page. The VC operates in a loop cycle

concerning the video acquired with the RGB camera. Each cycle corresponds to a single frame acquisition

and its analysis. In figure 3.3, the blocks with dashed and dotted boundaries represent the coach visual

and verbal cues, respectively. The block with solid boundaries correspond to the VC main functions. Table

3.3 describe the diagram function blocks.
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Figure 3.3: Virtual Coach workflow.
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Function Blocks Description

Frame Acquisition Through the RGB camera the system acquires video frames

Data Extraction
Given the acquired image, the system extracts the observed subjects’ body joints 2D

positional data (described in section 3.2.1)

Patient Selection
In a multi-person setting (a therapist or caregiver might accompany the patient), the VC

selects the patient, which should be positioned in the image center (section 3.2.2)

Check Subject Position The VC verifies if the patient is correctly positioned as described before in section 3.1.2

Detect Arm Movement
Through the euclidean distance between patient’s wrist and its initial position the VC

determines when a movement trial begins or ends

Check Target Achievement
The VC checks if the patient achieved the target position through the euclidean distance

between the wrist and the target

Detect Compensation
While the patient is exercising the VC continuously evaluates one’s performance

through the methods described in section 3.2 and through RB classification method

Table 3.3: Diagram Function Blocks (figure 3.3).

3.1.4 User Interface

As a Virtual Coach (VC) actions actuator to establish a proper interaction with the user, we developed a

web application with a User Interface (UI). To develop our web application, we used Flask microframework

[36]. Flask is written in Python and depends on the Jinja template engine and Werkzeug WSGI toolkit.

We created a dynamic web application to run locally in a personal computer with four web pages: Init,

Menu, Demo, and Main. As any web app, it handles HTTP methods when accessing the URLs, such

as GET and POST. Along with the functions that respond to URL requests, Flask uses templates to render

HTML containing static data, which the browser will display. Additionally, static CSS files add style to the

HTML layout. Next, we present and describe our web application web pages. Figure 3.2 already details the

connection between the pages. Figure 3.4 presents our app Init page, which has the role of opening page

and redirects the user to the Menu page.

In the Menu web page, shown in figure 3.5, the user can choose the exercise and affected side. This

option selection is done through a HTML form with POST request method. When the user tries to submit the

form without the required fields filled, the app pops up an error message asking the user to fill all the fields

(figure A.2(a)). With the fields filled, the user can submit the form and access the Main page. For both

Menu and Main pages, when the user tries to exit the app, it asks for confirmation (figure A.2(b)). Also in

Menu, the user can watch each exercise video demonstration accessing the Demo web page. Figure A.3

presents each exercise Demo pages. Once in the Demo page the user can return to Menu page.

The most important web page is Main, in which the VC operates. On this page, the user can watch the

selected exercise demonstration again, accessing the exercise’s Demo page and then return to Main page.

On Main page, the system acquires the image captured with the RBG camera and streams video frames.

The displayed image is horizontally flipped to show up to the user as a mirror.
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Figure 3.4: Virtual Coach Init web page. Figure 3.5: Virtual Coach Menu web page.

At this stage, image acquisition and any image manipulation process is conducted utilizing the OpenCV

library. Image manipulation includes the display of markers, speech subtitles, qualitative results, and infor-

mation regarding system state and motion monitoring. Figure 3.6 shows the position rectangle when the

system is in state out and in. Figures 3.7 and A.4 (appendix A) present each exercise target position and

how this marker looks like when is reached, respectively. Figure 3.8 shows the displayed compensation

markers. These markers indicate compensation existence and the body part requiring pose correction.

As detailed previously in section 3.1.3, in figure 3.3, the main functions to process the acquired image

(green dotted bosh), to determine the existence of compensation and track patient’s movements are han-

dled in a remote server, accessed via WiFi, for faster processing and result extraction, since the laptop in

which the web app runs has low processing capacity to run all the required tools for image processing. Our

Flask application sends, to a simple Flask application in the server through Python requests library, an

HTTP request with a json request containing an acquired image at a time and extra metadata, such as the

exercise, the affected side, and the system current state.

The VC speech was generated with a text-to-speech tool available online. We chose a female voice

with a neutral tone. In appendix A, we present the VC speech for every web app page or action. For each

situation, we created different sentences providing the user with the same information to avoid boredom.

(a) Incorrect position, state out - red rectangle. (b) Correct position, state in - green rectangle.

Figure 3.6: Virtual Coach Main web page - Patient positioning.
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(a) Exercise 1 target position. (b) Exercise 1 target position reached.

Figure 3.7: Virtual Coach Main web page - Target position.

(a) Shoulder elevation in exercise 1 - display
shoulder compensation marker.

(b) Trunk displacement in exercise 2 - display
trunk compensation marker.

(c) Trunk displacement in exercise 3 - display
trunk compensation marker.

(d) Shoulder elevation in exercise 3 - display
trunk compensation marker.

Figure 3.8: Virtual Coach Main web page - Display compensation markers.

3.2 Compensation Assessment Methods

This section describes the proposed methods to assess compensation patterns during exercise perfor-

mance from 2D body keypoints. We establish the data processing steps needed to do this assessment,

define a Multilabel Classification (MLC) problem, and propose two approaches to handle this task and de-

termine different types of compensation detected in a movement trial. We propose a Rule-based (RB)
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classification approach, which works as a baseline method, based on usually studied kinematic variables,

and a Neural Network (NN) based approach. Similarly to related work from section 2.2.2, we follow the

workflow from figure 3.9. Table 3.4 briefly describes the workflow procedures.

Feature	Extraction Feature	Selection Data	Nomalisation Classification Result	Filtering

Figure 3.9: Work flow diagram of the compensation assessment method.

Procedures Description

Feature Extraction Detect and acquire body joints’ 2D positional data

Feature Selection
From the set of acquired data, select the data of the subject of interest, in

the case of a multi-person setting, and select its relevant keypoints

Data Normalization Normalize keypoints to overcome physical variabilities and compute kinematic variables

Classification
Determine classification approaches that enable the detection compensation

patterns, based on body keypoints and kinematic variables

Result Filtering Filter classification results to produce a final decision

Table 3.4: Compensation Assessment Procedures.

To describe the main mathematical calculations, we use the notation described in table 3.5, where j is

a joint of a set of joints, defined further on 3.2.2, and t is the video frame number.

Equation Description

ptj = [xt
j ytj ]′ 2D coordinates of a joint j; [x y]′ denotes a transposed vector

P t(j1, j2) = ptj2 − ptj1 = [xt
j2
− xt

j1
ytj2 − ytj1 ]′ Vector directed from joint j1 to joint j2

‖P t(j1, j2)‖

dt(j1, j2) = ‖ptj1 − ptj2‖

‖P t(j1, j2)‖ is the euclidean norm of vector P t(j1, j2) and,

alternatively, dt(j1, j2) is the euclidean distance between two

selected joints, j1 and j2

∆xt(j1, j2) = xt
j1
− xt

j2

∆yt(j1, j2) = ytj1 − ytj2

Displacement between two selected joints, j1

and j2, in the X (∆x) and Y (∆y) axis

at(j1, j2, j3) = arccos

(
P t(j2,j1)·P t(j2,j3)

‖P t(j2,j1)‖·‖P t(j2,j3)‖

)
Angle between two vectors, P t(j2, j1) and P t(j2, j3), defined by two

points, j2 to j1 and j2 to j3

Table 3.5: Mathematical notation.

3.2.1 Feature Extraction

The first step to assess compensation is the extraction of relevant body joints’ 2D positional data, which

enable us to have the raw information about the performed movements. This process is called Feature

Extraction. To accomplish body keypoints extraction from a video or sequence of images, we explore two

motion detection libraries OpenPose and OpenFace, which we present and describe below.
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3.2.1.A OpenPose

To extract body joints’ 2D pose data, we use the OpenPose. OpenPose is the ”first open-source realtime

system for multi-person 2D pose detection, including body, foot, hand, and facial keypoints.” Cao et al. [37]

developed it to enable machines’ comprehension of people’s bodies and movements in an image or video

and push forward computer vision and Machine Learning (ML) research. Taking as input a color image,

OpenPose [37] detects different body parts (keypoints) of each person in the image, giving their 2D pose.

It provides confidence score maps of body keypoints, which depict how confident the system is about a

particular body part location in any given pixel. OpenPose predicts Part Affinity Fields [37] to associate

body parts and build one’s skeleton. These are a set of 2D vector flow fields, which keep limbs’ position

and orientation, encoding body parts association.

Unlike other 2D body pose estimation libraries, OpenPose [37] stands out by its compactness and

traits. It consists of three detection blocks: body and foot detection (core block), hand detection, and face

detection. The user can select the desired detection block or combine different blocks. OpenPose allows the

user to select the desired input between images, videos, webcam, and IP camera streaming. The user can

visualize the detected body skeletons and save keypoints’ data. Additionally, OpenPose can also perform a

3D realtime single-person detection through 3D triangulation out of multiple synchronized cameras. Due to

multiple cameras and the single-person requirements, this work does not consider this 3D reconstruction.

Along with the OpenPose [37] user-friendly characteristic and robustness, it is important to acknowledge

its failure cases and drawbacks. In a multi-person setting, people’s interaction and physical contact may lead

to body occlusion, making difficult keypoints’ identification and the association between body parts. Also,

even in a single-person setting, one’s abrupt and fast movements can hinder keypoint detection. These

situations can lead to higher detection errors.

Figure 3.10: OpenPose keypoints. Adapted from [8].

In this work, we only focus on body keypoints de-

tection from a sequence of images. In this case,

OpenPose [37] provides 2D positional data of body

keypoints and a confidence score on detection cor-

rectness. Figure 3.10 illustrates a skeleton detected

by OpenPose with its body keypoints. OpenPose

gives a JSON file for each video frame sequence,

containing keypoints with the format {x0,y0,s0,x1,y1,s1,

...,x24,y24,s24}, according to the OpenPose library doc-

umentation [8], where x and y are the 2D keypoint co-

ordinates in the image Cartesian space, s is the confi-

dence score, and the numbers in subscript correspond

to the keypoint number. In this work, we denote a
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OpenPose keypoint positional data as otj =
[
ptj
′ stj

]′
=
[
xtj ytj stj

]′
, in the image coordinate sys-

tem {I}. The subscript j specifies a joint in the set of keypoints extracted with OpenPose, Jo =

{ns,nk,lsh,leb,lwr,rsh,reb,rwr,mhp,lhp,lkn,lak,rhp,rnk,rak,ley,rey,ler,rer,rbt,rst,rhl,lbt, lst,lhl}, and stj

denotes a confidence score. Table 3.6 presents the complete set of keypoints, their joint number and

name, taken from the library documentation [8], and the notation adopted by us. Figure 3.10 illustrates this

set of keypoints mapped in a body skeleton.

Since we work with horizontally flipped images, in this work, we assume right and left body sides contrary

to the ones presented in OpenPose documentation [8]. This way that the right and left sides in the image

are the same sides for the observer, as a regular mirror.

Joint Number Joint Name Notation Joint Number Joint Name Notation

0 Nose ns 13 RightKnee rkn

1 Neck nk 14 RightAnkle rak

2 LeftShoulder lsh 15 LeftEye ley

3 LeftElbow leb 16 RightEye rey

4 LeftWrist lwr 17 LeftEar ler

5 RightShoulder rsh 18 RightEar rer

6 RightElbow reb 19 RightBigToe rbt

7 RightWrist rwr 20 RightSmallToe rst

8 MidHip mhp 21 RightHeel rhl

9 LeftHip lhp 22 LeftBigtToe lbt

10 LeftKnee lkn 23 LeftSmallToe lst

11 LeftAnkle lak 24 LeftHeel lhl

12 RightHip rhp – – –

Table 3.6: OpenPose body keypoints and applied notation.

3.2.1.B OpenFace

To overcome the lack of 3D pose data, and without the need to resort to another sensor to acquire 3D

keypoints, like an RGB-depth camera, we explore the OpenFace toolkit [38]. OpenFace emerged to give

answers to the increased attention to facial behavior analysis and comprehension in computer vision and

ML research and for the development of facial interactive applications. This interest is because facial be-

havior gives cues about people’s emotional and cognitive state and social interaction signs since people

communicate through facial expression, along with speech and body gesture. The authors of OpenFace

[38] define facial traits as the set: facial landmark location; head pose; eye gaze; and facial expressions.

Like OpenPose, OpenFace is an easy-to-use toolkit that can process videos in realtime from a simple

webcam, video files, image sequences, or single images, in multi or single person settings. It provides CSV

files with the required data - facial landmarks, shape parameters, head pose, and gaze vectors [38].

OpenFace landmark detection is done through the Convolutional Experts Constrained Local Model [38]

and, additionally to this detection, the head pose is extracted. The model uses a 3D depiction of facial
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landmarks, which are projected to the image through orthographic camera projection. Head pose is derived

after facial landmark detection by solving the problem of n point perspective [38]. Given this, we may

assume that with images of lower resolution, thus lower detail, OpenFace might have increased difficulty in

detecting facial landmarks, mostly if the subjects are distant from the camera.

Figure 3.11: Examples of OpenFace
facial landmark detection
and bounding box around
the head. Taken from [9]

In this project, we resort to head translation in Z, to track trunk

displacements in depth. OpenFace provides the head’s position in

millimeters concerning the camera, which is the origin of the world

coordinate system, {W} [9]. Figure 3.11 illustrates OpenFace facial

landmarks and head’s bounding box.

3.2.2 Feature Selection

From the broad set of keypoints provided by OpenPose, it is impera-

tive to select the ones that better describe the upper limb movement.

Additionally, in a real setting, we consider that, besides the patient, other subjects can be visible in the

image, such as a therapist, a family member, or a caregiver. Therefore, we need to accomplish two proce-

dures: select the subject under evaluation (the patient) and select one’s significant keypoints. This process

is called Feature Selection.

x

y

(1)

(2)

(1)

(2)

Figure 3.12: Patient selection method in the case of
multi-person detection.

To remove extra people detected by OpenPose, we

consider that the patient is placed right in front of the

camera, i.e., in the center of the image. Thus, we

consider an imaginary disk in the image center, denot-

ing the region where the patient should be detected.

When comparing the patient’s and the extra subject po-

sitions, the patient should be closer to the disk or closer

to its center. This assumption is illustrated in figure

3.12. Given that an acquired image has a resolution

of 640 × 480, in the image Cartesian space, the disk is

defined by D(cd, r), which is a set of points in the image

of the form {p ∈ [0, 640]× [0, 480] : ‖p− cd‖ = r}, where

cd = [320 240]′ is the disk center, p ∈ [0, 640] × [0, 480] and r is the disk radius. The patient has to have its

MidHip joint inside the disk, d(pmhp, cd)patient < r. If both subjects are inside the disk, the patient is the

one closer to its centre, d(pmhp, cd)patient < d(pmhp, cd)person2.

With the desired subject selected and having discarded the extra individual, now it is time to select the

patient’s relevant keypoints. To describe upper extremity motor function, we select the same keypoints as

in et al. to detail compensation behaviors, through joint linear and angular displacement describing a tilted
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torso, shoulder elevation, and shoulder abduction. We consider three scenarios (S1, S2, and S3) concern-

ing patients’ placement in front of the camera: the patient facing the recording camera (S1), and the patient’s

affected arm facing the camera, in a perpendicular (S2) or oblique (S3) position. Accordingly, for scenario

S1, we select the set of keypoints denoted as Js = {ns, nk, lsh, leb, lwr, rsh, reb, rwr,mhp, lhp, rhp}. This

set contains the joints of the patient’s affected side and the opposite side, which works as a reference. For

scenarios S2 and S3, we select the keypoint set Jsright
= {ns, nk, lsh, rsh, reb, rwr,mhp, rhp}, when the

affected side is the right, and Jsleft
= {ns, nk, lsh, leb, lwr, rsh,mhp, lhp}, when the affected side is the left.

