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Abstract

The purpose of goal-oriented dialogue systems is to pro-
vide automatic responses in a conversation with a specific
goal. Given recent advances in Deep Learning, this task
is now more flexible, as pre-existing knowledge from mod-
els trained with self-supervised learning can be transferred
to conversation systems. However, the need to adapt the
original answer to the dialogue context makes the task of
generating it particularly challenging. Different strategies
to decode a sentence have been proposed, aiming at making
the generated text more fluent, coherent, and relevant. The
goal of this study is to experiment sparse generation tech-
niques in this framework, which sample from the recently
proposed α-entmax transformation. We compare this tech-
nique with other state-of-the-art approaches, such as greedy
search and nucleus sampling, by thoroughly assessing the
different systems. Moreover, as the modularized approach is
replaced by end-to-end architectures, goal-oriented systems
become more difficult to be evaluated. Many works resort to
evaluation methods imported from other tasks, namely ma-
chine translation, raising the question of whether they are
suitable for evaluating dialogue. To address this problem,
we conduct a study to determine the correlation between
these automatic metrics and human perception of quality.
The evaluation procedure is an important part of the per-
formance analysis, since choosing an inappropriate method
can lead to the wrong conclusions.

1. Introduction
The evolution of technology has allowed for the automa-

tion of several processes across diversified engineering in-
dustry fields. Namely, customer support services have dras-
tically evolved with recent advances in Machine Learning.
One of the biggest goals of Natural Language Processing
is to develop a conversational system able to interact with
humans in goal-oriented dialogue tasks. The study of these
systems can be particularly relevant to Aerospace Engineer-
ing in two main frontiers. The most self-evident is the direct
application in the aviation business, where conversational

Artificial Intelligence leads to an improvement of customer
support platforms, consequently enhancing the client expe-
rience.1 Besides, recent studies support the introduction
of speech dialogue systems in manufacturing processes.
An efficient human-robot communication can reform the
aerospace industry, not only enhancing their alone perfor-
mance through cooperation between the two parts, but also
supporting decision making with information-rich systems
(Gaizauskas et al., 2018).

Advances in Deep Learning and language modelling al-
low for the development of neural approaches in dialogue
generation, typically relying on Sequence-to-Sequence ar-
chitectures (Sutskever et al., 2014; Wen et al., 2015). The
traditional highly-handcrafted modular approaches are re-
placed by the joint optimization of multiple components,
originating less complex systems with a stiffer architecture,
learnable in an end-to-end manner (Wen et al., 2017).

Research on answer generation can be categorized in two
different approaches: retrieval and generative based meth-
ods. The latter are more adaptable to different contexts, but
more complex to design (Celikyilmaz et al., 2020). Re-
cent advances in large-scaled pre-trained Language Mod-
els have paved the way for higher quality generation: Wolf
et al. (2019) and Golovanov et al. (2019) have shown their
applicability to open-domain conversational systems, with
Budzianowski and Vulić (2019) introducing them to the
goal-oriented framework.

Nonetheless, mimicking the human way of constructing
a sentence is a challenging task and the chosen method can
have great influence on the final result, motivating decod-
ing techniques such as top-k sampling (Fan et al., 2018)
and nucleus sampling (Holtzman et al., 2020). This work
adds to the study of end-to-end generative conversation sys-
tems, by leveraging α-entmax transformations to decoding
a sentence in a Language Model (Peters et al., 2019; Martins
et al., 2020), in the goal-oriented setting. We compare this
approach with state-of-the-art generation techniques, using
both automatic and human metrics.

1As an example, we have the work done by the company Unbabel:
https://unbabel.com/customer-service/travel/, last
accessed on 14-12-2020.

1

https://unbabel.com/customer-service/travel/


Furthermore, as important as developing a system that
resembles a human is the ability to correctly evaluate its
performance. End-to-end goal-oriented dialogue genera-
tion demands a change in this paradigm, as traditional rule-
based methods are less appropriate (Deriu et al., 2020).
Many works have started reporting metrics created for dif-
ferent purposes, namely machine translation. Along with
the increased usage of these metrics comes the inquiry of
whether they are accurate indicators of quality in dialogue
systems. To answer this question, we will exploit the most
reliable tool to judge if a system is faithfully imitating the
behaviour of a human — human judgement itself.

