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Resumo

Nas últimas décadas, as aplicações web têm sido um alvo muito popular de ataques informáti-
cos. Para mitigar esse problema precisamos de formas automatizadas de detetar vulnerabil-
idades em código fonte. No entanto, as ferramentas modernas são muito complexas, sendo
constituídas por milhares de linhas de código. Para além disso, as suas implementações estão
muitas vezes presas a uma determinada linguagem. Essa complexidade faz com que as fer-
ramentas sejam muito difíceis de compreender e de serem extendidas para suportarem novas
linguagens.

Para reduzir a complexidade dos analisadores estáticos atuais, esta tese propõe uma nova
solução genérica, que suporta a adição de novas linguagens semmuito esforço de programação.
A nossa solução, ao contrário dos analisadores estáticos tradicionais, não analisa a AST do
código fonte diretamente. Em vez disso, percorremos a AST do código fonte e construímos uma
AST genérica (GAST) a partir desta. Depois disso, a análise para encontrar vulnerabilidades é
feita com base na GAST. Desta forma conseguimos desacouplar a parte da análise e do parse do
código fonte. Para além disso, GAST apenas contém o que é realmente necessário para fazer
a análise, ignorando o resto. Para adicionarmos suporte a uma nova linguagem é necessário
apenas gerar um parser usando ANTRL4 [Par13] e escrever um conversor para a respetiva AST.
Habitualmente um conversor é composto por menos de 110 linhas de código.

A nossa solução foi implementada na ferramenta GT, que supporta PHP, Java, JavaScript e
Python, e foi testada contra várias aplicações web.

Palavras-chave: segurança, análise estática, fluxo de dados, vulnerabilidades
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Abstract

In the past decades web applications have been popular victims of injection attacks such as SQL
injection or cross-site scripting. In order to prevent these attacks, we need automatic vulner-
ability detection tools. However, modern existing tools are complex, consist of thousands of
lines of code, and are often bound to a single language. This complexity makes them hard to
understand and to port to a new language.

To reduce the complexity of current static analyzers, we propose a new solution that sup-
ports the addition of new languages without much effort. In order to achieve this, our solution
does not analyze the source code AST directly, instead, it traverses the source code AST and
builds a generic AST (GAST) from it. Then, we analyze the GAST to find vulnerabilities. This
way we can decouple the analysis and the source code parsing. Furthermore, GAST is just an
abstraction that only represents what is needed to perform taint analysis, ignoring the rest. To
add support for a new language we just need to generate a parser using ANTLR4 [Par13] and
write a converter for that AST, which is usually less than 110 lines of code.

We implemented a tool called GT with this approach. The tool supports Java, PHP, Python
and JavaScript, and was tested against several web applications written in the same languages.

Keywords: Security, Static Analysis, Taint Analysis, Antlr4, Information Flow
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Chapter 1

Introduction

1.1 Motivation

In the past couple of decades, research on web security and bug finding tools have seen a big
increase. This is due to the fact that software vulnerabilities can have devastating effects on com-
panies and/or its clients [TW07]. In 2017, hackers have compromised the sensitive information
of 145 million American customers from Equifax, one of the three major consumer credit re-
porting agencies in the U.S.A, leading to hundreds of millions of dollars of loss to the company
[Ber17].

Web applications are popular victims of security attacks since they accept user input, which
can be malicious, and incorporate it into dynamically generated code. For example, a user may
have to fill a form, post a comment, or submit a username and a password for authentication.
The application then takes this user-provided input and inserts it into a dynamically generated
program in another language (e.g., a new client-side script, or an SQL or JavaScript query to a
back-end database). If the user input reaches these scripts/queries without first being validated
and sanitized, then there is probably a vulnerability.

Code injection attacks such as SQL injection or cross-site scripting were considered the top se-
curity problem in 2017 byOWASP [WW17]. These attacks occurwhen amalicious usermanages
to inject his code into dynamically generated scripts/queries, usually by addingmeta-characters
to the input. By doing this, an attacker could change the behavior of the application, steal data,
compromise database integrity and/or bypass authentication and access control, violating sys-
tem correctness, security, and privacy properties.

Injection vulnerabilities are caused mainly by poor user input sanitization, the use of lan-
guages where it is easy to write insecure code (e.g., PHP, C) and programmers that do not have
much knowledge about software security [JI11].
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In order to detect and prevent injection attacks, we need automatic detection mechanisms.
While researchers have tried many approaches over the past decades, (e.g., static and dynamic
taint analysis, symbolic execution, etc.) the dominant trend is towards increasingly complex
tools. However, the more complex a tool is, the worse it scales, the harder it is to maintain and
understand, and the more assumptions it makes, limiting the programs it can analyze.

One big problem of the increasing complexity in vulnerability detection tools is that most of
the times they are not portable1. Althoughmost of the programming languagesweuse nowadays
to build web applications have a lot of similarities between them, vulnerability detection tools
still seem to struggle when it comes to supporting more than one language. Many of them are
wedded to a specific language [SMS13, PMP11, JKK06, ARF+14, NFV15, WS08, DH14, LL05],
a specific compiled code [CLO07, NS05, KMPS11] (e.g., x86 binary, bytecode) or they depend
on modified runtime engines [SMS13, BK14]. To port one of these tools to another language
basically requires to implement it again from scratch.

Since there is a wide range of languages available to build web applications, the lack of
portability of the detection tools can be considered a problem and a limitation. However, there
are some approaches that solve this issue to some degree which we discuss in section 2.2. Also,
the tools that are specific to a language have the advantage of being able of taking into account
every feature of that specific language, which in theory could lead to a more precise analysis.

1.2 Overview

In this thesis, we present a new static taint analysis approach, alongside a tool we implemented
with this approach, called Generic Taint analyzer (GT), that aims to solve the problem of porta-
bility while being context-sensitive and keeping low rates of false positives and negatives. Our
solution is not bound to a specific language and can be extended to support a new languagewith
a relatively small amount of work and lines of code. Traditional static taint analyzers parse the
code and then analyze the resulting abstract syntax tree (AST). The nodes that the AST consists
of are specific to the parsed language, making the tools bound to that language. However, most
of the languages we use nowadays to build web applications are similar. Languages usually
consist of classes, attributes, functions or methods, statements, expressions, etc... Even between
languages such as PHP and Java, that are apparently very different, we findmany of these struc-
tural similarities. Based on this fact, our approach converts the source code AST to a simple,
generic abstract syntax tree (GAST) that can represent a large set of languages used in web ap-

1In this work we use the term portable to refer to the approaches that either support different languages or to
which it is easy to add support for a new one.
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plications. More importantly, the GAST does not represent all the details of a language. Instead,
it only has the aspects that are actually used in the analysis. This way, we use the same code to
find vulnerabilities, regardless of the language being analyzed. The GAST allows us to keep the
source code parsing and the analysis decoupled.

Due to the GAST, the analysis is divided into three main steps, where each one uses a dif-
ferent module (parser, converter, analyzer):

1. Use a parser specific to the language to get the source code AST

2. Convert the source code AST to a GAST using a specific converter

3. Run an analyzer on the GAST to find vulnerabilities. In our case, the analyzer is a static
taint analyzer

The only modules that are bound to each language are the parser and the converter (which
converts the source code AST to the GAST). Since parsing several different languages is a com-
plex problem, we use ANTLR4 (ANother Tool for Language Recognition) to generate the parser,
parse the source code and build the AST. ANTLR4 is a parser generator with a big community
that provides grammars under the MIT license for virtually any language. This way, when
adding support for a new language we only need to generate a new parser with ANTLR4 and
program a new converter, which in our opinion requires a small amount of work. While imple-
menting the GT tool, we started by adding support for PHP and Java. Later, we extended the
tool to support JavaScript and Python. Converters for Java, PHP, Python and JavaScript are all
less than 110 lines of code each.

