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Abstract—The migration of monolith applications to a mi-
croservice architecture has long been a hot topic around major
competitive business companies. By turning their complex sys-
tems into independently scalable services and managed by small
agile software teams, the ideal of decreasing the time to market
and increasing the availability of their services has become much
more attainable.

This work leverages on a previous work [1] which was focused
on the problem of the complexity associated with software evolu-
tion when migrating a monolith to a microservices architecture by
executing a static analysis on the monolith’s codebase. Therefore,
through a dynamic analysis, this work contributes the following
research questions: (1) Does the information collected during
run-time, for the same set of similarity measures, provide better
results, in terms of the quality of the generated decompositions,
when compared with the static information captured on the
previous work? (2) Does a similarity measure, based on the
dynamic behaviour of a system, generate decompositions which
are performance optimized? (3) Are the used maintainability
quality metrics correlated with performance?

To address each of these questions, a study was conducted on
two monolith systems in which their behaviour was dynamically
analysed. As result of the analysis we conclude that (i) neither
of the analysis techniques, static and dynamic, outperforms the
other, but the dynamic collection of data requires more effort (ii)
the performance of a decomposition is correctly correlated with
the maintainability quality metrics and no similarity measure
provides better results than other.

Index Terms—Microservices, Software Evolution, Static Anal-
ysis, Dynamic Analysis, Software Architecture

I. INTRODUCTION

Microservices [2] have become main stream in the devel-
opment of large scale and complex systems when companies,
like Amazon and Netflix [3], faced constraints on their systems
evolution, due to the coupling resulting from the use of a large
domain model maintained in a shared database. However, the
adoption of this architectural style is not free of problems [4],
where the identification of microservices boundaries is one of
the most challenging, because a wrong cut results on the need
to refactor between distributed services, which impacts on the
services interfaces, and cannot have the support of integrated
development environments.

The microservices boundaries identification has been ad-
dressed by research, e.g. [5]–[8], in the context of the mi-
gration of monolith systems to a microservices architecture.
Some approaches take advantage of the monolith’s codebase
and run-time behavior to collect data, analyse it, and propose

a decomposition of the monolith. Although each of the ap-
proaches use different techniques, they follow the same basic
steps: (1) Collection: collect data from the monolith system;
(2) Decomposition: define a decomposition by applying a sim-
ilarity measure and an aggregation algorithm, like a clustering
algorithm, to the data collected in the first step; (3) Analysis:
evaluate the quality of the generated decomposition using a
set of metrics.

However, the approaches differ on the techniques applied
in each one of the steps. In terms of the collection of data,
they differ in whether it is collected from the monolith using
static analysis of the code [7], or if they observe the monolith
execution behavior [8]. Besides, the approaches also propose
different similarity measures as input to the decomposition
algorithms, where some only consider the accesses to domain
entities, others distinguish reads from writes, and others con-
sider the sequence of access.

In this paper we do an extensive analysis of a two monolith
systems to study whether these techniques provide significant
differences when identifying candidate decompositions and the
impact of introducing a performance metric in the scope of our
analysis framework. The analysis framework is built on top of
what is considered by the gray literature as one of the main
difficulties on the identification of microservices boundaries
in monolith systems: the transactional contexts [9, Chapter 5].
Transactional contexts generate a coupling between domain
entities accessed in the context of the same transaction, due
to the complexity of decomposing a transactional behavior
into several distributed transactions, problem known as the
forgetting of the CAP theorem [10].

Therefore, in this paper we address the following research
questions: (1) Does the information obtained using a dynamic
code analyser, for the same set of similarity measures, provide
better results, in terms of the quality of the generated decom-
positions, when compared with the static information captured
on the previous work? (2) Does a particular similarity measure
provide better results in terms of the performance of the
generated decompositions? (3) Are the used maintainability
quality metrics correlated with performance?

In this section we defined the context of our work. The
next section formalizes our analysis framework. Section III
describes the use of the dynamic analysis technique. In the
evaluation, section IV, the analysis framework is applied to



2 systems. Section V presents related work and section VI
discusses the outcomes of this work. Finally, section VII
presents the conclusions.

II. SIMILARITY MEASURES AND METRICS

A monolith is defined by its set of functionalities which
execute in atomic transactional contexts and, due to the mi-
gration to the microservices architecture, have to be decoupled
into a set of distributed transactions, each one executing in the
context of a microservice.

Therefore, a monolith is defined as a triple (F,E,G), where
F defines its set of functionalities, E the set of domain entities,
and G a set of call graphs, one for each monolith functionality.
A call graph is defined as a tuple (A,P ), where A = E ×
M is a set of read and write of accesses to domain entities
(M = {r, w}), and P = A×A a precedence relation between
elements of A such that each access has zero or one immediate
predecessors, ∀a∈A#{(a1, a2) ∈ P : a1 = a} ≤ 1, and there
are no circularities, ∀(a1,a2)∈PT

(a2, a1) /∈ PT , where PT is
the transitive closure of P . The precedence relation represents
the sequences of accesses associated with a functionality.

A. Similarity Measures

The definition of similarity measures establishes the dis-
tance between domain entities. Domain entities that are closer,
according to a particular similarity measure, should be in
the same microservice. Therefore, since we are interested in
reducing the number of distributed transactions a functionality
is decomposed in, we intend to define as close the domain
entities that are accessed by the same functionalities.

The access similarity measure measures the distance be-
tween two domain entities, e1, e2 ∈ E, as:

smaccess(e1, e2) =
#(funct(e1) ∩ funct(e2))

#funct(e1)

where funct(e) denotes the set of functionalities in the
monolith whose call graph has a read or write access to e.
This measure takes a value in the interval 0..1. When all the
functionalities that access e1 also access e2 then it takes the
value 1.

