
Vehicle tracking in urban environment

Sofia Teodoro Bebiano

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. João Paulo Salgado Arriscado Costeira
Dr. Zita Alexandra Magalhães Marinho

Examination Committee

Chairperson: Prof. João Fernando Cardoso Silva Sequeira
Supervisor: Prof. João Paulo Salgado Arriscado Costeira

Member of the Committee: Prof. Alexandre José Malheiro Bernardino

February 2021

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

Acknowledgments

I would like to thank my mom Mena and my siblings for encouragement and caring over all these

years, for always being there for me through thick and thin and without whom this project would not be

possible. I would also like to thank Sabri for her understanding and support throughout all.

I would also like to acknowledge my dissertation supervisors Prof. João Paulo Salgado Arriscado

Costeira and Zita Alexandra Magalhães Marinho for their insight, support and sharing of knowledge that

has made this Thesis possible.

Last but not least, to all my friends and colleagues that helped me grow as a person and were always

there for me during the good and bad times in my life. AA I thank you.

To each and every one of you – Thank you.

ii

Abstract

The main purpose of this work is to develop a vehicle tracking system based on video images. The devel-

oped system uses a webcamera and the objects, in this case vehicles, are detected using the You Only

Look Once (YOLO) system. The matching between detections is done with a Kanade-Lucas-Tomasi

(KLT) feature tracker. Which by using corner point features from the initial detections and tracking them

to the following frames, it is able to match detections across frames. Once matched, the projection of the

objects in the camera plane onto the ground plane is calculated and presented. The main challenges

of this task are object occlusion and object association across frames. The approach for this was the

integration of the feature tracking method into the object detection method. This way when the detector

fails (occlusion for example) it is still possible to track features and keep an object track continuous. The

feature tracking also aids with object association since each feature will be associated with an object.

The system was tested and evaluated in a real traffic scenario of a crossroad. It performs well in regular

traffic, while being able to keep tracks in situations with small and medium occlusion. Of the completed

tracks, 24% of instances had no YOLO detections. This work shows how using both a static object

detection method and a dynamic feature tracking method results in a more robust multi object tracking

system.

Keywords

YOLOv3; Kanade-Lucas-Tomasi; Homography; Multiple vehicle Tracking; Object Detection on Image.

iii

Resumo

O objetivo principal deste trabalho é desenvolver um sistema de seguimento de veı́culos baseado em

imagens de video. O sistema desenvolvido utiliza uma webcamera e os objetos, neste caso veı́culos,

são detetados utlizando o sistema You Only Look Once (YOLO). A correspondência entre deteções

é feita através de um tracker Kanade-Lucas-Tomasi (KLT), que fazendo o seguimento de features

da deteção inicial é capaz de corresponder deteções através das frames. Assim que existe corre-

spondência, a projeção dos objetos do plano da camâra para o plano do chão é calculada e apre-

sentada. Os principais desafios deste trabalho são a oclusão e associação de objetos ao longo das

textitframes. Para lidar com estes desafios um método de seguimento de features foi integrado com

a deteção de objetos. Assim quando o detetor falha, por exemplo quando existe oclusão, continua a

ser possı́vel seguir as features e obter um seguimento contı́nuo do objeto. O seguimento de features

auxilia também a associação de objetos pois cada feature estará associada a um objeto. O sistema foi

testado e avaliado num caso de trânsito real. Apresenta um bom desempenho em situações de trânsito

habituais, conseguindo manter o seguimento de vários veı́culos em situações com pequena e média

oclusão. Para os tracks completos, 24% das instâncias não possuı́a detecções do YOLO. Este trabalho

mostra que usando um método estático de deteção de objeto em conjunto com um método dinâmico

de tracking de features resulta num sistema mais robusto de tracking de múltiplos objetos.

Palavras Chave

YOLOv3; Kanade-Lucas-Tomasi; Homografia; Tracking de múltiplos veiculos; Detecção de objetos em

imagem;

v

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Problem statement . 3

1.3 Thesis outline . 4

2 Background and Theory of Object Tracking 5

2.1 Tracking . 7

2.1.1 Detection . 9

2.1.2 Data Association and Tracking . 12

3 Proposed Approach: Merging object detection with point tracking 13

3.1 Object detection - You Only Look Once (YOLO) . 16

3.2 Prediciton and Tracking: The Kanade-Lucas-Tomasi Tracker (KLT) 19

3.3 A summary of the Kanade-Lucas-Tomasi (KLT) approach to feature extraction 19

3.3.1 Implementation . 23

3.4 Association . 23

3.5 Homography . 24

4 Experiments and Results 27

4.1 Implementation of the detection and tracking pipeline . 29

4.2 Evaluation . 29

4.3 Results and Discussion . 37

4.3.1 Results . 37

4.3.2 Analytics . 40

4.3.3 Failure Mode . 42

5 Conclusions 45

5.1 Lessons Learned and Final Remarks . 47

5.2 Future work . 48

vii

viii

List of Figures

2.1 Procedure flow of two main object tracking frameworks. Top: DBT, bottom: DFT. 8

2.2 Life before Deep Learning. 10

2.3 The YOLO Detection System. The system (1) resizes the input image to 448×448, (2)

runs a single convolutional network on the image, and (3) thresholds the resulting detec-

tions by the model’s confidence. 11

3.1 Example of the problem and proposed solution. Top image - Object detector and feature

selection identify vehicles and image features inside the bounding box. Middle image -

object detectors often miss bluntly. However feature trackers can still match corresponding

points (blue line). Bottom image- if objects are detected again, the feature tracker allows

the association of the correct object (red lines). 15

3.2 You Only Look Once (YOLO) system models detection as a regression problem. It divides

the image into an S×S grid and for each grid cell predicts B bounding boxes, confidence

for those boxes,and C class probabilities. These predictions are encoded as an S ∗ S ∗

(B ∗ 5 + C) tensor. 17

3.3 YOLOv3 architeture. 18

3.4 The image registration problem. 20

3.5 Example of projection from camera perspective into a bird’s eye perspective. The bottom

image shows the blurring on the scene further away from the camera. The homography

is computed by mapping at least 4 corresponding points in both images. 24

4.1 Example frames used in testing YOLOv3 performance. 31

4.2 Example frames used in testing YOLOv3 performance (cont.). 32

4.3 Percentage of features tracked until the 100th frame. 8 iterations of tracking for 100

frames, starting from a random video frame. 34

4.4 The amount of features lost from one frame to the next. 8 iterations of tracking for 100

frames, starting from a random video frame. 35

ix

4.5 Example of using 40% as the threshold of intersection area for matching. 36

4.6 Experimental results - camera view. 37

4.7 Experimental results - map view. 38

4.8 Heatmap of vehicles positions throughout the tracking. 40

4.9 Velocity heatmaps of experimental results. 41

4.10 Histogram of average velocity for each detected vehicles during the tracking. 42

4.11 Experimental results - tracker and detector fail . 43

x

List of Tables

4.1 YOLOv3 performance for several dimensions of input in the context of this thesis. The

dataset used had 30 frames. 30

4.2 KLT tracker performance for 8 iterations of tracking across 100 frames, with randomly

selected initial frames. 34

xi

xii

Acronyms

ITS Intelligent Traffic Systems

DBT Detection Based Tracking

DFT Detection Free Tracking

MOT Multiple Object Tracking

VOT Visual Object Tracking

SIFT Scale Invariant Features Transformation

SURF Speeded Up Robust Features

FAST Features from the Accelerated Segment Test

MSER Maximum Stable Extremal Regions

HoG Histogram of the Gradients

SVM Support Vector Machine

CNN Convolutional Neural Network

DPM Deformable Part Model

GMM Gaussian Mixture Model

DCNN Deep Convolution Neural Network

RCNN Regions with CNN

RoI Region of Interest

SPPNet Spatial Pyramid Pooling Network

SSD Single-Shot-Multibox-Detector

YOLO You Only Look Once

RP Region Proposal

LK Lucas-Kanade

KLT Kanade-Lucas-Tomasi

xiii

CAMShift Continuously Adaptive Mean Shift

fps frames per second

DoF Degrees of Freedom

m/s metres per second

km/h kilometres per hour

xiv

1
Introduction

Contents

1.1 Motivation . 3

1.2 Problem statement . 3

1.3 Thesis outline . 4

1

2

1.1 Motivation

Images are extremely rich sources of information and coupled with the widespread availability of digital

cameras is making image based technologies a major source to monitor and model human activity.

Thus, being able to detect and follow objects is an indispensable resource to recognise different patterns

and trends in our world. The knowledge provided by the understanding of these patterns becomes

particularly relevant when it comes to the creation of models that are used to analyse and predict future

actions and distinguish typical behaviours from atypical ones. Researchers study these patterns in many

different fields, for a variety of purposes. In zoology, wild animal behaviour is studied through the analysis

of free-ranging animals’ trajectories in order to uphold and preserve ecosystems. Meteorologists also

use trajectory data and complex models to predict the weather.

