
Goal-Oriented Dialogue with Sparse Language Models

Rita Fernandes Leite dos Santos Costa

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Prof. André Filipe Torres Martins
Prof. Maria Luísa Torres Ribeiro Marques da Silva Coheur

Examination Committee

Chairperson: Prof. José Fernando Alves da Silva
Supervisor: Prof. André Filipe Torres Martins

Member of the Committee: Prof. Alberto Abad Gareta

January 2021

ii

In memory of Jorge.

iii

iv

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

v

vi

Acknowledgments

First and foremost, I would like to express my deepest appreciation to my supervisors, Prof. André

Martins and Prof. Luı́sa Coheur, for all the support, guidance and inspiration, which were crucial for the

development of this project.

I wish to thank the Unbabel research team for the prompt availability and shared knowledge. I am

particularly grateful for the assistance given by Ricardo Rei, whose involvement and advice were very

important to complete this work.

A word of thanks to all the annotators for the essential contribution to this study.

I would also like to acknowledge those who have accompanied me along this path. A special thanks

to my close university friends, for teaching, inspiring me and growing with me throughout these years. To

BEST Lisbon, for the unique opportunities and developed bonds. To my India peers, with whom I shared

the most overwhelming experience of my life. To those who lived with me, for being a family away from

home. And to my friends from Braga, for always being by my side.

Finally, and most importantly, I would like to express my deepest gratitude to my family, and particu-

larly to my parents, for all the lessons taught, doors opened and unconditional love and support.

vii

viii

Resumo

Sistemas de diálogo orientados a um objetivo têm o propósito de fornecer uma resposta automática em

conversas com uma finalidade especı́fica. Dados recentes avanços em arquiteturas de Aprendizagem

Profunda, abordagens mais flexı́veis têm aparecido, com a possibilidade de aplicar conhecimento pré-

existente de modelos treinados de uma forma auto-supervisionada a sistemas de diálogo. Contudo, a

necessidade de adaptar a resposta original a cada contexto torna a tarefa de a gerar particularmente

desafiante. Diferentes estratégias para formar uma resposta têm sido propostas, com o intuito de tornar

o texto gerado mais fluente, coerente, e relevante. O objetivo deste estudo consiste em experimentar a

utilização de técnicas de geração esparsas neste contexto, recorrendo à amostragem da transformação

α-entmax. Esta técnica será comparada com outras abordagens do estado da arte, como busca ganan-

ciosa e amostragem de núcleo, avaliando com detalhe os diferentes sistemas originados.

Por outro lado, à medida que as abordagens modulares são substituı́das por arquiteturas ponta-a-

ponta, torna-se mais difı́cil avaliar estes sistemas de diálogo. Vários trabalhos recorrem a métodos de

avaliação caraterı́sticos de outras tarefas, nomeadamente tradução automática, levantando dúvidas

sobre a sua relevância para avaliar diálogo. Para as esclarecermos, conduzimos uma recolha de

anotações humanas sobre o desempenho de vários sistemas, com o objetivo de determinar a correlação

entre estas métricas automáticas e a perceção humana de qualidade. O método de avaliação é uma

parte importante da análise de desempenho, já que uma escolha inapropriada deste poderá levar a

conclusões erradas.

Palavras-chave: sistemas de diálogo orientados a objetivo, amostragem α-entmax, métricas

automáticas, avaliação humana

ix

x

Abstract

The purpose of goal-oriented dialogue systems is to provide automatic responses in a conversation

with a specific goal. Given recent advances in Deep Learning, this task is now more flexible, as pre-

existing knowledge from models trained with self-supervised learning can be transferred to conversation

systems. However, the need to adapt the original answer to the dialogue context makes the task of

generating it particularly challenging. Different strategies to decode a sentence have been proposed,

aiming at making the generated text more fluent, coherent, and relevant. The goal of this study is to

experiment sparse generation techniques in this framework, which sample from the recently proposed

α-entmax transformation. We compare this technique with other state-of-the-art approaches, such as

greedy search and nucleus sampling, by thoroughly assessing the different systems.

Moreover, as the modularized approach is replaced by end-to-end architectures, goal-oriented sys-

tems become more difficult to be evaluated. Many works resort to evaluation methods imported from

other tasks, namely machine translation, raising the question of whether they are suitable for evaluating

dialogue. To address this problem, we conduct a study to determine the correlation between these au-

tomatic metrics and human perception of quality. The evaluation procedure is an important part of the

performance analysis, since choosing an inappropriate method can lead to the wrong conclusions.

Keywords: goal-oriented dialogue systems, α-entmax sampling, automatic metrics, human

evaluation

xi

xii

Contents

Acknowledgments . vii

Resumo . ix

Abstract . xi

List of Tables . xvii

List of Figures . xix

List of Acronyms . xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Main Contributions . 3

1.4 Thesis Outline . 4

2 Background 5

2.1 From the Multi-Layer Perceptron to the Transformer . 5

2.1.1 Multi-Layer Perceptron . 6

2.1.2 Sequence-to-Sequence Learning . 7

2.1.3 Attention . 8

2.1.4 Transformer . 9

2.2 α-entmax Transformation . 11

2.3 Text Representation . 12

2.3.1 Sparse Representations . 12

2.3.2 Dense Representations . 12

2.4 Transfer Learning . 13

2.5 Conversational AI Systems . 14

2.5.1 Goal-Oriented Systems . 14

2.5.2 Answer Generation . 16

3 Neural Dialogue Language Model 17

3.1 Relevant Architectures . 17

3.1.1 TransferTransfo . 17

3.1.2 GPT-2 . 18

xiii

3.1.3 Hello It’s GPT-2 — How Are You? . 19

3.2 MultiWOZ Dataset . 20

3.2.1 Corpora Specifications . 20

3.2.2 Preprocessing MultiWOZ . 22

3.3 Implementation . 23

3.3.1 Language Model Input . 24

3.3.2 Softmax vs α-entmax . 25

3.4 Decoding Strategies . 26

3.4.1 Greedy Search . 26

3.4.2 Sampling . 27

3.4.3 Top-k Sampling . 27

3.4.4 Nucleus Sampling . 27

3.4.5 α-entmax Sampling . 27

3.5 Performance Evaluation . 28

3.5.1 ε-perplexity . 28

3.5.2 Sparsemax Score . 28

3.5.3 Inform Rate . 29

3.5.4 Success Rate . 29

3.5.5 BLEU . 29

3.5.6 METEOR . 29

3.5.7 BERTScore . 29

4 Experiments 31

4.1 Hyperparameter Tuning . 31

4.1.1 Softmax . 32

4.1.2 α-entmax . 33

4.2 Results . 35

4.2.1 Recent versions of MultiWOZ . 35

4.2.2 Context Importance . 36

4.3 Discussion . 36

5 Human Evaluation 43

5.1 Evaluation Dimensions . 43

5.1.1 Human Metrics from Literature . 43

5.1.2 Proposed Evaluation Dimensions . 44

5.2 Annotation Process . 45

5.2.1 Preliminary Experience . 46

5.2.2 Extended Evaluation . 47

5.3 Results . 47

5.3.1 Annotations Scores . 47

xiv

5.3.2 Inter Annotator Agreement . 48

5.3.3 Correlation with Automatic Metrics . 49

6 Conclusions 53

6.1 Achievements . 53

6.2 Future Work . 54

Bibliography 55

A Annotation Guidelines 61

xv

xvi

List of Tables

4.1 Grid search over η and LMcoef for sampling. 32

4.2 Grid search over η and LMcoef for greedy search. 32

4.3 Grid search over k for top-k sampling. 33

4.4 Grid search over p and temp for nucleus-sampling. 33

4.5 Grid search over η and LMcoef for 1.5-entmax sampling. 34

4.6 Grid search over α for α-entmax sampling. 34

4.7 Grid search over α for greedy search from α-entmax. 34

4.8 Different models performance for MultiWOZ 2.0. 35

4.9 Different models performance for MultiWOZ 2.1. 35

4.10 Different models performance for MultiWOZ 2.2. 36

4.11 Nucleus sampling performance for different types of context. 36

5.1 Average Scores. 47

5.2 Fleiss Kappa for the two experiences. 49

5.3 Correlation at the segment level. 50

5.4 Correlation at the system level. 50

xvii

xviii

List of Figures

1.1 The composition of a pipeline system. Image source: Zhang et al. (2020b) 2

2.1 Transformer Schemes. Image source: Vaswani et al. (2017) 10

2.2 Illustration of α-entmax in 2 dimensions. Image source: Peters et al. (2019) 12

3.1 Double Heads Model. Image source: How to Build a State-of-the-Art Conversational AI

with Transfer Learning, last accessed on 26-12-2020. 18

3.2 GPT-2 input for the fine-tuning phase. Image source: Budzianowski and Vulić (2019) . . . 20

3.3 Ontology for all domains in MultiWOZ. Image source: Budzianowski et al. (2018) 21

3.4 Language Model input. 24

3.5 Language Model labels. 25

3.6 Simplified model — how to decode the next token. 26

4.1 Example demonstrating the belief state importance. 37

4.2 Example demonstrating the database state importance. 37

4.3 Example of degenerate text. 38

4.4 Example of inadequate slot generation. 39

4.5 Example of booking without enough information. 39

4.6 Example of insisting instead of suggesting: type of food. 40

4.7 Example of low understanding of the user utterance: wi-fi query. 40

4.8 Example of low understanding of the user utterance: taxi query. 40

4.9 Example of system outperforming dataset reference. 41

5.1 The possible answers provided by different systems. 45

5.2 Annotation interface. 46

5.3 Box plot of the annotation results. 48

5.4 Plot of automatic metrics vs Overall Quality at the system level. 51

xix

https://medium.com/huggingface/how-to-build-a-state-of-the-art-conversational-ai-with-transfer-learning-2d818ac26313
https://medium.com/huggingface/how-to-build-a-state-of-the-art-conversational-ai-with-transfer-learning-2d818ac26313

xx

List of Acronyms

AI Artificial Intelligence.

BERT Bidirectional Encoder Representations from Transformers.

BLEU Bilingual Evaluation Understudy.

BPE Byte-Pair Encoding.

DL Deep Learning.

DST Dialogue State Tracker.

FFNN Feed-Forward Neural Network.

GPT Generative Pre-trained Transformer.

GPT-2 Generative Pre-trained Transformer 2.

IAA Inter Annotator Agreement.

LSTM Long Short-Term Memory.

METEOR Metric for Evaluation of Translation with Explicit Ordering.

ML Machine Learning.

MLP Multi-Layer Perceptron.

MultiWOZ Multi-Domain Wizard-of-Oz.

NLG Natural Language Generation.

NLP Natural Language Processing.

NLU Natural Language Understanding.

NN Neural Network.

RNN Recurrent Neural Network.

Seq2Seq Sequence-to-Sequence.

xxi

xxii

Chapter 1

Introduction

The evolution of technology has allowed the automation of several processes across diversified engi-

neering industry fields. Namely, customer support services have drastically evolved with the relative

recent advances in Machine Learning (ML). One of the biggest goals of Natural Language Processing

(NLP) is to develop a conversational Artificial Intelligence (AI) system which can interact with humans in

goal-oriented dialogue tasks.

The study of goal-oriented dialogue systems can be particularly relevant to Aerospace Engineering

in two main frontiers. The most self-evident is the direct application of these systems in the aviation

business, where conversational AI leads to an improvement of customer support platforms, conse-

quently enhancing the client experience.1 Besides, recent studies support the introduction of speech

dialogue systems in manufacturing processes. An efficient human-robot communication can reform the

aerospace industry, not only enhancing their alone performance through cooperation between the two

parts, but also supporting decision making with information-rich systems (Gaizauskas et al., 2018).

1.1 Motivation

Goal-oriented dialogue systems are developed to serve a purpose in a conversation. Historically, these

systems were a complex and highly hand-crafted pipeline, consisting of different and individually opti-

mized components (Figure 1.1).

The evolution of Deep Learning (DL) and consequent advances in language modelling allow for the

development of neural approaches in answer generation, which typically rely on Sequence-to-Sequence

architectures (Sutskever et al., 2014; Wen et al., 2015). The traditional modular approach is replaced by

the joint optimization of multiple components, originating less complex systems with a stiffer architecture,

learnable in an end-to-end manner (Wen et al., 2017). Rather than a rule-based translation of system’s

instructions into natural language utterances, finding the most adequate answer in a conversation is

now a more flexible process, which results in better answers, but also opens the door to less predictable

system behaviours.

1As an example, we have the work done by the company Unbabel: https://unbabel.com/customer-service/travel/, last
accessed on 14-12-2020.

1

https://unbabel.com/customer-service/travel/

Figure 1.1: The composition of a pipeline system. Image source: Zhang et al. (2020b)

Research on answer generation can be categorized in two different approaches: retrieval and gen-

erative based methods. The latter are more flexible and better aligned with the goal of providing a

response that is the closest to human behaviour, in the sense that they allow to adapt to a new context

and generate an original possible answer, rather than selecting from a finite set of existing possibilities.

These methods are naturally more complex, as systems are required to learn grammar, syntax, dialogue

management and language generation at the same time (Celikyilmaz et al., 2020). Recent advances in

large-scaled pre-trained Language Models, such as Bidirectional Encoder Representations from Trans-

formers (BERT) (Devlin et al., 2019) and Generative Pre-trained Transformer 2 (GPT-2) (Radford et al.,

2019), have paved the way for higher quality generation, as pre-existing language knowledge can be

fine-tuned for a specific task. Namely, Wolf et al. (2019) and Golovanov et al. (2019) have shown the

applicability of these models to conversational systems, with Budzianowski and Vulić (2019) introducing

them to the goal-oriented framework.

Nonetheless, mimicking the human way of constructing a sentence is a challenging task and the

chosen method can have great influence on the final result. The fact that the most suitable sentence

is not always the combination of the highest probability words has led to investigating options besides

greedy search, namely top-k sampling (Fan et al., 2018) and nucleus sampling (Holtzman et al., 2020).

This thesis adds to the study of end-to-end generative conversation systems, by leveraging α-entmax

transformations to decoding a sentence in a Language Model (Peters et al., 2019; Martins et al., 2020),

in the goal-oriented setting. We compare this approach with state-of-the-art generation techniques and

evaluate how different strategies influence the quality of the generated answer, using both automatic and

human metrics.

Furthermore, as important as developing a system that resembles a human is the ability to cor-

rectly evaluate its performance. End-to-end goal-oriented dialogue generation demands a change in

this paradigm, as the traditional rule-based methods measuring how well the system fulfills the required

slots are less appropriate (Deriu et al., 2020). Given the scarcity of automatic evaluation methods for

dialogue systems, many works have started reporting metrics created for different purposes, namely

machine translation. By measuring the similarity between a generated sentence and its gold reference,

BLEU (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005) and BERTScore (Zhang et al.,

2020a) are applicable to different NLP tasks. Along with the increased usage of these metrics comes

the inquiry of whether they are accurate indicators of quality in dialogue systems. To answer this ques-

2

tion, we will exploit the most reliable tool to judge if a system is faithfully imitating the behaviour of a

human — human judgement itself.

1.2 Objectives

The objectives of this work lie in the study of several aspects of end-to-end task oriented dialogue

generation, whose development has opened up new challenges.

First and foremost, given the reported good performance of α-entmax sampling in the open-domain

setting, we propose to introduce this technique to the goal-oriented framework, aiming at decreasing

the stochasticity of the generation process, while maintaining the quality. To do so, we recreate the

architecture of a state-of-the-art dialogue generation end-to-end system and compare our approach with

the originally documented results. Besides, we intend to analyze some points which were not explored

in the pioneer work, such as the importance of the format of the context in the developed system.

Alongside with the comparison of these dialogue systems, comes the question of how representative

are the adopted metrics of the human perception of quality. To answer it, we propose to collect hu-

man annotations for the several developed dialogue systems, with the goal of defining a correlation with

the scores for those metrics. However, in goal-oriented dialogue generation, most existing annotation

approaches resort on an interactive evaluation, rating the systems’ performance at the end of the con-

versation or measuring its length, which is supposed to be a good indicator of the system’s efficiency.

This strategy can not be applied to our systems, as they are not able to perform in an interactive way —

they appear from the idea of AI helping humans to successfully complete their tasks, in a more efficient

manner, rather than replacing them. Therefore, we need to collect annotations at the turn-level. As these

criteria is poorly defined in similar works, we develop our own annotation strategy, which will allow us to

draw the intended conclusions.

1.3 Main Contributions

To achieve the proposed objectives, the main contributions of this work lie in the following:

1. Experimenting alternative sparse transformations in goal-oriented dialogue, using both greedy and

sampling methods. We recreate a previously developed Neural Dialogue Language Model, adapt-

ing it to our goals.

2. A rigorous comparison between different state-of-the-art decoding methods for dialogue genera-

tion, using several automatic evaluation metrics. These are complemented with a considerable

amount of examples, allowing to understand some positive and negative aspects of each tech-

nique. We observe that response generation in the goal-oriented setting benefits more from de-

terministic techniques, which can be justified by the nature of these systems, whose restriction to

certain domains and topics results in a lower spectrum of possible answers to a given context.

3

3. An evaluation of other aspects of the proposed architecture, such as the context importance in end-

to-end conversational Natural Language Generation. We compare systems with different types of

context, with both automatic metrics and practical examples, confirming the usefulness of having

key information in the context. However, the mismatch between some metrics results and observed

examples also motivate the investigation of the used metrics significance.