Figure 3.13 illustrates these keypoints for all the scenarios.

Original Skeleton

Selected Keypoints

Scenario S1

Scenario S2 and S3

Selected Keypoints - Left

Selected Keypoints - Right

Figure 3.13: Keypoints’ selection for both scenarios S1, S2, and S3.

3.2.3 Data Normalization

Given the selected body keypoints, it is crucial to perform feature Normalization to overcome physical

variabilities. Our feature normalization approach consists of three steps: transformation, normalization,

mirror. Transform the keypoints from the image coordinate system {I} to the body coordinate system {B},

assuming the MidHip (mhp) joint as the origin (transformation), helps us handle variations in patient

positioning. Even positioned in the image center, different patients are not positioned exactly at the same

point in the image. Also, patient positioning may vary between movement trials. Normalizing the keypoints

to a convenient body part length enables us to deal with different patients’ body part dimensions and their

distance to the camera (normalization). Additionally, we mirror negative joints in X, of {B}, to align both

sides of body joints and provide the unaffected side as a reference for the NN classification approach.

3.2.3.A Transformation

The transformation from the image coordinate system, {I}, to the body coordinate system, {B}, for each

video frame, is computed with the data provided in the first frame, t = 1. This transformation is applied to

every keypoint in every frame and is given by the expression (3.1). Table 3.7 describes its components.

35



Bptj = B
I R · Iptj + BPI (3.1)

Description
B
I R Rotation matrix from {I} to {B}
BPI Translation vector between {I} and {B}
Iptj Any joint j in {I}, which is transformed to {B}
Bptj Transformed joint in the body coordinate system, {B}

Table 3.7: Transformation Components.

To compute this transformation, first, we compute the direction vector, or versor, used to describe Y axis

spacial direction in the body coordinate system, {B}, denoted BY . Considering the patient might not have

a completely vertical spine position, the BY axis is aligned with the patient’s spine as described in figure

3.14, which represents one’s initial position. Figure 3.14 illustrates the Y axis for scenarios S1, S2, and S3.

(a) BY axis in a patient with straight spine (S1). (b) BY axis for left affected side (S2 and S3).

Figure 3.14: Determine Y axis for the body 2D Cartesian space, {B}, for the different scenarios.

To compute the BY vector for all scenarios, we consider it is a result from the subtraction of two vectors,

as shown in figure 3.14 - a vector directed from the image coordinate system origin to the Neck joint,

and a vector from the same origin to the MidHip joint. Since the image Cartesian space origin is a

point with coordinates
[
0 0

]′, these vectors are described by the same coordinates of the joints Neck

and MidHip, respectively. Thus, the vectors are notated as follows, for t = 1: p1
nk
′ =

[
x1
nk y1

nk

]′, and

p1
mhp

′ =
[
x1
mhp y1

mhp

]
, both in the image coordinate system, {I}. The Y axis versor, in the body coordinate

system, {B}, is given by BY ′ =
[
yxB yyB

]′.
Equation (3.2) describes the operation used to compute the BY versor. Since a versor is a unit vector,

i.e., a vector with a unit norm, vector subtraction is divided by its norm.

BY =
p1nk − p1mhp

‖p1nk − p1mhp‖
(3.2)
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The X axis direction vector, in {B}, is denoted by BX ′ =
[
xxB xyB

]′. Its coordinates are given solving

the (3.3) system of equations according with following the considerations below:

• The versors BX and BY are perpendicular, i.e., they form a 90º angle between them, which means

their inner product is zero, BX · BY = 0;

• BX is a unit vector, i.e., its has unit norm ‖BX‖ = 1.

xx
B · yx

B + xy
B · y

y
B = 0√

xx
B

2 + xy
B

2 = 1

(3.3)

Since patients have one affected side due to stroke, which is the one that needs more attention during

rehabilitation training, the BX is directed to the affected side, as illustrated in figure 3.15, for scenario S1

(patient facing the camera). For scenarios S2 and S3 (patient’s affected arm facing the camera), BX is

directed to the patient’s front. Thus, solving the (3.3) equations’ system we obtain BX. More specifically,

for S1, BX is given by (3.4) and (3.5) for right and left affected sides, respectively. For S2 and S3, is the

opposite, BX is given by (3.5) and (3.4) for right and left affected sides, respectively.

xx
B = −yy

B

xy
B = yx

B

(3.4)

xx
B = yy

B

xy
B = −yx

B

(3.5)

(a) BX axis for left as affected side (S1). (b) BX axis for right affected side (S2 and
S3).

Figure 3.15: BX axis for the body 2D Cartesian space, B, for left and right affected sides in all scenarios (S1, S2, and
S3). Translation vector between {I} and {B} coordinate systems, BPI .

Given the BX and BY vectors coordinates, we can calculate the rotation matrix, BI R, and translation

vector, BPI . The rotation matrix is given by the matrix (3.6). Figure 3.15 illustrates the translation vector,

which is given by equation (3.7).
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B
I R =

xx
B xy

B

yx
B yy

B

 (3.6)

BPI = B
I R · (−p1mhp) (3.7)

3.2.3.B Normalization

To avoid physical variabilities concerning patient-camera distance and body parts’ dimensions, we normal-

ize the transformed body keypoints. Keypoints’ coordinates are normalized to the patient’s spine length in

the first video frame, t = 1. Spine length is given by the distance between the Neck and MidHip joints,

d1(pnk, pmhp), which is the same in {I} or {B}.

Equation (3.8) gives a keypoint normalized to the spine length. Since for S2 and S3, we only consider

visible joints, this equation gives the final normalized keypoints, for these scenarios.

B p̂tj =
Bptj

d1(Ipnk, Ipmhp)
=

[
Bxt

j
Byt

j

]′
d1(Ipnk, Ipmhp)

(3.8)

3.2.3.C Mirror

Since only the affected side intervenes in the exercise training, i.e., only this side describes clear movements

to perform a task, we give the healthy side as a reference to the classifier in S1. We align the opposite and

affected sides, mirroring the joints in the negative BX axis to the positive BX. For S2 and S3, we do not

perform this step since we cannot give as reference an invisible body side. In this case, the spine joints

work as a reference. Equation (3.9) gives the normalized and mirrored keypoints in S1.

B p̃tj =

[
−Bxt

j
Byt

j

]′
d1(Ipnk, Ipmhp)

(3.9)

3.2.3.D Kinematic Variables

For the RB classification approach, which works as our baseline method, we consider as features kinematic

variables as in related work [6]. However, since we only have 2D positional data, we need to find alternative

measures to assess some compensation patterns. We intend to identify four types of compensation: Trunk

Forward, Trunk Rotation, Shoulder Elevation, and Other trunk compensation patterns, such as trunk

moving backward and trunk to tilt. Thus, we formulate hypotheses for the three scenarios regarding patients’

positioning in front of the camera (S1, S2, and S3) to detect these movement patterns. It is important to

mention that, to calculate the kinematic variables - joints’ angles and displacements -, the mirror keypoint

normalization step is not applied, i.e., normalized keypoints are given by the expression (3.8). These
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variables describe linear and angular displacements over time. Thus, we do not need to provide the RB

classifier the healthy side as a reference.

Trunk Forward Since we believe that OpenFace might have issues detecting patients more distant to

the camera, given the image resolution, to detect the trunk moving forward, Trunk Forward, we state two

hypotheses for S1 and consider one kinematic variable for S2 and S3, which we describe in table 3.8.

Scenarios Hypotheses and Kinematic Variables

S1

• Hypothesis 1: detect trunk moving forward through the observed changes in subject

head size, i.e., when the subject moves forward, one’s head will seem bigger in the image

• Hypothesis 2: use OpenFace to assess head’s translation in Z - in the world coordinate

system, {W}, - i.e., when the subject moves forward will be closer to the camera

S2 & S3
Detect the trunk moving forward (illustrated in figure 3.16) with the tilted angle of the

spine, at(p1mhp, p
1
nk, p

t
nk), and a positive displacement of the Neck joint in X, ∆xt(ptnk, p

1
nk)

Table 3.8: Hypotheses and Kinematic Variables to Assess Trunk Forward for all the Scenarios.

		

(a) Left affected side

	 	

(b) Right affected side

Figure 3.16: Trunk moving forward and backward in the case of S2 and S3.

In the case of S1, Hypothesis 1 includes the head keypoints as significant ones. These keypoints are

Jsr = {Js, ley, rey, ler, rer} (see figure 3.10 and table 3.6). To detect changes in the observed head size,

we define the patient’s head area as a set of four triangles, which figure 3.17(a) illustrates. Three joints

define each triangle. Thus, we denote a triangle’s area as At(j1, j2, j3).

To compute the triangle’s area, we define a triangle, as shown in figure 3.17(d). Triangle vertices are

body joints and its edges are the Euclidean distance between those joints. We consider an isosceles triangle

since we assume the head is symmetric. To calculate the area, we perform the following calculations, which

result in the expression (3.10):

• at(j2, j1, j3) is one of the triangle’s internal angle, and cos at(j2, j1, j3) = m
dt(j1,j2) ⇔

⇔ m = dt(j1, j2) · cos at(j2, j1, j3);

• cos at(j2, j1, j3) = P t(j1,j2)·P t(j1,j3)
‖P t(j1,j2)‖·‖P t(j1,j3)‖ ;

• h the triangle’s height is given following the Pythagoras’ theorem h2 = dt(j1, j2)2 −m2 ⇔

⇔ h =

√
dt(j1, j2)2(1− cos at(j2, j1, j3)

2
).
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(a) The patient’s head
area for S1

(b) Head area
for S2 and
S3 (left)

(c) Head area
for S2 and
S3 (right)

(d) Triangle and its edges, ver-
tices, and internal angles.

Figure 3.17: The patient’s head area, and triangle defining it.

At(j1, j2, j3) =
dt(j1, j3) · h

2
=

dt(j1, j3) · dt(j1, j2)

2
·
√

1− cos at(j2, j1, j3)2 (3.10)

The head’s area is denoted Ht =
∑4
i=1A

t
i(j1, j2, j3), where i denotes the different head triangles. More

specifically, head’s area is the sum of At1(rer, rey, ns), At2(rer, ns, nk), At3(nk, ns, ler), and At4(ns, ley, ler).

Head area variations are described by the difference between the head area at any timestamp t and at first

frame, t = 1, which is expressed by the system (3.11).

∆Ht =

Ht −H1, if t > 1

0, otherwise

(3.11)

S1 Hypothesis 2 suggests the track of patient head displacement in Z in the world coordinate system,

{W}, in which the camera is the origin. We denote the translation component in Z in any frame t as T tz ,

and the conditions (3.12) give the changes in trunk position.

∆T t
z =

T t
z − T 1

z , if t > 1

0, otherwise

(3.12)

Trunk Rotation To detect Trunk Rotation and since we do not have a manner of computing the rotation

angle in 3D, we formulate the hypotheses from table 3.9 for the three scenarios.

Scenarios Hypotheses and Kinematic Variables

S1
• Hypothesis: when the patient rotates the torso to the affected side while moving the

affected limb, the shoulder of the affected side elevates while the opposite shoulder decays

S2
• Hypothesis: given the patient is in a perpendicular position, when the patient rotates the

torso to the affected side, the shoulder is displaced regarding the Neck joint

S3
• Hypothesis: given the patient oblique position, when the patient rotates the torso to the

affected side, the observed distance between both shoulders decreases

Table 3.9: Hypotheses and Kinematic Variables to Assess Trunk Rotation for all the Scenarios.
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For S1, figure 3.18 represents the hypothesis stated for both affected sides. The rotation is mea-

sured by the angles formed by the shoulder in the initial (t = 1) and current positions (t > 1), given by

at(p1
rsh, p

1
nk, p

t
rsh) and at(p1

lsh, p
1
nk, p

t
lsh) for right left shoulders, respectively.

For S2 and S3, we distinguish them by assessing the length between the patient’s shoulders in t = 1,

which is given by d1(plsh, prsh). If this length is above a specified threshold, the subject’s chest is visible,

and one is in an oblique position in the image. In the case of S2, figures 3.19(a) and 3.19(b) illustrates

trunk rotation for both sides and it is given ∆xt(prsh/lsh, pnk) = xtrsh/lsh − x
t
nk. For S3, trunk rotation is

assessed by the variation over time of the length between both shoulders, given by the equation (3.13). We

distinguish S2 and S3 because the different patient’s positioning leads to a different relation between Neck

and shoulder joints. While for S2 the shoulder moves in BX regarding Neck over time, for S3, we cannot

observe the same. Section 4.2.3 validates these hypotheses.

(a) Left affected side. (b) Right affected side.

Figure 3.18: Trunk Rotation hypothesis for S1.

	

(a) Left affected side
(S2).

	

(b) Right affected
side (S2).

	

(c) Right affected
side (S3).

Figure 3.19: Trunk Rotation hypothesis for S2 and S3.

|∆dt(prsh, plsh)| =

|d
t(prsh, plsh)− d1(prsh, plsh)|, if t > 1

0, otherwise

(3.13)

Shoulder Elevation The Shoulder Elevation compensation behavior is detectable in 2D by the shoulder

elevation angle of the affected side in the case of S1 as described in figure 3.20. For S2 and S3, we

formulate a hypothesis to assess this pattern. Table 3.10 describes shoulder elevation assessment for the

three scenarios.
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Scenarios Hypotheses and Kinematic Variables

S1
Shoulder elevation is detected by the angle described by the affected side shoulder, given by

at(p1
rsh/lsh

, p1nk, p
t
rsh/lsh

)

S2 & S3
• Hypothesis: when the patient elevates the shoulder during exercise performance, the shoulder is

displaced regarding the Neck joint in Y , described by ∆yt(prsh/lsh, pnk) = yt
rsh/lsh

− ytnk

Table 3.10: Hypotheses and Kinematic Variables to Assess Shoulder Elevation for all the Scenarios.

	

(a) Left affected side (S1).

	

(b) Right affected side (S1).

	

(c) Left affected side
(S2 & S3).

	

(d) Right affected
side (S2 & S3).

Figure 3.20: Shoulder Elevation for S2 and S3.
	

(a) Left

	

(b) Right

Figure 3.21: Trunk tilt for S1.

Other Compensation Patterns The Other compensation behaviors con-

cern additional trunk displacement patterns. Here we focus on trunk tilt and

trunk moving backward. Table 3.11 delineates the established hypotheses

and kinematic variables assumed to assess these patterns.

Concerning the hypotheses raised to assess trunk tilt for S2 and S3, pos-

itive and negative changes in the patient’s head area (equation (3.11)) and

in head translation in WZ (equation (3.12)) correspond to the same move-

ment pattern. Thus, trunk tilt is assessed by these variables’ absolute values,

|∆Ht| and |∆T tz |, respectively. For Hypothesis 1 since in these scenarios the unaffected side is not visible

or is partially hidden, to calculate the head area we only consider the affected side joints as illustrated

in figures 3.17(b) and 3.17(c). It is given by Ht =
∑2
i=1A

t
i(j1, j2, j3). Assessing trunk moving backward

for S1 is similar to detect the trunk moving forward through equations (3.11) (Hypothesis 1) and (3.12)

(Hypothesis 2).

In summary, for the RB classification approach, we use the kinematic variables presented in the table

3.12 for scenarios S1, S2, and S3 regarding the patient position in front of the camera.

3.2.4 Classification Approaches

Classification is a predictive task, usually carried out through supervised learning methods, which predicts

an output from an input dataset. In supervised methods, the input data samples have to be labeled, ideally

by a specialist in the problem domain, who assigns a discrete value, a label, or class, to each sample.

