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Resumo

O seguimento de satélites fornecido por sistemas de Determinação de Órbita requer a monotorização

frequente e precisa de trajetórias orbitais, que é fundamental para o sucesso de missões espaciais.

Esta tese aborda o problema de estimação sequencial em tempo-real de um satélite em Órbita Ter-

restre Baixa (com aplicações em deteção remota, comunicações ou observação terrestre) seguido por

estações terrestres. Apesar do uso de sensores GNSS ter sido favorecido nos últimos anos para este

tipo de missões, devido ao seu baixo custo e capacidade comprovada de seguimento, estes sistemas

nem sempre são confiáveis. Assim, é necessário prever sistemas auxiliares que permitam salvaguardar

a estimação da posição do satélite em caso de falha do sistema GNSS. Esta tese combina a Teoria

Semianalı́tica de Satélites com técnicas de estimação de Filtros de Kalman para desenvolver dois al-

goritmos sequenciais: o Filtro Semianalı́tico de Kalman Extended e o Filtro Semianalı́tico de Kalman

Unscented. Este último é um algoritmo novo proposto neste trabalho, que combina a teoria semi-

analı́tica com um Filtro de Kalman Unscented. São discutidas implicações da interação entre estes

filtros e a teoria semianalı́tica de propagação orbital. Estes algoritmos são ainda avaliados em termos

de eficiência, precisão e rapidez de convergência por comparação com Filtros de Kalman Extended e

Unscented associados a propagadores orbitais do tipo Cowell, algoritmos mais bem consolidados na

literatura. Após serem efetuadas experiências em ambiente simulado, conclui-se que os filtros Semi-

analı́ticos podem competir com filtros Cowell, em termos de precisão e eficiência, na determinação e

predição de efemérides de satélites.

Palavras-chave: Determinação de Órbita, Filtros de Kalman, Órbita Terrestre Baixa, Propagação

Semianalı́tica, Propagação Cowell, Estimação Eficiente
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Abstract

The tracking of spacecraft provided by Orbit Determination systems requires frequent and accurate

monitoring of their orbital trajectories, which, in many cases, is fundamental to the success and deliv-

erance of space missions. This thesis focuses on the problem of sequential real-time estimation of a

Low Earth Orbit satellite (with applications in remote sensing, communications, Earth observation, etc.)

tracked by ground stations. Although the use of GNSS sensors has been favored in recent years for

this kind of mission scenario due to their low-cost, availability and proven capability of satellite track-

ing, these systems might not always be reliable. In view of this, it is necessary to provide auxiliary

systems that safeguard Orbit Determination procedures in case of GNSS failure. This thesis combines

the Semianalytical Satellite Theory with current Kalman filtering techniques to develop and study two

sequential algorithms: the Extended Semianalytical Kalman Filter and the Unscented Semianalytical

Kalman Filter. The latter is a novel algorithm proposed in this research, combining semianalytical prop-

agation with Unscented Kalman Filters. The design implications of the interaction between these filters

and the orbital propagation/perturbation theory are discussed. These algorithms are then evaluated in

terms of efficiency, accuracy and speed of convergence by comparison with Special Perturbation Cowell

Extended and Unscented Kalman Filters, which are more established algorithms in the literature. By

conducting some simulation test cases, it is found that Semianalytical filters can compete with Cowell

filters in accurately and efficiently determining and predicting satellite ephemerides.

Keywords: Orbit Determination, Kalman Filters, Low Earth Orbit, Semianalytical Propagation,

Cowell Propagation, Efficient Filtering
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Chapter 1

Introduction

1.1 Motivation

Satellite Orbit Determination (OD) refers to the estimation of orbits (in terms of position and velocity,

or other equivalent state spaces) of space objects (such as interplanetary spacecraft or Earth orbiting

satellites), given applicable measurements [1, 2]. To do so, the object’s motion is dynamically modeled

using a set of differential equations, which are only approximate since they only consider the most

relevant contributions to the motion.

OD has had a long and outstanding history. Its roots lie in astronomy and prediction of motion

of planets and comets. Copernicus (1473-1543), Kepler (1571-1630), Newton (1642-1727), Lagrange

(1736-1813) and Gauss (1777-1855) were some of the early pioneers of this science and their remark-

able work still serves as the fundamental basis of modern methods and techniques [3]. From the launch

in 1957 of Sputnik, which was tracked mostly by visual observations with a precision to only a few kilo-

meters, the technological revolution of the last decades in terms of computational power and tracking

sensors, has enabled OD solutions to the reach the sub-centimeter accuracy [2].

A broad number of satellite space missions and applications require orbit information provided by

OD, e.g., Earth observation, remote sensing, geodesy, telecommunications and weather missions [4].

Furthermore, in many cases the success of the mission relies on the satellite following a certain refer-

ence nominal orbit. Corrective maneuvers are therefore employed when the satellite deviates from that

reference. This means that Orbit Control also relies on OD predictions [5, 6].

Orbit Determination is a very wide and general field. Different classes of problems exist within it,

namely [1]: 1) Initial Orbit Determination (IOD) methods take a limited set of observations and usually

operate on analytical and simplified orbital dynamics; 2) Batch Least-Squares Differential Correction

methods take all the tracking data over an observation span and determine the best estimate of the

satellite’s state at a reference time, and are usually suitable for post-processing applications; and 3) Se-

quential methods are forward-time recursive sequential machines that repeat patterns of state prediction

(orbit propagation) and measurement updates, and are typically associated with real-time applications.

Furthermore, Precise Orbit Determination [4] is a type of OD that refers to the estimation of a satellite’s

1



state with the highest possible accuracy, usually resorting to post-processing batch algorithms, imple-

menting high-fidelity force models and relying on high-precision measurements from Global Navigation

Satellite Systems (GNSS) [7] or Satellite Laser Ranging (SLR) [8]. POD research is very active [9, 10]

and POD has been successfully implemented in many satellite missions, e.g. Sentinel-1A which has a

post-processing position estimation error requirement of only 5 centimeters [11].

Space around the Earth is getting increasingly crowded, posing computational problems to accu-

rately predict the positions of a large number of space objects [12]. This is very important, for instance,

to safeguard payloads and astronauts when predicting close approaches. Morton and Roberts [13] es-

timate that the US Joint Space Operation Center performs about 40 000 track and object correlations

per day, whereas the authors of [14] state that the Russian Space Surveillance Center performs about

ten million orbit propagations every day to maintain their catalogs and provide collision warnings. In

view of this, orbit propagation schemes must be both computationally efficient and accurate. Broadly

speaking, these schemes may be classified as [3]: 1) Special Perturbation (SP) methods numerically

and accurately propagate the Equations of Motion (EoM); 2) General Perturbation (GP) methods provide

analytical approximations to the EoM; and 3) Semianalytical methods average the EoM, explicitly sep-

arating the short-term periodic motion from the long-term periodic and secular motion, which can then

be numerically propagated with much larger integration step sizes when compared to SP. SP methods

are the most accurate, but require the most computational resources, whereas GP methods are light

and efficient but much more inaccurate [12]. Semianalytical methods provide a mix between SP and GP,

having accuracies comparable with SP methods while retaining efficiencies closer to GP methods [12].

In view of the discussion above, Semianalytical propagations schemes within OD procedures are the

most favorable schemes when it comes to keeping track of a large number of objects. Moreover, satellite

guidance and orbit control benefit from the use of mean orbital elements (associated to both GP and

Semianalytical methods), rather than osculating (non-averaged) elements (associated to SP methods)

[5]. It makes more sense to have satellites track orbits defined by mean slowly-varying elements that

capture the long-term evolution of the orbits, rather than having them respond to fast oscillations (with

zero-mean time average) that do not change the shape and orientation of the orbit over time. Indeed,

feeding mean elements to the orbit controller may reduce fuel consumption [5]. Moreover, satellite

lifetime studies are more easily and straightforwardly conducted in the mean element state space [3],

since these studies are only interested in the long-term behavior of the orbit. Furthermore, OD with

Semianalytical methods is expected to be more stable, reliable and accurate than with SP schemes,

since the linearization assumptions of nonlinear filtering algorithms are better satisfied with secular and

long-periodic dynamics rather than with osculating dynamics [15].

This thesis focuses on the problem of sequential real-time OD of a Low Earth Orbit (LEO) satellite

(to be used for instance in remote sensing applications) tracked by ground stations implementing both

SP and Semianalytical propagation schemes. Although the use of GNSS is becoming more popular in

this kind of mission scenario due to their low-cost, availability and proven ability to track LEO satellites

[16], these systems might not always be reliable, for instance, they are susceptible to spoofing attacks

[17]. In view of this, it may be necessary to provide auxiliary systems that safeguard OD procedures in
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case of GNSS failure.

The development of a complete OD system can be broken into two phases: first, an orbit propagation

scheme capable of handling state predictions (in view of some predefined accuracy and efficiency re-

quirements) needs to be developed. Then, the propagator is coupled with estimation filtering algorithms,

in view of some measurement model. While this coupling is straightforward for SP methods, Semian-

alytical schemes require additional operations to keep their aforementioned efficient implementation,

namely, their large propagation step size.

There exist many alternative algorithms for sequential OD, which is a nonlinear filtering problem.

This thesis focuses on sub-optimal solutions provided by Kalman filters. A comparison of many filtering

schemes, namely, Extended and Unscented Kalman filters, particle filters, Gaussian mixtures or linear

minimum mean-square error filters in the context of OD has been made in [18, 19].

1.2 Objectives and Deliverables

The objective and purpose of this work is to study and develop OD solutions that are able to estimate

LEO satellites in the absence of GNSS sensors. The goal is to develop algorithms that are not only

efficient for real-time implementation, but also reliable in terms of competitive accuracy requirements. In

view of this, SP and Semianalytical propagation schemes are developed, based on reduced force mod-

els that capture the most important perturbations from the Earth’s Gravitational Field and atmospheric

drag. Then, these dynamics are coupled with established nonlinear and sub-optimal filters, namely, the

Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF).

While SP and GP propagation schemes have been extensively studied in the context of OD in ref-

erence textbooks [3, 20, 21] and recent research papers (SP in [18, 19, 22] and GP in [23, 24]), only a

handful of research studies have been concerned with Semianalytical OD [15, 25, 26]. Andrew Green in

[15] and Stephen Taylor in [25] proposed, implemented and tested (with both simulated and real data)

the coupling of an EKF filter with Draper Semianalytical Satellite Theory (DSST) [27], which is one of the

most popular and well documented Semianalytic Satellite Theories (SSTs). Besides reproducing this

EKF, this thesis also aims at proposing a novel algorithm coupling an UKF with Semianalytical propa-

gation. Furthermore, the present work also aims at delivering and testing a SST that can compete with

DSST within OD problems, namely, a recent theory proposed and developed by Todd Ely in [28, 29].

When compared to DSST, Ely’s theory is more flexible, easier to implement in computational applications

and covers a wider range of problem domains, such as eccentric orbits.

To achieve the main goals proposed and mentioned above, the research has the following operational

objectives:

• Study, implement and validate SP and Semianalytical propagation schemes. Validation of these

schemes involves comparison with established and publicly available orbit propagation software;

• Perform accuracy and cost comparative studies between both propagation schemes, aiming at

demonstrating and outlining their main characteristics and features;
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• Understand the trade-off between propagation accuracy and computational cost with force model

and propagation scheme selection;

• Study how different filtering algorithms, orbital state dynamical formulations, initial conditions and

measurement types influence the overall accuracy of Orbit Determination.

If the outlined operational objectives are achieved, this thesis will provide, to the best knowledge of

the author, the following original contributions to the literature:

• Prove and demonstrate the feasibility of Ely’s SST in the context of Orbit Determination, departing

from DSST-based solutions, which have already been studied before;

• Couple SST with an UKF, leading to the USKF. Comparing to the ESKF, the USKF is expected to

be more robust to initialization errors and provide more accurate orbital state estimates.

1.3 Thesis Outline

In the present Chapter 1, a brief introduction to the work is provided. After presenting motivating

reasons to study Orbit Determination, a brief definition of the proposed problems, objectives and contri-

butions of this thesis is given.

Chapter 2 covers the background theory to be used throughout the work. A summary of the fun-

damentals of orbital mechanics, reference frames and orbital state-space representation is presented,

followed by a brief review of nonlinear filtering theory and adopted filtering algorithms. Representation

of signals in frequency domain is also overviewed. The chapter ends with a presentation of metrics for

filter comparison.

Relying on previous concepts, Chapter 3 discusses implementation issues. It provides thorough

and detailed discussion and development of Special Perturbation and Semianalytical orbital state dy-

namical models as well as measurement model schemes. Moreover, this chapter also discusses filter

implementation of orbital systems associated to both SP and Semianalytical propagation schemes.