4. An original suggested set of evaluation dimensions which are considered relevant to properly eval-

uate the dialogue generation problem, in the goal-oriented framework.

5. An empiric human evaluation with several annotators, to collect impressions regarding the devel-

oped systems, followed by an analysis of the possible correlation between automatic metrics and

human perception of quality. We conclude on the adequateness of these metrics for the task,

which can be used in system comparison, but are not able to grasp certain nuances of response

generation.

1.4 Thesis Outline

In Chapter 2, some ML background is reviewed, serving as foundation for this work development. We

then connect it to NLP applications, followed by an overview of answer generation in goal-oriented

dialogue. Finally, an introduction to sparse transformations is provided, with particular focus on α-

entmax.

In Chapter 3, we start by introducing state-of-the-art Language Models for dialogue, followed by

some corpora details. The adopted Neural Dialogue Language Model is then presented, with a thorough

description of the systems’ implementation. We focus on describing the several decoding strategies to

be analyzed, as well as the chosen automatic evaluation metrics.

Chapter 4 consists of a presentation of the experimental results, with a detailed comparison of the

different systems’ performance. Besides the metrics’ scores, several practical examples are displayed,

motivating further analysis of the chosen evaluation methods.

In Chapter 5, we conduct a human evaluation experience, concluding on the correlation between the

automatic metrics and human judgements, regarding several aspects of dialogue construction.

Finally, Chapter 6 holds the main findings of this study and proposes some directions for future work.

4

Chapter 2

Background

In this chapter, the necessary theoretical concepts to understand this work are presented. In Section

2.1, an overview of the most relevant Deep Learning architectures is provided, from the Multi-Layer

Perceptron (MLP) to the Transformer, which will be used in this work. Following this, α-entmax trans-

formation is presented in Section 2.2, linked to some of the main innovations in this study. Section 2.3

covers how text is represented and explains how to apply the presented architectures to the NLP field.

In Section 2.4, the concept of Transfer Learning is introduced, as it will be used for this work model’s

implementation (Chapter 3). Finally, a review of dialogue systems is made in Section 2.5, relating the

previous sections to the task of Dialogue Generation, and presenting the problem setting.

2.1 From the Multi-Layer Perceptron to the Transformer

Machine Learning (ML) is the ability of AI Systems to acquire knowledge by extracting patterns from

data — training set — which can be used to make predictions on unseen data — test set. The most

widely-used ML methods are supervised learning methods, which approximate a function f(x), in order

to learn to map a variable x ∈ X into y ∈ Y. Depending on how we process x, we can describe several

different ML tasks, such as Classification problems, where the model assigns an input x to a category

identified by the numeric code y; and Regression problems, where the model should predict a numerical

value given an input, being Y composed of continuous variables of real values (Goodfellow et al., 2016).

To evaluate the candidate solution, we need to choose an objective function, which we seek to mini-

mize or maximize, depending on the context. When we are minimizing it, we may call it cost function, or

loss function. In most cases, our model defines a distribution p(y|x; θ) and we simply use the principle

of maximum likelihood, minimizing the negative log-likelihood − log p(y|x; θ), equivalently described as

the cross-entropy between the training data and the model’s predictions, and use this as the loss func-

tion. As an example, we have a simple type of prediction algorithms, the Linear Regression Models,

which estimate y by defining f(x) as a linear combination of the observed variables:

f(x) = wTx+ b, (2.1)

5

where w is a set of weights determining how each input feature xi affects the prediction, and b is the

intercept term, also called bias. To goal is to estimate the unknown parameters θ = (w, b) in order to

minimize the cross-entropy loss.

The evolution of ML paved the way for other linear models, including Naive Bayes Classifiers and

Support Vector Machines (SVMs), which are able to solve linearly separable problems. One important

innovation lied in extending linear models to represent non-linear functions of x, by applying a linear

algorithm to the transformer input φ(x), where φ is a non-linear function of x, commonly referred to as

feature.

As advances were made in ML fields, non-linear methods were developed, such as Decision Trees,

Random Forests, and Neural Networks (NNs). The latter have been showing impressive performance in

diverse applications, leading to the development of increasingly more complex architectures. In the next

sections, an overview of NN architectures will be performed, starting with the simplest single neuron

and culminating in the transformer architectures, which have been scoring remarkable results in many

NLP fields, such as Machine Translation, Text Summarization and Question-Answering (Radford and

Salimans, 2018; Radford et al., 2019).

2.1.1 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP), also called Feed-Forward Neural Network (FFNN), is inspired by the

behaviour of a biological neuron, specially the human ability of making associations. The goal is to learn

y through a new representation of x, that is, modelling:

y = f(x; θ, w) = φ(x; θ)Tw. (2.2)

This is an example of a NN, with φ(x) defining a hidden layer. FFNNs are called networks because they

are typically composed of a chain of many different functions, or many layers of functions, to capture

the non-linear patterns in the data. The learning algorithm must decide how to use these layers to

produce the desired output. The length of the chain gives the depth of the model, hence the name Deep

Learning. Each layer of a FFNN is a function of the one preceeding it, as shown bellow, where the first

layer is given by Equation 2.3 and the second one is given by Equation 2.4.

h(1) = g(1)(w(1)Tx+ b(1)), (2.3)

h(2) = g(2)(w(2)Th(1) + b(2)). (2.4)

Assuming L ≥ 1 layers, FFNNs can, in theory, approximate any function we want, by learning the optimal

parameters θ = {(w(l), b(l))}L+1
l=1 from a set of training data (Hornik et al., 1989).

The total cost function used to train a NN often combines the loss function L(f(xi; θ), yi) with a

regularizer term λΩ(θ), which refers to the way the weights are penalized to avoid over-fitting, where

6

Ω(θ) is a regularizer, for example the l2 norm Ω(θ) = ||θ||2, and λ is the regularization constant:

L(θ) = λΩ(θ) +
1

N

N∑
i=1

L(f(xi; θ), yi). (2.5)

To minimize the loss, we need to calculate its gradient:

∇θL(θ) =
1

N

N∑
i=1

∇θLi(θ), (2.6)

which is is usually done using the Gradient Backpropagation Algorithm, where the derivatives are

calculated according to the chain rule. The values of θ are randomly initialized and then updated using

the Stochastic Gradient Descent algorithm, slowly adapting the weights of the links to minimize the

loss function, by sampling a single training example:

θ ← θ − η∇θLj(θ). (2.7)

To make the process more efficient, it is common to use the Mini-Batch Gradient Descent algorithm,

which estimates the gradient in mini-batches j1, ..., jB , with B << N , only updating the weights when all

the examples in the mini-batch have been seen:

θ ← θ − η 1

B

B∑
i=1

∇θLji(θ). (2.8)

One crucial part of projecting a FFNN is the choice for loss function, directly related to the output

unit of the network, which transforms the hidden features in the final output. The type of output unit will

depend on the nature of the problem: in a regression problem, the output layer is a node with a linear

activation unit; in a classification problem, the output unit is usually the sigmoid activation, for binary

classification, or the softmax activation, for multi-class classification (Goodfellow et al., 2016).

2.1.2 Sequence-to-Sequence Learning

FFNNs have accomplished outstanding performance in multiple learning tasks with large labelled datasets.

However, despite their power and flexibility, FFNNs can only be applied to problems where both inputs

and outputs have a fixed size. This is a critical limitation, since many problems require an unknown a

priori length to represent the sequences, specially in NLP applications.

To represent an arbitrary long sequence of inputs, a more suitable architecture is the Recurrent

Neural Network (RNN) (Elman, 1990), which is applicable to sequence prediction problems. In RNNs,

the outputs are also influenced by hidden states representing context based on prior inputs, allowing

to share knowledge between networks. One of the possible usage of RNNs is Language Modelling.

Defining a sentence as a sequence of words w = (w1, ..., wT), a Language Model (Bengio et al., 2003)

is able to look at a part of a sentence and predict the next word, calculating the probability of a word

7

given the previous ones:

pθ(w) =

T∏
t=1

pθ(wt|w1, ..., wt−1). (2.9)

Given a set S of training sentences, the strategy to learn the language modelling parameters θ is to

minimize the cross-entropy, or the negative log-likelihood:

L(θ) =

|S|∑
i=1

T∑
t=1

log pθ(wt|w<t), (2.10)

which is equivalent to minimize the perplexity 2L(θ). Training RNNs is done by backpropagation through

time, which means that long-term information has to travel through all cells before getting to the present

processing cell. This information can be easily corrupted if multiplied many times for small values — the

vanishing gradient problem (Pascanu et al., 2013) — meaning, in practice, that long-term dependencies

are difficult to learn. Some innovations appeared to solve this problem, such as the Long Short-Term

Memory (LSTM) (Hochreiter and Schmidhuber, 1997), where memory cells are used to decide what to

keep and what to erase from memory, and the Gated Recurrent Unit (Cho et al., 2014), which creates

shortcut connections between nodes. These architectures allowed for improvements in different NLP

fields, such as Speech Recognition (Graves et al., 2013) and Machine Translation (Sutskever et al.,

2014).

Statistical Machine Translation evolved to Neural Machine Translation, with the popularity of Sequence-

to-Sequence (Seq2Seq) Models, which typically have an Encoder-Decoder architecture. The Encoder

RNN processes the input information x = (x1, ..., xT) into a context vector c = q(h1, ...hT), where the

hidden state at time t is ht = f(xt, ht−1), with f and q being some nonlinear functions. The Decoder is

trained to predict the word wt, given not only the previously generated words w1, ..., wt−1 (which is the

case of Equation 2.9), but also a context c:

pθ(w) =

T∏
t=1

pθ(wt|{w1, ..., wt−1}, c). (2.11)

This is the concept of Conditional Language Modelling, which can be applied to several tasks, de-

pending on the nature of the input x: Machine Translation, if x is a sentence in a foreign language,

Summarization, if it is a document, or Dialogue Systems, with x being a conversation history. With a

RNN,

pθ(wt|{w1, ..., wt−1}, c) = g(wt−1, st, c), (2.12)

where g is a non-linear function, giving a probability conditioned on the hidden state st of the RNN.

2.1.3 Attention

The fixed-size vector state is a bottleneck in the variant of Seq2Seq models described above, as it is

challenging to deal with long sentences. One alternative is to encode the input as a matrix, with each

column representing a different input part. An attention mechanism is then used, to focus on specific

8

parts of the input when decoding (Bahdanau et al., 2015). Attention allows to focus on any position in the

source sentence, helping with both the bottleneck and vanishing gradients problems, and also providing

some interpretability to the models. The probability is now conditioned on a different context vector ci for

each target word yi, instead of the original single c. Each context vector ci is computed as a weighted

sum of the annotations (h1, ..., hT) — the encoder hidden states:

ci =

T∑
j=1

αijhj , (2.13)

where αij gives the importance of the annotation hj related to the previous hidden state si−1 in deciding

the next state si and generating the next word wi. Each attention score αij is traditionally calculated

using the softmax function:

αij = softmax(e) =
exp(eij)∑T
k=1 exp(eik)

, (2.14)

where the alignment model eij = a(si−1, hj) quantifies how well the inputs around position j and the

output at position i match.

In some applications, one drawback of the softmax distribution is that the computed weights are

scattered along the whole sequence. To be able to have a more selective attention focus, Martins

and Astudillo (2016) introduced the sparsemax attention, which is able to return sparse distributions,

assigning zero probability to some of the output variables.

2.1.4 Transformer

Attention allows to focus on arbitrary input positions, shortcutting the computation graphs and leading to

an encoder-decoder architecture proposition which does not need RNNs — the Transformer (Vaswani

et al., 2017). It instead relies exclusively on self-attention mechanisms to build dependencies between

inputs and outputs.

The transformer architecture uses Scaled Dot-Product Atention to calculate self-attention. Firstly, we

create 3 vectors per input vector: query and key, both of dimension dk and value, of dimension dv.

The output is computed as a weighted sum of the values, where the weight assigned to each value is

the self-attention score, determining how much focus should be given to each part of the sentence as

we encode a certain word. The score is then normalized, being divided by
√
dk and applyed a softmax

function. This process is schematized in Figure 2.1b. In practice, attention is calculated on a set of

queries simultaneously, packed in a matrix Q, with keys and values also packed in matrices K and V,

respectively:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (2.15)

To increase the model’s performance, the authors introduce multiple (h) attention heads, instead of

performing a single attention function. Multi-Head Attention allows the model to attend to information

from different representation subspaces at different positions, as the input embeddings are projected in

h sets of query/key/value (Figure 2.1c).

9

(a) Transformer Architecture.

(b) Scaled Dot-
Product Attention.

(c) Multi-Head Attention.

Figure 2.1: Transformer Schemes. Image source: Vaswani et al. (2017)

The transformer uses learned embeddings (Section 2.3) to convert the input tokens and output to-

kens into vectors of dimension dmodel. To introduce knowledge about the position of the tokens in the

input sequence, positional encodings are added to the input embeddings.

Multi-Head Attention is used both in the encoder and the decoder (left and right parts of Figure 2.1a,

respectively). The encoder is composed by a stack of N=6 layers, each of them consisting of 2 sublayers:

a multi-head attention mechanism followed by a FFNN. The decoder is also composed by a stack of N=6

layers, with 3 sublayers each: the first is a multi-head attention layer, where future positions are masked,

to only attend at previous embeddings on the output sequence; the second sublayer is a multi-head

attention mechanism over the output of the encoder, transformed in a set of attention vectors K and V;

the last sublayer is a FFNN, similar to the encoder’s.

Finally, the output vector of the decoder is fed into a linear layer, a NN which projects the output into

a score vector over the words in the vocabulary. The output of the NN is a softmax layer, which turns

these scores into probabilities, all positive and added up to 1. The next word to be chosen will then

depend on the decoding strategy (Section 3.4).

10

2.2 α-entmax Transformation

The final step of the decoding consists of taking the scores produced in the last linear layer into a softmax

function (Equation 2.15), to turn them into a probability distribution. Softmax is a dense distribution,

which means that a mass probability is always assigned to all the words, even if it is very small. When

sampling directly from it, the system can generate unnatural text, due to the unreliability of the tail of this

distribution. Some techniques arose from this problem, such as nucleus and top-k sampling, which will

be presented in Section 3.4.

However, these sampling techniques are only applied at decoding time, while at training time they are

still optimized with the original softmax distribution, naturally creating a mismatch between the training

and testing process. In this work, experiments will be performed sampling from the recently proposed

α-entmax transformation (Peters et al., 2019), which automatically produces sparse probability distri-

butions, avoiding the mismatch created between training and testing. The α-entmax transformation is

defined as:

α -entmax(zt) = argmax
p∈∆d

pT zt +Hα(p), (2.16)

where zt are the scores produced by the model, ∆d = {p ∈ Rd|
∑d
i=1 pi = 1, p ≥ 0} is the probability

simplex, and Hα is the Tsallis α-entropy:

Hα =

1

α(α−1)

∑
j(pj − pαj) α 6= 1

−
∑
j pj log pj α = 1

(2.17)

The negative log-likelihood loss in Equation 2.10 is replaced by:

L(θ) =

|S|∑
i=1

T∑
t=1

lα(zt(θ, w<t), wt), (2.18)

where lα(zt, wt) is the proposed α-entmax loss:

lα(zt, wt) = (pθ − ew)Twt +Hα(pθ), (2.19)

with pθ = α -entmax(zt) and ew a one-hot vector representing the ground truth word w.

In Figure 2.2, the representation of α-entmax in two dimensions is presented, for multiple values of

α. As it is possible to observe, all mappings besides softmax saturate at t = ±1/α− 1. By replacing the

softmax function in the language modelling task, the probability distribution will be shaped in a different

way, which can have beneficial impact in the way the text is generated, similar to Martins et al. (2020). 1

1The implementation uses the entmax repository: https://github.com/deep-spin/entmax, last accessed on 29-06-2020.

11

https://github.com/deep-spin/entmax

Figure 2.2: Illustration of α-entmax in 2 dimensions. Image source: Peters et al. (2019)

2.3 Text Representation

In Section 2.1, it was explained how DL algorithms grasp knowledge from data, which can be used to

make predictions. In order to apply these mechanisms to NLP problems, it is necessary to represent

textual information in a suitable way.

2.3.1 Sparse Representations

In sparse representations, a portion of text corresponds to a vector (or embedding) v ∈ R|V|, with each

entry representing a word belonging to a fixed-size vocabulary V. The most basic approach to represent

text through a one-hot vector, with value 1 assigned to a word that is present, and 0 corresponding

to not present. One drawback of this method is the impossibility to represent similarity between words,

ending up not being the ideal method for text representation.

2.3.2 Dense Representations

Contrasting to sparse representations, dense representations provide a better generalization and require

much fewer parameters to represent words in the embedding space (Jurafsky and Martin, 2019).

Word embeddings are a continuous representation of words in a low dimensional vector space,

where similar words take similar parts of the modelling space. These representations are therefore

capable of capturing the semantic meanings of words. The goal is to learn a global word embedding

matrix E ∈ R|V|×d, with vocabulary size |V| and number of dimensions d, where each word is represented

by a dense vector composed of values for these dimensions. In Section 2.1.2, Language Models were

presented as models with the task of predicting words given a certain context. They are also used to

learn internal representations, that can be transferred across tasks. Well-known Language Models for

learning word embeddings include Word2Vec (Mikolov et al., 2013), which considers a context window

around each word in the sentence, and GloVe (Pennington et al., 2014), where the training is performed

on aggregated global word–word co-occurance statistics of a corpus.