2. Background
2.1. Language Model

Defining a sentence as a sequence of words w =
(w1, ..., wT ), a Language Model (Bengio et al., 2003) is
able to look at a part of it and predict the next word, cal-
culating the probability:

pθ(w) =

T∏
t=1

pθ(wt|w1, ..., wt−1). (1)

In a set S of training sentences, the strategy to learn the
language modelling parameters θ is to minimize the cross-
entropy, or the negative log-likelihood loss:

L(θ) =

|S|∑
i=1

T∑
t=1

log pθ(wt|w<t), (2)

Language Models evolved to calculating pθ using also
some context information c, and more recently attention
mechanisms were introduced, allowing to focus on specific
parts of the input when decoding (Bahdanau et al., 2015).

2.2. GPT-2

GPT-2 is a Language Model trained in a self-supervised
manner, on a zero-shot setting (Radford et al., 2019). The
architecture is composed of independent heads of stacked
decoder blocks, from the Transformer (Vaswani et al.,
2017). Each block is composed of a Masked Self-Attention
sublayer, meaning that each token only attends to its left
context, and a Feed-Forward Neural Network sublayer.
Each block has its own weights, and each head has a dif-
ferent pattern to attend to specific words. Similarly to the
transformer, the output vector of the decoder is fed into a
linear layer, projecting the output into a score vector over
the vocabulary. The output of this Neural Network is a soft-
max layer, which turns these scores into probabilities, all
positive and added up to 1. The next word is then chosen
depending on the decoding strategy. Once a token is pro-
duced, it is added to the sequence of inputs, belonging to
the input sequence in the next step — auto-regression.

2.3. α-entmax Transformation

Softmax is a dense distribution, meaning that a mass
probability is always assigned to all the words. When sam-
pling directly from it, the system can generate unnatural
text, due to the unreliability of the tail of this distribution.
Some techniques arose from this problem, such as nucleus
and top-k sampling. However, they are only applied at de-
coding time, while at training time they are still optimized
with the original softmax, creating a mismatch between
training and testing (Martins et al., 2020). In this work, ex-
periments will be performed sampling from the α-entmax
transformation (Peters et al., 2019), which automatically
produces sparse probability distributions, avoiding that mis-
match.2 The α-entmax transformation is defined as:

α -entmax(zt) := argmax
p∈∆d

pT zt +Hα(p), (3)

where zt are the scores produced by the model, ∆d = {p ∈
Rd|

∑d
i=1 pi = 1, p ≥ 0} is the probability simplex, and

Hα is the Tsallis α-entropy:

Hα :=

{
1

α(α−1)

∑
j(pj − pαj ), α 6= 1

−
∑
j pj log pj . α = 1

(4)

The negative log-likelihood loss in Equation 2 is then:

L(θ) =

|S|∑
i=1

T∑
t=1

lα(zt(θ, w<t), wt), (5)

where lα(zt, wt) is the proposed α-entmax loss:

lα(zt, wt) := (pθ − ew)Twt +Hα(pθ), (6)

with pθ = α -entmax(zt) and ew a one-hot vector repre-
senting the ground truth word w.

3. Neural Dialogue Language Model
The generative systems follow the implementation intro-

duced by Budzianowski and Vulić (2019), finetuning GPT-
2 on the MultiWOZ Dataset3, allowing to transfer language
knowledge from this model to our systems.

3.1. Preprocessing MultiWOZ

The dataset is delexicalized, which is crucial to learn
value independent parameters: all numeric, domain and
non-domain specific slot values are replaced by generic
slots, such as [value pricerange] and [domain name]. Be-
sides, a database pointer is created, saving information re-
garding the number of entities matching the user query,
which will be useful for the evaluation.4

2Using the entmax repository: https://github.com/deep-
spin/entmax, last accessed on 29-06-2020.

