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Resumo

O escoamento em volta de corpos não fuselados tem sido extensamente investigado em mecânica

de fluidos computacional (CFD), sendo que o cilindro circular é o principal objeto dessa investigação.

Motivado pelo projeto de uma estrutura de aquacultura off-shore, este trabalho foca-se em escoamento

estatisticamente não-estacionário em volta de corpos não fuselados com diferentes formas transversais.

Dois estudos preliminares foram conduzidos. As equações de Navier Stokes em média de Reynolds

(RANS) foram usadas e modelos de turbulência (KSKL e k − ω SST) foram usados para fechar o

problema.

O primeiro estudo tenta verificar as propriedades de convergência de malhas não estruturadas. O

escoamento em volta de cilindros bidimensionais a Re = 1000 com secções circulares, hexagonais e

octagonais foi simulado de forma a comparar resultados com a literatura disponı́vel. As malhas não

estruturadas mostraram bons resultados.

O segundo estudo preliminar mostra a simulação de escoamento em volta de cilindros bidimension-

ais a Re = 108 com secções circulares, octagonais e hexadecagonais de forma a avaliar o impacto do

uso de leis da parede no erro numérico e de modelação a Reynolds elevados. Os resultados mostraram

um melhoramento significativo na robustez numérica com o uso de leis da parede, em paricular nas ge-

ometrias poligonais.

Os dois estudos preliminares levaram a um set-up do estudo 3D do escoamento em volta da estru-

tura completa a Re = 108 composto por malhas não estruturadas e com leis da parede. Estimativas das

forças e momentos médios são apresentados, assim como o conteúdo em frequência, que permitirão a

realização de uma análise estrutural.

Keywords: Corpos Não-Fuselados, Secção Octogonal, Malhas Não-Estruturadas, Leis da

Parede, Reynolds Elevado, RANS.
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Abstract

The flow around bluff bodies has been extensively studied in computational fluid dynamics (CFD),

with the circular cylinder as the prime subject of investigation. Motivated by the project of a complex

off-shore aquaculture structure, this work focuses on statistically unsteady flow around bluff bodies

of different cross-sectional shape. Two preliminary studies were performed. The Reynolds-Averaged

Navier Stokes (RANS) equations are used for modeling and closed with turbulence models (KSKL and

k − ω SST).

The first preliminary study aims to check the convergence properties of unstructured grids. The flow

around two-dimensional infinite cylinders at Re = 1000 with circular, hexagonal and octagonal cross-

sections was simulated in order to compare with the available literature. The unstructured grids showed

to be able to accurately perform the simulations.

The second preliminary study presents the calculations of the flow around two-dimensional cylinders

at Re = 108 with circular, octagonal and hexadecagonal cross-sections in order to assess the impact of

the use of wall functions in the numerical and modeling error at very high Reynolds numbers. The results

showed a significant improvement in numerical robustness with the use of wall functions, especially for

the polygonal geometries.

The two preliminary studies led to a set up of the 3D study of flow around the aquaculture structure

at Re = 108 made up of unstructured grids with wall functions. Estimations of the average forces and

moments acting on the structure were presented, as well as the frequency content, which will allow for

an accurate structural analysis in the future.

Keywords: Bluff Bodies, Octagonal Cross-Section, Unstructured Grids, Wall Functions, High

Reynolds Number, RANS.
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Chapter 1

Introduction

1.1 Motivation and Objectives

A significant growth in fisheries and aquaculture production has been registered starting in the middle

of the 20th century. This has led to an increase in fish consumption from 9kg per capita in 1961 to 20.2kg

per capita in 2015 and additional growth is expected in the coming years. Even though aquaculture

production is no longer growing at the rates it used to in the 1980s and 1990s it still continues to grow

faster than any other food prodution sector. This growth is related to a stabilization of capture fishery

production that started in the late 80s due to overfishing and regulations to prevent overfishing [1].

This increase in aquaculture production has been leading to a tendency of placing marine fish farms

in more exposed locations, which translates to higher current and wind velocities and more energetic

waves. One of the issues with this trend is that fish escape is more likely due to damages or collapse of

the farm, meaning economic losses and genetic contamination of wild fish.

Both rigid and flexible floating fish farms exist, being that the former is made of concrete or steel and

the latter is made of fabric. The work here presented will deal with a mix of flexible and rigid fish farm,

since the floating ring is made out of concrete and the netting is made of plastic. This solution allows for

a high rigidity of the structure, necessary to endure the conditions found in more open sea areas as well

as minor maintenance and construction cost when compared with rigid closed fish farms.

The main objective of this work is to study the forces and moments acting on the structure so that an

accurate structural analysis can be done in subsequent studies. To achieve this there are two challenges

that must be tackled:

• The complexity of the geometry: the floating ring is an octagon. On each of the faces there

are holes that allow fluid to be exchanged with the outside of the structure near the water surface.

Along the face there is also a rounded protrusion that is hollow and is what allows the structure to

float;

• The Reynolds number: The diameter of the aquaculture structure is d = 136.3m, considering this

to be the characteristic length, and a fluid velocity of U = 1m/s, which is a valid current velocity for

off-shore applications, the Reynolds number is: Re = dU
ν = 1.363 × 108, where ν is the kinematic
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viscosity of the fluid. This is a very high Reynolds number, which presents a challenge from a CFD

(Computational Fluid Dynamics) standpoint. For the purpose of this investigation an approximation

to a Reynolds number of Re = 108 will be made.

With this in mind it would be unwise to immediately start with the study of flow around the aquaculture

structure, since most likely the numerical set up would not be ideal and computational time would be

wasted. Consequently, two preliminary studies were made:

• The first study attempted to deal with minimizing the problem of the complex geometry: Using un-

structured grids to discretize the domain around the aquaculture structure would help deal with

this problem. So a study with the objective of verifying the quality and numerical robustness of the

unstructured grids produced by the software HEXPRESSTM, as well as check numerical conver-

gence properties as a function of body shape was performed. The study was 2D in nature and

dealt with the flow around infinite cylinders with circular, hexagonal and octagonal cross-section

at a much lower Reynolds number of Re = 1000. The work done by Khaledi and Andersson [2]

was used as reference, in which the flow around hexagonal cylinders with two different orientations

was studied at three different Reynolds numbers, the highest of which being Re = 1000. It was ex-

pected that the behaviour of the octagonal cylinder would be somewhere between the hexagonal

and the circular cylinders. This study also served to understand the influence of unstructured grid

refinement in the convergence of the simulation.

• The second study attempted to deal with the problem of the high Reynolds number: A domain dis-

cretization without wall functions is more accurate but also more computationally expensive than

a simulation where wall functions are used [3]. This effect is heightened at a Reynolds number as

high as the one being considered. So this study sets out to evaluate the numerical convergence

properties of the simulation of bluff bodies with the RANS equations supplemented with the k − ω

SST model for a Reynolds number of 108, which includes two topics: the robustness (iterative con-

vergence) of the flow solver for geometries including obtuse angles on the surface in simulations

performed with and without wall functions and the estimate of the grid refinement level required to

obtain acceptable numerical uncertainties for the average force coefficients. The study also aims

to compare the solutions obtained with and without wall functions to evaluate the ability to use wall

functions in the simulations with flow around cylinders with circular, octagonal and hexadecagonal

(16 sides) cross section at very high Reynolds numbers [4]. For this study the grids without wall

functions generated in HEXPRESSTM did not present the necessary quality, so the grids generated

for this study were structured grids generated using the Grid Generation Tools for Structured Grids

[5].

This also makes evident the relevance of the topic from an aerospace engineering perspective.

While this work is initially motivated by a floating aquaculture reservoir, the underlying theoretical and

computational concepts can be applied to any blunt body in fluid, which represent important struc-

tures in aerospace engineering, found for example in landing gears, flapped wings and any other non-

streamlined body in incompressible flow. It is predictable that effects which are important for the design
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of aerodynamic structures such as turbulence and vortex shedding will also be of major importance

in the design of the fish farm. Additionally, the Reynolds number at which the fish farm will function,

Re = 108, is so high that almost no study has been performed for bluff bodies, which also motivates this

work in an investigative capacity, since there are several engineering applications, besides aquaculture

structures, at which bluff bodies might be at Reynolds numbers close to Re = 108.

1.2 Thesis Outline

The remainder of this work is divided into chapters, each with focus on different relevant aspects of

the investigation:

• Chapter 2 presents a brief review of the literature already available regarding the flow around

bluff bodies with special focus on polygonal cylinders in order to contextualize this work and the

decisions taken throughout it;

• Chapter 3 defines the problem mathematically and geometrically, describing the equations that

govern the flow, the turbulence models used, the computational domains of the three studies and

their respective boundary conditions;

• In Chapter 4 a description of the tools and methods used to solve the problem using CFD is

presented. An overview of the software used in this investigation is given, as well as the numerical

options used in the software ReFRESCO [6] to solve the mathematical formulation of the problem.

Furthermore, the spatial and temporal descritization of the studies is presented, i.e. the grids and

the time steps size used for the simulations. Finally, the quantities of interest to be monitored are

enumerated;

• Chapter 5 provides a description of the results obtained from the several simulations and from

the post processing of the data obtained from said simulations. When relevant, those results are

compared with the available literature to assess the validity of the results;

• Chapter 6 synthesises the conclusions that can be taken from this investigation and lays down

suggestions of work that can be done to further the study of flow around bluff bodies.
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Chapter 2

Background

Bluff bodies in turbulent flow and their respective vortex shedding effect have been the topic of

research for many years, with the circular cylinder as the prime subject of the investigation. Williamson

[7] studied extensively several vortex shedding regimes with Reynolds numbers ranging from 101 to 107

noting the different characteristics of each regime such as the transition to three dimensional effects, the

different modes of vortex shedding, associated with vortex loops (mode A) and finer-scale streamwise

vortices (mode B).

Extensive research has also been done around triangular (Number of faces, N = 3) and rectangular

(N = 4) cylinders. Sohankar et al. [8] studied the flow around rectangular cylinders of different aspect

ratios at low Reynolds numbers (Re = 100 and 200) to study the influence of the angle of incidence

of the flow. Differences were noted on the separation of the flow, being that at Re = 100 with a face

oriented geometry (one of the faces of the polygon faces the oncoming flow) the flow would separate at

the downstream corners while at Re = 200 the flow would separate at the upstream corners, creating

separation bubbles attached to the body.

However, the study of flow behind infinitely long bluff bodies with sharp edges with a cross section

with more than four sides (N > 4), such as cylinders of hexagonal or octagonal cross-section has not

received the same level of attention. This does not mean that no material can be found in the liter-

ature about this topic: Khaledi and Andersson [2] studied the flow around an hexagonal cylinder with

3D geometry using Direct Numerical Simulation (DNS) at three different Reynolds numbers (Re = 100,

Re = 500, Re = 1000) for two orientations of the cylinder: face oriented and corner oriented. Consid-

erable differences were found comparing to the rectangular and circular test cases, the most important

being that the behaviour of the face oriented hexagonal cylinder is more alike that of a corner oriented

rectangular cylinder and a corner oriented hexagonal cylinder to that of a face oriented rectangular cylin-

der. This is due to the point where separation will occur in one case or the other. In the case of a face

oriented hexagon the separation will occur at the 120◦ corners of the hexagon, while in a corner oriented

geometry, separation will happen at the leading edge of the faces parallel with the direction of the flow.

Another important conclusion concerns the vortex shedding frequencies, characterized by the Strouhal
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number, St, defined here as

St =
fL

U
, (2.1)

where f is the frequency of vortex shedding and L is the characteristic length. For corner orientation, L is

equal to the inscribed diameter, d2, and for corner orientation L is equal to the circumscribed diameter,

d1, as can be seen in Figure 2.1. Khaledi and Andersson noted that St increased from Re = 100

to Re = 500, however no increase in St was recorded when testing Re = 1000, for any of the two

orientations of the cylinder. In addition, the St recorded for face oriented cylinder was higher than

for corner oriented. Thus arriving at the conclusion that for wake dynamics it is irrelevant if the front

stagnation point is at a face or a corner but rather ”if the width of the projected cylinder is determined

by sharp corners or flow-parallel faces”. It was also speculated by Khaledi and Andersson that the wake

behind a octagonal cylinder would then have a behaviour similar to the one after a square cylinder,

which is supported by the experimental data of flow around octagonal cylinders at Re ≈ 104 by Bosch

and Guterres [9], which showed that St was higher for corner-oriented octagonal cylinders compared to

face-oriented octagonal cylinders.

Figure 2.1: Orientations of the hexagonal cylinder by Khaledi and Andersson [2]: (a)-corner orientation;
(b)-face orientation. Inscribed and circumscribed diameters are also shown.

Xu et al [10], motivated by the lack of experimental data concerning polygonal cylinders with N ≥ 5,

proceeded to test cylinders with N = 2 − 8, N = 12, N = 16 as well as a circular cylinder (N = ∞)

based on fluid force, hot-wire, Particle Image Velocimetry (PIV) and flow visualisation measurements.

The polygonal cylinders were studied from both corner and face orientations for a Reynolds number of

104 ∼ 105, depending on the longitudinally projected cylinder width. The dependence of time-averaged

Drag Coefficient, CD, and St on the number of faces was studied, as shown in Figure 2.2. Some of the

conclusions of this work regarding cylinders with N ≤ 8 were that, for Reynolds numbers ranging from

1× 104 to 6× 104 (Re = 1× 104 < Rec - Rec is the critical Reynolds number - and Re = 6× 104 > Rec),

both CD and St vary little over said Reynolds range, which suggest that there is no change to the

boundary layer state. It was also noted that, for small N , the CD and St values differ significantly for

the two considered orientations. The dependence of the fluctuating lift coefficient, C ′L, on N was also

studied. It was found that C ′L increases quickly with rising N , reaching a maximum at N = 6 for corner

facing geometry and at N = 4 for face oriented geometry, and then drops rapidly before approaching
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the value for N =∞. It was also found that C ′L varies greatly between the two orientations for N < 7 but

has the same value for both orientations for N > 12.

Figure 2.2: Dependence of CD (a,b) and St (c,d) on the polygon side number N ,
for Re < Rec (a,c) and Re > Rec (b,d) [10].
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Chapter 3

Problem Formulation

Any CFD problem needs to be described mathematically and geometrically. This set of constraints

consists of:

• A set of equations that are able to describe the properties of the flow;

• A computational domain that defines the geometrical limits of the calculations;

• A set of boundary conditions that define how the equations are supposed to interact with the limits

of the domain.

