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Abstract

The tracking of spacecraft provided by Orbit Determination systems requires frequent and accurate
monitoring of their orbital trajectories, which, in many cases, is fundamental to the success and
deliverance of space missions. This thesis focuses on the problem of sequential real-time estimation of
a Low Earth Orbit satellite (with applications in remote sensing, communications, Earth observation,
etc.) tracked by ground stations. Although the use of GNSS sensors has been favored in recent years
for this kind of mission scenario due to their low-cost, availability and proven capability of satellite
tracking, these systems might not always be reliable. In view of this, it is necessary to provide
auxiliary systems that safeguard Orbit Determination procedures in case of GNSS failure. This thesis
combines the Semianalytical Satellite Theory with current Kalman filtering techniques to develop
and study two sequential algorithms: the Extended Semianalytical Kalman Filter and the Unscented
Semianalytical Kalman Filter. The latter is a novel algorithm proposed in this research, combining
semianalytical propagation with Unscented Kalman Filters. The design implications of the interaction
between these filters and the orbital propagation/perturbation theory are discussed. These algorithms
are then evaluated in terms of efficiency, accuracy and speed of convergence by comparison with
Special Perturbation Cowell Extended and Unscented Kalman Filters, which are more established
algorithms in the literature. By conducting some simulation test cases, it is found that Semianalytical
filters can compete with Cowell filters in accurately and efficiently determining and predicting satellite
ephemerides.
Keywords: Orbit Determination, Kalman Filters, Low Earth Orbit, Semianalytical Propagation,
Cowell Propagation

1. Introduction

Satellite Orbit Determination (OD) refers to the
estimation of orbits of space objects, given appli-
cable measurements [1]. OD has had a long and
outstanding history. From the launch in 1957 of
Sputnik, which was tracked mostly by visual obser-
vations with a precision to only a few kilometers,
the technological revolution of the last decades (in
terms of computational power and tracking sensors)
has enable OD solutions to the reach sub-centimeter
accuracy [1].

A broad number of satellite space missions and
applications require orbit information provided by
OD systems (Earth observation, remote sensing,
telecommunications, etc.) [2]. OD estimates are
also crucial for orbit control and planning [3].

In recent years there has been a large increase in
the populations of satellites around the Earth. This
growth demands the development and improvement
of fast, efficient and accurate orbit propagators. It
is estimated that the US Joint Space Operation

Center performs about 40 000 track and object cor-
relations per day to maintain their catalog and pro-
vide collision warnings [4]. Broadly speaking, orbit
propagation methods are classified as [5]: 1) Special
Perturbation (SP) methods numerically and accu-
rately propagate the Equations of Motion (EoM);
2) General Perturbation (GP) methods provide an-
alytical and simplified approximations to the EoM;
and 3) Semianalytical methods average the EoM,
explicitly separating the short-term periodic mo-
tion from the long-term periodic and secular mo-
tion, which can then be numerically propagated
with much larger integration step sizes when com-
pared to SP. SP methods are the most accurate, but
also the most computationally demanding, whereas
GP methods are efficient but much more inaccu-
rate [4]. Semianalytical methods provide a middle
ground of sorts between SP and GP.

This work focuses on the problem of sequential
real-time OD of a Low Earth Orbit (LEO) satel-
lite tracked by ground stations implementing both
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SP and Semianalytical propagation schemes. Al-
though the use of GNSS has been greatly favored
in past years, it is important to provide auxiliary
systems that safeguard OD procedures in case of
GNSS failure. Reduced force models are considered,
and these dynamics are then coupled with estab-
lished nonlinear and sub-optimal filtering schemes,
namely, the Extended Kalman Filter (EKF) and the
Unscented Kalman Filter (UKF).

While SP and GP propagation schemes have been
extensively studied in the context of OD [5, 6, 7, 8],
only a handful of research studies have been con-
cerned with coupling OD filters with Semianalytic
Satellite Theory (SST) [9, 10, 11]. Andrew Green
in [9] and Stephen Taylor in [10] proposed, im-
plemented and tested the coupling of an EKF fil-
ter with Draper Semianalytical Satellite Theory
(DSST) [12]. Besides reproducing this Extended
Semianalytical Kalman Filter (ESKF), this work
proposes a novel algorithm coupling an UKF with
SST. The performance of these Semianalytical fil-
ters is evaluated and benchmarked against tradi-
tional implementations of Cowell filters (EKF and
UKF). The SST used in this research is based on
recent work by Todd Ely [13, 14]. When compared
to DSST, Ely’s theory is more flexible, easier to im-
plement in computational applications and covers a
wider range of problem domains, namely, eccentric
orbits [13].

The development of Semianalytical OD systems
require additional operations (when compared to
SP methods) to keep their efficient implementation.

2. Propagation and Measurement Models
In order to build orbital propagation and measure-
ment models, a state-space representation of the
satellite dynamics is needed. The two state-space
models required for this work are summarized be-
low.

2.1. Orbital State-Space Models
Six unidimensional quantities are needed to define
the state of spacecraft (without orientation), build-
ing up different orbital state-space models. These
models are either built around generic position and
velocity vectors, or orbital element sets, which are
scalar magnitude and angular variables that spec-
ify the shape and orientation of the orbit and locate
the satellite within it.

Let x denote the orbital state vector, comprising
the Earth Centered Inertial (ECI) position ri and
velocity vi, expressed in Cartesian coordinates, i.e.,

x “
“

x, y, z, vx, vy, vz
‰T
.