3Based on: https : / / github . com / huggingface /
transfer-learning-conv-ai, last accessed on 13-04-2020.

4Roughly following: https://github.com/budzianowski/
multiwoz, last accessed on 17-06-2020.
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3.2. Language Model Input

The input is composed of word level, token level and po-
sition level, as in Figure 1. Following Ham et al. (2020),
dialogue state embedding are added to separate the input:
<belief> for the belief state, <db> for the database state,
<usr> for a user and <sys> for a system utterance. Be-
sides, <bos> and <eos> identify the beginning and end of
the sentence, with <pad> tokens being added to make the
inputs’ length constant.

Belief State. It summarizes the relevant information from
the conversation history. In practice, it is composed of the
informable and requestable slots with corresponding values
in natural language, in the format:

Domain_1 Slot_1 Value_1 ... Slot_n Value_n
Domain_k Slot_1 Value_1 ... Slot_m Value_m.

Database State. It represents the database information,
informing how many entities obey to the given restrictions.
The database state is a simple text representation of the
database pointer, following the form:

Domain_1 n_1... Domain_k n_k.

3.3. Softmax vs α-entmax

At training time, the loss is calculated between the scores
returned by the decoder and the provided labels. Depend-
ing on the decoding technique, it is either the cross-entropy
loss, if the system uses the softmax distribution, or the α-
entmax loss, in the case of the α-entmax distribution. In the
generation phase, the input is similar to the training phase’s,
but with no system response. The returned scores are then
to be transformed into one of the two possible distributions,
softmax or α-entmax, producing a vector of probabilities
over the vocabulary. The decoding strategy will determine
the chosen token.

3.4. Decoding Strategies

Greedy Search. The chosen token wt is the one with
the highest probability value at each timestep t: wt =
argmaxw pθ(w|w<t). It has been reported to have some
problems, such as the model starting to repeat itself; or the
fact that sometimes high probability phrases are “hidden”
behind less likely words, which end up being ignored (Shao
et al., 2017).

Sampling. Aiming at avoiding repetition, sampling
strategies introduce stochastic decisions in the generation
process, by randomly picking the next word wt given the
distribution wt ∼ pθ(w|w<t). To make the distribution
sharper, it is common to lower down the temperature of the
softmax, increasing the higher probabilities and decreasing
the lower ones.

Top-k Sampling. Fan et al. (2018) proposes to restrict the
sampling process to the k most probable words, reducing
the probability of choosing out-of-the-box words, but also
making the process more deterministic. Despite its good
performance in text generation, it has the drawback of not
dynamically adapting the number of words to consider.

Nucleus Sampling. Holtzman et al. (2020) proposes to
sample from the smallest subset of words whose cumulative
probability exceeds p, eliminating the possibility of choos-
ing the less likely words and allowing to contract and ex-
pand the number of candidates dynamically, depending on
the probability distribution.

α-entmax Sampling. In the metrics presented so far, the
models sample from a new version of the softmax distri-
bution at testing time, whose sparsity was not learned. To
overcome this problem, we can apply the entmax transfor-
mation to the model scores, which, similarly to top-k and
nucleus sampling, prevents implausible words from receiv-
ing any probability mass. The chosen token wt at timestep
t is:

wt ∼ pθ(w|w<t) = α -entmax(zt(θ, w<t)), (7)

where zt are the scores given by the model.

3.5. Performance Evaluation

ε-perplexity. It translates into the model’s ability to pre-
dict the next word, given the context (Jurafsky and Martin,
2019). In a Language Model, perplexity is the exponential
average log-likelihood of a sequence. Computing it with
sparse language models requires a smoothing process, by
adding ε to all the terms followed by renormalization over
the vocabulary size |V| (Martins et al., 2020):

ε - ppl(w) = exp

{
− 1

T

T∑
t=1

log
pθ(wt|w<t) + ε

1 + ε|V|

}
(8)

Sparsemax Score. Based on the sparsemax loss (Martins
and Astudillo, 2016), it is defined by:

sp =1−min{l2(z, w)| sparsemax(z) = pθ}, (9)

where l2 is as in Equation 6.