The main contributions of this thesis are: (1) an approach for improving portability of static
security analyzers by converting the source code AST to a GAST; (2) a tool that implements this
approach written in Java for Java, PHP, Python and JavaScript applications. The tool is open-
source and available at https://github.com/Mihail1996/GT-tool. Moreover, there is also a
scientific paper based on this work that was submitted to the ISSTA 2021 conference.

1.3 Thesis Outline

To get a better understanding of the proposed work, chapter 2 starts by presenting a list of
injection vulnerabilities that we address in this work. Then, section 2.2 explains the concept of
taint analysis. After that, sections 2.3, 2.4 and 2.5 present a set of static and dynamic approaches
at detecting vulnerabilities that somehow influenced our work.

3

https://github.com/Mihail1996/GT-tool


Chapter 3 aims to describe the developed work in further detail. Section 3.1 starts by pre-
senting the architecture of the GT tool, describing each module. Then, section 3.2 goes more
in-depth explaining the GAST by presenting each node that is part of it. Section 3.3 follows by
explaining how the GT tool builds the GAST. Finally, section 3.4 presents our taint analysis and
the compromises that were made.

Chapter 4 shows the results of our work. Section 4.1 first presents the results of analyzing
several web applications and then states how portable our tool is. Then, section 4.2 talks about
the limitations of our implementation.

Finally, chapter 5 concludes our work by stating how our goals were achieved and pointing
out what can still be improved.

4



Chapter 2

Background

In this chapter, we start by introducing the vulnerabilities considered in this thesis. Then, we
present taint analysis and describe a few static and dynamic approaches that somehow try to
solve the problem of portability.

2.1 Input Validation Vulnerabilities

This section briefly presents a list of vulnerabilities considered in this work. We can divide them
in four categories [dSM16] - query manipulation, client-side injection, file and path injection and
command injection. The main problem of all these vulnerabilities lies in the improper validation
of user input. Our work focuses on this kind of vulnerability.

2.1.1 Query Manipulation

These vulnerabilities are associated with the construction of queries or filters that are executed
by some other engine (e.g., a database management system). If the query is constructed with
unsanitized inputs, then it is possible to modify the normal behavior.

All vulnerabilities in this category can be prevented by sanitizing user input, so it does not
contain meta-characters that can alter the behavior of the engine.

SQL Injection

This vulnerability is caused by the use of string building functions to create SQL queries. An
attack consists of mixing normal characters with meta-characters. In the example of listing 2.1,
a malicious user can provide a username "admin’ --" causing the query to execute without the
need of a password.
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1 $name = $_GET[’username’];
2 $pass = $_GET[’password’];
3 $query = "SELECT * FROM users WHERE name=’$name’ AND password=’$pass’";
4 $result = mysql_query($query);

Listing 2.1: PHP code vulnerable to SQL Injection

NoSQL Injection

Non-relational (NoSQL) databases are used in many large-scale web applications. There are
several NoSQL database engines that implement them. MongoDB [Mon] is the most popular
engine implementing the document storemodel [DBE], so wewill focus on vulnerabilities from
web applications that connect to aMongoDB instance. Mongo executes queries in JSON format,
so a NoSQL Injection (NoSQLI) vulnerability is caused by the use of string building functions
to create the JSON query.

1 let username = req.query.username;

2 query = { $where: ‘this.username == ’${username}’‘ }

3 User.find(query, function (err, users) {

4 res.render(’userlookup’, { title: ’User Lookup’, users: users });

5 });

Listing 2.2: JavaScript code vulnerable to NoSQL Injection

Listing 2.2 shows an example of code vulnerable to NoSQLI. In the example, the program
takes the username query parameter from the request URI and inserts it in the query. The
program then sends the query to the database and returns to the user the result of the query.
In this example, if a user passes as argument a string like ’ || ’a’==’a the query will become
$where: ‘this.username == ” || ’a’==’a’‘which will naturally evaluate to true, and thus
returning all values. To remove this vulnerability it is enough to sanitize or escape the user
input.

XPath Injection

This vulnerability is very similar to SQL Injection, but in this case, the data is injected in XML
documents, which are often used to store data or configurations. Listing 2.3 shows an exam-
ple of a PHP script vulnerable to XPath injection. The script takes a username and a password
(lines 2, 3) and inserts them into an XPath query (line 4). An attacker could provide as user-
name admin’ or 1=1, causing the script to return information about the admin user without
providing a password. To prevent this vulnerability, it is enough to check if the input contains
malicious characters.
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1 $users = simplexml_load_file("users.xml");
2 $name = $_POST[username];
3 $pass = $_POST[password];
4 $query = "//User[UserName/text()=’".$name."’ And Password/text()=’".$pass."’]";
5 $result = $users->xpath($query);

Listing 2.3: PHP code vulnerable to XPath Injection

LDAP Injection

LDAP (Lightweight Directory Access Protocol) injection is also exploited by providing meta-
characters to string-building functions. LDAP Injection attacks aim to modify the structure of
the filter and retrieve data from a directory.

2.1.2 Client-Side Injection

The vulnerabilities in this category allow an attacker to execute malicious code in the victim’s
browser. This kind of attack is not against the application itself but against the user and can be
prevented by either sanitizing or encoding the input.

Cross-site scripting (XSS)

There are three types of XSS attacks: reflected or non-persistent, stored or persistent and DOM-
based. A program vulnerable to reflected XSS can have a single line, "echo $_GET[’user’];" The
attack consists of convincing the user to click on a link to the web application with a malicious
script which will be reflected by the echo instruction. (e.g., www.a.pt?user=<script>*malicious

code*</script>). A stored XSS consists of two steps: first, the attacker inserts a malicious script
in the server, then later, the server returns that script to one or more users.

Header injection

This vulnerability allows an attacker to break the HTTP response with "\n" and "\r". This
allows the attacker to inject malicious code in headers or even a new HTTP response. It can be
avoided by sanitizing these characters.

Email injection

Very similar to Header Injection, it has the goal to manipulate email components (e.g., sender,
destination, message) by injecting the line termination character. In this case, sanitizing the
input solves the problem as well.
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2.1.3 File and Path Injection

This category considers vulnerabilities related to file accesses from web applications, the file
system and to URL locations different than the web application.

Remote file inclusion

PHP allows a script to include files, which can be vulnerable if the file name comes from user
input. In the example of listing 2.4, if a malicious user provides as parameter country the URL
http://www.site.pt/hack, would cause the execution of hack.php in the server.

1 $country = $_GET[’country’];

2 include($country . ’.php’);

Listing 2.4: PHP script vulnerable to remote file inclusion

Encoding the input or making it impossible for a user to deliberately influence the filename
prevents this vulnerability.

Directory/Path traversal

This vulnerability allows an attacker to read arbitrary files from the server. To access them the
attacker builds an URL containing path metacharacters, such as ".." and "/". In the example
of listing 2.4, if "../../../etc/passwd%00" is passed as input, the file "/etc/passwd" is sent to the
attacker (the null character %00 truncates additional characters, .php in this case).

2.1.4 Command injection

This category consists of vulnerabilities that allow an attacker to inject operating system com-
mands or PHP code directly.

OS command injection

This vulnerability consists of executing arbitrary system commands defined by the attacker.
Consider the following example that uses a script to count thewords of a file: "$words= shell_exec

("/usr/bin/wc" . $GET_[’file’]);" (shell_exec executes system commands andwc is a system com-
mand to count words). An attacker could retrieve a file from the server by giving as input
"file.txt; cat /etc/passwd". The resultant instruction "$words = shell_exec("/usr/bin/wc file.txt; cat

/etc/passwd);" executes the wc and cat commands. The second command shows the content of
a file.
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PHP code injection

This vulnerability is caused by the eval function in PHP. This function runs the code that it
receives as a string in its parameter. Consider the example from listing 2.5 that uses the eval

function to concatenate the string "Hello" with the name provided by the user. The attacker
can do a command injection attack by providing a username and a command separated by a
semicolon (e.g., "Bob; cat /etc/passwd"). To avoid this attack, the input must be sanitized, but it
is not that simple. For this reason, the use of eval function is not advised.