The classifier learns from each data sample characteristics and respective label, analyzing the correlation

between them, becoming able to predict the class of new, never observed before, data samples [39, 40].
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Scenarios Hypotheses and Kinematic Variables - Trunk Tilt

S1
When the patient tilts the torso (illustrated in figure 3.21), the tilted angle of the spine,

at(p1mhp, p
1
nk, p

t
nk), describes this movement

S2 & S3
• Hypothesis 1: detect the trunk tilt through the observed changes in the patient’s head size

• Hypothesis 2: use OpenFace to assess head’s translation in Z, in {W}

Scenarios Hypotheses and Kinematic Variables - Trunk Backward

S1

• Hypothesis 1: detect the trunk moving backward through the observed changes in the

patient’s head size, i.e., when the subject moves backward, the observed head area decreases

• Hypothesis 2: use OpenFace to assess head’s translation in Z, i.e., when the subject moves

backward will be farther away from the camera, revealing a bigger translation in Z, in {W}

S2 & S3
The tilted angle of the spine, at(p1mhp, p

1
nk, p

t
nk), and a negative displacement of the Neck

joint in BX, ∆xt(ptnk, p
1
nk) detectes the trunk moving backward (illustrated in figure 3.16)

Table 3.11: Hypotheses and kinematic variables to assess Other trunk compensation behaviors for all the scenarios.

Type of

Compensation
Kinematic Variables S1 Kinematic Variables S2 & S3

Trunk Forward

Hypothesis 1: ∆Ht =

{
Ht −H1, if t > 1

0, otherwise

in the {B} coordinate system

Hypothesis 2: ∆T t
z =

{
T t
z − T

1
z , if t > 1

0, otherwise

in the {W} coordinate system

at(p1mhp, p
1
nk, p

t
nk) and ∆xt(ptnk, p

1
nk)

Trunk Rotation
Hypothesis: at(p1rsh, p

1
nk, p

t
rsh)

and at(p1lsh, p
1
nk, p

t
lsh)

(S2) Hypothesis: ∆xt(ptlsh/rsh, p
t
nk)

(S3) Hypothesis: |∆dt(prsh, plsh)|

Shoulder Elevation at(p1rsh, p
1
nk, p

t
rsh) or at(p1lsh, p

1
nk, p

t
lsh) Hypothesis: ∆yt(ptlsh/rsh, p

t
nk)

Other

• Trunk Inclination: at(p1mhp, p
1
nk, p

t
nk)

• Trunk Backward:

Hypothesis 1: ∆Ht =

{
Ht −H1, if t > 1

0, otherwise

in the {B} coordinate system

Hypothesis 2: ∆T t
z =

{
T t
z − T

1
z , if t > 1

0, otherwise

in the {W} coordinate system

• Trunk Inclination:

Hypothesis 1: |∆Ht| =
{
|Ht −H1|, if t > 1

0, otherwise

in the {B} coordinate system

Hypothesis 2: |∆T t
z | =

{
|T t

z − T
1
z |, if t > 1

0, otherwise

in the {W} coordinate system

• Trunk Backward:

at(p1mhp, p
1
nk, p

t
nk) and ∆xt(ptnk, p

1
nk)

Table 3.12: Kinematic variables for Rule-based classification.

Multilabel Classification (MLC) is a specific type of classification task in which the output is not a unique

output value but an array of outputs. This aspect poses the main difference between multilabel and tradi-

tional classification problems. The output array has a length equal to the number of labels. It is composed of

binary values suggesting the active and significant labels for the data sample. Thus, the chosen model for

handling a MLC performs multiple predictions at once [40]. As any other Machine Learning (ML) algorithm,

the multilabel classifier requires a quantitative performance measure to evaluate its prediction capability.

Some of the performance measures employed for this kind of classification problem are defined in section

4.2.1. Based on available literature [40], we formally define the MLC problem as follows:

• Let L denote the set of all possible labels, and P(L) the set of all L subsets, with all the possible label
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combinations l ∈ L. k = |L| is the total number of labels;

• Let X denote the input space with data samples X ∈ X , and Y is the output space with all possible

arrays, Y ∈ P(L);

• Let D denote a MLC, in which each component (X,Y ) ∈ D is a data sample. n = |D| denotes the

number of samples;

• Let F : X → Y define a classifier. Any sample X ∈ X is the classifier input, and its output is a

prediction Z ∈ Y. Thus, a prediction of an array of labels for any data sample is given by Z = F(X).

Learning from multilabel data is handled by applying two main approaches: data transformation and

method adaptation. The former approach consists of a problem simplification by transforming the Multilabel

Dataset (MLD) into one or more binary or multiclass datasets, making the problem solvable with the tradi-

tional classification algorithms. The latter approach resides on the adaptation of the conventional classifiers

to make them able to predict an array of output values instead of a single value. Additionally, emerging from

the data transformation approach, the use of sets of classifiers (ensembles), a technique that intends to

enhance individual classifiers performance, also poses a way of dealing with this kind of tasks [40].

While dealing with a MLD, it is essential to consider some conditions. We mention label dependency and

imbalance. When applying a problem transformation method, it is important to recognize label dependency.

E.g., in image labeling, if the label garden is active is highly probable that the labels flower or tree are also

relevant. Learning from imbalanced data is also a problem of MLC. Disparities between label distribution

stand from the MLD characteristics, mainly if it holds many labels. For instance, in a problem of document

categorization, is expected the occurrence of some categories to be more frequent than others [40].

This work focuses on problem transformation approaches to learn from a MLD. Among these methods,

we highlight the binarization techniques. The most popular is Binary Relevance, which consists of training

k classifiers, one for each label, taking data samples in which a label is active, and the others are inactive,

providing a binary result per label. Applying this method to the original dataset generates as many predic-

tions as the number of labels, which are then combined to produce the multilabel response. A well-known

technique is the One-vs-Rest approach, which trains an individual classifier for each class against all oth-

ers. However, there are drawbacks associated with this binary approach. Since it considers an independent

classifier for each label, one label prediction does not influence the other, leading to the loss of any possible

existent label dependency. Additionally, each label classifier has to deal with greatly imbalanced data, which

is very obvious for classifiers learning from very frequent or scarce labels [40].

Considering the present in section 3.2.3.D, our problem comprises a set of categories towards the

compensation patterns we desire to assess: Trunk Forward, Trunk Rotation, Shoulder Elevation, Other

trunk displacements, and Normal motor patterns.
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3.2.4.A Rule-based Classification Method

Rule-based (RB) classification models, used for predictive tasks, are a set of if-then rules applied to a

collection of features and providing a predicted label. This kind of model is pretty easy to comprehend and

the produced results are of uncomplicated interpretation, which constitutes their main advantage [40, 41].

In this work, we apply a set of independent rules to the hypothesized kinematic variables in section

3.2.3.D to detect the compensation patterns from 2D positional data. We define rules for each pattern and

each scenario S1, S2, and S3. First, we define the rules for scenario S1 and then for scenario S2 and S3.

In S1, to assess trunk moving forward and backward movements, we stated two hypotheses. As stated

previously, for Hypothesis 1, there is compensation if the observed head size increases when the patient

moves the torso forward. For Hypothesis 2, compensation exists if the patient does a positive displacement

in WZ. Thus, for both hypotheses, if ∆Ht and ∆T tz , respectively, are above a specified threshold value, the

patient is moving the torso forward when trying to reach the desired position. Similarly, when the patient

is moving the torso backward, for Hypothesis 1, compensation exists if ∆Ht decreases. In the case of

Hypothesis 2, we consider that the patient is moving the trunk backward if there is a negative displacement

in WZ. These hypotheses are detailed by the equation (3.14).

Predicted Label =


‘Other’, if ∆Ht < thTBH/∆T t

z > thTBTz

‘Trunk Forward’, if ∆Ht > thTFH/∆T t
z < thTFTz

‘Normal’, otherwise

(3.14)

To assess Trunk Rotation and Shoulder Elevation we focus in the angles described by both shoulders

concerning their initial position, at(p1
rsh, p

1
nk, p

t
rsh) and at(p1

lsh, p
1
nk, p

t
lsh). As schemed in figure 3.22, if the

shoulder of the affected side describes an elevation angle above a particular value, we need to look at the

opposite shoulder to determine its displacement. If both shoulders describe a similar angle, the patient

rotating the trunk. On the other hand, if the affected side shoulder describes an elevation angle higher than

the fall described by the unaffected side shoulder, we consider that the patient elevates the shoulder and

rotates the torso simultaneously.

To assess patient tilting the torso for S1, we look at the tilted angle of the spine, at(p1
mhp, p

1
nk, p

t
nk). As

described in equation (3.15), if this angle reaches a certain value, we consider that the patient tilts the torso

as an aid to reach the goal position.

Predicted Label =

‘Other’, if at(p1mph, p
1
nk, p

t
nk) > thTI

‘Normal’, otherwise

(3.15)

For scenarios S2 and S3, since we formulated different hypotheses towards the different subject po-

sitioning, we also define distinct rules. To detect the trunk moving forward or backward, in this case, we

focus in the tilted angle of the spine, at(p1
mhp, p

1
nk, p

t
nk), and in the displacement in BX of the joint Neck,
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SE:0
TR:0

SE:1
TR:0

SE:0
TR:1

SE:1
TR:1

Figure 3.22: Rules to assess Trunk Rotation (TR) and Shoulder Elevation (SE) in S1.

∆xt(ptnk, p
1
nk). As shown in figure 3.23, if the tilted angle of the spine is above a specified value, there is

a compensation of the torso. To complement, if the displacement in BX of the Neck joint is positive, the

corresponding pattern is Trunk Forward. Otherwise, the subject is moving the trunk backward (Other).

TF:0
O:0

TF:0
O:1

TF:1
O:0

Figure 3.23: Rules to assess Trunk Forward (TF) and trunk backward - Other (O) - in S2.

When a patient rotates the torso, we assume a hypothesis for S2 and another for S3, since in these

cases, the shoulder joint does not relate with the spine in the same way. For S2, we hypothesize that this

can be detected through the shoulder displacement in BX regarding the Neck joint, ∆xt(plsh/rsh, pnk). This

way, as defined by equation (3.16), if this displacement is significant enough there is Trunk Rotation. For

S3, we hypothesize that when the patient rotates the torso, the distance between both shoulders decreases

since this patient has the chest visible. This assessment is given by the expression (3.17).

Predicted Label =

‘Trunk Rotation’, if ∆xt(ptlsh/rsh, p
t
nk) > thTR

‘Normal’, otherwise

(3.16)

Predicted Label =

‘Trunk Rotation’, if |∆dt(ptlsh, p
t
rsh)| > thTR

‘Normal’, otherwise

(3.17)

To evaluate shoulder elevation, we compare shoulder position with the Neck joint position, described

by a displacement in BY , ∆yt(plsh/rsh, pnk). If this displacement is above a specified value, the patient is
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describing Shoulder Elevation (equation (3.18)).

Predicted Label =

‘Shoulder Elevation’, if ∆yt(ptlsh/rsh, p
t
nk) > thSE

‘Normal’, otherwise

(3.18)

For this scenario, S2, if the subject tilts the torso, is describing a movement in depth as when the subject

is moving the trunk forward and backward in scenario S1. So, this pattern can also be detected by the

absolute variations in the observed head size, |∆Ht| (Hypothesis 1) or by head’s dislocation in WZ, |∆T tz |

(Hypothesis 2). Equation (3.19) describes these rule.

Predicted Label =

‘Other’, if |∆Ht| > thTIH/|∆T t
z | > thTITz

‘Normal’, otherwise

(3.19)

3.2.4.B Neural Network Based Classification Method

Neural Network (NN), know as Multilayer Perceptron, is a supervised learning algorithm able to learn a

function, F , from a given dataset, through a procedure called training. For classification tasks, it maps a set

of provided input feature samples, X , to target values or class labels, Y. Once the model is trained, it can

predict the label for new input samples. NN models are commonly trained by Backpropagation [39, 42, 43].

Since we are dealing with a multilabel problem, we can infer firsthand that we can come across a label

dependency problem. Many times, patients do not describe motor compensation while performing a task.

When we appraise Normal movement behaviors, we desire that our multilabel classifier is robust enough

to avoid assigning a label to a video frame denoting the existence of compensation as it confirms the good

movement quality. With this desire, we divide our problem into two problems, a binary and a multilabel. First,

we use a binary classifier (C1) to assess compensation existence from each video frame keypoints. Second,

we apply a multilabel classifier (C2), which concludes the described compensation patterns from the frames

with compensation detected by C1. This way, our model will not classify a movement pattern as Normal

and detect compensation simultaneously. Figure 3.24 represents our proposed approach. It is relevant to

mention that the model considers the positional data extracted from a video frame as an independent data

sample, without acknowledging frames’ sequential order, which composes the entire exercise trial video.

C1
Binary Classifier

C2
Multilabel Classifier

Normalized
Keypoints

Frames with
Compensation

Type of
Compensation

Figure 3.24: NN based approach to assess compensation from 2D positional data.
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3.2.5 Classification Result Filtering

After classifying the input data and determine the different compensation patterns presented in each frame,

our final decision for a specific moment could be based on a set of frames’ classification results instead of

on only a unique frame. This assumption comes mainly because classifying frames with a frame rate of

30 fps is very exhaustive and incompatible with our human perception to process this flow of results. Thus,

producing a final decision for a specific moment based on the classification results of a set of frames could

pose a solution to produce a final decision with a timing fitting our human perception and still accurate.

To perform this final decision based on the classification results of a set of frames, which we call filtering

of the predicted labels, we establish a window of frames with a specific size, from which we compute its

median result. The computed median result will be our final decision, the compensation behavior detected,

as illustrated in figure 3.25. In the case of multilabel classification, the median is computed for each label.

1 1 0 1 10 1 0 0 1 ... 0

1 1median median

Classification
Results

Final
Decision

0 1

Figure 3.25: Filtering of the classification results.

48



4

Experiments

This chapter presents all the experimental procedures conducted to evaluate the Virtual Coach (VC) and

validate the compensation assessment approaches. First, we describe the dataset used to train and validate

our classification models and the three upper limb exercises under study. We detail the dataset labeling

process, which allows us to perform Multilabel Classification (MLC), and the dataset cleansing process.

Given we are dealing with a Multilabel Dataset (MLD), we present its main characteristics. We validate

the proposed kinematic variables, which are the features for our Rule-based (RB) method, and describe the

explored architectures and hyperparameters for the NN based approach. Finally, we detail the experimental

procedure that enables the validation of the developed VC and UI.

4.1 Dataset

In this work, to train and validate our classification models, we use the dataset from Lee et al. [6] work. This

dataset is a set of videos of 15 post-stroke survivors performing three exercises, to which the authors at-

tributed a patient ID from P01 to P15. Lee and his team collected movement trials’ videos using a Microsoft

Kinect sensor with an average frame rate of F = 30 Hz and a resolution of 640× 480 pixels [6].

The 15 participants, with an average and Standard Deviation (SD) age of 63±11.43 years old, suffered a

stroke and were left with a more affected body side (left or right) [6]. Each participant performed an average

of 10 trials for each exercise, which resulted in a dataset with 448 videos. Section 2.2.2 already details the

three upper limb exercises (E1, E2, and E3), when we describe Lee et al. [6] work. Table A.2 from appendix

A illustrates each exercise the patient’s arm initial and target position.

4.1.1 Labeling Process

One of this work’s objectives is to assess patients’ movements in realtime and determine the different

compensation behaviors patients might describe. With this intent, and to perform MLC, we labeled the

entire dataset, which poses one of this work’s contributions. To have a MLD for realtime classification,

we converted the videos into sequences of images regarding their frame rate. We developed a Python

program, resorting to the FFmpeg multimedia framework to convert the videos into images. This way, we

have a set of 79963 video frames as described in table 4.1, which we individually labeled.
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Exercise #Patients #Videos/Trials #Frames

E1 15 150 28687

E2 15 149 25329

E3 15 149 25947

Total 448 79963

Table 4.1: The number of video frames per exercise that compose the dataset before data cleansing.