Inform Rate. Proposed along with the MultiWOZ
dataset, it aims at assessing whether the offered entity
matches all the constraints specified in the user goal. Cal-
culated at the dialogue level, it checks if, given the context,
there was indeed an available option in the dataset.
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Figure 1: Language Model input.

Success Rate. Also suggested with the MultiWOZ
dataset, its goal is to evaluate whether all the requestable
slots were provided to the user, being calculated at the dia-
logue level too.

BLEU. Measures the fluency of the answer by analysing
the overlap of n-grams (sequences of n words) between the
proposed response and a set of one or more reference sen-
tences, regardless of the word order (Papineni et al., 2002).

METEOR. Based on alignments between the generated
sentence and the reference, creates matchings between uni-
grams of two different strings, being based on exact, stem,
and synonym matches between words and phrases (Baner-
jee and Lavie, 2005).

BERTScore. Calculates a similarity between each token
of both sentences, but instead of n-gram matching, this sim-
ilarity is computed as a sum of cosine similarities between
contextual embeddings of the tokens given by BERT (De-
vlin et al., 2019), being context aware (Zhang et al., 2020).

4. Experiments
4.1. Decoding Techniques

The results for the different decoding techniques are
shown in Table 1. The values for ε-ppl are in accordance
to the expected, with low values for stochastic methods and
high values for more deterministic ones, and the opposite
happening for sparsemax score. Inform presents a regu-
larity throughout the techniques, suggesting the systems’
ability to effectively attend to the database state informa-
tion. Success, however, presents a diverse range of val-
ues, proposing the best performance for greedy, nucleus
and greedy sampling from α-entmax. Both BLEU and
BERTScore are evidences of the optimized fluency of these
three techniques. The values for METEOR suggest a sim-
ilar behaviour, but in a shorter scale, being less conclu-

sive. The best overall performance is for greedy sampling
from α-entmax, presenting the highest score for Inform and
Success, and therefore to the Tune Metric also, given by
0.5 × (Inform + Success) + BLEU. It is closely followed
by greedy sampling and nucleus sampling, with top-k after-
wards, and sampling and α-entmax sampling being the last
in the ranking.

4.2. Context Importance

The importance of the structured context can be ques-
tioned, as in a real life application, identifying this informa-
tion requires the implementation of an extra system. Some
experiments were conducted with different formats for the
context, to be found in Table 2, where the results are for
nucleus sampling at test time, the best sampling technique
reported in Budzianowski and Vulić (2019). There is an ev-
ident drop in systems with no belief state and no database
state, confirming the importance of this structured informa-
tion. The most surprising result is for experiences with only
the last 3 utterances as context, even outperforming some
techniques in most of the metrics. However, the low value
for BERTScore suggests some faults in the generated text.

4.3. Discussion

Although the metrics transmit an idea of the model’s per-
formance, some surprising results ask for further inspection.
After an extensive analysis, despite the similar performance
in standard scenarios, there is a contrast among the tech-
niques’ performance in some specific situations:

• The standard context importance is confirmed: the
belief state is crucial to the dialogue history aware-
ness; systems with database state are always aligned
with the available entities from the database; the 3 ut-
terances system occasionally produces strange repeti-
tive text. Its good scores in Inform and Success rates
suggest that these metrics are not enough to evaluate
a system’s performance — even misunderstanding the
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Table 1: Different models performance for MultiWOZ 2.0.