SST is usually developed in the equinoctial element
set, which is denoted as E “ ra, h, k, p, q, λsT . Ei-
ther representation is equivalent and completely lo-
cates the object.

2.2. Osculating Dynamics
This work adopts a reduced force model that is
suitable for real-time implementation and captures
the most important perturbations from the Earth’s
gravitational field and atmospheric drag. Resorting
to Cowell’s formulation [5], the inertial osculating
satellite acceleration is given by

:riptq “ aiptq “ ai Earth grav.ptq ` ai dragptq . (1)

The continuous-time osculating orbital propaga-
tion model, using the state vector x, is then

9xptq “

„

viptq
aiptq



“ fpxptq, tq `wptq , (2)

where w is the process noise sequence that accounts
for the uncertainty error in truncating the force
model. It is assumed to be a white, zero-mean
Gaussian noise process, with covariance (power
spectral density) Qxptq.

The acceleration vectors ai Earth grav. and ai drag

are modeled next.

2.2.1 Earth’s Gravitational Field

The gravitational potential can be expressed in
functional form as U “ Uprf , νq, where ν is a vector
of model parameters and rf is the satellite position
in the Earth Centered Earth Fixed (ECEF) frame.
The spatial gradient of U with respect to rf yields
[6]

af Earth grav. “

„

BUprf , νq

Brf

T

. (3)

The expression above is the inertial acceleration in
an inertial frame aligned with ECEF, and thus,
a rotation is needed to obtain the acceleration
aligned with ECI coordinates, i.e., ai Earth grav. “

T ifaf Earth grav., where T if is the rotation matrix
from ECEF to ECI.

Taking into account the Earth’s non-uniform
mass distribution and non-spherical shape and sym-
metry, U is expressed as a function of the orbiter’s
ECEF geocentric coordinates rr, φgc, λs

T modeled
with the following spherical harmonic series [5]

U “
µC

r

«

1`
Nn
ÿ

n“2

Cn,0

´ae

r

¯n
Pn,0 psinφgcq

`

Nn
ÿ

n“2

minpn,Nmq
ÿ

m“1

´ae

r

¯n
Pn,m psinφgcq

“

Cn,m cospmλq

` Sn,m sinpλq
‰

ff

,

(4)

Each harmonic (term in the series) is specified by its
degree and order pn,mq, classified as zonal if m “ 0,
as sectoral if n “ m, or as tesseral if n ‰ m ‰ 0. In
computational applications, the series is truncated
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at a certain finite degree Nn and order Nm. ae is
a reference radius, usually taken as the mean equa-
torial radius RC. Cn,m and Sn,m are the gravita-
tional coefficients, and Pn,mpuq are the Associated
Legendre Functions (ALFs). In this work, the grav-
itational coefficients are provided by the EGM-96
gravitational model.

2.2.2 Atmospheric Drag

Atmospheric drag is also a strong influence on the
motion of LEO satellites [6]. The general equation
for aerodynamic drag is

ai drag “ ´
1

2

CDA

m
ρ ‖vrel.‖vrel. , (5)

where CD is the coefficient of drag, A is the satel-
lite’s cross-sectional area, m is its mass and ρ is the
atmospheric density. vrel. is the velocity of the satel-
lite relative to the local surrounding atmosphere. A
reasonable approximation is to assume that the at-
mosphere co-rotates with the Earth [6], resulting in
vrel. “ vi´ωCˆ ri, where ωC is the Earth’s angu-
lar velocity vector. In this work, the atmosphere is
modeled with the Exponential Model, cf. [5].

2.3. Mean Dynamics
The underlying idea of Semianalytical propagation
is to separate short-term from long-term periodic
and secular motion, obtaining the mean dynamics,
which can, in turn, be numerically propagated with
much larger step sizes. The decoupling of short-
periodic motion from the EoM is based on the Gen-
eralized Method of Averaging of nonlinear dynam-
ical systems [15].

Mean dynamics are commonly modeled with the
equinoctial set E. Let E “ rαT , λs, where vec-
tor α “ ra, h, k, p, qs denotes the slowly-varying
equinoctial elements, that indicate the orbit’s shape
and orientation, and λ denotes the fast variable,
that locates the satellite in the orbit. Furthermore,
the osculating elements, E, are distinguished from
the mean elements, Ē, with an overbar.

The osculating equinoctial EoM are obtained by
converting (1) to equinoctial form. The Gaus-
sian Variation-of-Parameters (VOP) formulation is
given by [12]

9Ei “
dEi
dt

“ npaqδi6 `
dEi
dv

ÿ

pPP

qp , i “ 1, . . . , 6 ,

(6)
where

ř

pPP qp is the vector sum of all perturb-
ing inertial accelerations qp, v is the inertial os-
culating satellite velocity and δij denotes the Kro-
necker delta. The perturbations to be considered
are, as in Section 2.2, due to the Earth’s gravita-
tional field and drag, therefore the set of active per-
turbations is P “ tZ, T,Du, where Z denotes the

zonal harmonics, T the tesseral/sectoral harmonics
and D drag. Partials BE{Bv may be found in [12].
npaq “

a

µC{a3 is the osculating mean motion.
Averaging tesseral/sectoral perturbing accelera-

tion requires special treatment, since these pertur-
bations are also dependent on the central body’s
orientation relative to the spacecraft. This depen-
dence is usually expressed via the sidereal angle
θ. In Earth’s case, this is generally a fast depen-
dence. The present work resorts to the study of
non-resonant tesseral and sectoral harmonics. In-
clusion of resonances is left as future work.