1 $msg = ’Hello’;

2 $x = $_GET[’username’];

3 eval(’$msg =’ . $msg . $x . ’;’);

4 echo $msg;

Listing 2.5: PHP script vulnerable to code injection

2.2 Vulnerability detection

There are many different approaches to prevent injection vulnerabilities. A very popular one
is taint analysis which can be divided in two categories: static taint analysis and dynamic taint

analysis [SAB10]. In this thesis, we will focus on the first one to detect vulnerabilities. There is
also a second type of dynamic prevention which is parse tree validation [BWS05, LYWS09].

2.2.1 Taint analysis

This technique consists of tracking the flow of sensitive information by marking user input as
tainted and then propagate the taint marks recursively to the variables that are influenced by
other tainted data. Then, it checks if tainted data reaches sensitive sinks. If it does, there is a
vulnerability that could be exploited.

Taint analysis has three main components:

1. Data entry point - the input that comes from untrusted sources is marked as tainted;

2. Taint propagation - the taint marks are then propagated according to a propagation policy;

3. Sensitive sinks - Every function that can be exploited (e.g., eval(), my_sql_query()). The
tools then check if the data that enter sensitive sinks is tainted or not.

There are two types of taint propagation policies: explicit and implicit information flow. Listing
2.6 is an example of explicit information flow. Assume that the value of the parameter a is tainted,
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then the taint will be propagated to variable w since a is involved directly in the computation of
w;

The second type of taint propagation is less intuitive. It refers to situations inwhich a tainted
value affects the value of another variable indirectly. Consider the code in listing 2.7 and assume
the value of parameter a is tainted. Although a is not involved directly in the computation of
the value of variable x, the value of a affects the value of x through dependency control.

Our work focuses on the explicit information flow propagation policy, but it can be extended
to support both policies.
1 void foo(int a){

2 int w;

3 w = a * 2;

4 }

Listing 2.6: Explicit information flow

1 void foo(int a){

2 int x;

3 if (a > 5){

4 x = 1;

5 }

6 else{

7 x = 2;

8 }

9 print(x);

10 }

Listing 2.7: Implicit information flow

2.3 Static Analysis Tools

Static analysis tools use pointer and taint analysis to find data flows from entry points to sensitive

sinks. They can also verify if a sanitization function is called on tainted inputs. Since static taint

analysismust make a lot of simplifications, it is prone to false positives and negatives. However,
since it can be applied to either source or compiled code, static analysis tools are often used to
automate the detection of bugs and vulnerabilities. Nowadays, they are often part of the devel-
opment process, with their use being automated by continuous integration pipelines [Moh16].
The reason is that they are a cheap way of detecting issues in code, giving the developers more
confidence in their software. Next, we discuss some static analysis tools.
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2.3.1 Micro-grammars analysis

F. Brown, A. Notzli, and D. Engler [BNE16] managed to implement an effective bug-finding
static checker, which is a static analysis tool that has the goal to find bugs in a program (e.g.,
null pointers, deadlocks), and that it is orders of magnitude less complex than traditional check-
ers. They achieved this improvement by using a new source code parsing technique based on
incomplete micro-grammars, instead of depending on every syntax detail of a language or its
compiler.

Traditional checking systems use parsers designed to parse a complete language syntax,
thus rejecting any input that does not lead to a valid parse. On the other hand, micro-grammars
parsing for bug finding has two main differences from traditional parsing.

1. When a traditional parser finds a non-matching input to its specifications, it returns an
error. By contrast, when a micro-grammar parser hits a non-matching input, it simply
slides forward by one token and tries again. This approach is called sliding window, and it
allows the parser to match all the specifications described by the micro-grammar without
getting stuck and skip all those that do not match, consuming all the input. This way their
static checker only focuses on the most important aspects of a language, which it is used
to detect bugs, and ignores the rest.

2. Micro-grammars allow developers to perform fine-grained input skipping by using wild-

card non-terminals that lazily match any input up to a suffix. For example, the micro-
grammar “S → if (wildcard)" when applied to a file with five if statements produces five
parse trees where lists of tokens match to each wildcard node. For example, parsing “if
(x == 1)" would result in a normal if node and a wildcard node containing “["x", "==",

"1"]". On the other side, a traditional parser creates a tree with one node for every token.

Wildcards are implemented based on the SkipTo(P) rule, represented in Figure 2.1, which
skips tokens until it reaches a suffix P. Figure 2.1 also shows a micro-grammar example where
Rule1 accepts any token that starts with the character a and ends with cd. It would accept abcd
for example, but not abd.

The Slide’ rule, which corresponds to Sliding Window implementation, slides one token until
it can find something to accept. Because of this rule, Rule1 is able to accept inputs such as
"Xabcd", even though the input does not start with the character a.

The implementation of this static checker is very modular and it is composed of a lexer,
parsers and checkers. The parsers are recursive and alsomodular. There is a parser for each non-
terminal, for example the parser for C is composed by smaller parsers for if statements, while
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AnyToken → token, token ∈ language
SkipTo(P)→ P | AnyToken SkipTo(P)
Slide’ → SkipTo(P) Slide’ | ε
Rule1→ a SkipTo(cd)

Figure 2.1: Wildcard and Sliding Window micro-grammar

loops, for loops, etc. Then all these small parsers compose the parser for C. This modularity
brings another big advantage, the possibility of reusing a lot of these small parsers between
languages, for example, C and Dart share many parsers.

According to the authors, to extend their static checker to another language, one has to do
the following:

1. Specify a lexer by supplying a list of keywords, operators, and a set of regular expressions
for identifiers, literals and comments. A typical specification is around ten lines of code.

2. Build parsers recursively for each non-terminal. In this step, the developer may be able to
reuse parsers from another language with similar syntax.

3. Develop checkers.

The use of micro-grammars and the architecture modularity makes the tool relatively easy
to port to other languages.

The static checker presented in the paper focuses on a specific style of bug checking, called
belif-style. This style assumes that programmers do not want to crash their programs, so from
this, we can extract beliefs which are facts implied by the code. For example, the operation x/y

implies that y can not be 0. Therefore, if there is a flow that contradicts this belief, it is considered
that there is an error.

The fact that this approach does not depend on every detail of the language somehow in-
spired our work.

2.3.2 SonarQube

SonarQube [CP13] is a widely used commercial static analysis tool. Performs static analysis
based on a set of rules that can be defined by the user. It is able to detect bugs (e.g., possible null
references) or bad practices in source code (e.g., empty catch blocks in Java). Furthermore, it also
performs static taint analysis to find vulnerabilities. The taint analysis supports 4 languages,
while other features support more than 20. However, since SonarQube is a commercial tool and
it is not open source, we can not make any assertion about its complexity.
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2.3.3 FlowDroid

FlowDroid [ARF+14] is a precise static taint analyzer specifically tailored for Android and Java
applications. Analyzes apps’ bytecode and configuration files to findvulnerabilities. FlowDroid
is precise because it models the lifecycle of android apps and it is context, field, object and flow-
sensitive.

2.3.4 Pixy

Pixy [JKK06] is one of the first tools that processes PHP code. It performs taint analysis on
PHP source code and extends it by using alias analysis, which takes into account the existence of
aliases i.e., of two or more variable names that reference the same variable. It is able to detect
SQL injection and Cross-site scripting in PHP code that does not use objects.