Acknowledging the distinct compensation patterns mentioned in section 2.1.2 and the categories spec-

ified in 3.2.4 - Trunk Forward (TF), Trunk Rotation (TR), Shoulder Elevation (SE), Other (O) trunk dis-

placements, and Normal (N) - we specify five labels. Each label is decoded by an integer and designates a

compensation pattern. According to the compensation behaviors observed while trying to reach the target

position, a label or a set of labels is assigned to every frame. Label ‘0: Trunk Forward’ is assigned to frames

in which the patient moves the trunk forward. ‘1: Trunk Rotation’ is for torso rotation. Label ‘2: Shoulder

Elevation’ is for subjects describing an excessive shoulder elevation angle. ‘3: Other’ is for other trunk

displacements, such as trunk moving backward and torso tilt. Finally, ‘4: Normal’ is assigned to the frames

in which the patient does not perform any compensation behavior or is resting. Figure A.3 from appendix A

shows an example for each compensation behavior observed in the dataset and their corresponding labels.

For this labeling process, we consulted a Physical therapist and an Occupational therapist. They helped

us recognize compensation patterns and identify the moments when those behaviors begin or end. Thera-

pists also advised us, in cases of labeling uncertainty, to choose the more noticeable pattern over another.

Thus, the labeling assignment only considers movements in which the compensation is very pronounced.

When we observed more than one compensation behavior, the corresponding labels were assigned if those

patterns are visibly distinct. In doubt, the label assigned corresponds to the most evident movement. For

the ‘3: Other’ label, could be considered compensation movements with the head, commonly visible in E1

during the ”drinking” phase. However, due to this pattern’s lack of representation, this compensation behav-

ior was ignored. We assigned labels to every frame in which the compensation patterns were visible, even

to the frames in which the behavior was only beginning or ending. In these frames, in which compensation

is beginning or ending, which we call borders, the patterns are not extremely obvious.

In summary, in E1, patients only demonstrate Trunk Rotation, Shoulder Elevation, and Other com-

pensation patterns. Shoulder Elevation is the most frequently observed pattern. In E2, patients describe

compensation behaviors similar to E1. For both exercises, subjects do not reveal the Trunk Forward pat-

tern. In E3, we can witness Trunk Forward behaviors when subjects move the cane forward and Shoulder

Elevation when they return it to the initial position. To enhance certainty concerning the observed patterns,

we repeatedly observed the exercises’ videos, video frames, and OpenPose body skeletons. Table 4.2,

exposes the label occurrences for each exercise at this point.
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TF TR SE O N

E1 0 1059 10330 5822 17946

E2 0 910 5795 3162 17631

E3 5538 0 1241 0 19647

Table 4.2: Label occurrence before data cleansing.

4.1.2 Data Cleansing

After keypoint extraction with OpenPose, it is important to consider three different situations: the presence

of other people in the image beside the patient, extra skeletons detected by OpenPose, which do not

necessarily belong to a person, and keypoint misdetection.
(0,0) (640,0)

(0,480) (640,480)

x

y

Figure 4.1: Illustration of the method adopted to se-
lect the significant subject present in a
video frame.

As illustrated in figure 4.1, the presence of other peo-

ple in the image is easily overcome with the method pro-

posed in section 3.2.2. As explained before, we consider

a disk with its center in the image center. If more than

one person is detected in the image, the patient should

be placed inside the disk. If both subjects are inside the

disk, the patient is the one closest to its center.

Another situation that deserves attention is the detec-

tion of false skeletons by OpenPose. Since OpenPose

detects body parts in an image, it can detect body parts

in other objects, not necessarily a person, or detect body

parts from people that partially appear. Figure 4.2 shows

three examples of these situations.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 4.2: Examples of extra skeletons detected by OpenPose.

In the data provided by OpenPose, every extra skeleton is like another person in the image. A person

of interest, the patient, is someone whose spine is detected by OpenPose, which means that the three

spine keypoints Nose, Neck, and MidHip must exist, i.e., must have a confidence score higher than zero:
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stns > 0, stnk > 0, and stmhp > 0. Every extra skeleton whose spine is not detected is discarded.

The third situation is the keypoint misdetection or poor detection. Keypoints’ confidence score reveals

the more obvious misdetections. Thus, we consider a set of relevant joints among the selected joints,

without which we cannot perform the desired processing. We remember the set of selected joints (figure

3.13) - Js for scenario S1 and Jsright
and Jsleft

for scenario S2 and S3 (section 3.2.2). These relevant joints

are {ns, nk, rsh, reb, rwr, lsh,mhp, rhp} and {ns, nk, rsh, lsh, leb, lwr,mhp, lhp} for right and left affected

sides, respectively. For these joints, their confidence score has to be higher than a defined threshold.

This threshold was determined through image observation, which revealed that all the keypoints with a

confidence score below this value are significantly displaced from their true location. For the remaining

joints, it is a required condition a positive confidence score, stj > 0. Every frame not fitting these conditions

is removed from the data because they make the desired processing impossible.

Still, in a keypoints’ misdetection situation, there are cases with keypoints really badly detected but with

a fairly reasonable confidence score value. Figures 4.4(a) and 4.4(b) show two examples of this situation, in

which OpenPose provided a wrist keypoint in a different position from its real position. For these instances,

we correct the keypoints using the MATLAB imshow function, which allows displaying an image, analyze its

properties, and determine the position in the image of any desired point.

Another observed issue worthy of mention is the extreme keypoint misdetection for patient P12 [6] in

E1. In this particular case, the subject is wearing a light color sweatshirt, quite close to white, placed in front

of a white wall. As OpenPose detects body parts regarding image characteristics, it has extreme difficulty

detecting body joints correctly under these circumstances. Figure 4.3(c) and 4.3(d) give two examples of

this very poor keypoint detection. Due to the high number of keypoints badly detected in this case, patient

P12 was removed from E1’s data.

(a) Example 1 (b) Example 2 (c) Example 1 of patient
P12

(d) Example 2 of patient
P12

Figure 4.3: OpenPose keypoint misdetection with a reasonable confidence score value and for patient P12 in E1.
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4.1.3 The Three Upper Extremity Exercises

(a) S3 (b) S2

Figure 4.4: Patients in and perpendicular (S2) and oblique
(S3) position regarding the recording camera.

In section 3.2.3, we consider three possible scenar-

ios S1, S2, and S3 regarding patients’ positioning

in the image that should be respected in this pro-

cessing step. In scenario S1 a subject is placed in

a parallel position in front of the recording camera,

facing it. In scenarios S2 and S3, a subject in a per-

pendicular or oblique position, respectively, with the

affected arm facing the camera. It is fundamental to

relate these scenarios with the three exercises and

cases included in Lee et al. dataset [6].

In exercises E1 and E2, the study participants are positioned according to S1. In E3, the patients are

commonly completely aside with their affected arm facing the camera, according to S2. Also, for E3, some

patients are in an oblique position with their chest visible, suiting S3. This way, the Data Normalization step

is applied to each exercise following the respective patient positioning scenario. For the RB classification

method, the kinematic variables used as features are also distinct for each scenario, as described in 3.2.3.D.

4.1.4 Multilabel Dataset Characteristics

After all the data cleansing, we have to look at the final dataset obtained from this process. This final

dataset is the one used to train and validate our Multilabel Classification (MLC) models. At this point, we

have a reduced set of videos and frames, as shown in table 4.3, and consequently a lower number of

labels occurrences summarized in table 4.4. As stated in [40], before developing a classification model and

training it, it is crucial to know our dataset better to decide which model we should build. With this purpose,

we present a set of metrics that characterize a Multilabel Dataset (MLD) concerning its multilabel nature,

verifying the extent to which the data samples have more than one label assigned. While defining these

metrics, we use the same notation introduced in section 3.2.4 to define a multilabel problem.

Exercise #Patients #Videos/Trials #Frames

E1 14 140 25584

E2 15 149 25207

E3 15 149 25866

Total 438 76657

Table 4.3: Dataset after data cleansing.

The first metric is called cardinality, or Card, which is given by expression (4.1). This metric counts the

number of active labels per sample. It then averages the sum to the total number of data samples in the
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TF TR SE O N

E1 0 1059 7989 3488 17184

E2 0 910 5783 3160 17521

E3 5530 0 1241 0 19574

Table 4.4: Label occurrence after data cleansing (and without patient P12 for E1).

dataset. A high Card value means more relevant labels for each sample, i.e., the dataset is surely multilabel.

High cardinality is commonly associated with a dataset with a high number of labels per sample. A low Card,

near 1, means that one label is active for most data samples, i.e., the dataset is poorly multilabel.

Card(D) =
1

n

n∑
i=1

|Yi| (4.1)

As established in section 3.2.4, when we defined a multilabel problem, D denotes the MLD, n is the total

number of data samples, and Yi is the labelset assigned to the ith sample.

Another metric is the density, or Dens, a normalized version of the Card. It is the Card divided by the

number of labels in the dataset, k. Thus, Dens is given by the expression (4.2). This metric expresses how

representative the labels are in each sample in the dataset. High Dens values imply that the labels are

well represented for each sample. On the contrary, low Dens values mean more label dispersion, i.e., only

some labels are significant for most samples.

Dens(D) =
1

k

1

n

n∑
i=1

|Yi| (4.2)

Additionally, we also mention the Pmin metric, given by the expression 4.3. This measure is a percentage

of the data samples that have only one label active. A high Pmin percentage means that most samples are

single labeled, and the dataset is not greatly multilabel.

Pmin(D) =
∑

y′∈Y/|y′|=1

|y′|
n

(4.3)

One issue associated with the MLDs is label imbalance. Imbalanced MLDs have labels much more

prevalent than others. This issue poses a challenge when building and training multilabel classifiers and

influences the classification outcomes. To assess label imbalance we use the metrics IBLbl, given by

expressions (4.4). In the expression, the operator [[expression]] returns 1 if the expression inside is true and

0 otherwise. By computing the ratio between the number of occurrences of the most frequent label and the

other labels, we can know the dataset’s imbalance level concerning each label. For the most frequent label,

IRLbl = 1, and for the less frequent, it will be bigger than 1. Rarer the label higher the IRLbl value.

IRLbl(l) =
maxl′∈L(

∑n
i=1[[l′ ∈ Yi]])∑n

i=1[[l ∈ Yi]]
(4.4)
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With the described metrics, we determine the characteristics of our MLD and assess its multilabel nature

and label imbalance level. Table 4.5 compiles the metrics for each rehabilitation exercise, in which n is the

number of samples, in this context the number of video frames, and k is the number of labels. These calculi

do not include labels with no occurrences. As we can see in table 4.5 each exercise datasets has a low

Card, near to 1, which means that most data samples are single labeled. The Dens metric also has a

low value for the three exercises, meaning labels are not well represented for each frame. Additionally, the

three exercises have a high percentage of the Pmin metric, which indicates that most samples only have

one active label. Thus, with these metrics, we conclude that our dataset has a poor multilabel nature.

Regarding label imbalance, the IRLbl metric for each label in table 4.6 indicates for E1 and E2 ‘1: Trunk

Rotation’ is the less frequent label, being poorly represented in the dataset. For E3, the label ‘2: Shoulder

Elevation’ has a low number of occurrences. For the three exercises the label ‘4: Normal’ is the most

common one thus IRLbl = 1.

n k Card Dens Pmin%

E1 25584 4 1.1617 0.2904 83.8336

E2 25207 4 1.0860 0.2715 91.4032

E3 25866 3 1.0185 0.3395 98.1481

Table 4.5: Dataset characteristics.

‘0: TF’ ‘1: TR’ ‘2: SE’ ‘3: O’ ‘4: N’

E1 – 16.2266 2.151 4.9266 1

E2 – 19.2538 3.0297 5.5446 1

E3 3.5396 – 15.7728 – 1

Table 4.6: IRLbl for each label l ∈ L.

4.2 Classification Methods

Once we have our Multilabel Dataset (MLD), data cleaned, keypoints normalized, and we have perfect

knowledge about its characteristics, we can set the threshold values for the Rule-based (RB) method and

train the NN based classifier, and validate our models. This section describes the adopted metrics to

evaluate our models’ performance and validate them. For the RB method, we validate the kinematic vari-

ables presented and hypothesized in section 3.2.3.D, i.e., we check if these kinematic variables can detect

compensation patterns as we hypothesized. For the NN, we describe the explored hyperparameters. Addi-

tionally, we describe two experiments to apply to the obtained classification results.

We apply the classification methods to the normalized keypoints raw signal from the video frames and

filtered signal. To filter the body keypoints signal, we applied a moving average filter with a window of five

frames as in [6]. This procedure reduces the noise from keypoint acquisition.
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4.2.1 Evaluation Metrics

To evaluate our classification models’ performance on predicting compensation patterns from video frames,

we need a set of performance metrics appropriate to a MLC problem.

While in the binary context, the output result from a classifier can only be considered correct or incorrect,

in the multilabel field, the provided output is a set of labels, being considered completely correct, partially

correct, or totally incorrect [40]. This way, we need adequate metrics that acknowledge these possibilities.

In the multilabel field, evaluation metrics are categorized concerning two criteria “how the prediction is

computed” (1) and “how the result is provided” (2) [40]. The (1) refers to the application of the measure by

sample or by label. The (2) concerns the output provided as a binary bipartition or a label ranking. In this

work, we only consider binary bipartition, which consists of an output provided as a vector of 0s and 1s,

indicating the active labels for a data sample. These metrics work with the counts of True Positives (TP ),

True Negatives (TN ), False Positives (FP ), and False Negatives (FN ).

According with the criteria (1), two different groups of metrics emerge: example-based and label-based

metrics. Example-based metrics are calculated individually for each sample and averaged. Label-based

metrics are computed for each label and then averaged according with two strategies macro-averaging

and micro-averaging. In macro-averaging the metric is computed for each label and the result is averaged

dividing by the number of labels, k. This averaging method gives each label the same weight whether the

label is extremely frequent or infrequent, highlighting low performance on rare labels. In micro-averaging,

the counters of correct and incorrect predictions are joined together and then the metric is calculated, this

way infrequent labels are diluted between the most frequent ones [40, 43]. Equations (4.5) and (4.6) define

these averaging strategies, respectively, where EvalMet stands for any selected evaluation metric [40].

MacroMet =
1

k

∑
l∈L

EvalMet(TPl, FPl, TNl, FNl) (4.5)

MicroMet = EvalMet(
∑
l∈L

TPl,
∑
l∈L

FPl,
∑
l∈L

TNl,
∑
l∈L

FNl) (4.6)

For the multilabel context we use Precision, Recall, F1 score, Fβ score, and HammingLoss [40, 43]

to evaluate our models. These are example-based metrics, and the first four are calculated according the

two averaging strategies - macro-averaging and micro-averaging. To evaluate binary classifiers we use

Accuracy, Precision, Recall, F1 score, and the Mean Squared Error metrics. These evaluation metrics

are computed utilizing Python machine learning library, ‘Scikit-learn’ [43].

Precision expresses the classifier’s capability of not to label as positive a negative sample. This metric

is defined by the ratio between the number of correct predictions and total predictions given by (4.7). In

multilabel, it can be understood as the percentage of predicted labels truly significant for the sample [40, 43].

In this context, we give this metric special importance. We consider more valuable a classifier capable of

accurately predict true compensatory patterns and, in error, assume a normal movement (even if the subject
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is describing compensation), then indicate compensation for a normal movement.

Precision =
1

n

n∑
i=1

|Yi ∩ Zi|
|Zi|

=
TP

TP + FP
(4.7)

Recall refers to the classifier’s ability to detect all positive samples. It is the percentage of correctly

predicted labels in between all the truly active labels. It is defined by the ratio (4.8) [40, 43].

Recall =
1

n

n∑
i=1

|Yi ∩ Zi|
|Yi|

=
TP

TP + FN
(4.8)

F1 and Fβ scores are an weighed harmonic mean that combines Precision andRecall. In F1, Precision

and Recall contribute equally (equation (4.9)). In Fβ score, given by (4.10), the β parameter regulates the

weight of Recall. For β < 1, Precision has a higher contribution, while β > 1 Recall has more weight in the

metric [40, 43]. Since Precision is more importance to us, we give Recall a weight of β = 0.5.