The mean EoM are found by averaging (6)
with respect to the fast variable λ (and θ for
tesseral/sectoral perturbations). This process is
briefly summarized below.

2.3.1 Averaging the Equations of Motion

The mean EoM are built on the assumption that
the mean dynamics take the following VOP form

dĒi
dt

“ npāqδi6 `
8
ÿ

j“1

εjAji pᾱq , i “ 1, . . . , 6 . (7)

Functions εjAji are the slowly-varying mean element
rates of change1 due to the perturbing forces, and
are not dependent on the fast variables. ε is a small
variational parameter. Truncating (7) to first order
in ε, the averaged rates A1

i are given by [12]

A1
iZ,D pᾱq “

1

2π

ż λ̄`2π

λ̄

FiZ,D pᾱ, ξqdξ . ,

A1
iT pᾱq “

1

4π2

ż θ`2π

θ

ż λ̄`2π

λ̄

FiT pᾱ, ξ, ψqdξ dψ ,

(8)

where:

FiZ,D pᾱ, λ̄q “
dEi
dv

ÿ

pPtZ,Du

qp ,

FiT pᾱ, λ̄, θq “
dEi
dv
qT .

(9)

It is noted that the osculating rate functions
FiZ,D pᾱ, λ̄q are small and 2π-periodic in λ̄, and the
functions FiT pᾱ, λ̄, θq are small and 2π-periodic in
both λ̄ and θ. Furthermore, they are evaluated with
the available mean state Ē.

Following [13], the functions A1
iZ,D

are found with
a classic Gaussian fixed-order numerical quadra-
ture. Furthermore, it also shown in [13] that the
non-resonant tesseral/sectoral harmonics average
zero, i.e., A1

iT
pᾱq “ 0.

1Notice that the superscript j in εj designates a power
and in Aji designates an index.
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2.3.2 Mean-to-Osculating Map

The osculating elements E may be recovered with
the mean-to-osculating map. Considering the set of
active perturbations, this map is given by

Ei “ Ēi `

8
ÿ

j“1

εj
´

ηjiZ,D pᾱ, λ̄q`η
j
iT
pᾱ, λ̄, θq

¯

,

i “ 1, . . . , 6 .

(10)

where ηji is the short-periodic variation of order j
on element i. In the present work, this map is also
truncated to first order.

As shown in [14], the zonal and drag contribu-
tions to the map are given by:

η1
iZ,D

pᾱ, λ̄q “
1

npāq

8
ÿ

k“´8
k‰0

FkiZ,D pᾱq

jk
ejkλ̄ ,

i “ 1, . . . , 5 ,

η1
6Z,D

pᾱ, λ̄q “
1

npāq

8
ÿ

k“´8
k‰0

«

Fk6Z,D pᾱq

jk

`
3

2ā

Fk1Z,D pᾱq

k2

ff

ejkλ̄ ,

(11)

whereas the non-resonant tesseral/sectoral contri-
butions are given by:

η1
iT
pᾱ, λ̄, θq “

8
ÿ

k“´8

Nm
ÿ

m“´Nm
m‰0

«

Fk,miT pᾱq

jpknpāq ´mωCq

¨ejpkλ̄´mθq

ff

, i “ 1, . . . , 5 ,

η1
6T
pᾱ, λ̄, θq “

8
ÿ

k“´8

Nm
ÿ

m“´Nm
m‰0

«

Fk,m6T
pᾱq

jpknpāq ´mωCq

`
3npāq

2ā

Fk,m1T
pᾱq

pknpāq ´mωCq
2

ff

ejpkλ̄´mθq .

(12)

To derive these expressions, it is necessary to ex-
pand the rates FiZ,D pᾱ, λ̄q in 1-D Fourier Series
(FS) as functions of λ̄, and to expand the rates
FiT pᾱ, λ̄, θq in 2-D FS as functions of λ̄ and θ.

Then, Fk
iZ,D

and Fk,m
iT

are, respectively, the asso-
ciated FS coefficients.

According to [14], the coefficients Fk
iZ,D

and Fk,m
iT

are approximated byXk
iZ,D

andXk,m
iT

, which are, re-

spectively, the Discrete Fourier Transforms (DFTs)
of FiZ,D pᾱ, λ̄q and FiT pᾱ, λ̄, θq.

The DFTs are performed efficiently using Fast
Fourier Transform (FFT) algorithms.

2.3.3 Semianalytical Propagation Model

The continuous-time mean orbital propagation
model is rewritten in a more compact form,

9̄Eptq “
dĒ

dt
“ f̄pĒptq, tq ` w̄ptq , (13)

where w̄ptq is the process noise sequence that ac-
counts for the uncertainty error in the mean state
propagation. It is assumed to be a white, zero-mean
Gaussian noise process, with covariance (power
spectral density) QĒptq.

The model (13) yields near-linear behavior, since
the short-term effects have been averaged out.
Therefore, it can be integrated with a large step
size (up to one day for LEO satellites). Integra-
tion of (13) provides the mean orbital trajectory,
i.e., the mean elements Ēptq at epoch t. Then, the
osculating trajectory is recovered using

Eptq “ Ēptq ` ηpEptq, θptqq . (14)

2.4. Measurement Model

Next, satellite observations from ground stations
are modeled, following [6]. A configuration resort-
ing to a single Ground Station (GS) is considered.
These observations are processed in the topocen-
tric frame. The most common ground measurement
types, usually implemented by radar, telescope or
laser systems, are range s, range-rate 9s, azimuth β
and elevation δ angles.