This chapter describes how these constraints were implemented in this work.

3.1 RANS Formulation

Solving the Navier-Stokes equations directly, in what is called Direct Numerical Simulation (DNS),

is only feasible in specific situations (for example, low Reynolds numbers and small computational do-

mains). At very high Reynolds numbers DNS is not feasible [11] and, given that the main concern of this

work are the mean properties of the flow, a RANS (Reynolds Averaged Navier-Stokes) approach was

taken.

As such, it is useful to perform a Reynolds decomposition, which will deal with the intrinsically un-

steady features of turbulence, when dealing with turbulent flows, as is the case with this investigation.

Both steady and unsteady flows can be subject to a Reynolds decomposition, the key difference being

that in the former, the mean value of the decomposition represents a time average of the quantity of

interest and in the latter, the mean value represents the ensemble average of the quantity of interest.

The research that this work focuses on is unsteady in nature, so what will be done is to apply the

Reynolds decomposition for unsteady flows to the Navier-Stokes equation (mass and momentum bal-

ance), obtaining the, so-called Unsteady Reynolds-Averaged Navier-Stokes Equations (U-RANS).
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3.1.1 Reynolds Decomposition

The Reynolds decomposition is a tool that allows to separate a given quantity, φ, into a mean value,

φ, and a fluctuation from said mean value, φ′. Considering unsteady flow, for a given quantity that varies

in space, xi, and time, t:

φ(xi, t) = φ(xi, t) + φ′(xi, t). (3.1)

In unsteady flow it does not make sense to eliminate the dependence on time for the mean value,

which is why it is needed to adopt an ensemble averaging process. It follows that the mean value, i.e.

ensemble average, for an unsteady flow is computed as:

φ(xi, t) = lim
Nr→∞

1

Nr

Nr∑
n=1

φ(xi, t+ nt). (3.2)

In this averaging procedure Nr is the number of realizations (as described by Ferziger and Peric:

”imagined set of flows in which all controlable factors are kept fixed” [11]). Nr must be as large as

possible in order to obtain statistical convergence.

3.1.2 Averaged Continuity and Momentum Equations

A consequence of equation (3.2) is that the mean value of a fluctuation is zero, φ
′

= 0. Thus,

averaging a linear term results in the averaged quantity of that term.

Additionally, the average of a product of two terms results in:

uiφ = (ui + u′i)(φ+ φ′) = uiφ+ u′iφ
′. (3.3)

The terms uiφ′ and φu′i are both zero because the average of a fluctuating quantity is zero, otherwise

they would appear in equation (3.3).

Some attention must be payed to the last term of equation (3.3), u′iφ′. This term is usually non-zero

due to correlation between the two quantities in turbulent flows; The Reynolds Stresses, ρu′iu
′
j , where

ρ is the fluid density, are examples of such non-zero terms.

Applying the aforementioned averaging method to the continuity and momentum equations for in-

compressible flow results in:

∂(ρui)

∂xi
= 0, (3.4)

∂(ρui)

∂t
+

∂

∂xj

(
ρuiuj + ρu′iu

′
j

)
= − ∂p

∂xi
+
∂τij
∂xj

, (3.5)

where Cartesian coordinates and Tensor notation were used.

The terms τij from equation (3.5) are the components of the mean viscous stress tensor, which in

incompressible flow of a Newtonian fluid can be expanded to:
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τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3.6)

where µ is the dynamic viscosity.

The presence of the Reynolds stresses indicates that the equations are not closed, i.e. that there are

more variables than there are equations, this is referred to as the RANS closure problem. Turbulence

Models are used to close the equations by approximating values for these terms, either empirically or by

use of transport equations. The k − ωSST (2003) model [12, 13] and the KSKL model [14, 15] are two

such models and will be used in this research.

3.2 Turbulence Models

The KSKL model was only used in the first preliminary study, to compare the behaviour of each

model with the literature. For the rest of this investigation the k − ωSST (2003) model was used. Both

models are two-equation models, i.e. two independent transport equations, for two independent scales,

are used to close the RANS equations. For the velocity scale, all two-equation models use the equation

for the turbulent kinetic energy, k, since it mainly requires a model for turbulent diffusion. That means

that the main distinguishing characteristic between models resides in the equation for the length scale.

3.2.1 k − ω SST (2003) Model

The k − ω Shear Stress Transport (SST) model was developed by Menter in 1994 [12] by modifying

the definition of eddy viscosity in the baseline (BSL) model he developed in the same article and that

itself is a combination of the k − ε [16] and Wilcox’s k − ω model [17]. This is done by including in

the equation a term relating to the transport of the turbulent shear stress τ =: −ρu′v′, analogous to the

Johnson-King model [18], this increased significantly the quality of the predictions particularly in adverse

pressure gradient flows. The model equations are [12]:

∂(ρk)

∂t
+
∂(ρUjk)

∂xj
= Pk − β∗ρkω +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
, (3.7)

∂(ρω)

∂t
+
∂(ρUjω)

∂xj
= Pω − β∗ρkω2 +

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2ρ(1− F1)

σω2

ω

∂k

∂xj

∂ω

∂xj
, (3.8)

where the production terms for k and ω in its original form are [12]:

Pk = τij
∂Ui
∂xj

, Pω =
αρ

µt
τij
∂Ui
∂xj

=
α

νt
Pk. (3.9)

Pk can be rewritten by applying the Bousinesq hypothesis (The Bousinesq hypothesis postulated

that the momentum transfer caused by turbulent eddies can be modelled by a viscosity - eddy viscosity

- in an analogy to how momentum transfer caused by molecular motion can be described using the
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molecular viscosity):

Pk = µtS
2 − µt

1

3

(
∂Uk
∂xk

)2

− 2

3
ρk

(
∂Uk
∂xk

)2

, (3.10)

with Sij = 1
2

(
∂Ui

∂xj
+

∂Uj

∂xi

)
and S2 = 2Sij

∂Ui

∂xj
= 2SijSij .

The additional closure coefficients are:

F1 = tanh (arg4), (3.11)

arg = min

[
max

( √
k

β∗ωd
,

500ν

d2ω

)
,

4ρσω2k

CDkωd2

]
, CDkω = max

(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi
, 1× 10−20

)
, (3.12)

where d is the distance to nearest wall and

α = F1α1 + (1− F1)α2, β = F1β1 + (1− F1)β2, (3.13)

σk = F1σk1 + (1− F1)σk2, σω = F1σω2 + (1− F1)σω2, (3.14)

with constants

β∗ = 0.09, α1 = 0.5532, β1 = 0.075, σk1 = 0.85,

σω1 = 0.5, α2 = 0.4404, β2 = 0.0828, σk2 = 1.0, σω2 = 0.856,

and the eddy viscosity, νt:

νt =
a1K

max(a1ω, F2Ω)
, a1 = 0.31, (3.15)

F2 = tanh (arg2
2), arg2 = max

(
2
√
k

0.09ωd
,

500ν

ωd2

)
, (3.16)

where Ω is the absolute value of vorticity. With this the value of F1 is equal to one close to a wall,

retaining the k − ω behaviour and it is equal to zero far from a wall, retaining the k − ε behaviour.

The Pk term is limited to prevent the build up of turbulence in stagnation regions. Refering to this

term as P̃k comes:

P̃k = min(Pk, 20β∗ρkω). (3.17)

This description refers to the original k − ω SST model published in 1994, however, in 2003 Menter

published slight variations to his own model [13], these variations are then the k− ω SST (2003) model.

The alterations are:

νt =
a1k

max (a1ω, F2S)
, a1 = 0.31, (3.18)

α1 =
5

9
, α2 = 0.44, (3.19)
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CDkω = max

(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi
, 1× 10−10

)
, (3.20)

and

P̃k = min(Pk, Cβ
∗ρkω), (3.21)

where C is a constant. In the 2003 model C = 10, however the computational software used in this work

applies C = 15.

It is the model with these alterations that will be used throughout this work.

3.2.2 KSKL Model

The KSKL model was derived by Menter et al. [14] based on the k-kL model by Rotta [19, 20]. This

model as been formulated as a one- and two- equation model that uses Φ =
√
kL as the scaling variable.

This results in the equations [14, 15]:

∂(ρk)

∂t
+
∂(ρUjk)

∂xj
= Pk − c

3
4
µ · ρ

k2

Φ
+

∂

∂xj

(
µt
σk

∂k

∂xj

)
, (3.22)

∂(ρΦ)

∂t
+
∂(ρUjΦ)

∂xj
=

Φ

k
Pk

(
ζ1 − ζ2

(
L

LνK

)2
)
− ζ3 · ρk +

∂

∂xj

(
µt
σΦ

∂Φ

∂xj

)
, (3.23)

µt = c
3
4
µρΦ, LνK = κ

∣∣∣∣ U ′U ′′
∣∣∣∣ , U ′′ =

√
∂2Ui
∂x2

k

∂2Ui
∂x2

j

, (3.24)

U ′ = S =
√

2 · SijSij , Sij =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
, Pk = µtS

2, (3.25)

where ζ1, ζ2, ζ3σk, σΦ, cµ and κ are constants of the model, whose values are shown in Table 3.1. The

definition of LνK given in equation (3.25) is a generalization of the boundary layer formulation to three-

dimensional flows and is representative of a natural length scale for the flow [15].

Table 3.1: Constants of the KSKL model

ζ1 ζ2 ζ3 σk σΦ cµ κ

0.8 1.47 0.0288 2/3 2/3 0.09 0.41

3.3 Computational Domain

As previously stated, two preliminary CFD studies were performed in order to choose the best pos-

sible settings for the main computations. The studies had different objectives and were performed at

different Reynolds numbers, so naturally the computational domain of each study is different.
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3.3.1 Preliminary Study 1 - Flow around 2D Cylinders at Re = 103

This study aims to check the quality and robustness of unstructured grids against a case where

results are available, as well as understand the impact of non-structured grid refinement on the conver-

gence of the solution. Khaledi and Andersson’s investigation of flow around hexagonal cylinders [2] was

chosen as the benchmark. As such, the domain used for this study tried to recreate the domain they

used.

Their domain was 20d long, 16d wide and 6d high (x, y, z), with the axis of the cylinder centered at

(x = 5.5d, y = 8.0d), where d is the circumscribed diameter of the hexagon, i.e. diameter between two

opposing corners of the polygon, which is considered to be the reference length. A similar domain was

created, with the caveat that the simulations here performed were 2D in nature and as such the length

of the cylinder in the z-direction is considered to be infinite. Additionally, rather than only simulating the

flow around hexagonal cylinders with corner and face orientation, simulations were also performed on

the flow around a circular cylinder and an octagonal cylinder with both orientations, as can be seen in

Figure 3.1. The dimensions of the domain were the same regardless of the cross-sectional shape of the

cylinder.

3.3.2 Preliminary Study 2 - Flow around 2D Cylinders at Re = 108

This study aimed to check the impact of using wall functions on the computation of a flow at a

Reynolds number of 108. At this Reynolds number the domain used in the first preliminary study would

be too small and interactions between the boundary conditions and the wake of the cylinder would

deteriorate the quality of the solution. As such, a bigger domain, based on previous investigations [21],

was designed. It was then decided that a domain 118d long and 102d wide was adequate, with the

center of the cylinder placed in the width-wise centerline of the domain, 51d, and lengthwise 40d away

from the inlet. The cylinders studied had circular, octagonal and hexadecagonal cross-sectional shapes.

An illustrative example of the domains used for this preliminary study is presented in Figure 3.2 using

the circular geometry.

3.3.3 3D Study - Flow around aquaculture structure at Re = 108

The final part of this work concerns itself with the flow around the complete aquaculture structure at

a Reynolds number of Re = 108. Some simplifications were made in order to guarantee the feasibility of

the simulations:

• The net was considered to be non-permeable and non-deformable, in effect acting as a wall, which

means no flow travels on the inside of the structure. This was done for simplicity and due to the

fact that, at the time the simulations were performed, the ability to accurately simulate permeable

structures was not available in ReFRESCO.

• Waves were not considered for the simulations as the Froude Number, Fr = U√
gL

, where g is the

acceleration of gravity and L is the characteristic length, commonly used to describe the resistance

14



(a) Complete domain (b) Circular cylinder

(c) Hexagonal cylinder with corner orientation (d) Hexagonal cylinder with face orientation

(e) Octagonal cylinder with corner orientation (f) Octagonal cylinder with face orientation

Figure 3.1: Computational Domains used for the first preliminary study. Figure (a) shows the complete
domain. Figures (b)-(f) show close ups of the several geometries studied.

of a partially submersed object moving through water, is very low Fr ≈ 0.03, which means that

the wave length is much smaller than the length of the structure, meaning very low wavemaking
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Figure 3.2: Example of a domain used in the second preliminary study: circular geometry.

resistance;

As the size of the domain used for the second preliminary study proved to minimize the interaction

of the boundary conditions with the flow, the domain used in the main study kept the size ratio used in

that study, however a scale of 1:1 was used, which means that, since the structure has a circumscribed

diameter of 136.3m, the outer limits of the domain are 16083.4m in the longitudinal (x) direction, 13902.6m

in the transverse (y) direction and 6815m in the z-direction. The center of the structure is located 5452m

away from the inlet and 6951.3m away from the lower part of the domain, as shown in Figure 3.3.

Figure 3.4 shows a close up of the aquaculture structure that is going to be simulated. Only the part

of the floating collar that is under water was modelled. The collar has circumscribed diameter of 136.3m,

a height (z-direction) of 11m and a thickness of 3.10m at its thickest point. The net was modelled to be

60m high with a 15◦ tapper.

3.4 Boundary Conditions

For the preliminary studies, similar boundary conditions to those used by Khaledi and Andersson [2]

were used:

• Imposed velocity at the inlet: uniform flow with streamwise velocity vector, Ṽ = (1,0,0)[m/s]. k

and ω are specified and pressure, p, is extrapolated from the interior assuming zero streamwise

derivative.