ε-ppl (↓) sp (↑) Inform (↑) Success (↑) BLEU (↑) BERTScore (↑) METEOR (↑) Tune Metric (↑)
Sampling 2.3074 0.8443 64.4 37.1 21.02 24.36 18.91 71.77
Greedy 25.3800 0.7695 64.6 53.4 29.46 34.81 19.52 88.46
Top-k 3.8036 0.8412 65.4 44.2 24.43 28.89 19.06 79.23
Nucleus 10.2294 0.8204 65.2 54.6 27.80 32.53 19.43 87.18
α-entmax sampling 2.4922 0.8440 63.4 35.8 21.26 24.11 18.87 70.86
α-entmax greedy 25.6698 0.7686 66.8 57.4 29.44 33.38 19.34 91.54

Table 2: Nucleus sampling performance for different types of context.

ε-ppl (↓) sp (↑) Inform (↑) Success (↑) BLEU (↑) BERTScore (↑) METEOR (↑) Tune Metric (↑)
Full context 10.2294 0.8204 65.2 54.6 27.80 32.53 19.43 87.18
No belief state 14.4673 0.7999 50.5 35.3 25.44 29.22 19.04 68.34
No database state 14.0166 0.8024 52.7 36.4 26.02 29.47 19.07 70.57
Only last utterance 13.5958 0.8045 51.3 36.4 25.30 29.54 19.00 69.15
Last 3 utterances 11.7259 0.8119 67.3 52.1 25.21 23.12 19.11 84.91

user’s specificities, it can randomly suggest an entity
(when it should be the case) and provide the necessary
requestables, being wrongly considered an informable
and successful dialogue.

• The systems sometimes generate inadequate slots
given the domain, having an impact in the scores for
Inform and Success.

• There is frequently low understanding of the user’s
intentions when the information is not present in the
belief state. These cases are not contemplated in the
Inform nor the Success metrics.

• When the user is looking for a simple suggestion, some
techniques struggle to move forward in the conversa-
tion and get stuck in the process of narrowing down
the search, insisting instead of suggesting.

• Another recurring fault is booking without enough
information, which is grasped by Inform and Success.

• In some cases, the systems outperform the reference
answer. In these cases, the metrics using sentence
similarity do not translate into a good evaluation.

Some of these particularities raised the question of
whether the evaluation methodology is appropriate. At
one side, despite being created to evaluate MultiWOZ di-
alogues, Inform and Success are only evaluated at dialogue
level, missing some important aspects. At the other side,
BLEU, METEOR and BERTScore were not designed for
this task, but are able to be measured at the turn level.
Since they have been imported from machine translation,
the question of whether they translate into the human per-
ception of quality arises. Despite having previously been

shown to correlate with human judgement in a goal-oriented
setting, this study evaluated the quality of the translation
from dialogue acts into a proper sentence, which is more
similar to the machine translation task (Sharma et al., 2017).
As the generation process evolves from pipeline towards an
end-to-end approach, some conclusions should be revisited.

5. Human Evaluation
To determine how indicative the automatic metrics are of

the sentences’ quality, we will resort on static human eval-
uation at the turn level, followed by a correlation study be-
tween the automatic metrics and human annotations.

5.1. Evaluation Dimensions

Little has been done regarding turn level goal-oriented
dialogue evaluation, therefore common practices from
open-domain will serve as inspiration. Given the relevance
of frequently used evaluation dimensions (Finch and Choi,
2020) to the goal-oriented framework, we narrow them
down to 5 crucial fields of evaluation: Grammaticality, In-
formativeness, Relevance, Consistency and Overall Quality.

Grammaticality. It evaluates the grammar construction
of the sentence, detecting if it is free of grammatical and
semantic errors. Scored in a scale of 1–3:

1. The answer is not fluent at all, being poorly structured
and almost not understandable.

2. There are some minor flaws regarding the grammar,
but the sentence is understandable.

3. The answer is fluent and grammatically perfect, with
no flaws.
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Informativeness. It assesses whether the system’s answer
brings relevant information to the table and can be measured
considering the amount of user queries tackled by the sys-
tem. In a scale of 1–3:

1. The reply is not informative and not helpful in reaching
the conversation goal.

2. The answer is slightly informative, but one would like
to get some more information at that point. It can be
used when not all the user queries are covered.