Let the topocentric position and velocity vectors
of the satellite relative to the GS be, respectively,
rs “ T sf prf ´ Rf q and vs “ T sf vf , where Rf is
the station’s ECEF position and T sf is the rotation
matrix from ECEF to East North Zenith (ENZ)
topocentric frame.

Let rsE , sN , sZs
T denote the cartesian compo-

nents of rs in topocentric frame. Each unidimen-
sional measurement is given by:

s “
b

rTs rs ,

9s “
rTs vs
s

,

β “ arctan
sE
sN

,

δ “ arctan
sZ

a

s2
E ` s

2
N

.

(15)

Finally, by concatenating these observations at
time tk, the measurement model is given by:

yptkq “ hdpxptkq, tkq ` vptkq , (16)

where x is the inertial osculating orbital state vec-
tor. A transformation of position and velocity vec-
tors from inertial to topocentric frame is, therefore,
implicitly employed by hd.

Measurement observations are not ideal, but
rather corrupted with measurement noise vptkq,
which quantifies the uncertainty associated with
the observations. It is assumed to be a white,
zero-mean Gaussian noise process, with covariance
Rptkq. For each time instant, the covariance matrix
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is R “ diag
´

σ2
vs , σ

2
vβ
, σ2
vδ
, σ2
v 9s

¯

, where each stan-

dard deviation σvy is associated to each measure-
ment type y in the set ts, β, δ, 9su (assuming inde-
pendent unidimensional observations).

It is noted that observations are only available
when there exists line of sight between the satellite
and the GS. This condition is only verified when the
satellite is above the station’s local horizon plane.

3. The Unscented Semianalytical Kalman
Filter

The idea of coupling SST with filtering algorithms
was first proposed in Green’s thesis [9], making use
of DSST propagator. Green hinted that: 1) this
coupling would increase the computational speed of
OD procedures; and 2) would also increase the ac-
curacy of filter estimates, because the linearization
assumptions used in the algorithms would be better
satisfied, given the near-linear behavior of the mean
dynamics. Then, Taylor [10] designed and imple-
mented the ESKF, which couples a traditional EKF
with DSST. The present work introduces two con-
tributions to the literature: 1) it departs from DSST
reliance, and is supported instead by the Semian-
alytical theory developed by Ely [14, 13] and sum-
marized above; and 2) introduces a novel algorithm
coupling an UKF with SST, denominated the Un-
scented Semianalytical Kalman Filter (USKF).

The fundamental idea of coupling SST with fil-
tering algorithms involves the following time frame
definitions [10]:

� Integration grid : the time frame used by
the semianalytical integrator;

� Observation grid : the time frame that con-
tains the arrival times of the observations, to
be processed by the filter.

Semianalytical filters operate as follows: 1) the
integrator propagates the trajectory along integra-
tion grid points at times tk,0, originating the nomi-
nal trajectory at grid points ĒN ptk,0q; 2) this nom-
inal trajectory is then interpolated, in-between in-
tegration grid points, to the arrival times of obser-
vations, i.e., interpolated to observation times tk,i,
for i “ 1, . . . ,M (where M is the last point before
the next integration time tk`1,0), originating the
nominal trajectory ĒN ptk,iq along the observation
grid; 3) after the measurements at times tk,i are pro-
cessed, the filter corrections are propagated through
the observation grid, without an explicit update of
the nominal trajectory, which is then only updated
at the next integration grid point at time tk`1,0.

Although Taylor’s ESKF makes use of
continuous-time state dynamics, the USKF
proposed in this work takes discretized dynamics,
in view of the traditional implementation of UKFs
[16]. Discretization of (13) between integration

grid nominal points at times tk,0 and tk`1,0

yields, resorting to numerical routines for ordinary
differential equations,

ĒN ptk`1,0q “ f̄dpĒN ptk,0q, tk,0q ` w̄k,0 . (17)

The USKF proposed in this research makes use of
the Unscented Transform (UT). Before introducing
the filter algorithm, the UT is reviewed. Paraphras-
ing from [16], the UT is given below, in Algorithm 1.
Constants α, β and κ are parameters of the trans-
form. In the present work, these constants are set
to α “ 1, β “ 2 and κ “ 0, cf. [16].

Algorithm 1 Unscented Transform (UT)

Require: Gaussian Random Variable (GRV) x P Rn char-
acterized by the distribution x „ N px̄,Pxq;
Nonlinear function g : Rn ÞÑ Rr;
pα, β, κq.

Ensure: The UT is used for forming the Gaussian approx-
imation

ˆ

x
y

˙

„ N
ˆˆ

x̄
ȳ

˙

,

ˆ

Px Pxy

P Txy Py

˙˙

of the joint distribution of x and y P Rr undergoing the
transformation gp¨q.