An inlet turbulent intensity of I = 1× 10−2 gives k = 1.5× 10−4U2
∞[m2/s2]. Using νt

ν = 0.01, where

νt is the kinematic eddy viscosity, ω follows from: ω = k
νt

[1/s];

• Mirror conditions at the side walls of the domain to simulate an infinitely long cylinder, Uz = 0;
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Figure 3.3: Domain used for the Study of Flow around the aquaculture structure.

Figure 3.4: Close up of the aquaculture structure.

• Zero-pressure condition at the outlet of the domain and zero streamwise derivatives for the re-

maining quantities,∂φ∂x = 0;

• Free-slip conditions at the top and bottom boundaries: null normal velocity component (Uy = 0)

and zero normal derivatives for the remaining quantities, ∂φ∂y = 0.

• No-slip and impermeability condition at the wall of the cylinder. All velocity components equal to

the wall velocity, Ux = 0 and Uy = 0, turbulent kinetic energy is zero, k = 0. Pressure derivative in

the direction normal to the wall is assumed zero ∂p
∂n = ∇p · −→n = 0;

For the second preliminary study the use of wall functions was tested. The determination of the
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shear-stress at the wall τw and the specification of the ω boundary condition (ω → ∞ at the wall)

represent the most challenging part of the wall boundary conditions in a turbulent flow. In the

second preliminary study, two alternatives were tested [4]:

– No wall functions (NO)

In this approach τw is determined from its definition directly:

τw = µ
Ut2

(yn)2
, (3.26)

where Ut2 is the velocity component tangential to the wall at the near wall cell centre and

(yn)2 is the distance from the near-wall centre to the wall. Close to the wall mean velocity

profiles only remain linear for approximatly y+
n < 5 with

y+
n =

uτyn
ν

and uτ =

√
τw
ρ
. (3.27)

So the value of yn2 should be smaller than one in order to guarantee an accurate solution of

τw [22].

In order to avoid the singular behaviour of ω at the wall, the near-wall analytic solution of the

ω transport equation [17] is used to specify ω at the near-wall centre

ω2 =
6ν

β(yn)2
2

. (3.28)

The value of ω at the boundary can be set equal to 10 times the value obtained from equation

(3.28) [12], however that approach increases the numerical uncertainty of the shear-stress

determination when compared to the use of equation (3.28) at the near-wall centre.

– ”Automatic” Wall Functions (WF)

The so-called ”automatic” wall functions blend the analytical equations of the linear and loga-

rithmic layers to obtain expressions valid from the top of upper edge of the log layer down to

the wall. Menter [23] proposes the following blend:

u+ =
U

τw
=

((
1

y+

)4

+

(
κ

ln(y+E)

)4
)−0.25

, (3.29)

with κ = 0.41 and E = 8.43. Equation (3.29) is solved at the centre of the near-wall cells to

determine τw.

With this approach (yn)2 may be located up to the outer edge of the log-layer (wherever it

is located). However the main advantage of equation (3.29) is that it becomes equivalent to

equation (3.26) when (y+
n )2 < 1. A robust implementation for the solution of the non-linear

equation 3.29 can be found in[3].

With WF, ω is also specified at the centre of the near-wall cells using the blend proposed in

[23]
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ω+ =

( 6

β (y+)
2

)2

+

(
1

κ
√
Cµy+

)2
0.5

, (3.30)

where Cµ = 0.09.

There are several alternatives for the turbulence kinetic energy boundary condition [3]. In

the second preliminary study k = 0 is imposed at the wall and the k transport equation is

solved with the production term in the near-wall cell determined from the shear-stress at the

wall and the derivative of u+ with respect to y+ using equation 3.29. Although this is the best

alternative proposed in [3], it must be mentioned that correcting the production term in the

near-wall cell makes WF slightly different from NO even when the near-wall cell is inside the

linear sub-layer.

An illustration of the application of these boundary conditions to the domains used for each of the

studies is shown in Figure 3.5

(a) First preliminary study (b) Second preliminary study

Figure 3.5: Boundary conditions used for the preliminary studies

Due to the 3D nature of the main set of simulations, it was necessary to change the boundary

conditions for the lateral boundaries of the domain as well as the free surface and domain floor:

• Imposed velocity at the inlet - same as previous;

• Mirror conditions at the water surface (no waves), Uy = 0;

• Zero-pressure condition at the outlet of the domain and zero streamwise derivatives for the re-

maining quantities - same as previous;

• Free-slip conditions at the longitudinal top and bottom of the domain and at the ’ocean floor’: null

normal velocity component and zero normal derivatives for the remaining quantities;

• No-slip and impermeability condition at the wall of the structure. ”Automatic” wall functions were

used as a consequence of the results obtained in the second preliminary study.
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Figure 3.6 shows the application of such boundary conditions on the domain presented earlier.

Figure 3.6: Boundary conditions used for the 3D Study.
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Chapter 4

Solution Procedure

This chapter details the processes and tools used to obtain the results needed to achieve the objec-

tives of this investigation.

To perform the simulations, the domains described above had to be generated using Computer-Aided

Design (CAD) tools. Those domains had to be discretized using grid generation software and finally the

parameters of the calculations had to be set up in a Computational Fluid Dynamics (CFD) Software that

was used to obtain the solutions.

A description of the grids (spatial discretization) and time steps (temporal discretization) used for the

preliminary studies as well as the main calculations is also presented in this chapter.

Finally the quantities of interest, are defined for each one of the studies, bearing in mind the objec-

tives of each study.

4.1 CAD software - SOLIDWORKS

The design of the domains used in this work was made using the CAD software SOLIDWORKS R©,

and later transferred to a grid generation software that discretized each domain.

”SOLIDWORKS leads the global 3D CAD industry with easy-to-use 3D software that trains and sup-

ports the world’s engineering and design teams as they drive tomorrow’s product innovation.” - taken

from the official website [24].

4.2 Grid Generation Software

4.2.1 Unstructured Grids - HEXPRESS

The complexity of the geometry of the aquaculture structure makes it difficult to generate structured

grids with the adequate robustness. So an alternative was used: a grid generation software that creates

unstructured grids. The software selected was NUMECA’s HEXPRESSTM software. ”HEXPRESSTM

generates non-conformal body-fitted full hexahedral unstructured grids on complex arbitrary geometries.
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In addition, the advanced smoothing capability provides high-quality boundary layers insertion.” - taken

from the official website [25].

Grid Refinement

Unstructured grids present advantages over structured grids, particularly in regards to grid gen-

eration, since they are capable of adequately handle complex geometry, are faster and require less

grid generation experience. However, grid refinement is more challenging in unstructured grids than in

structured ones. One of the challenges tackled in the first preliminary study was the influence of grid re-

finement of an unstructured grid in the solution and convergence. The grid refinement method tested in

the first preliminary study was formulated by Crepier to obtain grids as geometrically similar as possible

when dealing with unstructured grids [26]:

1. The initial cell size is decreased by a factor 2, 3, 4 and 5 in each direction by using 2,3,4 or 5 times

more cells in each direction.

2. The surface refinement degree is kept constant throughout the sets: if, for instance, 6 refinements

levels are set in the initial coarse grid, the same 6 successive refinements are performed for the

other grids.

3. The size of the transition region, so-called diffusion depth d, is adapted such that it matches the

expected final size of the grid.

4. The anisotropic sub-layer settings are adapted to account for the refinement performed.

This process can only be explained by understanding how the HEXPRESSTM software deals with

refinement. In this software an initial grid is created by choosing the amount of cells in the x, y and

z directions, then criteria for refinement are selected (for example, in surface refinement, one or more

surfaces are chosen and cells intercepting those surfaces are selected for refinement). Refinement in

HEXPRESSTM happens in levels. In each level, the base cell is divided in 2n cells isotropically, in the

three directions. The diffusion depth, d, is an input of the software that determines that cells neighbouring

those that are selected for refinement will also be refined, i.e, if the diffusion depth is 2 that means that

the immediate neighbours of the cells intercepting the surface (assuming that surface refinement is being

used) will also be refined; if d is set to 3 that means that not only the neighbours of those cells but also

the neighbours of the neighbours will be flagged for refinement. A 2D example of this can be seen in

figure 4.1.

As detailed by Crepier [26], the size of the cells in the anisotropic sub-layer in HEXPRESSTM follows

a geometric series of first term S0 (first cell size) and ratio r:

Sn = S0r
n. (4.1)

Crepier further explains that this definition means that dividing the initial cell size, and keeping the

ratio constant in all grids will not result in geometrically similar grids. To that effect the first cell size and

stretching ratio should be adapted following equations (4.2) and (4.3):
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(a) 2 refinement levels (b) 3 refinement levels (c) 4 refinement levels

Figure 4.1: Example of volume grid refinement. Black lines: initial coarse grid;
Grey lines: refined grid [26].

Sn = S0
1− r

1
n
1

1− r1
, (4.2)

rn = r
1
n
1 , (4.3)

where S0 and r1 are the first cell size and the growth ratio in the initial coarse grid, respectively and Sn

and rn the first cell size and growth ratio for the grid refinement n, n=1 corresponding to the coarsest

grid [26].

4.2.2 Structured Grids

As previously stated, the second preliminary study did not use unstructured grids, since the objective

of the study was to test the effects of using wall functions in simulations of flow around bluff bodies at a

Reynolds number of Re = 108. Instead the Grid Generation Tools for Structured Grids [5] were used to

obtain the grids necessary for the study.

4.3 CFD Software - ReFRESCO

The software used to perform the necessary simulations throughout this work is ReFRESCO (v2.5).

”ReFRESCO is a viscous-flow CFD code that solves multiphase (unsteady) incompressible flows using

the Navier-Stokes equations, complemented with turbulence models, cavitation models and volume-

fraction transport equations for different phases. The equations are discretised using a finite-volume

approach with cell-centered collocated variables, in strong-conservation form, and a pressure-correction

equation based on the SIMPLE algorithm is used to ensure mass conservation. Time integration is

performed implicitly with first or second-order backward schemes. At each implicit time step, the non-

linear system for velocity and pressure is linearised with Picard’s method and either a segregated or

coupled approach is used. In the latter, the coupled linear system is solved with a matrix-free Krylov

subspace method using a SIMPLE-type preconditioner. A segregated approach is always adopted for

the solution of all other transport equations. The implementation is face-based, which permits grids with

elements consisting of an arbitrary number of faces (hexahedrals, tetrahedrals, prisms, pyramids, etc.),

and if needed h-refinement (hanging nodes).” - taken from the official website [27].

23



4.3.1 Computational Model

The numerical setup of the transport equations must be established in the early stages of any CFD

calculation. In the present case the transport equations are for momentum, mass (pressure) and tur-

bulence as no model for transition was considered. Implementation of the numerical model include the

following parameters [6]:

• Linear equation solver and mass-momentum solver. - The three transport equations men-

tioned earlier are solved in the form Aφ = RHS, where A is the left-hand side matrix, φ is the

variable or vector that the equation is being solved for and RHS is the right hand side vector of

the equation. This means a systematic procedure has to be selected to calculate the solution of

each linear equation: ReFRESCO uses a PETSc (Portable, Extensible Toolkit for Scientific Com-

putation) solver, which is a set of routines and data structures used for the numerical solution

of partial differential equations for scientific applications. It provides computational routines for

parallel matrix and vector assembly which are valuable mechanisms in parallel application codes.

An additional procedure is needed to couple the linear systems of the momentum and mass (pres-

sure) equations;

• Convergence tolerance - This parameter specifies, in each time step, the precision to which the

solution of each linear equation needs to be computed to;

• Relaxation Procedure - Each equation being solved has an initial guess for the solution. This

guess is updated as the simulation runs. An explicit under relaxation procedure allows to alter

the amount by which that initial guess is updated. While an implicit under relaxation procedure

allows to control the ”stiffness” associated with the matrix A of each linear equation by increasing

the matrix diagonal and the right-hand side (RHS) of the equation. This allows to ensure that the

numerical scheme being implemented is capable of producing a solution.

Regarding explicit relaxation, the explicit under relaxation factor, αexp, weighs the contribution of

the solution in the previous iteration by applying the following rule:

φn+1 = φn + αexp
(
φn+1∗ − φn

)
, (4.4)

in which φn+1∗ is the predicted solution at the new non-linear iteration, φn+1 is the used solution at

the new non-linear iteration, and φn is the solution at the previous iteration. This factor should, ide-

ally, be as high as possible to ensure the fastest convergence possible (provided that the stability

of the scheme is maintained).

The following values were chosen, through a trial and error process, to be used as the initial values

of explicit relaxation. They were, however, tuned to better fit each specific simulation:

– Momentum equation: 0.8

– Turbulence equation: 0.75

24



– Pressure (Poisson) Equation: 0.4

In what concerns implicit under relaxation, the factor αimp is introduced to modify (increase) the

left hand side matrix’s (A) diagonal and the RHS of the linear equation being solved:

(
Aij +

(
Aii
αimp

−Aii
))

φnj = RHSi +

(
Aii
αimp

−Aii
)
φn−1
j , (4.5)

Equation (4.5) applies to the non-linear problem at each time step. ReFRESCO allows to chose a

minimum and maximum value for the implicit relaxation factor, as well as the number of iterations

over which the minimum value must be increased until it reaches the maximum value. Conver-

gence is usually quicker for high implicit relaxation factors, however lower values increase stability.

It was empirically determined that 0.9 was an appropriate starting point value for both minimum

and maximum relaxation factors, for both momentum and turbulence equation, but similarly to the

values chosen for explicit relaxation, this value was also altered to adapt to each simulation.

• Convective flux discretisation - The momentum and turbulence equations both contain convec-

tive terms and as such, a discretisation scheme must be selected for those terms. Of the several

schemes provided by ReFRESCO, the LIMITED QUICK scheme, which is a QUICK scheme with

a flux limiter was used for the discretisation of the convective term in the momentum equation

and a first order upwind scheme was used for the convective flux discretisation of the turbulence

equation. The choice of these schemes guarantees that the flux values are always positive;

• Time integration scheme - An implicit three-time level (2nd order) scheme was used to perform

time integration for all equations, with the exception of turbulence, on which a first order scheme

was used to ensure robustness.

4.4 Spatial Discretisation

This section describes the grids used for spatial discretisation of the domains used for both the

preliminary studies and the main simulations.