Although word embeddings constitute a useful development in text representation, this technique

represents a word regardless of the context it is inserted in. Some words can have different meanings,

12

such as “book”, which can be either use as an object or a verb, depending on the context. When a word

has a fixed representation, some of its meanings are lost, damaging our NLP system. Contextual em-

beddings move beyond word-level semantics, in that each word has a representation which is a function

of the entire input sequence, being able to capture syntax and semantics. Peters et al. (2018) presented

Embeddings from Language Models (ELMo) that concatenates representations from the forward and

backward LSTMs without considering the interactions between the left and right contexts. Transformer

models use attention to learn these embeddings, such as GPT (Radford and Salimans, 2018) and GPT-

2 (Radford et al., 2019), which use a left-to-right decoder, where every token can only attend to its left

context (Section 3.1.2). For tasks where it is important to incorporate context from both directions, Devlin

et al. (2019) proposed Bidirectional Encoder Representations from Transformers (BERT), a masked lan-

guage model where some tokens of the input sequence are randomly masked, applying a transformer

encoder to attend to bi-directional contexts.

2.4 Transfer Learning

So far, multiple architectures supported by the performance of NNs have been presented, many of which

performed great achievements on NLP applications for the past years. However, despite their success,

NNs do not generalize for data they have not seen during training, only succeeding under the assumption

that the training and testing data are taken from the same feature space and distribution. This constitutes

a problem, since Supervised Learning demands the labelling of sufficient amount of examples to every

new possible setting, which is unfeasible in real life applications (Ruder, 2019).

Besides, the concept of learning from a blank state is antithetical to the way humans actually learn.

The idea of Transfer Learning comes from people’s ability to apply previously learned knowledge to

solve new problems, with either faster or better solutions: for example, in the task of learning how to

play the piano, a person who knows how to play the electric organ will be easily more successful than

a person who does not possess this knowledge. Research on Transfer Learning has been intensely

conducted for the past years, with the goal of allowing to share knowledge between different tasks,

domains and languages (Pan and Yang, 2010).

When introducing GPT, Radford and Salimans (2018) showed that NLP tasks such as Question An-

swering and Document Classification can be improved by unsupervised pre-training of a model on a

corpus of unlabelled text, followed by supervised fine-tuning. By pre-training this standard Language

Model, it acquires linguistic knowledge useful for several tasks, having been proved to succeed in some

zero-shot applications — that is, being directed applied to tasks or corpora it was not trained on. How-

ever, the fine-tuning phase is particularly relevant if the model should acquire knowledge regarding a

task or language specificities, to be shown in the following sections. Following GPT, many others trans-

former based models were developed, such as BERT (Devlin et al., 2019), GPT-2 (Radford et al., 2019)

and TransformerXL (Dai et al., 2019).

13

2.5 Conversational AI Systems

After having an overview of the relevant practices in NLP, the problem setting can now be presented. A

dialogue system is a computer system whose function is to interact with a human in natural language.

Conversational AI systems can be classified according to their application in two different paradigms

(Chen et al., 2017):

• Open-Domain Systems, most commonly referred to as chitchat bots, are mostly used for com-

panion, not being specialized in any specific domain and with the major goal of maximizing the

user engagement. Sometimes, these systems can also be used for therapeutic purposes, such as

ELIZA (Weizenbaum, 1966), the first chatbot ever created, designed to simulate a psychologist.

• Goal-Oriented Systems, which are aimed to assist the user in a specific task completion, belong-

ing to one or multiple domains, such as flight booking, restaurant information query or technical

support. Examples of goal-oriented dialogue systems can be Apple Siri and Amazon Alexa, which

work as personal assistants, or any chat bot from a support application.

Depending on the type of dialogue system, the model will need different types of architectures and

settings: for instance, while an open-domain system can be trained on a large amount of unlabeled

corpora, a goal-oriented system requires more precise language understanding, with more in-domain

data.

2.5.1 Goal-Oriented Systems

The existing studies on goal-oriented systems classify them in two: pipeline architecture and end-to-

end methods. Before getting into details about these architectures, it is crucial to define some concepts

related to domain specific vocabulary, in a task oriented setting (Jurafsky and Martin, 2019; Schatzmann

and Young, 2009; Gao et al., 2018):

• The dialogue act represents the interactive function of the turn or sentence, such as greet, re-

quest or confirm. Some dialogue acts may have slots or slot-value pairs as arguments, such as

request(num tickets) for the utterance “How many tickets do you need?”. Different dialogue sys-

tems may require the labeling of different kinds of acts, and dialogue acts are generally domain

specific;

• The ontology is a structure representing the kinds of intentions the system can extract from user

sentences. It is composed of the collection of attributes of a specific domain, called slots, and a

set of possible values for each slot. For example, in the flight booking domain, the destination of

the flight can be a slot with Lisbon being a possible value for this slot;

• The dialogue state contains all information about what the user is looking for at the current turn

of the conversation. It includes the most recent dialogue act, but also the resume of the dialogue

history;

14

• The dialogue policy, whose goal is to decide what action the system should take next, that is,

what dialogue act to generate.

Pipeline Architecture

In a pipeline (or modular) architecture, the system is traditionally composed of 4 main modules:

• Natural Language Understanding (NLU) — converts the words in the utterance to a meaning-

ful representation, by firstly classifying the domain, then determining the user’s intent and finally

extracting the particular values for each slot;

• Dialogue State Tracker (DST) — updates the current dialogue state, based on the possibilities

defined by the domain ontology;

• Dialog Policy Module — given the dialogue state, decides the optimal system action, in order to

lead the dialogue towards its goal. This module can be ruled based (decides based on a rule),

supervised (learns to resemble the answers from a corpus) or based on reinforcement learning

(learns in the dialogue environment). Before deciding what will be the system action in the Dialog

Policy Module, the system may interact with a Knowledge Base, depending on the applications;

• Natural Language Generation (NLG) — converts the system action into an actual system utter-

ance.

Systems with a pipeline architecture were initially developed based on slot-filling, narrowing the struc-

ture of a dialogue state to a predefined set of slots to be filled during the dialogue (Lemon et al., 2006;

Young et al., 2013; Wang and Lemon, 2013). Although reliable, this rule-based technique is limited to

particular domains and hard to be generalized to new scenarios. These limitations motivated the study

of corpus-based approaches, with minimal dependence on rules (Angeli et al., 2010; Kondadadi et al.,

2013). By learning directly from data, the systems are able to mimic human responses in a more natural

way and become easily extendable to other domains.

End-to-End Methods

The modules of a pipeline system are optimized separately, which does not necessarily lead to an op-

timal performance (Gao et al., 2018). The development of Seq2Seq Learning (Section 2.1.2) proposed

using NNs to map sequences into sequences, not only leading to advances in machine translation, but

also motivating end-to-end approaches in the development of dialogue systems, initially in open-domain

(Vinyals and Le, 2015; Serban et al., 2016), but soon exploiting to goal-oriented (Wen et al., 2017).

These type of systems use learned neural models to translate the conversation history into the next

system response, requiring much fewer hand-craft rules, and therefore replacing the more traditional

pipeline architectures.

End-to-end approaches have been also applied to the joint optimization of only some of the four

traditional dialogue components. Examples are joint word-level DST models, combining NLU and DST

15

(Wu et al., 2019), or even systems which include the NLU, the DST and the Dialogue Policy (Zhao and

Eskenazi, 2016). In this work, the implemented system incorporates both the Dialog Policy and NLG

models, with the goal of generating a response based on the conversation history and dialogue state,

using world-level policy to directly generate a response.

2.5.2 Answer Generation

In general, two essential techniques have been developed to generate system utterances in a dialogue:

retrieval-based methods, which learn to retrieve the most adequate answer from an existing set of

options, and generation methods, such as Seq2Seq models (mentioned in Section 2.1.2), that gener-

ate a sequence of words which corresponds to the system’s answer (Chen et al., 2017). On one hand,

retrieval models are restricted to the retrieval set, leading sometimes to inaccurate replies, since the

coverage is usually scarce for so many domains and tasks. On the other, although generative models

have a good performance on simple domains, their application on many domains require large amounts

of domain specific annotated data, which is usually not available for real world scenarios (Gao et al.,

2018; Peng et al., 2020).

A lot of work has been done in the past years with both retrieval and generation techniques, for either

open-domain or task-oriented applications, showing the advantages and drawbacks of each approach.

Typically, the focus in goal-oriented applications has been in retrieval models (Kannan et al., 2016;

Henderson et al., 2019), since it allows to have full control over the systems’ responses, and mainly due

to the data scarcity problem: besides the ability of constructing coherent phrases, these systems require

the knowledge of specific domains and their ontology. This multi-domain annotated corpora is usually

scarce, because the collection and annotation of data for these applications is an expensive, complex

and time-consuming procedure. In this setting, the possibility to transfer knowledge is particularly useful,

as many NLP tasks share common knowledge about language.

Wolf et al. (2019) and Golovanov et al. (2019) have recently shown that fine-tuning generative lan-

guage models for conversational applications can have state-of-the-art results, in the domain of personal

conversations. Budzianowski and Vulić (2019) reproduced this implementation in a goal-oriented set-

ting, documenting a great performance. Following this work, we propose to study how different decoding

strategies can influence the final result, focusing our attention in the recently proposed α-entmax sam-

pling (Martins et al., 2020), which uses the α-entmax transformation (Peters et al., 2019) to directly

sample from a sparse model.

16

Chapter 3

Neural Dialogue Language Model

Throughout the last chapter, an introduction to the most important DL architectures was made, connect-

ing them to NLP, specifically to the dialogue generation task. In this chapter, we apply these concepts

to the implementation of the systems. We start by presenting some relevant architectures (Section

3.1), followed by an overview of the corpora and its preprocessing details (Section 3.2). Our systems’

implementation is further explained in Section 3.3, with particular emphasis on the several decoding

strategies (Section 3.4) and performance evaluation metrics (Section 3.5), to be subject of analysis in

the next chapters.

3.1 Relevant Architectures

As mentioned in Section 2.5.2, the implementation of a dialogue system can take advanteged of pre-

trained language models. In this Section, the pionner work using this type of implementation is intro-

duced. Followed by a presentation of GPT-2, it culminates in its original application to the goal-oriented

framework.

3.1.1 TransferTransfo

TransferTransfo (Wolf et al., 2019) is an open-domain dialogue system which uses a multilayer trans-

former encoder based on GPT. The model is pre-trained on the BooksCorpus Dataset (Zhu et al.,

2015), consisting of more than 7000 books, from a variety of genres. It is followed by fine-tuning on the

Persona-Chat Dataset (Zhang et al., 2018), which contains 10907 dialogues between a pair of speak-

ers, all conditioned on a given profile, the persona. There is a total of 1155 available personas, each

of them consisting of at least 5 profile sentences, aiming at increasing the engagingness in chit-chat

conversations.

The model is trained on single text input, whose representation is adapted to include information

regarding the speaker personality, so it can easily switch from a single speaker to a two speaker setting.

This is achieved through adding a set of dialogue state embeddings, in the fine-tuning phase, to the

already learned word embeddings and positional embeddings. These new embeddings serve to identify

17

whether a certain token belongs to a personality trait, a utterance from person1 or a utterance from

person2.

The fine-tuning phase uses Multi-Task Learning, defined by jointly training a model in multiple

related tasks. In this case, the authors make use of the Language Modelling Task, which obtains next

token probabilities over the vocabulary, and introduce the Next-Sentence Classification Task, a classifier

whose goal is to determine the most accurate response from a setting of 2–6 possible candidates. To do

so, a Double-Heads Model (Figure 3.1) is used, where each model’s head computes the loss for each

task:

• Language Modelling Loss — consists of training a common Language Model, where the final

hidden state is fed into a softmax layer, obtaining a probability distribution over the vocabulary. In

this case, the cross-entropy loss is then applied to the portion of text corresponding to the gold

reply, which will be referred to as LossLM throghout this work.

• Next-Sentence Prediction Loss — consists of passing the hidden state of the last token through

a linear layer to get a score. The cross-entropy loss is then applied, to classify the correct gold

answer among the distractors. It is also referred to as Multiple Choice Loss (LossMC).

The total loss is a weighted sum between the both losses, as evident in Equation 3.1:

Loss = LMcoefLossLM +MCcoefLossMC . (3.1)

Figure 3.1: Double Heads Model. Image source: How to Build a State-of-the-Art Conversational AI with
Transfer Learning, last accessed on 26-12-2020.

3.1.2 GPT-2

The Generative Pre-trained Transformer 2 (GPT-2) is a Language Model trained in a self-supervised

manner on the WebText dataset, a massive dataset created with the text present in 45 million internet

18

https://medium.com/huggingface/how-to-build-a-state-of-the-art-conversational-ai-with-transfer-learning-2d818ac26313
https://medium.com/huggingface/how-to-build-a-state-of-the-art-conversational-ai-with-transfer-learning-2d818ac26313

links. GPT-2 was demonstrated to have a good performance in several NLP tasks without any task-

specific supervision, being trained on a zero-shot setting (Radford et al., 2019). There are four GPT-2

models, whose main difference is on the architecture size.

The tokenization of the language is done using Byte-Pair Encoding (BPE) (Sennrich et al., 2016),

as a middle ground between character and word level language modelling. This technique breaks up

the words into tokens which are longer than characters, but shorter than complete words. The main

goal is to break up complex words into simpler ones, making it easier to deal with out-of-vocabulary

words. Besides this, to avoid allocating vocabulary slots to many versions of common words (such as

“dog”, “dog.”, and “dog!”), the authors prevent BPE from merging across character categories for any

byte sequence, adding an exception for spaces. The vocabulary consists of 50257 tokens.

Like traditional language models, GPT-2 outputs one token at a time, based on the assumption that

the probability of a word sequence corresponds to the product of conditional next word distributions,

given the context. Once a token is produced, it is added to the sequence of inputs, belonging to the

input sequence in the next step, which is called auto-regression.

GPT-2 learns contextual embeddings (Section 2.3.2) using self-attention mechanisms (Section 2.1.4).

Its architecture is based on the Transformer, being composed of stacked decoder only blocks. Each

block has its own weights in both sublayers that constitute it: the Masked Self-Attention sublayer (as

seen in the Transformer, each token can only attend to its left context), and the FFNN sublayer. Each

head has a different pattern to attend to specific words, explaining why this model captures well many

linguistic properties. Similarly to the Transformer’s, the output of GPT-2 is a vector with a distribution of

probabilities over the vocabulary, to which the next word is chosen depending on the decoding strategy.

3.1.3 Hello It’s GPT-2 — How Are You?

Builduing on top of Wolf et al. (2019) and Radford et al. (2019), Budzianowski and Vulić (2019) demon-

strated the applicability of fine-tuning a pre-trained language model to a goal-oriented dialogue system,

addressing the data scarcity problem mentioned in Section 2.5. The combination of Multi-Task Learning

with simple text input is validated in the MultiWOZ Dataset (Section 3.2), effectively projecting the Dialog

Policy and NLG modules in an end-to-end manner.

Similarly to TransferTransfo (Section 3.1.1), the GPT-2 Language Modelling Head receives three

levels of inputs, as represented in Figure 3.2: the word level input, the token level input and the position

level input. The word level input has information regarding the context, in the form of simple text,

simplifying the paradigm of building goal-oriented models, as new information can simply be added to

the input. This word level input is composed of belief state, database state, context and the system

response, whose composition will be further explained in Section 3.3.1. Similarly to what was explained

in Section 3.1.2, the position level input simply consists of the information regarding the order of the

tokens in the word level input. The token level input uses dialogue state embeddings, which identify the

tokens in the word level input by informing whether they belong to the user or the system.

19

Figure 3.2: GPT-2 input for the fine-tuning phase. Image source: Budzianowski and Vulić (2019)

3.2 MultiWOZ Dataset

The choice of corpora can have a decisive impact in the performance of the dialogue system. For the

past years, a lot of work has been performed in order to achieve the perfect dataset, resulting in a variety

of available options. In the goal-oriented framework, the Multi-Domain Wizard-of-Oz (MultiWOZ) Dataset

(Budzianowski et al., 2018) stands out due to its structured annotations and size, with the impressive

amount of 10438 dialogues, being at least one order of magnitude larger than all previous annotated

goal-oriented datasets. In terms of size, it was recently surpassed by the Taskmaster-1 (Byrne et al.,

2019), which reports 13215 dialogues across 6 domains.

To allow direct comparison with previously developed systems, this study uses MultiWOZ 2.0. How-

ever, we are aware that this version contains annotation errors in many dialogues, which can influence

the system performance. Improved versions have been recently released, namely MultiWOZ 2.1 (Eric

et al., 2019) and MultiWOZ 2.2 (Zang et al., 2020), for which we also present results. Throughout the

experiments, we use the original division into Training, Validation and Testing Sets.

3.2.1 Corpora Specifications

The MultiWOZ Dataset is a labelled human-human collection of goal-oriented dialogues, simulating

natural conversations between a tourist and an assistant from an information center in a touristic city. The

corpus has conversations spanning over 7 domains — Attraction, Hospital, Police, Hotel, Restaurant,

Taxi, Train — with diverse complexity of tasks, going from a simple information query about an attraction,

to booking a night at a hotel, a restaurant reservation and a taxi to connect both places.

The dataset is composed of 10438 dialogues, which can be either single domain or multi-domain.

The average number of turns per dialogue is 8.93 and 15.39, for single and multi-domain, respectively.

In this section, we present the domains’ ontology, followed by the annotations and database structure.