The work developed in this thesis applies a set of image processing techniques in the area of human

mobility, a focus of extensive study, with various purposes such as crowd management, public space

design, intelligent environments and visual surveillance.

Video tracking is a broad subject with many applications. In particular, surveillance is useful in real

world applications. To name a few: monitoring the behaviour of human drivers to improve autonomous

vehicle development; predicting ship and plane anomalies by analysing their past trajectories; and im-

proving security by detecting anomalous behaviours in crowded environments.

In this dissertation some of the steps necessary for tracking objects are shown, specifically vehicles

(cars, buses) in an urban setting. As mentioned above, these procedures have already been subject to

extensive research. A further analysis will be performed, particularly on integrating two techniques to

improve vehicle tracking systems, since it can be of great help with traffic management, city planning

and development which, in a constantly changing and rapidly growing society, is an increasingly relevant

topic.

1.2 Problem statement

This work deals with complex tracking of objects in video, particularly in scenes with multiple moving

objects. Tracking objects involves detecting the intended target and following it throughout the various

frames of the video providing valuable data for further analysis and inference.

While this might seem a simple task well covered by the state of the art, it involves several chal-

lenges which increase when dealing with multiple objects and demanding scenes. One of the issues

worth mentioning is the frequent failure of current detectors under severe occlusion of the objects being

tracked. Another issue, that comes from tracking multiple objects, is the association of detections from

one frame to the other. This thesis attempts to solve these by implementing feature tracking alongside

object detection. This approach will allow for features of an object to continue to be tracked even if

3

the detector misses, resulting in a continuous tracking of the object. Feature tracking also aids with

object association since a feature will be associated to an object and thus making the match between

detections simpler. Furthermore, one has to consider the sudden appearance of desirable targets in the

frame. The approach in this case is to continuously use the object detection algorithm. In this thesis

a combination of object detection techniques with feature tracking techniques is proposed, in order to

achieve a multi-vehicle tracking system in a real city traffic monitoring scenario. The combination of a

static (detection of the objects) and a dynamic (tracking features) method results in a more robust sys-

tem where the former method’s weak points will be remedied by the latter’s and vice versa. In particular,

it will be shown that this method overcomes detection errors in a few simple but very frequent situations.

1.3 Thesis outline

This thesis is organized as follows: In chapter 2, the state of the art for object tracking and its com-

ponents, detection and data association, is presented. In chapter 3, a multi-vehicle tracking system

merging object detection with point tracking is proposed and the methods used are explained in detail.

The chapter 4 displays the results obtained. Lastly, the derived conclusions are presented in chapter 5.

4

2
Background and Theory of Object

Tracking

Contents

2.1 Tracking . 7

5

6

Object detection and tracking represent one of the main challenges in the field of image processing.

Therefore, only those most relevant to this work will be mentioned and referred, namely traffic monitoring

systems, automatic accident detectors and vehicle counting systems, which rely heavily on image pro-

cessing. Many methods have been proposed to meet these challenges of image processing, to name

two: background subtraction methods or more complex methods that are based on movement estima-

tion techniques. Furthermore, factors such as occluded vehicles, obstacles or changing atmospheric

conditions can influence and affect vehicle tracking.

2.1 Tracking

Vehicle tracking can be considered a research hotspot in the field of image processing, given its im-

portance in the development of intelligent transport and recognition of traffic systems. For instance, the

estimation of the number of vehicles in a traffic video sequence is a substantial component of Intelligent

Traffic Systems (ITS). These estimations supply valuable traffic flow information that can subsequently

be used in traffic management and the development of dynamic traffic lights.

Tracking can be understood as the localisation of one or more moving objects over time. It is impor-

tant to distinguish object tracking from object detection since the latter is a prerequisite of the former.

In other words, in object detection, an object of interest is localised in one single frame, while object

tracking associates the detection of the object of interest throughout several frames. This means that

the accurate detection of a moving object is the necessary condition for a tracking system.

There are currently two main object tracking frameworks: Detection Based Tracking (DBT) and

Detection Free Tracking (DFT) [1], as shown in fig. 2.1. DFT needs to manually initialize the track-

ing target, so it is only applicable when tracking a specified target. It is not able to automatically detect

and track a new target that appears in the monitoring process. DBT integrates detection and tracking

and can automatically detect the emergence of new targets or the disappearance of existing targets.

Thus, DBT is capable of meeting the actual requirements of the random disappearance of targets or the

dynamic change of targets in the monitoring scene.

Since fixed cameras will be used to monitor scenes that are changing dynamically in specific areas,

this work is carried out based on the DBT framework. The detection and tracking of vehicles are the

main focus and include various steps. Firstly, to initiate the tracking step, one must verify and locate the

presence of a specific object in an image sequence. Secondly, during the object tracking phase, spatial

and temporal changes were monitored, including its presence and position. This took place by solving

a temporal correlation problem. This problem involves matching the target area in successive frames of

a sequence of images that were taken at closely spaced time intervals. These two processes, detection

and tracking, are closely linked to each other [2]. Tracking usually begins with the detection of an object

7

Figure 2.1: Procedure flow of two main object tracking frameworks. Top: DBT, bottom: DFT.
Source: [1].

while the repeated detection of an object in a sequence of images is frequently required to verify tracking

as it helps to adjust confidence in the tracking phase.

Concerning the quantity of tracked objects in traffic sequences, vehicle tracking can be divided into

two main fields: single-vehicle tracking and multiple vehicle tracking.

Traditionally, Multiple Object Tracking (MOT) algorithms have been customised for scenarios with

multiple distant objects far from the sensor and each other. Some examples of settings where MOT

algorithms are of great relevance are people in a crowd [3], players in sports, and in this case vehicles in

traffic. MOT based on small objects is a highly complex problem due to sensor noise, missed detections,

the sudden appearance of objects of interest in the frame, major object occlusion, and an unknown and

time-varying number of targets.

In recent years, the increasing use of the artificial neural networks in the field of object tracking has

led to the improvement of performance in dealing with such challenges. However, to this day, object

detection and tracking problems are very active fields of research, as the performance limits continue to

expand every year. An example of this effort is the Visual Object Tracking (VOT) challenges [4], which

focuses on assessing individual object tracking approaches, and the MOT challenge [5], which focuses

on assessing multiple object tracking approaches, both of which are conducted annually.

8

2.1.1 Detection

The state of the art in the field of moving detection involves mainly the following four methods: the optical

flow method [6, 7], the background subtraction method [8–10], the frame difference method [8, 11] and

the deep learning method [12–14].

The purpose of object detection lies in obtaining an object’s position and classification in an image.

Generic object detection remains a very complex task, since it is difficult to design a detector that can

successfully detect targets in multiple and different scenarios. For instance, a detector must take the var-

ious characteristics of target objects into account, such as size, colour, background, foreground, texture,

orientation, and many more. Additionally, a detector must be able to distinguish the above-mentioned

variety of characteristics from the background image in various landscapes. A detection process can be

done by extracting and processing certain image properties: area, colour, contours, shape, texture, ori-

entation, blob radius and centre, among others [15]. The combination of these properties comprises an

image feature. Consequently, the quality of the feature extraction affects the efficiency of the detection.

In feature-based object detection, it is important to find invariable image features. Such features can

be seen in successive frames. The aim is to model objects of interest based on these extracted features

and not in raw pixels. This concept is key to understanding how images are normally processed. First,

start with the most basic information about an image, the raw pixels, and try to extract more meaningful

information from it, namely the features. Detection using this approach usually involves two steps. In the

first phase, the specific features are calculated in two or more consecutive frames. Feature extraction

will simultaneously reduce the amount of information to be processed and obtain a better understanding

of the scene. In the second step, features are matched between frames.

Some of the most commonly used visual features are:

• the Scale Invariant Features Transformation (SIFT) [16],

• the Speeded Up Robust Features (SURF) [17],

• the Features from the Accelerated Segment Test (FAST) [18],

• the Maximum Stable Extremal Regions (MSER) [19],

• the Histogram of the Gradients (HoG) [20] and more recently,

• the Convolutional Neural Network (CNN) features.

This two-step approach is often used when calculating optical flow [6]. In the past, it relied mainly on

artificially designed features such as SIFT, HOG and Haar-like [21] and then inserted these features into

the classifier for training, such as Support Vector Machine (SVM) and Adaboost (fig. 2.2). Felzenszwalb

established the Deformable Part Model (DPM) using HoG and SVM [22]. This method will perform better

9

when the object has any deformation or scale change. However, it cannot adapt to large rotations and

is slow to calculate.

Figure 2.2: Life before Deep Learning.
Source: [23].