3. The system utterance is totally informative, tackling all
the required queries.

Relevance. Aims to evaluate whether the response is ap-
propriate given the user query, using a 1–3 scale:

1. The response does not make any sense given the dia-
logue history, as it is completely out of context.

2. The answer can not be considered inappropriate, but
there were more relevant aspects to tackle or replies to
be given at that stage.

3. The system reply is the most appropriate given the user
utterance.

Consistency. It was introduced to assess any contradic-
tions within the dialogue, both with system and user utter-
ances. In a scale of 1–3:

1. The answer is not consistent with what has been said
previously, holding some sort of contradiction, with ei-
ther user or system previous utterances.

2. The history awareness is not clear, making it hard to
determine if the answer is consistent or not. It can also
be used in the cases where the system assumes to know
a certain type of information which has not been tack-
led.

3. The sentence is consistent and in accordance with the
whole dialogue history.

Overall Quality. It is a less strict dimension, aiming at
gathering a more personal opinion regarding the answer, in
a 1–5 scale. Overall Quality represents how satisfied is the
user with the response, taking into account the scores for
the other 4 metrics and giving the annotators space to dif-
ferentiate between answers.

5.2. Annotation Process

The annotation process consisted of rating 6 possible re-
sponses to the same dialogue context, as schematized in
Figure 2. The evaluation was divided in two parts: the pre-
liminary experience and the extended evaluation. The an-
notators were provided annotation guidelines.

GPT-2

Softmax

-entmax

Greedy

Nucleus

Greedy

Sampling

Dialogue 
Context

Bad Model

Softmax
Greedy Answer

Softmax
Sampling Answer

-entmax
Greedy Answer

-entmax
Sampling Answer

Bad Answer

Ground-Truth
Answer

Answer A

Answer B

Answer C

Answer D

Answer E

Answer F

Figure 2: The possible answers provided by the systems.

Preliminary Experience. 92 students from the “Natural
Language” subject at Instituto Superior Técnico evaluated
the same 6 answers for 4 dialogues, resulting in 24 anno-
tated responses. Relevance and Consistency were initially
proposed to be binary, and therefore evaluated between 0–1;
after the feedback, they evolved to a scale of 1–3.

Extended Evaluation. The group of annotators was com-
posed of 9 people, from the age of 22 to 36, 5 female and
4 male. Four of the participants had never annotated be-
fore. Each annotator scored 6 answers for 4 dialogues. As
the goal was to evaluated the maximum number of sen-
tences, each annotator had an individual set of 3 dialogues,
and a common dialogue among all, to allow measuring the
agreement, which was also present in the preliminary phase
(serving as a control variable). In this phase, 168 possible
responses were evaluated.

5.3. Results

Annotation Scores. Table 3 comprises the average scores
of the techniques at each dimension, with the best results
from the four models highlighted. The annotators preferred
the greedy techniques, in accordance with the automatic
metrics. For a more thorough evaluation of each sampling
technique, box plots are presented in Figure 3.

The greedy techniques present an overall better perfor-
mance than the sampling techniques and a very similar per-
formance between each other. However, α-entmax greedy
outperforms softmax greedy in the Informativeness dimen-
sion. Although softmax greedy presents a higher Consis-
tency average value, Figure 3b shows that α-entmax greedy
results are more concentrated in the upper part, demonstrat-
ing the influence that some outliers can have in the mean
values. Nevertheless, the span of Overall Quality is more
consistent in softmax greedy, suggesting its general better
performance.
α-entmax sampling has the longest span of values across

all the dimensions, suggesting to have the worst perfor-
mance. However, in the Informativeness dimension, it
presents a higher median value than both softmax sampling
and greedy, meaning that at least half of the responses were
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Table 3: Average scores at each evaluation domain.