4.4.1 Preliminary Study 1

15 grids were generated in HEXPRESSTM for the first preliminary study. Three sets of grids for the

domain with the circular cylinder, six sets of grids for the domain with an hexagonal cylinder and other

six sets for the domain with an octagonal cylinder (three sets for corner orientation and three for face

orientation). Examples of some of the grids used are shown in Figure 4.2, and two important parameters

to characterize the grids, total number of cells, Nv, and number of faces in the surface of the cylinder,

Nf are included in Table 4.1. Additionally, the grid refinement ratio, ri = h1/hi, for the grids used in this

25



first preliminary study is presented in Table 4.2. The grid refinement ratio is obtained from

ri = hi/h1 =

(
Nv1

Nvi

)1/2

=
Nf1

Nfi
. (4.6)

Table 4.1: Number of volumes Nv and number of cell faces on the surface of the cylinder Nf of the
grids of the first preliminary study.

Grid Circle Hexagon Octagon
Corner Face Corner Face

1
Nv 122090 115228 121274 125789 118924
Nf 1346 1230 1308 1362 1260

2
Nv 67354 64888 66924 68344 66396
Nf 808 744 790 824 766

3
Nv 61372 31856 33342 33664 29590
Nf 538 502 530 554 516

Table 4.2: Grid refinement ratio, ri, of the grids of the first preliminary study.

Grid Circle Hexagon Octagon
Corner Face Corner Face

1 1. 1. 1. 1. 1.

2 1.666 1.653 1.656 1.653 1.645

3 2.502 2.450 2.468 2.458 2.442

4.4.2 Preliminary Study 2

As stated above, for the second preliminary study structured grids were used instead of unstructured

ones, since the objective was to study the influence of wall function in the solution and the 2D grids

without wall functions generated in HEXPRESSTM did not present the necessary quality.

Four sets of geometrically similar grids were generated to discretize the computational domain de-

scribed in section 3.3.2. The multi-block structured grids were generated with algebraic and elliptic

grid generators described in [28]. The grid is orthogonal to the surface in the near-wall region and the

selected topology intends to cluster cells in the near-wake region and expand the cell size at the top,

bottom and outlet to avoid pressure reflections. The first set of grids (GNO) is tunned to calculate τw

from its definition which means using the NO wall boundary conditions described in section 3.4. Figure

4.3 illustrates the grid topology as well as views from the coarsest grid of the GNO set for the circular

cylinder [4].

The remaining 3 sets are obtained by merging cells in the near-wall region keeping the cell height of

all the grids of the same set constant. In [29] it is reported that for a flat plate flow the value of τw obtained

with WF depends on (yn)2. Although the aerodynamic forces of the present flows are dominated by the
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(a) Complete domain discretization (b) Circular cylinder

(c) Hexagonal cylinder with corner orientation (d) Hexagonal cylinder with face orientation

(e) Octagonal cylinder with corner orientation (f) Octagonal cylinder with face orientation

Figure 4.2: Finest grids (Grid 1) used for the first preliminary study. Figure (a) shows the complete
discretization of the domain for the circular cylinder case. Figures (b)-(f) show close ups of the several

geometries used.
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Figure 4.3: Illustration of the grid topology and different views of the coarsest grid of set GNO of the
multi-block structured grids for the calculation of the flow around a circular cylinder at a Reynolds

number of 108 without wall functions.

pressure component, their magnitude is essentially dependent on the location of the separation points.

Consequently, in this work three different values of the near-wall cell size were tested for the application

of WF in sets GWF1, GWF2 and GWF3. The number of cells merged in the near-wall region of the

inner block are 1/4 (GWF1), 3/8 (GWF2) and 1/2 (GWF3) of the cells in the direction perpendicular to

the surface of the cylinder. Figure 4.4 illustrates, for the coarsest grids of the four sets generated for the

circular cylinder, the region close to wall [4].

The total number of cells of each grid, Nv, the number of faces on the surface of the cylinder, Nf and

the grid refinement ratio ri = hi/h1 are presented in Table 4.3.

The grid generation strategy used for the octagonal and hexadecagonal cylinders was the same, with

the number of faces on the body surface and the number of cells merges in the near-wall region for the

GWF sets identical to those used for the circular cylinder. Figure 4.5 shows the coarsest grids of the

GNO set for the polygonal cylinders [4].
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GNO GWF1

GWF2 GWF3

Figure 4.4: Near-wall grids of the coarsest grid of the sets GNO, GWF1, GWF2 and GWF3 of the
multi-block structured grids for the calculation of the flow around a circular cylinder at a Reynolds

number of 108 with and without wall functions.

Table 4.3: Number of volumes Nv, number of cell faces on the surface of the cylinder Nf and grid
refinement ratio hi/h1 of the grid sets GNO, GWF1, GWF2 and GWF3 of the multi-block structured
grids for the calculation of the flow around a circular cylinder at a Reynolds number of 108 with and

without wall functions.

Grid hi/h1 Nf Nv

GNO GWF1 GWF2 GWF3
1 1. 896 244608 194432 169344 144256
2 1.16(6) 768 179712 142848 169344 105984
3 1.4 640 124800 194432 169344 73600
4 1.75 512 79872 194432 169344 47104
5 2. 448 61152 194432 169344 36064
6 2.3(3) 384 44928 194432 169344 26496

4.4.3 3D Study

For the simulation of flow around the 3D aquaculture structure, three grids were generated using

HEXPRESSTM.

As a consequence of the results of the second preliminary study, wall functions were used and no

29



Figure 4.5: Illustration of the coarsest grid of set GNO of the multi-block structured grids for the
calculation of the flow around a octagonal and hexadecagonal cylinder at a Reynolds number of 108

without wall functions.

viscous layer near the wall was introduced. Figure 4.6 shows details of the grids used in this study.

Table 4.4 shows the total number of cells, the number of faces on the surface of the structure and the

grid refinement ratio of each one of the three grids.

Table 4.4: Number of cells Nv, number of face elements Nf and grid refinement ratio hi/h1 of the grids
for the simulations performed with Re = 108 with 3D geometry

Grid Nv Nf hi/h1

1 11 379 583 388 164 1.

2 3 504 780 185 390 2.094

3 988 237 86 364 4.495

4.5 Temporal Discretization

In all cases tested, the time scale was adapted inversely to the increase of number of face elements

in each refinement, in order to guarantee an average Courant number, Cavg (ratio of the time scale to

spatial scale multiplied by the local velocity), close to Cavg = 1.2 ∼ 1.5. The Courant number gives an

indication of the numerical stability of an unsteady simulation, as high values of C mean that the time

step is too large for the size of the smallest spatial scales, which leads to significant time errors.

4.5.1 Preliminary Study 1

The values of the time steps, in seconds, used for each simulation of the first preliminary study are

presented in Table 4.5.
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(a) Top-down view of the complete grid (b) Detail: side of the structure

(c) Detail: bordure of the floating collar (d) Detail: bottom corner of the structure

Figure 4.6: Finest grid (Grid 1) used for the 3D study. Figure (a) shows the complete discretization of
the domain in a top-down view. Figures (b)-(f) show close up details of relevant parts of the grid.

Table 4.5: Time scales of the simulations of the first preliminary study, in seconds

Grid Circle Hexagon Octagon
Corner Face Corner Face

1 0.007494 0.007652 0.007597 0.007627 0.007679

2 0.012485 0.012651 0.01258 0.012606 0.012631

3 0.01875 0.01875 0.01875 0.01875 0.01875

4.5.2 Preliminary Study 2

The time step for this study was selected to obtain a maximum Courant number around Cmax ≈ 5,

which for the circular cylinder leads to an average Cavg close to Cavg ≈ 1.5. The refinement studies

performed for each set have a grid refinement equal to the time refinement ratio. The values of maximum

Courant number Cmax of the circular cylinder simulations as well as the maximum non-dimensional near-

wall cell height in wall coordinates ((y+
n )2)max, are presented in Table 4.6
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Table 4.6: Maximum Cmax Courant number and Number of volumes Nv, number of cell faces on the
surface of the maximum non-dimensional near-wall cell height in wall coordinates ((y+

n )2)max of the grid
sets GNO, GWF1, GWF2 and GWF3 of the multi-block structured grids for the calculation of the flow

around a circular cylinder at a Reynolds number of 108 with and without wall functions.

hi/h1 Cmax ((y+
n )2)max

GNO GWF1 GWF2 GWF3 GNO GWF1 GWF2 GWF3
1. 5.0 5.0 6.5 4.9 0.24 230 1940 16147

1.16(6) 4.9 4.9 6.2 4.9 0.28 231 1957 16304
1.4 5.0 4.9 5.6 4.8 0.34 236 2018 16457

1.75 5.0 5.0 5.3 4.9 0.43 243 2084 16996
2. 5.0 5.0 5.3 5.1 0.50 248 2136 17927

2.3(3) 5.0 4.9 5.3 4.8 0.59 253 2214 18280

As mentioned above, the values of ((y+
n )2)max for the GNO set decrease with grid refinement,

whereas for the GWF1, GWF2 and GWF3 sets the values of ((y+
n )2)max remain approximately con-

stant. However. the dependence of ((y+
n )2)max on the shear-stress at the wall τw generates a small

change of ((y+
n )2)max with grid refinement for the wall functions sets.

Initial conditions, whenever possible, were interpolated from a converged solution obtained in a dif-

ferent grid for the same geometry. For the coarsest grid of each grids set, the initial approximation is

obtained from the inlet conditions except for the pressure field that is set equal to the value at the outlet.

This means that the simulation must be sufficiently long to eliminate the influence of the initial condition.

4.5.3 3D Study

Table 4.7 shows the time scale, in seconds, used for each simulation performed with the 3D geometry,

as well as the average and maximum Courant numbers of the simulations.

Table 4.7: Time scales of the simulations performed with Re = 108 with 3D geometry, in seconds

Grid Time Scale Cavg Cmax

1 0.66375 1.42 16.2

2 0.9825 1.42 15.5

3 1.5 1.42 14.6

To illustrate the computational power used for these simulations, Table 4.8 presents the number of

processors used for each simulation, as well as the computation time of the whole simulation, in seconds.

4.6 Quantities of Interest

Since each study had its own objectives different from each other it is important to outline the relevant

parameters that need to be analysed in each case.

32



Table 4.8: Number of processors Nproc and computation time tcomput, in seconds for the simulations
with Re = 108 with 3D geometry.

Grid Nproc tcomput [s]

1 400 1.009876E+06

2 260 3.841356E+05

3 140 4.030541E+05

4.6.1 Preliminary Study 1

The first study aims to compare results with the ones obtained by Khaledi and Andersson [2], un-

derstand the impact of unstructured grids and their refinement on the solution and on the numerical

robustness of the simulation itself and study the influence of the body shape in the numerical conver-

gence properties. As such the quantities to be analysed are:

1. Average force coefficients (CDavg and CLavg ) and their evolution through time (time history), ob-

tained from the total forces in the x and y directions:

CD =
D

1
2ρU

2
∞d

, (4.7)

CL =
L

1
2ρU

2
∞d

, (4.8)

For flows around bluff bodies CL and CD change with time. Thus their behaviour will be described

using the average and root mean squared (rms) values obtained from the last n cycles of the

simulations, where n is selected through statistical convergence criteria;

The average value of the time history of a variable φ is obtained from

φ(avg) =

∫ te

tb

φ(t)dt

te − tb
, (4.9)

where φ stands for any flow quantity and tb and te are the beginning and the end time of the last n

cycles simulated, respectively. The rms value is obtained from

φrms =

√√√√√
∫ te

tb

(φ(t)− φavg)2
dt

te − tb
. (4.10)

The integrals included in equations (4.9) and (4.10) are determined with second-order trapezoidal

rules.

2. Strouhal number, obtained through an FFT (Fast Fourrier Transform) tool available in TecPlot [30],

as a means of comparison with the literature;
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3. Instantaneous streamline patterns to study vortex dynamics and the formation of turbulent struc-

tures in the wake of the cylinder;

4. Average Courant number to evaluate the presence of errors caused by an imbalance between the

temporal and spatial scales;

5. Convergence properties of each simulation

Statistical error - In statistically unsteady RANS simulations, statistical errors are a consequence

of an incorrect initial condition. Assessing statistical errors is only straightforward if the mean

flow solution is periodic, which is expected for all the test cases used in this study. However, as

discussed in [31], there is no guarantee that the turbulence model provides the correct amount of

diffusion (the role of the Reynolds stresses) to damp all the turbulent fluctuations. In this work a

”cycle” is defined by the interval between the two time steps where the lift coefficient CL is equal to

zero and dCL/dt > 0. Statistical convergence is quantified from the changes in average, maximum

and root mean squared values of CL in the last n cycles performed. Statistical convergence is

assumed to occur when these changes are at the level of iterative convergence criteria used at

each time step. [4]

Iterative Convergence Criteria- The iterative convergence is monitored from the normalized

residuals of all transport equations included in the determination of the flow field at each time

step, i.e. x and y momentum equations, pressure correction (continuity) and turbulence transport

equations. The normalization of the residuals is performed with the main diagonal of the system

of equations and reference quantities based on ρ, L and V∞. With this approach, the residuals

correspond to dimensionless variables change in a simple Jacobi iteration.

The statistical convergence is assessed for CDavg and the period T of the last n cycles of the

simulations using the simplest technique proposed in [32], which calculates the uncertainty of the

mean value of a time signal from the standard deviation of the mean values obtained from equally-

sized segments of the time interval defined by the number of cycles n.

The discretization uncertainty is estimated using power series expansions [33] fitted to the data

obtained from the grid/time refinement studies performed for each test case. As discussed in [34],

the use of equal grid and time refinement ratios enables the use of the procedure described in [33].

4.6.2 Preliminary Study 2

The second preliminary study has as objective to understand the impact of wall functions in the

simulation, so one of the main interests lies in the convergence properties of the simulation.

The relevant quantities are:

1. Average Force coefficients CD, CL and their time history;

2. Frequency content of the time histories, by means of an FFT and Strouhal number, St;
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3. The time history of the main Cartesian velocity components Ux and Uy at two points in the near

wake for the three geometries considered: P1 has coordinates x = 1.75d, y = 0 and P2 is located

at x = d, y = 0.75d. The interpolation is performed using the value and the gradient at the nearest

cell-centre.