Ontology

As it is common in a goal-oriented system, the domains of MultiWOZ are defined by an ontology, intro-

duced in Section 2.5.1. The slots can be categorized as informable and requestable. Informable slots

20

correspond to domain information which can narrow down the search for options — for example, price

range or area. Requestable slots consist of additional details, relevant when a booking is pursued — for

example, booking reference or telephone number. The ontology also includes the dialog act type, which

summarizes the intention of the utterance. In Figure 3.3, it is possible to see the ontology for all the 7

domains in this dataset, where the upper scripts represent which domains it belogs to: * - universal; 1 -

restaurant; 2 - hotel; 3 - attraction; 4 - taxi; 5 - train; 6 - hospital; 7 - police.

Figure 3.3: Ontology for all domains in MultiWOZ. Image source: Budzianowski et al. (2018)

Annotations

One of the main features of this dataset lies in the richness in annotations. For each dialogue, there is

a goal entry, which specifies the conversation details. The goal is composed of an entry per domain. If

the domain was tackled in the conversation, the informable slots and values will appear in the info field

and the requestable ones in the book field. If there are any restrictions or booking details which are not

able to be fulfilled, it will appear in the fail info and fail book fields, respectively.

Besides, the dialogue has a log entry, in which the conversation history is presented. Each entry

is composed of text and metadata fields, corresponding to a user/system utterance and its information.

Only the metadata fields from system utterances are filled, consisting of a summary of the topic tackled

at the moment. Similarly to the goal, metadata is composed of an entry per domain, with a book field,

in which the booking restrictions are stored, a booked field, which saves the information regarding the

booking once it is completed, and a semi field, that saves the remaining information.

The annotations follow the ontology presented in Section 3.2.1. When a certain slot is not relevant

for the user, the corresponding value is stored as “don’t care”. If a certain slot was not tackled in the

conversation, its value is annotated as “not mentioned”. An example of an annotated user utterance can

be found bellow.

User: I’m looking for a cheap restaurant that serves modern european food.

Annotation: "restaurant": {

"book": {

"booked": [],

"people": "",

"day": "",

"time": ""

},

21

"semi": {

"food": "modern european",

"pricerange": "cheap",

"name": "don’t care",

"area": "not mentioned"

}

}

The dataset is also composed of a dialogue acts file. However, as there is no direct correspondence between

these annotations and the dialogue utterances, they become less useful.

Database

In addition to the dialogues and their annotations, the dataset is composed of 7 database files, one for each possible

domain of conversation. Each file consists of a set of domain entities, with the relevant attributes for the conversa-

tions. These attributes match the ontology presented in the previous section. An example of a database entry can

be found bellow.

{

"address": "106 Regent Street City Centre",

"area": "centre",

"food": "indian",

"id": "19214",

"introduction": "curry garden serves traditional indian and bangladeshi cuisine

cooked with fresh produce delivered every day",

"location": [

52.200187,

0.126407

],

"name": "curry garden",

"phone": "01223302330",

"postcode": "cb21dp",

"pricerange": "expensive",

"type": "restaurant"

}

3.2.2 Preprocessing MultiWOZ

Before being put into use, the dataset should go through a preprocessing phase. The main ideas are explained in

this section, whose implementation roughly follows the one provided in the MultiWOZ Repository. 1

Delexicalization

According to Wen et al., 2017, a common practice in response generation is to break it into generate delexical-

ized sentences and then post-processing the system utterances. This delexicalization is crucial for the system to
1https://github.com/budzianowski/multiwoz, last accessed on 17-06-2020.

22

https://github.com/budzianowski/multiwoz

learn value independent parameters (Budzianowski and Vulić, 2019). To do so, for each domain, all possible val-

ues for each slot are collected from the database and then replaced by generic slots, such as [value address] or

[value pricerange]. For domain specific vocabulary entities, the slots are replaced by [domain name]. The numeric

values are also replaced by [value count]. This process is applied to all the dialogues sentences and not the an-

notations. This way, the model is less likely to hallucinate with domain specific vocabulary, while the information

is accessible to be used. Besides this, the model will be more capable of generalizing to different domains and

restrictions. Since the goal is to analyse the model’s ability to generate sentences, they will not be post-processed

to include specific entities, as the interaction with a database gets out of the scope of this work.

Apart from that, following the implementation used in GPT-2, all punctuation marks are added a space before,

to make sure they are word independent in the tokenization phase. A similar approach is done with regular plural

words, splitting the words into the singular word and -s.

User: Please locate me an italian restaurant in the centre area.

Delexicalized sentence: please locate me an [value_food] restaurant in the [value_area] area .

Adding to the presented advantages of delexicalizing the dataset, this process is necessary to allow the use of

some evaluation metrics provided with the dataset, which will be presented in Section 3.5.

Database Pointer

The authors suggest creating a database pointer, which saves the information regarding the number of domain

entities matching the user specifications, for the domains restaurant, hotel, attraction and train, if there are any. This

information will be useful for the dialogue evaluation (Sections 3.5.3 and 3.5.4).

The database pointer has one-hot representation according to the number of available entities, which can be

zero, one, two, three, four or more than five. Besides this, for domains requiring reservation (restaurant, hotel

and train), the database pointer contains a booking pointer that informs about the availability of the entity at those

specific restrictions. This booking pointer is 1 0 by default, and changed to 0 1 if booking is allowed at that stage of

the dialogue. An example of the database pointer can be found bellow.

User: Please locate me an italian restaurant in the centre area.

Database_pointer: 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0

This case corresponds to the default composition of the database pointer, with all 4 domains having more than

5 entities (which corresponds to the first four sequences of 6 digits). The last 6 digits mean that it is not possible to

book a restaurant, hotel or train at this point.

3.3 Implementation

After preprocessing the dataset, the implementation is done following Wolf et al. (2019)2, using the smallest version

of GPT-2. Similarly to Section 3.1.1, along with the Language Modelling task, the model is train in a Next-Sentence

Prediction task, in which it learns to classify the correct response, given a set of possible answers. In each step, a

distractor is randomly chosen from the dataset. Having the distractor chosen, the Language Model input will be fed

twice into the model, one time with the correct gold answer, and the other with the distractor. As the labels are also

2The code is based on the Hugging Face Repository: https://github.com/huggingface/transfer-learning-conv-ai, last
accessed on 13-04-2020.

23

https://github.com/huggingface/transfer-learning-conv-ai

provided to the model, it will learn to identify a correct answer from a wrong one, given a certain context. In the next

sections, the Language Modelling task is explained in more detail.

3.3.1 Language Model Input

According to Radford and Salimans (2018) and Devlin et al. (2019), separation tokens are commonly added to

separate the Transformer’s inputs, which can be applied to the utterances of a dialogue. Therefore, the different

parts of the word level input are separated by the correspondent dialogue state embedding, following Ham et al.

(2020): <belief>, before the belief state; <db>, before the database state; <usr>, identifying the user utterance;

and <sys>, identifying the system utterance. Besides, the input is initiated with a <bos> token (beginning of

sentence) and finished with a <eos> token (end of sentence). Finally, <pad> tokens are added to the inputs,

to make them have a constant length. These special tokens are added to the vocabulary, extending its size to

|V| = 50264.

In dialogue generation, the context is generally the whole conversation history. In this work, only the user’s

utterance is used, to which the optimal response will be learned, as the belief state solves the need of having the

whole dialogue serving as context. This is an advantage for low computational power systems, as it tackles the

issue of not being able to process a huge amount of tokens.

A scheme for the Language Model input can be seen in Figure 3.4, where the words are represented as tokens

for easier visualization, despite not being totally correct, as GPT-2 uses BPE to tokenize the language, as seen in

Section 3.1.2.

restaurant<belief><bos> food italian area centre <db> restaurant nine <usr> please locate

ame [value_food] in the [value_area] area .restaurant

<eos>

<belief><belief><bos> <belief> <belief> <belief> <belief> <db><db> <db> <usr>

<usr><usr>

<usr>

<usr>

<usr>

<usr> <usr> <usr><usr> <usr><usr>

<eos>

321 4 5 6 7 8 9 10 11 12 13

1514 16 18 19 20 21 2217 23

word

token

position

word

token

position

<sys> there are [value_count]

such restaurant -s do you pricespecificawant range ?word

token

position

<sys>

<sys> <sys> <sys> <sys> <sys> <sys> <sys> <sys> <sys> <sys> <sys>

<sys> <sys> <sys>

36353433323130292827

262524

3837

Figure 3.4: Language Model input.

Belief State

The belief state summarizes all the relevant information from the conversation history. In practice, it is composed of

the informable and requestable slots with corresponding values in natural language, in the format:

Domain_1 Slot_1 Value_1 ... Slot_n Value_n ... Domain_k Slot_1 Value_1 ... Slot_m Value_m

All the metadata content is considered to the belief state, with the exception of the “booked” details, since they

are considered too specific. Before each slot-value pair of booking restrictions, the word “book” should be added, to

inform that these details belong to the booking domain as well. An example for the belief state can be found bellow.

User: Please locate me an italian restaurant in the centre area.

Belief_state: restaurant food italian area centre

24

In this work, the necessary information for the belief state construction is stored in the annotations. To move

this to a practical context, with real interaction between a user and an assistant, a Dialogue State Tracker system

should be developed, to identify the slots and values for each user utterance.

Database State

While the belief state contains a summary of the conversation context, the database state represents the database

information. At each point of the conversation, a database pointer (Section 3.2.2) is computed, to inform about how

many entities in accordance with to the given restrictions exist. The database state is a simple text representation

of the database pointer, following the form:

Domain_1 n_1... Domain_k n_k,

with nk being the number of possible entities of the kth domain, converted to textual representation. An example for

the database state can be found bellow.

User: Please locate me an italian restaurant in the centre area.

Database_state: restaurant nine

In a real application, once the belief state is extracted, obtaining the database state is trivial through a simple

interaction with the domain database.

3.3.2 Softmax vs α-entmax

Once the input is ready, the model can start learning to generate text. In the training phase, it receives the input in

the format of Figure 3.4, along with the language modelling labels — in other words, the gold system reply (Figure

3.5). The labels correspond to the original input, with everything but the system answer tokens being replaced by

<pad>.

<pad>

<eos>

labels

labels

labels

<sys> there are [value_count]

such restaurant -s do you pricespecificawant range ?

<pad>

<pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad>

<pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>

<pad>

Figure 3.5: Language Model labels.

The tokenized inputs are fed into the decoder blocks, each of them composed of a Masked Self-Attention and

a FFNN layer. Each layer produces independent scores over the masked input, which are then concatenated to be

used by the FFNN layer. This layer uses the softmax or α-entmax distributions to project the scores into a vector of

size |V| = 50264. The loss between the produced scores and the provided labels is then calculated. Depending on

the output distribution, the loss is either the cross-entropy loss, if the system uses the softmax distribution, or the

α-entmax loss, in the case of the α-entmax distribution. The model’s weights are then updated, in order to minimize

the loss, as seen in Chapter 2. The model is trained by repeating this process while the loss values decrease.

In the generation phase, the input is similar to the training phase’s, but with no system response, as schematized

in Figure 3.6. The returned scores are then to be transformed into one of the two possible distributions, softmax

or α-entmax, producing a vector of probabilities of size |V| = 50264 over the vocabulary. The decoding strategy

(Section 3.4) will define the way to select the value for the probability, determining the chosen token. Being a

recursive model, the generated token is then added to the original input, taking part of the input for the next token

generation. The generation process is conducted until the <eos> token is generated, or until a maximum of 50

tokens per generated sentence.

25

Figure 3.6: Simplified model — how to decode the next token.

3.4 Decoding Strategies

Given a probability distribution over the vocabulary, we select the next token based on the probability values. There-

fore, the method chosen to select this probability — the decoding strategy — will have great influence on the

generated sentence. In this section, an overview of some possible decoding strategies is performed.

3.4.1 Greedy Search

Once using greedy search, the chosen token wt is the one with the highest probability value at each timestep t:

wt = argmax
w

pθ(w|w<t). (3.2)

This is probably the most intuitive way to decode a sentence, as we could assume that the best results lie in

the combination of the highest probability tokens. Nevertheless, some problems have been constantly reported

throughout text generation studies, proving that this is not necessarily true. The most common problem of this

strategy is the model being likely to start repeating itself, entering in a loop of text generation. Another fault lies in

the fact that sometimes high probability phrases are “hidden” behind less likely words, which end up being ignored

(Vijayakumar et al., 2016; Shao et al., 2017).

26

3.4.2 Sampling

Aiming at increasing the diversity of the output, sampling strategies avoid repetition by introducing stochastic deci-

sions in the generation process, randomly picking the next word wt given its conditional probability distribution:

wt ∼ pθ(w|w<t). (3.3)

To make the distribution pθ(w|w<t) sharper, it is common to lower down the temperature of the softmax, which

increases the higher probabilities and decreases the lower ones. This way, high likely words have more chance to

be selected, while low likely ones get almost no chance. However, even with the temperature variable, one drawback

of sampling is the ease to generate a very unlikely word, damaging the generation process and leading the model

into strange paths (Holtzman et al., 2020).

3.4.3 Top-k Sampling

To colmat the problems described before, Fan et al. (2018) introduced top-k sampling. The idea is to restrict

the sampling process to the k most probable words, reducing the probability of choosing out-of-the-box words, but

also making the process more deterministic. The k most probable words are filtered and the probability mass is

redistributed among them.

This sampling technique has shown to perform well, being considered to generate the most human-sounding

text among the 3 introduced approaches. However, it has the drawback of not dynamically adapting the number

of words which are filtered to the distribution. This means that sometimes the words can be sampled from a very

sharp distribution, which can lead to the model producing strange text. On the other side of the spectrum, when it

samples from a flatter distribution, its creativity can be limited by the number k.

3.4.4 Nucleus Sampling

Instead of relying on a fixed top-k highest probability words, Holtzman et al. (2020) proposes nucleus sampling,

whose intuition comes from the fact that the vast majority of probability mass is concentrated in the nucleus. The idea

is to sample from the smallest subset of words whose cumulative probability exceeds p, eliminating the possibility

of choosing the less likely words.

The major advantage of this technique is allowing to contract and expand the number of candidates dynamically,

depending on the probability distribution. Nucleus sampling has been used in many works, reported by many to be

the most similar to the way humans speak.

3.4.5 α-entmax Sampling

The sampling techniques presented so far have been continuously tested and evaluated in text generation. However,

there is a drawback in these sampling techniques: in generation time, the models sample from a new version of the

softmax distribution, whose sparsity was not learned during training time.

On the other hand, applying the α-entmax transformation to the model scores also prevents implausible words

from receiving any probability mass, which is the idea behind top-k and nucleus sampling. With α-entmax sam-

pling, the chosen token wt at time step t is:

wt ∼ pθ(w|w<t) = α -entmax(zt(θ, w<t)), (3.4)

27

where zt are the scores given by the model.

This decoding method has the advantage of eliminating the gap between training and testing conditions, in what

comes to sparsity, as the model is already trained in a sparse distribution. Similarly to nucleus sampling, α-entmax

sampling considers a varying number of tokens depending on the context, which is also an advantage.

3.5 Performance Evaluation

Given the different decoding strategies, it is necessary to find a way to fairly compare the quality of the generated

text. According to Celikyilmaz et al. (2020), there are three types of methods to evaluate the performance of an

answer generation system: automatic metrics requiring no training, machine learned metrics and human evaluation.

In this section, relevant metrics which do not require human intervention will be presented, either automatic or

machine learned ones. Along with the metrics proposed by Budzianowski and Vulić (2019) to evaluate this task

(Inform Rate, Success Rate and BLEU), some others will be used, allowing a more detailed comparison between

different techniques.

3.5.1 ε-perplexity

Perplexity (ppl) translates into the model’s ability to predict the next word, given the context, being the inverse

probability of the test set, normalized by the number of words (Jurafsky and Martin, 2019). On other words, the

perplexity metric informs on how perplex is the model with the target sentence, meaning that a lower perplexity

indicates a better model. In a Language Model, perplexity is the exponential average log-likelihood of a sequence.

Given a sentence w = (w1, ..., wT), it can be calculated as:

ppl(w) = exp

{
− 1

T

T∑
t=1

log pθ(wt|w<t)

}
, (3.5)

with log pθ(wt|w<t) being the log-likelihood of the token wt, given the preceding tokens w<t.

However, the computation of the logarithm of the probability distribution over the dataset reference can be

problematic in sparse distributions, since limp→0 log p = −∞. With this in mind, Martins et al. (2020) propose ε-

perplexity, a smoothed version of perplexity, obtained by adding ε to all the terms, followed by renormalization over

the vocabulary size |V|:

ε - ppl(W) = exp

{
− 1

T

T∑
t=1

log
pθ(wt|w<t) + ε

1 + ε|V|

}
(3.6)

Like ppl, ε-ppl needs to be computed in test time, as it requires to see the dataset references one by one.

3.5.2 Sparsemax Score

Also proposed by Martins et al. (2020), the sparsemax score (sp) is based on the sparsemax loss from Martins and

Astudillo (2016), which is the presented Equation 2.19 with α = 2. This metric is defined as:

sp =1−min{l2(z, w)| sparsemax(z) = pθ} (3.7)

=1− (pθ − ew)T pθ −H2(pθ) (3.8)

=pθ(w) +H2(pθ), (3.9)

28

where H2(p) :=
1
2

∑
j pj(1− pj) is the Gini Entropy. Similarly to perplexity, sparsemax score needs to be computed

along the generation of the answers. However, sparxemax score is always bounded between 0 and 1.