Since the cost of reading and writing is different in the
context of distributed transactions, because writes introduce
new intermediate states in the decomposition of a functionality,
the next two similarity measures distinguish read from write
accesses in order to reduce the number of write distributed
transactions:

smread(e1, e2) =
#(funct(e1, r) ∩ funct(e2, r))

#funct(e1, r)

smwrite(e1, e2) =
#(funct(e1, w) ∩ funct(e2, w))

#funct(e1, w)

where funct(e,m) denotes the set of functionalities in the
monolith whose call graph has an access according to mode
m, read or write, respectively. These two measures tend to

include in the same microservice, domain entities that are read
or written together, respectively.

Finally, another similarity measure that is found in the
literature groups domain entities that are frequently accessed
in sequence, in order to reduce the number of remote invo-
cations between microservices, i.e., the domain entities that
are frequently accessed in sequence should be in the same
microservice. Therefore, the sequence similarity measure is
defined:

smsequence(e1, e2) =
sumPairs(e1, e2)

maxPairs

where sumPairs(e1, e2) =
∑

f∈F #{(ai, aj) ∈ Gf .P :
(ai.e = e1 ∧ aj .e = e2) ∨ (ai.e = e2 ∧ aj .e = e1)}),
where Gf .P is the precedence relation for functionality f ,
is the number of consecutive accesses of e1 and e2, and
maxPairs = maxei,ej∈E(sumPairs(ei, ej)) is the max
number of consecutive accesses for two domain entities in
the monolith.

B. Complexity Metric

A decomposition of a monolith is a partition of its domain
entities set, where each element is included in exactly one
subset, a cluster, and a partition of the call graph of each one
of its functionalities. Therefore, given the call graph Gf of a
functionality f , and a decomposition D ⊆ 2E , the partition
call graph of a functionality partition(Gf , D) = (LT,RI) is
defined by a set of local transactions LT and a set of remote
invocations RI , where each local transaction

(i) is a subgraph of the functionality call graph, ∀lt∈LT :
lt.A ⊆ Gf .A ∧ lt.P ⊆ Gf .P ;

(ii) contains only accesses in a single cluster of the domain
entities decomposition, ∀lt∈LT∃cinD : lt.A.e ⊆ c;

(iii) contains all consecutive accesses in the same cluster,
∀ai∈lt.A,aj∈Gf .A : ((ai.e.c = aj .e.c ∧ (ai, aj) ∈
Gf .P ) =⇒ (ai, aj) ∈ lt.P ) ∨ ((ai.e.c = aj .e.c ∧
(aj , ai) ∈ Gf .P ) =⇒ (aj , ai) ∈ lt.P ).

From the definition of local transaction, results the defi-
nition of remote invocations, which are the elements in the
precedence relation that belong to different clusters, RI =
{(ai, aj) ∈ Gf .P : ai.e.c 6= aj .e.c}. Note that, in these
definitions, we use the dot notation to refer to elements of
a composite or one of its properties, e.g., in aj .e.c, .e denotes
the domain entity in the access, and .c the cluster the domain
entity belongs to.

The complexity for a functionality migration, in the context
of a decomposition, is the effort required in the functionality
redesign, because its transactional behavior is split into several
distributed transactions, which introduce intermediate states
due to the lack of isolation. Therefore, the following aspects
have impact on the functionality migration redesign effort:
• The number of local transactions, because each local

transaction may introduce an intermediate state;
• The number of other functionalities that read domain

entities written by the functionality, because it adds the



need to consider the intermediate states between the
execution of the different local transactions;

• The number of other functionalities that write domain en-
tities read by the functionality, because the functionality
redesign has to consider the different states these domain
entities can be.

This complexity is associated with the cognitive load that
the software developer has to address when redesigning a
functionality. Therefore, the complexity metric is defined in
terms of the functionality redesign.

complexity(f,D) =
∑

lt∈partition(Gf ,D)

complexity(lt,D)

The complexity of a functionality is the sum of the com-
plexities of its local transactions.

complexity(lt,D) = #∪ai∈prune(lt)

{fi 6= lt.f : dist(fi, D) ∧ a−1i ∈ prune(fi, D))}
The complexity of a local transaction is the number of other

distributed functionalities that read, or write, domain entities,
written, or read, respectively by the local transaction. The
auxiliary function dist identifies distributed functionalities,
given the decomposition; a−1i denotes the inverse access, e.g.
(e1, r)

−1 = (ei, w); and prune denotes the relevant accesses
inside a local transaction, by removing repeated accesses of
the same mode to a domain entity. If both read and write
accesses occur inside the same local transaction, they are both
considered if the read occurs before the write. Otherwise, only
the write access is considered. These are the only accesses that
have impact outside the local transaction.

C. Coupling and Cohesion Metrics
Coupling and cohesion are important qualities of any

software system, particularly, in a system implementing a
microservices architecture, because one of its goals is to foster
independent agile teams. Therefore, we intend to measure the
coupling and cohesion of the monolith decomposition.

The cohesion of a cluster of domain entities depends on the
percentage of its entities that is accessed by a functionality.
If all the cluster’s assigned entities are accessed each time a
cluster is accessed, it means that the cluster is cohesive:

cohesion(c) =

∑
f∈funct(c)

#{e∈c.e:e∈Gf .A.e}
#c.e

#funct(c)

where funct(c) denotes the functionalities that access the
cluster c, and Gf .A.e the entities that are accessed by func-
tionality f .

The coupling between two clusters is defined by the per-
centage of entities one cluster exposes to other cluster. It can
be defined in terms of the remote invocations between the two
clusters.

coupling(ci, cj) =
#{e ∈ cj : ∃ri∈RI(ci,cj)e = ri[2].e}

#cj .e

where RI(ci, cj) denotes the remote invocations from cluster
ci to cluster cj

III. DYNAMIC DATA COLLECTION

The different approaches to the migration of monoliths to
microservices architectures apply, in the Collection step, either
static or dynamic techniques, but there is no evidence in the
literature on whether one of them subsumes the other, whether
they are equivalent, or even whether they are complementary.
Therefore, we collected data using both techniques in order to
address this open problem.