φP (t) = φnc(t) +∇φnc(t) · (~xP − ~xnc) , (4.11)

where φ designates any of the Cartesian velocity components and ~x the positions of the selected

location P and nearest cell centre nc. Figure 4.7 shows the location of P1 and P2 in the near wake

of the circular cylinder. The objective of monitoring these quantities is to check if the numerical

solution exhibits a ”RANS-like” behaviour, i.e. the FFTs of the velocity plots exhibit only significant

amplitudes for discrete frequencies and to assess if statistical convergence of the force coefficients

also implies statistical convergence of local flow quantities.

P
1

P
2

Figure 4.7: Selected locations for the assessment of the time histories of the mean Cartesian velocity
components Vx and Vy. Flow around a circular cylinder at a Reynolds number of 108.

4. Iterative convergence properties of the simulations

For all the simulations performed for the circular cylinder, the largest residual of all transport equa-

tions (L∞ norm) was dropped to values below 10−6 at each time step. This value was selected

after comparing results obtained with iterative convergence criteria of 10−3, 10−5 and 10−6. As dis-

cussed later, the iterative convergence of the octagonal and hexadecagonal cylinders is a lot more

difficult than for the circular cylinder, especially for the GNO and GWF1 grids. Therefore, simula-

tions performed in the GWF2 and GWF3 used 10−5 for the L∞ norm of the normalized residuals,

whereas some of the results presented for the GNO and GWF1 sets were obtained with a less

strict iterative convergence criteria that required thousands of iterations at each time step.

4.6.3 3D Study

The final and main study wants to study the forces and moments with respect to the center of the

structure acting on the structure in order to permit an accurate structural analysis in future studies. So,
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naturally, the interest lies with:

1. Time history of the forces in the three directions and respective average values;

2. Time history and average moments acting in the three directions;

3. Frequency content analysis of the signals of the time histories.

The 3D force and moment coefficients were obtained from the total forces and moments in the

respective directions making use of:

CFi =
Fi

1
2ρU

2
∞A

, (4.12)

and

CMi =
Mi

1
2ρU

2
∞Ad

, (4.13)

where A is the impinging area of the structure, which is approximately A = 8712.5m2.
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Chapter 5

Results

In this chapter, the results from the two preliminary studies will be presented and analysed keeping

in mind that the main objective of those studies is to chose the best possible settings for the main 3D

study of flow around the aquaculture structure. The results of the main study will also be presented

and analysed. Since the goal of this work is to provide information (forces and moments) for future

studies such as a structural analysis of the aquaculture floating ring, the results of the main study will

be presented taking that into account (for example, in addition to analysing the forces and moments

coefficients, the total forces and moments will also be presented).

5.1 Preliminary Study 1

It bears repeating that the objective of this particular study was to test the numerical robustness

of the unstructured grids generated with HEXPRESSTM and their refinement by comparing the results

obtained with these grids to the ones obtained by Khaledi and Andersson [2]. It also aimed to check the

numerical convergence properties of the simulation as a function of body shape.

5.1.1 Time History of the Forces and Average Force Coefficients

Obtaining the average force coefficients, Cd and Cl, and studying the time history of the forces is

useful to understand the behaviour of the flow as a consequence of the different cross-section shapes

and orientations, as well as giving a basis to later obtain the Strouhal number.

To obtain the average values of the forces for each case a FORTRAN routine was created that is

able to select the relevant part of the data set since it eliminates the effect of the initial condition by

considering only the last cycles of the simulation. To do this, the routine determines each time that the

value of the Lift coefficient changes sign from a negative to a positive number(CL = 0 and dCL/dt > 0).

The time interval between each negative-to-positive sign change is considered a cycle. The user sets

the number of cycles to consider and only full cycles are considered for the calculation of the average, i.e.

if the last cycle does not finish in a negative-to-positive sign change, that partial cycle is not considered
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for the calculations. For this study the number of cycles considered for each simulation was adapted in

order to obtain around 120 seconds of relevant data.

This study involved a great number of simulations. There are five geometries being evaluated, two

turbulence models and there are three refinement levels generated, which gives a total of 30 simulations.

From these simulations the evolution of the force coefficients through time was plotted for each case.

Figure 5.1 shows the plots generated for all 5 geometries for the grid with the highest level of refinement

using the k − ωSST (2003) model. The other plots were placed in Appendix A for the sake of brevity.

From these plots a difference in behaviour between the octagonal cylinders and the hexagonal cylin-

ders is noticeable. The hexagonal cylinder, as a consequence of the smaller internal angles, shows a

frequency behaviour much different from the circular cylinder, with several energetic frequencies inter-

acting with the structure, particularly in the face orientation. The octagonal cylinder still has more than

one frequency, but they are less energetic. This will be further analysed in the analysis of the Strouhal

number.

These plots also give an idea of the average values of the coefficients for the various simulations.

The exact values are present in Tables 5.1 and 5.2 for all the simulations performed for this study, as a

function of cross-section shape of the cylinder and the turbulence model used.

Table 5.1: Average Drag coefficient for the simulations performed with Re = 103

Grid Turbulence Circle Hexagon Octagon
Model Corner Face Corner Face

1
k − ωSST 1.4957 1.6884 1.9913 1.8727 1.5489

KSKL 1.4734 1.7109 2.0354 1.8563 1.5353

2
k − ωSST 1.4918 1.7224 1.9978 1.7569 1.5383

KSKL 1.4648 1.7462 2.0442 1.7368 1.5229

3
k − ωSST 1.5102 1.7591 2.0232 1.7049 1.6012

KSKL 1.4795 1.7778 2.1945 1.8640 1.5771

Table 5.2: Average Lift coefficient for the simulations performed with Re = 103

Grid Turbulence Circle Hexagon Octagon
Model Corner Face Corner Face

1
k − ωSST 4.1750× 10−5 −0.15637 0.31461 0.063454 2.6420× 10−5

KSKL 1.8780× 10−5 0.11519 0.021897 1.9880× 10−4 2.7510× 10−5

2
k − ωSST 1.5350× 10−5 0.15377 −0.30218 −0.16871 9.8530× 10−5

KSKL 1.499× 10−5 0.11281 0.082789 0.0014072 1.0040× 10−4

3
k − ωSST 1.612× 10−5 0.11378 −0.26432 −1.9404× 10−4 4.317× 10−5

KSKL 1.664× 10−5 0.062869 −0.093386 2.1532× 10−4 3.946× 10−5

From the average values of the force coefficients it is evident that there is little difference between the

several refinement levels for a given case, particularly in the average Drag coefficient. Larger differences

between the refinement levels on the average Lift coefficient can be due to the fact that forces in the y-
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(a) Hexagonal cylinder with corner orientation (b) Hexagonal cylinder with face orientation

(c) Octagonal cylinder with corner orientation (d) Octagonal cylinder with face orientation

(e) Circular cylinder

Figure 5.1: Evolution of Cd and CL for the simulations with the most refined grid (Grid 1) using the
k − ωSST model

direction vary more heavily through time, when compared with the x-direction, due to vortex shedding

and the recirculation bubbles formed close to the surface of the cylinder, which have special importance
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in the polygonal cases.

5.1.2 Strouhal Number

The time history of the forces presented in the previous subsection allows to make some predictions

about the important frequencies of the flow, such as the vortex shedding frequency. To prove those

assumptions one may turn to a Fast Fourier Transform (FFT), which is a mathematical tool that allows

to analyse the frequency content of a solution. The most energetic frequency - highest amplitude - in

an FFT of the total forces in the y-direction, will be the vortex shedding frequency, i.e. the frequency at

which each vortex leaves the wall of the cylinder as a recirculation bubble and travels along the wake.

From that frequency, with the help of equation (2.1), one can extract the Strouhal number, commonly

used to study this effect, since it represents an adimentional frequency. The FFT plots for the simulations

performed with Grid 1 using the k − ωSST model are shown in Figure 5.2.

(a) Circular cylinder (b) Hexagonal cylinder with corner ori-
entation

(c) Hexagonal cylinder with face orien-
tation

(d) Octagonal cylinder with corner ori-
entation

(e) Octagonal cylinder with face orien-
tation

Figure 5.2: Fast Fourier Transfom plots obtained from the simulations with Grid 1 using the k − ωSST
model.

In Figure 5.2, the frequency with the highest amplitude is the vortex shedding frequency, while the

other peaks are harmonic frequencies of that first energetic frequency. The figure makes evident the

difference between the different cross-sections of the cylinders: the circular cylinder, as the smoothest

surface has little in terms of frequency content, as would be expected, both the hexagonal and octagonal

cylinder have richer frequency spectra, particularly the hexagonal cylinder with face orientation. The

octagonal cylinder is more similar in terms of frequency content to the circular cylinder than to the

hexagonal cylinder, which can be corroborated by the Strouhal number extracted from the FFTs.
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Khaledi and Andersson [2] obtained a value of St = 0.1718 for an hexagonal cylinder with corner

orientation and a Strouhal of St = 0.2136 for an hexagonal cylinder with face orientation, which means

that the vortex shedding frequency is higher in the face-oriented case. It is also inferred by them that the

Strouhal number should decrease with increasing number of faces, approaching the Strouhal number

of a circular cylinder in the limit. Regarding the circular cylinder, reference values can be found in

experiments performed by Norberg [35] and Kiya et al. [36], where values close to St = 0.21 are

obtained for uniform flow around a circular cylinder at Re = 1000.

The values of Strouhal number obtained in this study are presented in Table 5.3.

Table 5.3: Strouhal number obtained for the simulations performed with Re = 103

Grid Turbulence Circle Hexagon Octagon
Model Corner Face Corner Face

1
k − ωSST 0.2376 0.1908 0.1997 0.2613 0.2152
KSKL 0.2365 0.1977 0.2087 0.2614 0.2153

2
k − ωSST 0.2361 0.1931 0.2001 0.2369 0.2158
KSKL 0.2345 0.2003 0.2092 0.2409 0.2155

3
k − ωSST 0.2365 0.2010 0.1996 0.2342 0.2152
KSKL 0.2345 0.2080 0.2236 0.2532 0.2145

A relative difference of around 12.7% from the reference values is found for the circular cylinder

simulations, while for the hexagonal cylinder it is close to 10% for the corner orientation and about 5%

for the face orientation.

It is possible to note that the tendency encountered by Xu et al. for flow at Re = 2 × 104 shown

in Figure 2.2 (c), also seems to apply to this case, since the values of Strouhal for the hexagonal

cylinder with face orientation and for the octagonal cylinder with corner orientation are higher than their

respective counterparts. Xu et al. also noted that for the Reynolds number they were experimenting with,

the Strouhal of the octagonal cylinder with corner orientation would be slightly larger than the Strouhal of

the circular cylinder, which also is true at the Reynolds number considered for this section of this work.

The similarity of the results here obtained with the literature available helps to confirm that the use of

unstructured grids is not a disadvantage when dealing with complex geometries. The results also show

that the grid refinement performed using Crepier’s method [26] leads to grids as geometrically similar as

possible. This shows that the use of this type of grids and this type of refinement can lead to accurate

results when dealing with the more complex 3D geometry.

5.1.3 Instantaneous streamline patterns

Khaledi and Andersson studied the unsteady sheading behaviour of the flow by taking snapshots of

the streamlines at particular points in time [2]. Similar snapshots taken at the end of the simulation (7

minutes = 420 seconds) in the current work are shown in Figure 5.3.

At this Reynolds, as is shown in Figure 5.3 (b), the flow separates near the leading edge of the flow

parallel faces in the corner oriented hexagonal cylinder. In the case of the face oriented cylinder, the
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(a) Circular cylinder (b) Hexagonal cylinder with corner ori-
entation

(c) Hexagonal cylinder with face orien-
tation

(d) Octagonal cylinder with corner ori-
entation

(e) Octagonal cylinder with face orien-
tation

Figure 5.3: Streamline patterns obtained from the simulations with Grid 1 using the k − ωSST model at
the time time instant of 420s.

flow separates at the upper and lower corners, where it forms a recirculation bubble, which evolves into

a vortex that is shed alternatively from the upper and lower side of the cylinder. These results are similar

to the ones obtained by Khaledi and Andersson [2].

As for the octagonal cylinder, since it is out of the scope of Khaledi and Andersson’s research, no

direct comparison can be made, however they state the following prediction: ”While an octagonal cylinder

resembles a square cylinder in the sense that face orientation implies that two of the faces become

aligned with the flow direction, this is not the case for a hexagonal cylinder. In order for two of the

faces of the hexagon to be parallel with the main stream, corner orientation is required” [2]. This means

that the corner oriented hexagonal cylinder should share similarities in terms of flow characteristics with

the face oriented octagonal cylinder while the face oriented hexagonal cylinder should be similar to the

corner oriented cylinder. This does seem to be the case, since the corner oriented octagonal cylinder in

Figure 5.3 shows that the flow is separating near the upper and lower corner of the cylinder and the face

oriented octagonal cylinder in the same figure shows the flow separating at the leading edge of the faces

parallel to the flow. Which, in turn corroborates the statement that ”What matters for the wake dynamics

is not if the front stagnation point is at a face or a corner, but if the width of the projected cylinder is

determined by sharp corners or flow-parallel faces.” [2].
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5.1.4 Average Courant Number

As mentioned before, the average Courant number, Cavg, relates the smallest spatial scales to the

time scales. High values of this parameter indicate the presence of significant time errors in the simu-

lation, which could translate into unrealistic results. Acceptable values of Cavg are as close to one as

possible, since it shows that the time scale and the spatial scale are well adapted to each other. Table

5.4 shows Cavg obtained for each simulation.

Table 5.4: Average Courant number Cavg obtained for the simulations performed with Re = 103

Grid Turbulence Circle Hexagon Octagon
Model Corner Face Corner Face

1
k − ωSST 1.28247 1.07209 1.55460 1.32202 1.16588
KSKL 1.18062 1.06582 1.35405 1.41031 1.22798

2
k − ωSST 1.25368 1.26615 1.50999 1.51988 1.18434
KSKL 1.28533 1.21465 1.38345 1.47383 1.13029

3
k − ωSST 1.36489 1.14386 1.44204 1.45579 1.28321
KSKL 1.32384 1.13492 1.44945 1.46792 1.16369

As Table 5.4 shows, the average Courant of all the simulations performed at this stage is below 1.6.

It also shows that the stability of the simulations is not affected by the grid refinement, since there is no

discernible correlation between the average Courant number and the refinement level.