1: function UT(g, x̄, Px)
2: Form the set of 2n` 1 Sigma Points X i as follows:

X 0 “ x̄ , i “ 0 ,

X i “ x̄`
“

b

pn` λqPx

‰

i
, i “ 1, . . . , n ,

X i “ x̄´
“

b

pn` λqPx

‰

i´n
, i “ n` 1, . . . , 2n ,

(18)

where λ is a scaling parameter defined as

λ “ α2pn` κq ´ n , (19)

and
“

¨
‰

i
denotes the ith column of the matrix inside the

brackets.
3: Compute the associated weights:

Wpmq
0 “ λ{pn` λq ,

Wpmq
i “ 1{r2pn` λqs , i “ 1, . . . , 2n, ,

Wpcq
0 “ λ{pn` λq ` p1´ α2 ` βq ,

Wpcq
i “ 1{r2pn` λqs , i “ 1, . . . , 2n ,

(20)

4: Transform each of the Sigma Points with

Yi “ gpX iq , i “ 0, . . . , 2n . (21)

5: Finally, compute the statistics:

ȳ “
2n
ÿ

i“0

Wpmq
i Yi ,

Py “

2n
ÿ

i“0

Wpcq
i pYi ´ ȳqpYi ´ ȳqT ,

Pxy “

2n
ÿ

i“0

Wpcq
i pX i ´ x̄qpYi ´ ȳqT .

(22)

6: return rȳ,Py ,Pxys

7: end function

The operation of the USKF is similar to that
of the ESKF. However, the USKF uses Weighted

5



Statistical Linearization (WSL) [17] to linearize the
nominal trajectory and propagate filter corrections,
while the ESKF relies on Taylor series linearization.
The WSL of (17) around the nominal state ĒN ptk,iq
enables propagation between observation grid time
steps,

Ēptk,i`1q « A
N
k,i Ēptk,iq ` b

N
k,i ` w̄k,i , (23)

where AN
k,i and bNk,i are the coefficients of the WSL.

The operations on the integration and observa-
tion grids of the proposed USKF are given below.
The filter is initialized with an initial state estimate
Ēpt0q and covariance P0.

3.1. Operations on the Integration Grid
1. At the current time tk,0, update the nominal

state,ĒNnewptk,0q, for the new integration step,
valid on the interval rtk,0, tk`1,0q, from the old
nominal state ĒNoldptk,0q (defined on the previous
integration interval), using

ĒNnewptk,0q “ ĒNoldptk,0q `∆Ēk´1,M
k,0 , (24)

where ∆Ēk´1,M
k,0 are the filter corrections from the

last observation, at tk´1,M , propagated until the
current time tk,0. Then set the nominal covariance
with PN

k,0 “ P´k,0. The correction ∆Ēk´1,M
k,0 and

covariance P´k,0 are found by performing steps 2,
3, 4 and 5 of the observation grid from tk´1,M to
tk,0;

2. With ĒN ptk,0q and PN
k,0, construct the 2n ` 1

nominal sigma points XN
i ptk,0q, cf. (18), and

store them in XS . To simplify the notation, the
sigma points are concatenated in vector form as
XN

ptk,0q. Then, initialize the filter corrections:

XS “ XN
ptk,0q ,

∆Ēk,0k,0 “ 0 ;
(25)

3. Numerically propagate the nominal trajectory and
covariance, using the UT, until time t “ tk,0`∆t “
tk`1,0, saving intermediate results at t “ tk,∆t{3
and t “ tk,∆2t{3, using

”

ĒN ptk`1q,P
N
k`1,

ı

“ UT
´

f̄d, ĒN ptkq,P
N
k

¯

,

(26)
from initial conditions ĒN ptk,0q and PN

k,0, that
were set on step 1. With the state and covariance
at the requested times, construct the associated
nominal sigma points. With the sets XN

ptk,0q,
XN

ptk,∆t{3q, XN
ptk,2∆t{3q and XN

ptk`1,0q, set
up a Lagrange interpolator (with four points) for
XN

ptq.

3.2. Operations on the Observation Grid
The operations on the observation grid are triggered
by receipt of a new observation. The observation
grid procedure is followed in a loop-wise manner
until no more observations are available or the next
observation is not inside the interval rtk,0, tk`1,0q,

i.e., is later than the next integration time step. In
that case, the integration step procedure described
above is followed to advance the integration by one
grid point. It is noted that, if the first observation
comes exactly at time t “ tk,0, then steps 2 to 5
are ignored for that observation, since the predicted
state and covariance are already known from the
integration step.

1. Obtain a new observation to process yptk,iq;

2. Interpolate XN
ptq for t “ tk,i. Get XN

ptk,i´1q

from the value stored in XS . Compute the nominal
state and covariance at the two epochs using:

ĒN ptk,iq “
2n
ÿ

j“0

Wpmq
j XN

j ptk,iq ,

ĒN ptk,i´1q “

2n
ÿ

j“0

Wpmq
j XN

j ptk,i´1q ,

PNk,i “
2n
ÿ

j“0

Wpcq
j

«

´

XN
j ptk,iq ´ ĒN ptk,iq

¯´

XN
j ptk,iq

´ ĒN ptk,iq
¯T

ff

,

PNk,i´1 “

2n
ÿ

j“0

Wpcq
j

«

´

XN
j ptk,i´1q ´ ĒN ptk,i´1q

¯

´

XN
j ptk,i´1q ´ ĒN ptk,i´1q

¯T
ff

,

PNk,i,i´1 “

2n
ÿ

j“0

Wpcq
j

«

´

XN
j ptk,iq ´ ĒN ptk,iq

¯´

XN
j ptk,i´1q

´ ĒN ptk,i´1q

¯T
ff

;

(27)

3. Compute the nominal WSL coefficient AN
k,i

AN
k,i “ P

N
k,i,i´1

´

PN
k,i´1

¯´1

; (28)