F1 = 2× Precision×Recall
Precision+Recall

(4.9)

Fβ = (1 + β2)
Precision×Recall
β2Precision+Recall

(4.10)

Hamming Loss is the portion of mispredicted labels, given by equation (4.11). The operator |.| counts

the number of differences between the predicted and true labels. The number of prediction errors is accu-

mulated and normalized by the number of samples and labels [40, 43].

HammingLoss =
1

n

1

k

n∑
i=1

|Yi 6= Zi| (4.11)

4.2.2 Validation Method

After defining our classification methods, we need to select the best model hyperparameters that regulate

our learning model’s behavior. Model hyperparameters include NNs’ topology, number of layers, and neu-

rons. Learning algorithm hyperparameters are the learning rate, optimization method, and mini-batch size.

These settings are difficult to optimize through the training procedure. Also, training them on the training

set would lead to overfitting. This way, splitting the data set into a training set for learning model weights

and validation set to guide hyperparameters selection is the recommended approach. Once the learning

process is finished, we need to evaluate the algorithm to determine if it fulfills its purpose of identifying

compensation motor patterns with a good performance level and generalization capacity [39, 43].

Since we have a pretty small dataset in which each stroke survivor executes a task with practically

the same compensation patterns among movement trials with some labels poorly or nothing represented,

we resort to cross-validation to evaluate our models’ predictive ability and ensure generalization. Cross-
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validation consists of partitioning the dataset into small subsets. In the validation loop, all the sets except

one are used for training, and the remaining set is used for validation [39, 43]. In the end, the performance

measure determined in each loop, i.e., for each small subset, is averaged. Since all patients in a post-stroke

status present their own motor pattern, we apply Leave-One-Subject-Out (LOSO) cross-validation. Validat-

ing the models on each patient compensation pattern enables a better understanding of their classification

performance and generalization capacity.

4.2.3 Rule-based Classification Method

At this stage, it is essential to validate the formulated hypotheses regarding the kinematic variables defined

in section 3.2.3.D. This step is crucial to prove our hypotheses’ utility and efficiency to assess motor com-

pensation from 2D data. Additionally, the kinematic variables’ analysis allows us to determine the thresholds

values that condition the existence of compensation for the defined rules in section 3.2.4.A.

We split the kinematic variables’ validation splits into three parts. First, we validate the stated hypotheses

to assess movements in depth since we only work in 2D. More specifically, the hypotheses to assess Trunk

Forward and the Other compensation behavior, trunk moving backward, for S1 and S2, and trunk tilt for

S3 (section 3.2.3.D). We intend to approve both or one hypothesis and choose the best one. Second,

we present the kinematic variables’ variation over time regarding their initial value (t = 1), proving they

can assess the expected motion pattern with the dataset’s data. Third, we present additional experiments

validating the kinematic variables that assess motion behaviors not observed in the dataset.

4.2.3.A Hypotheses to Assess Movements in Depth

As mentioned, we formulated two hypotheses to detect movements performed in depth to overcome the

lack of 3D positional information. To validate these hypotheses we recorded a video in similar conditions of

the dataset videos [6], with the camera placed nearly 2.5 m away from the subject, and with a resolution of

640×480 pixels. In these videos, the subject simulated all the compensation patterns implying a translation

in depth of the torso for the three exercises. For E1 and E2, the subject simulated Trunk Forward and trunk

moving backward (Other) during reaching. For E3, the subject tilted the torso (Other) while moving the

cane forward and backward. In this experiment, the subject is a researcher with knowledge of this thematic

and indirect experience with rehabilitation after stroke.

The first hypothesis is to assess depth movements tracking the changes in the subject’s head size. Thus,

we look at the head’s area variation over time for each movement pattern and exercise. Figures A.5 to A.7,

from appendix A.5.1, expose the changes in the head size while the subject is moving the trunk forward

and backward for E1 and E2, and tilting the torso for E3. We infer that our hypothesis is not correct. When

the subject moves forward, the head’s area (figure 3.17(a)) decreases due to a reduction in the distance

between the Nose and Neck joints. Similarly, when the subject moves the torso backward, the head’s area
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gets smaller, validating our hypothesis. In E3, when the subject tilts the torso while moving the cane forward

and backward to its initial position, the absolute head size gets bigger, confirming our hypothesis.

To support this hypothesis’s validation, it is relevant to examine head area changes in dataset cases

since we are working with them and following the recording conditions [6]. However, in the dataset, only

trunk moving backward (Other) is observed. Figure 4.5 exposes an example for E2 (A.8 for E1). Also, in

these cases, the head size reduces when the patient moves the trunk backward. Then, we can affirm that

through head size variations, we can assess this compensation pattern.

Figure 4.5: Head area over time, revealing trunk moving backward (Other) observed in the dataset for E2.

The second formulated hypothesis implies assessing the head’s translation in WZ provided by the Open-

Face toolkit. Figures A.9 to A.11, from appendix A.5.1, show the variation of the head’s pose when the

subject moves the trunk and backward for E1 and E2, and tilts the torso for E3. When the subject moves

the trunk forward and backward, the head performs a negative and positive translation in WZ, respectively,

confirming the hypothesis. However, in figure A.10 for E2, we can notice that OpenFace could not detect

head translation under the recording conditions. Another example is the one from figure A.11, for which

OpenFace also could not detect head displacements, being the signal provided null.

Again, to support these results, we use the same example of a trunk moving backward from the dataset

for E2 (A.12 for E1). Equally, as shown in figure 4.6, OpenFace provides a null signal, making impossible

for us to assess head’s pose in depth.

Figure 4.6: Head translation over time in WZ, revealing trunk moving backward (Other) observed in the dataset for E2.

Based on these results, we consider that OpenFace cannot detect head pose from an image with low

resolution, 640 × 480 pixels, and the subject placed at a significant distance away from the camera. Also,

OpenFace has increased difficulty in detecting head’s pose when the subject’s face is not facing the camera,

which makes sense since OpenFace derives head pose from the detected facial landmarks, which is proven

with the example exposed for E3 in figure A.11.

To support this theory, we recorded videos in the same conditions (subject ≈ 2.5 m from the camera),

with a higher recording resolution, 1920× 1080 pixels, to verify if in this case there are signal loss. Figures

A.13 and A.14 show head’s translation in WZ when the subject moves the torso forward and backward for

59



E1 and E2. As observed, with a higher resolution video, OpenFace could measure the head pose and

the changes in the pose support our formulated hypothesis. Additionally, figure A.15 shows the translation

in WZ for E3 in which the subject tilt the trunk while moving the cane forward and backward to its initial

position. In this case, OpenFace successfully detected translation since the displayed curve presents a

noticeable absolute change in the head pose in WZ.

With all the presented outcomes to validate the formulated hypotheses to assess movements in depth,

or choose the one that best fits our demands, we decided to move on with the hypothesis 1 - detection of

the compensation patterns through the head area. We chose this hypothesis mainly because it is the one

that enables us to detect movements in depth with the data provided in the dataset. Also, it prevents us

from confronting situations of signal loss in face landmark detection.

4.2.3.B Kinematic Variables to Assess Motion Patterns Observed in the Dataset

Having chosen the hypothesis that best assesses movements in depth, it is now important to validate

the kinematic variables used to detect other compensation patterns with data from the dataset. When

we evaluated the hypotheses to assess movements in depth, kinematic variables to assess torso moving

backward (Other) behaviors were validated. Now, we need to validate the other compensation patterns

observed in the dataset - Trunk Rotation and trunk to tilt (Other) in E1 and E2, Trunk Forward in E3, and

Shoulder Elevation in the three exercises.

The formulated hypothesis to assess torso rotation is detailed in section 3.2.3.D. Figure 4.7 illustrates an

example from the dataset of Trunk Rotation for E1 (A.16 for E2). The patient rotates the torso while trying

to reach the target position. As it is observable, the displayed curve shows exactly what we hypothesized,

with the elevation angle of both shoulders (falling for the opposite shoulder) exhibiting a similar pattern.

Figure 4.7: Patient shoulders’ elevation angles over time describing Trunk Rotation for E1.

As in previous works, shoulder elevation is measured in E1 and E2 with the shoulder elevation angle.

Figure 4.8 illustrates an example of a patient executing this compensation behavior for E2 (A.17 for E1), in

which the presented curves show clearly the elevation.

For E1 and E2, we also validate the trunk tilt compensation pattern (Other). Figure 4.9 illustrates this

compensation pattern measured with the tilted angle of the spine for E2 (A.18 for E1).
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Figure 4.8: Patient affected shoulder elevation angle revealing Shoulder Elevation for E2.

Figure 4.9: Patient tilted angle of the torso describing a trunk tilt (Other) for E2.

In E3, only Trunk Forward and Shoulder Elevation are observed. Figure 4.10 shows the tilted angle

of the spine and a positive displacement of the Neck joint regarding its initial position, which proves the

Trunk Forward movement occurrence since the BX axis is directed to the front of the subject. Figure

4.11 presents the variable used to assess Shoulder Elevation, the displacement of the shoulder in BX

regarding the Neck joint. As we can see, the elevation is noticed from frame 120, which makes sense since

shoulder elevation is mainly visible when the patient is trying to take the cane back to its initial position.

Figure 4.10: Patient P06 tilted and of the spine and shoulder displacement over time, describing Trunk Forward in E3.

Figure 4.11: Patient P05 shoulder displacement over time, describing Shoulder Elevation in E3.

Since not all the compensation patterns considered in this work are observed in the dataset for each

exercise, we recorded new videos to validate the kinematic variables that assess them. These videos

follow the dataset video collection conditions and properties. At this stage we only investigate torso moving

backward and torso rotation patterns in the scenario of E3. Regarding this experiment, the results are

displayed in section A.5.3 from appendix A.
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4.2.4 Neural Network Classification Method

In section 3.2.4.B, we describe our NN approach to assess compensation motor patterns, which consists

of an ensemble of a binary (C1) and a multilabel (C2) classifiers. First, with C1, we apply binary classi-

fication to determine if compensation behaviors exist in video frames. Second, we perform MLC with C2

to specify the described compensation patterns in the frames inferred from C1 results. Following Lee et

al. [6] work and since we are working with the same dataset, for both classifiers we explore diverse model

architectures with one to three hidden layers with several hidden units (i.e. {16, 24, 32, 48, 64, 96, 128, 192,

256, 384, 512} hidden units). We apply an adaptive learning rate with values for the initial learning rate of

{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}. We also adopt the ‘Adam Optimizer’ and a mini-batch size of

5. With a small series of experiments, we selected a number for the maximum iterations of 550, in which

the solver converges. Regarding hidden layer activation function, for C1 we selected ‘ReLU’ function and

for C2 we tested with ‘ReLU’ and ‘tanh’ activation functions. Additionally, for C2, we apply One-vs-Rest

multilabel strategy to deal with this multilabel problem, mentioned in section 3.2.4. We implement and train

our classifiers using ‘Scikit-learn’ Python library [43].

4.2.5 Filtering of the Classification Results

Section 3.2.5 expresses the assumption of needing to filter the classifier results. As described, the filtering

step determines the median value of a set of video frames’ classification results, which leads to the final

classification decision. Given the results obtained with our classifiers for each video frame, we examine

this filtering process for diverse frame window sizes - {5, 7, 9, 11} frames - in which we compute the median

predicted label. Thus, with the evaluation metrics from 4.2.1, we evaluate the median predicted labels

concerning the median true labels for each window size.

From the labeling process described in 4.1.1, another issue emerges regarding the results that we might

obtain in classification. While labeling the dataset, we assign labels to frames indicating compensation

patterns, in which those are visible, and thus including frames in which a patient is starting or ending

describing a compensation. In these, patterns are not very pronounced. We call these sets of frames of

borders. Given this, we assume a high probability of low classification performance when identifying motion

patterns’ transitions - from ‘Normal ’ movement pattern to compensation patterns and vice-versa.

Figure 4.12 schemes what we consider as borders in the set of frames of a movement trial video. In

”case 1”, the chart illustrates a subject describing a ‘Normal ’ movement without pattern transitions and thus

without borders. In ”case 2” is shown a transition from a ‘Normal ’ movement to a compensation behavior. In

”case 3” and ”case 4”, there are two transitions. Suppose the patient describes an isolated compensation

pattern during a small set of frames, below a defined number of frames that compose a border. In that

case, we consider a border the first transition set of frames. Otherwise, a border is every transition at the

beginning and end of a compensation description. We experiment with borders of 5 and 10 frames. To
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verify if classifying the frames composing the borders affect performance metrics, we remove the borders

from the predicted labels and true labels and apply the evaluation metrics again.

'Normal'

1 type of
compensation

2 types of
compensation

1 type of
compensation

'Normal'

2 types of
compensation
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1 type of
compensation
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2 types of
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border

Case 1

Case 2

Case 3

Case 4 border

border

border border

border

border

border

Figure 4.12: Movement pattern transitions described in a set of frames which we call borders.

4.3 Virtual Coach

We evaluate our VC through a set of experiments with a group of volunteers. We aim to investigate the

system’s hedonic and utilitarian value, systems’ performance, and users’ use intention. Thus, we introduce

the following hypotheses:

H1 There is a disparity between stroke survivors volunteers and the other volunteers among the different

perceptions about the system;

H2 There is a difference in the perceived virtual coach utilitarian value between older adults and younger

adults since stroke is common among older adults and the elderly;

H3 Hedonic value perceptions are affected by the virtual coach performance monitoring exercise perfor-

mance, detecting compensation, and interaction model awarenesses;

H4 Hedonic and utilitarian value perceptions affect users’ intention to exercise with the virtual coach.

The initial experimental design was a field experiment with patients in a post-stroke status under rehabil-

itation in a hospital facility. Due to the current global situation of the COVID-19 pandemic, we had to adapt

our experimental protocol. The experimental procedure was thought not to harm the participants. The

data acquisition and storage process is in agreement with the General Data Protection Regulation (GDPR).

To ensure these conditions, the Instituto Superior Técnico Ethics Committee reviewed and approved our

experimental protocol. This protocol followed Čaić et al. previous work [44].

Before the sessions with the volunteers the VC was tested. Later, it was tested in the laboratory con-

nected to the same WiFi network of the server.

4.3.1 Volunteers

We recruited a total of seven volunteers to exercise their limbs with our system. Given the pandemic situa-

tion, volunteers are among our closest social groups, such as family and close friends. When selecting the

participants, we aimed to gather a diverse group concerning age, sex, and stroke rehabilitation experience.

At least one participant had a stroke and undergone a rehabilitation process. More than one participant
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had close contact with a patient under rehabilitation. All participants are over 18 years old and own their

cognitive capabilities’ full potential, which guarantees the inexistence of obstacles in understanding experi-

ment directions, system instructions and cues, and the final questionnaire. Volunteers signed an Informed

Consent authorizing the recording of their image necessary to the normal system operation.

4.3.2 Experimental Setup

With the will to provide an affordable and accessible solution with a simple technical infrastructure, we only

use a laptop with a built-in webcam in this experiment. This is possible due to the developed UI to interact

with the user and the proposed methods to assess compensation from 2D positional data extracted from the

captured image by the webcam. By convenience, we use the RB classification algorithm, which enables an

easy result interpretation and adjust the rules’ threshold values to increase or decrease system sensibility

on detecting compensation.

The sessions took place in a domestic environment spacious enough to assure experimental conditions

similar to the data collection process described in [6]. The laptop was placed in from the volunteer with an

ideal distance of 2.5 m and an adequate position to capture the participant’s relevant body joints.

4.3.3 Experimental Procedure

At the beginning of the session, the responsible researcher introduced the study and experimental purpose.

The researcher properly explained the entire procedure and introduced the UI to the volunteer giving an

overview of its functionalities. The volunteers were asked to perform the three upper extremity exercises

with their arm - from their affected side due to stroke if it was the case, or from their non-dominant body

side. During the exercises, patients had to simulate the different compensation strategies mentioned in the

previous sections. Volunteers had to repeat the proposed movements at least five times. The entire session

should not exceed 30 minutes. In the end, each participant answered a questionnaire giving their feedback

about the VC and the interaction with it.