Another approach is dividing each video image into foreground and background to detect moving

objects according to the difference in pixel intensity or colour distribution. In literature [6,7,9,10,24–27],

researchers have proposed various methods of artificial design for foreground extraction. The commonly

applied frame difference method is based on the grey level difference between two adjacent video im-

ages to assess the movement. It is simple to implement, without requiring background modelling, but

it is vulnerable to noise and to complex scenes with motion in the background. The Gaussian Mixture

Model (GMM) is more robust but requires several frames for the modelling. Furthermore, it updates

the background iteratively, which results in a high computational effort and difficulty in processing the

video frames with illumination variation, rare moving object and camouflage. After motion detection,

connected regions labelling algorithms can obtain coordinates of regions. By scanning the input image

several times, the scan mask techniques add a label to each pixel and divide the target according to

the label. To achieve a faster speed, block-based methods are presented as a solution. However, these

algorithms still consume too many computational resources and cannot merge objects split by noise.

Deep Convolution Neural Networks (DCNNs) for object detection and classification have attracted a

lot of interest in recent years because of their powerful learning capabilities. With their ability to learn

parameters themselves, a higher degree of accuracy can be achieved. The accuracy has been vastly

improved compared to traditional classification algorithms, which form the foundation of deep learning-

based object detection research.

With the appealing fast results of AlexNet [28], Girshick et al. [29] suggested the concept of object

detection using a CNN. Girshick et al. used the Region Proposal (RP) method and proposed Regions

with CNN (RCNN). The main idea is composed of two steps. First, using selective search (providing

10

region proposals that potentially contain objects), it identifies a manageable number of bounding-box

object region candidates (Region of Interest (RoI)). Then it extracts CNN features from each region

independently for classification. Given the slow detection speed of RCNN, He et al. proposed Spatial

Pyramid Pooling in deep convolutional Networks for the visual recognition network (Spatial Pyramid

Pooling Network (SPPNet)) [30]. He et al. also suggested Fast RCNN [31] and added a bounding box

regression and a multi-task loss function. However, it maintains selective search, which is a slow and

time-consuming process, making RP the bottleneck of its performance. Therefore, Ren et al. proposed

the removal of selective search algorithms and letting the network learn the region proposals by adding

a new RP network based on the Fast RCNN that resulted in the Faster RCNN [32]. The accuracy of

the Faster RCNN has been greatly improved. In comparison to current detection algorithms, it is rated

the best, but speed is still one of the disadvantages. Therefore, Liu et al. [33] proposed an end-to-end

detection algorithm, a Single-Shot-Multibox-Detector (SSD), which receives suggested areas through

uniform extraction and significantly improves the detection speed. Redmon et al. suggested a new

method for detecting objects called You Only Look Once (YOLO) [34]. The RP phase was totally dropped

and a single convolutional network was used as seen in fig. 2.3. YOLO splits the entire picture into the

grids of S × S. Each grid has a probability of class C, B as the locations of the bounding box, and

a likelihood for each box. Removing the RP step enhances detection efficiency. YOLO can detect the

objects while operating around 45 frames per second (fps) in real-time. YOLOv2 [35] and YOLOv3 [36]

are the later improvements on YOLO. YOLOv3 makes use of multiple scale predictions and improves

the basic classification network with fast detection speed, low false detection rate, and great versatility

while being able to process images at 30 fps.

Figure 2.3: The YOLO Detection System. The system (1) resizes the input image to 448×448, (2) runs a single
convolutional network on the image, and (3) thresholds the resulting detections by the model’s confidence.

Source: [34].

In summary, state of the art object recognition networks include RCNN and its variants, SSD and

its variants and YOLO and its variants. RCNN and its variants are based on a region proposal that

is accurate but is time-consuming. YOLO and its variants are known for their high speed and high

efficiency. SSD and its variants combine the advantages of these two methods. Although, since YOLO

is already pre-trained with the classes needed (cars, trucks, buses, etc) and it performs well this will be

11

the framework used.

2.1.2 Data Association and Tracking

Currently, there are two main solutions for object tracking that can be subdivided into the described

methods:

• Initially, objects must be detected for each frame of the video sequence. Then, one has to complete

the tracking based on the detection results of consecutive frames to finally obtain the trajectory

information.

• Firstly, objects must be detected in the initial frame to get the features. Then, the area matching

the features in the subsequent image sequence must be found. Lastly, the objects must be tracked

to get the trajectory information.

In the first solution, Meyer et al. [37] proposed a contour-based target detection and tracking method

that obtains good results. However, this method has two big disadvantages: poor noise suppression

capability and a large amount of computation. Furthermore, the object tracking based on deep learning

has a higher detection accuracy than the conventional algorithm. Even so, due to the unstable nature of

the detection, it may miss the target and result in a tracking failure.

The second solution is less based on object detection, which avoids the disadvantage regarding the

first solution mentioned above. Extracting reference features is the key.

One approach is to extract the feature of the entire object, such as shapes, textures, colour his-

tograms or image edges. By combining several features, the reliability of the object is improved. After

feature extraction, the object is redetected using the similarity measurement to obtain object tracking.

Another approach is extracting feature points from the object, for which the Harris Corner [38] and

SIFT [16] are frequently used methods. On the one hand, feature point-based methods can adapt to

changes in rotation and lighting of the object. But on the other hand, excessive feature extractions

often result in difficulty in matching, while too few feature extractions can easily lead to false positives.

Moreover, the feature extraction process is complicated and time-consuming.

One example of the feature-based tracking algorithm is the Lucas-Kanade (LK) method proposed

in [39] and later improved in [40]. Even if part of the object is occluded, the tracking task can continue

using the feature information. However, it is still sensitive to image noise or blur. The quality of features

is hugely dependent on the setting of extraction parameters. Shi and Tomasi features are proposed

in [41] to deal with the issue of selecting features that can be tracked well. The Kanade-Lucas-Tomasi

(KLT) feature tracker is the result of LK method with these good features to track. Additionally, the

correspondence between consecutive frames is a challenge and has an impact on tracking performance.

12

3
Proposed Approach: Merging object

detection with point tracking

Contents

3.1 Object detection - You Only Look Once (YOLO) . 16

3.2 Prediciton and Tracking: The Kanade-Lucas-Tomasi Tracker (KLT) 19

3.3 A summary of the Kanade-Lucas-Tomasi (KLT) approach to feature extraction . . . 19

3.4 Association . 23

3.5 Homography . 24

13

14

The key elements to automatic vehicle tracking based on the DBT framework are the object detector,

the object tracker design and the strategy for integrating the detector and the tracker.

To better illustrate the problem and how this work proposes to tackle it, refer to fig. 3.1, where three

consecutive images of a typical real traffic situation are depicted. Common systems rely on simple

nearest neighbour matching to associate detections between consecutive frames. However, due to

the high speed of vehicles, one missed detection in the second frame of fig. 3.1, prevents the correct

association to the correct vehicle in the third frame.

Figure 3.1: Example of the problem and proposed solution. Top image - Object detector and feature selection
identify vehicles and image features inside the bounding box. Middle image - object detectors often miss bluntly.
However feature trackers can still match corresponding points (blue line). Bottom image- if objects are detected

again, the feature tracker allows the association of the correct object (red lines).

In a concise way, the main idea is that by combining object detection with feature tracking, whenever

the detector fails to recognise one vehicle, the image features are still detected and can be tracked. This

way one is still able to keep track of the vehicles and know in the following frames which vehicles are

which, as shown in fig. 3.1 where the identification of each bounding box matches the identification on the

first frame. Considering the complexity and application feasibility of the algorithm, in the object detection

step, the detection result provided by YOLOv3 were post-processed and then used as the input for the

tracker. For the tracker, an KLT tracker was implemented to extract and track image features. Finally,

these features are combined with YOLO detections to track multiple vehicles in traffic scenes.

15

In summary, in this work the tracking of multiple vehicles will be divided into three main steps: detec-

tion, prediction, and data association:

• Detection: Using a state of the art CNN-based object detector, locate vehicles in video frames

• Prediction: Predict the object locations in the next frame by tracking feature points using reliable

methods

• Data association: Use the predicted locations to associate detections across frames to form de-

tection tracks

In the next sections, the choice of techniques to handle each of the subproblems is specified and

details on their inner workings and how the whole system was implemented are provided.

3.1 Object detection - You Only Look Once (YOLO)

The object detection stage aims to identify the category and location of the vehicle object in a picture.

Object detection algorithms for natural images can be roughly divided into two categories. One based

on traditional handcrafted features, commonly used until 2013, and a dominance of deep learning there-

after.

Since the emergence of deep learning, object detection has made a huge breakthrough. The two

most important kinds of deep learning are:

(a) region proposal-based method represented by RCNN such as Fast-RCNN, Faster-RCNN, among

others;

(a) regression-based method represented by YOLO such as YOLOV3, SSD and others.

The former is superior in accuracy, and the latter in speed. Because the deep learning method has an

excellent performance in object detection in real time, the YOLOV3 algorithm was selected to implement

the detection task.

YOLO is an algorithm of object detection of images using a single CNN and in a single inference.