Grammaticality Informativeness Relevance Consistency Overall Quality
Softmax sampling 2.8929 2.1825 2.3929 2.4286 3.6548
α-entmax sampling 2.6746 2.2421 2.2103 2.2857 3.6746
Softmax greedy 2.8571 2.3016 2.5992 2.6389 4.1270
α-entmax greedy 2.9206 2.4484 2.5119 2.5992 3.9365
Bad 2.4206 1.8095 1.7698 1.9563 2.6468
Original 2.8929 2.2738 2.5278 2.6746 4.1310

rated with the maximum score. From Figure 3d, it is possi-
ble to understand that, althoughα-entmax can produce good
results, there is lack of regularity in its performance, gen-
erating sometimes replies which are grammaticaly incor-
rect, not informative, not relevant and not consistent with
the conversation history.

Inter Annotator Agreement. Used to evaluate the relia-
bility of the human evaluation task and its reproducibility, it
shows how uniform the annotations are. To allow the mea-
surement between a group of multiple annotators, Fleiss’s
Kappa (Fleiss, 1971) is used, ranging from 0–1. Table 4
shows that, for all the dimensions, there is either fair (0.2–
0.4) or moderate agreement (0.4–0.6). The lowest values
suggest some difficulties in annotating certain dimensions.
According to Celikyilmaz et al. (2020), low agreement be-
tween annotators can also indicate that there are not signifi-
cant differences in the possible answers, which was the case
in some dialogues. From the preliminary to the extended
evaluation phase, the agreement increased in Grammatical-
ity, Consistency and Overall Quality, while it decreased in
Informativeness and Relevance. This drop would be ex-
pected in the Relevance and Consistency dimensions, as the
scale span was enlarged. In what comes to Informativeness,
a possible explanation can be the difficulty to score it in di-
alogues where there are no specific queries to fill, making it
more ambiguous.

Table 4: Fleiss Kappa for the two experiences.

Preliminary
4 dialogues

Preliminary
common dialogue

Extended
common dialogue

Grammaticality 0.2517 0.1565 0.2969
Informativeness 0.3221 0.3261 0.2901
Relevance 0.5205 0.5421 0.4904
Consistency 0.4305 0.4633 0.5857
Overall Quality 0.2225 0.2572 0.2945

Correlation with Automatic Metrics. The calculated
correlation coefficients are the Pearson, measuring the lin-
ear relationship, and the Spearman, determining how well
the two variables correlate through a monotonic function.
The values can range between -1.0 and 1.0, with 0.0 mean-

ing no correlation. The values for segment and system cor-
relation can be found in Tables 5 and 6.

At the segment level, the highest correlation value is be-
tween Overall Quality and BLEU, with a still low Spearman
of 0.3309. BERTScore and METEOR also present the high-
est correlation values for Overall Quality, which is a good
indicator regarding their fidelity. Contrary to what would be
expected, all metrics correlate poorly with Grammaticality,
suggesting a low understanding of language nuances. For a
certain dimension, the correlation with different metrics are
relatively close to each other, proposing agreement among
the three metrics.

At system level, the correlation values are significantly
higher. The Spearman values are basically the same for all
the metrics, confirming that the three metrics are able to ex-
tract very similar information, despite being calculated in
different manners. We can infer that no metric is superior
to one other in terms of correlation with human judgement.
Taking BERTScore as an example, although it is calculated
using contextual embeddings and therefore able to under-
stand some context, its behaviour is identical to BLEU,
which simply resorts on similarity between word embed-
dings. This suggests that the sentence alone is not enough to
grasp the whole meaning behind a reply in a goal-oriented
dialogue. There is a contrast between Pearson and Spear-
man values for correlation, with the latter holding much
higher results. It indicates that, for close values of auto-
matic metric scores, the slight difference between them is
not enough to choose between the systems. The high corre-
lation with Relevance, Consistency and Overall Quality in-
dicate that the three automatic metrics can be useful to com-
pare the performance of different systems, despite being
less informative when evaluating a sentence alone. How-
ever, it was not expected that the highest correlation values
are for Consistency, as this domain is probably the one with
least information present in each sentence. It can indicate
that these correlation values have low fundament, represent-
ing a coincidence of high and low scores, and can be not be
considered representative. Many authors report how diffi-
cult it is to show correlation between human annotations
and automatic metrics, such as in Mathur et al. (2020).