Chapter 4 presents the simulation studies conducted in this thesis, along with a brief discussion of

the achieved results. The discussion starts with a performance evaluation of the orbital propagation

schemes developed, in terms of accuracy and computational cost. Afterwards the implemented Cowell

and Semianalytical filters are compared. The chapter also studies the influence that initialization errors

and different measurement configurations have on the overall filtering performance.

Finally, Chapter 5 presents a summary of the conclusions drawn from the studies throughout this

thesis, and identifies possible areas for further study and development of this work.
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Chapter 2

Background

2.1 Satellite Navigation

The operation of a spacecraft in orbit is heavily dependent on the ability to locate and communicate

with it. Also, satellite missions require active control of their orbit in accordance with specific mission re-

quirements. Navigation is therefore an essential part of spacecraft operations, comprising the planning,

determination, prediction and correction of a satellite’s trajectory and orientation [20].

It is therefore essential to have access to measurements from which the satellite’s position, velocity

or attitude can be inferred. There exist different classes of satellite navigation sensors, depending on

their nature. Inertial sensors (accelerometers and gyroscopes) measure motion parameters with respect

to the inertial space [30]. Attitude sensors observe the spacecraft orientation with respect to a frame of

reference characterized by visible references, namely, the Sun or other stars [31]. Orbit determination

has even been studied with spaceborne magnetometers, which provide magnetic field measurements

or gradiometers, which provide gravity gradients [32]. However, the most common way to perform orbit

determination is through navigation tracking systems that measure spacecraft motion relative to known

spatial references, such as ground stations or other satellites [20], which straightforwardly allow the

satellite’s position and velocity to be inferred. Fusing these sensors into multi-sensor solutions has also

been studied in the past [33].

This work focuses on the determination/prediction phase of a satellite’s trajectory (orientation deter-

mination is not analyzed), referring to the latter class of sensors described in the paragraph above, i.e.,

tracking systems. Typically these systems measure properties of electromagnetic wave propagation be-

tween a transmitter and a receiver [20]. The most common types of tracking systems used for spacecraft

navigation are described next [20]:

• Radar systems: radar techniques have been used to observe spacecraft position and velocity

since early times. Focusing on a simple configuration with one ground station and one satellite,

three types of measurements are possible: 1) pseudo-range is the distance between satellite

and station, computed from the round-trip travel time of a radar signal emitted from the ground

station antenna to the satellite and radiated back to the station; 2) pointing angles are obtained
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by measuring the direction of the maximum signal amplitude coming from the spacecraft and 3)

range-rate of the spacecraft relative to the ground station can be derived from the Doppler shift of

the round-trip radar signal1;

• Laser systems: Satellite Laser Ranging (SLR) systems provide highly accurate distance mea-

surements by determining the turn-around flight time of laser pulses transmitted to a satellite and

returned by a retro-reflector. It is a similar technique to radar tracking, but allows much better ac-

curacies, that may achieve the order of centimeters. It is however noted that SLR does not allow

autotracking of satellites and depends on the availability of a priori high-precision orbit knowledge

for antenna pointing. Furthermore, SLR is strongly impacted by weather conditions. Therefore it

is mainly used in high-precision geodetic scientific studies, namely, crustal dynamics, gravity field

determination or Earth rotation parameter estimation;

• Global Navigation Satellite Systems (GNSS): Besides ground-based tracking systems, it is also

possible to perform OD resorting to other satellite constellations, such as GNSS systems. These

systems of satellites broadcast signals carrying precise information of their position and time, ob-

tained from the on-board atomic-clock time-standard, which can then be used for autonomous

absolute positioning through Multilateration techniques [4].

2.2 Reference Frames

Studying orbital motion involves applying Newton’s laws of motion. These laws, which describe the

relationship between a body and the forces acting upon it and its motion in response to those forces,

are applied naturally in inertial reference frames [3]. An inertial reference frame in classical physics

possesses the property that, in this frame of reference, a body with zero net force acting upon it does

not accelerate, and thus is either at rest or moving with constant velocity [34].

Ground-based observations are obtained from observing sites on the surface of the Earth, which are

therefore not at rest. In order to fuse orbit predictions with ground measurements, a concise definition

of the different frames is required and their mutual relation has to be established [20].

2.2.1 Earth Centered Reference Systems

Earth Centered Inertial System

For near-Earth spacecraft, the most commonly adopted inertial frame is the Earth Centered Inertial

(ECI) reference frame. This frame has its origin at the Earth’s center of mass and therefore follows the

Earth in its movement around the Sun. The acceleration that the Sun induces in the Earth is very similar

(in direction and magnitude) to that induced in the satellite, since the Earth and the satellite are very

close. Therefore, regarding the satellite’s translation relative to the Earth, the acceleration applied by

1Few satellites are equipped with high precision time and frequency standards to perform one-way range and range-rate
measurements, hence two-way ground-based measurements are considered instead.
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the Sun on the two bodies can be discounted2. The result is then a geocentric inertial reference frame

[35]. Its principal axes point in fixed directions with respect to the celestial sphere. The fundamental

plane (plane xy) is the Earth’s equatorial plane. The x axis points towards the vernal equinox Υ, the z

axis points to the North Pole of Earth and the y axis is chosen so as to form a right-handed coordinate

system.

In reality, neither the ecliptic (Earth’s orbital plane) nor the Earth’s equatorial plane are fixed with

respect to the celestial sphere. Among others, the interaction of the Sun and the Moon with the Earth’s

equatorial bulge is responsible for small gyroscopic motion that induces oscillations on the equatorial

plane [20]. In view of this, the time-dependent True of Date (TOD) realization of the ECI system is

characterized by the instantaneous and up to date orientation of the ecliptic and equatorial planes [3].

By referring to a particular epoch and specifying how to transform vectors to and from that specified

epoch, a more inertial frame may be defined. For that matter, the J2000 reference frame is defined

according to the TOD frame orientation at 12:00 (UTC) on January 1st, 2000.

Earth Centered Earth Fixed System

The Earth Centered Earth Fixed (ECEF) is centered at the Earth and rotates with it. The xy plane is

also the equatorial plane, but now the x axis is directed towards the Greenwich meridian, with longitude

λ “ 0°. The z axis coincides with the rotation axis of the Earth and points towards the North Pole of

the Earth. The y axis is chosen so as to form a right-handed coordinate system (pointing to longitude

λ “ 90°). Considering the Earth’s rotational speed ωC, the ECI and ECEF frames are rotated by an

angle of θGST (Greenwich Sidereal Time) in the equatorial plane, as illustrated in Figure 2.1.

Figure 2.1: The figure illustrates the angular relation between ECI and ECEF frames. They are rotated
by θGST (Greenwich Sidereal Time) about the z axis (assumed parallel for ECI and ECEF), according to
the angular speed ωC. Figure adapted from [3].

Besides cartesian coordinates, spherical and geodetic coordinates are also useful to express a satel-

lite’s or ground station site’s position. Spherical coordinates (also known as geocentric) are rr, φgc, λs
T ,

where r is the radial distance, φgc is the geocentric latitude and λ is the longitude. Geodetic coordi-

2It is still possible to include this difference in the satellite’s motion by considering a third body perturbation in the EoM due to
the Sun
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nates are relevant due to the ellipsoidal shape of the Earth, and are expressed as rh, φgd, λs
T , where h

is height above local ground, φgd is the geodetic latitude and λ the longitude. Let rxf , yf , zf s
T denote

ECEF cartesian coordinates of a point in space. The relation with spherical and geodetic coordinates is,

respectively:

»

—

—

—

–

xf

yf

zf

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

r cosφgc cosλ

r cosφgc sinλ

r sinφgc

fi

ffi

ffi

ffi

fl

, (2.1a)

»

—

—

—

–

xf

yf

zf

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

pN ` hq cosφgd cosλ

pN ` hq cosφgd sinλ
“

Np1´ fCq
2 ` h

‰

sinφgd

fi

ffi

ffi

ffi

fl

, (2.1b)

where fC is the flattening parameter, RC is the Earth’s mean equatorial radius and

N “
RC

b

1´ p2fC ´ f2
Cq sin2 φgd

. (2.2)

2.2.2 Satellite Coordinate System

The Satellite Coordinate System, denoted as RSW, is a satellite-based system centered on the

satellite and moving with it along the orbit, and hence is not inertial. It is useful to analyze the relative

motion of formation flying (for instance, in rendezvous maneuvers) or, in the context of this thesis, to

analyze the position and velocity error of filtering estimates. The R axis (Radial direction) points from

the Earth’s center to the satellite. The S axis (Along-Track direction) is perpendicular to the R axis and

lies on the orbital plane. The W axis (Cross-Track direction) is perpendicular to the orbital plane so as

to form a right-handed coordinate system. Figure 2.2 illustrates the RSW frame.

Figure 2.2: Illustration of the Satellite Coordinate System, also known as RSW. In the figure IJK denote
the ECI coordinate axes. Figure taken from [3].

2.2.3 Topocentric System

The topocentric system is useful to express satellite observations from ground-based sites. The

fundamental plane of this system is the local horizon (plane tangent to the surface of the Earth at the
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observer’s site). In this thesis the East North Zenith (ENZ) realization [20] is used. The E axis is aligned

with the local parallel (pointing East), the N axis is aligned with the local meridian (pointing North) and

the Z axis points towards local Zenith.

Satellite measurements are usually obtained in spherical coordinates, and only then converted to

cartesian. Let rsE , sN , sZs
T denote the cartesian coordinates of a point in the ENZ frame, and let

rs, β, δs
T denote spherical coordinates, where s ą 0 is the radial distance, β P r0, 2πq rad is the azimuth,

measured from north clockwise to the satellite and δ P r´π{2, π{2srad is the elevation, measured from

the local horizon, positive up to the target. It is possible to relate cartesian and spherical coordinates

using [20]

s “
b

s2
E ` s

2
N ` s

2
Z , (2.3a)

β “ arctan
sE
sN

, (2.3b)

δ “ arctan
sZ

a

s2
E ` s

2
N

. (2.3c)

2.2.4 Transformations

It is possible to transform vector quantities such as position r, velocity v or acceleration a vectors

between the defined reference systems. To clarify the notation, let Am be the vector quantity A relative

to frame m, i.e., written in terms of the basis vectors of frame m. Furthermore, when A denotes the

velocity or acceleration vector, the time derivative is also determined with respect to the subscripted

frame. Subscript i denotes ECI, f denotes ECEF, s denotes ENZ and w denotes RSW. Below, only

the transformations relevant to the work being developed are presented, which are paraphrased from

[3, 20].

ECI - ECEF

Since the ECI and ECEF systems have the same origin, changing the coordinates used to express

vector quantities is achieved through a rotation matrix. However, special care must be taken when

transforming velocity and acceleration vectors, since the motion of the Earth, and hence, the ECEF

frame, relative to the ECI frame needs to be considered. Given the ECEF position rf and velocity vf

vectors, the ECI counterparts, ri and vi, are given by:

ri “ T
i
frf , (2.4a)

vi “ T
i
f vf ` ωC ˆ

`

T if rf
˘

, (2.4b)

where T if is the rotation matrix from frame f (subscript) to frame i (superscript), ωC is the Earth’s an-

gular velocity vector and aˆb denotes the cross product between vectors a and b. The inverse relations

are readily found by solving (2.4) for the ECEF quantities, noting that the inverse of the rotation matrix is
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its transpose. The transformation between inertial and Earth-fixed accelerations is not of interest in the

present work.

In the computational part of this thesis, the epoch dependent rotation matrices are computed using

the Beyond Python Package3 (Version 0.7.2). In addition, the package also outputs the Earth’s sidereal

angle θGST ptq as a function of time. For simplicity, TOD and Pseudo Earth Fixed (PEF) are, respectively,

the chosen frame realizations of the ECI and ECEF systems. These choices simplify the coordinate

system transformations, since the z axes of the TOD and PEF frames are coincident, i.e., zTOD “

zPEF . The use of these frames greatly simplifies the computational burden of orbital propagations, but

is not suitable for high-precision applications, where the J2000 is the chosen inertial frame and the

International Terrestrial Reference Frame (ITRF) is usually the chosen Earth-fixed frame4.