In the initial paper, the workflow of YOLO works as follows: (1) Pre-train a CNN network on the image

classification task. (2) Divide an image into S ∗ S cells. If an object’s centre falls into a cell, that cell is

responsible for detecting the existence of that object. Each cell will propose a) the location ofB bounding

boxes, b) a confidence score and c) a probability of object class conditioned on the existence of an object

in the bounding box. In total, one image contains SxSxB bounding boxes with each box corresponding to

4 location prediction, 1 confidence score and C conditional probabilities for object classification. (3) The

final layer of the pre-trained CNN is modified to output a prediction tensor of size S ∗ S ∗ (B ∗ 5 + C)

fig. 3.2 ilustrates YOLO detection model.

16

Figure 3.2: YOLO system models detection as a regression problem. It divides the image into an S×S grid and for
each grid cell predicts B bounding boxes, confidence for those boxes,and C class probabilities. These predictions

are encoded as an S ∗ S ∗ (B ∗ 5 + C) tensor.
Source: [34].

The loss consists of two parts, the localisation loss for bounding box offset prediction and the clas-

sification loss for conditional class probabilities. Both parts are computed as the sum of squared errors.

The loss function only penalises classification error if an object is present in that grid cell. It also only

penalises bounding box coordinates error if that predictor is responsible for the ground truth box.

YOLO’s base model is similar to GoogleNET [42] and uses Darknet architecture. The final prediction

of shape S ∗S ∗(B ∗5+C) is produced by two fully connected layers over the whole convolutional feature

map.

YOLO is improved in the second paper and YOLOv2 is born. Since some of the complaints about

YOLO were related to the difficulty in detecting small objects, modifications were made in that regard.

One of these modifications was fine-tuning the base model with high-resolution images to improve the

detection performance. The method of predicting bounding boxes was also changed. Rather than

predicting the bounding box position with fully-connected layers over the whole feature map, YOLOv2

uses convolutional layers to predict locations of anchor boxes, like in Faster RCNN. The prediction of

spatial locations and class probabilities are no longer coupled. This lead to an increase in recall. Unlike

Faster RCNN, which uses hand-picked sizes of anchor boxes, YOLOv2 runs k-means clustering on

training data to find good priors on anchor box dimensions. YOLOv2 also formulates the bounding box

predictions differently, in a way that it would not diverge from the centre location too much. Multi-scale

training is implemented to be robust to an input of different sizes. For that, a new size input dimension

is randomly sampled every 10 batches. YOLOv2 adopts a different base model, lighter, DarkNet-19

supplemented with 11 more layers for object detection. With a 30 layer architecture, YOLOv2 often

17

struggles with small object detection.

Finally, YOLOv3 is created by applying several design changes to YOLOv2. These changes are

based on recent advances in object detection. Firstly, for the prediction of confidence score for each

bounding box, instead of the sum of squared errors used on previous versions, YOLOv3 uses logistic

regression. Since one image might have multiple labels and not all are guaranteed to be mutually

exclusive, YOLOv3 uses multiple independent logistic classifiers for each class rather than one softmax

layer. Inspired by image pyramid, YOLOv3 has multi-scale prediction by making predictions at three

different scales among the added convolutional layers. The base model is also yet again changed.

YOLOv3 relies on the new Darknet-53. This variant of Darknet originally has a 53 layer network trained

on Imagenet. For the task of detection, 53 more layers are staked onto it, giving a 106 layer fully

convolutional underlying architecture for YOLOv3, shown on fig. 3.3. This is one of the reason behind

the slowness of YOLOv3 compared to YOLOv2. Another one is that YOLOv3 predicts more bounding

boxes than YOLOv2, for an input of the same size. This is due to YOLOv3 predicting boxes at 3 different

scales. Less speed has been traded off for a boost in accuracy. While the earlier variant ran on 45 fps

on a Titan X, the current version clocks about 30 fps but it is more accurate.

Figure 3.3: YOLOv3 architeture.
Source: [43].

18

3.2 Prediciton and Tracking: The Kanade-Lucas-Tomasi Tracker

(KLT)

Tracking is the process of locating a moving object or multiple objects over time in a video stream. In

general, tracking is used in scenes where the displacement between consecutive frames is very small

compared to image size. In short tracking can be viewed as the 2D position along time [x(t), y(t)] of

selected image points.

The LK tracker is a feature tracker technique firstly proposed by Lucas and Kanade in the 1980’s [39],

improved in 1991 by Tomasi and Kanade [40] and in 1994 by Shi and Tomasi that included a keypoint

selection method [41]. In this work we used the later form of it, the KLT tracker.

The KLT feature tracker, hinges on Taylor series approximations of the image sequence and reduces

the cost of the traditional image registration techniques by lowering the dimensionality of the problem,

and achieving the ’best match’ of an image by using a reduced number of potential matches. Fur-

thermore, relying on image pyramids to reduce the inter-frame displacement (at each level), it exhibits

impressive precision but can also cope with significant displacements between consecutive images.

3.3 A summary of the Kanade-Lucas-Tomasi (KLT) approach to

feature extraction

The KLT begins with a first data set which is cleaned/transformed with the purpose of getting new non-

redundant and informative data allowing to facilitate the next steps of learning and generalisation, often

leading to easier interpretations.

Some details related with the applied technique are described. The registration algorithm descrip-

tion includes a brief description of one-dimensional case, and an alternative derivation is included to

motivate the generalisation to multiple dimensions,. Also the detection and tracking of point features,

improvements and variations are detailed briefly.

1. Image registration problem

Considering two images as being represented by two functions F (x) and G(x) (which gives the

respective pixel values at each location x in two images, where x is a vector), the registration

problem can be understood as searching for the best offset h (disparity vector) that minimises

some measure of the difference between the value of F in a neighbourhood of x, F (x + h), and

the value of G(x) when x belongs to the region under study R, as show in fig. 3.4.

19

Figure 3.4: The image registration problem.
Source: [39].

Some examples of these measures consider the sum of absolute value of the difference ∆x =

F (x+ h)−G(x) when x ∈ R,

∑
x∈R
|∆x| , (L1 norm) ; (3.1)

Others consider the square root of the sum of the power 2 of the difference ∆ when x ∈ R,

√∑
x∈R

∆2
x, (L2 norm) ; (3.2)

Alternatively, one can use a standardised measure, e.g. the symmetric of the correlation coefficient

−
∑

x∈R F (x+ h)G(x)√∑
x∈R F (x+ h)2

√∑
x∈xG(x)2

. (3.3)

2. Registration algorithm

The KLT feature tracker based on [39] and [40] proposes that local searches use gradients weighted

by an estimate of the second derivative inverse of the image. To illustrate, one can describe

the one-dimensional case. Consider the displacement h between two images F (x) and G(x) =

F (x + h). When h is small enough, the derivative F ′(x) is approximated by the incremental rate

given by

F ′(x) ≈ F (x+ h)− F (x)

h
=
G(x)− F (x)

h
(3.4)

and

h ≈ G(x)− F (x)

F ′(x)
(3.5)

The estimate of h clearly depends on each x. To get a better estimate of h the simple mean of all

20

estimates obtained for each x of the interest region R is computed

h =

∑
x∈R hx∑
x∈R 1

=

∑
x∈R

G(x)−F (x)
F ′(x)∑

x∈R 1
(3.6)

or a weighted mean proposed in [39] where each weigh is related with the absolute value of second

derivative of F (x),estimated by

F ′′(x) ≈ G′(x)− F ′(x)

h
. (3.7)

In this way, the improved estimate of h using the weighted mean is given by

h =

∑
x∈R wxhx∑
x∈R wx

=

∑
x∈R wx

G(x)−F (x)
F ′(x)∑

x∈R wx
(3.8)

with

w(x) =
1

|G′(x)− F ′(x)|
. (3.9)

For each estimate of h, the estimate of F is updated. The iterative process is performed using the

expression 
ho = 0

hk+1 = hk +

∑
x∈R wx

G(x)−F (x+hk)
F ′(xk)∑

x∈R wx

. (3.10)

An alternative derivation can be done, using the usual linear estimate of a function in a neighbour-

hood of x. One can easily see from the incremental rate given by

F ′(x) ≈ F (x+ h)− F (x)

h
(3.11)

that

F (x+ h) ≈ F (x) + hF ′(x) (3.12)

considering small values h. The optimal value of h is the one that minimises the sum of the square

errors SSE defined by the L2 norm

SSE =
∑
x∈R

(F (x+ h)−G(x))
2
. (3.13)

This process is similar to the least squares method. As usual, to minimise SSE, one must impose

that ∂SSE
∂h = 0 and ∂2SSE

∂h2 > 0.

The h estimate is

h ≈
∑

x∈R F
′(x) [G(x)− F (x)]∑
x∈R F

′(x)2
, (3.14)

21

taking into account that the iterative process is


ho = 0

hk+1 = hk +

∑
x∈R wxF

′(x+ hk) [G(x)− F (x+ hk)]∑
x∈R wxF ′(x+ hk)2

(3.15)

with wx = F ′(x+ hk)2.