5.1.5 Convergence Properties

In order to further understand which kind of impact do the HEXPRESSTM grids and their refinement

have on the results it is necessary to analyse the convergence of the simulations.

In an unsteady simulation, as is the case with this work, the software calculates the values of the

properties of the flow, such as velocity, pressure and the turbulent viscosity in each time step. Before

continuing to the next time step the residuals of those quantities must reach a maximum specified value,

the so-called Convergence Tolerance, which for this study was set as 1× 10−6, i.e. the residuals of each

quantity calculated with the specified equations must be lower than the value of Convergence Tolerance.

Alternatively, if, by a set Maximum Number of Iterations in a given time step (200 for this study), these

residuals have not all reached the Convergence Tolerance value, the simulation automatically moves

on to the next time step. This is not ideal, since this means that at that time step the simulation did

not converge to a good enough tolerance. High values of the number of iterations per time step also

represent higher computational time, even if the maximum number of iterations has not been reached,

so it is beneficial to keep the number of iterations per time step at an appropriate level.

The average number of iterations per time step for the simulations with the circular cylinder was close

to 25 for Grids 2 and 3 and close to 30-35 for the simulations with Grid 1, regardless of the turbulence

model. For the polygonal cases, with both orientations, Grids 2 and 3 performed at about 25 iterations

per time-step and for Grid 1 it was close to 70 iterations per time-step. It is clear that for none of the
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cases the value is close to the Maximum Iteration Value of 200, so all the simulations converge properly.

For the two sparcest refinement levels, the average number of iterations are always around 25, which

is enough to guarantee that the simulation will show the appropriate unsteady behaviour. For the finest

grid there is a steep increase in average number of iterations per time step, particularly in the more

complex geometries - hexagonal and octagonal cylinder - this was to be expected, given the decrease

in grid size. Even so, the values registered for these simulations are still within acceptable levels. This

shows that with more complex geometries and very small grid sizes, the simulation will be significantly

more computationally expensive. This must be take into consideration when simulating the flow around

the final 3D aquaculture structure.

5.1.6 Conclusions From This Study

Several conclusions can be extracted from this study that will help choose how to proceed with the

rest of the work.

Firstly it is clear that the behaviour of circular, hexagonal and octagonal cylinders in turbulent flow

has relevant differences. As the number of faces increases in a polygonal cylinder, similarities with the

circular cylinder (infinite number of faces) start to become apparent, as was noted by Xu et al. [10],

but there are still considerable differences between the octagonal cylinder and its circular counterpart.

Those differences, both in Strouhal number, average forces and streamline patterns are even more

accentuated in the case of the hexagonal cylinder. The orientation of the polygonal cylinders also has

consequences regarding the behaviour of the flow around it and with the increase in turbulence, these

effects might be accentuated. However, in a real offshore setting, choosing the orientation of a large

floating aquaculture structure is close to impossible, which means not much can be done to minimize

these effects.

Secondly, from a computational point of view, by comparing the Strouhal numbers obtained with

the simulations performed with HEXPRESSTM with the ones in the available literature it is possible to

conclude that the results obtained with unstructured grids are accurate. Since the average Courant

number is close to one for all the simulations and the number of iterations per time step never exceeds

the maximum value and is always in an acceptable range, it is also possible to conclude that using

unstructured grids provides stable simulations with an acceptable convergence. This gives confidence

for the use of unstructured grids for the study of the flow around the 3D structure.

5.2 Preliminary Study 2

The objective of this study is to compare the results obtained from simulations where wall functions

were used to the results of simulations without wall functions for three bluff body geometries to weigh

the advantages and disadvantages of using wall functions in a flow around bluff bodies at a very high

Reynolds number.

Unlike the previous study, the results will be presented by geometry, meaning that first the results
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of the the simulations with a circular cylinder will be presented and analysed, followed by the octagonal

cylinder’s results and finally the ones from the hexadecagonal cylinder.

For the sake of brevity and simplicity, only the images regarding the results of the simulations per-

formed with the circular cylinder will be presented here. The images of the results from the simulations

with the polygonal cylinders can be consulted in Appendix B.

5.2.1 Circular Cylinder

Numerical Uncertainty

The contribution of the discretization error dominates the numerical uncertainty of the quantities of

interest. This requires negligible contributions of round-off, statistical and iterative errors, which are

achieved in part due to the use of double precision and an iterative convergence criteria of 10−6. Table

5.5 presents the average number of iterations performed at each time-step for the simulations with

this geometry. Even though there was no systematic attempt to perform optimization of the iterative

convergence for each grid set, the under-relaxation parameters remain fixed with the exception of the

two finest grid sets GNO and GWF1. For these, the explicit under-relaxation coefficients had to be

slightly smaller than those used in the remaining grids. Compared to the calculation of τw from its

definition (GNO), the use of wall functions reduces Nit and the increase of ((y+
n )2)max of the near-wall

cell also leads to a decrease in Nit. Thus the use of wall functions enhances the robustness of the flow

solver, as expected. [4]

Table 5.5: Average number of iterations performed at each time step Nit for the grid sets GNO, GWF1,
GWF2 and GWF3. Calculation of the flow around a circular cylinder at a Reynolds number of 108 with

and without wall functions.

Grid ri
Set 1. 1.16(6) 1.4 1.75 2. 2.3(3)

GNO 118 120 125 133 120 118
GWF1 63 61 64 70 85 80
GWF2 58 60 55 58 53 51
GWF3 50 43 30 35 31 31

Figures 5.4 to 5.7 illustrate the time histories of the drag coefficient CD, lift coefficient CL and Carte-

sian mean velocity components Vx and Vy at P1 and P2 for the last 4 cycles of the simulations performed

for the circular cylinder. The mean value of each period 1 is subtracted to the dependent variables and

the difference is divided by the maximum value obtained in each period. Time t is divided by the period

of the cycles T obtained in each grid.

The results show that, for all simulations performed, all the quantities under analysis become pe-

riodic. Grid and time refinement, as well as the selected wall boundary condition is shown to affect

differently the selected quantities.

CD has a period that is half of that determined for CL, which was expected. The signals of two

velocity components of the point located outside the boundary layer (P2) have the same period of CL,
1The mean value of CL is assumed zero.
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Figure 5.4: Time history of the drag coefficient CD, lift coefficient CL and Cartesian mean velocity
components Vx and Vy at x = 1.75D, y = 0 (P1) and x = D, y = 0.75D (P2) for the last 4 cycles of the
simulations performed without wall functions, set GNO. Flow around a circular cylinder at a Reynolds

number of 108.
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Figure 5.5: Time history of the drag coefficient CD, lift coefficient CL and Cartesian mean velocity
components Vx and Vy at x = 1.75D, y = 0 (P1) and x = D, y = 0.75D (P2) for the last 4 cycles of the
simulations performed with wall functions, set GWF1. Flow around a circular cylinder at a Reynolds

number of 108.

while, for the point in the near-wake (P1) , Vy has the same period of CL and Vx has half of that period,

behaving as CD.

The results of Figures 5.4 to 5.7 suggest that the solutions produced by the simulations show ”RANS-

like” behaviour. This is confirmed by the frequency content of the signals of the time histories of the

quantities of interest, illustrated in Figures 5.8 to 5.11.

The FFTs of all simulations exhibit sharp peaks only at discrete frequencies, however force coeffi-

cients show only one frequency, while the plots of Vx and Vy at P1 (near-wake) exhibit more than one.

Regarding the point outside of the viscous region, P2, the plots of Vx and Vy present the same frequency

as CL but the second harmonic is also present.

The statistical error depends on the initial condition and on the total simulation time (number of cycles

included in the simulation). For this geometry, all simulations show a periodic behaviour, so statistical

convergence can be assessed with ease. Table 5.6 presents the values of statistical uncertainty US
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Figure 5.6: Time history of the drag coefficient CD, lift coefficient CL and Cartesian mean velocity
components Vx and Vy at x = 1.75D, y = 0 (P1) and x = D, y = 0.75D (P2) for the last 4 cycles of the
simulations performed with wall functions, set GWF2. Flow around a circular cylinder at a Reynolds

number of 108.
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Figure 5.7: Time history of the drag coefficient CD, lift coefficient CL and Cartesian mean velocity
components Vx and Vy at x = 1.75D, y = 0 (P1) and x = D, y = 0.75D (P2) for the last 4 cycles of the
simulations performed with wall functions, set GWF3. Flow around a circular cylinder at a Reynolds

number of 108.

of CDavg
and TV∞/D obtained from the last 48 cycles divided in the 12 intervals of 4 cycles. From

this it is possible to conclude that the contribution of the statistical error to the numerical uncertainty

is negligible when compared with iterative errors that are at least one order of magnitude above the

iterative convergence criteria, 10−6.

Simulations with iterative convergence criteria of 10−3, 10−4 and 10−5 were also performed, however

these were not repeated for all grids and time steps tested. Iterative errors were assessed only for the

most refined grid and smallest time-step (ri = 1) of set GNO. The estimated iterative errors obtained

were sufficiently small to assume that numerical uncertainty is dominated by the discretization error.

The convergence of CDavg , CDmax , CLrms and St with grid/time refinement is illustrated in figure 5.12.

There is a remarkable consistency between the results obtained without wall functions (GNO) and

those obtained with wall functions for the minimum and maximum values of near-wall cell size (GWF1

and GWF3), however the same is not true for the data obtained with the set GWF2. There is a significant
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Figure 5.8: Frequency content of the time history of the drag coefficient CD, lift coefficient CL and
Cartesian mean velocity components Vx and Vy at x = 1.75D, y = 0 (P1) and x = D, y = 0.75D (P2) for
the last 48 cycles of the simulations performed without wall functions, set GNO. Flow around a circular

cylinder at a Reynolds number of 108.
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Figure 5.9: Frequency content of the time history of the drag coefficient CD, lift coefficient CL and
Cartesian mean velocity components Vx and Vy at x = 1.75D, y = 0 (P1) and x = D, y = 0.75D (P2) for
the last 48 cycles of the simulations performed with wall functions, set GWF1. Flow around a circular

cylinder at a Reynolds number of 108.

discrepancy between the data obtained with this grid set and the remaining simulations that cannot be

explained by numerical uncertainty. This is an awkward result, given that it suggest that wall functions

could be acceptable for bluff bodies at very high Reynolds numbers, but it also shows that there is a

strong influence of the size of the near wall cell on the force coefficients determined with wall functions

[4].

The convergence properties observed for CL, CD and St are not identical for the four conditions

tested. For the level of grid/time refinement shown, the convergence of CDavg and CDmax is not mono-

tonic for the GNO set, while all other fits are performed with orders of grid/time convergence between

1.8 and 2. The error constant is significantly larger for the results of the GWF3 set compared with the

results of the other three sets. For this set, GWF3, the two coarsest grids had to be discarded for the

fits, whereas only the coarsest grid was ignored for all remaining fits.

Figure 5.13 shows the grid/time refinement of the mean velocity components at P1 and P2. Even
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Figure 5.10: Frequency content of the time history of the drag coefficient CD, lift coefficient CL and
Cartesian mean velocity components Vx and Vy at x = 1.75D, y = 0 (P1) and x = D, y = 0.75D (P2) for
the last 48 cycles of the simulations performed with wall functions, set GWF2. Flow around a circular

cylinder at a Reynolds number of 108.
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Figure 5.11: Frequency content of the time history of the drag coefficient CD, lift coefficient CL and
Cartesian mean velocity components Vx and Vy at x = 1.75D, y = 0 (P1) and x = D, y = 0.75D (P2) for
the last 48 cycles of the simulations performed with wall functions, set GWF3. Flow around a circular

cylinder at a Reynolds number of 108.

though there are significantly more non-monotonic cases than for the force coefficients, the main trends

observed here are similar to those found in the data obtained from the force coefficients. Furthermore,

these results indicate that the wake obtained in grid set GWF2 is wider than the one determined for the

other grid sets.

Comparison of Solutions Obtained With and Without Wall Functions

The results obtained for this geometry seem to indicate that at very high Reynolds numbers, wall

functions significantly enhance the robustness of the simulations compared to the calculation of τw from

the definition. Figure 5.14 shows the average and maximum drag coefficient, root mean squared lift

coefficient and Strouhal number obtained for the grids with ri = 1, with the respective error bars due to

numerical uncertainty.

The results show that only the GNO, GWF1 and GWF3 are consistent for all four quantities of interest
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Table 5.6: Statistical uncertainty Us of the average drag coefficient (CD)avg and cycles period TV∞/D
obtained from the variance of the last 48 cycles divided in 12 intervals of 4 cycles. Flow around a

circular cylinder at a Reynolds number of 108.

Us [(CD)avg]× 107 Us [TV∞/D]× 107

ri GNO GWF1 GWF2 GWF3 GNO GWF1 GWF2 GWF3
2.3(3) 1.3 0.1 1.2 17.8 9.9 2.7 3.0 59.7

2. 0.3 0.3 0.2 1.3 2.6 3.3 2.3 7.9
1.75 0,5 0.5 4.5 2.2 6.5 4.1 39.6 8.8
1.4 0.8 1.9 4.9 0.04 11.7 7.6 40.3 2.5

1.16(6) 0,9 0,2 0.5 0.04 13.7 1.8 5.0 1.6
1. 0.8 0.8 1.3 0.04 7.4 8.0 9,8 1.6

(there is overlap of the error bars of the four grid sets). The results from the GWF2 grid set present

discrepancies relative to the remaining simulations not explained by the numerical uncertainty. This

means that the results do not change monotonically with the increase in near-wall cell height. But the

grids with the largest near-wall cell size show the largest numerical uncertainties.

Figure 5.15 illustrates the streamlines and Vx field at a time instant close to minumum lift coefficient

for the finest grids/smallest time-step of the four grid sets tested. There is a remarkable resemblance

between the GNO, GWF1 and GWF3 graphics. The GWF2 graphic shows a larger vortex and wider

near-wake, which explain the results obtained for this grid set for the force coefficients and Strouhal

number.

In figure 5.16 the regions of the flow with νt < 5ν are left white to visualize only the ”viscous region”.