ECEF - ENZ

Transformation between ECEF and ENZ frames requires both a rotation and a translation, since the

origin of the ENZ frame is at the local observation site. Let rf and vf be the position and velocity

vectors of the target spacecraft and Rf be the ground site in ECEF coordinates. The position and

velocity vectors of the spacecraft in ENZ coordinates are thus5:

rs “ T
s
f prf ´Rf q , (2.5a)

vs “ T
s
fvf , (2.5b)

The rotation matrix T sf is computed with the site’s geodetic coordinates as

T sf “

»

—

—

—

–

´ sinλ cosλ 0

´ sinφgd cosλ ´ sinφgd sinλ cosφgd

cosφgd cosλ cosφgd sinλ sinφgd

fi

ffi

ffi

ffi

fl

. (2.6)

ECI - RSW

RSW is an auxiliary frame used in this work for error analysis. Let ei denote an inertial error quantity

(for instance, a position or velocity difference between the true and estimated state). This vector may be

rotated to RSW with

ew “ T
w
i ei . (2.7)

It is stressed that the RSW frame is not inertial, and hence, when e is a velocity difference the present

transformation simply rotates the error vector to RSW components, without changing the definition of

3The Beyond Python Package is an open-source orbital Python package, created by Jules David. It is available online at
https://pypi.org/project/beyond/ (last access on 16th December 2020). Software under MIT Licence.

4The ITRF frame models the motion of the Earth’s rotational axis relative to its crust, which causes relative motion between the
z axes of ECI and ECEF frames over time. This effect is commonly known as polar motion.

5The ENZ frame is also attached to the Earth, and thus, no time-derivative transformation between ECEF and ENZ is needed.
Furthermore the ECEF time derivative of Rf is null, since the station is at rest with respect to the Earth.

10

https://pypi.org/project/beyond/


the time derivative. The rotation matrix is computed as

Twi “
”

R̂ Ŝ Ŵ
ıT

, (2.8)

where

R̂ “
ri

‖ri‖
, Ŵ “

ri ˆ vi
‖ri ˆ vi‖

, Ŝ “ Ŵ ˆ R̂ ,

ri and vi are the satellite’s inertial true position and velocity. ‖b‖ denotes the L2-norm of vector b.

2.3 Orbital State-Space Models

Six unidimensional quantities are needed to define the state of spacecraft (without orientation), build-

ing up different orbital state-space models. Broadly speaking, these models typically fall into one of two

categories:

• State vector - associated with position and velocity vectors;

• Orbital element sets - orbital elements are scalar magnitude and angular variables that specify

the shape and orientation of the orbit and locate the satellite within it.

Either representation is equivalent and completely locates the body. In this thesis, the orbital state

models are referenced to the ECI frame, however in GNSS applications they are usually tied to the

ECEF frame [4].

2.3.1 State Vector

The orbital state vector is denoted by the symbol x and comprises the inertial position and velocity

vectors of a spacecraft, expressed in Cartesian coordinates

x “
“

priq
T , pviq

T
‰T
“

“

xi, yi, zi, vxi , vyi , vzi
‰T
.

2.3.2 Keplerian Orbital Element Set

The Keplerian orbital elements allow for a much more intuitive and straightforward visualization of

the orientation and shape of the orbit (conic section) in space, when compared to the state vector. The

Keplerian elements are: semi-major axis a, eccentricity e, inclination i, Right Ascension of the Ascending

Node (RAAN) Ω, argument of perigee $ and true anomaly ν. The full element set is represented by

œ “ ra, e, i,Ω, $, νsT .

Sometimes, it is useful to relate the true anomaly ν with the eccentric anomaly E and with the mean

anomaly6 M , for instance, when solving the two-body problem. The relation is the well-known Kepler’s
6The mean anomaly M is the angular distance from the perigee which a fictitious body would have if it moved in a circular orbit,

with constant speed, in the same orbital period as the actual body in its elliptical orbit [36].
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Equation for elliptical form [3], given by

M “ E ´ e sinE , (2.9)

which requires an iterative numerical method when solving for E (for instance, Algorithm 2 (KepEqtnE)

of [3]). The relation between E and ν is then

tan
E

2
“

c

1´ e

1` e
tan

ν

2
. (2.10)

2.3.3 Equinoctial Orbital Element Set

In many applications, satellite orbits are chosen to be near-circular or near-equatorial. While there is

no inherent difficulty in calculating position and velocity vectors from known orbital elements with e or i

close to zero, the reverse task may cause numerical problems [20]. To avoid these problems, alternative

(more robust) sets may be employed. Among others, the equinoctial element set [27] is used. In this

thesis, it is represented by the symbol E, and is defined as

E“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

a

h

k

p

q

λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

a

e sinp$ ` Ωq

e cosp$ ` Ωq

tan i
2 sin Ω

tan i
2 cos Ω

M `$ ` Ω

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where a is the semi-major axis, h and k are components of the eccentricity vector in the equinoctial

system, p and q are components of the line of nodes vector in the equinoctial system and λ is the mean

longitude. Representation of the equinoctial system, as well as transformations between x and E, are

provided in Appendix D (Section D.1).

2.4 Orbital Mechanics

In order to study the dynamics of a spacecraft and predict its motion, which is the fundamental prob-

lem of this study, it is important to describe the mathematical and physical models of orbital mechanics

(astrodynamics). Below, a simple review of orbital motion is provided, focusing on the two-body and the

perturbed problems. A more detailed and in-depth development is provided in [3, 20, 34].

2.4.1 Kepler’s Laws and Two-Body Problem

The fundamental laws that govern planetary motion were first empirically described and published

by Johann Kepler between 1609 and 1619 in his works Astronomia nova seu physica coelestis and

Harmonices Mundi. Later on the 17th century, Sir Isaac Newton formulated his laws of motion that
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played a crucial role in providing the necessary mathematical background to support Kepler’s findings,

which only captured the kinematics of motion but not their dynamics.

According to Newton’s laws, the simplest model for the motion of bodies in the Universe, such as the

motion of planets around the Sun or satellites around the Earth, is that of a two-body problem. Figure 2.3

illustrates the two-body problem (between a satellite and the Earth), that is, a satellite msat with position

rsat and the Earth mC with position rC. As Vallado shows in [3], the satellite’s acceleration relative to

the Earth is given by

d2r

dt2
“ ´

GpmC `msatq

‖r‖3 r , (2.11)

where r “ rsat ´ rC. If the satellite’s mass is neglected and by replacing the standard gravitational

parameter of the central body GmC with µC, the equation above simplifies to

d2r

dt2
“ ´

µC

‖r‖3 r , (2.12)

which is known as the two-body dynamics. Several assumptions are needed to apply this equation,

namely [3]: 1) the mass of the satellite is neglected when compared to that of the attracting body; 2)

both bodies are spherically symmetrical with uniform density (allowing for a point mass treatment); 3)

the dynamical equation is implemented in an inertial frame centered on the central body; and 4) no other

forces act on the system except for the gravitational forces acting along a line joining the centers of the

two bodies.

Figure 2.3: Illustration of the two-body problem between the Earth mC and the satellite msat. XYZ is
an inertial frame. IJK is displaced from XYZ but is also inertial and does not rotate or accelerate, being
centered at the Earth (ECI). Illustration taken from [3].

The solution of (2.12) leads to the well-known Keplerian orbits, which specify the trajectory of the

satellite as a conic section curve. Figure 2.4 illustrates the possible geometries for Keplerian orbits

(which are dependent on the initial conditions).

In the subsequent work, the analysis is confined to elliptic/circular motion. For these orbits, the

solution of the two-body problem7 is achieved, employing the Keplerian element set and given the initial

conditions œpt0q “ ra0, e0, i0,Ω0, $0, ν0s
T , by considering constant orbital shape and orientation, i.e.,

aptq “ a0, eptq “ e0, iptq “ i0, Ωptq “ Ω0 and $ptq “ $0. The location of the satellite in the orbit is then

7The solution of the two-body problem is the time evolution of the satellite’s position and velocity (or any other equivalent set of
state variables) in an inertial frame.

13



Figure 2.4: Different Keplerian orbits and the effect of the eccentricity e in the resulting conic curve. The
possible geometries are: circular (e “ 0), ellipse (0 ă e ă 1), parabola (e “ 1) and hyperbola (e ą 1).
Illustration taken from [35].

found by implementing a linear law for the mean anomaly M , that is,

Mptq “M0 `

c

µ

a3
pt´ t0q , (2.13)

which may then be converted to true anomaly ν, cf. Section 2.3.2.

2.4.2 Perturbed Motion

Applying (2.12) to Earth orbiting satellites neglects the effects of real-world perturbations. Perturba-

tions are deviations from a nominal unperturbed motion, causing the satellite motion to drift apart from

the two-body trajectory. Due to its daily rotation, the Earth is not a perfect sphere (nor does it have a

constant density), but has the form of an oblate spheroid with an equatorial diameter that exceeds the

polar one by about 20 km. Perturbations also arise from the gravitational attraction of other bodies such

as the Sun, Moon or Jupiter. Satellites orbiting at low altitudes are also subject to non-conservative

velocity-dependent forces caused by the resistance of the atmosphere (drag). Solar radiation pressure,

thrust, magnetic fields, solid-Earth tides, ocean tides, Earth re-radiation, relativistic effects are other

sources of perturbations [3, 20]. Figure 2.5 depicts the impact of various perturbations affecting Earth

satellites as a function of their altitude.

To account for these effects, perturbing accelerations are added to Equation (2.12) in order to pro-

duce a more accurate model. This formulation is known as Cowell’s formulation [3] and is given by

d2r

dt2
“

d2r

dt2 2-body
`

d2r

dt2 pert.
. (2.14)

Knowing the most important forces (in terms of intensity) that affect satellite motion is fundamental

to properly tune the relevant state dynamics to be implemented in engineering problems.

To conclude, Table 2.1 presents some Earth’s physical constants, which will be used throughout this
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Figure 2.5: Magnitude of perturbing accelerations of Earth satellites as a function of their altitude.
Graphic taken from [37].

work.

Earth’s constant Symbol Value

Standard gravitational parameter µC 3.986004415ˆ 105km3{s2

Equatorial radius RC 6378.1363 km

Flattening fC 1{298.257

Second degree zonal coefficient J2 1.08262693ˆ 10´3

Angular velocity vector ωC r0, 0, ωCs
T

Rotational speed ωC 7.292115ˆ 10´5rad{s

Table 2.1: Earth’s physical constants. Values taken from [3].

2.5 Nonlinear Filtering

Nonlinear state estimation (also known as filtering) refers to a class of methods that are used for

estimating the state of a time-varying system which is indirectly observed through noisy measurements.

The state of the system is a collection of dynamic variables which fully describe it (position, velocity,

orientation, etc.). Noisy measurements are not deterministic, but rather follow a probabilistic distribution.

Let the system be modeled by the following nonlinear form [38]8

9xptq “ fpxptq, tq `wptq , t ą 0 , (2.15a)

yptkq “ hdpxptkq, tkq ` vptkq , k “ 0, 1, 2, 3, . . . , (2.15b)

8The system described by (2.15) is commonly referred to in the the literature as the continuous-discrete nonlinear system [38],
since the state is modeled in continuous-time and the measurements are obtained at sampling discrete-times.
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where xptq P Rn and wptq P Rn are, respectively, the state vector and the continuous process noise at

time t, yptkq P Rm and vptkq P Rm are, respectively, the measured output and the discrete measurement

noise at discrete times tk. f : RnˆR` ÞÑ Rn is the system dynamical function and hd : RnˆR` ÞÑ Rm is

the measurement function. Process noise represents both the disturbances that are unmodeled because

they are unknown, as well as those intentionally excluded due to model complexity or computational

limitations.

Process and measurement noise are assumed to be sequences of white, zero-mean, Gaussian

noise and mutually uncorrelated with known covariance (power spectral density). These properties are

summarized as [39]:

wptq „ N p0,Qptqq , (2.16a)

vptkq „ N p0,Rkq , (2.16b)

ErwptqwpτqT s “ δpt´ τqQptq , (2.16c)

ErvptkqvptjqT s “ δkjRk , (2.16d)

ErwptqvT ptkqs “ 0 , (2.16e)

where δij “ 0 for i ‰ j and δij “ 1 for i “ j is the Kronecker delta, and δpt´ τq is the continuous Dirac

delta (impulsive) function. Er ¨ s denotes the expectation operator, N the Gaussian distribution and the

null vectors 0 have the appropriate dimensions. Both the covariances Qptq and Rk are positive definite

matrices.

Furthermore, in computational applications it is possible to discretize the state dynamics via numer-

ical solver routines of ordinary differential equations [40]. These methods replace the continuous-time

dynamics of Equation (2.15a) with the following discretized form

xptk`1q “ fdpxptkq, tkq `wdptkq k “ 0, 1, . . . . (2.17)

It should be noted that the discretization is being performed considering noiseless state dynamics,

i.e., by setting wptq “ 0, and then by explicitly adding the discretized process noise wdptkq. A more

rigorous approach would be to discretize directly the stochastic differential system, which is crucial

when a precise relation between continuous and discretized noise is intended. The concept of stochastic

discretization of nonlinear dynamics in the context of Kalman estimation is further explored in [41].