In Figure 4, it is possible to see the correlation between
Overall Quality and the metrics, at the system level. It con-
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(b) α-entmax greedy.
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(d) α-entmax sampling.

Figure 3: Box plot of the annotation results.

Table 5: Correlation at the segment level.

BLEU BERTScore METEOR

Pearson Spearman Pearson Spearman Pearson Spearman

Grammaticality 0.1257 0.1757 0.1575 0.1615 0.1201 0.1182
Informativeness 0.0917 0.1798 0.0941 0.1333 0.0530 0.0766

Relevance 0.1673 0.2423 0.2173 0.2258 0.1789 0.2185
Consistency 0.2107 0.3076 0.2514 0.2560 0.2046 0.2512

Overall Quality 0.2360 0.3309 0.2975 0.2805 0.2341 0.2679

Table 6: Correlation at the system level.

BLEU BERTScore METEOR

Pearson Spearman Pearson Spearman Pearson Spearman

Grammaticality 0.3535 0.5508 0.4367 0.5508 0.1201 0.1182
Informativeness 0.1962 0.4857 0.2567 0.4857 0.2081 0.4857

Relevance 0.3765 0.8857 0.4593 0.8857 0.4149 0.8857
Consistency 0.5002 0.9429 0.5747 0.9429 0.5348 0.9429

Overall Quality 0.4497 0.8286 0.5177 0.8286 0.4792 0.8286
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Figure 4: Plot of automatic metrics vs Overall Quality at the system level.

firms that there is slight correlation between scores among
the generation techniques. Both the metrics and human
judgement find in greedy sampling from softmax the high-
est generation quality, closely followed by greedy sampling
from α-entmax. Nevertheless, automatic metrics can lead
one into poor conclusions, which is the case of sampling
from softmax: although humans find it the worst quality
technique, automatic metrics rate it as the second best one.
Besides, despite their close scores in Overall Quality, soft-
max sampling and α-entmax sampling have distinct au-
tomatic metrics values, confirming the possibility of high
quality answers with less overlap.

To conclude, metrics such as BLEU, BERTScore and
METEOR can give useful information in the comparison
between different systems. In the context of answer genera-
tion in goal-oriented dialogues, these metrics are able to ex-
tract similar features, being in concordance with each other.
However, as these metrics rely on the comparison with a
database reference, they never recognize a better sentence
than the original and techniques with more word diversity
are naturally damaged. The lack of history context aware-
ness leads these metrics into the inability of grasping certain
language nuances.

6. Conclusions

In this work, we studied how different techniques can in-
fluence the quality of a generated automatic reply, in a goal-
oriented setting. The main achievements lie in the applica-
tion of sparse attention mechanisms to automatic response
generation in the goal-oriented setting, making use of α-
entmax. Although stochastic strategies were found to have
their positive attributes, we conclude that, in goal-oriented
dialogue generation, the prime systems rely on greedy tech-
niques, using either the standard softmax or the proposed
α-entmax. Moreover, we concluded that goal-oriented re-
sponse generation benefits from having a more informative
context, as it significantly improves the dialogue awareness.

The thorough analysis of the systems’ behaviour led to re-
alizing that many aspects are not grasped by the chosen au-
tomatic evaluation metrics, motivating a further analysis.

Futhermore, we successfully conducted a study to find
correlations between the adopted automatic metrics and hu-
man perception of quality. A set of evaluation dimensions
was developed, supported by some illustrative guidelines,
allowing the collection of a significant amount of reliable
human annotations. After a probabilistic analysis, we found
that BLEU, METEOR and BERTScore substantially corre-
late with human judgement, being useful to roughly com-
pare the performance of different systems. Nonetheless,
these metrics are inappropriate to understand nuances in
cases where the systems show a similar performance, mak-
ing it essential to resort on human evaluation for a more
detailed comparison.
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