4.3.4 Data Collection

To investigate the VC perceived hedonic and utilitarian value, system’s performance, and users’ intention

to use the system, we gather information from the volunteers through a set of questions. With the ques-

tionnaire we aim to gather quantitative and qualitative data. The volunteers responded to each question on

a 5-point Likert scale (quantitative) - from ‘1 = Strongly Disagree’ to ‘5 = Strongly Agree’ - and a question

with open answer for each item - e.g., ”tell me more about it” - to gather more information on volunteers

opinion and ask a deeper promote a deeper reflection (qualitative). Table A.6 in appendix A presents the

questionnaire items. Due to their experience concerning stroke and stroke rehabilitation process, some

questions are only answered by volunteers that followed closely a post stroke rehabilitation process. Those

questions are Q4 on utilitarian value and Q1 on intention to use.
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5

Evaluation

This chapter presents the experimental results. First, we evaluate the two proposed Multilabel Classification

(MLC) approaches and analyze experiments applied to both methods’ classification results. Second, we

present the information collected from questionnaire respondents, who exercised with the Virtual Coach

(VC) through the UI, and a statistical analysis which validates the hypotheses raised in section 4.3. Finally,

we also present volunteers’ opinions and suggestions on the VC system. These results validate our system

for autonomous upper extremity rehabilitation therapy, mainly its efficiency and relevance.

5.1 Classification Results Analysis

In this section, we lean over each exercise at a time and evaluate each classification method individually

with the evaluation metrics introduced in section 4.2.1. Additionally, we present the experiments performed

over classification results detailed in section 4.2.5. In the end, we compare the methods for each exercise

and relate the differences noticed between them.

In the previous chapter, in section 4.1.4, we characterize our Multilabel Dataset (MLD) with proper

measures concerning its multilabel properties and label imbalance. Given the dataset attributes, we verify

that most of the dataset samples are single labeled, i.e., in most cases, patients only describe one kind of

motor compensation behavior. We can also affirm that some labels are poorly represented in the dataset.

Since this indicates label imbalance, we support our decisions regarding classifiers performance in micro-

averaging strategy for metric calculus, mentioned in 4.2.1. With macro-averaging strategy (section 4.2.1),

we can prove how the classifiers behave when trying to determine less frequent labels.

The classifiers are applied to two types of signals: the keypoints signal acquired with OpenPose and

then normalized (raw signal), and a filtered signal, which is also normalized (filtered signal). The signal is

filtered using a moving average filter. We compare the results for both signals and perform the experiments

on the predicted labels with the signal with which the classifiers revealed a better performance.

5.1.1 Exercise 1

As inferred from table 4.4, in section 4.1.4, for E1, Trunk Forward pattern is not observed, being excluded

from the video frames classification process to access compensation. As noticed, most of the samples

are singly labeled, with some labels poorly distributed and represented. These aspects are inferred from
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the measures characterizing the E1 MLD. It has a label cardinality pretty close to 1, Card(D) = 1.1617,

revealing that most video frames have only one label assigned. Density value of Dens(D) = 0.2904, shows

poor representation of dataset labels. Additionally, the dataset’s poor multilabel nature is also uncovered

by Pmin value. This measure indicates that 83.8336% of the samples are singly labeled. Regarding label

imbalance, looking at each label through IRLbl metric, we notice that the label ‘1:Trunk Rotation’ is the less

frequent one and label ‘4: Normal’ is the most frequent, which makes sense since ‘4: Normal’ is assigned to

every frame in which the patient is describing a good quality movement pattern or is at rest. These findings

on the E1 dataset should reflect in classification results.

5.1.1.A Rule-based Classification Method

After we have defined the threshold values that regulate compensation detection, we apply the rules, from

section 3.2.4.A, directly to the kinematic variables, computed from both raw and filtered signals. Figure 5.1

displays the evaluation metrics values expressing classifier’s performance for both signals.

Figure 5.1: E1 Rule-Based Multilabel Classifier Evaluation Results.

In figure 5.1, we can see that our classifier fulfills its purpose with a pretty good performance for both raw

and filtered signals, with a F1 score of 76.15% and 76.69% respectively. Nevertheless, we can easily verify

that the classifier performs slightly better for the filtered signal. This result is expected since the signal noise

was reduced, and abrupt changes in the acquired keypoints’ positions were smoothed. Without sudden and

sharp variations in the signal, the application of the rules based on a threshold value limiting the existence

of compensation works better. Although this difference is not significantly big, with a difference in F1 score

of 0.54%, we look at the classification results for the filtered signal in the remaining analysis. Concerning

HammingLoss, which shows the portion of labels mispredicted, it takes a value of 10.96% for the filtered

signal, which is pretty acceptable.
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Looking at the results obtained with the macro-averaging strategy, we can clearly notice that metrics’

values reveal a poor performance classifying rarer labels with a F1 score of 30.14%, differing 46.55% from the

F1 score obtained through micro-averaging. This reveals that the dataset has obviously a set of rare labels

poorly represented, which are badly classified, confirming the label imbalanced inferred from the dataset

characterization metrics. Concerning Recall, this metric is very affected when we give the same weight to

every label, which means that labels with few occurrences affect classifiers’ ability to detect positive labels.

Although this was not expected for this method because a training process is not involved - in which label

frequency and distribution have a great impact that reflects on classifiers’ performance - given that macro-

averaging highlights rarer labels mispredictions and we are working with a tiny number of labels, we can

recognize the penalty in the metrics computed through macro-averaging.

5.1.1.B Neural Network Classification Method

In this section, we evaluate the NN based approach. In this case, the classifier is trained to fit the training

data and predicted the correct labels. The resulting model performance is highly influenced by the number

of data samples, the number of labels, and labels’ frequency and distribution.

Figure 5.2, displays the better results obtained from C1 and C2 classifiers ensemble for both raw and

filtered signals. To perform binary classification, classifier C1 has one hidden layer of 16 units and an initial

value for the learning rate of 0.001. Classifier C2 has one hidden layer of 64 hidden units, an initial value for

the learning rate of 0.001 and uses the ‘tanh’ activation function.

Figure 5.2: E1 NN Based Multilabel Classifier Evaluation Results.

Figure 5.2 shows that for the NN based approach we got better performance for the raw signal with a

small difference of 1.93% on the F1 score. Again, for this method, there is a big difference between the

micro and macro averaging strategies to compute Precision, Recall, F1, and Fβ , revealing the existence

of rare labels and many mispredictions for these when compared with the most common labels, confirming
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the dataset characteristics. However, this is an expected outcome for this method since the classifier takes

as input very few samples of some labels, making difficult its learning process on how to identify those few

compensation patterns properly.

5.1.2 Exercise 2

Exercise 2 has similar characteristics to E1. As described in section 4.1.4, label ‘1: Trunk Rotation ’ is

the less frequent one, expressed by an IRLbl value for this metric of 19.2538 and label ‘4: Normal ’ the

most frequent. This exercise as a label cardinality of Card(D) = 1.0860 and a density of Dens(D) = 0.2715,

indicating that most exercise samples have one single label assigned and rarer labels are badly represented

among samples. The percentage of single labeled samples confirms this, Pmin = 91.4032%. As for E1, for

E2, we verify how the label imbalance issue reflects in classifiers performance.

5.1.2.A Rule-based Classification Method

For E2, we applied the same rules defined in section 3.2.4.A, but with adequate threshold values condition-

ing the existence of compensation in E2 scenario. Figure 5.3 presents the evaluation results obtained with

the RB classifier.

Figure 5.3: E2 Rule-Based Multilabel Classifier Evaluation Results.

As we can see in figure 5.3, for E2 the rules had a lower classification performance, with a F1 score of

58.69% for raw signal and 60.20% for filtered signal, performing better for the latter. For the filtered signal, the

classifier reveals a value of Precision of 55.45%, meaning that the classifier has a poorer ability to identify

truly positive labels for this exercise and with its thresholds. Also, it has a percentage of mispredictions of

HammingLoss = 18.74%. In comparison to E1, this lower performance reveals that for E2 it was harder to

find threshold values good enough to fit all the patients’ movement patterns while executing the exercise.

68



When looking at the differences between the metrics computed through micro and macro averaging,

there is a big difference between both, revealing the low number of occurrences for some labels in the

dataset, which are also poorly represented. Also, it is worth noting that in macro-averaging, the value of

Precision is higher than the value of Recall, giving the idea that label imbalance affects mostly classifier’s

capability to find all the positives labels. These differences between values from micro and macro averaging

confirm the findings of the dataset characteristics previously described.

5.1.2.B Neural Network Classification Method

For E2, we figured out the best configuration for classifiers C1 and C2 for both raw and filtered signals after

trying distinct combinations of hyperparameters. For binary classifier C1, we used a network of two hidden

layers of 16 units and an initial value for the learning rate of 0.001. For the multilabel classifier C2, we used

one hidden layer of 16 units, an initial value for the learning rate of 0.01, and ‘tanh’ activation function.

With this method we obtained the results displayed in figure 5.4. It is clearly observable that, for both raw

and filtered signals, this classifier had much better performance detecting compensation than the RB one,

which is expected since through the training process, the classifier can fit the model’s parameters to the

provided input data, i.e., adapt the parameters to the different movement patterns described by the patients

while executing the exercise. The model had better performance for the raw signal with a F1 = 72.56% and

HammingLoss = 15.02%.

Figure 5.4: E2 NN Based Multilabel Classifier Evaluation Results.

Analyzing the values from micro and macro averaging, we see a big difference between them. For

example, F1 score shows a difference of 43.35% for the raw signal, confirming the existence of rare labels

badly represented and confirming the dataset characteristics, which greatly impact classifiers’ performance.
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5.1.3 Exercise 3

Exercise 3 has very different characteristics from E2 and E3, starting with patients positioning scenario and

kinematic variables used to assess motor compensation. For this exercise, only labels ‘0: Trunk Forward’,

‘2: Shoulder Elevation’, and ‘4: Normal’ occur as detailed in table 4.4 (section 4.1.4). Thus, only three

labels were considered in the model development and the classification results’ analysis. This exercise has

a label cardinality of 1.0185 and a label density of 0.3395, which means that the dataset is poorly multilabel.

However, labels are better represented in the E3 dataset in comparison with E1 and E2. The Pmin measure

confirms the dataset poor multilabel nature indicating for E3 98.1481% of the samples are single labeled,

i.e., for the entire dataset in most video frames, patients are describing only one compensation behavior.

From table 4.6, we can see that as for E1 and E2 label ‘4: Normal’ is the most frequent one, followed by ‘0:

Trunk Forward’ and ‘2: Shoulder Elevation’, which is the less frequent with IRLbl = 15.7728.

5.1.3.A Rule-based Classification Method

For E3, we apply a set of rules (section 3.2.4.A) to specific kinematic variables from section 3.2.3.D which

enable the assessment of motor compensation in scenario S2 concerning patient positioning in front of the

camera. After we specify the threshold values for the rules that carry out compensation detection and apply

them to each patient pattern, we obtain the figure 5.5 results.

Figure 5.5: E3 Rule-Based Multilabel Classifier Evaluation Results.

In figure 5.5, evaluation metrics reveal classifiers’ good performance on detecting compensation for

both raw and filtered signals. However, it behaves better for the filtered signal with F1 = 70.10%, which is

expected due to noise reduction. For this exercise, HammingLoss = 12.56% is lower than for E1 and E2,

revealing that this classifier produces fewer mispredictions.

The difference between the metrics computed through micro and macro averaging strategies exposes
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that some labels are rare and poorly represented in the dataset. This difference for F1 score is 47.65%,

which makes sense since we only have three labels for this exercise. Besides Normal motor patterns only

Trunk Forward occurs with higher frequency.

5.1.3.B Neural Network Classification Method

For E3, C1 is a network with one hidden layer with 96 units and an initial value for the learning rate of 0.01.

Multilabel classifier C2 has one hidden layer of 16 units, an initial value for the learning rate of 0.001, and

‘tanh’ as the activation function. Through LOSO cross-validation we obtain the results displayed in figure

5.6 concerning model performance on assessing compensation.

Figure 5.6: E3 NN Based Multilabel Classifier Evaluation Results.

From figure 5.6, we can understand that this model had better performance than the RB. These results

are expected since a learning algorithm fits its parameters to the input data, resulting in a better prediction

capacity than a simple RB algorithm. As opposed to what is observed previously for the NN based approach

for E1 and E2, the classifier shows better results for the filtered signal with F1 = 79.87%. However, for this

classifier, HammingLoss has a higher value of 14.31%, which means that even though this model has better

performance, it provides more mispredictions.

Similar to what is observed previously, a big disparity between the results obtained through micro and

macro averaging is visible. When all the labels have the same weight, these metrics are penalized.

5.1.4 Filtering of the Classification Results

This section analyzes the impact of filtering the classification results, i.e., filtering the predicted labels, in

the evaluation metrics that reveal the models’ classification performance. Classification results filtering

experiment is described in section 4.2.5.
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Tables 5.1 and 5.2, present F1 score and HammingLoss resulting from the predicted labels filtering and

borders (frames corresponding to movement patterns transitions) removal respectively, for all the exercises

and classification approaches.

From table 5.1, we can see that for almost all the exercises and classification approaches, and all window

sizes in which we filter the labels, the evaluation metrics increase their values, indicating a benefit from the

filtering step in classification accuracy. Filtering a window of 11 frames clearly provides a better result for

the RB and NN approaches for E1 and E3, respectively. Filtering a window of 9 frames gives good results

for the NN for E2. For E1 NN approach, a window of 9 frames revealed an increase in the value of F1 score,

and a window of 11 frames provided a better value concerning HammingLoss. For E3 RB approach, the

filtering produced a decrease on the F1 score value.

From table 5.2, removing the borders result on better values for the metrics. This fact supports the

assumption that the classifiers might have greater difficulty predicting correctly the labels of frames in which

the patients are describing movement pattern transitions, in which compensation patterns are not much

pronounced, penalizing the metrics. This assumption suits the RB classifier since it is improbable that a

simple threshold is robust enough to detect a compensation pattern described for different subjects with

distinct motor behaviors when the patient begins or finishes describing it. Removing borders of 10 frames

provides an improvement of the evaluation metrics values.

Result Filtering

E1 E2 E3

W. Size Metrics RB NN RB NN RB NN

5
F1 76.71 % 69.87 % 60.15 % 72.99 % 69.94 % 79.92 %

H.Loss 10.96 % 17.78 % 18.77 % 14.80 % 12.62 % 14.28 %

7
F1 76.91 % 69.85 % 60.59 % 72.96 % 69.90 % 79.86 %

H.Loss 10.85 % 17.82 % 18.57 % 14.79 % 12.64 % 14.31 %

9
F1 76.95 % 70.23 % 60.25 % 73.46 % 70.08 % 79.66 %

H.Loss 10.84 % 17.59 % 18.70 % 14.53 % 12.57 % 14.43 %

11
F1 77.85 % 70.22 % 60.30 % 73.08 % 69.83 % 80.23 %

H.Loss 10.48 % 17.57 % 18.67 % 14.72 % 12.67 % 14.11 %

Table 5.1: Evaluation results concerning F1 score and HammingLoss after label filtering.

Without Borders

E1 E2 E3

W. Size Metrics RB NN RB NN RB NN

5
F1 77.83 % 70.86 % 60.87 % 74.42 % 71.26 % 81.47 %

H.Loss 10.43 % 17.21 % 18.44 % 13.99 % 12.06 % 13.18 %

10
F1 78.62 % 71.44 % 61.30 % 75.88 % 71.99 % 82.61 %

H.Loss 10.05 % 16.95 % 18.20 % 13.17 % 11.74 % 12.40 %0

Table 5.2: Evaluation results concerning F1 score and HammingLoss after borders removal.
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5.1.5 Result Comparison

Having evaluated each proposed approach to assess motor compensation for each rehabilitation exercise,

in this section, we compare the results obtained in the evaluation metrics among the two methods and

exercises. To do so, we gather, in figure 5.7, F1 score and HammingLoss measures for the signal with

which classifiers better performed and highlights the better approach for each exercise.