For the multidimensional case, the process is similar, generalising the least squares errors ap-

proach: the n-dimensional vector h estimate is obtained by minimising the sum of square errors

L2 norm

SSE =
∑
x∈R

(F (x + h)−G(x))
2 (3.16)

where x is a n-dimensional vector. Again, the linear approximation is used

F (x + h) ≈ F (x) + h

(
∂F (x)

∂x

)T

, (3.17)

with ∂F (x)
∂x being the Jacobian matrix (matrix of gradients). The condition ∂SSE

∂h = 0 conduces to

the estimate

h ≈

[∑
x∈R

[G(x)− F (x)]

(
∂F (x)

∂x

)][∑
x∈R

(
∂F (x)

∂x

)T (
∂F (x)

∂x

)]−1
. (3.18)

3. Improvements

The KLT feature tracker allows for the extension to more elaborated transformations [40] (e.g.

rotation, scaling, shearing). In this case one has G(x) = F (Ax + h), where A is some linear

transformation matrix. In this case one must minimise the sum of square errors L2 norm

SSE =
∑
x∈R

(F (Ax + h)−G(x))
2
. (3.19)

The following linear approximation must also be considered

F ((A+ ∆A)x + (h + ∆h)) ≈ F (Ax + h) + (∆Ax + ∆h)

(
∂F (x)

∂x

)T

, (3.20)

Another extension of KLT technique can be achieved when the brightness in the two images is

distinct. In this situation, one can consider this issue as a linear transformation, F (x) = αG(x)+β,

where α is related with the contrast correction and β is related with the brightness correction. The

minimisation of the L2 norm relative to A, h, α and β is

22

SSE =
∑
x∈R

(F (Ax + h)− (αG(x) + β))
2
. (3.21)

Still in [40], the authors propose a criteria that allows to decide which tracking features are ad-

equate for the tracking algorithm. It consists in the imposition that the eigen values of gradient

matrix are larger than a certain established threshold so the tracking feature is chosen. This issue

allows to avoid the badly conditioned matrix problems.

Another improvement of KLT tracker can be found in [41], where a scheme that verifies if the

chosen features were correctly tracked is implemented.

3.3.1 Implementation

In this thesis, an implementation in MATLAB2018a was used, namely in the computer vision toolbox that

provides video tracking algorithms, such as Continuously Adaptive Mean Shift (CAMShift) and KLT. The

vision.PointTracker tool is applied.

The point tracker object tracks a set of points using the KLT feature-tracking algorithm. The point

tracker can be used for video stabilisation, camera motion estimation, and object tracking. It works

particularly well for tracking objects that do not change shape and for those that exhibit visual texture.

The point tracker is often used for short-term tracking as part of a larger tracking framework which is the

case in this thesis.

As the point tracker algorithm progresses over time, points can be lost due to lighting variation, out

of plane rotation, or articulated motion. To track an object over a long period of time, one needs to

reacquire points periodically. In this work the points are reacquired for every detection.

3.4 Association

Data association is the process of associating detections corresponding to the same physical object

across frames. The temporal history of a particular object consists of multiple detections and is called

a track. A track representation can include the entire history of the previous locations of the object.

Alternatively, it can consist only of the object’s last known location and its current velocity. In this case, a

track consists of the previous locations of features associated with the object.

In this work, the association of detections across frames is done using the KLT method in combination

with the results from YOLOv3. Starting with the YOLOv3 bounding boxes, features are extracted from

each bounding box according to the Shi-Tomasi criteria for good features [41]. These features are

tracked into the following frame using a KLT tracker. To each group of tracked features, a rectangle is

23

fitted and then compared with the YOLOv3 bounding boxes for the current frame. If a certain degree of

overlap happens then it is considered to be the same bounding box. If there is no correspondence with

YOLOv3 bounding boxes, the fitted rectangle is considered the bounding box for the current frame and

is propagated, compensating for failures in the detection step. Since features are extracted from each

bounding box, features in the background can happen. To avoid propagation of bounding boxes with

only background features (without proper detection from YOLOv3) a score is given to these boxes. If

there’s a match with a YOLOv3 detection the score is increased and for each iteration without detection,

the score is decreased.

3.5 Homography

In computer vision, homography is a transformation matrix H which, when applied on a projective plane,

maps it to another plane (or image). In this work, the intention is to produce a bird’s eye view image of

the scene. It is assumed the world is flat on a plane and maps all pixels from a given view point onto

this flat plane through homography projection. This assumption works well in the immediate vicinity of

the camera. For faraway features in the scene, blurring and stretching of the scene is more prominent

during perspective projection, shown in fig. 3.5.

Figure 3.5: Example of projection from camera perspective into a bird’s eye perspective. The bottom image shows
the blurring on the scene further away from the camera. The homography is computed by mapping at least 4

corresponding points in both images.

The usefulness of this mapping rests on the fact that Google Maps images are registered to terrain

maps, so they can be used to build such bird’s eye view as well as obtaining metric measurements.

24

Considering the world flat and having a fixed camera makes the formulation of this homography a

simple case. The planar homography relates the transformation between two planes (up to a scale

factor) and is presented in eq. (3.22), where homogeneous coordinates of the corresponding points are

x′ and x.

s

 x′

y′

1

 = H

 x
y
1

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 x
y
1

 (3.22)

The homography matrix is a 3x3 matrix but with 8 Degrees of Freedom (DoF) and can be estimated

up to a scale by linear methods, namelly the DLT (Direct Linear Transform). In general there are two

common normalisations: normalising one element, for example

h33 = 1 (3.23)

or normalising its norm, that is imposing ‖H‖2 = 1

h211 + h212 + h213 + h221 + h222 + h223 + h231 + h232 + h233 = 1 (3.24)

In this work, we used MATLAB tools and functions, namely cpselect to select the homologous corner

points in both perspectives as mentioned before. For the best results, the selection will be spread out

across the image and more than 20 pairs of points will be chosen. The function cp2tform will be used

to compute the transformation. Afterwards it will be possible to project the detection from the camera

plane onto the ground plane.

25

26

4
Experiments and Results

Contents

4.1 Implementation of the detection and tracking pipeline 29

4.2 Evaluation . 29

4.3 Results and Discussion . 37

27

28

In this section, the implementation of the system is described, as well as, the steps to evaluate each

phase of the system. The dataset used for each are also characterised. Following that, the final result

of the tracking system are presented and analytics are calculated. In the end, the results and analytics

are commented and analysed.

4.1 Implementation of the detection and tracking pipeline

In the object detection phase, the framework YOLOv3 available on Redmon’s webpage was used [44].

After running the video frames throughout YOLOv3, the output was then processed into a MATLAB

structure. Which stores bounding boxes’ coordinates, confidence and class, as well as frame number

and file path of the frame.

As the idea of this proposal is to track vehicles and show their trajectories, the homography was

calculated before the tracking phase to allow the projection of the tracking boxes onto the map plane

during the tracking. Using MATLAB function cp2tform and imtransform the spatial transformation was

calculated between the camera plane and the bird’s view of the traffic intersection filmed. This way it

is possible to project the detected vehicles into a map and make the trajectory more perceptible for the

human eye.

Afterwards the tracker phase was implemented using the MATLAB function vision.PointTracker to

track corner point features from one frame onto the next one, using the KLT method. These features are

extracted from each of the bounding boxes from YOLOv3. Each has an identifier for its corresponding

bounding box. After tracking the features, a rectangular bounding box is fitted to features with the same

identifier. Then they are compared with the bounding boxes obtained from YOLOv3 for the analogous

frame. To match boxes, the intersection of the fitted bounding box with the bounding box obtained with

YOLOv3 must be at least 40% of the area of the box fromYOLOv3. If none satisfies this condition, the

algorithm considers it a false negative from the detector and stores the fitted boxes as a detection.

A video of a crossroad will be the base to test this system.

4.2 Evaluation

A reliable tracking requires a reliable detection. For that, it is necessary to evaluate YOLOv3 results. To

quantify YOLOv3’s performance, the number of true and false detections needs to be assessed. The

definitions are as follow:

• False positive - incorrect detections, vehicles that were detected when they should not have been;

• True positive - correct detections, vehicles that were detected;

29

• False negative - vehicles that were not detected;

To assess YOLOv3 performance we computed key indicators such as precision, eq. (4.1) and re-

call,eq. (4.2), in a specific dataset created ”in-house”. Subsequently, KLT parameters were tuned and

the tracker performance evaluated. In the next sections we will characterise the datasets used and

describe the key indicators.

Precision =
TruePositives

TruePositives+ FalsePositives
(4.1)

Recall =
TruePositives

TruePositives+ FalseNegatives
(4.2)

Dataset Characterization

All datasets used were extracted from a webcam video of a crossroad with resolution of 560x690 pixels.

The dataset used to assess YOLOv3 performance consists of 30 randomly selected frames with 244

annotations of vehicles in total. This initial dataset was resized four times into 90% ,80% ,70% and 60%

of the original size.

The datasets used to tune KLT parameters consists of 8 sets of 100 frames extracted at 15 fps. Each

set starts in a random frame of the video.

Finally, the dataset used to obtain the final results of the whole system consists of 450 frames ex-

tracted at 15 fps.