GWF2 shows once again a wider wake than the other grid sets. The field of νt is also different than those

obtained in the simulations performed with the remaining grid sets. Although it cannot be considered

surprising to obtain an influence of the near-wall cell size on the flow field obtained with wall functions, it

was not expected to obtain a good match between the lowest (GWF1) and highest (GWF3) cell sizes.

5.2.2 Octagonal Cylinder

Numerical Uncertainty

For this geometry, for the simulations performed without wall functions, iterative convergence was

extremely difficult to achieve. The ratio between the maximum and average Courant number is signifi-

cantly larger than what was obtained for the circular cylinder. Two alternatives are available to achieve

iterative convergence for the present grids: reduce the time-step until iterative convergence is accept-

able; increase under-relaxation (implicit and/or explicit) at each time step. For the simulations performed

with the coarsest grids (ri = 2.3(3)), the first option required time steps more than 100 times smaller

that those presented in Table 4.3 for the circular cylinder, which makes the simulations unaffordable.

Alternatively, to keep a time-step corresponding to half of what is presented in Table 4.3 more than

2500 iterations are necessary at each time step to achieve L∞ norms of the normalized residuals below

5× 10−4. Reducing that value to 10−6 would mean that 104 iterations per time step were necessary and

so no attempt was made to simulate the flow in the remaining grids.
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Figure 5.12: Convergence with grid/time refinement of average (CD)avg and maximum (CD)max drag
coefficient, root mean squared (CL)rms lift coefficient and Strouhal number St. Flow around a circular

cylinder at a Reynolds number of 108 calculated with and without wall functions.

For the set GWF1, which presents wall functions with near-wall cell heights of y+ ' 300 the problems

of robustness remained, thus simulations were only performed with the coarsest grid. Figure B.1 shows

the time histories of the lift and drag coefficients and their respective frequency content for the results

obtained with the coarsest grid of sets GNO and GWF1. These results show a ”RANS-like” behaviour.

The statistical convergence appears to be better for the grid set with wall functions (GWF1) compared

to the one without wall functions (GNO). On the other hand, grid/time refinement leads to an increase

of the iterative convergence problems at each time step for the GWF1 set, so only the other two wall

function sets (GWF2 and GWF3) will be further analysed.

Figure B.2 illustrates the time histories of the lift and drag coefficients obtained in the GWF2 set 2. The

coarsest grids are the only ones that exhibit a periodic behaviour with discrete frequencies in the force

coefficient time histories. Grid/time refinement lead to an increase in the range of frequencies present in

the time histories under study. This suggests that the turbulence model (as well as numerical diffusion)

are not enough to obtain a RANS solution. This makes it difficult to assess statistical convergence or

even to define a cycle.

The force coefficient time histories obtained in the grids of the last wall function set (GWF3) are

shown in Figure B.3. This set shows similar trends to the ones obtained in the GWF2 set. However,

in this set, not even the coarsest grid shows a periodic behaviour or a solution that resembles a RANS

solution.

2The simulation of the finest grid of this set was not performed.
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Figure 5.13: Convergence with grid/time refinement of average (Vx)avg and maximum (Vy)max mean
velocity components at x = 1.75D, y = 0 (P1) and average (Vx)avg and maximum (Vy)avg at

x = D, y = 0.75D (P2). Flow around a circular cylinder at a Reynolds number of 108 calculated with and
without wall functions.

Taking into consideration the properties of the time signals obtained for the force coefficients, statis-

tical convergence data will not be presented for the local quantities that show time histories that do not

resemble ”RANS-like” solutions.

Figure B.4 illustrates the convergence with grid/time refinement of the average and maximum drag

coefficient, CDavg
and CDmax

, the root mean squared lift coefficient, CLrms
and the Strouhal number St,

the latter obtained from the frequency presenting the highest magnitude in the time history of the lift co-

efficient. Even though the estimated error bars are unavoidably large, there is a remarkable consistency

between the results obtained from the two grid sets.

Flow Properties

The values obtained for the force coefficients with this geometry are significantly larger than the

ones obtained for the flow around the circular cylinder. More, the Strouhal number is close to half of

that obtained for the circular cylinder, which seems to indicate that the wake is wider for the octagonal

geometry.

Figure B.5 shows the streamlines of mean velocity component Vx and eddy viscosity νt/ν for a time

instant for the finest grid used in each set (the time instants are not the same for the two grid sets). The

figure shows that the wake is indeed larger than the one from the circular cylinder. It is also evident

that the increase in size of the ”viscous region” is due to the kinks on the surface of the cylinder that
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Figure 5.14: Average (CD)avg and maximum (CD)max drag coefficient, root mean squared (CL)rms lift
coefficient and Strouhal number St obtained in the finest grids with the smallest time step. Flow around

a circular cylinder at a Reynolds number of 108 calculated with and without wall functions.

provoke flow separation. Although the time histories suggest that this solution does not correspond to

the ”RANS-like” solution that was expected, the width of the wake is similar in the two simulations, unlike

what was obtained with the circular cylinder for these two grid sets.

5.2.3 Hexadecagonal Cylinder

Numerical Uncertainty

With this geometry, the objective is to assess the robustness of the flow solver and to compare the

flow properties with the ones from the other geometries in order to determine whether the geometry with

16 sides more closely resembles the octagonal or circular cylinder.

The Courant number was maintained close to 0.3 for all grid sets to achieve iterative convergence in

a reasonable number of iterations per time-step. Regardless, simulations with the coarsest grid of the

GWF1 set required approximately 2000 iterations to reduce the L∞ norm of the normalized residuals to

10−4, so the simulations for this set were not completed. For the coarsest grid of the GNO set, about

500 iterations were required to lower the residuals to 5 × 10−5. Hence, as was done for the octagonal

case, Figure B.6 presents only the time histories of the force coefficients and their respective frequency

content obtained with the coarsest grid.

The results suggest that more simulation time is required to achieve statistical convergence, Never-

theless, the results obtained for the force coefficients are much closer to the octagonal cylinder than the
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GNO GWF1

GWF2 GWF3

Figure 5.15: Visualization of the flow field and isolines of Vx at a time close to minimum lift coefficient
(CL)min obtained in the finest grids with the smallest time step. Flow around a circular cylinder at a
Reynolds number of 108 calculated with and without wall functions.

circular one.

Grid sets GWF2 and GWF3 show significantly better iterative convergence, with an average of 30

iterations per time-step with a convergence criteria of 10−5. Figures B.7 and B.8 show the time histories

of the force coefficients in the six grids of the GWF2 and GWF3 sets, respectively. All the solutions

present a ”RANS-like” behaviour, but the frequency content of the force coefficients differs between the

two sets.

In GWF2 the two coarsest grids show a periodic behaviour of CL and CD, with the lift coefficient

presenting only one frequency. However, with grid/time refinement this behaviour is lost and for the

finest grid several other frequencies appear in the time history of the force coefficients.

The results of GWF3 present a consistent behaviour of the time signals of the lift and drag coefficients

for all the grids/time-steps tested. Statistical convergence resembles that which was obtained in the

circular cylinder, thus in this case numerical uncertainty is dominated by the discretization error.

Figure B.9 illustrates the convergence with grid/time refinement of CDavg
, CDmax

, CLrms
and St for

the simulations performed using GWF2 and GWF3. The most striking feature observed is that none of

the quantities of interest present monotonic convergence. The largest uncertainties are, once again, ob-

tained for the GWF3 set. However, in this case the results of the GWF2 set must be carefully interpreted

because grid/time refinement leads to a change in the frequency content of the time histories.
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Figure 5.16: Visualization of the flow field and isolines of νt/ν at a time close to minimum lift coefficient
(CL)min obtained in the finest grids with the smallest time step. Flow around a circular cylinder at a
Reynolds number of 108 calculated with and without wall functions.

Flow Properties

The force coefficients obtained for this cylinder are closer to the ones from the octagonal cylinder

than those from the circular cylinder. However, there is a reduction of the average drag coefficient which

suggests a reduction, however small, of the width of the wake in comparison to the octagonal cylinder.

Figure B.10 shows the isolines of mean velocity Vx and eddy viscosity νt/ν at a time instant close

to minimum lift coefficient. The expected reduction in wake width compared to the octagonal cylinder is

visible, but is still significantly wider than the circular cylinder.

5.2.4 Conclusions From This Study

From this study it is possible to conclude that:

• the use of wall functions significantly improves the robustness of the flow solver, since for the

polygonal cylinders the time steps required to obtain statistical convergence without the use of

wall functions is unacceptably small. Additionally, the under-relaxation required to converge at

each time-step with maximum Courant numbers close to 2 lead to thousands of iterations to lower

the residuals to acceptable levels of convergence criteria;

• there is no clear trend in the results obtained with wall functions using different sizes of the near-
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wall cell size. The results of the largest and smallest values of near-wall cell size for the circular

cylinder case with wall functions were consistent, whereas the intermediate size showed a larger

wake width; For the polygonal cylinders, only the two largest sizes of near-wall cell resulted in

good iterative convergence and the consistency of those two grid sets is better than for the circular

cylinder; the only noticeable systematic trend in the three test cases seems to be that there is a

significantly increase in numerical uncertainty of the quantities under investigation for the largest

near-wall cell size;

• The results from the simulations of flow around the octagonal cylinder did not present a ”RANS-like”

behaviour, while only discrete frequencies in the time histories were present in the flow around the

circular cylinder for all grid/time steps tested. For the hexadecagonal cylinder ”RANS-like” solutions

were obtained but the frequency content is strongly dependent on the refinement level for one of

the grid sets. Thus it is impossible to know whether or not the turbulence model is capable of

providing the necessary diffusion to damp the turbulent fluctuations.

• The results show that, in spite of the difficulties to guarantee iterative convergence, even at such

high Reynolds numbers it is the kinks on the surface of the polygonal cylinders that produce a

significant increase of the force coefficients when compared to the circular cylinder.

This seems to suggest that wall functions can be an efficient option to simulate very high Reynolds

numbers flows around bluff bodies, but also that the size of the near-wall cells have a strong influence

on the solution. [4].

5.3 3D Study

For the 3D case it is still relevant to understand the average values of forces at which the structure

will be subject to, as well as the frequency content of the simulation, since this is important information

for a future structural analysis. For the same reason a study of the average moments is also relevant.

The point on which the moments are being calculated is on the surface of the water in the center of the

octagon, (x, y, z) = (5452, 6951.3, 6815)[m].

5.3.1 Time History of the Forces and Moments

As was done in the previous cases, using ReFRESCO’s Force monitor, the evolution of the forces

acting on the structure throughout the duration of the simulation was plotted. Additionally, by means of

the Moments monitor, a similar analysis was made for the moments acting on the structure.

In the previous studies, the initial part of the simulation, under the effect of the initial condition was

discarded and the most relevant part of the information was extracted to be analysed, since it was

possible to see in the results obtained, the diffusion of said effect and the onset of periodicity in the

solution, which in turn allows to make an assessment about the iterative convergence of the simulation.

However, in the simulations performed in this part of the investigation, the results obtained do not show a
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periodic behaviour of the simulations, as can be seen in Figures 5.17 and 5.18, which means that, while

average values can be extracted and a frequency analysis performed, it is hard to judge the statistical

convergence of the simulations.

(a) Grid 1 (b) Grid 2 (c) Grid 3

Figure 5.17: Evolution of the force coefficients, CFx , CFy and CFz for each of the three grids

(a) Grid 1 (b) Grid 2 (c) Grid 3

Figure 5.18: Evolution of the moments coefficients, CMx , CMy and CMz for each of the three grids

Figures 5.17 and 5.18 show an aperiodic behaviour of both the forces and moments acting on the

structure, which is not a ”RANS-like” behaviour similar to what was obtained in the second preliminary

study. To better understand this behaviour, a frequency analysis was performed.

5.3.2 Frequency Analysis

Given the behaviour of the forces and moments shown in Figures 5.17 and 5.18, a frequency analysis

is helpful to understand this behaviour and possibly show the reasons behind it. The signals of the forces

and the moments in the three directions were subject to a Fast Fourier Transform, Figure 5.19 shows

the plots of the FFTs.

Figure 5.19 shows that it is not possible to identify one dominant frequency. This means that it is not

possible to extract a Strouhal number. This type of frequency behaviour seems to be closer to what was

to be expected from a fully turbulent regime as opposed to a RANS simulation. It is even possible to find

a frequency region where the log-log plot seems to have a linear slope, which would be consistent with

Kolmogorov’s −5/3 rule [37, 38]. The slope of the forces FFT plots here presented is approximately −1.9

for Grid 1, −1.5 for Grid 2 and −2.0 for Grid 3. The slope of the moments FFT plots is approximately
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(a) Grid 1: Forces FFT (b) Grid 2: Forces FFT (c) Grid 3: Forces FFT

(d) Grid 1: Moments FFT (e) Grid 2: Moments FFT (f) Grid 3: Moments FFT

Figure 5.19: Fast Fourrier Transform of the signal of the Forces for the finest Grid (Grid 1).

−1.2 for Grid 1, −1.3 for Grid 2 and −1.9 for Grid 3.

This behaviour suggests that the diffusion offered by the turbulence model was not able to dampen

some of the turbulent frequencies at such a high Reynolds number, as was the case of the octagonal

cylinder analysed in the second preliminary study.

Nonetheless some information can still be taken from these results, namely regarding the average

values of the forces and moments.

5.3.3 Average Forces and Moments

From the plots of Figures 5.17 and 5.18, the average values of the forces and moments were calcu-

lated for each case, as can be seen in Tables 5.7 and 5.8, respectively.

Table 5.7: Average value of forces and force coefficients for the simulations performed with a 3D
Aquaculture Structure, Re = 108

CFx
CFy

CFz
Fx [N ] Fy [N ] Fz [N ]

Grid 1 0.52338537 -0.03985061 -0.46235996 2279.998 -173.5992 -2014.156

Grid 2 0.55837157 -0.00753203 -0.37579110 2432.406 -32.81141 -1637.040

Grid 3 0.51759876 -0.04186968 -0.27691708 2254.789 -182.3948 -1206.320

It is evident that the force in the y-direction (Fy) is several orders of magnitude smaller than the forces

in the streamwise direction of the flow Fx and, more notably, than the force in the vertical direction Fz.
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The reason for the latter is most likely related to the tapered geometry of the net, which creates a zone

of high flow velocity and therefore low pressure in the bottom of the net, due to the formation of large

vortexes in the bottom of the structure, pushing the structure downwards. It is reasonable to assume

that similar simulations where the net is computed as a permeable, deformable surface will result in a

lower absolute values of Fz and Fx, since the net will no longer display the same behaviour as it does in

this study.