2.5.1 Nonlinear Transformation of Random Variables

In this section the fundamental linearization procedures that are applied in the filtering algorithms to

be implemented are reviewed. Let x denote a Gaussian Random Variable (GRV) with mean x̄ “ Erxs

and covariance P x “ E
“

px´ x̄qpx´ x̄qT
‰

that undergoes an arbitrary nonlinear transformation

y “ gpxq . (2.18)
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Given this formulation, the problem of nonlinear transformation of random variables tries to compute

a Gaussian approximation of the statistics of the transformed Random Variable (RV) y, namely, its mean

ȳ and covariance P y. In the following, the first-order Taylor series linearization, the weighted statistical

linearization and the Unscented Transform are reviewed.

First-Order Taylor Series Linearization

In order to analytically calculate ȳ and P y, a multidimensional Taylor series expansion around x̄ is

employed (truncated to first order) [42, 43], that is,

y “ gpxq « gpx̄q `
Bgpxq

Bx

∣∣∣∣
x“x̄

px´ x̄q . (2.19)

The statistics of y are then given by:

ȳ “ gpx̄q , (2.20a)

Py “ Gxpx̄qP xG
T
xpx̄q , (2.20b)

where Gxpx̄q “
Bgpxq

Bx

∣∣∣∣
x“x̄

. To conclude, function g can now be approximated, near the expansion

point x̄, by

ylin. “ gpx̄q `Gxpx̄qpx´ x̄q . (2.21)

Weighted Statistical Linearization and the Unscented Transform

The Weighted Statistical Linearization (WSL) is a linearization technique that takes into account the

uncertainty or probabilistic spread of the prior RV when linearizing the function. By doing so, the re-

sulting function is more accurate (in a statistical sense) than simply using a first-order Taylor series

linearization around the mean of the RV. A complete analysis of the inaccuracy of the Taylor approxi-

mation when dealing with RVs and a comparison with the Unscented Transform and other Sigma-Point

WSL transformations is given in [43].

Consider the nonlinear function y “ gpxq which is evaluated in N points (X i , i “ 1, . . . , N ), i.e.,

Yi “ gpX iq , i “ 1, . . . , N , where the points X i are chosen such that they capture certain statistical

properties of x. The aim of WSL is to determine the linearization parameters A and b such that the

function may be approximated by the following linearized regression

gpxq « ylin. “ Ax` b . (2.22)

The following statistics can be computed [43]:

x̄ “
N
ÿ

i“1

WiX i , (2.23a)

P x “

N
ÿ

i“1

Wi pX i ´ x̄q pX i ´ x̄q
T
, (2.23b)
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ȳ “
N
ÿ

i“1

WiYi , (2.23c)

P y “

N
ÿ

i“1

Wi pYi ´ ȳq pYi ´ ȳq
T
, (2.23d)

P xy “

N
ÿ

i“1

Wi pX i ´ x̄q pYi ´ ȳq
T (2.23e)

where Wi is a set of N scalar regression weights that sum to one. By minimizing the weighted sum of

the squared errors Ei “ Yi ´ pAX i ` bq, i.e.,

tA, bu “ argmin
N
ÿ

i“1

Wi ETi Ei , (2.24)

one may compute the linearization parameters, which are given by:

A “ P T
xy P

´1
x , (2.25a)

b “ ȳ ´Ax̄ . (2.25b)

As shown in [43], the Unscented Transform (UT) makes implicit use of the WSL procedure to obtain

an implied statistically linearized system model for use within nonlinear filtering processes. Hence, the

UT is an example application of the WSL framework. Quoting from [44], ”the UT is founded on the

intuition that it is easier to approximate a probability distribution than it is to approximate an arbitrary

nonlinear function or transformation”. The UT forms a fixed number of Sigma Points, which capture the

mean and covariance of the original distribution of x. These points are then propagated through the

non-linearity and finally the mean and covariance of the transformed variable are estimated from them9.

The UT is presented in algorithmic-form in Algorithm 1, paraphrased from [43, 44].

In Equation (2.26)
a

pn` λqP x is the matrix square root of the weighted covariance (positive definite)

matrix pn ` λqP x and may be computed using efficient Cholesky decomposition methods [40]. In the

experimental development of the thesis, this decomposition is performed using the Scientific Python

(SciPy) Package10 [45] (version 1.5.4).

Constants α, β and κ are parameters of the transform. α determines the spread of the sigma points

around the mean x̄ and is usually in the interval r10´4, 1s [46], κ is a scaling parameter and is usually

set to 0 (for state estimation) or 3 ´ n (for parameter estimation) [47] and β is used to incorporate prior

knowledge of the distribution of x (β “ 2 is the optimal value for Gaussian distributions [46]). In the

present work, these constants are set to α “ 1, β “ 2 and κ “ 0.

9Notice that the UT is different from Monte Carlo estimation (used in Particle Filters), because the selection of Sigma Points is
deterministic.

10The SciPy package is available online at https://www.scipy.org (last access on 22nd December 2020)
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Algorithm 1 Unscented Transform (UT)
Require: GRV x P Rn characterized by the distribution x „ N px̄,P xq;

Nonlinear function g : Rn ÞÑ Rr;
pα, β, κq. Ź parameters of the transform

Ensure: The UT is used for forming the Gaussian approximation
ˆ

x
y

˙

„ N
ˆˆ

x̄
ȳ

˙

,

ˆ

P x P xy

P T
xy P y

˙˙

of the joint distribution of x and y P Rr undergoing the transformation gp¨q.
1: function UT(g, x̄, P x)
2: Form the set of 2n` 1 Sigma Points X i as follows:

X 0 “ x̄ , i “ 0 ,

X i “ x̄`
“

a

pn` λqP x

‰

i
, i “ 1, . . . , n ,

X i “ x̄´
“

a

pn` λqP x

‰

i´n
, i “ n` 1, . . . , 2n ,

(2.26)

where λ is a scaling parameter defined as

λ “ α2pn` κq ´ n , (2.27)

and
“

¨
‰

i
denotes the ith column of the matrix inside the brackets.

3: Compute the associated weights:

Wpmq
0 “ λ{pn` λq , Wpmq

i “ 1{r2pn` λqs, i “ 1, . . . , 2n ,

Wpcq
0 “ λ{pn` λq ` p1´ α2 ` βq , Wpcq

i “ 1{r2pn` λqs, i “ 1, . . . , 2n ,
(2.28)

4: Transform each of the Sigma Points with

Yi “ gpX iq , i “ 0, . . . , 2n . (2.29)

5: Finally, compute the statistics:

ȳ “
2n
ÿ

i“0

Wpmq
i Yi , (2.30a)

P y “

2n
ÿ

i“0

Wpcq
i pYi ´ ȳqpYi ´ ȳq

T , (2.30b)

P xy “

2n
ÿ

i“0

Wpcq
i pX i ´ x̄qpYi ´ ȳq

T . (2.30c)

6: return rȳ,P y,P xys

7: end function

2.5.2 Kalman Filter

The purpose of Bayesian filtering is to compute the joint a posteriori probability density function (pdf)

of the state xk at each time step k given the history of measurements up to that time, ppxk | y1:kq. The

formal and exact solution of the continuous-time and discrete-time nonlinear problems (investigated in

[48] and [39], respectively) is, in the general case, unfeasible because an explicit closed-form solution of

the equations is intractable for most systems and an infinite amount of computational resources would

be needed. Therefore, one resorts to sub-optimal algorithms, namely, Kalman filters [39].

The Kalman Filter (KF) was developed by Rudolph Kalman in 1960 [49] and consists of a linear,

19



discrete-time and time-varying system characterized by a finite-dimensional state vector and a sequence

of noisy observations from which the state is inferred by minimizing a quadratic function of the estimation

error. Proof and development of the KF equations may be found in [39, 49].

The filtering estimate at time tk is computed as a two-step procedure. In the first step (predict step)

the state model is used to predict the current (mean) state estimate and covariance based on knowledge

up to the previous instant tk´1. The a priori mean and covariance are defined as:

x̂´k “ Erxk | y1:k´1s ,

P´k “ Erpxk ´ x̂´k qpxk ´ x̂
´
k q
T | y1:k´1s.

where the superscript ”-” indicates predicted estimates. Then, in the second step (update step) the

measurement is used to correct the predicted state, producing the a posteriori distribution, denoted with

the superscript ”+”, that is:

x̂`k “ Erxk | y1:ks ,

P`k “ Erpxk ´ x̂`k qpxk ´ x̂
`
k q
T | y1:ks.

Once initialized, the algorithm repeats its predict-update sequence for each time step k. A represen-

tative diagram of the algorithm is illustrated in Figure 2.6.

ppx0q

ppx1q

ppx1|y1q

. . .

ppxk´1|y1:k´1q

ppxk|y1:k´1q

ppxk|y1:kq

(x̂`0 , P
`
0 )

(x̂´1 , P
´
1 )

(x̂`1 , P
`
1 ) (x̂`k´1 , P

`
k´1)

(x̂´k , P
´
k )

(x̂`k , P
`
k )

predict

update

predict

update

predict

update

Figure 2.6: Consecutive predict and update steps on KF dynamics. Rather than propagating the entire
pdf the KF only propagates the first (mean) and second (covariance) moments.

Extended Kalman Filter

With nonlinear dynamics, the KF is no longer optimal11. Nonetheless, it is possible to extend the

applicability of KFs to nonlinear systems. The Extended Kalman Filter (EKF) is one of such filters. The

system is approximated by a linearized version around the state estimate (using first-order Taylor series

expansion) and then the conventional KF algorithm is applied.

In this thesis the continuous-discrete EKF is considered, based on deductions made in [3, 20]. An

explicit discretization of the state dynamics is therefore avoided.12 The EKF is presented in Algorithm 2,

adapted from the aforementioned references. This algorithm computes approximate solutions to filtering

11Under the assumptions that the system is fully linear, the initial state is Gaussian and the process and measurement noise
sequences are white and Gaussian, then the filtering pdf ppxk | y1:kq is Gaussian for all time instants and the KF is optimal [39].

12Modeling the dynamics directly in continuous-time is more accurate, since the laws that govern physical systems are naturally
written in continuous-time.
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problems as described by the system of Equations (2.15). Discretization of the process noise sequence

in Equation (2.33a) is shown in Appendix B.

Algorithm 2 Extended Kalman Filter (EKF)
Require: system functions f , hd and Jacobians F and H;

x̂`0 “ Erxpt0qs “ x̄0; Ź initial state estimate at t0
P`0 “ E

”

pxpt0q ´ x̄0q pxpt0q ´ x̄0q
T
ı

“ P̄ 0; Ź initial covariance estimate at t0
tptk,yk,Rkq : k “ 1, . . . , T u; Ź sequence of (possible infinite) observations to process
Qptq “ Q , @t. Ź constant continuous-time process noise covariance

Ensure: X̂ “ tpx̂`k ,P
`
k q : k “ 1, . . . , T u. Ź estimated output trajectory (mean and covariance)

1: procedure EKF
2: Definitions: The system Jacobians are defined as:

F px̂ptq, tq “
Bfpxptq, tq

Bxptq

∣∣∣∣
xptq“x̂ptq

,

Hpx̂´k , tkq “
Bhdpxk, tkq

Bxk

∣∣∣∣
xk“x̂´k

.

(2.31)

3: for tk P tt1, . . . , tT u do
4: Predict step: Numerically propagate mean and State Transition Matrix (STM) dynamics in

the interval t P rtk´1, tks, from the initial conditions x̂ptk´1q “ x̂
`
k´1 and Φptk´1, tk´1q “ Inˆn with:

9̂xptq “ fpx̂ptq, tq ,

9Φpt, tk´1q “ F px̂ptq, tqΦpt, tk´1q .
(2.32)

The integration produces x̂´k “ x̂ptq|t“tk and Φptk, tk´1q “ Φpt, tk´1q|t“tk .
5: Discretize the process noise covariance and compute the propagated state covariance:

Qdptk, tk´1q “ Φptk, tk´1qQΦT ptk, tk´1q ¨ ptk ´ tk´1q , (2.33a)

P´k “ Φptk, tk´1qP
`
k´1 ΦT ptk, tk´1q `Qdptk, tk´1q . (2.33b)

6: Update step: Compute the Kalman gain and update the state mean and covariance:

Kk “ P
´
kH

T px̂´k , tkq
“

Hpx̂´k , tkqP
´
kH

T px̂´k , tkq `Rk

‰´1
, (2.34a)

x̂`k “ x̂
´
k `Kkpyk ´ hdpx̂

´
k , tkqq , (2.34b)

P`k “ rInˆn ´KkHpx̂
´
k , tkqsP

´
k . (2.34c)

7: Append updated state and covariance to the estimated trajectory X̂.
8: end for
9: return X̂

10: end procedure

The process noise wptq is assumed to have constant covariance Qptq “ Q, which implies that the

stochastic process has infinite variance. Although this is only an idealized concept that is not physically

realizable, it does serve as a useful mechanism for modeling system uncertainties and disturbances

[50]. Furthermore, in (2.34c), Inˆn denotes the identity matrix of dimension n, where n is the dimension

of the state vector.
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Unscented Kalman Filter

The local linear approximations performed by the EKF may not work in problems with significant

nonlinearities and thus may lead to large estimation errors or even filter divergence. In order to overcome

these kinds of problems, Julier and Uhlmann proposed a new method in 1997 known as the Unscented

Kalman Filter (UKF) [44].