Data was collected from two monolith systems used in the
previous work [1], LdoD1 and Blended Workflow2, that are
implemented using the Model-View-Controller architectural
style, where the controllers process input events by triggering
transactional changes in the model, thus, corresponding to the
monolith functionalities. The monolith is designed considering
its controllers as transactions that manipulate a persistent
model of domain entities. Our collection tool was developed
to cope with the widely used Spring-Boot3 framework and the
Fénix Framework4 Object-Relational Mapper (ORM).

As result of the collection, the functionalities accesses are
stored in JSON format. It consists in a mapping between func-
tionality names and functionality objects, where each object
has a traces field that consists in a list of trace objects. Each
trace is characterized by a unique identifier and a (compressed)
list of accesses observed for a specific functionality execution.
An Access is composed by the numeric identifier of the
domain entity and the access type, either read or write.

During the Decomposition step of the migration process,
our tool uses hierarchical clustering (Python SciPy5) to process
the collected data and, according to the 4 similarity measures,
generate a dendrogram of the domain entities. The generated
dendrogram can be cut in order to produce different decompo-
sitions, given the number of clusters. Our decomposition tool
supports different combinations of the similarity measures, for
instance, it is possible to generate a decomposition with the
following weights (30% access, 30% read, 20% write, 20%
sequence).

For the Analysis step our tool allows to generate multiple
decompositions, by varying the similarity measures weights
and the number of clusters, and compare them according to the
maintainability metrics: complexity, coupling and cohesion.
Additionally, two different decompositions of the same system
can be compared using the MoJoFM [11] distance metric.

MoJoFM is a distance measure between two architectures
expressed as a percentage. This measure is based on two key
operations used to transform one decomposition into another:
moves (Move) of entities between clusters, and merges (Join)
of clusters. Given two decompositions, A and B, MoJoFM is
defined as:

MoJoFM(A,B) = (1− mno(A,B)

max(mno(∀A,B))
)× 100%

1https://github.com/socialsoftware/edition
2https://github.com/socialsoftware/blended-workflow
3https://spring.io/projects/spring-boot
4https://fenix-framework.github.io/
5https://docs.scipy.org/doc/

https://github.com/socialsoftware/edition
https://github.com/socialsoftware/blended-workflow
https://spring.io/projects/spring-boot
https://fenix-framework.github.io/


where mno(A,B) is the minimum number of Move
and Join operations needed to transform A into B and
max(mno(∀A,B)) is the number of Move and Join opera-
tions needed to transform the most distant decomposition into
B.

A. Dynamic analysis collection pipeline

The dynamic data collection is done in a running instance of
the monolith under analysis and comprises a pipeline of three
consecutive steps: Setup, Monitoring and JSON generation.
In general, only the first and last steps may require manual
adjustments depending on the execution environment and the
software in question, whereas the second is fully handled by
Kieker6 and associated tools. In total, three types of deliver-
ables are produced by the end of the pipeline: configuration
files, created in the Setup step; raw data files - logs - extracted
from the system while being monitored and finally, the desired
outcome, the JSON file including semantic data prepared to
be analysed.

1) Setup: Establishes the building blocks of the monitoring
step and answers the questions of where to collect data from,
what data should be collected and how it should be handled af-
ter being collected. The first two questions were answered with
the help of AspectJ7. It was used to instrument the byte code of
the Java applications and to develop new technology-specific
probes as suggested in Kieker’s user guide. Since it leverages
the use of AOP, no manual modifications on the source code
were required neither the insertion of annotations on intended
methods. The implementation of probes was driven primarily
by the accuracy and performance of the collection process.
Since extra behaviour is added during run-time, care must
be taken so that the extra overhead does not jeopardize the
user experience. The less precise the collection, the longer the
system will be occupied writing meaningless data to the file
system. In simple terms, the end goal of this step is to intercept
calls to the FenixFramework’s data access methods, the ones
responsible for manipulating the respective entity’s persistent
state, formatted as follows {get, set, add, remove, delete} <
attributeName >. For instance, in the LdoD codebase exists
a class called Category that, in order to be persisted, has to
extend the already generated class Category Base to access
such methods as getName, setName, addTag and removeTag.
New information also had to be added to be, at least, the same
that static analysis gathers to determine the corresponding
accesses in a next step. Thus, the implemented instrumentation
collects the following information:

1) Declaring class type name - The name of the class
containing the definition of the method

2) Method’s name - The name of the called method
3) Target’s type - The type of the object that calls the

method
4) Method’s arguments types - The types of the objects

passed as arguments

6http://kieker-monitoring.net
7The Eclipse Foundation (2011). The AspectJ Project. http://www.eclipse.

org/aspectj/

5) Method’s return type - The type of the object returned
by the method

As a result, in order to hold this data, the following compact
format was adopted: 1:2:3:4:5 . Considering that types are
collected during run-time, the instrumentation is accounting
for two major contingencies: (i) objects may not have an
explicit dynamic type (null) (ii) Java generic types employed
on iterables8 are no longer available9 and therefore, it’s im-
possible to discover the iterable type. Therefore, the following
assumptions were taken:

1) Whenever a dynamic type can’t be discovered, the static
type is used. If neither of them can’t be found the type
is considered unknown and sent in blank.

2) Whenever in the presence of an iterable object with at
least one element, its type is considered to be the type
of the first element (for performance reasons). Otherwise,
if empty, the type is considered unknown and is sent in
blank.

At this time, only the question of how data should be
handled after being collected remains open. Straight answer
is: it depends on how the DCA tool, Kieker, is configured.
The best way to setup Kieker is through the usage of a special
configuration file called kieker.monitoring.properties. The
most impactful properties are the ones related to the queue that
holds records10 such as its maximum capacity, its implemen-
tation 11 and action to take when there are incoming records
and the queue is full. A compression method was also used
to compress each log file as zipped binary file. This property
is extremely valuable whenever instrumented systems possess
little disk space.