2.3.5 Andromeda

Andromeda [TPC+13] is a demand-driven static taint analysis tool that supports Java, C# and
JavaScript. It is flow and context-sensitive. Furthermore, it extends its analysis by being inte-
gratedwith Framework For Frameworks (F4F),which is a solution for augmenting taint analysis
with precise framework support [SAP+11].

2.4 Dynamic Analysis Tools

Dynamic taint analysis tools instrument applications with the ability to track the source of in-
puts in runtime. The applications are then able to determine if the data that reaches sensi-

tive sinks contain any untrusted (tainted) inputs. Furthermore, dynamic analysis can also check
whether input sanitization was done correctly or not, contrary to static analysis. Since dynamic

taint analysis is done at runtime, analyzing applications results in adding performance overhead.

2.4.1 Dytan

Dytan [CLO07] is a dynamic taint analysis framework that aims to be generic and customizable.
It is a very precise tool since it does taint tracking at a byte level, meaning that it can tell exactly
which byte of a variable is tainted. It instruments compiled code (x86) with taint tracking ability,
so it does not dependon the availability of the source code. Furthermore, it supports both explicit
and implicit information flow propagation. In the article, the authors successfully use Dytan to
detect SQL Injection, buffer overflows and format string attacks.

Dytan allows users to specify three main aspects of the analysis:
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1. Taint Sources - Allows to set which sources are to bemarked as tainted. The user can choose
from variables, memory offsets, data from specific functions, from a type or specific I/O
streams.

2. Propagation Policy - User can choose between two different propagation policies:

• Explicit information flow - a tainted variable is directly involved in the computation of
another variable’s value.

• Implicit information flow - a tainted variable affects the value of another indirectly,
through information flow.

3. Taint Sinks - The user can set variables, functions, function parameters or instructions (ex
jump;) as sensitive sinks.

In spite of being customizable, it is still bound to compiled code, so it can not be applied to
an interpreted language or to languages that compile their code to an intermediate language,
such as Java or C#. Furthermore, since the granularity of its taint tracking is a byte, it adds a
runtime slowdown ranging from 30x-50x (where a slowdown of 1x means that the system now
takes twice as much time to run). This makes the tool inviable to be run in real-world systems.

Another reason for this huge overhead is thatDytan taint tracks all implicit flows, which gen-
erates a lot of unnecessary taints. Dta++ [KMPS11] presents an improvement to this problem
by identifying a minimum set of implicit flows in the program that potentially cause under-
tainting, and then generate taint propagation rules to solve it.

Taint Check [NS05] is a tool similar to Dytan. It also instruments compiled x86 code, but it
is inferior compared to Dytan because it only detects buffer overflows and string format attacks
and also lacks customizability.

2.4.2 Phosphor

Phosphor [BK14] is a more recent tool, that implements taint tracking for two JVM (Java Virtual
Machine) based languages: Java and Scala. It does it by instrumenting bytecode, without requir-
ing the source code. This way Phosphor is able to run on top of unmodified JVMs (Figure 2.2
shows its high-level architecture).

It has two main differences from Dytan:

• It does tracking at variable level instead of byte level.

• It does not support implicit information flow propagation.
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Figure 2.2: Phosphor’s high-level architecture

One big advantage of the first one is that the overhead added is 1x in time and 2-3x in memory
consumption. This is a big improvement and makes the tool more viable to be run in real sys-
tems. The cost of the much lower overhead is less precision. Tainting at variable level means
that Phosphor is only able to tell whether a variable is tainted or not, but it is unable to tell ex-
actly which character is causing the attack. The second difference is more of a limitation, but
the authors say that the tool could be extended to support implicit information flow propagation.

Although Phosphor supports a set of languages and could be easily extended to support
Kotlin as well, it is only portable to languages that run on top of JVM. In this case, Phosphor is
bound to JVM bytecode, and to port it to a different language, such as PHP, is very difficult.

2.5 SQL parse tree validation

SQL parse tree validation [BWS05, LYWS09] is a type of dynamic analysis where the tool does
not need compiled code nor source code, thus being language agnostic. Instead, it puts a proxy

between the application server and the database. This proxy intercepts all the queries to the
database and does an SQL parse tree validation. This way, it can protect applications written in
different languages. Parse tree validation consists of building the parse tree of the query and
validate it against the parse tree of a known benign query. Benign queries are then forwarded
to the database whilst the malicious ones are dropped.

Consider the following query "SELECT ’name’ FROM students WHERE id = ’12’;" and the
parse tree from Figure 2.3. When the input is 12 the parse tree is composed only of the green
leaves. If a malicious user gives as input the id "12’ OR 1 > 0 –’", the parse tree would be
composed by the green and red leaves. This way, the tool detects that the parse tree is different
and reports the attack.

Although being an interesting approach for detecting SQL and NoSQL injection attacks, its
scope is limited. We can not apply this technique to detect Cross-site scripting or vulnerabilities
in language functions (e.g., PHP code injection).
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2.6 Summary

This chapter first introduced a list of injection vulnerabilities considered in this work. Then, it
presented a few static and dynamic approaches at detecting vulnerabilities.

16



Chapter 3

The GT Tool

In this chapter we explain in-depth our approach at solving the complex problem of developing
a portable static taint analyzer. Our solution, besides being portable, also aims to be able to
perform a context-aware analysis.

As stated before, static analyzers are most often bound to a single language and depend on
every detail of that language. However, there are a lot of similarities between programming
languages, and our approach explores just that. If we take a look at the top trending languages
in 2020, ranked by IEEE Spectrum [Cas20], used to build web applications, we can divide them
in two categories:

1. Dynamically typed - Languages that do not check or enforce type-safety at compile-time
[Tra09]. Instead, type-checking is done during runtime (e.g., Python, JavaScript, PHP and
Ruby).

2. Statically typed - Type checking is done at compile-time (e.g., Java, C#, GO and Dart).

The languages from each category have many similarities between them. Take for instance
JavaScript and PHP, which are very common on web applications. Both of them are object-
oriented, have methods, functions, attributes, variables, expressions, etc... Even the control flow
statements are practically the same (e.g., if, switch, while, for, do while etc.). Furthermore, the data
flow is almost identical, using assignments.

Now, if we compare Java and C# the same is true. Moreover, even comparing languages
between categories (e.g., Java and PHP) we see that many of their features overlap. The main
difference is that we know the types when analyzing the source code. So from our studies, we
found out that when it comes to static taint analysis, we can abstract almost any web program-
ming language.
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With this in mind, our approach introduces a new way of building static analyzers, which
consists of having a simple, generic AST (GAST) that can represent the structure of the source
code of a large set of languages found in web applications. The GAST, similarly to the micro-
grammars approach [BNE16], does not depend on every detail of the languages. Instead, it
only represents what is absolutely needed to perform a data flow analysis (in our case, static
taint analysis). Section 3.2 explains the abstractions that were made to build the GAST.

With the addition of the GAST, our analysis gains an extra step comparing to traditional
tools. Usually, analyzing a program consists of first parsing the source code and then traversing
the resulting AST to find vulnerabilities. By contrast, our approach adds a new, additional step,
which consists of converting the source codeAST to a GAST. Then, we perform the taint analysis
on the GAST to detect vulnerabilities in the code. This way, the module that performs the taint
analysis is completely independent of the language being analyzed.

Next, we describe the architecture and data flow of GT. Then, we present the structure of
the GAST and how to build it. Finally, we discuss the features of our taint analysis and the
compromises and choices that were made.

3.1 Architecture and Data Flow

In order to implement a tool that can support several languages simultaneously, we need a
decoupled and modular architecture. The architecture of our tool, represented in figure 3.1,
consists mainly of four modules: Parser, AST Converter, GAST Builder and Taint Analyzer.