4. Obtain the predicted filter correction and compute
the a priori mean state Ē´ptk,iq:

∆Ēk,i´1
k,i “ AN

k,i ∆Ēk,i´1
k,i´1 ,

Ē´ptk,iq “ ĒN ptk,iq `∆Ek,i´1
k,i ;

(29)

5. Discretize the process noise covariance and com-
pute the predicted covariance:

Qdptk,i, tk,i´1q “ A
N
k,iQptk,iq

´

AN
k,i

¯T

¨ ptk,i ´ tk,i´1q ,

P´k,i “ A
N
k,i P

`
k,i´1

´

AN
k,i

¯T

`Qdptk,i, tk,i´1q ,

(30)

where Qptk,iq is the continuous-time noise covari-
ance matrix;

6. Consider the measurement function with respect
to the mean equinoctial state as

h̄pĒptqq “ hd
´

X
`

Ēptq ` ηpĒptq, θptqq
˘

, t
¯

, (31)
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where X is the conversion from osculating E to x.
Do the traditional UKF update step:

rŷptk,iq,Py,PEys “ UT
`

h̄, Ē´ptk,iq,P
´
k,i

˘

,

K “ PEy rPy `Rk,is
´1 ,

∆Ēk,ik,i “ ∆Ēk,i´1
k,i `K pyptk,iq ´ ŷptk,iqq ,

Ē`ptk,iq “ Ē´ptk,iq `∆Ēk,ik,i ,

P`k,i “ P
´
k,i ´KPyK

T .

where Rk,i is the measurement noise covariance;

7. Save the sigma points of the current step into XS ,
i.e. XS “ XN

ptk,iq, to be used in the next obser-
vation.

The algorithm provides, after each update step,
the estimated equinoctial mean state and covari-
ance Ē`pti,kq and P`k,i. It is possible to transform
these quantities to the osculating state-vector form,
using [10]:

x`ptk,iq “X
´

Ē`ptk,iq ` η
`

Ē`ptk,iq, θptk,iq
˘

¯

,

P`x ptk,iq “ G
`

Ē`ptk,iq
˘

P`k,iG
T
`

Ē`ptk,iq
˘

,

(32)

whereG “ pBx{BEq
`

BE{B Ē
˘

. Partials BE{B Ēare
obtained by finite differencing.

4. Simulation Results
In this section, the most significant simulation
tests and results obtained throughout this work are
shown and discussed.

4.1. Simulation Environment
In the simulation environment, filters run at a fixed
step of 5 seconds. In the absence of station availabil-
ity, only the filter predict step is employed. Once
line of sight is restored, the filters resume their
predict-update cycle normally.

In order to conduct the simulation studies, a ref-
erence (true) orbital trajectory needs to be defined.
This reference trajectory is used to generate noisy
observations, which are obtained by adding random
noise to the ideal measurements computed with the
true trajectory according to (16). The standard de-
viations of measurement errors are 100 m, 0.02° and
10 cm s´1, for range, azimuth/elevation and range-
rate, respectively. These noise statistics represent
typical values of LEO tracking radar systems [5].
Furthermore, the reference trajectory is also used
for evaluating filter performance, through the Root
Mean Square Error (RMSE) metric. The RMSE at
time tk is given by

RMSEptkq “

g

f

f

e

1

N

N
ÿ

i“i

‖xptkq ´ x̂ptkq‖2
, (33)

where xptkq is the true state (velocity/position vec-
tor or equinoctial element), x̂ptkq is the filter esti-
mate and N is the number of independent Monte

Carlo (MC) simulation runs. Averaging the RMSE
along the full simulation time span yields RMSE .

The single ground station is located in Lisbon.
The site’s geodetic coordinates are: altitude h “
0 m, latitude φgd “ 38.7° and longitude λ “ ´9.2°.

A realistic reference trajectory is obtained us-
ing the Cowell propagator provided by the General
Mission Analysis Tool (GMAT) software, consid-
ering a complete force model, which comprises a
180ˆ180 gravitational field, atmospheric drag with
Jacchia Roberts density model, Solar Radiation
Pressure (SRP) with cannonball (spherical) model,
third-body perturbations from the Sun, Moon and
Jupiter, solid and pole Earth tides and relativistic
corrections. A Sun-synchronous LEO is considered.
The osculating initial conditions are provided in Ta-
ble 1.

Initial orbital conditions

Epoch 6 April, 2000 11:00:00 UTC

Osculating Keplerian p7178 km, 0.03, 98.6°, 20°, 0°, 00q

set pa, e, i,Ω, $, νq

Table 1: Initial epoch and orbital state.

The physical properties of the satellite (held con-
stant throughout the simulations) are shown in Ta-
ble 2.

Satellite Properties Numerical Value

Mass m 25 kg

Drag Area Adrag 0.5 m2

Coefficient of Drag CD 2.0

SRP Area ASRP 0.5 m2

SRP Coefficient of Reflectivity CR 1.5

Table 2: Physical properties of the satellite. It is noted that
ASRP and CR are only defined to be used in the GMAT
reference trajectory procedure, since SRP is not part of the
filter dynamics.

4.2. Cowell and Semianalytical Propagation Re-
sults

Before evaluating the performance of Semianalyt-
ical filters, the accuracy and computational cost
of the implemented Semianalytical propagator are
benchmarked against a Cowell propagator, which
was also implemented in this study.

The Cowell osculating trajectory is obtained by
integrating the model (2), whereas the Semianalyt-
ical osculating trajectory is obtained by integrating
model (13) and then using (14).