YOLO Performance

Assessing YOLOv3 performance involves comparing YOLOv3’s results for different sized inputs. For

the comparison , the confidence score of YOLOv3 entry parameter was set to 0.7 for all the frames,

meaning it only considers detections with a confidence higher than 70%. This value was obtained

throughout several tests, as to have a lower amount of false positives while still being able to detect the

majority of the vehicles in the scene. The fig. 4.1 and fig. 4.2 show examples of the frames used. The

recall and precision calculated for our dataset is presented in table 4.1.

Table 4.1: YOLOv3 performance for several dimensions of input in the context of this thesis. The dataset used had
30 frames.

True False False Precision Recall
Positive Positive Negative

original size 190 4 54 97.9% 77.9%
90% size 197 10 47 95.2% 80.7%
80% size 189 8 55 95.9% 77.5%
70% size 128 13 116 90.7% 52.5%
60% size 111 4 133 96.5% 45.5%

30

(a) Original size.

(b) 90% original size.

Figure 4.1: Example frames used in testing YOLOv3 performance.

31

(a) 80% original size.

(b) 70% original size.

(c) 60% original size.

Figure 4.2: Example frames used in testing YOLOv3 performance (cont.).

32

The initial step of tracking needs to have totally reliable detection, which means no false positives.

Therefore the original size is the most appropriate as it has the highest precision. Although the original

size corresponds to the second-best recall, this only means a higher number of false negatives. Since

the system is using a KLT tracker, it will compensate for that lack of detections.

Tuning of KLT

In the tracking phase, some parameters can also be set. In this case, the used MATLAB function

vision.PointTracker allows for the configuration of the number of pyramid levels as well as the forward-

backward error threshold.

The point tracker implementation of the KLT algorithm uses image pyramids. The tracker generates

an image pyramid, where each level is reduced in resolution by a factor of two in width and height

compared to the previous level. The point tracker begins tracking each point in the lowest resolution

level. It continues tracking until convergence and will propagate the result to the next level as the initial

guess of the point locations. A higher number of pyramid levels allows the algorithm to handle larger

displacements of points between frames. However, the computation cost also increases.

Using forward-backward error allows the tracker to track each point from the previous to the current

frame, then track the same points back to the previous frame and calculate the bidirectional error. This

value will be the distance, in pixels, from the original location of the points to the final location after

the backward tracking. When the error is higher than the set value, the points are considered invalid.

Meaning that, by using bidirectional error, points that could not be reliably tracked are eliminated.

Since the dataset used was obtained by sampling 15 frames per second from a crossroad, generally

speaking, the displacement of points will not be large. Therefore the values set were: 2 pyramid levels

and 3 pixels for the forward-backward error threshold. This allows for reliable tracking while not being

very computationally heavy.

Another point worth evaluating is how well the KLT tracking component performs. How good would

the results be if based exclusively on tracking the initially detected features? This instance was evaluated

by firstly randomly selecting a frame of the video. Then obtaining the YOLOv3’s detection and extracting

features within these detections. Finally, initialising tracking and running it for 100 frames. It ran for 8

different initial frames with the results presented in table 4.2.

As displayed in fig. 4.3, features were tracked throughout most of the frames, with an average of

88.8% being tracked until the end. Features will inevitably be lost, either due to being weaker or because

they leave the frame. Since a vehicle takes around 100 frames to enter and leave the frame, most of the

features lost will probably either correspond to vehicles leaving frame or to weaker features not being

reliably tracked. The number of features lost by frame for each iteration, as well as the average, are

shown in fig. 4.4.

33

Table 4.2: KLT tracker performance for 8 iterations of tracking across 100 frames, with randomly selected initial
frames.

Iteration 1 2 3 4 5 6 7 8 average
#detected features initially 356 338 336 406 434 540 428 417 406.8

of features tracked until frame 25 343 338 336 392 433 399 407 353 375.1
of features tracked until frame 50 342 338 336 391 420 380 397 328 366.5
of features tracked until frame 75 342 338 336 391 396 379 375 323 360

of features tracked until frame 100 342 338 336 391 391 372 354 317 355.1
% of features tracked until frame 100 96.1% 100% 100% 96.3% 90.1% 68.9% 82.7% 76.0% 88.8%

Figure 4.3: Percentage of features tracked until the 100th frame. 8 iterations of tracking for 100 frames, starting
from a random video frame.

It is interesting to understand why iterations 2 and 3 have 100% of features tracked for 100 frames,

while iteration 6 only has less than 70%. When looking at the movement of the vehicles for each of the

iterations we can discover why. For iterations 2 and 3, the vehicles are mostly waiting for the traffic light.

On iterations 1, 4 and 5, the vehicles are mostly moving in parallel to the camera. Vehicles on iteration

6 are mostly facing forward, starting on the traffic light furthest away from the camera. During the first

half, the ones moving are turning to the left. For iterations 7 and 8, about half of the vehicles are waiting

on the traffic lights while the other half is coming closer towards the camera.

If vehicles are not moving features will be easily tracked, therefore explaining the results for 2 and 3.

The rest can be explained by the fact that KLT essentially considers the movement of the features is a

translation. Although it deals better with scaling and rotation than standard LK, it still has its limitations.

Which mean when a car is coming towards the camera, it is ”zooming in” on the features and in the

long run the approximation of that movement to a translation is no longer possible leading to the loss of

features. Another difficulty is the turning of the vehicles. Iteration 6 has a high amount of lost features

for the first 40 frames as features will suffer a high rotation and deformation, as well as disappearing on

the side of the car no longer visible when turning.

34

Figure 4.4: The amount of features lost from one frame to the next. 8 iterations of tracking for 100 frames, starting
from a random video frame.

If we only looked at this situation from a tracking perspective, a KLT tracker would not be an appro-

priate choice for this system. However, we are not using KLT for tracking itself but to connect YOLO’s

detections. Therefore, it is an appropriate approximation for short distances.

Bounding boxes association

For the KLT tracker phase it was important to find a balance for the matching of YOLOv3 bounding boxes

with the predicted bounding boxes from KLT. This matching is based on the area of the intersection

between both boxes being at least 40% of the area of the box from YOLOv3. When none of the detected

boxes meets this criterion then the predicted box will be considered a detection. New features will be

detected inside these matched boxes and used to predict the boxes in the next frame. The threshold

of 40% was obtained by testing several values and assessing which lead to better association results.

If YOLOv3 detects two vehicles very close, their bounding boxes will cover part of the other vehicle.

Then, using too low of a threshold the system will increase identity switches. While using too high of a

threshold will be too restrictive and rarely able to match. When using 40%, as shown in fig. 4.5, a good

level of matching is obtained even when bounding boxes with significant overlap exist.

35

(a) The grey car on the right is identified as 1 and the white car on the left is
identified as 2.

(b) The grey car on the right is still identified as 1 and the white car on the
left is still identified as 2.

Figure 4.5: Example of using 40% as the threshold of intersection area for matching.

36

4.3 Results and Discussion

4.3.1 Results

The final tracking results of this system were obtained using a real traffic scenario video, this dataset

has been characterised in the evaluation section. The tracking results concerning the camera view are

represented in fig. 4.6, while the ones concerning the map perspective are illustrated in fig. 4.7. The

trajectories displayed in fig. 4.7 correspond to the last detected positions for each vehicle, projected onto

a map view from Google Maps. The benchmark for this work will be presented in the following section

as well as a small analysis of the results. Additionally , metrics about the tracked vehicles, such as the

spatial occupation of the road and velocity by region, are calculated and displayed later.

(a) Initial frame.

(b) 30 frames later.

Figure 4.6: Experimental results - camera view.

37

(a) Initial frame.

(b) 30 frames later.

Figure 4.7: Experimental results - map view.

38

Benchmark

For this work, the benchmark will evaluate how many times, for a full track, did YOLOv3 not detected the

vehicle. During tracking, 60 vehicles were identified. For the 450 frames in this dataset there were 4943

instances of track. On average, a full track lasts for 82 frames, with the longest track being 427 frames

and the shortest only 12. From the 4943 instances, there was no YOLOv3 detection for 1284, which

means 25.9% of instances came from the KLT tracking. Since in this tracking, there are 2 vehicles that

are detected in every frame and their tracks last for 427 frames it is relevant to calculate the average

based on each individual track. Considering the individual track length and individual lack of YOLOv3

detection, one has, on average, 21.8% of instances from KLT exclusively.

By analysing the final results, with examples displayed in fig. 4.6 and fig. 4.7, we can conclude the

system devised in this thesis achieves a reliable matching and tracking of multiple vehicles. During

missed detections from the detector and partial occlusion of vehicles, the tracking performs well and is

able to keep following the vehicles. As it can be seen in benchmarking, this is a more robust tracking

system than a tracking system solely based on detections, as this would have considered new vehicles

when YOLOv3 lacks detection on an intermediate frame.