3.5.3 Inform Rate

Proposed along with the MultiWOZ dataset, the inform rate aims at assessing whether the offered entity matches

all the constraints specified in the user goal. In this context, the use of a delexicalized dataset prevents the inform

metric from totally pursuing its goal, as no specific entity is given at any time. Nevertheless, it is possible to check

if, given the context, there was indeed an available option in the dataset. To do so, the database pointer (Section

3.2.2) is analysed, which informs how many venues allow booking given the restrictions. A 0 inform rate means that

the system hallucinated in the response, and no venue corresponded to the user’s specifications.

3.5.4 Success Rate

The sucess rate is also suggested with the dataset, with the goal of evaluating whether all the requestable slots

were provided to the user. Similarly to the inform rate, the success metric is calculated on the dialogue level. The

dialogue is only considered successful if all the slots were filled during the dialogue. To calculate the success

metric, the goal is investigated and matched with the system responses. The database pointer is also checked,

only considering the task of providing a phone or reservation numbers successful in cases where the booking is

allowed.

3.5.5 BLEU

Bilingual Evaluation Understudy (BLEU) (Papineni et al., 2002) measures the fluency of the answer by analysing

the overlap of n-grams (sequences of n words) between the proposed response and a set of one or more reference

sentences, regardless of the word order. Despite having been proposed for machine translation, BLEU is commonly

used to evaluate other NLP tasks, being considered the dominant metric in language generation. The sacrebleu

version will be used, which aims at uniformizing the use of the BLEU metric, whose parameters can vary, making it

difficult to compare different implementations (Post, 2018).

3.5.6 METEOR

Metric for Evaluation of Translation with Explicit Ordering (METEOR) (Banerjee and Lavie, 2005) is also proposed for

machine translation, based on alignments between the generated sentences and one or more references. These

alignments are sets of matchings between unigrams in two different strings, such that every word in each string

maps to at most one word in the other string. The matches occur if there is an exact match (the words are identical),

stem match (the words have similar stems), or synonymy match (based on an external database).

3.5.7 BERTScore

Similarly to BLEU, BERTScore (Zhang et al., 2020a) calculates a similarity between each token of the generated

sentence and each token of the original sentence. However, instead of n-gram matching, this similarity is computed

as a sum of cosine similarities between contextual embeddings of the tokens (Section 2.3.2), as it uses prior

knowledge from BERT to originate the tokenized text. Hence, BERTScore has some context awareness, which

29

is very relevant to evaluate NLP tasks. Focusing on token level semantic similarity, BERTScore has been proved to

be particularly effective in paraphrase detection (Devlin et al., 2019).

30

Chapter 4

Experiments

In this chapter, the different approaches presented in the previous chapters are experimented and evaluated. Firstly,

some hyperparameters are tuned in Section 4.1, to optimize each model’s performance. In Section 4.2, a compar-

ison between the different techniques is performed, allowing to draw some conclusions regarding the systems.

Finally, the results are thoroughly discussed in Section 4.3, with reference to relevant specific situations and exam-

ples.

4.1 Hyperparameter Tuning

To ensure the models are evaluated at their finest performance, some training hyperparameters should be firstly

tuned:

• Language Modelling Coefficient (LMcoef) — is the balance between LossLM and LossMC for the loss cal-

culation (see Equation 2.10). Since the task we are focusing on is the Language Modelling task, we should

naturally give more importance to LossLM than LossMC . Therefore, MCcoef is kept at 1, and a grid search

is made for LMcoef ∈ {1, 2, 4}.

• Learning Rate (η) — also referred to as step size, is the value η in Equations 2.7 and 2.8. It represents the

amount that the weights are updated, controlling how quickly the model is adapted to the problem. A grid

search over this parameter is performed for η ∈ {1e−5, 5e−5, 1e−4, 5e−4, 1e−3}.

• Batch Size (B) — the size of the batch to update the weights using Mini-Batch Gradient descent, as referred

to in Section 2.1.1.

• Gradient Accumulation Steps (S) — it is used to accumulate the losses and gradients over several batches,

only updating the weights after a given number of steps. In practice, it increases the effective batch size in S

times.

Since there is not much flexibility in terms of memory usage, the values for B and S are be kept at B = 4;S = 8,

following the original implementation from Wolf et al. (2019). It is relevant to note that, in a first phase, other

combinations such as B = 4;S = 4 and B = 2;S = 12 were experimented, leading to worse results given fixed

values for LMcoef and η.

In all cases, the training phase was performed for as long as the loss value decreased, with a maximum of 10

epochs per training. At this stage, as the goal is to tune the parameters, a single metric is used to have an idea

31

of the model behaviour. The chosen metric, usually used in MultiWOZ works, consists of a balance between the

Inform, Success and BLEU metrics, to be referred to as tune metric: 0.5× (Inform+Success) + BLEU.

4.1.1 Softmax

Despite previous works having constantly reported results for LMcoef = 2, we tune this parameter in order to

understand the MC head importance in the problem, alongside with η. The results are reported for the tune metric

on the validation set. To have an idea of which parameters the model benefits the most, a grid search is made for

the two techniques on the opposite sides of the sampling spectrum: sampling and greedy search.

Sampling

Table 4.1: Grid search over η and LMcoef for sampling.

LMcoef = 1 LMcoef = 2 LMcoef = 4

η = 1e−5 57.10 60.97 55.10
η = 2.5e−5 65.48 67.21 66.03
η = 5e−5 68.13 70.59 70.02
η = 7.5e−5 69.72 72.33 71.89
η = 1e−4 70.13 70.15 70.72
η = 5e−4 67.10 66.50 65.70
η = 1e−3 63.04 65.66 66.57

From Table 4.1, the value for LMcoef seems to have little influence on the final result. This can be due to the

fact that, as the evaluated task is Language Modelling, the model does almost not benefit from the MC head. Nev-

ertheless, LMcoef = 2 generally gives slightly better results, confirming the experiences from previous approaches.

In what comes to the η, the optimal performance appears to be between η = 5e−5 and η = 1e−4. To better tune this

parameter, the results for η = 2.5e−5 and η = 7.5e−5 are also reported, having the best value for η is 7.5e−5.

Greedy Search

Table 4.2: Grid search over η and LMcoef for greedy search.

LMcoef = 1 LMcoef = 2 LMcoef = 4

η = 1e−5 75.13 77.86 74.52
η = 2.5e−5 84.34 82.85 84.22
η = 5e−5 88.03 87.96 90.73
η = 7.5e−5 90.05 86.95 88.25
η = 1e−4 86.10 88.27 88.73
η = 5e−4 87.95 82.54 86.83
η = 1e−3 84.34 85.01 88.31

Table 4.2 provides the confirmation that the value for LMcoef has little influence on the final result, not being

possible to draw conclusions regarding which value conducts to the optimal performance. However, contrary to

what was previously reported, the best performance is no longer with LMcoef = 2. Highlighted in the table, we have

the values for the chosen parameters from the previous section and the optimal performance for greedy search.

32

At this point, it is clear that greedy search leads to an overall better performance than simple sampling. One

intuition can be that, in a goal-oriented setting, the type of conversations are well structured, being the sentence

construction more deterministic. Nevertheless, a further analysis will be performed in the following sections.

Top-k Sampling

For top-k sampling, we look at k ∈ {5, 10, 20, 50, 100}. The results with greedy-search are also presented for

comparison, as this decoding technique corresponds to top-k sampling with k = 1. Results for the both best

combinations reported previously are included: LMcoef = 2, η = 7.5e−5; LMcoef = 4, η = 5e−5.

Table 4.3: Grid search over k for top-k sampling.

k = 1 k = 5 k = 10 k = 20 k = 50 k = 100

LMcoef = 2, η = 7.5e−5 86.95 76.72 71.72 72.04 72.03 70.06
LMcoef = 4, η = 5e−5 90.73 76.67 74.42 71.73 70.03 68.35

Analyzing the registered values, one can detect a decrease in the model’s performance once the value of k is

augmented. There is a strong contrast between the scores obtained with greedy search (k=1) and with other values

of k.

Nucleus Sampling

In this section, the parameter p is tuned for p ∈ {0.5, 0.7, 0.8, 0.9}. Given the previous results, the chosen combina-

tion is for LMcoef = 2, η = 7.5e−5. It is relevant to underline that the sampling technique is equivalent to nucleus

sampling with p = 1, hence its results being present. Besides, the temperature parameter will also fluctuate with

the different values of p, for temp ∈ {0.7, 0.8, 0.9}.

Table 4.4: Grid search over p and temp for nucleus-sampling.

temp = 1 temp = 0.9 temp = 0.8 temp = 0.7

p = 1 72.33 71.62 70.99 68.57
p = 0.9 85.51 82.30 84.05 83.00
p = 0.8 84.68 83.73 85.93 85.06
p = 0.7 84.26 84.05 87.18 85.59
p = 0.5 85.74 86.46 84.73 86.41

From Table 4.4, there seems to be no direct relationship between the evolution of the parameters p and temp

and the quality of the responses. The optimal performance is for p = 0.7 with temp = 0.8.

4.1.2 α-entmax

In the case of α-entmax, we are in the presence of a different family of loss functions. Thus, it is not correct assume

that the values which best fit experiments with softmax will have the same behaviour for α-entmax. The parameters

η and LMcoef are therefore tuned again, for a fixed value of α. Given the results reported by Martins et al. (2020),

the chosen value is α = 1.5, the most adequate value for the task of dialogue generation, in an open-domain

framework.

33

α-entmax Sampling

Table 4.5: Grid search over η and LMcoef for 1.5-entmax sampling.

LMcoef = 1 LMcoef = 2 LMcoef = 4

η = 1e−5 51.81 52.69 52.43
η = 2.5e−5 61.86 63.50 64.97
η = 5e−5 61.76 65.07 69.99
η = 7.5e−5 55.00 69.94 68.53
η = 1e−4 66.91 63.25 66.19
η = 2.5e−4 64.82 67.90 66.78
η = 5e−4 67.98 64.04 68.64
η = 1e−3 67.51 66.74 67.06

Contrary to sampling from softmax, it looks clear that the model performs better for higher values of LMcoef .

However, it is difficult to draw a conclusion for η, hence the necessity of reporting results for values in between the

proposed ones: η = 2.5e−5, η = 7.5e−5 and η = 2.5e−4.

Ideally, all possibilities of α should be tuned as in Table 4.5, but it is impossible to present experiments with all

variations of values, as this process would become too expensive. We therefore present results for other possible

models with fixed LMcoef and η, and α ∈ {1.1, 1.2, 1.3, 1.4, 1.5, 2}. Values for α = 1 are also included, allowing to

compare with sampling from softmax.

Table 4.6: Grid search over α for α-entmax sampling.

α = 1 α = 1.1 α = 1.2 α = 1.3 α = 1.4 α = 1.5 α = 2

LMcoef = 2, η = 7.5e−5 72.33 - 68.03 67.72 69.86 69.94 64.29
LMcoef = 4, η = 5e−5 70.02 70.81 72.22 67.44 - 69.99 62.50

Given the scores documented in Table 4.6, the optimal value for α is α = 1.2, which will be used in the following

section. Nevertheless, Tables 4.5 and 4.6 suggest that there is no improvement from simple sampling from softmax

to α-entmax.

Greedy Search from α-entmax

Given the apparent good performance of more deterministic methods, we were curious to understand the sparsity

influence in greedy search. Therefore, experiments were also performed with greedy search from α-entmax, which

means to choose the top-1 probability word from the entmax distribution, at decoding time. Results for this technique

are presented in Table 4.7, for the best reported LMcoef and η, and various values of α.

Table 4.7: Grid search over α for greedy search from α-entmax.

α = 1 α = 1.1 α = 1.2 α = 1.3 α = 1.4 α = 1.5 α = 2

LMcoef = 2, η = 7.5e−5 86.95 - 90.35 86.64 92.30 86.34 72.62
LMcoef = 4, η = 5e−5 90.73 91.29 89.33 80.03 - 87.65 67.22

In accordance to what was previously seen, there is a significant improvement in the reported values from Table

4.7, which suggest that, in Task Oriented Dialogues, the diversity imposed by sparse methods may be not important

34

for the dialogues quality. The optimal system has α = 1.4, the chosen value for this technique.

4.2 Results

After tuning each model’s hyperparameters, a fair comparison between the different decoding techniques can finally

be made. To do so, we chose the models for the highest results in Section 4.1 and ran them in the Test Set. Besides

the tune metric, the automatic metrics introduced in Section 3.5 are presented. Since the goal is to compare different

sampling techniques in text generation, Table 4.8 comprises only one example for each decoding technique.

Table 4.8: Different models performance for MultiWOZ 2.0.

ε-ppl (↓) sp (↑) Inform (↑) Success (↑) BLEU (↑) BERTScore (↑) METEOR (↑) Tune Metric (↑)

Sampling 2.3074 0.8443 64.4 37.1 21.02 24.36 18.91 71.77
Greedy 25.3800 0.7695 64.6 53.4 29.46 34.81 19.52 88.46
Top-k 3.8036 0.8412 65.4 44.2 24.43 28.89 19.06 79.23
Nucleus 10.2294 0.8204 65.2 54.6 27.80 32.53 19.43 87.18
α-entmax sampling 2.4922 0.8440 63.4 35.8 21.26 24.11 18.87 70.86
α-entmax greedy 25.6698 0.7686 66.8 57.4 29.44 33.38 19.34 91.54

From Table 4.8, it is possible to draw some initial conclusions regarding the systems’ performance. The values

for ε-ppl are in accordance to what was expected, with low values for stochastic methods and high values for more

deterministic ones. The opposite happens for sparsemax score, with higher scores attributed to random sampling

techniques. These values suggest that, despite the performance at the other metrics, greedy systems are more

perplex with the dataset reference, meaning they would less likely generate it. Regarding the dataset specific

metrics, Inform presents similar values throughout the multiple sampling techniques. This regularity suggests the

systems’ ability to effectively attend to the database state information. On the other hand, the Success metric

presents a diverse range of values, proposing the best performance is for greedy, nucleus and greedy search

from α-entmax. In what comes to machine translation metrics, both BLEU and BERTScore are evidences for the

optimized fluency of these three techniques. The values for METEOR suggest a similar behaviour, but in a very

shorter scale, which seems to not allow to draw any conclusions.

The best overall performance is for greedy search from α-entmax, presenting the highest score for Inform and

Success, and therefore to the tune metric also. It is closely followed by greedy search and nucleus sampling, with

top-k afterwards, and sampling and α-entmax sampling being the last in the ranking.

4.2.1 Recent versions of MultiWOZ

To allow the comparison with the most optimized version of the MultiWOZ dataset, results for the 2.1 and 2.2

versions will also be released, for the same decoding techniques.

Table 4.9: Different models performance for MultiWOZ 2.1.

ε-ppl (↓) sp (↑) Inform (↑) Success (↑) BLEU (↑) BERTScore (↑) METEOR (↑) Tune Metric (↑)

Sampling 2.3982 0.8375 65.5 35.7 20.25 23.84 18.92 70.85
Greedy 29.4990 0.7586 62.3 52.0 28.63 35.14 19.42 85.78
Top-k 4.0894 0.8340 66.5 42.6 23.41 28.60 19.01 77.96
Nucleus 11.4130 0.8122 64.3 49.9 27.09 32.51 19.35 84.19
α-entmax sampling 2.5723 0.8388 65.4 38.9 20.78 24.28 18.93 72.93
α-entmax greedy 28.9647 0.7599 67.7 57.1 28.81 34.50 18.48 91.21

35

Table 4.10: Different models performance for MultiWOZ 2.2.

ε-ppl (↓) sp (↑) Inform (↑) Success (↑) BLEU (↑) BERTScore (↑) METEOR (↑) Tune Metric (↑)

Sampling 2.3465 0.8416 63.7 29.3 20.53 23.57 18.96 67.03
Greedy 26.7725 0.7656 65.8 42.7 29.17 34.21 19.54 83.42
Top-k 3.9143 0.8384 67.0 34.2 23.61 27.84 19.16 74.21
Nucleus 10.7412 0.8172 66.0 40.2 27.71 31.98 19.39 80.81
α-entmax sampling 2.6947 0.8421 63.1 29.0 20.55 23.80 18.80 66.60
α-entmax greedy 27.4608 0.7638 63.8 41.7 29.35 33.78 19.45 82.10

While the majority of the scores is similar to the reported in Table 4.8, there is a slight decrease in the Success

metric in MultiWOZ 2.1 (Table 4.9), followed by a significant drop in MultiWOZ 2.2 (Table 4.10). Although there

are not reported results comparing the task of answer generation with more recent versions, we assume this is an

expected behaviour, as one of the improvements consisted in annotating more requested slots for each user turn,

resulting in more requirements for a dialogue to be considered successful.

4.2.2 Context Importance

Along with investigating how different sampling techniques can influence the answer generation, the importance of

the context in the systems’ architecture can be questioned. On a real life application, identifying the belief state and

the database state requires the implementation of a Dialogue State Tracker, which is likely to introduce errors in the

system. To answer this question, some experiments with different formats for the context were carried out.

The results presented in Table 4.11 are for experiments with only database state and last utterance (no belief

state), only belief state and last utterance (no database state), only last utterance (no belief state and no database

state) and the last 3 utterances, with results for standard context also present for comparison. Each system was

trained and tested with the same context format. We chose to present the results using nucleus sampling at test

time, as it is the reported best sampling technique in Budzianowski and Vulić (2019).