3.1.1 Parser

This module takes as input the source code and produces a source code AST, specific to the lan-
guage. This module is language-dependent, meaning that every time we add a new language,
we need a new parser for that language. Since parsing a full-blown language is a complex task,
we delegate it to ANTLR4, which is a widely used parser generator that uses LL for parsing
[Par13]. ANTRL4 has a big community and provides grammars under the MIT license for vir-
tually any language. This way, thanks toANTRL4, our parsers consist simply of generated code.
Furthermore, ANTRL4 also generates tree walkers, which we use to traverse the AST.

3.1.2 AST Converter

Module responsible for traversing the source code AST using the generated tree walker and
raising events to the GAST Builder (e.g., entering and exiting class, methods or functions decla-
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rations). These events allow the GAST Builder to create the GAST. This module is the only one
needed to program whenever adding support for a new language.

3.1.3 GAST Builder

Module that reacts to the events from theAST Converter and internally builds the GAST. Section
3.3 shows more in-depth the process of building the GAST.

3.1.4 Taint Analyzer

Module that takes as input the GAST from the GAST Builder and a configuration file. Then, it
traverses the GAST using a visitor and propagates the taint marks to find vulnerabilities accord-
ing to the configuration file. Listing 3.1 shows an example of a configuration file. In this file, we
can specify the value of several parameters, such as:

• Source code location - we can set the directory where the source code is and the file ex-
tensions that we want to analyze (lines 2, 3)

• Entry points - the file and the function where the data flow propagation should start.
In the example, it corresponds to lines 6-14, where the entry point is a function called
functionEntryPoint from the class EntryPointClass in the file EntryPointClass.java. We also
specify which arguments are tainted: "taintedArg","userInput"

• Sensitive sinks - functions that when called with tainted arguments may result in a vul-
nerability. In the example we specify a function named executeQuery from the class State-
ment (lines 15-26). For each sensitive function we can set a list of functions that can san-
itize its inputs. A sanitization function is a function that cleans the input from malicious
characters and whose return value is always untainted (e.g., one sanitization function for
mysql_query ismysqli_real_escape_string). In listing 3.1 we configure a sanitization method
called sanitizeInputMethod from the class SanitizerClass. This mapping between sensitive
and sanitization functions allows us to precisely specify the correct sanitization function
for each sensitive function, thus reducing false negatives in our analysis.

• Loops settings - number of times we should analyze a loop. We explain this choice more
in-depth in section 3.4.4.

After traversing the GAST, GT produces a vulnerability report in JSON format. Listing 3.2
shows an example of a report when analyzing listing 3.10. In the report, GT presents the vul-
nerabilities and the time that took to analyze the program. Furthermore, for each vulnerability
it presents a list of conditions that need to be met to reproduce the vulnerability.
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1 {
2 "directoryPath": "path/to/app",
3 "fileExtension": ".java",
4 "numberOfTimesToAnalyzeCycles" : 2,
5 "specification": {
6 "filename": "EntryPointClass.java",
7 "function": {
8 "name": "functionEntryPoint",
9 "type": "EntryPointClass"
10 },
11 "taintedVarsOrArgs": [
12 "taintedArg",
13 "userInput"
14 ],
15 "sensitiveFunctions": [
16 {
17 "name": "exectuteQuery",
18 "type": "Statement",
19 "sanitizationFunctions": [
20 {
21 "name": "sanitizeInputMethod",
22 "type": "SanitizerClass"
23 }
24 ]
25 }
26 ],
27 "returnTaintedIfTaintedSource": true,
28 "taintedAttributes": [
29 "taitedAttributeName"
30 ]
31 }
32 }

Listing 3.1: Example of file settings

1 {
2 "vulnerabilities": [
3 {
4 "file": "EntryPointClass.java",
5 "line": 7,
6 "vulnerableMethod": "executeQuery",
7 "functionCallStack": [],
8 "conditions": [
9 {
10 "line": 2,
11 "condition": "input != null"
12 },
13 ]
14 }
15 ],
16 "timeToProcessMilliseconds": 2074
17 }

Listing 3.2: Vulnerability report when analyzing listing 3.10
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Figure 3.1: GT - data flow and architecture overview

3.2 GAST

Similarly to the micro-grammars solution [BNE16], the GAST aims to be an intermediate struc-
ture that does not depend on every detail of any language. Instead, it abstracts most of the
complexity by using generic statements. Each generic statement has a correspondence with a
concrete statement of almost any programming language. In this section we describe the struc-
ture of the GAST by presenting every element that can be part of it.

3.2.1 Elements

Constant

Element that comprises strings, integers, floats, null values etc. Basically, everything that is di-
rectly hardcoded in the source code is considered a constant. Since this element never changes,
it is impossible to be tainted. Figure 3.2 presents the GAST representation of a constant.
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Constant

value

Figure 3.2: GAST representation of a constant

Variable

This element abstracts, as the name says, the variables in the code. Contains the name of the
variable, and if the language is statically typed, it also contains the type of the variable. It can
become tainted through assignments. Figure 3.3 shows the GAST representation of a variable.

Variable

name type

Figure 3.3: GAST representation of a variable

Attribute

Represents an attribute in a class. It has a name and a type. Also, it can be tainted. It is very
similar to a variable, as we can see in its representation from figure 3.4. In our implementation
an attribute is a subtype of Variable.

Attribute

name type

Figure 3.4: GAST representation of an attribute

Parameter

Element that abstracts the parameters of methods and functions. It can be tainted if it is the
parameter of the entry point function, or if the argument passed to a function is tainted. Just like
the attribute, it is also a subtype of variable. Figure 3.5 presents its GAST representation.

Parameter

name type

Figure 3.5: GAST representation of a parameter
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Expression

Represents a generic abstraction of any expression (e.g., arithmetic, logical, bitwise, comparison
etc.). It consists of a list of expressions. Take for instance the listing 3.3 where to each variable,
a, b, c we assign an expression. In our representation, all these expressions are equal. They all
consist of an expression containing two members: a variable named "x" and a constant with
value "5". This allows us to abstract any operator due to the fact that in data flow analysis,
operators (except the assignment operators) do not influence taint propagation. For instance, if
the variable x in listing 3.3 is tainted, then, all variableswill be tainted, regardless of their operator.

1 boolean a = x == 5;

2 int b = x + 5;

3 int c = x * 5;

Listing 3.3: Expression assignment examples

Expression

members

Variable

name

x

type

int

Constant

value

5

Figure 3.6: GAST representation of the expressions from listing 3.3

Since an expression consists only of a list of other expressions, the taint propagation is a
result of a logical OR of all elements in the expression. Meaning that if any element in the list
is tainted, the whole expression is marked as tainted.

Function Call

This element is a subtype of expression with the difference that it has a name, referencing the
function it is invoking. The arguments are just a list of expressions that can contain anything.
Figure 3.7 shows the GAST representation of a function call.

Function Call

name members

Figure 3.7: GAST representation of a function call
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For instance, the function call executeQuery(getQuery("name")) is named executeQuery and
has as argument another function call named getQuery. The latter having as argument a constant
with value "name". Figure 3.8 represents the described tree.

Function Call

name

executeQuery

members

Function Call

name

getQuery

Constant

value

name

Figure 3.8: GAST representation of "executeQuery(getQuery("name")"

A function call is considered tainted if any of the following conditions is true:

• the called function is in the source code and it returns a tainted value

• the called function is in a library and any of its arguments is tainted

This element also represents method calls that do not have an object as a source (e.g., meth-
ods from the same class or any superclass that are not preceded by the keywords this or super
in Java).

Assignment

Statement that represents, as the name indicates, an assignment. Consists of two expressions,
one on the left-hand side and another on the right-hand side. It is the main way of propagating
taint marks. Whenever the expression assigned on the right is evaluated as tainted, the mark is
also propagated to the expression on the left. Usually, the expression on the left-hand side is
just a variable. Listing 3.3 contains examples of assignment statements and figure 3.9 shows the
GAST representation of an assignment.