39

4.3.2 Analytics

After the tracking and using all the stored data that comes from it, some metrics about occupation and

velocity were calculated and presented in fig. 4.8, fig. 4.9 and fig. 4.10. In fig. 4.8, the occupation of

the crossroad during the duration of the tracking is represented as a heatmap. In it, the shape of the

crossroad is clearly visible, with some hot spots existing near the areas where traffic lights are positioned.

Figure 4.8: Heatmap of vehicles positions throughout the tracking.

The maximum and average velocities locally are presented in fig. 4.9(a) and fig. 4.9(b), respectively.

The velocities were calculated based on the scale of the Google Maps and the time difference between

frames is 1/15 seconds. All velocities displayed are based in meter per second. The first velocity

heatmap displays the maximum velocity, in metres per second (m/s), reached in each section of the

map. The higher values are more concentrated in the middle of the crossroad with some hotspots

between 20 to 25 m/s. This makes sense as it will be the zone with more movement, therefore higher

chance of speeding. The second velocity heatmap displays the average velocity, in m/s, in each section

of the map. In this one, the majority of velocities displayed are on a lower range of 7 to 15 m/s. These

are approximately equivalent to 25 to 54 kilometres per hour (km/h) and are within the expected values

since it is an average velocity in a crossroad scenario, within a zone of 50 km/h speed limit (legal speed

limit inside Lisbon).

40

(a) Heatmap of maximum velocity, in m/s, obtained throughout the tracking.

(b) Heatmap of average, in m/s, velocity by region.

Figure 4.9: Velocity heatmaps of experimental results.

41

Lastly, fig. 4.10 shows the average velocity, in m/s, for each of the detected and tracked vehicles.

Around 70% of vehicles’ average velocity is in the range of 6 to 10 m/s, that is approximately 20 to 36

km/h. Once again, since it is an average and it is in the context of a crossroad with traffic lights, these

values make sense as most vehicle would have not been moving at some point waiting for the green

light.

All these metrics show how this system could be helpful for traffic management, as it enables the

extraction of metrics for the traffic in one area, allowing for a better understanding of how the traffic flows.

This would provide valuable information for future city planning and public transportation reconfiguration,

making streets safer and freer.

Figure 4.10: Histogram of average velocity for each detected vehicles during the tracking.

4.3.3 Failure Mode

For every technology developed there are always cases where it will not work. For this work, an important

point to mention is that using the KLT tracker helps counteract false negatives in the detection phase

although it still can fail if the tracker fails. An example of this can be seen in fig. 4.11. Initially, the system

can track the partially occluded vehicle with id 4, fig. 4.11(a)-fig. 4.11(b), and displays the bounding box

based on the previously tracked features. Since the tracker in fig. 4.11(b) only has tracked features in the

back part of the vehicle, when in the next frame, fig. 4.11(c), the back portion of the car is occluded, the

previous features are not tracked into this frame. When YOLOv3 detects the vehicle again in fig. 4.11(d)

there are no previously tracked features therefore the system considers this a new vehicle. For the

following frames, the tracking of this ”new” vehicles goes smoothly.

42

(a) Initial frame (b) 5 frames later

(c) 10 frames later (d) 12 frames later

(e) 15 frames later (f) 20 frames later

(g) 22 frames later (h) 25 frames later

Figure 4.11: Experimental results - tracker and detector fail

43

44

5
Conclusions

Contents

5.1 Lessons Learned and Final Remarks . 47

5.2 Future work . 48

45

46

”Corona didn’t get me so in the end I had to finish this!” - Ancient sage about the great quarantine,

circa 2020

”Corona did not beat me! Neither did my advisor nor my thesis ! I beat them all, over the finish line

... and it felt so good!!!” - A lesson students take for life and becomes a sweet memory many years past

by anonymous former student and currently an advisor

5.1 Lessons Learned and Final Remarks

The major objective of this work is to track the moving vehicles (cars) on the road. Various concepts of

deep learning and computer vision have been utilised for this purpose. The track by detection framework

was applied for multiple vehicle tracking. The YOLOv3 object detection system was used to detect the

vehicles and the concept of the KLT algorithm was applied for tracking. By combining object detection

with feature tracking, the proposed system enhances the tracking performance by reducing the number

of identity switches.

The proposed approach solves the problems with applying either object detection or feature tracking

by themselves. If using only feature tracking, the system would fail since features would eventually get

lost. On the other hand, the movement of the vehicles is not ideal for a KLT tracker. This is because

vehicles turning will not preserve many features and those coming closer or further away from the cam-

era will suffer big feature deformation. Having said that, while YOLO is a fast and effective detector if

the system relies exclusively on YOLO, it would divide many tracks when detection failed. YOLO has

high precision but only 77% of recall, in the case of this thesis. This means that in 23% of the cases,

YOLO will not detect a vehicle. By combining it with the KLT, the system does not need YOLO to detect

in every frame since the KLT will track features of previous detections. Combining both methods also

improves the feature tracking phase since it will give it an equivalent of a ground truth to refresh features

and compensate for the scaling and deformation.

This work benchmark is that, for every completed track, YOLO missed detection on 24% of cases.

Taking this into consideration, one can see that this system performs better for the used dataset. In

cases where big images with high resolution are used, YOLO will have good results and this system

will not bring a big improvement. However, when using smaller images, YOLO is not enough and this

system will have better results of tracking. Surveillance systems and traffic cameras usually have a

lower resolution which would make YOLO faster but less useful. In these cases, this system would be

the answer since it complements YOLO’s detections and allows for continuous tracking.

To summarise, the pros and cons of the proposed system are as follow:

• Pros

1. Fast-tracking due to the use of a fast and effective object detector.

47

2. High accuracy and reduced identity switches.

3. Good performance in lower resolution videos, which is particularly useful in traffic manage-

ment.

4. Good capacity to deal with small occlusion.

• Cons

1. When dealing with big images, the system does not bring significant advantages compared

to using just YOLO.

2. The effectiveness of the algorithm is reduced if the bounding boxes from the object detector

are too big because too much background information is captured in the features.

3. Will fail if prolonged occlusion happens.

5.2 Future work

For future work it would be interesting to improve the merging of tracks for a more optimal final trajectory.

As shown in fig. 4.11 the tracker occasionally is not able to track features for long enough to match with

a future detection and, thus, considers the appearance of new vehicles in the middle of the frame. One

way of improving would be to impose constraints on the specific areas of the frame in which vehicle entry

or exit is possible. This would not allow new vehicles to just appear in the middle of the frame. Another

approach could be tracking the features to frames further ahead instead of a tracking only to the frame

immediately after. By tracking the features onto a frame 5 frames ahead, for example, it would allow the

system more flexibility when periods of occlusion happen.

48

Bibliography

[1] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, X. Zhao, and T.-K. Kim, “Multiple object tracking: A

literature review,” Artificial Intelligence, vol. 293, 4 2021.

[2] A. Barbu, A. Michaux, S. Narayanaswamy, and J. M. Siskind, “Simultaneous object detection,

tracking, and event recognition,” Advances in Cognitive Systems, vol. 2, pp. 203–220, 4 2012.

[Online]. Available: http://arxiv.org/abs/1204.2741

[3] A. Ur-Rehman, S. M. Naqvi, L. Mihaylova, and J. A. Chambers, “Multi-target tracking and occlusion

handling with learned variational bayesian clusters and a social force model,” IEEE Transactions on

Signal Processing, vol. 64, pp. 1320–1335, 3 2016.

[4] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, J.-K. Kämäräinen, M. Danelljan,

L. Č. Zajc, A. Lukežič, O. Drbohlav, L. He, Y. Zhang, S. Yan, J. Yang, G. Fernández, A. Hauptmann,

A. Memarmoghadam, Á. Garcı́a-Martı́n, A. Robinson, A. Varfolomieiev, A. H. Gebrehiwot, B. Uzun,

B. Yan, B. Li, C. Qian, C.-Y. Tsai, C. Micheloni, D. Wang, F. Wang, F. Xie, F. J. Lawin, F. Gustafsson,

G. L. Foresti, G. Bhat, G. Chen, H. Ling, H. Zhang, H. Cevikalp, H. Zhao, H. Bai, H. C. Kuchibhotla,

H. Saribas, H. Fan, H. Ghanei-Yakhdan, H. Li, H. Peng, H. Lu, H. Li, J. Khaghani, J. Bescos, J. Li,

J. Fu, J. Yu, J. Xu, J. Kittler, J. Yin, J. Lee, K. Yu, K. Liu, K. Yang, K. Dai, L. Cheng, L. Zhang,

L. Wang, L. Wang, L. Van Gool, L. Bertinetto, M. Dunnhofer, M. Cheng, M. M. Dasari, N. Wang,

N. Wang, P. Zhang, P. H. S. Torr, Q. Wang, R. Timofte, R. K. S. Gorthi, S. Choi, S. M. Marvasti-

Zadeh, S. Zhao, S. Kasaei, S. Qiu, S. Chen, T. B. Schön, T. Xu, W. Lu, W. Hu, W. Zhou, X. Qiu,

X. Ke, X.-J. Wu, X. Zhang, X. Yang, X. Zhu, Y. Jiang, Y. Wang, Y. Chen, Y. Ye, Y. Li, Y. Yao, Y. Lee,

Y. Gu, Z. Wang, Z. Tang, Z.-H. Feng, Z. Mai, Z. Zhang, Z. Wu, and Z. Ma, “The eighth visual object

tracking vot2020 challenge results,” in Computer Vision – ECCV 2020 Workshops, A. Bartoli and

A. Fusiello, Eds. Cham: Springer International Publishing, 2020, pp. 547–601.

[5] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth, K. Schindler, and L. Leal-

Taixé, “Mot20: A benchmark for multi object tracking in crowded scenes,” arXiv:2003.09003[cs],

Mar. 2020, arXiv: 2003.09003. [Online]. Available: http://arxiv.org/abs/1906.04567

49

http://arxiv.org/abs/1204.2741
http://arxiv.org/abs/1906.04567

[6] Y. Xin, J. Hou, L. Dong, and L. Ding, “A self-adaptive optical flow method for the moving object

detection in the video sequences,” Optik, vol. 125, 10 2014.