2) Monitoring: Having set up all the requirements, the
monitoring process may start. During run-time, when a con-
troller executes, Kieker will capture the accesses to the domain
entities in the context of the execution of a controller and
will store the records as CSV. Each record not only contains
the method’s data previously explained but also other Kieker-
related contextual information needed for ordering traces after
the monitoring has ended such as the execution order index and
stack size. Kieker already provides a built-in trace analysis tool
that is able to generate a desired representation of an ordered
sequence of executions (trace).

As a result, the file executionTraces.txt is generated
containing all the valid traces. Listing 112 shows an example
of a valid execution trace representation. All the desired lines
follow the format of < x methodData > where x identifies
the trace that the executions belongs to and methodData the
method’s data in the adopted format.

8https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
9https://docs.oracle.com/javase/tutorial/java/generics/erasure.html
10A record can be seen as a future line of the log containing
11http://javadox.com/org.jctools/jctools-core/1.0/org/jctools/queues/

package-summary.html
12Irrelevant information omitted to increase readability

http://kieker-monitoring.net
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html
http://javadox.com/org.jctools/jctools-core/1.0/org/jctools/queues/package-summary.html
http://javadox.com/org.jctools/jctools-core/1.0/org/jctools/queues/package-summary.html


Listing 1. Excerpt of a trace from the file executionTraces.txt

<6 SearchController:getHeteronyms:SearchController::HashMap>
<6 DomainRoot_Base:getLdoD:DomainRoot::LdoD>

3) JSON generation: As the name suggests, this step is
focused on producing a JSON file from the execution traces
obtained in the previous step. After completing three sequen-
tial sub-steps - Parsing, Translation and Compression - each
trace of (compressed) accesses is prepared to be associated
with its corresponding functionality if it proves to be unique.

On the Parsing step, the executionTraces.txt file is parsed
line by line to obtain the functionality name, the unique
identifier and the methods’ data of each trace. Taking the lines
of the trace presented in Listing 1 as an example, the function-
ality name would be SearchController.getHeteronyms,
the trace identifier 6 and DomainRoot Base : getLdoD :
DomainRoot :: LdoD the method’s data. This data is further
parsed to collected each respective semantic information -
name and the types of the target, arguments and return objects -
and subsequently used as input to the translation step. The goal
of the Translation step is two-fold: (1) translate accessed enti-
ties names to numeric identifiers and (2) translate the method
data, received as an input, to the corresponding accesses to
persistent domain entities. The translation to unique numeric
identifiers is maintained until all traces are parsed. When a new
persistent domain entity is discovered, a counter is increased
and its value is assigned to the entity. Hence uniqueness is
ensured. The translation algorithm behaves as follows:
• If the method’s name starts with get it means that

persistent entities were read. The accessed entities can
be the target’s type and the return type.

• Alternatively, if the method’s name starts with set, add,
remove or delete then persistent entities may have been
written. In this case, the written entities can be the target’s
type and each argument type.

When translating a type, it’s necessary to first check whether
or not that it corresponds to a persistent entity. For instance,
if there is a case where the target’s type is unknown (null)
and the return/argument is of type String, then no persistent
entities were actually accessed. If it proves to be a persistent
entity, then its numeric identifier is associated with the access
type (Read or Write) thus constituting an Access.

Finally, one of the biggest challenges of this work, that arose
from executing a dynamic analysis, was the massive amount of
data generated allied to the difficulty of processing large traces
due to time and space requirements. The explanation for this
amount is quite simple: loops. Since code is executed in this
type of analysis, a loop may repeat its body X amount of times
and as a consequence, the size of execution traces may increase
linearly. Therefore, in the Compression step, after the whole
execution trace has been translated into a list of accesses, this
list is subject to compression. This compression was achieved
by leveraging the use of an enhanced version of the linear
sequence compression algorithm called Sequitur [12] that can
represent a sequence as a hierarchical structure. The authors of
[13] were able to improve the compression ratio of Sequitur,

and still preserving its linear performance, by combining it
with Run-length encoding. A compressed sequence is a new
sequence composed of a new type of element. For ease of
communication, let’s call it Reduced Trace Element (RTE). A
RTE can be seen as a container that attaches the information
of how many times the element that it holds is repeated. It can
only hold one of the following elements: a Rule or an element
of the original sequence, in our case, an Access. A Rule is a
special element that specifies how many of the next elements
are going to be repeated. In the end, after fully crunching
the executionTraces.txt, the JSON file is generated. An
excerpt is shown in Listing 2 where a functionality called
SearchController : getHeteronyms, contains two unique
traces13. Each element of this list, a RTE, is serialized as a
list whose content may change as follows:
• if the RTE holds an Access, then the numeric identifier of

the domain entity is appended to the list after the access
type, read (”R”) or write (”W”);

• if the RTE holds a Rule, then the amount of subsequent
elements that belong to the same sequence is appended
to the list;

• if the element held by the RTE is repeated more than one
time, then this number is added at the end of the list;

For instance, the SearchController : getHeteronyms
functionality has a Rule, serialized as [2, 2], that means the
sequence of two elements next to it occurs two times. If the
rule was decompressed, these three elements (rule plus next
two consecutive elements) would produce 4 access elements.
The same rationale is also applied to some of those access
elements that possess a third element, for example [”R”, 71, 2].
The decompressed size of the rule and its two elements would
be 8, more than double the compressed size (3) just on this
short example.

Listing 2. Excerpt of a JSON file
{
"SearchController:getHeteronyms": {
"t": [
{
"id": 0,
"a": [["R",9,5],[2,2],["R",1,2],["R",7,2],["R",4]]

},
]

},
}

IV. EVALUATION

The goal of evaluation is to answer the research questions by
(i) assessing which technique, static or dynamic, provides the
best results and the effort of applying the latter; (ii) qualifying
the impact of each similarity measure on the performance
of generated decompositions and (iii) discovering possible
correlations between the maintainability quality metrics and
performance.