Table 4.11: Nucleus sampling performance for different types of context.

ε-ppl (↓) sp (↑) Inform (↑) Success (↑) BLEU (↑) BERTScore (↑) METEOR (↑) Tune Metric (↑)

Full context 10.2294 0.8204 65.2 54.6 27.80 32.53 19.43 87.18
No belief state 14.4673 0.7999 50.5 35.3 25.44 29.22 19.04 68.34
No database state 14.0166 0.8024 52.7 36.4 26.02 29.47 19.07 70.57
Only last utterance 13.5958 0.8045 51.3 36.4 25.30 29.54 19.00 69.15
Last 3 utterances 11.7259 0.8119 67.3 52.1 25.21 23.12 19.11 84.91

There is an evident drop in performance when some parts of the context are omitted, as seen in lines 2, 3 and

4 of Table 4.11, confirming the importance of having this structured information. These experiences report very

similar results, suggesting a situation where the given context is not enough to properly determine which direction

the system should take. The most surprising result is definitely for experiences with only the last 3 utterances. This

arrangement seems to operate very well, even outperforming sampling, top-k and α-entmax sampling in most of

the metrics. However, the low value for BERTScore suggests some faults in the generated text.

4.3 Discussion

Although the metrics allow to have an idea of the model’s performance, some results can be considered surprising

and ask for further inspection. After an extensive analysis of the multiple answer suggestions in diverse dialogues, it

36

is possible to understand that the different decoding strategies have similar performance in many cases, particularly

when the dialogue has a standard format. On the other hand, some specific situations originate a contrast in

the performance of the different techniques. These issues are discussed in this section, as they are relevant to

understand where the systems fail. Some of these aspects can not be grasped by the metrics previously presented,

which makes this discussion more relevant.

Context importance

The first relevant findings are related to the context importance. Following the conclusions taken from Table 4.11,

a closer look at the generated sentences clearly shows a better understanding of the conversation history from the

systems which include the whole standard context, presented in Section 3.3.1.

The most prominent cases reflect the importance of the belief state, where its absence leads the system to not

understand the user’s restrictions, or in the case of Figure 4.1, simply forgetting what has been mentioned in the

conversation. As previously pointed out, the belief state is crucial for the awareness of the dialogue history.

(a) No belief state. (b) Full context.

Figure 4.1: Example demonstrating the belief state importance.

Another relevant appointment is regarding the importance of the database state, which makes the system to

be aligned with the available entities from the database, allowing to have the correct reaction to the user request.

For instance, in the situation of Figure 4.2, there is only one entity available given the restrictions, fact of which the

dialogue with the standard context is aware. However, the system with no database information incorrectly asks for

more restrictions, poorly shaping the direction of the conversation.

(a) No database state. (b) Full context.

Figure 4.2: Example demonstrating the database state importance.

By inspecting the several systems’ performance, a prevalent quality is the ability to attend at the database

state, rarely failing in informing whether there are available entities, which suggests that this architecture allows to

understand simple information from the input text. We can therefore speculate that this could be extended to other

37

types of information, depending on the desired application and type of human intervention. One example could be

to include information regarding the possibility (or lack of it) of pursuing a booking in the text input, to which the

system would very likely correctly attend and originate answers according to it.

Although these situations demonstrate the utility of the belief and database states, the performance of the

system with 3 utterances as context does not corroborate this conclusion. The main surprise lies in the values

for Inform and Success, which are supposed to measure the more objective part of the system’s performance.

However, if we rethink the way the metrics are calculated, we can understand that they do not necessarily translate

the quality of the answers: Inform simply looks at whether an entity was correctly proposed; Success evaluates if

the requestable slots were provided. This means that, even if the system misunderstands the specificities provided

by the user, it can randomly suggest an entity (when it should be the case) and provide the necessary requestables,

being wrongly considered an informable and successful dialogue.

Besides this, another aspect regarding the system with conversation history of length 3 is that it frequently

produces repetitions and degenerate text, confirming the suspect of faults raised by the value for BERTScore. This

regular occurance observed exclusively in this system appears to be due to the introduction of multiple dialogue

utterances, leading the system to a state of confusion.

(a) Last 3 utterances. (b) Full context.

Figure 4.3: Example of degenerate text.

From the analysis of the dialogues with different types of context, we can conclude that metrics may sometimes

fail in detecting the bad performance of the systems.

Inadequate slot generation

When going through the generated answers, a clear mistake is regarding the use of the wrong general slots, given

the conversation domain. On example can be the generation of [hotel address] by nucleus sampling, instead of

the correct term [attraction address], which was generated by the other techniques (Figure 4.4). We could deduce

this inadequacy comes from mistakes in the annotations, but dialogues with annotation mistakes will be kept out of

the thorough evaluation procedure, as their results can be misleading. Nevertheless, their presence in the training

phase can have some influence on the systems’ performance. It is relevant to note that these types of mistakes

have an impact on the Inform and Success metrics, as they are calculated based on these slots.

38

(a) Nucleus sampling. (b) 1.2-entmax sampling.

Figure 4.4: Example of inadequate slot generation.

Booking without enough information

One recurring fault of the systems is not recognizing there is missing information to succeed in performing a booking.

As an example, Figure 4.5 presents a scenario where the user needs a taxi, which is booked without having a

destination. Nevertheless, the metrics are able to grasp this information, as they only consider a booking successful

when the booking pointer was allowing for that.

(a) 1.2-entmax sampling. (b) Nucleus sampling.

Figure 4.5: Example of booking without enough information.

Insisting instead of suggesting

As the goal of these conversations is to provide support to a user in an unknown city, many dialogues require that

the system suggests an entity. In some conditions, the process of giving a suggestion is simple, as the user gives

enough details to immediately narrow down the possibilities. However, there are some cases where the user is

looking for a simple suggestion, without the need of giving many details. In these situations, some techniques

struggle to move forward in the conversation, being stuck in the process of narrowing down the search.

In the case of Figure 4.6, despite the grammar incorrections, α-entmax sampling is the only technique which

answers to the user request, while the others ask for any type of food specifications.

39

(a) Greedy search. (b) 1.2-entmax sampling.

Figure 4.6: Example of insisting instead of suggesting: type of food.

Low understanding of the user utterance

Another type of failure comes from the low understanding of the user’s intentions when the information is not present

in the belief state. As an example, in Figure 4.7 the user is asking for specific information regarding a domain entity

(a hotel, in this case). With exception of top-k sampling, all the techniques succeed in providing the phone number

and star rating, while failing to answer the wi-fi query. This case is not contemplated in the Inform metric, as the

system can still randomly suggest an entity when there is an available one (or the opposite), with or without wi-fi,

neither in the Success metric, as the wi-fi query does not take part of the booking requestables.

(a) Greedy search. (b) Top-k sampling.

Figure 4.7: Example of low understanding of the user utterance: wi-fi query.

(a) Greedy search from 1.4-entmax. (b) 1.2-entmax sampling.

Figure 4.8: Example of low understanding of the user utterance: taxi query.

Another example of low understanding of the user utterance can be the generation of a question which does

not make much sense given the context. In Figure 4.8, there is an example of two possible answers to a costumer

40

looking for a taxi, but one of them is more relevant and natural than the other.

Both these situations may be interpreted as an “overfitting” scenario, where the system is unable to adapt to the

user question and repeats what it has seen in the training data, when in the presence of a certain belief state.

Outperform dataset reference

Despite the flaws present in all the systems, there are some cases where they outperform the reference answer. In

Figure 4.9, there is an example where the dataset reference shows low understanding of the user’s utterance, while

the generating systems provide a more adequate reply. This situation makes it clear that the metrics which use

sentence similarity to measure the quality of generated responses may not always translate into a good evaluation.

(a) Dataset reference. (b) Greedy search from 1.4-entmax.

Figure 4.9: Example of system outperforming dataset reference.

Throughout this section, some systems’ particularities have been presented, raising the question of whether the

evaluation methodology is able to grasp them. At one side, despite being created to evaluate MultiWOZ dialogues,

Inform and Success can not be measured at the turn level, missing some important aspects of dialogue construction.

At the other side, BLEU, METEOR and BERTScore were not designed for this task, but are able to be measured at

the turn level.

Since the ultimate goal of a goal-oriented dialog system is to support the user in a task accomplishment, it is

important to understand if the reported metrics are reliably reproducing the human perception of quality. Liu et al.

(2016) observed that metrics such as BLEU and METEOR correlate poorly with human judgment in open-domain

dialogues generation, as they assume that valid responses have significant word overlap with the ground truth

responses. This poor correlation arises from the fact that, in a dialogue, there are many acceptable responses

to an input context, known as the one-to-many problem (Zhao et al., 2017). The opposite has been reported by

Sharma et al. (2017) in goal-oriented dialogue systems, finding automatic metrics to strongly correlate with human

judgement. However, this study was based on a pipeline approach to answer generation, evaluating the quality

of the translation from dialogue acts into a proper sentence. This task can be considered similar to a machine

translation task, contrasting with the one to be evaluated in this work. As the generation process evolves towards

an end-to-end approach, some conclusions should be revisited, to be done in the following chapter.

41

42

Chapter 5

Human Evaluation

Despite their diversity and constant evolution, automatic metrics should not be used alone to draw conclusions

about a system’s performance. Van Der Lee et al. (2019) pointed out that they present interpretability problems, as

multiple text generation which receives the same low score can fail in very different ways. Hashimoto et al. (2019)

also state that automatic evaluation captures diversity but not quality, while the opposite happens with human

evaluation. State-of-the-art works usually resort to human evaluation, which allows to perceive different aspects of

text generation.

To understand how representative the automatic scores are of the sentences’ quality, a human annotation pro-

cess is conducted in this chapter. A set of evaluation dimensions is developed and presented in Section 5.1, followed

by a description of the annotation procedure in Section 5.2. Finally, the human evaluation results are presented in

Section 5.3, where we calculate the correlation between the presented metrics and human judgement, drawing

conclusions regarding their relevance to evaluate these systems.

5.1 Evaluation Dimensions

Human evaluation can be categorized in two: static, where the human evaluator assesses the dialogue with only the

last utterance being generated by the system; and interactive, where the human evaluates the whole dialogue after

directly interacting with the system (Finch and Choi, 2020). Given the impossibility of implementing an interactive

evaluation in an only turn-level system, this work requires a static evaluation.

5.1.1 Human Metrics from Literature

One conventional field of goal-oriented dialogue evaluation is the Task-Success Rate, measuring how well the

dialogue system fulfills the information requirements dictated by the user goals (Deriu et al., 2020). In this work,

although the Inform and Success automatic metrics are representative of this metric, some aspects are not grasped,

such as the provision of informable slots. Besides, these metrics evaluate the Inform and Success rates of a

dialogue, not being suitable for evaluating the task of generating a single turn.

Across goal-oriented dialogue evaluation work, little has been done regarding the turn level generation. There-

fore, common practices from open-domain will serve as inspiration to build a set of dimensions for human evaluation,

in order to assess the adequateness of each developed answer. There are multiple approaches in state-of-the-art

work: for example, while Liu et al. (2016) use only ’adequacy’ to measure the quality of a response; Mehri and

43

Eskenazi (2020) annotate 10 dimensions in turn-level fields, such as ’Interesting’, ’Relevant’ and ’Fluent’. Huang

et al. (2020) outline the importance of ’Semantics’, to understand the content of the conversation and its implications

beyond the dialogue itself, ’Consistency’, not to provide contradicting information, and ’Interactiveness’, to maximize

the long term user engagement. Finch and Choi (2020) analyze 20 relevant papers on open-domain dialogues since

2018 and found a huge variability in the dimensions for the human evaluation setup, with 21 different dimensions.

After clustering them, a group of 8 broader dimensions was attained: Grammaticality, Relevance, Informativeness,

Emotional Understanding, Engagingness, Proactivity, Consistency and Quality. Aiming at increasing the consis-

tency on how human evaluations are run, the conclusions of this survey will serve as a base for the choice of

dimensions to evaluate in this work.

5.1.2 Proposed Evaluation Dimensions

From the 8 dimensions presented above, 3 were not considered relevant aspects for a goal-oriented conversation,

and therefore discarded: Emotional Understanding, assessing if an appropriate reaction is provided given the emo-

tional state of the user, Engagingness, to evaluate how engaging the responses are, and Proactivity, showing if the

responses actively move towards different topics. That being said, the final dimensions are further explained in the

next sections: Grammaticality, Informativeness, Relevance, Consistency and Overall Quality.

Grammaticality

Grammaticality, adopted by Zhu et al. (2019), is also referred to as fluency or readability. It evaluates the construction

of the sentence, detecting if it is free of grammatical and semantic errors. It is scored in a scale of 1–3:

1. The answer is not fluent at all, being poorly structured and almost not understandable.

2. There are some minor flaws, but the sentence is understandable.

3. The answer is fluent and grammatically perfect, with no flaws.

Informativeness

Informativeness, which is used by Wu et al. (2019), assesses whether the system’s answer brings relevant informa-

tion to the table. Also seen as how helpful is the system in moving forward in the conversation, it can be measured

considering the amount of user queries tackled by the system, in more complex dialogues. In a scale of 1–3:

1. The reply is not informative and not helpful in reaching the conversation goal.

2. The answer is slightly informative, but one would like to get some more information at that point. It can be

used when not all the user queries are covered.

3. The system utterance is totally informative, tackling all the required queries.

Relevance

Relevance aims to evaluate whether the response is appropriate given the user query, according to Qiu et al. (2019).

Also used as appropriateness, it is measured using a 1–3 scale:

1. The response does not make any sense, as it is completely out of context.

2. The answer can not be considered inappropriate, but there were more relevant aspects to tackle or replies to

be given at that stage.

3. The system reply is the most appropriate given the user utterance.

44

Consistency

Consistency was introduced to assess any contradictions within the dialogue, both with system and user utterances.

It can also be seen as how aware is the system of the dialogue history, which is rather important in goal-oriented

dialogues. In a scale of 1–3:

1. The answer is not consistent with what has been said previously, holding some sort of contradiction, with

either user or system previous utterances.

2. The history awareness is not clear, making it hard to determine if the answer is consistent or not. It can also

be used in the cases where the system assumes to know a certain type of information which has not been

tackled.

3. The sentence is consistent and in accordance with the whole dialogue history.

Overall Quality

Overall Quality is a less strict dimension of evaluation, aiming at gathering a more personal opinion regarding the

system answer. It should translate into how overall satisfied is the user with the response, taking into account the

scores for the other 4 metrics. The goal is also to give space for the annotators to differentiate between answers

that have the same scores for the other metrics, but they have a preference for. This aspect is measured using a

scale of 1–5, as it is the most appropriate span, according to Van Der Lee et al. (2019).

5.2 Annotation Process

The annotation process consisted of rating 6 possible responses to the same dialogue context, in the 5 dimensions

of evaluation presented in Section 5.1.2. The different responses are provided by different systems, as evident in

Figure 5.1: for each dialogue context, there are two possible responses from greedy decoding techniques, other

two from sampling techniques, one response from a ’bad model’ — as the replies can be very similar in some

situations, it is used to control the quality of the annotations — and the original ground-truth response. The order in

which these answers appear is random throughout the several dialogues.

GPT-2

Softmax

-entmax

Greedy

Nucleus

Greedy

Sampling

Dialogue
Context

Bad Model

Softmax
Greedy Answer

Softmax
Sampling Answer

-entmax
Greedy Answer

-entmax
Sampling Answer

Bad Answer

Ground-Truth
Answer

Answer A

Answer B

Answer C

Answer D

Answer E

Answer F

Figure 5.1: The possible answers provided by different systems.

The annotators were provided with a document containing guidelines, to ensure the annotation would be as

homogeneous as possible. Besides an explanation of each annotation dimension, this document includes a set of

45

examples for each case. The annotation was done using a Google Forms, where the annotators would rate the 6

possible answers for a dialogue context in a certain dimension at the same time, allowing the comparison between

them. The interface can be seen in Figure 5.2, where the annotator is asked to rate the different possible answers

in the Grammaticality dimension.

Figure 5.2: Annotation interface.

To maximize the available human resources, the evaluation was divided in two parts. The first one consisted of

a mass evaluation of a small amount of dialogues, to gather feedback and validate the process. Hereafter, a second

evaluation phase was conducted, with less available annotators evaluating a bigger amount of dialogues.

5.2.1 Preliminary Experience

In the preliminary annotation phase, 92 annotators, students from the “Natural Language” subject at Instituto Su-

perior Técnico, evaluated the same 6 answers for 4 dialogues, resulting in 24 responses annotated in 5 different

dimensions. Relevance and Consistency were initially proposed to be binary, and therefore evaluated between 0–1

in this first experience. Grammaticality and Informativeness were scored in a scale of 1–3 and Overall Quality from

1–5. The results were used to measure the agreement between annotations, to be presented in Section 5.3.2. After

46

gathering feedback from the preliminary evaluation experience, Relevance and Consistency evolved to a scale of

1–3, with the other domains remaining intact. More examples were also added to the guidelines, which can be

found in Appendix A.

5.2.2 Extended Evaluation

In this experience, the group of annotators was composed of 9 people, from the age of 22 to 36, 5 female and 4

male. Among them, 4 are Master students of Computer Science, 1 has completed his PhD, 2 are PhD students of

Computer Science and Natural Language and 2 have completed their Master’s in Computer Science and Biomedical

Engineering, currently working at Unbabel. Four of the participants had never annotated before. Each annotator

was asked to score 6 answers for 4 dialogues, similarly to the preliminary experience. However, as the goal was

to reach the maximum number of evaluated sentences, each annotator had an individual set of 3 dialogues, plus

a common dialogue among all, to allow measuring the agreement. This dialogue was also present across the

preliminary phase, serving as a control variable. In the extended evaluation phase, 168 possible responses were

evaluated.