Both propagators use the Runge-Kutta 5(4) inte-
gration solver, with relative and absolute tolerances
set to 10´3 and 10´6, respectively. Both propaga-
tors are set up with the same force model, com-
prising a 5 ˆ 5 gravitational field and atmospheric
drag.
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The developed Semianalytical propagator is also
compared with DSST, which is an established semi-
analytical propagator icluded in the Orbit Extrap-
olation Kit (Orekit) Java flight dynamics library.
DSST is tuned with an equivalent force model.

Following the tuning procedure described by Ely
in [14], the Semianalytical DFT lengths NZ,D, NT
and MT , and the order of the numerical quadrature
Nquad are found by trial and error. The following
values were found to yield good results: NZ,D “ 16,
NT “ 16, MT “ 16 and Nquad “ 20. It is noted
that using greater values would provide marginal
gains, at best, while being more computationally
expensive.

4.2.1 Propagation Accuracy

First, the Semianalytical mean element propagation
is compared with the equivalent propagation pro-
vided by DSST. The averaged RMSE for each mean
equinoctial element, relative to the DSST baseline,
is shown in Table 3 for a 7500-day propagation. It
is seen that both propagators yield very similar re-
sults, which validates the mean element propaga-
tion of the present Semianalytical model.

Equinoctial mean RMSE

element

ā 5.152ˆ 10´10km

h̄ 2.033ˆ 10´6

k̄ 2.087ˆ 10´6

p̄ 4.665ˆ 10´5

q̄ 4.562ˆ 10´5

λ̄ 3.235ˆ 10´6rad

Table 3: RMSE of mean element propagation of the devel-
oped Semianalytical propagator, relative to DSST, for a
7500-day simulation period.

Next, the osculating trajectories outputted by the
developed Semianalytical propagator and DSST are
compared to the Cowell trajectory. The time evolu-
tion of the osculating position and velocity RMSE
are depicted in Figure 1 for a 1-day propagation,
taking the Cowell trajectory as reference. For com-
parison, the figure also shows an analytical mean-
to-osculating map based on Brouwer analytical the-
ory (formulated in Appendix G of [18]), coupled
with the mean element propagation, provided by
the developed Semianalytical propagator. This an-
alytical map comprises a 2 ˆ 0 (J2) gravitational
field.

This simulation evidences that DSST captures
the short-term effects better than the developed
Semianalytical propagator. This may be explained
by the fact that the DSST mean-to-osculating map
is more complete, containing second-order terms
of some perturbations [12], whereas the developed

propagator was truncated to first order. Neverthe-
less, they both outperform the analytical mean-to-
osculating map.

Figure 1: Osculating position RMSE of different propagation
theories, compared relative to Cowell propagation. Orange
and blue lines represent, respectively, the error provided by
DSST and the developed Semianalytical propagators. The
green line illustrates an analytical mean-to-osculating map
based on Brouwer analytical theory [18], coupled with mean
element propagation of the developed Semianalytical propa-
gator. 1-day simulation.

4.2.2 Computational Cost

The propagation analysis is concluded with a CPU
computation time comparison. Figure 2 illustrates
the CPU computation time for different propaga-
tion periods (from a 1-day to a 7-day propagation),
for both Cowell and Semianalytical propagators.
The trajectory is outputted at a requested fixed step
of 60 seconds. The efficiency of the Semianalytical
scheme is clearly evidenced.

To conclude, an efficient Semianalytical imple-
mentation was achieved. Nonetheless, this effi-
ciency comes with a slight loss in accuracy, when
compared to Cowell propagation with a similar
force model. Depending on the mission require-
ments, the propagator that offers the best trade-off
between accuracy and computational effort is to be
favored.

Figure 2: CPU computation time comparison between the
developed Cowell and Semianalytical propagators for prop-
agation arcs from 1 day to 7 days. The orbital outputs are
requested every 60 seconds. The simulation was programmed
in a Python environment and conducted on a laptop com-

puter with 8GB RAM and Intel® i7-4210U, 1.7 GHz pro-
cessor.
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4.3. Cowell and Semianalytical Filter Results
The USKF designed in Section 3 is compared with
Taylor’s ESKF (adapted to the present Semiana-
lytical propagation scheme), as well as Cowell Ex-
tended and Unscented Kalman Filters (denoted by
EKF and UKF, respectively).

The filter initialization procedure is chosen to be
self starting, in the sense that the filters should
be able to initialize taking into account only the
ground station available observational data. The
procedure comprises Gauss’s Initial Orbit Determi-
nation (IOD) method [5], followed by a batch Least-
Squares Differential Correction method [5]. A batch
of 15 observations (75 seconds) is considered.

The measurement noise covariance matrix R, to
be used in the update steps, is readily constructed
referring to the same standard deviations consid-
ered for measurement noise generation.

Determination of the process noise covariance
matrix Q is relatively more complex. A more trial
and error approach was adopted to define its di-
agonal entries, adjusting the values manually with
the help of simulations. The following osculating
covariance, in state-vector form, was found

Qx “

„

10´9I3ˆ3 03ˆ3

03ˆ3 10´12I3ˆ3



, (34)

where the velocity and acceleration entries are
given, respectively, in km s´1 and km s´2.