The source of data came from the two already mentioned
monolith systems used in the previous work, LdoD (122

13Uniqueness is ensured by comparing the compressed list of accesses of
a new trace, for the same functionality, against the list of the traces already
discovered.



TABLE I
COVERAGE OF DYNAMICALLY COLLECTED DATA

LdoD BW
Prod Tests Sim Sim

Cov Entities (%) 79 82 80 86
Cov Controllers (%) 44 96 84 68

controllers, 71 domain entities) and Blended Workflow (98
controllers, 52 domain entities), henceforth abbreviate as BW,
that were subject of dynamic analysis.

Regarding the LdoD system, it was monitored in three
different environments: production (Prod), functional testing
(Tests) and simulation (Sim). The production monitoring lasted
3 weeks and a total of 490GB worth of data was collected.
Throughout this period, a tight supervision was necessary to
oversee the impact the monitoring had on the performance
of the system’s functionalities. Since the server hosting the
application had a small free disk space (around 20GB) and
a massive drop in performance was observed if it was full, it
was mandatory to collect the generated logs from time to time
(2-3 days) to not harm the user experience and to gather fresh
logs instead of discarding them.

Analyzing the collected data presented in Table I, only 44%
of the controllers were exercised in production. Therefore,
further processing and evaluation of this data were abdicated
due to the substantial effort required to process it and the
relatively little coverage. Concerning functional testing, it was
achieved by running a suite of 200 integration tests (4.207 lines
of code) that exercised 96% of the controllers and 82% of the
domain entities, generating a few megabytes (<200MB) of
data, while the instruction coverage, reported by JaCoCo14,
was 72% for domain entities and 82% for controllers. The
reduced size of the collected data is explained by the usage of
small subset of the original database’s data and so, the traces
associated with the execution of functionalities were much
shorter. Finally, an expert of the system simulated, during
one hour, the use of functionalities, using a database with a
minimal set of data, and 200MB of data was collected and
84% of the controllers and 80% of the domain entities were
exercised.

In what concerns the BW system, it was only simulated
by an expert during an hour and 86% of entities and 68% of
controllers were exercised. The reduced number of exercised
controllers is justified by the deprecation of several controllers
that are not reachable through the user interface.

Similarly to how data was evaluated in the previous work
regarding the static analysis, for each system, and respective
environment, a JSON file was generated, after collection, and
then served as input to the analyser feature of Mono2Micro
that creates several dendrograms by varying the weights of
the four existing similarity measures - Access, Write, Read
and Sequence - in intervals of 10 in a scale of 0 to 100.
Then several cuts were performed on each one. Each cut
resulted in a candidate decomposition of the monolith with

14https://github.com/jacoco/jacoco

a specific number of clusters, varying from 3 to 10. For each
generated decomposition, the values for the quality metrics
were calculated. The complexity metric value had to be
normalized in order to compare them among the monoliths,
since they depend on the number of functionalities of each
monolith. The uniform complexity of a given decomposition
d of a monolith is calculated by dividing the complexity of
d by the maxComplexity. The maxComplexity value is
determined by calculating the complexity of a decomposition
of the monolith where each cluster has a single domain
entity. Therefore, the uniform complexity of any monolith
decomposition is a value in the interval 0 to 1.

Analogously, to assess the correlation between each metric
and the weights given to each similarity measure and the
number of clusters, a linear regression model was employed
using the OLS method. For instance, the linear regression
model that correlates the complexity of a decomposition with
the weights of each similarity measure is given by:

uComplexity(d) = β1 · d.weightA + β2 · d.weightW
+ β3 · d.weightR + β4 · d.weightS
+ β5 ·#d.clusters+ cons

To test this regression, a hypotheses was defined as follows:
• H0: β1 = β2 = β3 = β4 = β5 = 0; meaning that the

complexity of a decomposition does not have a relation
with any of the five parameters

• H1: β1 6= 0 ∨ β2 6= 0 ∨ β3 6= 0 ∨ β4 6= 0 ∨ β5 6=
0; meaning that the complexity of a decomposition does
have a relation with at least one of the five parameters

All the obtained regression results in the next sections show
enough evidence to reject the null hypothesis at a significance
level of 0.05.

Henceforth, to reduce the amount of space occupied by
the results depicted in tables, a terminology was also adopted
where:
• N means the number of clusters;
• A, W , R and S stand for Access, Write, Read and

Sequence similarity measures respectively;
• RC refers to the Regression Coefficient (βi) obtained for

a given dependent variable Xi. It represents the effect of
the dependent variable on the independent variable (Y ).
If βi is positive, then as Xi increases, the value of Y will
also increase. If βi is negative, then as Xi increases, the
value of Y will decrease.

• CI depicts the 95% Confidence Interval. As the name
suggests, it ensures that one can assume with 95% of
confidence that there is a statistically significant correla-
tion explained by the respective coefficient if zero does
not belong to the interval (X). Otherwise, if zero is within
the interval, no correlation can be established (7).

• R2 represents the statistical measure that indicates the
variability in the dependent variable of the regression
model.



TABLE II
COMPARE COLLECTED DATA - AVERAGE OF COVERED ENTITIES PER

CONTROLLER

LdoD BW
Static Tests Static Sim Static Sim

AVG(Cov. E/C) 95% 71% 91% 77% 93% 78%

A. Static and Dynamic Analysis Comparison

A study was also conducted on the impact of similarity
measures over the quality metrics with the usage of dynamic
analysis. Due to the majority of coefficients having consid-
erably close and low values (< 0.01) and some confidence
intervals contain the zero value, no specific combination of
similarity measures determines the generation of the best
decomposition according to any of the three maintainability
quality metrics. This corroborates the conclusion achieved
from the previous work that “there isn’t a unique solution to
the values of similarity, that leads to the best decomposition
in terms of the complexity metric.”

1) Static and Dynamic Analysis Comparison: Although, it
seems that data collected dynamically provides similar insight
in terms of the correlation between the similarity measures and
the quality metrics, we want to know whether they produce
significantly different decompositions. To do this analysis we
need to first compare the collected data.