The filtering pdf is also only approximate, but now its transformation through the nonlinear system

relies on the UT (Section 2.5.1). In this work the discrete-discrete UKF is considered, resorting to the

system characterized by (2.17) and (2.15b), cf. the original implementation of the UKF in [44]. Notice

that the state dynamics are discretized beforehand. In recent years, the UKF has been extended to

systems modeled directly in continuous-time [51]. This algorithm was not considered on this thesis

and its implementation and comparison with the EKF and conventional UKF (both in performance and

computational cost) on the context of OD is left as future work.

The UKF algorithm is presented in Algorithm 3, being paraphrased from [46, 51].

2.6 Signals in the Frequency Domain

In this section a brief overview of the Fourier Series and the Discrete Fourier Transform is given. The

concepts presented here are based on those developed in [52] and will be useful when modeling the

orbital dynamics in Chapter 3.

2.6.1 Fourier Series

1-Dimensional

The Fourier Series (FS) is the frequency-domain representation of a continuous-time periodic signal

xptq with period T as a sum of an infinite set of harmonically related sinusoids in addition to a constant

(DC) value. The signal’s fundamental frequency is ω0 “
2π
T . The frequencies of the other harmonics are

integral multiples of ω0. The sufficient conditions that a signal has to satisfy so that it can be represented

by a FS are: 1) the signal xptq is absolutely integrable, i.e.,
T
ş

0

|xptq| dt ă 8; 2) the signal has a finite

number of maxima and minima in one period; and 3) the signal has a finite number of discontinuities in

one period. These are known as the Dirichlet conditions.

A real periodic signal xptq satisfying the Dirichlet conditions can be decomposed as the following FS

xptq “
8
ÿ

k“´8

Fcspkqejkω0t , (2.38)

where j “
?
´1 is the imaginary unit and the FS frequency coefficients are defined as

Fcspkq “
1

T

ż T

0

xptqe´jkω0tdt , k “ ´8, . . . ,´1, 0, 1, . . . ,8 . (2.39)
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Algorithm 3 Unscented Kalman Filter (UKF)
Require: system functions fd, hd;

x̂`0 “ Erxpt0qs “ x̄0; Ź initial estimate at t0
P`0 “ E

”

pxpt0q ´ x̄0q pxpt0q ´ x̄0q
T
ı

“ P̄ 0; Ź initial estimate covariance at t0
tptk,yk,Rkq : k “ 1, . . . , T u; Ź sequence of (possible infinite) observations to process
Qptq “ Q , @t. Ź constant continuous-time process noise covariance

Ensure: X̂ “ tpx̂`k ,P
`
k q : k “ 1, . . . , T u. Ź estimated output trajectory (mean and covariance)

1: procedure UKF
2: for tk P tt1, . . . , tT u do
3: Predict step: Compute the mean and covariance (without process noise) of the discretized

state dynamics using the UT (Algorithm 1)

rx̂´k ,P k,P k,k´1s “ UTpfd, x̂`k´1,P
`
k´1q . (2.35)

4: Compute the WSL equivalent of the STM, discretize the process noise covariance and com-
pute the propagated state covariance:

Aptk, tk´1q “ P k,k´1

`

P`k´1

˘´1
, (2.36a)

Qdptk, tk´1q “ Aptk, tk´1qQA
T ptk, tk´1q ¨ ptk ´ tk´1q , (2.36b)

P´k “ P k `Qdptk, tk´1q . (2.36c)

5: Update step: Perform the UT of the measurement function, compute the Kalman gain and
update the state mean and covariance:

rȳk, P̃ y,P xys “ UTphd, x̂´k ,P
´
k q , (2.37a)

P y “ P̃ y `Rk , (2.37b)

Kk “ P xyP
´1
y , (2.37c)

x`k “ x
´
k `Kkpyk ´ ȳkq , (2.37d)

P`k “ P
´
k ´KkP yK

T
k . (2.37e)

6: Append updated state and covariance to the estimated trajectory X̂.
7: end for
8: return X̂
9: end procedure

2-Dimensional

The theory of 2-Dimensional (2-D) signals, for the most part, is a straightforward extension of the

theory of 1-Dimensional (1-D) signals. In view of this, let xpt1, t2q be a periodic signal with periods T1

and T2 respectively in axes t1 and t2. Its FS takes the form

xpt1, t2q “
8
ÿ

k1“´8

8
ÿ

k2“´8

Fcspk1, k2qe
jω1k1t1ejω2k2t2 , (2.40)

where ω1 “ 2π{T1, ω2 “ 2π{T2 and

Fcspk1, k2q “
1

T1T2

ż T1

0

ż T2

0

xpt1, t2qe
´jω1k1t1e´jω2k2t2 dt1dt2 . (2.41)
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2.6.2 Discrete Fourier Transform

1-Dimensional

Let xpnq denote an N point finite-length signal. The Discrete Fourier Transform (DFT) transforms

xpnq into a set of N frequency coefficients Xpkq, which are the representation of the given time-domain

sequence in the frequency domain. The Inverse Discrete Fourier Transform (IDFT) transforms the N

frequency-domain coefficients back into the original time-domain sequence. The DFT and IDFT trans-

formations are defined as:

Xpkq “
N´1
ÿ

n“0

xpnqe´j
2π
N kn , k “ 0, . . . , N ´ 1 DFT equation, (2.42a)

xpnq “
1

N

N´1
ÿ

k“0

Xpkqej
2π
N kn , n “ 0, . . . , N ´ 1 IDFT equation. (2.42b)

2-Dimensional

Let xpn1, n2q be a 2-D time-domain finite sequence where the directions n1 and n2 have length N1

and N2, respectively. In this case, the DFT and IDFT are defined as:

Xpk1, k2q “

N1´1
ÿ

n1“0

N2´1
ÿ

n2“0

xpn1, n2qe
´j 2π

N1
k1n1e´j

2π
N2
k2n2 , k1,2 “ 0, . . . , N1,2 ´ 1 DFT equation,

(2.43a)

xpn1, n2q “
1

N1N2

N1´1
ÿ

k1“0

N2´1
ÿ

k2“0

Xpk1, k2qe
j 2π
N1
k1n1ej

2π
N2
k2n2 , n1,2 “ 0, . . . , N1,2 ´ 1 IDFT equation.

(2.43b)

2.6.3 Relation Between Discrete Fourier Transform and Fourier Series

1-Dimensional

In the real world, signals are mostly continuous and aperiodic. The accurate representation of such

signals requires an infinite number of samples in the frequency and time domains. Both the DFT and FS

serve the same purpose, that is, providing a representation of signals in the frequency domain. However,

the FS analyzes a continuous-time signal (with possible infinite frequency components), whereas the

DFT analyzes a discrete signal. Despite this, in actual applications it is much more practical to work with

the DFT, due to its finite nature. Hence, an approximation of the DFT and FS frequency coefficients is

desired.

The integral in (2.39) can be approximated using the rectangular rule of numerical integration. By

dividing the period T into N intervals, each of those with width Ts “ T {N , and sampling the signal at N
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points with xptq “ xpnTsq, then (2.39) is approximated as

Fcspkq «
1

T

N´1
ÿ

n“0

xpnTsqe
´jkω0nTs

T

N

“
1

N

N´1
ÿ

n“0

xpnTsqe
´j 2π

N nk , k “ 0, 1, . . . , N ´ 1 ,

(2.44)

where xpnTsq “ xpnq is the nth sample of the signal. By comparing (2.42a) and (2.44), the following

relation is found the between FS and DFT coefficients:

Fcspkq “
1

N
Xpkq , k “ 0, . . . , N ´ 1 . (2.45)

If xptq is sampled with xptq “ xppn0`nqTsq, i.e., with a delayed signal, then the following relation is found

instead (using the DFT shifting theorem [52])

Fcspkq “ e´j
2π
N n0k

Xpkq

N
“ e´jkω0n0Ts

Xpkq

N
, k “ 0, . . . , N ´ 1 (2.46)

A periodic signal can be represented uniquely by a spectrum with an infinite number of harmonically

related sinusoids. Since in the DFT only a finite number of frequency components is produced, a problem

known as aliasing arises. As shown in [52], when applying the DFT to a given signal, the sampling

theorem states that the index of the highest frequency component the signal is composed of must be

less than N{2, in order to represent the signal unambiguously with N DFT coefficients. On the other

hand, if the signal contains frequency components greater than N{2, the DFT coefficients are corrupted

and cannot recover the original time-domain signal. This usually leads to the high-frequency sinusoids

being reconstructed as low frequency ones.

Hence, when approximating FS coefficients with DFT coefficients, one way to prevent or reduce

aliasing is by ensuring that the signal is composed only of frequency components with index less than

N{2 (by prefiltering it with a low pass filter). Otherwise, the aliasing effect may corrupt the spectrum.

2-Dimensional

The relation between the 2-D FS and DFT is obtained in a similar way to the 1-D case. Sampling the

signal xpt1, t2q at N1 ˆN2 points with xppn0,1 ` n1qT1s, pn0,2 ` n2T2sq and approximating the integral of

(2.41) one obtains

Fcspk1, k2q “
e´jk1ω1n0,1T1s e´jk2ω2n0,2T2s

N1N2
Xpk1, k2q , (2.47)

where T1s “ T1{N1, T2s “ T2{N2 and n0,1, n0,2 are the time delay indexes.
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2.7 Performance Evaluation

Performance evaluation is a very important tool to develop, evaluate and compare algorithms. Dif-

ferent criteria may be employed depending on the applications and experiments. In the context of state

estimation, commonly used criteria are accuracy and computational cost.

2.7.1 Accuracy

Accuracy is a measure of how well the produced estimates relate to the true state [39]. Throughout

this work, the Root Mean Squared Error (RMSE) will become the basic tool to construct accuracy studies.

Let x̂ptkq be a filter estimate of the true state xptkq, for k “ 1, . . . , T , where tT is the last instant of the

estimation. In the context of this thesis, x may denote a position or velocity vector or any other orbital

state variable.

The trajectory averaged RMSE is defined as [53]

RMSE “

g

f

f

e

1

TN

T
ÿ

k“1

N
ÿ

i“i

‖xptkq ´ x̂ptkq‖2
, (2.48)

whereN is the number of independent Monte Carlo estimation runs evaluated. The purpose of repeating

the estimation algorithms N times, with realizations of the random noise variables independent from run

to run, is to decrease the variability of the statistics and thus increase the power of the tests [39].

The previous definition represents the RMSE averaged along the trajectory in the interval t P rt1, tT s.

However, it is also possible to define the RMSE for each time instant tk, as follows:

RMSEptkq “

g

f

f

e

1

N

N
ÿ

i“i

‖xptkq ´ x̂ptkq‖2
, (2.49)

which is a more convenient definition for plotting the error evolution over time.

2.7.2 Computational Cost

Cost metrics refer to how expensive a given method is to implement, either in terms of money, time

or required technology. Sometimes, a less accurate algorithm may be preferred if it is less expensive

to implement and still satisfies some predefined accuracy requirements. In this thesis the cost metric to

be used in the simulation tests of the different algorithms implemented is CPU computation time. The

algorithms and simulations were developed in the Python programming language13 (version 3.7) and

conducted on a laptop computer with 8GB RAM and Intel® i7-4210U, 1.7 GHz processor.

13Python Software Foundation. Python Language Reference available at http://www.python.org (last access on 17th Decem-
ber 2020).
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Chapter 3

Modeling and Implementation

This chapter starts by modeling two orbital state dynamical formulations (osculating and mean dy-

namics), followed by the modeling of measurement model. Then, the orbital Kalman filters are assem-

bled with these models.