[7] Z. Wang, X. Sun, W. Diao, Y. Zhang, M. Yan, and L. Lan, “Ground moving target indication based

on optical flow in single-channel sar,” IEEE Geoscience and Remote Sensing Letters, vol. 16, 7

2019.

[8] Z. Xu, D. Zhang, and L. Du, “Moving object detection based on improved three frame difference and

background subtraction,” in 2017 International Conference on Industrial Informatics - Computing

Technology, Intelligent Technology, Industrial Information Integration (ICIICII). IEEE, 12 2017, pp.

79–82.

[9] Z. Zhong, B. Zhang, G. Lu, Y. Zhao, and Y. Xu, “An adaptive background modeling method for fore-

ground segmentation,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, 5 2017.

[10] S. Jiang and X. Lu, “Wesambe: A weight-sample-based method for background subtraction,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 28, 9 2018.

[11] G. Shi, J. Suo, C. Liu, K. Wan, and X. Lv, “Moving target detection algorithm in image sequences

based on edge detection and frame difference,” in 2017 IEEE 3rd Information Technology and

Mechatronics Engineering Conference (ITOEC). IEEE, 10 2017, pp. 740–744.

[12] W. Wang, J. Shen, and L. Shao, “Video salient object detection via fully convolutional networks,”

IEEE Transactions on Image Processing, vol. 27, no. 1, pp. 38–49, 2018.

[13] X. Ou, P. Yan, Y. Zhang, B. Tu, G. Zhang, J. Wu, and W. Li, “Moving object detection method via

resnet-18 with encoder-decoder structure in complex scenes,” IEEE Access, vol. 7, pp. 108 152–

108 160, 2019.

[14] P. W. Patil and S. Murala, “Msfgnet: A novel compact end-to-end deep network for moving object

detection,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 11, pp. 4066–4077,

2019.

[15] R. Szeliski, Computer Vision: Algorithms and Applications. Springer London, 2011. [Online].

Available: http://szeliski.org/Book/

[16] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the Seventh

IEEE International Conference on Computer Vision, vol. 2, 1999, pp. 1150–1157 vol.2.

[17] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust features,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 3951 LNCS, 2006, pp. 404–417.

50

http://szeliski.org/Book/

[18] E. Rosten and T. Drummond, “Fusing points and lines for high performance tracking,” in Tenth IEEE

International Conference on Computer Vision (ICCV’05) Volume 1, vol. 2, 2005, pp. 1508–1515

Vol. 2.

[19] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo from maximally stable

extremal regions,” Image and Vision Computing, vol. 22, 9 2004.

[20] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1,

2005, pp. 886–893 vol. 1. [Online]. Available: http://lear.inrialpes.fr

[21] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in

Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition. CVPR 2001, vol. 1, 2001, pp. I–I.

[22] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively trained, multiscale, deformable

part model,” in 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[23] F.-F. Li, J. Johnson, and S. Yeung, “Cornell computer vision lecture notes,” 2020. [Online].

Available: http://www.cs.cornell.edu/courses/cs5670/2020sp/lectures/lec21 cnns for web.pdf

[24] H. Sajid and S.-C. S. Cheung, “Universal multimode background subtraction,” IEEE Transactions

on Image Processing, vol. 26, 7 2017.

[25] T. S. Haines and T. Xiang, “Background subtraction with dirichletprocess mixture models,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 36, 4 2014.

[26] Z. Bian and X. Dong, “Moving object detection based on improved gaussian mixture model,” in 2012

5th International Congress on Image and Signal Processing. IEEE, 10 2012, pp. 109–112.

[27] H. Santosh, P. Venkatesh, P. Poornesh, and N. Rao, “Tracking multiple moving objects using

gaussian mixture model,” International Journal of Soft Computing and Engineering (IJSCE), vol. 3,

5 2013. [Online]. Available: https://www.researchgate.net/publication/305709395

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” Communications of the ACM, vol. 60, pp. 84–90, 5 2012. [Online]. Available:

http://code.google.com/p/cuda-convnet/

[29] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object de-

tection and semantic segmentation,” in 2014 IEEE Conference on Computer Vision and Pattern

Recognition. IEEE, 6 2014, pp. 580–587.

51

http://lear.inrialpes.fr
http://www.cs.cornell.edu/courses/cs5670/2020sp/lectures/lec21_cnns_for_web.pdf
https://www.researchgate.net/publication/305709395
http://code.google.com/p/cuda-convnet/

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for

visual recognition,” 2015 IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

6 2014. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-10578-9 23

[31] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Conference on Computer Vision (ICCV), 4

2015, pp. 1440–1448. [Online]. Available: http://arxiv.org/abs/1504.08083

[32] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with

region proposal networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 39, no. 6, pp. 1137–1149, 2015. [Online]. Available: http://arxiv.org/abs/1506.01497

[33] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single

shot multibox detector,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and

M. Welling, Eds. Cham: Springer International Publishing, 2016, pp. 21–37. [Online]. Available:

http://dx.doi.org/10.1007/978-3-319-46448-0 2

[34] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object

detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,

6 2016, pp. 779–788. [Online]. Available: https://arxiv.org/abs/1506.02640

[35] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). IEEE, 7 2017, pp. 6517–6525. [Online].

Available: https://arxiv.org/abs/1612.08242

[36] J. Redmon, “Yolov3: An incremental improvement,” University of Washington, Tech. Rep., 2018.

[Online]. Available: https://arxiv.org/abs/1804.02767

[37] D. Meyer, J. Denzler, and H. Niemann, “Model based extraction of articulated objects in image

sequences for gait analysis,” in Proceedings of International Conference on Image Processing.

IEEE Comput. Soc, 1997, pp. 78–81 vol.3.

[38] C. Harris and M. Stephens, “A combined corner and edge detector,” in In Proc. of Fourth Alvey

Vision Conference. British Machine Vision Association and Society for Pattern Recognition, 4

1988, pp. 147–151.

[39] B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo

vision,” in Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI

’81), 1981. [Online]. Available: https://www.researchgate.net/publication/215458777

[40] C. Tomasi and T. Kanade, “Detection and tracking of point features,” International Journal of Com-

puter Vision, Tech. Rep., 1991.

52

http://dx.doi.org/10.1007/978-3-319-10578-9_23
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1506.01497
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
https://www.researchgate.net/publication/215458777

[41] J. Shi and Tomasi, “Good features to track,” in Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition CVPR-94. IEEE Comput. Soc. Press, 1994.

[42] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2015, pp. 1–9. [Online]. Available: http://arxiv.org/abs/1409.4842

[43] A. Kathuria, “What’s new in yolo v3?” 2018. [Online]. Available: https://towardsdatascience.com/

yolo-v3-object-detection-53fb7d3bfe6b

[44] Joseph and A. R. Farhadi, “Yolo: Real-time object detection.” [Online]. Available: https:

//pjreddie.com/darknet/yolo/

53

http://arxiv.org/abs/1409.4842
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/

54

	Titlepage
	Declaration
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Thesis outline

	2 Background and Theory of Object Tracking
	2.1 Tracking
	2.1.1 Detection
	2.1.2 Data Association and Tracking

	3 Proposed Approach: Merging object detection with point tracking
	3.1 Object detection - You Only Look Once (YOLO)
	3.2 Prediciton and Tracking: The Kanade-Lucas-Tomasi Tracker (KLT)
	3.3 A summary of the Kanade-Lucas-Tomasi (KLT) approach to feature extraction
	3.3.1 Implementation

	3.4 Association
	3.5 Homography

	4 Experiments and Results
	4.1 Implementation of the detection and tracking pipeline
	4.2 Evaluation
	4.3 Results and Discussion
	4.3.1 Results
	4.3.2 Analytics
	4.3.3 Failure Mode

	5 Conclusions
	5.1 Lessons Learned and Final Remarks
	5.2 Future work

	Bibliography