On Table I we can observe, as expected, that all the
controllers exercised by dynamic analysis are also captured by
static analysis, but the inverse does not occur. For instance, in
LdoD, the dynamic collection through tests covered 96% of
the system while through the simulation only covered 84%
of the controllers. However, for the coverage of the accesses
to domain entities in the context of the controllers, in some
cases, the dynamic analysis can identify accesses to domain
entities, in the context of a controller execution, that the
static collection does not, due to late binding. And, of course,
the opposite also occurs, because depending on the inputs
provided to controllers and data available in the database, some
of the domain entities may not be accessed, both in tests and
simulation.

To assess the results of the two techniques, we compare the
highest quality decompositions, in terms of complexity, from
each approach with a decomposition proposed by a domain
expert, for both systems. In this analysis we consider the expert
decompositions as reference and evaluate, using the MoJoFM
metric, which approach provides closer results to it. Since the
two techniques may miss some domain entities during the
collection phase, we decided that all the unassigned entities
would be put in the biggest cluster as this strategy conforms
with the incremental decomposition strategy rationale [14,
Chapter 13].

The results from the comparisons are represented in Ta-
ble III, where each cell indicates the MoJoFM percentage
value (0 - 100%) between the lowest complexity decomposi-
tion with N clusters, using the column’s collection technique,
and the system’s expert decomposition. Overall, the MoJo
values obtained for the different collection approaches were

TABLE III
COMPARING GENERATED WITH EXPERT DECOMPOSITIONS

LdoD BW
Static Tests Sim Static Sim

N

3 62.12 65.15 68.18 46.67 44.44
4 60.61 69.7 66.67 44.44 46.67
5 56.06 68.18 66.67 44.44 60
6 78.79 66.67 66.67 62.22 57.78
7 77.27 74.24 68.18 66.67 64.44
8 83.33 72.73 59.09 66.67 62.22
9 81.82 74.24 57.58 71.11 62.22

10 45.45 74.24 56.06 71.11 62.22
avg 68.18 70.64 63.64 59.17 57.5

TABLE IV
COMPARING GENERATED WITH EXPERT DECOMPOSITIONS, CONSIDERING

ONLY THE COMMON CONTROLLERS AND ENTITIES

LdoD BW
Static Tests Static Sim Static Sim

N

3 65.15 59.09 63.64 71.21 46.67 44.44
4 51.52 69.7 62.12 71.21 51.11 46.67
5 72.73 68.18 63.64 66.67 53.33 60
6 72.73 54.55 68.18 66.67 51.11 57.78
7 75.76 74.24 63.64 69.7 68.89 64.44
8 74.24 72.73 68.18 59.09 66.67 62.22
9 72.73 74.24 57.58 57.58 68.89 62.22
10 68.18 72.73 56.06 56.06 77.78 62.22

avg 69.13 68.18 62.88 64.77 60.56 57.5

very similar, for both systems, which leads us to conclude that
there isn’t a collection technique that provides better results.
However, note that, especially on the simulation technique,
the dynamic analysis didn’t cover all controllers during the
collection phase and also missed more entities than the static
approach. Therefore, we decided to assess if the dynamic
analysis approach could surpass the static analysis if only the
common controllers and entities were considered.

To evaluate this scenario, we re-ran the static analysis con-
sidering only the common controllers and domain entities, for
each dynamic technique. The results are represented in Table
IV, where we can observe that, on average, both approaches
continue to generate decompositions almost equally distant to
the expert’s, for both systems. The major noticed difference is
the average MoJo values obtained for the static approach when
evened with the dynamic analysis using the expert simulation
approach. This suggests that the missed controllers by the
dynamic collection using the simulation technique may be
crucial to find the couplings between the domain entities that
lead to a decomposition closer to the expert’s, highlighting the
impact of the variability among different dynamic collection
approaches.

Based on these results, we conclude that, for both systems,
we don’t see significant differences between the lowest com-
plexity decompositions obtained using statically and dynami-
cally collected data and that none of the approaches achieve
identical decompositions to the expert’s, since the average
MoJo values obtained vary around 60-70%.

Given the similarities when compared to the expert, we
assessed how far apart the static and dynamic decompositions
were from each other, considering the common controllers and
entities.



TABLE V
COMPARING STATIC WITH DYNAMIC DECOMPOSITIONS, CONSIDERING

ONLY THE COMMON CONTROLLERS AND ENTITIES

LdoD BW
Static vs Tests Static vs Sim Static vs Sim

N

3 57.41 84.62 83.33
4 83.02 82.35 63.41
5 78.85 80.39 50
6 78.85 78 58.97
7 78.85 76 57.89
8 82.69 46.94 50
9 80.77 48.98 50
10 60 42.86 37.84

avg 75.06 67.52 56.43

In Table V we can observe, for LdoD, the average MoJo
between the evened static and tests approaches was 75%,
while between the evened static and simulation approaches
was 67%. For BW, the average MoJo between the evened
static and simulation approaches was 56%. This leads to the
conclusion that, on average, although equally distant to the
expert’s decomposition, the static and dynamic approaches
do not generate similar decompositions, which suggests that
there is space for future research on these differences but
does nor invalidate our conclusions that neither of the analysis
techniques outperforms the other.

B. The impact of Performance

This section is, instead, devoted to (1) understand the
impact of each similarity measure in the performance of the
generated decompositions and (2) apprehend potential corre-
lations between the maintainability and performance metrics.
It consequently provides an answer the last two research
questions. The obtained results were exclusively produced
from data collected with dynamic analysis.