3.1 Dynamics Modeling

As discussed in Section 2.4.2, satellite motion is affected by disturbing forces which cause the motion

to drift away from pure two-body dynamics. There exist three main approaches in the literature to include

the effects of perturbations in the dynamical model of orbital motion [3]:

• Special Perturbation (SP) - SP methods numerically integrate the EoM using high-fidelity force

models that provide space operators with accurate predictions of positions and velocities of space

objects. The major disadvantage of SP methods is their strictly sequential and step-wise process-

ing when propagating from one epoch to another [12]. One of the most common formulations

within SP methods is Cowell’s formulation, modeled by (2.14). The General Mission Analysis Tool

(GMAT)1 is an example of an open-source software package implementing Cowell propagation;

• General Perturbation (GP) - GP methods replace the EoM with analytical approximations that

capture the essential behavior of the motion over a limited time interval and which permits analyti-

cal integration, relying usually on series expansions of the perturbing accelerations [3]. They can

be used to compute orbital positions at arbitrary times and the computational effort does not grow

with the time between the epoch of the orbital elements and the epoch of the computation [12]

(in contrast to SP methods). This trade-off speeds up computation but decreases accuracy. The

SGP4 propagator [54] in an example of a GP propagator;

• Semianalytical - Semianalytical methods combine the best features of SP and GP methods to

1GMAT is an open-source orbital mission analysis tool provided by the National Aeronautics and Space Administration (NASA)
agency. Available online at (last access on 12th December 2020) https://software.nasa.gov/software/GSC-18094-1. A
physical and mathematical description of the GMAT’s software may be found in http://gmat.sourceforge.net/doc/R2020a/

GMATMathSpec.pdf (last access on 15th December 2020).
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attain a superior mix of accuracy and efficiency. The Draper Semianalytic Satellite Theory (DSST)

propagator [27] is one of the most popular and well-documented semianalytical propagators2.

SP methods provide the best accuracy, but are also the heaviest (in computational sense). Furthermore,

they do not provide much about the qualitative behavior of the orbit, since the integration usually resorts

to the orbital state vector. GP and Semianalytical methods, on the other hand, are modeled with orbital

element sets [3].

The effects of perturbations on the time evolution of a generic orbital element are illustrated in Figure

3.1 and may be classified as: 1) secular effects, and 2) periodic effects. The former have an approxi-

mately linear variation over time. The latter are either long- or short-periodic, depending on the amount

of time required for the effects to repeat. Short periodic-effects usually repeat on the order of the satel-

lite’s orbital period, whereas long-periodic effects have cycles longer than one period.

Figure 3.1: Effects of perturbing forces on the time evolution of a generic orbital element. The straight
(linear-like) line shows secular effects. The oscillating (sinusoidal-like) lines show the evolution of the
true (secular, long- and short-period) and short-period averaged (secular and long-period) dynamics.
Image taken from [3].

It is useful to distinguish between osculating and mean orbital dynamics. The osculating dynamics

are defined by the instantaneous position and velocity vectors and are therefore associated with SP

methods. The osculating orbit is the true time-varying orbit, including both secular, long- and short-

periodic effects. In contrast, mean dynamics, implemented in both GP and Semianalytical methods,

are averaged over some selected time, thus excluding short-periodic effects. Depending on the aver-

age definition, these methods may even exclude long-periodic effects. The resulting mean orbit has

smoothly-varying orbital elements.

In the thesis, both Cowell (osculating) and Semianalytical (mean) formulations are developed, mod-

eled in Sections 3.1.1 and 3.1.2, respectively.

3.1.1 Osculating Dynamics

Figure 2.5 reveals that the most important perturbations affecting LEOs, which are the target orbits

for this thesis, are the Earth’s non-spherical and asymmetric gravitational field and drag. In view of this,

Cowell’s Equation (2.14) as adopted in this work reduces to

2The original development of DSST was provided in NASA’s R&D Goddard Trajectory Determination System software. Re-
cently, it was implemented in the open-source Orbit Extrapolation Kit (Orekit) Java flight dynamics library, available online at (last
access on 12th December 2020) https://www.orekit.org.
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d2riptq

dt2
“

d2riptq

dt2 Earth grav.
`

d2riptq

dt2 drag
“ ai Earth grav.ptq ` ai dragptq, (3.1)

where the two-body acceleration d2ri
dt2 2-body was replaced with the more general acceleration due to the

Earth’s asymmetric and non-spherical gravitational field, i.e., d2ri
dt2 Earth grav..

Using the orbital state vector x, the dynamical model governing the time evolution (propagation) of

the system is given by

9xptq “ fpxptq, tq `wptq “

»

–

viptq

ai Earth grav.ptq ` ai dragptq

fi

fl`wptq . (3.2)

It is emphasized that, although the acceleration is expressed in inertial components, the satellite sees

the ”true” orientation of the Earth over time. Therefore the gravitational terms should be evaluated in

Earth-rotating coordinates and then rotated back to the ECI frame before integrating [3]. The remainder

of this sections develops explicit models for the accelerations.

Earth’s Gravitational Field

The gravitational potential can be expressed in functional form as U “ Uprf , θq, where θ is a vector

of model parameters. The spatial gradient of U with respect to rf yields [20]

af Earth grav. “

„

BUprf , θq

Brf

T

, (3.3)

It is stressed that, when evaluating the Earth’s gravity field using the expression above, one obtains the

inertial acceleration in an inertial frame aligned with the instantaneous Earth-fixed frame, and not the

acceleration in the non-inertial Earth-fixed frame [20, 55]. Thus, only a rotation is needed to obtain the

acceleration in the ECI frame, i.e., ai Earth grav. “ T
i
faf Earth grav..

Taking into account the Earth’s non-uniform mass distribution and non-spherical shape and symme-

try, it is possible to express the gravitational potential U as a spherical harmonic series [3, 56]

U “
µC

r

«

1`
Nn
ÿ

n“2

Cn,0

´ae
r

¯n

Pn,0 psinφgcq

`

Nn
ÿ

n“2

minpn,Nmq
ÿ

m“1

´ae
r

¯n

Pn,m psinφgcq
“

Cn,m cospmλq ` Sn,m sinpmλq
‰

ff

,

(3.4)

where U is expressed as a function of the orbiter’s ECEF geocentric coordinates pr, φgc, λq (see Section

2.2.1). Each harmonic (term in the series) is specified by its degree and order pn,mq. In theory the

series extends to infinity, however in computational applications it should be truncated at a certain finite

degree Nn and order Nm. ae is a reference radius (usually taken as the equatorial radius RC). Cn,m and

Sn,m are the gravitational coefficients. Finally minp¨q returns the smallest of its arguments and Pn,mpuq

29



are the Associated Legendre Functions (ALFs) of degree n and order m, defined as

Pn,mpuq “
1

2n n!

`

1´ u2
˘m{2 dn`m

dun`m
pu2 ´ 1qn . (3.5)

The gravitational coefficients Cn,m and Sn,m are typically determined experimentally, and express

the model dependence on the Earth’s internal mass distribution. Depending on the degree and order,

each harmonic is classified as zonal (m “ 0), sectoral (n “ m) or tesseral (n ‰ m ‰ 0). Figure 3.2

illustrates representative examples of each type. These harmonics can be interpreted as eigenfunctions

that constitute an independent basis for the gravitational model.

Figure 3.2: Visualization of spherical harmonics. a) represents the zonal p6, 0q, b) the sectoral p4, 4q, and
c) the tesseral p4, 3q. Zonals define potential dependence with latitudinal stripes, sectorals with longitu-
dinal stripes and tesserals model specific regions on the Earth (latitudinal and longitudinal dependent).
Source [3].

Coefficients Cn,m and Sn,m become very small as the harmonics’ degree and order get large, which

usually leads to truncation errors in computational applications. Frequently, normalized coefficients,

denoted as C̄n,m and S̄n,m, are provided instead. These are obtained dividing the standard coefficients

by a normalization factor, C̄n,m “ Cn,m{Nn,m and S̄n,m “ Sn,m{Nn,m, which is defined as

Nn,m “

d

pn´mq! p2n` 1q p2´ δ0,mq

pn`mq!
. (3.6)

In order to complete the normalization, the ALFs must be normalized with the inverse normalization

factor, i.e., P̄ puqn,m “ Pn,mpuqNn,m. In (3.4) one may simply substitute the unnormalized quantities with

the normalized ones, such that the products in each harmonic remain the same.

There exist some gravitational models that provide normalized coefficients C̄n,m and S̄n,m. The

present work uses EGM963, published by the Office of Geomatics at National Geospatial-Intelligence

Agency in 1996. It implements the series up to Nn “ Nm “ 360.

Since U is modeled in spherical coordinates, the gravitational acceleration is given by (using the

chain rule) [3]

af Earth grav. “
BU

Br

ˆ

Br

Brf

˙T

`
BU

Bφgc

ˆ

Bφgc
Brf

˙T

`
BU

Bλ

ˆ

Bλ

Brf

˙T

. (3.7)

3The EGM96 model coefficients are available at https://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.
html (last access on 12th December 2020).
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Finally, the acceleration vector af Earth grav. “ raxf , ayf , azf s
T may be computed as [3]

axf “

»

–

1

r

BU

Br
´

zf

r2
b

x2
f ` y

2
f

BU

Bφgc

fi

flxf ´

«

1

x2
f ` y

2
f

BU

Bλ

ff

yf ´
µCxf
r3

(3.8a)

ayf “

»

–

1

r

BU

Br
´

zf

r2
b

x2
f ` y

2
f

BU

Bφgc

fi

fl yf `

«

1

x2
f ` y

2
f

BU

Bλ

ff

xf ´
µCyf
r3

(3.8b)

azf “
1

r

BU

Br
zf `

b

x2
f ` y

2
f

r2

BU

Bφgc
´
µCzf
r3

. (3.8c)

Computational aspects of this equation (recursive algorithms for the ALFs and partials BU{Br, BU{Bφgc

and BU{Bλ) are discussed in Appendix C.

Atmospheric Drag

Atmospheric drag is also a strong influence on the motion of LEO satellites [20]. The general equation

for aerodynamic drag is

ai drag “ ´
1

2

CDA

m
ρ ‖vrel.‖vrel. , (3.9)

where the coefficient of drag CD is a dimensionless quantity that reflects the satellite’s susceptibility to

drag forces. A and m are, respectively, the cross-sectional area and mass of the satellite and ρ is the

atmospheric density. vrel. is the velocity of the satellite relative to the local surrounding atmosphere. A

reasonable approximation is to assume that the atmosphere co-rotates with the Earth [20], resulting in

vrel. “ vi ´ ωC ˆ ri.

There exist different models for atmospheric density. In this thesis the Exponential Model is be used.

There exist more complex models that take into consideration time-variant fluctuations of the atmo-

spheric density, namely, due to solar or magnetic field activity, such as the Jacchia 1971 or the Harris-

Priester models [3]. The Exponential Model postulates an exponential relationship between satellite’s

altitude hellp and density, that is,

ρ “ ρ0 exp

ˆ

´
hellp ´ h0

H

˙

, (3.10)

where the coefficients ρ0, h0 and H are given in the table of Figure 3.3 as a function of the satellite’s

altitude.

3.1.2 Mean Dynamics

The underlying idea of Semianalytical methods is to separate short-term from long-term periodic and

secular effects in the EoM, obtaining the mean dynamics, which can then be numerically integrated with

much larger integration step sizes, when compared to SP Cowell propagation. If needed, the short-

periodic effects can then be recovered by building the osculating state. This procedure belongs to a
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Figure 3.3: Atmospheric Exponential Model parameters as a function of the satellite’s altitude hellp “
‖r‖´RC. Source [3].

broad field of averaging theory of dynamical systems called the Generalized Method of Averaging [57].

The theoretical framework that supports the Semianalytical propagation model implemented in this work

is the same that supports other Semianalytical models. However, it diverges from traditional approaches,

for instance DSST [27], in the computer implementation step — instead of relying on analytical expan-

sions of the perturbing accelerations, the current model, proposed by Todd Ely in [28, 29], relies on

numerical methods.

Before presenting the Semianalytical model, it is important to introduce new notation for clarity. Fol-

lowing the aforementioned references, the mean orbital dynamics are modeled using the equinoctial

element set E. Let E “ rα, λsT , where vector α “ ra, h, k, p, qs denotes the slowly-varying equinoc-

tial elements that indicate the orbit’s shape and orientation, and λ denotes the fast variable that lo-

cates the satellite in the orbit. Furthermore, the osculating elements, E, are distinguished from the

mean elements, Ē, with an overbar. Moreover, Ei denotes a generic equinoctial element, indexed with

i “ 1, . . . , 6, i.e., E“ rE1, E2, E3, E4, E5, E6s
T .