5.3 Results

In this section, we present the results for the human evaluation experience. Firstly, the annotation scores given to the

several techniques are reported, followed by presenting the agreement among annotators. Finally, the correlation

between annotations and metrics is calculated.

5.3.1 Annotations Scores

Table 5.1 comprises the average scores of each technique at each evaluation dimension, where the best results

from the four generative models are highlighted. These results show that the annotators find in greedy techniques

the most preferred responses, going into accordance with the information given by the automatic metrics.

Table 5.1: Average scores at each evaluation domain.

Grammaticality Informativeness Relevance Consistency Overall Quality

Softmax sampling 2.8929 2.1825 2.3929 2.4286 3.6548
α-entmax sampling 2.6746 2.2421 2.2103 2.2857 3.6746
Softmax greedy 2.8571 2.3016 2.5992 2.6389 4.1270
α-entmax greedy 2.9206 2.4484 2.5119 2.5992 3.9365
Bad 2.4206 1.8095 1.7698 1.9563 2.6468
Original 2.8929 2.2738 2.5278 2.6746 4.1310

For a more thorough evaluation of each decoding strategy, box plots are presented in Figure 5.3.

The greedy techniques present an overall better performance than the sampling techniques and a very similar

performance between each other. However, α-entmax greedy (Figure 5.3b) outperforms softmax greedy (Figure

5.3a) in the Informativeness dimension. Besides, although softmax greedy presents a higher Consistency average

value, α-entmax greedy results are more concentrated in the upper part, demonstrating the influence that some

outliers can have in the mean value results. Nevertheless, the span of values for Overall Quality is more consistent

in softmax greedy, suggesting a general better performance of this technique.

47

Regarding α-entmax sampling (Figure 5.3d), it shows the longest span of values across all the dimensions,

suggesting to have the worst performance. However, in the Informativeness dimension, it presents a higher median

value than softmax sampling (Figure 5.3c) and even softmax greedy, meaning that at least half of the responses

were rated with the maximum score. From Figure 5.3d, it is possible to understand that, although α-entmax can

produce good results, there is lack of regularity in its performance, generating sometimes replies which are gram-

maticaly incorrect, not informative, not relevant and not consistent with the conversation history.

grammati-
 cality

informa-
 tiveness

relevance consistency overall
 quality

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

(a) Softmax greedy.

grammati-
 cality

informa-
 tiveness

relevance consistency overall
 quality

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

(b) α-entmax greedy.

grammati-
 cality

informa-
 tiveness

relevance consistency overall
 quality

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

(c) Softmax sampling.

grammati-
 cality

informa-
 tiveness

relevance consistency overall
 quality

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

(d) α-entmax sampling.

Figure 5.3: Box plot of the annotation results.

5.3.2 Inter Annotator Agreement

Inter Annotator Agreement (IAA) is used to evaluate the reliability of the human evaluation task and its reproducibility,

showing how uniform the annotations are. To allow the measurement between a group of multiple annotators,

Fleiss’s Kappa (Fleiss, 1971) is used. The values for Kappa can range between 0–1, with a score of 0 representing

a random agreement, and 1 meaning there is total agreement among annotators. Contrasting with other agreement

measures, Fleiss’s Kappa does not treat all kinds of disagreement in the same manner and takes into account the

natural order of the ratings, meaning that 4 should correlate more with 5 than with 1 (Bhowmick et al., 2008; Artstein

and Poesio, 2008).

48

In Table 5.2, the values for IAA are presented, for the five evaluation dimensions. In the preliminary experience,

the agreement can be calculated using all the 4 dialogues, while in the extended evaluation phase, it is only possible

to use the common dialogue across them. For a fairer comparison between the two experiences, we also present the

agreement calculated using only this common dialogue for the preliminary experience. Although we acknowledge

that a single dialogue is far from being representative, the values for Kappa allow to have an idea about how

trustworthy these experiences are.

Table 5.2: Fleiss Kappa for the two experiences.

Preliminary — 4 dialogues Preliminary — common dialogue Extended — common dialogue

Grammaticality 0.2517 0.1565 0.2969
Informativeness 0.3221 0.3261 0.2901
Relevance 0.5205 0.5421 0.4904
Consistency 0.4305 0.4633 0.5857
Overall Quality 0.2225 0.2572 0.2945

For all the dimensions, there is either a fair agreement (0.2–0.4) or a moderate agreement (0.4–0.6), accord-

ing to the interpretation scale proposed by Viera and Garrett (2005). The lowest values can suggest that there

were some difficulties in annotating certain dimensions. According to Celikyilmaz et al. (2020), low agreement be-

tween annotators can also indicate that there are not significant differences in the possible answers, which indeed

happened in most of the dialogues, where some of the responses were very similar.

From the preliminary to the extended evaluation phase, the agreement increased in Grammaticality, Consistency

and Overall Quality, while it decreased in Informativeness and Relevance. This drop would be expected in the

Relevance and Consistency dimensions, as the scale span was enlarged. In what comes to Informativeness, a

possible explanation can be the difficulty to score it in some specific dialogues. As an example, we have the

dialogue context of Figure 5.2, where there are no specific queries to fill in the question “Can I get some help

locating a room for the night?”, making the Informativeness dimension more ambiguous.

5.3.3 Correlation with Automatic Metrics

To measure the correlation between the evolution of two variables, the correlation coefficient is usually calculated. Its

values can range between -1.0, for a perfect negative correlation, and 1.0, showing a perfect positive correlation. A

correlation of 0.0 means that there is no relationship between the movement of the two variables. The most popular

ways to measure these values are the Pearson correlation, measuring the linear relationship, and the Spearman

correlation, determining how well the two variables are correlated through a monotonic function. In this case, the two

variables to correlate are each human annotation dimension and the metrics to evaluate generation, at the sentence

level. Considering the essence of each metric, BLEU, BERTScore and METEOR are considered. Similarly to Mehri

and Eskenazi (2020), both Pearson and Spearman coefficients are presented.

There are two main ways to evaluate the correlation between human annotations and automatic metrics in NLG

(Ma et al., 2019). The first one is at the segment level (Table 5.3), where the average of scores for a single answer

is correlated with the automatic metric for that specific answer. The amount of datapoints is therefore proportional to

the number of evaluated dialogues. On the system level (Table 5.4), all the average scores for a domain of the same

system are averaged, being that value used to calculate the correlation between the dimension and the metric. In

the latter, the amount of datapoints is independent of the amount of annotated dialogues, being always 6 in this

case, for each dimension.

49

At the segment level, Table 5.3 shows that all the metrics have low correlation with the domains evaluated by the

annotators. The highest correlation value is between Overall Quality and BLEU, with a Spearman value of 0.3309,

which can still be considered a low correlation value. Nevertheless, BERTScore and METEOR also present the

highest correlation values for Overall Quality, which is a good indicator regarding the fidelity of the automatic metrics.

Contrary to what would be expected, Grammaticality has very low correlation values, suggesting that the automatic

metrics are not able to understand nuances in the language. For a certain dimension, the correlation values for

different metrics are relatively close to each other, proposing a certain agreement among the three metrics.

Similarly to what happens in previous works with an identical approach, the values for correlation at system level

are significantly higher than at segment level, as evident in Table 5.4.

Table 5.3: Correlation at the segment level.

BLEU BERTScore METEOR

Pearson Spearman Pearson Spearman Pearson Spearman

Grammaticality 0.1257 0.1757 0.1575 0.1615 0.1201 0.1182
Informativeness 0.0917 0.1798 0.0941 0.1333 0.0530 0.0766

Relevance 0.1673 0.2423 0.2173 0.2258 0.1789 0.2185
Consistency 0.2107 0.3076 0.2514 0.2560 0.2046 0.2512

Overall Quality 0.2360 0.3309 0.2975 0.2805 0.2341 0.2679

Table 5.4: Correlation at the system level.

BLEU BERTScore METEOR

Pearson Spearman Pearson Spearman Pearson Spearman

Grammaticality 0.3535 0.5508 0.4367 0.5508 0.1201 0.1182
Informativeness 0.1962 0.4857 0.2567 0.4857 0.2081 0.4857

Relevance 0.3765 0.8857 0.4593 0.8857 0.4149 0.8857
Consistency 0.5002 0.9429 0.5747 0.9429 0.5348 0.9429

Overall Quality 0.4497 0.8286 0.5177 0.8286 0.4792 0.8286

The first thing that stands out is the values for Spearman correlation, which are basically the same for all the

metrics. This observation confirms that the three metrics are able to extract very similar information, despite being

calculated in different manners. Hence, we can infer that no metric is superior to one other in terms of correlation

with human judgement. Taking BERTScore as an example, although it is calculated using contextual embeddings

and therefore able to understand some context, its behaviour is identical to BLEU, which simply uses similarity

between word embeddings. This suggests that the sentence alone is not enough to grasp the whole meaning

behind a reply in a goal-oriented dialogue.

There is a contrast between Pearson and Spearman values for correlation, with the latter holding much higher

results. It indicates that, for close values of automatic metric scores, the slight difference between them is not

enough to choose between the systems.

The high correlation values for Relevance, Consistency and Overall Quality indicate that the three automatic

metrics can be useful to compare the performance of different systems, despite being less informative when eval-

uating a sentence alone. However, the highest correlation values are for Consistency, for the three metrics. This

observation is unexpected, as this domain is probably the one with least information present in each sentence. It

50

can indicate that these correlation values have low fundament, representing a coincidence of high and low scores,

and can not be considered representative. Many authors report how difficult it is to show correlation between hu-

man annotations and automatic metrics, such as the case of the WMT20 Metrics Shared Task, where no winner

was found (Mathur et al., 2020).

In Figure 5.4, it is possible to see the correlation between Overall Quality and the metrics, at the system level.

The original responses are not included, because the automatic metrics obviously obtain the maximum score, dam-

aging the readability of the graphics. There is slight correlation between scores among the generation techniques.

Both the metrics and human judgement find in greedy sampling from softmax the highest generation quality, closely

followed by greedy sampling from α-entmax. Nevertheless, automatic metrics can sometimes lead to poor conclu-

sions, which is the case of sampling from softmax: although humans find it the worst quality technique among this

set of examples, automatic metrics rate it as the second best one. Besides, despite their close scores in Overall

Quality, softmax sampling and α-entmax sampling have distinct automatic metrics values, confirming the possibility

of high quality answers with lower automatic metrics scores.

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2
overall_quality

10

12

14

16

18

BL
EU

softmax sampling
-entmax sampling

softmax greedy
-entmax greedy

bad

(a) BLEU vs Overall Quality.

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2
overall_quality

12.5

15.0

17.5

20.0

22.5

25.0

27.5

BE
RT

Sc
or

e
softmax sampling

-entmax sampling
softmax greedy

-entmax greedy
bad

(b) BERTScore vs Overall Quality.

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2
overall_quality

14

16

18

20

22

24

26

28

M
ET

EO
R

softmax sampling
-entmax sampling

softmax greedy
-entmax greedy

bad

(c) METEOR vs Overall Quality

Figure 5.4: Plot of automatic metrics vs Overall Quality at the system level.

To conclude, metrics such as BLEU, BERTScore and METEOR can give useful information in the comparison

between different systems. In the context of answer generation in goal-oriented dialogues, these metrics are able

to extract similar features, being in concordance with each other. However, as these metrics rely on the comparison

with a database reference, they never recognize a better sentence than the original and techniques with more word

51

diversity are naturally damaged. The lack of history context awareness leads these metrics into the inability of

grasping certain language nuances.

52

Chapter 6

Conclusions

This work added to the study of goal-oriented dialogue systems, by experimenting novel response generation strate-

gies, as well as exploring the adopted evaluation techniques and how informative they are of the response quality.

In this chapter, we sum up the achievements in Section 6.1 and present some interesting possible directions for

future work in Section 6.2.

Many concepts developed in this work can be transferred to the aerospace industry, with the integration of mod-

ern data analysis techniques and Machine Learning in the optimization of several problems. The unprecedented

ability to store and collect data will have a broad impact in the aerospace business, from process control and stan-

dardization in the factory, to the development of materials and composites for the aircraft; from testing, certification

and anomaly detection to the previously mentioned human-machine interaction (Brunton et al., 2020).

Besides, a substantial field of application of Deep Learning techniques is Computer Vision, which is the base of

modern Image Processing, with direct applications for drones and satellites. Although the preferred architectures for

this technology are Convolutional Neural Networks, which have not been tackled in this thesis, recent works have

been trying to use the powerful Transformers in these applications, opening some possible directions to discover

(Dosovitskiy et al., 2020; Chen et al., 2020).

6.1 Achievements

In this work, we studied how different techniques can influence the quality of a generated automatic reply, in a

goal-oriented setting. The main achievements lie in the application of sparse attention mechanisms to automatic

goal-oriented response generation, making use of the α-entmax transformation. Although stochastic strategies

were found to have their positive attributes, we conclude that, in this framework, the prime systems are those

which employ greedy techniques, using either the standard softmax or α-entmax. Moreover, we confirmed that

goal-oriented response generation benefits from having a more informative context, as it significantly improves the

dialogue awareness. The thorough analysis of the systems’ behaviour led to realizing that many aspects are not

grasped by the chosen automatic evaluation metrics, motivating further investigation.

Futhermore, we successfully conducted a study to find correlations between the adopted automatic metrics

and human perception of quality. A set of evaluation dimensions was developed, supported by some illustrative

guidelines, allowing the collection of a significant amount of reliable human annotations. After a probabilistic analy-

sis, we found that BLEU, METEOR and BERTScore substantially correlate with human judgement, being useful to

roughly compare the performance of different systems. Nonetheless, these metrics are inappropriate to understand

53

nuances in cases where the systems show a similar performance, making it essential to resort to human evaluation

for a more detailed comparison.

6.2 Future Work

This work has paved the way for other approaches in the goal-oriented dialogue systems field. The first path derives

from the fact that most real dialog corpora do not have information regarding dialogue state, and labeling it requires

a lot of human effort. Therefore, it would be ideal to have a system which could be trained without this information,

as it would be much more easily transferable to other applications. One simple way to pursue this would be to follow

Ham et al. (2020) and include the dialogue state in the generated sentence, incorporating a Dialogue State Tracker

capability in the system. By doing this, the system would be able to perform in an interactive way, which would also

lead to a fairer evaluation of the systems, as human language and behaviour may differ from the provided in the

dataset (Takanobu et al., 2020). Nevertheless, we are positive that the results would not be very different, as more

freedom in conducting the dialogues would probably just increase the discrepancy between the models.

Besides, although we made progress regarding which automatic metrics should be used in goal-oriented dia-

logue, if used alone, there are several missed aspects and nuances. Given the difficulty in understanding if two

sentences have the same meaning in all relevant aspects, to find the most effective way of evaluating a system’s

performance remains an open problem. An interesting direction would be to build a neural evaluation model, which

would learn to evaluate generated text based on scores given by humans. As evaluation problems are reported in

different NLP fields, similar approaches start appearing, such as COMET (Rei et al., 2020), a neural evaluation tool

for Machine Translation. Nonetheless, we recognize that collecting the necessary data for this purpose would be an

extremely expensive process.

On a final note, we would like to emphasize some ethical issues that may appear from automatic dialogue

design. Although useful and powerful, Language Models pre-trained on massive datasets simply consisting of text

from the internet can lead to extremely biased models, prone to have unwanted behaviours. Although neural models

require huge amounts of data to be successful, we underline the importance of revisiting dataset construction, in

which the quality and fairness of information should be prioritized over quantity.

54

Bibliography

Gabor Angeli, Percy Liang, and Dan Klein. A Simple Domain-Independent Probabilistic Approach to Generation. In

Proc. of the Conference on Empirical Methods in Natural Language Processing, 2010.

Ron Artstein and Massimo Poesio. Survey Article: Inter-Coder Agreement for Computational Linguistics. Compu-

tational Linguistics, 34:555–596, 2008.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly Learning to Align

and Translate. In Proc. of the International Conference on Learning Representations, 2015.

Satanjeev Banerjee and Alon Lavie. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation

with Human Judgments. In Proc. of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine

Translation and/or Summarization, 2005.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A Neural Probabilistic Language Model.

Journal of Machine Learning Research, 3:1137–1155, 2003.

Plaban Kr. Bhowmick, Pabitra Mitra, and Anupam Basu. An Agreement Measure for Determining Inter-Annotator

Reliability of Human Judgements on Affective Text. In Proc. of the Workshop on Human Judgements in Compu-

tational Linguistics, 2008.

Steven L. Brunton, J. Nathan Kutz, Krithika Manohar, Aleksandr Y. Aravkin, Kristi Morgansen, Jennifer Klemisch,

Nicholas Goebel, James Buttrick, Jeffrey Poskin, Agnes Blom-Schieber, Thomas Hogan, and Darren McDonald.

Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning. 2020. URL https://

arxiv.org/abs/2008.10740.

Paweł Budzianowski and Ivan Vulić. Hello, It’s GPT-2 - How Can I Help You? Towards the Use of Pretrained

Language Models for Task-Oriented Dialogue Systems. In Proc. of the Workshop on Neural Generation and

Translation, 2019.