The introduced performance metric calculates the number
of hops between microservices during a distributed trans-
action, in other terms, the network communication latency
of a distributed functionality. Leveraging the formalisation
presented in Section II, the latency of a functionality for a
given decomposition is expressed as the average of the latency
of its traces:

latency(f,D) =

∑
tf∈traces(partition(Gf ,D)) latency(tf )− 1

#traces(partition(Gf , D))

where traces(partition(Gf , D) denotes the unique sequences
of local transactions in the partition call graph of functionality
f , and latency(tf ) denotes the number of local transactions
in the sequence. Since the goal is to count the number of
remote invocations between local transactions, minus one must
be subtract. This subtraction assumes that each trace in the
partition call graph has a at least one local transaction.

The latency of a decomposition is the average of the latency
of its functionalities:

latency(D) =

∑
f∈F latency(f,D)

#F

TABLE VI
COMPARISON OF THE IMPACT OF SIMILARITY MEASURES ON

PERFORMANCE

LdoD Tests LdoD Sim BW Sim
RC CI RC CI RC CI

N 0.0207 3 0.0088 3 0.0223 3
A -0.0003 3 0.0017 3 -0.0008 3
W -0.0004 3 0.0082 3 0.0002 3
R -0.0001 7 0.0002 7 -0.0009 3
S -0.0002 7 0.0012 3 0.0016 3

R2 0.129 0.640 0.460

TABLE VII
COMPARISON OF THE IMPACT OF NETWORK LATENCY IN COMPLEXITY

LdoD Tests LdoD Sim BW Sim
RC CI RC CI RC CI

Net. Latency 1.0014 3 0.8680 3 1.1896 3

R2 0.955 0.962 0.980

where latency(f,D) corresponds to the latency of a function-
ality f in the context of a decomposition D.

The values obtained for this metric also had to be normal-
ized given the same rationale applied to the complexity metric
as well as the same applied linear regression model to assess
the correlation between this metric and the weights given to
each similarity measure and the number of clusters.

1) Similarity Measures: Exhibited in Table VI, the results
show a comparison across both systems and respective envi-
ronments to determine a combination of similarity measures
that provides low latency decompositions. As expected, there
is a consensus indicating that the number of clusters have
a statistically significant positive correlation with network
latency. A higher number of clusters/microservice candidates
is presumed to increase the network communication latency
of a functionality. However, in terms of similarity measures,
there is no robust conclusion given that (1) some confidence
intervals include the zero value (2) results from different
environments/systems disagree on the sign of the coefficient
and (3) the coefficient values are very close to zero (< 0.01)
indicating a very weak correlation.

2) Maintainability quality metrics: The regression results
from Table VII and Table VIII show that both complexity
and coupling metrics have a statistically significant positive
correlation, with considerably low variability (R2 > 0.6), with
latency, which allows to conclude that decompositions with
higher network latency tend to have worse values regarding
the two maintainability metrics. This correlation is expected
since decompositions with a high network latency tend to have
a high number of distributed transactions for each functionality
and inevitably more remote invocations between clusters.
Note that, the correlation between latency and complexity is
much stronger than with coupling, as can be observed by
the magnitude of the coefficients that show almost a direct
proportion with complexity.

Concerning cohesion, as shown in Table IX, network latency
shows a negative correlation on both simulation environments
whereas on the functional testing executed on the LdoD
system, a correlation can not be established given the inclusion



TABLE VIII
COMPARISON OF THE IMPACT OF NETWORK LATENCY IN COUPLING

LdoD Tests LdoD Sim BW Sim
RC CI RC CI RC CI

Net. Latency 0.1751 3 0.1047 3 0.5344 3

R2 0.722 0.605 0.727

TABLE IX
COMPARISON OF THE IMPACT OF NETWORK LATENCY IN COHESION

LdoD Tests LdoD Sim BW Sim
RC CI RC CI RC CI

Net. Latency 0.0201 7 -0.1766 3 -0.2576 3

R2 0.628 0.672 0.704

of zero in the confidence interval. This lack of unanimity
is, to some extend, expected because the number of remote
invocations of a functionality is not directly correlated with
cohesion as a functionality does not need to access the entities
of all clusters to have low latency.

V. RELATED WORK

In recent years, a myriad of approaches to support the
migration of monolith systems to microservices architectures
have been proposed [6], [15]–[25], which use the monolith
specification, codebase, services interfaces, run-time behavior,
and project development data to recommend the best decom-
positions [26].

In this paper we address the approaches that use the
monolith codebase or run-time behavior. Although they follow
the same steps, they diverge on what is their main concern and,
consequently, on the similarity measures that they use, such as
accesses [8], reads [5], [7], writes [5], [7], and sequences [5].
On the other hand, some authors use execution traces to
collect the behavior of the monolith, e.g. [8], [25], but there
is no empirical evidence on whether it provides better data
than the static mechanisms, and what is the required effort
to collect the data. As far as our knowledge goes, there is
no work on the comparison between the use of static and
dynamic analysis in the migration of monolith systems to a
microservices architectures.

Some of these approaches also use different metrics to
assess the result of their decompositions. Therefore, we stud-
ied the literature on microservices quality to identify which
metrics to consider. The metrics we used for evaluating the
complexity of the decompositions are based on current state
of the art metrics for service-oriented systems [27]. We applied
the complexity metric for the migration of monolith systems
to microservices architecture [1], which was extended to also
consider several traces for a functionality, due to the result of
the dynamic collection the data. Other complexity metrics use
the percentage of services with support for transactions [28],
but they lack an integrated perspective that we provide by
defining the transactional complexity of a functionality. An-
other complexity metric considers the number of operations
and services that can be executed in response to an incoming
request [29], while we consider the complexity of implement-
ing a local transaction in the terms of inter-functionalities

interactions, which emphasizes the complexity of cognitive
load, i.e., the total number of other functionalities to consider
when redesigning a functionality.

In what concerns the coupling and cohesion metrics, the
definitions in the context of services consider, for the coupling
metric, the number of operations in the service interfaces
that are used by other services, where a higher number
reflects a higher coupling, and, for the cohesion metric, the
percentage of operations of the service interface that are used
together [29]. In our implementation, we define coupling as
the percentage of domain entities exposed in the interface, and
cohesion as the percentage of the cluster domain entities that
are used together to accomplish a functionality. Overall, all
our metrics are designed on the perspective of the monolith
functionality.