Return

This statement, represented in figure 3.10, represents the end of the data flow in a path. The
returned value is represented by an expressionwhich can be tainted.
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Assignment

left

Variable

name

a

type

boolean

right

Expression

members

Variable

name

x

type

int

Constant

value

5

Figure 3.9: GAST representation of "boolean a = x == 5;"

Return

expression

Figure 3.10: GAST representation of a return statement

Throw

Statement very similar to the return statement. The only difference is that when a return state-
ment is found in the callee function, the data flow is transferred to the caller function. Whilst in
the case of a throw statement, the data flow is transferred to a catch block. The thrown expres-
sion can be tainted. Figure 3.11 shows the GAST representation of the throw statement.

Throw

expression

Figure 3.11: GAST representation of a throw statement

Method Call

Element that represents method calls. It consists of a source, which can be an object or a class
(if the method is static). Listing 3.4 shows examples of method calls where the source is an
object and a class respectively. Figure 3.12 shows the GAST representation of the first example
of listing 3.4.

A method call is tainted if any of the following conditions is true:

• the method is not in the analyzed code and the source is tainted
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1 context.getUsers();
2 MyClass.myStaticMethod();

Listing 3.4: Method call examples

Method Call

source

Variable

name

context

type

UserContext

call

Function Call

name

getUsers

Figure 3.12: GAST representation of "context.getUsers();"

• the method is in the source code and returns a tainted value

New

Expression that represents an object creation. It is a subtype of Expression and works mostly
as a function call to the constructor. Figure 3.13 shows the GAST representation of the new

expression.

In most languages, the constructor has the same name as the class. But in some languages,
the name of the constructor is different from the name of the class (e.g., PHP, Python). For these
cases, we keep a configuration file with the names. For instance, new Foo() in PHP would result
in the call of __construct() function of the class Foo.

New

name members

Figure 3.13: GAST representation of a new expression

Attribute access

Represents a direct access to an object attribute (e.g., context.myProperty). Figure 3.14 shows its
GAST representation.

26



Attribute access

source name

Figure 3.14: GAST representation of an attribute access

Code block

Element that represents a block of code. Consists of a list of statements. Listing 3.3 is an example
of a code block with three statements and figure 3.15 shows the GAST of listing 3.3.

Code Block

statements

Assignment

left

Variable

name

a

type

boolean

right

Expression

members

Variable

name

x

type

int

Constant

value

5

Assignment

left

Variable

name

b

type

int

right

...

Assignment

left

Variable

name

c

type

int

right

...

Figure 3.15: GAST representation of the code block from listing 3.3

Conditional statement

Element that abstracts loops (e.g., for, while, do while etc.). Consists of a code block and a condi-
tion, which is an expression. Figure 3.16 shows its GAST representation.

Conditional statement

expression code block

Figure 3.16: GAST representation of a conditional statement
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Try Catch

Statement composed of a try code block, a list of catch code blocks and one finally code block.
Figure 3.17 shows its GAST representation.

Try Catch

try

Code Block

catch

Code Block ...

finally

Code Block

Figure 3.17: GAST representation of a try catch statement

If

Statement that abstracts control flow statements (e.g., if-else, if-elseif-else and switch). Each option
in the control flowhas its own code block (e.g., if-else has two code blocks - one for if and another
for the else). Figure 3.18 shows its GAST representation.

If Statement

expression code block else ifs

If Statement ...

else

Figure 3.18: GAST representation of an if statement

Function

Element that represents amethod or a function. It has a name, a return type, a list of parameters
and a code block. Its representation can be seen in figure 3.19.

Function

name return type parameters

Parameter ...

code block

Figure 3.19: GAST representation of a function

Class

This element represents a class in the GAST. It has a name, a list of attributes and a list of meth-
ods. Furthermore, it can have a superclass, as shown in figure 3.20.
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Class

name superclass attributes

Attribute ...

methods

Function ...

Figure 3.20: GAST representation of a class

File

This is the root element of any GAST. It has a code block (for languages like PHP or JavaScript),
a list of classes, a list of functions and a list of imported files (used to trace calls to imported
function). Its structure is represented in figure 3.21

File

name code block classes

Class ...

imported files

File ...

Figure 3.21: GAST representation of a file

One important note to keep in mind is that not every language will use every feature from
the GAST. For instance, the file element can have statements directly in the root block. Now, this
is a feature that it is only used by languages such as PHP and JavaScript. By contrast, Java and
C# do not allow code outside classes, so they do not make use of this feature.

3.2.2 Structure

As an example of the structure of the GAST, consider listings 3.5 and 3.6. These listings present
code with the exact same functionality written in two different languages (Java and PHP). The
code is quite simple – a class with a method that executes an SQL query given an id. Parsing
both listingswith traditional parserswould result in quite different ASTs, despite the code being
very similar. However, when converting the source code ASTs to GAST, their representation is
almost identical. Figure 3.22 represents the GAST from listings 3.6 and 3.5 where the circled
branches only appear in the Java representation since it is statically typed.

3.3 Building the GAST

In order to build the GAST, we first parse the source code using a parser generated by ANTLR4
to obtain the source code AST. Then, we convert the AST to the GAST representation. To do
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1 class MyDbClass
2 {
3 function getAddressById($id)
4 {
5 $sql = "SELECT address FROM users WHERE id = $id";
6 return executeSQLQuery($sql);
7 }
8 }

Listing 3.5: MyDbClass in PHP

1 public class MyDbClass
2 {
3 public static String getAddressById(String id)
4 {
5 String sql = "SELECT address FROM users WHERE id =" + id;
6 return executeSQLQuery(sql);
7 }
8 }

Listing 3.6: MyDbClass in Java

this, we use a tree walker also generated by ANTLR4. The tree walker, which conceptually is a
visitor, traverses every node of the AST and for each node it invokes a function when it enters
or exits that node. So, in order to convert the AST to GAST we need to override some of these
methods in the AST Converter to pass state to the GAST Builder. This is due to the fact that the
GAST Builder keeps the current context in a stack and these methods indicate what is the new
context to push and when to pop it. This way the AST Converter is just a class that overrides a
set of methods from the generated tree walker.

Listing 3.7 shows part of the PHP AST Converter. In the example, we override two methods
from the generated tree walker. The first method is invoked when the tree walker enters a Func
node and the secondwhen it exits the same node. So, when the tree walker reaches a Func node,
it invokes the method enterFunc from the AST Converter. The latter then invokes a method from
the GAST Builder that pushes the function element to the stack. This way, the GAST Builder is
able to keep track of the context. For instance, if the tree walker encounters a Parameter node
while in the Func node, the parameter would be added to the element on the top of the stack,
which in this case would be a function. The function is then popped from the stack when tree
walker exits the Func node, invoking the method exitFuncwhich calls a method from the GAST
Builder that pops the function (line 8).

One important note is that we only push to the stack statements (e.g., functions, classes,
assignments, conditional statements, etc.), which are nodes in the AST, while elements such as
variables, constants or parameters are not pushed. This is due to the fact that they represent
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Figure 3.22: GAST representing the code from listing 3.6 and 3.5

leaves in the AST, so they would be pushed and popped right away. This simplification allows
us to override less methods from the tree walker when writing the AST Converter (e.g., we do
not need to override exitVariable).