Table 5.8: Average value of moments and moment coefficients for the simulations performed with a 3D
Aquaculture Structure, Re = 108

CMx CMy CMz Mx [N/m] My [N/m] Mz [N/m]

Grid 1 -0.00549140 -0.06785840 0.00270050 -3186.399 -39375.01 1556.972

Grid 2 -0.00121969 -0.07856030 -0.00007109 -707.7282 -45584.81 -41.25015

Grid 3 -0.00466444 -0.07153042 0.00250077 -2706.553 -41505.71 1451.078

Table 5.8 shows that the absolute values of the moments in the vertical direction are smaller than the

ones in the other directions, which was to be expected given the symmetry of the structure.

Regarding the average moments in y-direction, which are several orders of magnitude larger than

the moments in the other two directions, this is consistent with the fact that the forces in the streamwise

direction, Fx, and the force in the vertical direction, Fz, have the most magnitude of the forces acting on

the structure, since this is the pair of forces that will generate My. Again, the magnitude of this moment

is expected to be smaller in a simulation where the net is deformable and permeable.

5.3.4 Flow Analysis

In this subsection, the flow will be analysed by means of instantaneous velocity plots, streamline

patterns and also recurring to show the eddy viscosity influence on the flow, by means of νt/ν plots,

since this will show the influence of turbulence in the flow, which may explain the frequency behaviour

seen above.

Some instantaneous velocity plots of Grid 1 are illustrated in Figure 5.20.

From Figures 5.20 (a) and (b) it is possible to see that, away from the structure, in the hanging nodes

from the largest cell size to the second largest cell size there exists some numerical error affecting the

flow, however, since this behaviour is far away from the structure (more than 30d away from the structure,

the influence of this numerical artifact on the results obtained should be minimal.

Figure 5.20 (c) shows that the wake created by the structure is more than 17d long and Figures 5.20

(d) and (e) show the increase in flow velocity under the structure due to the tapered geometry of the

structure and the angle formed by the sides and the bottom of the net, which leads to the formation of a

vortex underneath the structure in addition to the ones formed in the wake of the bluff body.

In Figure 5.21 all regions of the flow with νt < 2ν are left white, so that the only the ”viscous region” of

the flow is visible. It is evident that the influence of turbulence in the flow is very low, since only the region

close to the wall and the near wake have values of eddy viscosity over 2ν. This explains the frequency
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(a) Top-down View (x− y plane) (b) Top-down View (x− y plane): Overlayed grid

(c) Top-down View (x−y plane): Close-up of the structure (d) Side View (x− z plane): Close-up of the structure

(e) Side View (x− z plane): Close-up of the structure with
streamtraces

(f) Side View (y − z plane): Close-up of the structure

Figure 5.20: Instantaneous velocity plots, at the last time-step using Grid 1.

behaviour seen previously, since there does not seem to be enough diffusion from the turbulence model

to dampen the turbulent fluctuations at the Reynolds number of the simulation.
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(a) Top-down View (x− y plane) (b) Top-down View (x−y plane): Close-up of the structure

(c) Side View (x− z plane): Close-up of the structure (d) Side View (y − z plane): Close-up of the structure

Figure 5.21: νt/ν plots, at the last time-step using Grid 1.

5.3.5 Conclusions From This Study

This study allows to make some estimations regarding the average value of the forces acting on the

structure: the force in the x-direction is in the vicinity of 2300 N , the force in the y-direction should be a

little under 200 N , while the force in the z-direction is near 2000 N . An estimation of the average value

of the moments is also possible, with the moments around x close to −3000 N/m, the moments around

y are clearly the strongest moments acting on the structure, about 40000 N/m and the moments in the

z-direction approximately 1500 N/m.

Not much can be said about the frequency behaviour since the results obtained did not show a

”RANS-like” behaviour, but given that the available literature on flow around bluff bodies at such a high

Reynolds number is not extensive enough, comparisons are not possible.

The size of the near-wall cells is most likely too large which contributed to values of eddy viscosity

which are too low. It was not possible to generate a new grid and perform new simulations due to time

and computational constraints.

From a computational point of view, given the size of the domain and complexity of the structure it is
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clear that the choices regarding the use of unstructured grids and the use of wall functions, made with the

knowledge taken from the two preliminary studies, were appropriate choices, since the computational

time used allowed for the extraction of useful information from the simulations without rendering the

simulations prohibitively expensive. Even so, with as much computational resources as were used in

this case, the results obtained are still not ideal. A lot more investigation can be made in this field, both

in terms of the use of unstructured grids, perhaps with smaller grid sizes or with smaller cell size jumps

in the far field, and in terms of the use of wall functions at this Reynolds numbers. These investigations,

motivated by projects such as off-shore aquaculture structures or off-shore wind turbine installations,

will be able to better predict the behaviour of bluff bodies in very high Reynolds number flows.
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Chapter 6

Conclusions

This chapter will serve to synthesise the conclusions of this investigation, including the main conclu-

sions from each of the two preliminary studies performed. Additionally, possible avenues for future work

to be done in the study of flow around bluff bodies will be laid out.

6.1 Achievements

The first preliminary study made clear the differences in the behaviour of the flow around cylinders

with three different cross section geometries. An increase in the number of faces of a polygonal cylinder

leads to an increased similarity with the behaviour of the flow around the circular cylinder, corroborating

the results of the literature. The orientation of the cylinder has also a significant impact on the behaviour

of the flow and it is not the geometry of the stagnation point (corner or face) that influences the flow, but

whether the width of the projected cylinder is determined by faces parallel to the flow or sharp corners.

From a computational standpoint, the first preliminary study also showed that the simulations per-

formed with unstructured grids showed the necessary robustness, allowing for stable simulations with

acceptable convergence.

The second preliminary study showed that the use of wall functions improved the robustness of the

simulations. For the circular cylinder, the results of the largest and smallest values of near-wall cell size

for the circular cylinder case with wall functions were consistent, whereas the intermediate size showed

a larger wake width, while for the polygonal cylinders, only the two largest sizes of near-wall cell resulted

in good iterative convergence and the consistency of those two grid sets was better than for the circular

cylinder. A significant increase in numerical uncertainty for the largest near-wall cell size for all grid sets

was reported.

In this study, the circular cylinder was the only where ”RANS-like” solutions resulted from all the

simulations. The hexadecagonal cylinder resulted in some ”RANS-like” solutions but the frequency

content of the time histories depended heavily on grid/time refinement. Consequently it is not possible

to understand if this is caused by lack of diffusion from the turbulence model.

The results also show that even at such high Reynolds numbers and with significant difficulties to
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guarantee iterative convergence, it is the sharp corners on the surface of the polygonal cylinders that

produce a significant increase of the force coefficients when compared to the circular cylinder.

This study suggested that wall functions can be an efficient option to simulate very high Reynolds

numbers flows around bluff bodies, but that the size of the near-wall cells have a strong influence on the

solution.

Concerning the final 3D study, estimations were made regarding the average values of forces and

moments acting on the surface of the structure. However, given the simplifications made (lack of a

deformable, permeable net) it is necessary to carefully analyse the results in order to make predictions

regrading the structural analysis of the floating structure.

The frequency content showed behaviour similar to the one found in the simulations of flow around

the octagonal cylinder in the second preliminary study, in that it did not show a ”RANS-like” behaviour.

The near wall cell size used in the 3D study was most likely too large and as such the levels of

eddy-viscosity are too low. Generation of a new grid was not possible in the available time.

Given the complexity of the structure and computational time expended on the simulations there is

confidence in the computational choices made in the final study i.e. use of unstructured grids and use

of ”automatic” wall functions.

6.2 Future Work

With the increase in interest in larger structures in open sea areas (aquaculture structures, wind

farms, etc.) the need for the study of flows at very high Reynolds numbers increases as well. Given that

this is a quasi-unexplored area of fluid dynamics, further investigations on this topic are recommended.

The use of wall functions seems to be acceptable at very high Reynolds numbers but the high in-

fluence of the size of the near-wall cell on the force coefficients needs to be analysed by means of a

sensitivity study for the near-wall cell size.

Simulations of flow around the aquaculture structure without the simplifications made in this work

can be performed to achieve better approximations for the quantities under study, however in order for

those simulations to have a good degree of realism, fluid-structure interactions and deformation of the

net need to be taken into account.
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Appendix A

1st Preliminary Study - Additional

Images

A.1 Preliminary Study 1

A.1.1 Time History Of The Forces

(a) Hexagonal cylinder with corner ori-

entation

(b) Hexagonal cylinder with face orien-

tation

(c) Octagonal cylinder with corner ori-

entation

(d) Octagonal cylinder with face orien-

tation

(e) Circular cylinder

Figure A.1: Evolution of Cd and CL for the simulations with Grid 1 using the KSKL model
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(a) Hexagonal cylinder with corner orientation (b) Hexagonal cylinder with face orientation

(c) Octagonal cylinder with corner orientation (d) Octagonal cylinder with face orientation

(e) Circular cylinder

Figure A.2: Evolution of Cd and CL for the simulations with Grid 2 using the k − ωSST model
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(a) Hexagonal cylinder with corner orientation (b) Hexagonal cylinder with face orientation

(c) Octagonal cylinder with corner orientation (d) Octagonal cylinder with face orientation

(e) Circular cylinder

Figure A.3: Evolution of Cd and CL for the simulations with Grid 2 using the KSKL model
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(a) Hexagonal cylinder with corner orientation (b) Hexagonal cylinder with face orientation

(c) Octagonal cylinder with corner orientation (d) Octagonal cylinder with face orientation

(e) Circular cylinder

Figure A.4: Evolution of Cd and CL for the simulations with Grid 3 using the k − ωSST model

72



(a) Hexagonal cylinder with corner orientation (b) Hexagonal cylinder with face orientation

(c) Octagonal cylinder with corner orientation (d) Octagonal cylinder with face orientation

(e) Circular cylinder

Figure A.5: Evolution of Cd and CL for the simulations with Grid 3 using the KSKL model
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A.1.2 Fast Fourier Transforms

(a) Hexagonal cylinder with corner orientation (b) Hexagonal cylinder with face orientation

(c) Octagonal cylinder with corner orientation (d) Octagonal cylinder with face orientation

(e) Circular cylinder

Figure A.6: Fast Fourier Transfom plots obtained from the simulations with Grid 1 using the KSKL
model.
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(a) Hexagonal cylinder with corner orientation (b) Hexagonal cylinder with face orientation

(c) Octagonal cylinder with corner orientation (d) Octagonal cylinder with face orientation

(e) Circular cylinder

Figure A.7: Fast Fourier Transfom plots obtained from the simulations with Grid 2 using the k − ωSST
model.
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(a) Hexagonal cylinder with corner orientation (b) Hexagonal cylinder with face orientation

(c) Octagonal cylinder with corner orientation (d) Octagonal cylinder with face orientation

(e) Circular cylinder

Figure A.8: Fast Fourier Transfom plots obtained from the simulations with Grid 2 using the KSKL
model.
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(a) Hexagonal cylinder with corner orientation (b) Hexagonal cylinder with face orientation

(c) Octagonal cylinder with corner orientation (d) Octagonal cylinder with face orientation

(e) Circular cylinder

Figure A.9: Fast Fourier Transfom plots obtained from the simulations with Grid 3 using the k − ωSST
model.

77



(a) Hexagonal cylinder with corner orientation (b) Hexagonal cylinder with face orientation

(c) Octagonal cylinder with corner orientation (d) Octagonal cylinder with face orientation

(e) Circular cylinder

Figure A.10: Fast Fourier Transfom plots obtained from the simulations with Grid 3 using the KSKL
model.
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Appendix B

2nd Preliminary Study - Images from

the Octagonal and Hexadecagonal

Cylinders
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Figure B.1: Time history of the lift CL and drag CD coefficients and their frequency content.
Simulations performed in the coarsest grids of sets GNO (without wall functions) and GWF1 (with wall

functions). Flow around an octagonal cylinder at a Reynolds number of 108.
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Figure B.2: Time histories of the lift CL and drag CD coefficients and their frequency content.
Simulations performed in the grids of sets GWF2 (with wall functions). Flow around an octagonal

cylinder at a Reynolds number of 108.
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Figure B.3: Time histories of the lift CL and drag CD coefficients and their frequency content.
Simulations performed in the grids of sets GWF3 (with wall functions). Flow around an octagonal

cylinder at a Reynolds number of 108.
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Figure B.4: Convergence with grid/time refinement of average (CD)avg and maximum (CD)max drag
coefficient, root mean squared (CL)rms lift coefficient and Strouhal number St. Flow around an

octagonal cylinder at a Reynolds number of 108 calculated with wall functions.

GWF2 GWF3

GWF2 GWF3

Figure B.5: Visualization of the flow field and isolines of Vx and νt/ν at a time instant (different for each
grid). Flow around an octagonal cylinder at a Reynolds number of 108 calculated with wall functions.
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Figure B.6: Time history of the lift CL and drag CD coefficients and their frequency content.
Simulations performed in the coarsest grids of set GNO (without wall functions). Flow around an

hexadecagonal cylinder at a Reynolds number of 108.
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Figure B.7: Time histories of the lift CL and drag CD coefficients and their frequency content.
Simulations performed in the grids of sets GWF1 (with wall functions). Flow around an hexadecagonal

cylinder at a Reynolds number of 108.
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Figure B.8: Time histories of the lift CL and drag CD coefficients and their frequency content.
Simulations performed in the grids of sets GWF2 (with wall functions). Flow around an hexadecagonal

cylinder at a Reynolds number of 108.
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Figure B.9: Convergence with grid/time refinement of average (CD)avg and maximum (CD)max drag
coefficient, root mean squared (CL)rms lift coefficient and Strouhal number St. Flow around an

hexadecagonal cylinder at a Reynolds number of 108 calculated with wall functions.
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GWF2 GWF3

GWF2 GWF3

Figure B.10: Visualization of the flow field and isolines of Vx and νt/ν at a time instant close to the
minimum lift coefficient. Flow around a hexadecagonal cylinder at a Reynolds number of 108 calculated

with wall functions.
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