The osculating equinoctial EoM are obtained by converting the cartesian EoM, (2.14), to equinoctial

form. The Gaussian Variation-of-Parameters (VOP) formulation is given by [27]

9Ei “
dEi
dt

“ npaqδi6 `
dEi
dv

ÿ

pPP

qp , i “ 1, . . . , 6 . (3.11)

where
ř

pPP qp is the vector sum of all perturbing inertial accelerations qp, v is the inertial osculating

satellite velocity and δi6 is the Kronecker delta. The perturbations to be considered are, as in Section

3.1.1, due to the Earth’s gravitational field and drag, therefore the set of active perturbations is P “

tZ, T,Du, where Z denotes the zonal harmonics, T the tesseral/sectoral harmonics and D drag. In

the following, all vector quantities are inertial and expressed in ECI coordinates, therefore the subscript

frame notation is dropped for convenience and should not be confused with the equinoctial element

indexing. Partials BE{Bv are presented in Appendix D (Section D.3). npaq “
a

µC{a3 is the osculating

mean motion.
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Equations of Averaging

The mean EoM are found by averaging (3.11) with respect to the system’s fast variables. While

zonal and drag perturbations only need averaging with respect to λ, averaging the tesseral/sectoral

acceleration requires special treatment, since these perturbations are also dependent on the Earth’s

orientation relative to the spacecraft. This dependence is usually expressed via the sidereal angle

θ “ θGST (introduced in Section 2.2.1). In the Earth’s system, this is generally a fast dependence.

Let the osculating VOP (3.11) be rewritten as

dEi
dt

“ npaqδi6 ` εFipα, λ, θq , i “ 1, . . . , 6 , (3.12)

where εFi are the osculating element rates of change due to the perturbing accelerations and include all

terms appearing on the last term of the right-hand side of (3.11). ε is a small variational parameter that

plays a crucial in deriving the mean EoM.

It is now assumed that the averaged EoM take the following VOP form

dĒi
dt

“ npāqδi6 `
8
ÿ

j“1

εjAji pᾱq , i “ 1, . . . , 6 . (3.13)

Functions εjAji give the mean element rates of change4, due to the perturbing forces, as a function of

the slowly-varying mean elements, being independent on the fast variables.

SST further assumes a near-identity transformation between osculating and mean elements, that is,

Ei “ Ēi `

8
ÿ

j“1

εjηji pᾱ, λ̄, θq , i “ 1, . . . , 6 , (3.14)

where εjηji represents a small short-periodic variation of order j on element i. The short-periodic vari-

ations are assumed to contain all of the high-frequency components of the osculating elements Ei, so

that the mean elements Ēi contain only secular and long-periodic variations.

The problem is now to relate the as yet undefined functions Aji and ηji with the known osculating

Fi functions. The Semianalytical model implemented in this work truncates both Equations (3.13) and

(3.14) to first order on ε. The first-order Equations of Averaging of SST are modeled as

Opε1q : A1
i pᾱq `

Bη1
i

Bλ̄
npāq `

Bη1
i

Bθ
ωC “ Fipᾱ, λ̄, θq ´

3

2

η1
1

ā
npāqδi6 , i “ 1, . . . , 6 , (3.15)

where ωC “
dθ
dt (the sidereal rate is the Earth’s angular speed)5. It is emphasized that the dependence

with θ is dropped when treating zonal and drag perturbations. Proof of (3.15) may be found in [27]. A

brief review of the derivation is provided Appendix E.

These equations relate the unknown functions A1
i and the partial derivatives of η1

i with the known Fi

functions. However, the dependence with the fast variables, λ̄ and θ, is still present. To eliminate it, the

4Notice that the superscript j in εj designates a power and in Aj
i designates an index.

5Since ωC is considered constant, θ varies linearly with time, which means that θ does not have short-periodic behavior, i.e.,
θ̄ “ θ.
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equations needs to be averaged, with an averaging operator to be defined next.

Averaging Operator

The averaging operator, denoted by ă ¨ ą, is required to have the following properties

ă ρf ` σg ą “ ρ ă f ą `σ ă g ą , (3.16a)

ăă f ąą “ă f ą , (3.16b)

ă ηji ą “ 0 , (3.16c)

where ρ and σ are real numbers, and f and g are real continuous functions. The last condition ensures

that the average of short-periodic functions is zero. Proofs of these properties can be found in [27].

For p P tZ,Du, the osculating rate functions6 Fi,p are small, 2π-periodic in λ̄ and slowly-varying in

time when the orbital elements are held fixed. Hence, the single-averaging operator is able to eliminate

the dependence of Fi,p on λ̄. It is defined as

ă Fi,p ą pᾱq “
1

2π

ż λ̄`2π

λ̄

Fi,ppᾱ, ξqdξ . (3.17)

For p P tT u, Fi,p is small, 2π-periodic in both λ̄ and θ and slowly-varying in time when θ and the

orbital elements are held fixed. Hence, the double-averaging operator7 eliminates the dependence on λ̄

and θ

ă Fi,p ą pᾱq “
1

4π2

ż θ`2π

θ

ż λ̄`2π

λ̄

Fi,ppᾱ, ξ, ψqdξ dψ . (3.18)

For each perturbation p, (3.15) can be solved for the mean element rates by averaging both sides

of the equation with (3.17) or (3.18). Since the functions η1
i are 2π-periodic and have zero mean, cf.

(3.16c), they average out (as well as their partial derivatives) yielding, to first order:

A1
iZ,D pᾱq “ă FiZ,D pᾱ, λ̄q ą , (3.19a)

A1
iT pᾱq “ă FiT pᾱ, λ̄, θq ą . (3.19b)

Next, computational methods are described to compute A1
iZ,D

, A1
i,T , η1

iZ,D
and η1

i,T , cf. [28, 29].

Zonal and Drag Perturbations

Both zonal and drag perturbations are treated in similar fashion, since both are averaged with the

single-averaging operator, therefore they may be added up before averaging. The resultant perturbing

osculating functions are then

FiZ,D pᾱ, λ̄q “ Fi,Z ` Fi,D “
B Ēi

Bv̄
pqZ ` qDq , i “ 1, . . . , 6 . (3.20)

6Fi,p denotes the perturbing function Fi when only the perturbation p is considered in (3.11).
7Notice that if Fi,p is independent of θ, the double-averaging operator reduces to the single-averaging one. Thus, without

inconsistencies, one applies (3.17) to perturbations that do not depend on θ and (3.18) to those that do depend.
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The zonal harmonics acceleration qZ is given by ai Earth grav., however only the zonal terms of the gravi-

tational series are considered (see Section 3.1.1). qD is given by (3.9). Both the partials B Ēi{Bv̄ and the

accelerations are to be evaluated with the available mean state at epoch.

Computing A1
iZ,D

According to (3.19a), the mean element rates A1
iZ,D

are obtained by integrating (averaging) the functions

FiZ,D with (3.17). Given the mean elements Ēptq at a certain epoch t, the integration is performed in λ̄

from λ̄ptq to λ̄ptq`2π (a single orbital revolution), while keeping the other elements ᾱptq fixed at the given

epoch. The integral is computed numerically using a classic Gaussian fixed-order numerical quadrature

technique [28]. To do so, the present work makes use of the SciPy package. The integration produces

the mean element rates A1
iZ,D

ptq at the given epoch t.

Computing η1
iZ,D

Substituting (3.19a) in (3.15), and separating the slowly-varying mean elements ᾱ from λ̄ “ Ē6, one

obtains the homological Partial Differential Equations (PDEs):

ă FiZ,D ą pᾱq `
Bη1
iZ,D

Bλ̄
npāq “ FiZ,D pᾱ, λ̄q , i “ 1, . . . , 5 , (3.21a)

ă F6Z,D ą pᾱq `
Bη1

6Z,D

Bλ̄
npāq “ F6Z,D pᾱ, λ̄q ´

3

2

η1
1Z,D

ā
npāq . (3.21b)

To solve these equations, it is assumed that the functions FiZ,D pᾱ, λ̄q can be expanded as a Fourier

Series (FS) (2.38) in λ̄, that is,

FiZ,D pᾱ, λ̄q “
8
ÿ

k“´8

Fk
iZ,D pᾱqe

jkλ̄ “ă FiZ,D ą pᾱq `
8
ÿ

k“´8
k‰0

Fk
iZ,D pᾱqe

jkλ̄ , i “ 1, . . . , 6 , (3.22)

where Fk
iZ,D

is the Fourier coefficient of order k on element i. Substituting (3.22) into (3.21) and inte-

grating yields the following solution of the PDEs:

η1
iZ,D pᾱ, λ̄q “

1

npāq

8
ÿ

k“´8
k‰0

Fk
iZ,D

pᾱq

jk
ejkλ̄ ` Cipᾱq , i “ 1, . . . , 5 , (3.23a)

η1
6Z,D pᾱ, λ̄q “

1

npāq

8
ÿ

k“´8
k‰0

«

Fk
6Z,D pᾱq

jk
`

3

2ā

Fk
1Z,D pᾱq

k2

ff

ejkλ̄ ` C6pᾱq , (3.23b)

where Cipᾱq are the integration constants to be determined. Applying the average operator to both

sides of (3.23) and performing the necessary simplifications yields Cipᾱq “ 0.

Contrary to other SSTs, where the Fourier coefficients are found analytically, in this work they are

found numerically using DFT (introduced in Section 2.6.2), cf. [28]. The DFT of FiZ,D is
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Xk
iZ,D “

N´1
ÿ

n“0

FiZ,D pᾱ, λ̄nqe
´j 2π

N kn , k “ 0, . . . , N ´ 1 , (3.24)

where N is the DFT length. Furthermore, functions FiZ,D are sampled with λ̄n “ λ̄ ` n 2π
N , for n “

0, . . . , N ´ 1. Notice that the sampling index n should not be confused with the mean motion npāq.

Referring to Section 2.6.3, the FS and DFT coefficients are related by

Fk
iZ,D “

e´jkλ̄Xk
iZ,D

N
, k “ ´

N

2
, . . . , 0, . . .

N

2
´ 1 . (3.25)

The frequency indices k have been limited to k ă N{2, to avoid aliasing effects, that could otherwise

corrupt the spectrum (as discussed in Section 2.6.3). On the other hand, it is still possible to recover

the frequency information of the coefficients with greater k, by extending the range of indices k to the

negative side up to ´N{2. Indeed, the periodicity and symmetry properties of the DFT of real valued

signals yield X´ki “ XN´k
i [52], which is useful for relating, with reduced aliasing, the results returned

by the numerical DFT routines with the desired FS coefficients.

In the present study, the DFT coefficients are found efficiently using Fast Fourier Transform (FFT)

algorithms, provided by the SciPy package. Given the mean elements Ēptq at a certain epoch t, the

FFT is provided a set of numerical samples of the osculating functions FiZ,D , evaluated with the current

mean elements ᾱptq and sampled with mean mean longitude λ̄n “ λ̄ptq ` n 2π
N for n “ 0, . . . , N ´ 1.

Tesseral/Sectoral Perturbations

The osculating perturbing functions due to tesseral/sectoral perturbations is given by (evaluated with

mean elements)

FiT pᾱ, λ̄, θq “
B Ēi

Bv̄
qT , i “ 1, . . . , 6 . (3.26)

qZ is given by ai Earth grav., however only the tesseral/sectoral terms of the gravitational series are consid-

ered. The dependence between the sidereal angle θ and mean mean longitude λ̄ is outlined, as shown

in [27, 29], by decomposing FiT pᾱ, λ̄, θq as a 2-D FS of λ̄ and θ

FiT pᾱ, λ̄, θq “
8
ÿ

k“´8

Nm
ÿ

m“´Nm
m‰0

Fk,m
iT
pᾱqejpkλ̄´mθq , i “ 1, . . . , 6 . (3.27)

where m is the frequency index associated with the variable θ, having the same meaning as in the

gravitational potential series (3.4), that is, it represents the order of the harmonics [27]. Since the

current analysis only considers tesseral/sectoral harmonics, zonal harmonics (m “ 0) are removed

explicitly. Furthermore, Nm is the maximum order of the gravitational field under consideration.

Examination of (3.27) reveals the possibility of three perturbation problems, given the behavior of the

two competing angles λ and θ, with frequencies 9λ and 9θ, respectively, [29]:

• Resonant case - Resonance is the appearance of otherwise unusual long-periodic contributions

to the motion caused by the satellite’s exposure to the Earth in a repeating orientation [3], due to
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the commensurability of the two frequencies 9θ and 9λ. It appears when there exists a rational ratio

of two integers Q and P that satisfy (to a certain level of approximation) the relation 9λ{ 9θ „ Q{P ;

• Non-resonant case - In this case the resonance condition is not met since the integers P and Q

are too large to be significant, that, is the two frequencies are not commensurate;

• Adiabatic case - In this case 9λ is much larger than 9θ and therefore the fast dependence with θ can

be dropped. While this is not the case for Earth, it is for Venus, since the sidereal period for this

planet is „ 243 days.

In the present work, only the non-resonant case will be examined and employed. The addition of

resonant harmonics in the Semianalytical propagation model is left as future work.