Figure 5.7: Evaluation Results for the three exercises.

Looking at figure 5.7 we can immediately notice that for E1 RB approach performs better, with a F1 =

76.69%, and for E2 and E3 the NN based approach presents better results, with F1 = 72.56% and F1 =

79.87% respectively. An evident difference between these exercises’ datasets is their percentage of single

labeled samples, Pmin. For E1, Pmin indicates 83.8336% of the samples are single labels. For E2 and

E3, 91.4032% and 98.1481% of the samples are single labeled. This makes us believe that the RB method

handles better a scenario with a not so poor multilabel nature. On the other hand, the NN based approach

is more efficient when the problem is closer to a binary classification problem.

A particular case is E3. Although for this exercise the NN based approach performs better, it has a higher

value of HammingLoss, meaning that this approach provides more mispredictions than the RB approach.

For all methods, the differences between the metrics computed through micro and macro averaging

reflect the existence of extremely rare labels badly represented in the dataset, reflecting classifiers’ difficulty

detecting less frequent compensation patterns, which penalizes the evaluation metrics values.

Another detail noticed is the huge values of the SD. This means that the classifiers determine the

compensation patterns described by some stroke survivors with better performance than others. One

example that has influence in the SD values is described in appendix A.6. Another situation, also detailed

in appendix A.6, is the fact that for E1 and E2, only one patient performs Trunk Rotation, which leads to

the failure on evaluating classifiers’ capacity to detect this pattern with cross-validation support the need for
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more data samples, mainly representing rarer movement patterns.

In general, we obtained better results for the NN based approach, which was expected besides label

imbalance since this approach automatically learns models weights to fit the input data and be prepared

to detect new motor patterns. In contrast, the RB approach only works with threshold values that limit

compensation existence. Since the NN based shows evidence of better performance, extremely related to

the fact that our multilabel problem is very close to a binary problem, this approach would perform even

better with more data, more examples of motor patterns, in particular of rarer compensation behaviors.

Concerning the RB method, although it revealed better performance just for E1, it gathers a set of

benefits. This approach has the advantage of not be dependent on the number of data samples with a

balanced label representation, which enables the accurate detection of compensation even when we have

a small dataset. Additionally, this approach has the advantage of interpretability. Due to its simplicity, we

can easily interpret the obtained results and the procedure to reach those results, a feature that is pretty

relevant to this application problem - assessment of movement quality of patients performing rehabilitation

exercises - since for therapists is important to know why the system identified specific motor behaviors to

perform adequate patient evaluation and apply proper therapy approaches.

5.2 Virtual Coach Validation Results

In section 4.3 we detail the empirical experiment procedure conducted with a group of volunteers to inves-

tigate the perceptions of the Virtual Coach (VC) hedonic and utilitarian value, system’s performance, and

users’ use intention. Additionally, we establish a set of hypotheses on volunteers’ perceptions of the VC

concerning their experience with stroke, age, and short experience with the system. This section presents

the quantitative and qualitative data gathered through the questionnaires about the system and statistical

analysis to investigate each raised hypothesis.

Table 5.3 displays the volunteers’ profiles, with three females and four males. Three volunteers are

between 25-34 years old, two are 55-64 years old, and two are 65-74 years old, which means that most

volunteers are older adults.

Only volunteer V01 had a stroke and directly experienced a rehabilitation process five years ago. Before

the stroke, this subject was left-handed. However, the stroke left his left side more affected, so it was

evaluated during the experiment. Another subject had a rupture of the shoulder rotator tendons, restricting

her movements. Therefore, this subject naturally performs compensation movements with the arm when

executing reaching tasks. Other volunteers used their non-dominant side to perform the exercises.

Additionally, three volunteers experienced a rehabilitation process indirectly through a friend or relative.

The remaining volunteers did not have much contact with a stroke rehabilitation process.
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VID* Age Sex ND/A side (a) (b) (c) (d)

V01 25-34 Male Left Yes Yes Yes Yes

V02 55-64 Female Left Yes No Yes Yes

V03 65-74 Female Left Yes No Yes Yes

V04 65-74 Male Left Yes No Yes Yes

V05 25-34 Male Left Yes No Yes No

V06 55-64 Male Left Yes No Yes No

V07 25-34 Female Left Yes No No No

Table 5.3: Volunteers’ profiles: (a) Knows what a stroke is (b) Had a stroke (c) Some relative or close friend had a
stroke (d) Followed the rehabilitation process closely. *Volunteer ID, **Non-dominant/Affected side.

5.2.1 Quantitative Results

The questionnaire provided quantitative data illustrating volunteers’ perceptions about the system’s hedonic

and utilitarian values, system performance, and users’ intention to use. Since we only have data from seven

volunteers first, we display the numeric results obtained for each item of each domain concerning the 5-

point Likert scale with a violin plot. In figure 5.8, the violin plot shows the distribution of answers to each

category’s questions concerning the 5-point Likert scale and a kernel density estimation of the distribution.

Concerning the perceptions of the system’s hedonic value (figure 5.8(a)), the violin plots reveal that

most volunteers enjoyed exercising aided by the VC, felt motivated and interested while performing the

exercises with the system, and found the interaction established with them - through the coach speech,

provided feedback, recommendations on posture correction, and encouragement - extremely pleasurable.

One volunteer revealed a more neutral opinion concerning the system interaction features, and another

felt a bit bored while exercising. From 5.8(b) we infer that most volunteers find the system strongly useful

to help patients improve their upper extremity movement quality. They find it valuable to help the patients

exercise when they cannot have therapists’ supervision and exercise independently. Study participants

who answered Q4 believe that this system can help overcome some of the obstacles found in rehabilitation

clinics and hospital facilities. Only one subject expressed a less agreeing opinion about the system’s utility

in aiding patients exercising alone. Regarding user’s intention to use (figure 5.8(c)), all subjects revealed

that they would confidently keep using the system to help them exercise in the case of being under a

rehabilitation process. Figure 5.8(d), shows that volunteers’ perception of the system’s performance is

that it performed really well and fulfills its purpose of monitoring the exercise and detecting compensation

behaviors. Generally, volunteers felt that they could trust the system evaluation of their motor performance.

To investigate the raised hypotheses in section 4.3 on the perceptions about the system of users with dif-

ferent experiences regarding stroke (H1), how user’s perceptions differ with age (H2), and their experience

in the training session with the VC (H3 and H4), we perform statistical analysis.
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(a) Perceived Hedonic Value. (b) Perceived Utilitarian Value.

(c) Users’ Intention to Use the System. (d) Perceived System Performance.

Figure 5.8: Perceptions of the Virtual Coach.

5.2.1.A Stroke Survivor vs. Other Volunteers

To investigate H1, since we only have one volunteer who is also a stroke survivor, we show the mean

perceptions for each evaluation dimension of the stroke survivor volunteer and the other subjects. Figure

5.9 exposes that stroke survivor was more critical with the system, giving a lower mean score for the

utilitarian (mean = 4) and system performance (mean = 3) and showing a less intention to keep using the

system (mean = 4). However, this difference is tolerably small. Other volunteers present a mean score

for system utilitarian value of 5.0 ± 0.0, for intention to use of 5.0 ± 0.0, and for system performance of

4.5833 ± 0.5845. Concerning hedonic value perception, the stroke survivor and the remaining volunteers

equally enjoyed the training and interaction with the system.

5.2.1.B The Age Factor

Hypothesis H2 raises the assumption that older adults have a different perception of the system utilitarian

value from younger adults. We believe older adults find the system more valuable, having a more positive

perception about VC utilitarian value. Mean scores for this evaluation category between both groups should

reveal this assumption. Before we investigate this hypothesis, we look at the mean scores for each age

group (figure 5.10(a)) and observe how these values vary with age among the different dimensions. Older

adults, with age over 55 years old, find the system more enjoyable and consider that the system performs

very well and fulfills its purpose. They find the system more relevant and useful (mean = 5.0 ± 0.0), and
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Figure 5.9: Stroke Survivor and Other Volunteers Perceptions of the Four Dimensions.

express a clearer intention to keep using the system (mean = 5.0± 0.0).

To support the idea of different perceptions of utilitarian value between older and younger adults and

investigate H2, we perform an independent-sample t-test and determine if the mean scores between both

groups are statistically significantly different. We consider older adults the group of volunteers over 54

years old (four subjects), and younger adults the remaining volunteers. More specifically, the volunteers

with 25-34 years old (three subjects).

Before running an independent-sample t-test, it is important to note that both groups have a small and

unequal number of subjects. This condition can lead to a not trustworthy p − value. First, we perform a

Levene’s test to verify the equality of variances of both groups. With this test we get Levene’s test statistic

F = 22.857 and p − value = 0.005. Since F reveals a huge value and the p − value is really small, we

assume that both groups’ variance is unequal. This fact influences how the test statistic and the degrees of

freedom are calculated in the independent-sample t-test.

With the independent-sample t-test we verify that younger adults have a mean perception for the util-

itarian value of 4.6667 ± 0.5774 and older adults of 5.0 ± 0.0 (figure 5.10(b)). The groups have a mean

score difference of 0.3333. The test statistic of the null hypothesis - younger and older adults have equal

mean score for the utilitarian value - is t(2) = 1 and p − value = 0.423. This means that we cannot reject

the null hypothesis and accept H2, with any significance level under 0.423. This test also gives us a 95%

confidence interval [−1.1009, 1.7676], which contains 0, meaning that these results are not very significant.

Consequently, we conclude that the difference in the utilitarian value between both groups is not significant.

5.2.1.C Volunteers Experience with the Virtual Coach

Now, we investigate hypothesis H3 - hedonic value perceptions are affected by the perceived system per-

formance - and H4 - hedonic and utilitarian value perception affects users’ intention to use. To investigate

these hypotheses, we correlate the dimensions and examine how they influence each other.
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(a) Perceptions of the Virtual Coach by Age Group. (b) Younger and Older Adults Perception of the System
Utilitarian Value.

Figure 5.10: Perceptions among younger and older adults.

Table 5.4 presents a summary of descriptive statistics and the Pearson correlation between hedonic and

utilitarian values, users’ intention to use, and system performance. The Pearson correlation coefficient (ρ)

measures the degree of correlation of the distinct dimensions. A ρ = 1 means a perfect positive correlation

between two dimensions, i.e., if one increases, the other increases. A ρ = 0 indicates the nonexistence of

correlation between two variables, i.e., they do not linearly depend on each other. Moreover, a ρ = −1, two

variables have a perfect negative correlation, meaning that if one increases the other decreases.

Table 5.4 shows a correlation between hedonic value and system performance with a Pearson correla-

tion coefficient of ρ = 0.525, revealing that these dimensions are linearly correlated. If the mean value of the

perceived system performance increases, it positively influences the perceived hedonic value, supporting

H3. Intention to use has a perfect linear correlation with all the other dimensions (ρ = 1). If the mean

perceived hedonic and utilitarian values increase, users’ intention to use the system grows, supporting H4.

H U IU SP

Hedonic Value (H) 1 0.031 1.000 0.525

Utilitarian Value (U) 0.031 1 1.000 0.746

Intention to Use (IU) 1.000 1.000 1 1.000

System Performance (SP) 0.525 0.746 1.000 1

Mean 4.54 4.86 4.75 4.36

SD 0.51 0.38 0.50 0.80

Table 5.4: Descriptive Statistics and Pearson Correlation.
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5.2.2 Qualitative Results and Discussion

Before the empirical experiment, we conducted some tests with the system respecting the established

condition - laptop with the webcam 2.5 m away from the subject - and to ensure it behaved as expected.

During these previous tests, while simulating motor compensation patterns during exercise performance,

the system behaved as predicted and detected compensation as expected.

The qualitative information gathered in the questionnaire confirms volunteers’ quantitative answers to

each question with the 5-point Likert scale. All subjects expressed how much they enjoyed the therapy

session with the system. They appreciated how the system monitors their movements and its reactions,

mainly its suggestions on their compensation behaviors. Also, they expressed that the displayed visual

markers and coach instructions, make the therapy with the VC very pleasant. Additionally, they found the

compensation detection pretty precise and the coach recommendations for posture correction very relevant.

Volunteers find the system pretty appropriate and useful to help patients perform rehabilitation exercises,

principally when they cannot have professional supervision and assistance. Some think that this kind of VC

can be valuable to overcome problems found in hospital facilities, essentially the lack of therapists to answer

the needs and demands of an extremely high number of patients. Some participants expressed that this

system would help them keep practicing and exercising their limbs with continuous use.

Concerning system performance, the subjects confirmed accurate compensation detection and its re-

liability and synchronized suggestion of a new movement trial. During some experiments, due to space

conditions, it was not possible to keep the laptop 2.5 m away from the subject, which influenced the system

performance. The system was sometimes unable to detect the body keypoints correctly. Also, the rectangle

that delineates subjects’ correct positioning revealed to be too small, constraining volunteers positioning

since they kept the body very close to the rectangle limits. Faced with this problem, a volunteer suggested

a bigger rectangle to give patients more space to move freely without giving the system the idea of incorrect

positioning. Also, the subject revealed feeling bored with this issue.

Another situation that made us violate the ideal conditions was older adults’ difficulty seeing well what

was displayed on the laptop screen. This highlights the need for a bigger screen to display the UI or a

camera independent from the laptop, which could be placed at the required distance to the subject.

The system had a slower performance in some sessions due to internet connection conditions, hav-

ing a slower response to volunteers’ movements. Some study participants highlighted the system’s slow

response to their movements. This aspect was overcome during the laboratory tests since the system

was connected to the same network of the server - in which the system performs the image processing

necessary to detect motor compensation and the subject’s arm positioning - having a faster response.

Concerning the coach exercise instructions, when the coach encourages the participants to reach the

target position (table A.1), some participants found misleading it referring to take their ”arm” upper for E1

and E2, and not their hand, enabling them to accomplish the movement the system was expecting. Also,
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about coach speech, a volunteer expressed that it could be more emotive and expressive.

Other subjects expressed that the VC’s interaction with them should be more stimulating and found

its instructions quite repetitive. These perceptions meet the VC requirements presented in section 3.1.1.

Real patients perform slow movements and need time to execute them. They also need to hear repetitive

instructions and encouragement to keep training. Another volunteer referred that this kind of independent

exercising only is possible with patients without extremely limiting physical conditions, which is correct since

this kind of therapy can only be prescribed to patients already able to execute it.

Since the stroke survivor volunteer has a direct experience of a long rehabilitation process, his opinion

about the system and suggestions are very relevant to our study. This volunteer commented that the system

should not be too sensitive to detect compensation, giving the patient time and opportunity to perform the

necessary movements to accomplish the proposed tasks and correct oneself without being constantly and

immediately corrected. This subject finds the system extremely relevant, diminishing therapists intervention,

and highlights patients’ need to keep practicing to improve their physical abilities. He states that this kind

of system is a good tool to stimulate patients’ motivation to get better and keep training. Additionally, he

supports the significance and accuracy of the compensation detection and posture correction suggestions.

However, he affirms some corrections may be difficult to perform autonomously.

As mentioned in section 4.3.2, we used the RB approach for the VC to assess compensation. During

the experimental sessions with the volunteers, we simulated the compensation behaviors considered and

identified some situations. For example, when a subject tilts his torso, the system sometimes assumes

that the subject elevates his shoulder. This assumption is understandable considering the classifier fails to

detect trunk tilt and assumes shoulder elevation since the subject’s shoulder is actually elevated compared

with its initial position. To overcome this issue, we could consider as a priority detect trunk compensation

behaviors. Since we consider that shoulder elevation and torso rotation can occur simultaneously, we could

first assess trunk rotation and then shoulder elevation. For other trunk compensation behaviors, once

detected, we could exclude the possibility of shoulder elevation and not proceed with its assessment. Of

course, these assumptions should be confirmed with therapists to ensure our RB approach updates would

really improve and not exclude the ability to detect some patterns.
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6

Conclusions & Future Work

This chapter summarizes all work components’ final results and conclusions concerning the evaluation of

the proposed methods. Additionally, we give some suggestions for future work.