Paweł Budzianowski, Tsung-hsien Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ramadan,

and Milica Gašić. MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue

Modelling. In Proc. of the Conference on Empirical Methods in Natural Language Processing, 2018.

Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai Sankar, Arvind Neelakantan, Daniel Duckworth, Semih Yavuz,

Ben Goodrich, Amit Dubey, Andy Cedilnik, and Kyu Young Kim. Taskmaster-1: Toward a Realistic and Diverse

Dialog Dataset. In Proc. of the Conference on Empirical Methods in Natural Language Processing, 2019.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. Evaluation of Text Generation: A Survey. 2020. URL https:

//arxiv.org/abs/2006.14799.

55

https://arxiv.org/abs/2008.10740
https://arxiv.org/abs/2008.10740
https://arxiv.org/abs/2006.14799
https://arxiv.org/abs/2006.14799

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. A Survey on Dialogue Systems: Recent Advances and

New Frontiers. ACM SIGKDD Explorations Newsletter, 19:25–35, 2017.

Mark Chen, Alec Radford, Rewon Child, Jeff Wu, Heewoo Jun, Prafulla Dhariwal, and David Luan. Image GPT.

OpenAI Blog, 2020. URL https://openai.com/blog/image-gpt/.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,

and Yoshua Bengio. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine

Translation. In 2014 Conference on Empirical Methods in Natural Language Processing, 2014.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov. Transformer-XL:

Attentive Language Models Beyond a Fixed-Length Context. In Proc. of the Annual Meeting of the Association

for Computational Linguistics, 2019.

Jan Deriu, Alvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, Sophie Rosset, Eneko Agirre, and Mark Cieliebak.

Survey on Evaluation Methods for Dialogue Systems. Artificial Intelligence Review, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. In Proc. of the Conference of the North American Chapter of the

Association for Computational Linguistics, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An

Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2020. URL http://arxiv.org/

abs/2010.11929.

Jeffrey L. Elman. Finding Structure in Time. Cognitive Science, 14:179–211, 1990.

Mihail Eric, Rahul Goel, Shachi Paul, Adarsh Kumar, Abhishek Sethi, Peter Ku, Anuj Kumar Goyal, Sanchit Agarwal,

Shuyang Gao, and Dilek Hakkani-Tur. MultiWOZ 2.1: A Consolidated Multi-Domain Dialogue Dataset with State

Corrections and State Tracking Baselines. ArXiv, 2019. URL http://arxiv.org/abs/1907.01669.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical Neural Story Generation. In Proc. of the Annual Meeting

of the Association for Computational Linguistics, 2018.

Sarah E. Finch and Jinho D. Choi. Towards Unified Dialogue System Evaluation: A Comprehensive Analysis of

Current Evaluation Protocols. In Proc. of the Annual Meeting of the Special Interest Group on Discourse and

Dialogue, 2020.

Joseph L. Fleiss. Measuring Nominal Scale Agreement Among Many Raters. Psychological Bulletin, 76:378–382,

1971.

Rob Gaizauskas, James Law, and Emma Barker. Investigating Spoken Dialogue to Support Manufacturing Pro-

cesses. Technical report, University of Sheffield, 2018.

Jianfeng Gao, Michel Galley, and Lihong Li. Neural Approaches to Conversational AI. In Proc. of the Annual Meeting

of the Association for Computational Linguistics, 2018.

Sergey Golovanov, Rauf Kurbanov, Sergey Nikolenko, Kyryl Truskovskyi, Alexander Tselousov, and Thomas Wolf.

Large-Scale Transfer Learning for Natural Language Generation. In Proc. of the Annual Meeting of the Associa-

tion for Computational Linguistics, 2019.

56

https://openai.com/blog/image-gpt/
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1907.01669

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Note, 2016. URL https://www.

deeplearningbook.org/.

Alex Graves, Abdel Rahman Mohamed, and Geoffrey Hinton. Speech Recognition with Deep Recurrent Neural

Networks. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2013.

Donghoon Ham, Jeong-gwan Lee, Youngsoo Jang, and Kee-eung Kim. End-to-End Neural Pipeline for Goal-

Oriented Dialogue System using GPT-2. In Proc. of the Annual Meeting of the Association for Computational

Linguistics, 2020.

Tatsunori B Hashimoto, Hugh Zhang, and Percy Liang. Unifying Human and Statistical Evaluation for Natural Lan-

guage Generation. In Proc. of the Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, 2019.

Matthew Henderson, Ivan Vulić, Daniela Gerz, Iñigo Casanueva, Paweł Budzianowski, Sam Coope, Georgios Sp-

ithourakis, Tsung-Hsien Wen, Nikola Mrkšić, and Pei-Hao Su. Training Neural Response Selection for Task-

Oriented Dialogue Systems. In Proc. of the Annual Meeting of the Association for Computational Linguistics,

2019.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9:1735–1780, 1997.

Ari Holtzman, Jan Buys, Leo Du, Maxwell Forbes, and Yejin Choi. The Curious Case of Neural Text Degeneration.

In Proc. of the International Conference on Learning Representations, 2020.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer Feedforward Networks are Universal Approxima-

tors. Neural Networks, 2:359–366, 1989.

Minlie Huang, Xiaoyan Zhu, and Jianfeng Gao. Challenges in Building Intelligent Open-Domain Dialog Systems.

ACM Transactions on Information Systems, 38, 2020.

Daniel Jurafsky and James Martin. Speech and Language Processing: An Introduction to Natural Language Pro-

cessing, Computational Linguistics and Speech Recognition. 3rd edition, 2019.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kaufmann, Andrew Tomkins, Balint Miklos, Greg Corrado, László

Lukács, Marina Ganea, Peter Young, and Vivek Ramavajjala. Smart Reply: Automated Response Suggestion for

Email. In Proc. of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

Ravi Kondadadi, Blake Howald, and Frank Schilder. A Statistical NLG Framework for Aggregated Planning and

Realization. In Proc. of the Annual Meeting of the Association for Computational Linguistics, 2013.

Oliver Lemon, Kallirroi Georgila, James Henderson, and Matthew Stuttle. An ISU Dialogue System Exhibiting

Reinforcement Learning of Dialogue Policies: Generic Slot-Filling in the TALK In-car System. In Proc. of the

Conference of the European Chapter of the Association for Computational Linguistics, 2006.

Chia Wei Liu, Ryan Lowe, Iulian V. Serban, Michael Noseworthy, Laurent Charlin, and Joelle Pineau. How NOT To

Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response

Generation. In Proc. of the Conference on Empirical Methods in Natural Language Processing, 2016.

Qingsong Ma, Johnny Wei, Ondřej Bojar, and Yvette Graham. Results of the WMT19 Metrics Shared Task:

Segment-Level and Strong MT Systems Pose Big Challenges. In Proc. of the Conference on Machine Trans-

lation, 2019.

57

https://www.deeplearningbook.org/
https://www.deeplearningbook.org/

Andre F.T. Martins and Ramon F. Astudillo. From Softmax to Sparsemax: A Sparse Model of Attention and Multi-

Label Classification. In Proc. of the International Conference on Machine Learning, 2016.

Pedro Henrique Martins, Zita Marinho, and André F. T. Martins. Sparse Text Generation. In Proc. of the Conference

on Empirical Methods in Natural Language Processing, 2020.

Nitika Mathur, Johnny Tian-Zheng Wei, Markus Freitag, Qingsong Ma, and Ondrej Bojar. Results of the WMT20

Metrics Shared Task. In Proc. of the Conference on Machine Translation, 2020.

Shikib Mehri and Maxine Eskenazi. Unsupervised Evaluation of Interactive Dialog with DialoGPT. In Proc. of the

Annual Meeting of the Special Interest Group on Discourse and Dialogue, 2020.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed Representations of Words and

Phrases and their Compositionality. In Proc. of the International Conference on Neural Information Processing

Systems, 2013.

Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data

Engineering, 22:1345–1359, 2010.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zu. BLEU: A Method for Automatic Evaluation of Ma-

chine Translation. In Proc. of the Annual Meeting on Association for Computational Linguistics, 2002.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the Difficulty of Training Recurrent Neural Networks. In

Proc. of the International Conference on Machine Learning, 2013.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Michael Zeng, and Jianfeng Gao. Few-shot

Natural Language Generation for Task-Oriented Dialog. 2020. URL https://arxiv.org/abs/2002.12328.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global Vectors for Word Representation. In

Proc. of the Conference on Empirical Methods in Natural Language Processing, 2014.

Ben Peters, Vlad Niculae, and André F. T. Martins. Sparse Sequence-to-Sequence Models. In Proc. of the Annual

Meeting of the Association for Computational Linguistics, 2019.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-

moyer. Deep Contextualized Word Representations. In Proc. of the Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies, 2018.

Matt Post. A Call for Clarity in Reporting BLEU Scores. In Proc. of the Conference on Machine Translation, 2018.

Lisong Qiu, Juntao Li, Wei Bi, Dongyan Zhao, and Rui Yan. Are Training Samples Correlated? Learning to Generate

Dialogue Responses with Multiple References. In Proc. of the Annual Meeting of the Association for Computa-

tional Linguistics, 2019.

Alec Radford and Tim Salimans. Improving Language Understanding by Generative Pre-Training. OpenAI Blog,

2018. URL https://openai.com/blog/language-unsupervised/.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language Models are Unsu-

pervised Multitask Learners. OpenAI Blog, 2019. URL https://openai.com/blog/better-language-models/.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon Lavie. COMET: A Neural Framework for MT Evaluation. In

Proc. of the Conference on Empirical Methods in Natural Language Processing, 2020.

58

https://arxiv.org/abs/2002.12328
https://openai.com/blog/language-unsupervised/
https://openai.com/blog/better-language-models/

Sebastian Ruder. Neural Transfer Learning for Natural Language Processing. PhD thesis, 2019.

Jost Schatzmann and Steve Young. The Hidden Agenda User Simulation Model. IEEE Transactions on Audio,

Speech and Language Processing, 17, 2009.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare Words with Subword Units.

Proc. of the Annual Meeting of the Association for Computational Linguistics, 2016.

Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. Building End-To-End

Dialogue Systems Using Generative Hierarchical Neural Network Models. In Proc. of the AAAI Conference on

Artificial Intelligence, 2016.

Louis Shao, Stephan Gouws, Denny Britz, Anna Goldie, Brian Strope, and Ray Kurzweil. Generating High-Quality

and Informative Conversation Responses with Sequence-to-Sequence models. In Proc. of the Conference on

Empirical Methods in Natural Language Processing, 2017.

Shikhar Sharma, Layla El Asri, Hannes Schulz, and Jeremie Zumer. Relevance of Unsupervised Metrics in Task-

Oriented Dialogue for Evaluating Natural Language Generation. 2017. URL http://arxiv.org/abs/1706.

09799.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neural Networks. In Proc. of

the International Conference on Neural Information Processing Systems, 2014.

Ryuichi Takanobu, Qi Zhu, Jinchao Li, Baolin Peng, Jianfeng Gao, and Minlie Huang. Is Your Goal-Oriented Dialog

Model Performing Really Well? Empirical Analysis of System-wise Evaluation. In Proc. of the Annual Meeting of

the Special Interest Group on Discourse and Dialogue, 2020.

Chris Van Der Lee, Albert Gatt, Emiel van Miltenburg, Sander Wubben, and Emiel Krahmer. Best Practices for the

Human Evaluation of Automatically Generated Text. In Proc. of the International Conference on Natural Language

Generation, 2019.

Ashish Vaswani, Google Brain, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. Attention Is All You Need. Proc. of the Conference on Neural Information Processing

Systems, 2017.

Anthony J Viera and Joanne M Garrett. Understanding Interobserver Agreement: the Kappa Statistic. Family

medicine, 37:360–363, 2005.

Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R. Selvaraju, Qing Sun, Stefan Lee, David Crandall, and

Dhruv Batra. Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models. 2016. URL

http://arxiv.org/abs/1610.02424.

Oriol Vinyals and Quoc Le. A Neural Conversational Model. In Proc. of the International Conference on Machine

Learning, 2015.

Zhuoran Wang and Oliver Lemon. A Simple and Generic Belief Tracking Mechanism for the Dialog State Tracking

Challenge: On the believability of observed information. In Proc. of the Annual Meeting of the Special Interest

Group on Discourse and Dialogue, 2013.

Joseph Weizenbaum. ELIZA - A Computer Program For the Study of Natural Language Communication Between

Man And Machine. Communications of the ACM, 9, 1966.

59

http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1610.02424

Tsung Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei Hao Su, David Vandyke, and Steve Young. Semantically Condi-

tioned LSTM-based Natural Language Generation for Spoken Dialogue Systems. In Proc. of the Conference on

Empirical Methods in Natural Language Processing, 2015.

Tsung Hsien Wen, David Vandyke, Nikola Mrkšı́c, Milica Gašı́c, Lina M. Rojas-Barahona, Pei Hao Su, Stefan

Ultes, and Steve Young. A Network-based End-to-End Trainable Task-oriented Dialogue System. In Proc. of the

Conference of the European Chapter of the Association for Computational Linguistics, 2017.

Thomas Wolf, Victor Sanh, Julien Chaumond, and Clement Delangue. TransferTransfo: A Transfer Learning Ap-

proach for Neural Network Based Conversational Agents. 2019. URL http://arxiv.org/abs/1901.08149.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl, Caiming Xiong, Richard Socher, and Pascale Fung. Trans-

ferable Multi-Domain State Generator for Task-Oriented Dialogue Systems. In Proc. of the Annual Meeting of the

Association for Computational Linguistics, 2019.

Steve Young, Milica Gasi c, Blaise Thomson, and Jason D Williams. POMDP-based Statistical Spoken Dialogue

Systems: a Review. In Proc. of the IEEE, 2013.

Xiaoxue Zang, Abhinav Rastogi, and Jindong Chen. MultiWOZ 2.2: A Dialogue Dataset with Additional Annotation

Corrections and State Tracking Baselines. 2020. URL https://arxiv.org/abs/2007.12720.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. Personalizing Di-

alogue Agents: I have a dog, do you have pets too? In Proc. of the Annual Meeting of the Association for

Computational Linguistics, 2018.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. BERTScore: Evaluating Text Gener-

ation with BERT. In Proc. of the International Conference on Learning Representations, 2020a.

Zheng Zhang, Ryuichi Takanobu, Qi Zhu, Minlie Huang, and Xiaoyan Zhu. Recent Advances and Challenges in

Task-oriented Dialog System. Science China Technological Sciences, 63, 2020b.

Tiancheng Zhao and Maxine Eskenazi. Towards End-to-End Learning for Dialog State Tracking and Management

using Deep Reinforcement Learning. In Proc. of the Annual Meeting of the Special Interest Group on Discourse

and Dialogue, 2016.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. Learning Discourse-level Diversity for Neural Dialog Models

using Conditional Variational Autoencoders. In Proc. of the Annual Meeting of the Association for Computational

Linguistics, 2017.

Qingfu Zhu, Lei Cui, Weinan Zhang, Furu Wei, and Ting Liu. Retrieval-Enhanced Adversarial Training for Neural

Response Generation. In Proc. of the Annual Meeting ofthe Association for Computational Linguistics, 2019.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler.

Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books. In

Proc. of the IEEE International Conference on Computer Vision, 2015.

60

http://arxiv.org/abs/1901.08149
https://arxiv.org/abs/2007.12720

Appendix A

Annotation Guidelines

61

62

63

64

65

66

67

68

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Main Contributions
	1.4 Thesis Outline

	2 Background
	2.1 From the mlp to the Transformer
	2.1.1 mlp
	2.1.2 seq2seq Learning
	2.1.3 Attention
	2.1.4 Transformer

	2.2 -entmax Transformation
	2.3 Text Representation
	2.3.1 Sparse Representations
	2.3.2 Dense Representations

	2.4 Transfer Learning
	2.5 Conversational ai Systems
	2.5.1 Goal-Oriented Systems
	2.5.2 Answer Generation

	3 Neural Dialogue Language Model
	3.1 Relevant Architectures
	3.1.1 TransferTransfo
	3.1.2 gpt2
	3.1.3 Hello It's gpt2 — How Are You?

	3.2 multiwoz Dataset
	3.2.1 Corpora Specifications
	3.2.2 Preprocessing multiwoz

	3.3 Implementation
	3.3.1 Language Model Input
	3.3.2 Softmax vs -entmax

	3.4 Decoding Strategies
	3.4.1 Greedy Search
	3.4.2 Sampling
	3.4.3 Top-k Sampling
	3.4.4 Nucleus Sampling
	3.4.5 -entmax Sampling

	3.5 Performance Evaluation
	3.5.1 -perplexity
	3.5.2 Sparsemax Score
	3.5.3 Inform Rate
	3.5.4 Success Rate
	3.5.5 bleu
	3.5.6 meteor
	3.5.7 bertScore

	4 Experiments
	4.1 Hyperparameter Tuning
	4.1.1 Softmax
	4.1.2 -entmax

	4.2 Results
	4.2.1 Recent versions of multiwoz
	4.2.2 Context Importance

	4.3 Discussion

	5 Human Evaluation
	5.1 Evaluation Dimensions
	5.1.1 Human Metrics from Literature
	5.1.2 Proposed Evaluation Dimensions

	5.2 Annotation Process
	5.2.1 Preliminary Experience
	5.2.2 Extended Evaluation

	5.3 Results
	5.3.1 Annotations Scores
	5.3.2 iaa
	5.3.3 Correlation with Automatic Metrics

	6 Conclusions
	6.1 Achievements
	6.2 Future Work

	Bibliography
	A Annotation Guidelines