Let us now consider listing 3.8 where line 1 corresponds to the assignment being built and
lines 3-9 to the sequence of calls made by the AST Converter to the GAST Builder. Due to lack
of space, the signatures of the overridden methods are omitted. When the tree walker enters
the assignment, the AST Converter calls a method that adds an assignment to the stack (line
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1 @Override
2 public void enterFunc(FuncContext ctx) {
3 gastBuilder.addFunction(ctx, ctx.name());
4 }
5
6 @Override
7 public void exitFunc(FuncContext ctx) {
8 gastBuilder.exitFunctionOrMethodDeclaration();
9 }

Listing 3.7: Function declaration example

1 boolean a = x == 5;
2
3 gastBuilder.addAssignment(ctx);
4 gastBuilder.addVariable(ctx.VarName());
5 gastBuilder.addExpression(ctx);
6 gastBuilder.addVariable(ctx.VarName());
7 gastBuilder.addConstant(ctx.getText());
8 gastBuilder.exitStatementOrExpression();
9 gastBuilder.exitStatementOrExpression();

Listing 3.8: Assignment build call sequence

3). Next, it enters a variable and since the assignment is on the top of the stack, the variable
becomes the left side of the assignment (line 4). Then, the tree walker enters the expression "x

== 5" and the AST Converter calls a method that adds an expression to the stack (line 5). After
that, it enters a variable and later a constant, which will both be added to the expression, since
it is the top of the stack (lines 6, 7). Finally, the tree walker first exits the expression and then
the assignment, calling exitStatementOrExpression twice (lines 8, 9). Figure 3.9 represents the
resulting GAST and figure 3.23 represents the stack states when building the tree.

Converting the AST is as simple as identifying the methods needed to override from the
generated tree walker, and then call the functions from the GAST Builder. For example, the
converter for PHPhas 67 lines of code (counting only statements), and from these 67 statements,
there are 29 that are different, meaning that a lot of the functions invoked are the same (e.g.,
exitStatementOrExpression is invoked 23 times).

3.4 Analysis features

Our approach is to use a context-aware static taint analysis to find all potential security vulner-
abilities. To be able to statically find vulnerabilities, it is necessary to know what objects each
variable may refer to, a general problem known as pointer, points-to or alias analysis[SCD+13].
Also, the tool must perform a path aware taint propagation. Furthermore, it must be able to
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...

(a)

Assign [Var a]

...

(b)

Assign [Var a, Expr]

Expr

...

(c)
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Expr [Var x]

...

(d)

Assign [Var a, Expr]

Expr [Var x, Const y]

...

(e)

Assign [Var a, Expr]

...

(f)

Figure 3.23: Stack state when executing code from listing 3.8

detect function/method calls between different files.

Next, we discuss the importance of the alias analysis. Then, we present our solution to a
path aware analysis and the method GT uses to find function/method calls from different files.
Finally, we describe our approach to handle loops.

3.4.1 Pointer information

To illustrate the importance of pointer information, consider the example from listing 3.9. As-
sume that param is tainted and that executeQuery is a sensitive function. In this example, a more
conservative approachmay assume that buf1 and buf2may reference the same object, thusmark-
ing both calls to executeQuery as tainted. Instead, GT traces the data flow through assignments
made in each execution path. Thus, being able to identify that line 9 is a safe call and line 13 is
a vulnerability.

Pointer analysis has been subject ofmuch compiler research over the last decades [SNQDAB16,
Hin01]. Since determining what heap object a given variable may point to is undecidable, our
approach computes only an approximation based on the data flow through assignments. Mean-
ing that, in much more complex cases, when GT is unsure to which reference an object is point-
ing to, it assumes that they all point to the same instance. We also take a simplistic approach
when dealing with global variables or static attributes by saving their taint values directly in the
GAST, this way their taint value is persisted throughout the analysis.
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1 String param = req.getParameter("name");
2 StringBuffer buf1;
3 StringBuffer buf2;
4
5 ...
6
7 buf1.append(param);
8 String query = buf2.toString();
9 con.executeQuery(query);
10
11 buf2 = buf1;
12 query = buf2.toString();
13 con.executeQuery(query);

Listing 3.9: Taint propagation example

1 String query = "SELECT * FROM users WHERE name=";
2 if (input != null){
3 query = query + input;
4 } else {
5 query = query + "Bob";
6 }
7 con.executeQuery(query);

Listing 3.10: Path propagation example

3.4.2 Path Analysis

In order to perform a precise static taint analysis it is very important to be able to track the data
through different paths, ideally all of them. However, in practice, it is almost impossible since
static path analysis is a very complex problem. The path is often decided at runtime due to
features like instanceof, dynamic dispatch or reflection in Java [HSS08]. Furthermore, these
features differ between languages. Because of this, we can not have the most precise path anal-
ysis for each language. Instead, we perform an approximate path analysis based only on the
control flow statements, ignoring their conditions. This means that we only look at the structure
of the code, and for each conditional statement we propagate the data flow twice: one assum-
ing that the flow enters that path and another assuming it does not. This assumption has the
disadvantage of propagating taint marks through impossible paths.

Consider now the example from listing 3.10 and assume that the variable input is tainted.
Observing the code, we can easily identify an SQL injection vulnerability at line 7, since at line 3
the query is concatenatedwith the input. In this example, GT propagates the taintmarks through
two paths: the first executing the if and the second the else. Finally, it reports the vulnerability
at line 7. Also, it mentions that this vulnerability only happens if the expression "input != null"

at line 2 is true. In more complex cases, for each vulnerability GT returns the call stack and the
conditions that need to be met.
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Let us now consider the example from listing 3.11. This example is almost identical to listing
3.10, with the exception of line 2. This assignmentmakes the instruction from line 4 unreachable,
meaning that in practice, the code has only one possible path. However, GT has exactly the same
output as the previous example: two paths and one vulnerability. This is due to the fact that
GT, and static analysis tools in general, struggle with detecting whether a condition can be true
or not.

1 String query = "SELECT * FROM users WHERE name=";

2 input = null;

3 if (input != null){

4 query = query + input;

5 } else {

6 query = query + "Bob";

7 }

8 con.executeQuery(query);

Listing 3.11: Path propagation example with unreachable branch

This way, we perform an approximate path analysis based on the control flow statements and
their code blocks. The advantage of this kind of path detection is that it can be applied to any
language. Furthermore, from our testing, most of the times it is enough to detect vulnerabilities,
even though it is not the most accurate.

3.4.3 Cross-file function referencing

In the last decades, web applications have become increasingly more complex, consisting of
many files. For this reason, in order to perform a precise static analysis, we need to be able to
perform taint propagation between files. However, languages have different ways of importing
code. For instance, Java imports packages, which consist of a set of classes, and PHP imports
files directly [RKG04, HKV14].

To mitigate this problem, our approach supports two generic ways of importing code:

1. File inclusion - usually used by dynamically typed languages, such as PHP, Python and
JavaScript. Each file has a list of imported files. When GT finds a call to a function that is
not found in the file, it searches in all imported files for that function. If more than one is
found, it analyses all of them.

2. Type tracking - works for most of the object-oriented languages, such as Java and C#.
Consists of checking the type of the target of the method call and then checking if that
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class is in the source code. If the class is found it tries to find the method. If the method
is not found, it goes to the superclass.

From our testing and analysis, most of the times GT correctly propagates the flow to other
functions.

3.4.4 Loops Analysis

Loops have always been tricky for static analysis tools. This is due to the fact that in many cases
it is impossible to know how many times a loop will execute, if any. They are often influenced
by the user. For this reason, our tool takes a simplistic approach to deal with loops, which is
analyzing each loop twice. This approach helps tomitigate cases where a variable only becomes
tainted after the first iteration. Either way, for more flexibility we left the value configurable, so
we could change it depending on the program we want to analyze.

1 $name = $GET_["name"]

2 $query = "SELECT * FROM users WHERE name="

3 while(true){

4 mysql_query($query);

5 $query += $name;

6 }

Listing 3.12: Vulnerability in while loop

To illustrate this issue, consider listing 3.12. In this example, if the while loop executes once,
there is no vulnerability. This happens because in the first iteration $query is not tainted upon
executing mysql_query. However, after executing line 5 once, $query becomes tainted which
makes the next call to mysql_query unsafe. By propagating the taint more than once, GT is able
to detect this kind of vulnerability.