There is work that integrates static and dynamic analysis.
For instance, in [30], static analysis is used to complement
the incompleteness of dynamic analysis, in order to increase
programming comprehensibility. Recent work on the migration
of microservices also integrates static and dynamic analysis
techniques [31], [32], by complementing the data collected
through static analysis with dynamic analysis collected data.
None of these approaches evaluate or discusses the quality of
data obtained with each one of the techniques.

VI. DISCUSSION

A. Lessons Learned

From this research we learned the following lessons:
• It is not possible to conclude that one of the similarity

measures determines the generation of the best decom-
position according to any of the three metrics.

• The combination of the similarity measure values for the
best decomposition according to the quality metrics may
be dependent on specific characteristics of the monolith
system.

• Currently, the best approach is to run our analyser feature
to find the best combinations for each monolith.

• It is not possible to conclude that the decompositions
generated using one of the analysis techniques, static or
dynamic, outperforms the other.

• The effort to collect data dynamically is significantly
superior than the static collection, specially when collect-
ing and evaluating data from production which resulted
in a very low coverage. On the other hand, the use of
integration tests, that achieved better coverage, has a high
development cost, because, contrary to unit tests, which
aim to have 100% coverage, integration tests, which are
harder to develop and maintain, are designed to verify
the modules integration, not the execution of all paths.

B. Threats to Validity

1) Internal Validity: Since dynamic analysis adds an extra
layer of computation on top of the monitored systems run-
time behaviour, the assumptions made on the instrumentation,
to minimize the performance degradation perceived by end-
users, are a clear bias on the obtained results given that: (i)



an iterable object type is considered to be the type of the
first element and (ii) new records are discarded when Kieker’s
queue is full.

The approach of placing the entities not found during the
collection process into the biggest cluster, when comparing
the static and dynamic decompositions with the expert’s, may
have biased our results, as there is a probability associated
with the expert decomposition that may or may not contain
those entities in the same cluster. However, we also made
the comparisons using other approaches and achieved similar
results, thus, we are confident in discarding this as a threat.

2) External Validity: Due to the effort associated with the
dynamic collection of data, we only analyzed two systems,
but from the comparison with the decompositions generated
from statically collected data, we may extrapolate that the
quality of one decomposition does not outperforms the other,
though the dynamic analysis of more monoliths is necessary.
Nevertheless, the conclusions about the incompleteness of data
and required effort associated with the dynamic collection of
data are evident and shows that a cost/benefit relation may
tend for the static analysis approaches.

Due to the diversity of metrics that exist for complexity,
coupling and cohesion, can our results be generalized? Despite
this diversity, we are confident that the results are relevant
because the several metrics analyse the same elements. Our
complexity metric focus on the complexity introduced by
transactions and the complexity of the interactions, like other
metrics do. Concerning cohesion and coupling, our metrics
measure how cluster domain entities are visible outside the
cluster and how they are accessed together in the context of a
functionality, which corresponds to the level of dependencies
between clusters, how many domain entities are not encapsu-
lated, and whether all the cluster domain entities contribute to
the single responsibility principle.

C. Future Work

As a consequence of the results of this research and the
learned lessons we identify the following topics for future
work:
• Experiment with machine learning techniques using the

metrics as fitness functions to infer which combination
of similarity measures is more adequate for a concrete
monolith system;

• Further explore the results of the dynamic collection of
data, in terms of the frequency of each of the function-
alities, and define new similarity measures to verify if it
can generate better decompositions;

• Investigate other sequence compression algorithms with
the purpose of decreasing the JSON file size and also the
time the Mono2Micro framework takes to process it;

• Analyse more monolith systems with different technology
stacks using dynamic analysis to reduce the existing bias
on the regression models.

VII. CONCLUSIONS

The migration of monolith systems to the microservices
architecture is a complex problem that software development
teams have to address when systems become more complex
and larger in scale. Therefore, it is necessary to develop
the methods and tools that help and guide them on the
migration process. One of the most challenging problems is
the identification of microservices. Several approaches have
been proposed to automate such identification, which, although
following the same steps, use different monolith analysis
techniques, similarity measures, and metrics to evaluate the
quality of the system.

In this thesis, two monolith systems were analysed to study
the impact of applying static and dynamic analysis on the
quality of the automatically generated decompositions as well
as whether a particular combination of similarity measures
provides better decompositions.

From the results of this research, it was concluded that
there is no particular similarity measure that generates the best
decompositions, considering the quality metrics for complex-
ity, coupling, cohesion, and performance, and we raise the
hypothesis that it may depend on particular characteristics of
the monolith. Therefore, we suggest the use of our analyzer
that generates decompositions using an extensive combination
of similarity measures to find the one that has the best quality.

Moreover, as result of the executed analysis, we concluded
that different monolith analysis techniques generate decompo-
sitions that do not outperform each other, but, it was clear that
the effort required by the dynamic analysis is much superior
and resulted in less coverage. Although the cost is much
higher, both systems were extensively dynamically analyzed,
and compared with the static analysis, which is a unique effort
with no precedents. Future experiments can be done, but this
work already contains, in this aspect, an important and novel
contribution.

Lastly, a new metric concerning performance was intro-
duced which proved to be correctly correlated with the main-
tainability ones. This addition is unequivocally out of the
context of state consistency, nonetheless it also plays a key
role in a microservices architecture.

As additional contributions, (i) the gathered data from
the evaluated monolith systems, using dynamic analysis, is
publicly available and can be used by third parties to do further
research, (ii) the dynamic data collection was implemented to
be as configurable and extensible as possible such that it can
handle a wider variety of code bases with different technology
stacks that are built using Java in a long-term view.

VIII. DATA AVAILABILITY

The data used and produced in this research is available
at https://github.com/socialsoftware/mono2micro/tree/master/
data/dynamic
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