This covariance is then transformed to the mean
equinoctial space space, for use with Semianalyt-
ical filters, using QĒ “ G´1PxpG

T q´1, where
G “ pBx{BEq

`

BE{B Ē
˘

. This transformation en-
sures equivalent process noise between the osculat-
ing and mean dynamics, which allows for a fair com-
parison of filter results.

Figure 3 presents the time evolution of the oscu-
lating position RMSE for a 7-day filtering simula-
tion (only one MC run was made). Table 4 further
provides the trajectory averaged position RMSE for
the same simulation run, as well as the error in each
component of the satellite-based RSW frame (R -
Radial, S - Along-Track and W - Cross-Track).

Position RMSE [m]

Filter R S W 3D

EKF 59.32 878.28 35.02 880.97

UKF 59.51 871.41 35.32 874.15

ESKF 94.91 582.10 89.81 596.59

USKF 92.44 537.54 88.86 552.62

Table 4: Trajectory averaged position RMSE for the same
simulation run illustrated in Figure 3. The error in each
component of the RSW frame is also provided.

In this simulation, Semianalytical filters outper-
formed Cowell filters, with an accuracy gain of

0 1 2 3 4 5 6 7
time [days]

100

101

102

103

104

RM
SE

 [m
]

Position RMSE for a 7-days simulation
(single run)

EKF
UKF
ESKF
USKF

Figure 3: Time evolution of the position RMSE of the filtered
trajectories outputted by EKF (blue), UKF (yellow), ESKF
(green) and USKF (red) relative to the reference trajectory,
for a single MC run. The simulation length is 7 days.

around 300 m. Moreover, both for Cowell and Semi-
analytical filters, the unscented algorithms slightly
outperformed the extended ones. The superiority of
Semianalytical filters may be explained by the fact
that the mean dynamics, estimated in the ESKF
and USKF, are more linear than the osculating dy-
namics, estimated in Cowell filters. Therefore, they
better satisfy the linearization procedures of filter-
ing predict steps [9].

Figure 4 plots the time evolution of the position
RMSE when the considered estimate is simply ob-
tained by inversion of the measurement function
(using only range, azimuth and elevation observa-
tions), for a single ground station pass. Clearly,
the error of these rough and unfiltered estimates is
substantially worse than the error obtained with fil-
ters, which further evidences the performance and
relevance of the implemented algorithms.

400 500 600 700 800 900 1000 1100
Time [s]

1.0

1.5

2.0

2.5

3.0

RM
SE

 [k
m

]

Position RMSE using the inversion of the measurement function
(range, azimuth and elevation)

Figure 4: Position RMSE considering orbital estimates ob-
tained directly by inversion of the measurement function
(with range, azimuth and elevation), for a single ground sta-
tion pass. 100 MC simulations runs were performed.

4.4. Summary of Other Results
The main results of the present study were pre-
sented and discussed above. Below is a summary
of additional results, drawn from complementary
studies (not shown).
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The sensitivity of the filters to initialization er-
rors was studied. This is relevant, since, in the con-
text of sub-optimal Kalman filters, bad estimates
may lead to filter divergence. It was found that
Cowell filters are able to converge in much worse
initialization environments than Semianalytical fil-
ters. For instance, Cowell filters converged with
initial position errors of up to 10 000 km, whereas
both Semianalytical filters diverged when position
errors of 1000 km were provided. The existence of
long periods of station unavailability may explain
this drawback, since the estimation of mean tra-
jectories in Semianalytical filters is slightly slower
to converge than Cowell estimation of osculating
trajectories, due to the inherent averaging proce-
dure associated to the mean dynamics. It is noted
that, for the conditions of Table 1, GS passes last,
approximately, between 10 to 15 minutes, and one
orbital period is „ 100 minutes.

Further tests comparing the performance of
ESKF and USKF revealed that the latter converges
faster to the true trajectory and tends to be less
prone to destabilization than the ESKF, indicating
that it is more stable and robust.

5. Conclusions
The present research studied the development of
OD solutions able to localize LEO satellites, in the
absence of GNSS sensors, resorting to ground sta-
tion data, through the use of Cowell and Semian-
alytical orbital propagation schemes, coupled with
sub-optimal Kalman filters, namely, the EKF and
UKF.

The SST used in this work was proposed by Todd
Ely, and diverges from more traditional SSTs in
the sense that: 1) the averaging of the mean ele-
ment rates is achieved through numerical quadra-
ture; and 2) the short-periodic functions are com-
puted numerically with FFT algorithms. Compared
to DSST, Ely’s theory is not as efficient, since nu-
merical quadrature and FFT evaluations require
sampling of the orbital state function. Further-
more, simulations performed in this research indi-
cated that DSST’s mean-to-osculating map is more
complete and better captures short-term periodic
effects. The extension of Ely’s theory to second or-
der may improve its propagation accuracy, and is
left as future work.

Under the designed simulation environment, it
was found that, when initialized with a fairly good
estimate, Semianalytical filters outperformed Cow-
ell filters, in terms of accuracy. This suggests that,
when using reduced force models, Semianalytical fil-
ters are better able to estimate the long-term evo-
lution of the dynamical state. Moreover, it was also
shown that Semianalytical propagation schemes are
much more efficient, in view of the larger allowable
integration step sizes.

Compared to the ESKF, the proposed USKF
shows more robustness to destabilization and to ini-
tialization errors. It also converges faster to the true
state.

Ultimately, the fundamental conclusion to be
drawn from this study is that substantial improve-
ments in efficiency can be attained, without loss of
accuracy, by the application of SST within Orbit
Determination problems.
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