3.5 Summary

This chapter presented the GAST structure and how it manages to abstract different languages
by describing each node that can be part of it. Furthermore, we also introduced the architecture
of the GT tool and its taint analysis features.
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Chapter 4

Evaluation

This chapter presents the results of our taint analysis. We discuss the ability of GT to detect
vulnerabilities and the effort needed to add support for new languages. Finally, we talk about
some limitations that our implementation has.

4.1 Experimental Evaluation

The objective of this section is to show that GT is capable of finding vulnerabilities in web ap-
plications written in different languages and that the effort needed to add a new language to
the tool is relatively small. First, we present the results of analyzing several web applications in
Java, PHP, Python and JavaScript. Then, we discuss the effort needed to add support for another
language.

4.1.1 Vulnerability detection

In order to show the ability of GT to analyze and find vulnerabilities in web applications, we
tested GT against two types of web applications. First, we chose 11 open source applications
from GitHub that are deliberately insecure, with documented vulnerabilities. The criteria used
to choose themwas the number of stars that each application has on GitHub, essentially choos-
ing the most known ones. To run the tests, we had to manually identify the entry points and
sensitive functions for each application, meaning that GT analyzed each application several
times, once for each entry point. Second, we also tested GT against two real-world open-source
web applications. Since these applications aremuch bigger, we assumed that every file from the
application is a web page that can receive user input, tainting the variables that might be influ-
enced by the user (e.g., $_GET[*] in PHP). Tables 4.1 and 4.2 show the results of our analysis.
In the data, we only include files with the extension that we analyzed (e.g., *.java and *.php).
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Furthermore, we excluded comments and blank lines from the line count. We ran the tests on a
computer with a Ryzen 1600 processor (6 cores, 12 threads at 3.6GHz) and 16GB of RAM.

Table 4.1: Deliberately insecure web applications

Application #loc Language Files Vuln. Found False pos. False neg.

WebGoat 8 13898 Java 320 11 1 0
Vulnado 423 Java 11 3 0 0
Dvja 950 Java 21 4 0 0
DVWA 19651 PHP 358 18 3 0
OWASP Vwa 1018 PHP 27 17 1 0
Vulnerable-node 4207 JavaScript 13 5 0 0
Dvna 771 JavaScript 14 0 0 4
Goof 571 JavaScript 8 3 0 0
NodeGoat 2697 JavaScript 49 6 0 0
Vulpy 2373 Python 57 6 0 0
Dvpwa 674 Python 21 7 0 0

Total 47233 899 78 5 4

Table 4.2: Real-world web applications

Application #loc Language Files Vuln. found

SquirrelMail 1.5 46214 PHP 376 0
PhpMyAdmin 4.9.5 153576 PHP 740 1

Total 199790 1116 1

GT analyzed 2015 files and 247023 lines of code andmanaged to find 79 documented vulner-
abilities, such as SQL injection, cross-site scripting, command injection and file inclusion. The
analysis times were quite low. The application that took the longest to analyze was PhpMyAd-

min with 82 seconds. However, the analysis times varied a lot depending on the entry point,
meaning that the longer the path through which the data flows, the longer the analysis time.

In our tests, the tool had 4 false negatives in Dvna because all the dangerous code is in
anonymous functions that are called by referencing variables, since we do not track the value
of each variable, this is a limitation. Also, we had 1 false negative when testing PhpMyAdmin.

GT only raised 5 false positives in the applications from table 4.1, due to data flow propaga-
tion through impossible paths. In total we had 12.7% of false positives and negatives. We may
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assume that the low rate is due to our conservative taint analysis and to the fact that most of the
deliberately insecure applications we have tested do not have very complex control flows.

4.1.2 Portability

Since the objective of thiswork is to support several languageswith as little effort as possible, the
portability of the tool is also ametric that we tested. To test the portability, we first implemented
the tool to support PHP analysis, and then we added support for Java, which is a substantially
different language. While adding support for PHP and Java we were also developing the other
modules, so it is hard to tell how much time was spent strictly adding support for each lan-
guage. However, later, after the tool was built, we added support for another two very popular
languages: JavaScript and Python. Adding support for each of them took us roughly 7 hours.
Table 4.1 shows that our implementations are able to find vulnerabilities. Table 4.1 shows that
our implementations are able to find vulnerabilities. In our opinion, the main challenge when
adding support for a new language is identifying which elements from the grammar are impor-
tant to the analysis. After that, we just have to write the converter and some unit tests to make
sure the converter works properly.

Table 4.3 presents the order in which the languages were added, the number of lines of each
converter, the number of unique statements and the number of hours spent developing each
one of them. The number of unique statements is meant to show that the converter does not
have much logic, it basically consists of calls to the GAST Builder. For example, the converter
for Java has 108 lines, 30 of which are repeated (e.g., exitStatementOrExpression() is invoked 19
times), leaving us with 78 unique statements.

Table 4.3: Converters size and implementation effort

Implementation order Language #loc Unique statements Hours to
implement

1 PHP 67 49 –
2 Java 108 78 –
3 JavaScript 50 41 7
4 Python 61 49 7
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4.2 Limitations

In this section we present the limitations of our tool. Most of them are related to the nature of
static taint analysis, such as propagating the data flow through impossible paths or the pointer
analysis problem. Besides the limitations already discussed we also found another related to
lambda functions. Since our taint analysis only propagates taintmarks, we can not track the im-
plementation of lambda functions. For example, consider listing 4.1, written in JavaScript, and
assume that the userInput is tainted. In this case, we have an arrow function (lambda equiv-
alent in JavaScript) x that accepts a parameter query and then executes this query against the
database. This is a very simple program, with only two lines, however, GT struggles to find
the vulnerability from line 3. This flaw is due to the fact that in our implementation, x is just a
variable, it does not know that x is an object that holds a function. Furthermore, this variable x
could be passed around as an argument to other functions. So, in complex cases, we quickly lose
track of x and are unable to know what is the implementation of the function that x is holding.

1 var x = query => db.executeQuery(query);

2

3 x.call("SELECT * FROM users WHERE name=" + userInput);

Listing 4.1: JavaScript lambda example

This problem does not have an easy solution since it would require the tool to precisely track
the flow of data in the application, which statically is virtually impossible.
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Chapter 5

Conclusions

In this work, we presented a new approach to static taint analysis that supports the addition of
new languageswith little programming effort. Wewere able to achieve this by taking advantage
of the fact that the programming languages used in web applications have many similarities
between them. With this in mind, instead of analyzing the source code directly, we first parse
the source code and then build a generic AST (GAST) based on it. After that, we traverse the
GAST to find vulnerabilities, thus decoupling the analysis from the parsing. The GAST does
not represent every detail of a language, instead, it contains only what is needed to perform the
analysis. This allows it to be able to represent a large set of programming languages used in
web applications. The only parts bound to the language being analyzed are the parser, which
in our implementation consists of generated code, and the module that converts source code
AST into the GAST, which is usually less than 110 lines of code.

The solution was implemented in the GT tool, using Java with parsers and tree walkers
generated by ANTLR4. GT supports Java, PHP, Python and JavaScript and was tested against
several web applications written in different languages. Based on the results of our tests and
the number of languages supported, we consider that our goal was successfully achieved.

5.1 Future work

The presented work leaves room for several possible improvements that were not possible to
develop due to time constraints. GAST could be extended to support even more languages
and more features (e.g., adding support for lambda functions). The taint analyzer could also
be extended. For instance, we could make it more accurate by using a more precise pointer
analysis. Furthermore, we could also track the value of each variable, removing this way the
lambda limitation described in section 4.2.
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