This work aims to provide a solution to give answers to the increasing demands concerning stroke re-

habilitation therapy. The rise of in-home exercise recommendations leads to the necessity of proper, afford-

able, and accessible assistive systems to aid autonomous exercising and objective assessment measures

to track patients’ motor improvements.

In this work, we develop an image-based Virtual Coach (VC) capable of monitoring upper extremity

rehabilitation exercises focused on motor compensation reduction. The VC proposes three exercises (E1,

E2, and E3), assess users compensation patterns from video frames, and provides proper visual and

audio feedback and instructions through a UI. This only requires a simple technical setup composed of a

laptop and a webcam. We propose a method and objective measures to assess compensation from 2D

positional data. We investigate two Multilabel Classification (MLC) approaches - a Rule-based (RB) and a

NN based - to assess various compensation patterns for three exercises and compare them. The RB takes

the kinematic variables as input features and the NN approach normalized body keypoints.

In a previous step, we validate the hypothesized kinematic variables to assess compensation from 2D

body keypoints. Given variables’ behavior during exercise performance, we concluded that most of them

behaved as expected, enabling applying the RB method rules.

For exercise E1, the RB method performed better with a F1 = 76.69% than the NN and for exercises E2

and E3 the NN approach reveals better results with F1 = 72.56% and F1 = 79.87%. Given the datasets’

poor multilabel nature, we conclude that the RB approach handles better a multilabel scenario and the NN a

binary one. This conclusion comes from the fact that the E1 dataset has 83.8336% single labeled samples,

and E2 and E3 are tendentiously binary, with 91.4032% and 98.1481% single labeled samples, respectively.

Label imbalance also had a big influence on the evaluation metrics, mostly when calculated through macro-

averaging. Since NN based approach showed evidence of greater performance in general, we believe we

could get greater results with more data samples. Thus, we would benefit from a larger dataset with more

examples and a balanced representation of each motor pattern.

To evaluate our VC we recruited seven volunteers to exercise with it and gather their perceptions about

the system through a questionnaire. In general, the subjects found the system enjoyable with pleasant

interaction features. They found the VC really valuable to aid patients to exercise autonomously and com-

pensation assessment very accurate and following the feedback provided. However, improving some details
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could lead to better results, such as the system response speed and flexibility regarding patient position-

ing in the image. Since the VC used the RB method to assess compensation, we noticed some issues

during this experiment. In some cases, when users’ performed torso compensation, the system detected

shoulder elevation incorrectly because the shoulder was actually elevated even though this was not the

corresponding compensation behavior.

Given these results, we can affirm that we achieved the project objectives. We were able to assess

motor compensation from 2D positional data with pretty good accuracy. Our VC fulfilled its purpose and

met all the requirements concerning this kind of system.

6.1 Future Work

With the presented results and all the work developed during this process, we formulated some improve-

ments and future work suggestions.

To continue the investigation of ML assessment methods to detect motor compensation from 2D posi-

tional data, we suggest the development of a Recurrent Neural Network based method. Since this kind

of network processes sequential data, giving the model the body keypoints in sequential order, it could be

interesting to investigate how this approach benefits compensation assessment.

Concerning the assessment methods, our RB approach could be improved, giving priority to trunk dis-

placements over shoulder elevation patterns, to overcome the observed issue of shoulder elevation misde-

tection when a subject is displacing the torso.

To improve our VC, a more emotive and expressive speech would provide a more engaging therapy

experience to patients. The implementation of exercise adaptations, such as different exercise levels, which

update given user performance, would make the exercises more challenging, promoting compliance. Also,

VC could be adjusted to enable more flexibility regarding users’ initial position.

To evaluate the real impact of the VC in real stroke survivors under a rehabilitation process and gather

more solid perception about the system, this study could benefit from an empirical experiment of VC long-

term use. Also, evaluation of the system from therapists would give a clearer notion of its significance and

reliability and determine more improvements.
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Appendix A

A.1 Compensation Patterns
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Figure A.1: Examples of Motor Compensation.
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A.2 Virtual Coach Speech

Web App PT EN

Init web page > Olá! Bem vindo à sessão de terapia! > Hello! Welcome to the therapy session!

Menu web page > Selecione o exercı́cio e o lado afetado! > Select the exercise and the affected side!

Main web page
> Vamos exercitar o braço um pouco!
> Bora lá! Isto vai ser divertido!

> Let’s exercise the arm a little!
> Let’s go! This is going to be fun!

When the user exits
Menu and Main

> Foi um prazer ajudá-lo a exercitar!
> Espero voltar a vê-lo em breve!

> It was a pleasure to help you exercise!
> I hope to see you again soon!

Coach Actions PT EN

pos

‘position’
> Primeiro! Coloque-se dentro do retângulo.
> Posicione-se dentro do retângulo.

> First! Place yourself inside the rectangle.
> Position yourself inside the rectangle.

inr

‘instruction’

> [E1] Neste exercı́cio, vai simular que está a
levar um copo à boca.
> [E1] Imagine que está a levar o copo à sua boca.
> [E2] Neste exercı́cio, vai simular que está a
acender uma luz, ao tocar no interruptor.
> [E2] Bora lá, vamos acender a luz!
> [E3] Neste exercı́cio, vai mover uma vara para
a frente e para trás.

> [E1] In this exercise, you will simulate that you are
taking a glass to your mouth.
> [E1] Imagine that you are holding the glass in your mouth.
> [E2] In this exercise, you will simulate that you are
turning on a light by touching the switch.
> [E2] Let’s go, turn on the light!
> [E3] In this exercise, you will move a stick
forward and backward.

tar

‘target’
> Tente alcançar a posição indicada a verde.
> Vamos tentar chegar só até ao ponto verde.

> Try to reach the position indicated in green.
> We will try to reach only the green point.

tri

‘trials’

> Vamos lá mais uma vez!
> Vamos fazer outra vez.
> Mais uma vez!
> Novamente, realize o movimento.

> Come on one more time!
> Let’s do it again.
> Once again!
> Again, perform the move.

enc

‘encouragement’

> [E1 & E2] Tente ir mais acima com o braço.
Está quase lá!
> [E1 & E2] Leve o braço mais acima.
> [E3] Leve o braço mais à frente.

> [E1 & E2] Try going higher with your arm.
It’s almost there!
> [E1 & E2] Take the upper arm.
> [E3] Take your arm forward.

con

‘congrats’

> Está a ir muito bem! Continue!
> Excelente!
> Está a ficar em forma!
> Fantástico!

> It’s doing great! Continues!
> Excellent!
> You are getting in shape!
> Fantastic!

trr

‘Trunk Rotation’

> Tente não rodar tanto o tronco.
> Não mexa o tronco.
> Mexa apenas o braço, sem rodar o tronco.
> Não rode o tronco.

> Try not to rotate the trunk so much.
> Do not move the trunk.
> Move the arm only, without rotating the trunk.
> Do not rotate the trunk.

she

‘Shoulder Elevation’

> Mova apenas o seu braço.
> Não eleve o ombro.
> Tente sem elevar o ombro.
> Não puxe tanto pelo ombro.

> Move your arm only.
> Do not raise your shoulder.
> Try without raising your shoulder.
> Don’t pull so hard on the shoulder.

trd

‘Trunk Displacement’

> Mantenha o seu tronco direito.
> Endireite o tronco.
> Tente endireitar o tronco.
> Tente manter o tronco direito.

> Keep your torso straight.
> Straighten the trunk.
> Try to straighten the trunk.
> Try to keep the trunk straight.

Table A.1: Virtual Coach Speech.
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A.3 Web App

(a) Error message indication that required form fields
are unfilled.

(b) Exit confirmation.

Figure A.2: Virtual Coach Menu web page and warnings.

(a) Exercise 1. (b) Exercise 2. (c) Exercise 3.

Figure A.3: Virtual Coach Demo web page.

89



(a) Exercise 2 target position. (b) Exercise 2 target reached.

(c) Exercise 3 target position. (d) Exercise 3 target reached.

Figure A.4: Virtual Coach Main web page - Target position.
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A.4 The Dataset

Exercise Initial and Target Positions

E1. ‘Bring a Cup to the Mouth ’

Initial	Position Target	Position

E2. ‘Switch a Light On ’

Initial	Position Target	Position

E3. ‘Move a Cane Forward ’

Initial	Position Target	Position

Table A.2: Three upper extremity exercises with respective initial and target arm positions. The images of initial and
target positions are displayed with the body skeleton extracted with OpenPose.
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Label Compensation Pattern

‘0: Trunk Forward’

Initial	Position Compensation

‘1: Trunk Rotation’

Initial	Position Compensation

‘2: Shoulder Elevation’

Initial	Position Compensation

‘3: Other’

Initial	Position Compensation

Initial	Position Compensation

‘4: Normal’

Initial	Position Compensation

Table A.3: Labels to label the dataset video frames and respective examples of the observed compensation behavior.
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A.5 Kinematic Variables Validation

A.5.1 Hypotheses to Assess Movements in Depth

(a) E1

(b) E2

Figure A.5: Head area over time of a Trunk Forward simulation in similar conditions of the dataset.

(a) E1

(b) E2

Figure A.6: Head area over time of a trunk moving backward (Other) simulation in similar conditions of the dataset.

Figure A.7: Head area over time of a trunk tilt (Other) simulation in similar conditions of the dataset for E3.

Figure A.8: Head area over time, revealing trunk moving backward (Other) observed in the dataset for E1.
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(a) E1

(b) E2

Figure A.9: Head translation over time in WZ of a Trunk Forward simulation. Video with a resolution of 640 ×
480 pixels.

(a) E1

(b) E2

Figure A.10: Head translation over time in WZ of a trunk moving backward (Other) simulation. Video with a resolution
of 640× 480 pixels.

Figure A.11: Head translation over time in WZ of a trunk to tilt (Other) simulation. Video with a resolution of 640 ×
480 pixels (E3).

Figure A.12: Head translation over time in WZ, revealing trunk moving backward (Other) observed in the dataset for
E1.
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(a) E1

(b) E2

Figure A.13: Head translation over time in WZ of a Trunk Forward simulation. Video with a resolution of 1920 ×
1080 pixels.

(a) E1

(b) E2

Figure A.14: Head translation over time in WZ of a trunk moving backward (Other) simulation. Video with a resolution
of 1920× 1080 pixels.

Figure A.15: Head translation over time in WZ of a trunk to tilt (Other) for E3. Video with a resolution of 1920 ×
1080 pixels.
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A.5.2 Kinematic Variables to Assess Motion Patterns Observed in the Dataset

Figure A.16: Patient shoulders’ elevation angles over time describing Trunk Rotation for E2.

Figure A.17: Patient affected shoulder elevation angle revealing Shoulder Elevation for E1.

Figure A.18: Patient tilted angle of the torso describing a trunk tilt (Other) for E1.

A.5.3 Kinematic Variables to Assess Motion Patterns Not Observed in the Dataset

Here we investigate the patterns not detect in the dataset. As mentioned, we recorded new videos to assess

torso moving backward and torso rotation patterns for E3.

Figure A.19 illustrates the variation of the tilted angle of the torso and the displacement of the Neck joint

regarding its initial position. Similarly to what is observed in figure 4.10 for the trunk moving forward, there

is an acute inclination of the trunk but a negative displacement of the Neck joint since it does not follow the
BX direction. In figure A.20 we show the two variables used to assess Trunk Rotation, one for a patient

in an oblique position, and other for a patient in a perpendicular position. Both hypotheses display a clear

change in the variables over time, proving that both can accurately assess trunk rotation while reaching the

target position.
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Figure A.19: Tilted angle of the spine and Neck displacement over time acquired from a simulation of trunk moving
backward (Other) in E3.

(a) Subject with visible chest.

(b) Subject completely aside.

Figure A.20: Length between both shoulders for an oblique position and shoulder displacement for a perpendicular
position describing trunk to tilt (Other).

A.6 Classification Results

This section presents two examples of classification results from cross-validation that illustrate the NN

based ensemble’s incapacity to detect some patterns.

One example is patient P06 for E1, for whom the NN based classifier reveals a low classification perfor-

mance. When this patient data is used for validation during cross-validation, the classification report in table

A.4 supports this low performance. For this patient, the classifier had a performance of about 27% of F1

score, which is rather low. Additionally, the classifier is unable of detecting Other compensation patterns,

which is understandable since this patient describes a movement pattern when trying to reach the target

position and in the ”drinking” phase very particular, which we considered torso moving backward.

A specific case while performing cross-validation for the NN based approach for E1 and E2 is that the

pattern Trunk Rotation only occurs for one patient. During cross-validation, when we use this subject

video trials data for validation, we remain without any examples of Trunk Rotation in the training set, which

makes it impossible for the classifier to predict this compensation pattern. This particular case is confirmed

by the classification report for E1, when we use P11 for validation, in table A.5. When we include this patient

in the training set, we can never verify if the ML approach can predict this compensation pattern. This case
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is clear evidence that we would benefit from more data to achieve more accurate predictions, with more

examples of the different motor patterns, mainly of the less frequent.

Precision Recall F1 Support

Trunk Rotation 0.00 0.00 0.00 0

Shoulder Elevation 0.57 0.13 0.22 1780

Other 0.00 0.00 0.00 1649

Normal 0.31 0.80 0.44 849

micro avg 0.35 0.22 0.27 4278

macro avg 0.22 0.23 0.17 4278

Table A.4: Classification Report for P06 E1 data as validation set for the NN Based approach.

Precision Recall F1 Support

Trunk Rotation 0.00 0.00 0.00 1059

Shoulder Elevation 1.00 0.33 0.50 1501

Other 0.00 0.00 0.00 0

Normal 0.50 1.00 0.67 1004

micro avg 0.60 0.42 0.50 3564

macro avg 0.38 0.33 0.29 3564

Table A.5: P11 classification report NN Based approach for E1.
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A.7 Questionnaire

Hedonic Value

Q1: Overall, did you like the therapy session with the system?

I hated it (1) ... I enjoyed it (5)

Q2: Did the system make you feel motivated to perform the exercise?

I did not feel motivated at all (1) ... I felt extremely motivated (5)

Q3: Did you ever feel bored during the exercise?

I felt bored (1) ... I felt interested (5)

Q4: Did you find the system’s interactive features (feedback, suggestions, and encouragement) pleasant/interesting?

I found it unpleasurable (1) ... I found it pleasurable (5)

Utilitarian Value

Q1: Do you find the system and this type of interaction harmful or useful for health?

I find it harmful (1) ... I find it very useful (5)

Q2: Do you think that these exercises with the system’s support can help patients improve their physical condition?

I do not think it helps at all (1) ... I think it can help a lot (5)

Q3: Do you find this system useful when you have to exercise alone without the supervision of professionals?

I do not find it useful at all (1) ... (5) I find it useful a lot

Q4: In your opinion, can this system help to overcome or reduce the difficulties existing in a rehabilitation center in

responding to your needs or the population in recovery in general?

I think it can not help at all (1) ... I think it can help a lot (5)

Intention to Use

Q1: If you could have/have had this system at the rehabilitation center or home, would you use it to exercise?

I would always use it again (1) ... I would always use it (5)

System Performance

Q1: Did you find the system was competent to perform its task?

I found it not competent at all (1) ... I found it very competent (5)

Q1: Do you find the information given by the system about its performance and suggestions reliable?

I find it not reliable at all (1) ... I find it very reliable (5)

Table A.6: Questionnaire to Volunteers to evaluate the Virtual Coach.
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