Computing A1
iT

The mean element rates A1
iT

are obtained by applying the double-averaging operator to the osculating

functions FiT . However, by substituting the latter with the associated FS of Equation (3.27) and applying

the averaging operator, one obtains:

A1
iT “ă FiT pᾱ, λ̄, θq ą “

1

4π2

ż θ`2π

θ

ż λ̄`2π

λ̄

8
ÿ

k“´8

Nm
ÿ

m“´Nm
m‰0

Fk,m
iT
pᾱqejpkξ´mψqdξdψ

“
1

4π2

8
ÿ

k“´8

Nm
ÿ

m“´Nm
m‰0

Fk,m
iT
pᾱq

«

e´jmψejkξ

mk

ffψ“θ`2π, ξ“λ̄`2π

ψ“θ, ξ“λ̄

“ 0 .

(3.28)

This means that the non-resonant tesseral/sectoral harmonics yield no long-periodic or secular effects

on the orbit. In fact, these harmonics only contribute to the short-periodic functions and may therefore

be explicitly excluded from the mean element propagation.

Computing η1
iT

By substituting (3.27) and A1
iT
“ 0 in (3.15), one obtains the homological PDEs for the current

analysis:

npāq
Bη1
iT

Bλ̄
` ωC

Bη1
iT

Bθ
“

8
ÿ

k“´8

Nm
ÿ

m“´Nm
m‰0

Fk,m
iT
pᾱqejpkλ̄´mθq , i “ 1, . . . , 5 , (3.29a)

npāq
Bη1

6T

Bλ̄
` ωC

Bη1
6T

Bθ
“

8
ÿ

k“´8

Nm
ÿ

m“´Nm
m‰0

Fk,m
6T
pᾱqejpkλ̄´mθq ´

3npāq

2ā
η1

1T . (3.29b)

Solving these PDEs yields:

η1
iT pᾱ, λ̄, θq “

8
ÿ

k“´8

Nm
ÿ

m“´Nm
m‰0

Fk,m
iT
pᾱq

jpknpāq ´mωCq
ejpkλ̄´mθq , i “ 1, . . . , 5 , (3.30a)
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η1
6T pᾱ, λ̄, θq “

8
ÿ

k“´8

Nm
ÿ

m“´Nm
m‰0

˜

Fk,m
6T
pᾱq

jpknpāq ´mωCq
`

3npāq

2ā

Fk,m
1T
pᾱq

pknpāq ´mωCq
2

¸

ejpkλ̄´mθq . (3.30b)

Since resonance has been excluded from the current analysis, the denominator terms knpāq ´mωC are

not close to zero, hence the series does not diverge [29].

The 2-D FS series coefficients Fk,m
iT

may be approximated by the 2-D DFT coefficients, using

Fk,m
iT

“
e´jpkλ̄´mθq

NM
Xk,m
iT

, k “ ´
N

2
, . . . , 0, . . .

N

2
´ 1 ,m “ ´

M

2
, . . . ,´1, 1, . . .

M

2
´ 1 . (3.31)

The DFT coefficients are found efficiently using 2-D FFT algorithms from SciPy. In each call, for a

given orbital state Ēptq with known θptq at epoch t, the FFT is provided a grid of numerical samples

of the functions FiT , computed with the given mean elements. The slowly-varying elements ᾱptq are

held constant to the current state, the mean mean longitude is sampled with λ̄n1 “ λ̄ptq ` n1
2π
N for

n1 “ 0, . . . , N ´ 1 and the sidereal angle is sampled with θn2 “ θptq ` 2π
M for n2 “ 0, . . . ,M ´ 1, given

DFT lengths N and M , respectively. The FFT routine returns, for all frequencies k and m, the associated

coefficients Xk,m
iT

at the given epoch t.

Forming the Semianalytical Propagator

Now that the averaged mean rates and short-periodic functions have been found, the first-order

Semianalytical propagator can be assembled. Mean element propagation is given by

dĒi
dt

“ A1
iZ,D , i “ 1, . . . , 5 , (3.32a)

dλ̄

dt
“ npāq `A1

6Z,D . (3.32b)

The small parameter ε has been useful to derive the Equations of Averaging, however in actual applica-

tions it is not explicitly computed, but rather is implicitly considered as part of the perturbing functions Fi.

Hence, without loss of generality, it has be set to one [29]. These differential equations are numerically

integrated with a given integration step size ∆t. Since short-periodic terms have been averaged out,

large integration steps can be used (typically on the order of one day for a LEO satellite). The integra-

tion solver returns the mean equinoctial state at the selected steps, i.e. tĒptkq : k “ 1, 2, . . . u. The

integration process is initialized with a known initial mean state Ēpt0q.

Equations (3.32) represent the Semianalytical orbital propagation model of the mean dynamics and

therefore may be written in the same functional form of Equation (2.15a),

9̄Eptq “
dĒ

dt
“ f̄pĒptq, tq ` w̄ptq , (3.33)

where w̄ptq is the process noise, that accounts for the uncertainty error in the mean state propaga-

tion.The osculating state at integration times, tEptkq : k “ 1, 2, . . . u, is then recovered with the first-order
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near-identity transformation, also called the mean-to-osculating map,

Eiptq “ Ēiptq ` η
1
iZ,D ptq ` η

1
iT ptq , i “ 1, . . . , 5 , (3.34a)

λptq “ λ̄ptq ` η1
6Z,D ptq ` η

1
6T ptq , (3.34b)

where

η1
iZ,D “

1

npāqNZ,D

NZ,D{2´1
ÿ

k“´NZ,D{2
k‰0

Xk
iZ,D

jk
, (3.35a)

η1
iT “

1

NTMT

NT {2´1
ÿ

k“´NT {2

MT {2´1
ÿ

m“´MT {2
m‰0

Xk,m
iT

jpknpāq ´mωCq
, (3.35b)

η1
6Z,D “

1

npāqNZ,D

NZ,D{2´1
ÿ

k“´NZ,D{2
k‰0

˜

Xk
6Z,D

jk
`

3

2ā

Xk
1Z,D

k2

¸

, (3.35c)

η1
6T “

1

NTMT

NT {2´1
ÿ

k“´NT {2

MT {2´1
ÿ

m“´MT {2
m‰0

˜

Xk,m
6T

jpknpāq ´mωCq
`

3npāq

2ā

Xk,m
1T

pknpāq ´mωCq
2

¸

. (3.35d)

NZ,D is the length of the DFT associated to zonal/drag perturbations. NT and MT are the lengths

associated to tesseral/sectoral perturbations in the sampling of λ̄ and θ, respectively.

The process described up to here only outputs the state at the selected integration times8. To obtain

the orbital state in-between integration times, one may take advantage of the fact that the mean rates

and short-periodic coefficients are slowly varying and thus, may be interpolated by relatively low order

interpolation formulas, according to [15, 27].

In fact, the authors of [27] suggest the use of Lagrange interpolation, with four interpolation points

to, interpolate the short-periodic coefficients. Between integration steps tn and tn`1, the interpolation

routine is provided with t
`

XiZ,D ptkq,XiT ptkq
˘

: k “ n´1, n, n`1, n`2u, whereXiZ,D ptkq andXiT ptkq

are sets containing all the NZ,D ´ 1 and pNT ´ 1q ˆ pMT ´ 1q DFT coefficients at tk. Furthermore, the

mean elements are interpolated with Hermite polynomials using three interpolation points. The routine

is provided with tpĒptkq,dĒptkq{dtq : k “ n ´ 1, n, n ` 1u. In the computational work of this thesis,

Lagrange and Hermite interpolations are performed with Scipy. Figure 3.4 illustrates the assembled

Semianalytical propagator.

Usually, the initial state is known in osculating form, Ept0q. In those cases, in order to correctly

initialize the propagator with Ēpt0q, the near-identity transformation must be inverted. A simple epoch

point conversion is employed [3]

Ēik`1
pt0q “ Eipt0q ´

`

η1
iZ,D pᾱk, λ̄kq ` η

1
iT pᾱk, λ̄k, θpt0qq

˘

Ēi0pt0q “ Eipt0q
, i “ 1, . . . , 6, k “ 1, 2, . . . . (3.36)

8Note that applying (3.32) and (3.34) with a small integration step is possible, but would be very inefficient, due to the many
numerical quadrature and FFT computations.
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ҧℰ(𝑡𝑖,0)

ҧℰ(𝑡𝑖+1,0)ҧℰ(𝑡𝑖,1) ҧℰ(𝑡𝑖,𝑛)… …

Integrate the mean trajectory:

1. Numerically propagate mean dynamics
𝑑 ҧℰ

𝑑𝑡
= ҧ𝑓 ҧℰ, 𝑡

from 𝑡𝑖,0 to 𝑡𝑖+1,0, with the initial condition ҧℰ(𝑡𝑖,0).

Reconstruct the osculating trajectory:
1. Interpolate ҧℰ(𝑡) to the output epoch 𝑡𝑖,𝑛 → ҧℰ 𝑡𝑖,𝑛 ;

2. Interpolate 𝑋𝑍,𝐷(𝑡) and 𝑋𝑇(𝑡) to the output epoch

𝑡𝑖,𝑛 → 𝑋𝑍,𝐷(𝑡), 𝑋𝑇(𝑡𝑖.𝑛) ;
3. Use the near-identity transformation to get the

osculating state at epoch ℰ 𝑡𝑖,𝑛 .

Note: apply only step 3 at the integration times 𝑡𝑖,0 since
the interpolated quantities are already available. 

ҧℰ(𝑡𝑖,0)

ቊ
𝑡𝑖+1,0 − 𝑡𝑖,0 → integration step

𝑡𝑖,𝑛 − 𝑡𝑖,𝑛−1 → requested output step

ҧℰ(𝑡𝑖+2,0)

Figure 3.4: Semianalytical propagation. First, both the integration and output steps are defined. Then,
the mean elements are integrated along the integration times. At each requested output time, both
the mean dynamics and DFT coefficients are obtained from interpolation, and finally the near-identity
transformation reconstructs the osculating equinoctial state. In the diagram, circles denote states ob-
tained from integration, rectangles denote in-between interpolated states and the symbol ε denotes the
equinoctial set.

The process is iterated in k until convergence (typically two or three iterations are enough [3]).

To summarize, the developed Semianalytical propagator diverges from traditional implementation of

SST in the sense that: 1) the mean element rates are found with numerical quadrature, and 2) the

coefficients of the Fourier Series are found via FFTs. In contrast, other Semianalytical models, such

as the DSST, find these functions analytically via explicit formulae. This traditional approach requires

detailed expansions and special treatment for each acceleration type, which is a difficult task that usually

requires some form of truncation, typically in eccentricity, to make the problem tractable, hence limiting

the range of orbits that can be considered and reducing the overall accuracy and performance of the

method [28].

To conclude, the Semianalytical propagator adopted in this work is based on research proposed by

Todd Ely: the FFT-based near-identity transformation is proposed in [29] and the numerical quadrature

mean element propagation in [28].

3.2 Measurement Modeling

In this section satellite observations from ground stations are modeled, following [20]. These obser-

vations are processed in the topocentric frame. The most common ground measurement types, usually

implemented by radar, telescope or laser systems, are range, range-rate, azimuth and elevation angles.
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Let the topocentric position and velocity vectors of the satellite relative to Ground Station (GS) j at

time tk be rjsptkq and vjsptkq, respectively, according to (2.5).

The range measurement sjptkq is computed by taking the norm of rjsptkq and the range-rate mea-

surement 9sjptkq by computing the time derivative9 of the range measurement sjptkq:

sjptkq “
∥∥rjsptkq∥∥ “b

rjsptkq ¨ r
j
sptkq , (3.37a)

9sjptkq “
d

dt

`

sjptkq
˘

“
1

2

1

sjptkq

`

prjsq
T ptkq v

j
sptkq ` pr

j
sq
T ptkq v

j
sptkq

˘

“
prjsq

T ptkq v
j
sptkq

sjptkq
. (3.37b)

The azimuth βjptkq and elevation δjptkq measurement angles (defined in Section 2.2.4), at time tk,

are computed, respectively, with (2.3b) and (2.3c). By concatenating these observations at time tk for

all available ground stations, the measurement Model (2.15b) is built

yptkq “ hdpxptkq, tkq ` vptkq , (3.38)

where x is the osculating state vector. A transformation of position and velocity vectors from inertial to

topocentric frame, defined in Section 2.2.4, is therefore implicitly performed by hd, in accordance to the

discussion above.

3.2.1 Measurement Noise

Measurement observations are not ideal, but rather corrupted with measurement noise that is in-

evitable in real-world sensors. Nevertheless, the technological evolution of the last decades has enabled

sensors to become much more accurate in terms of noise statistics [2].

The measurement noise sequence vptkq quantifies the random uncertainty associated with the ob-

servation error. It is assumed to be a sequence of white, zero-mean Gaussian noise with covarianceRk

at time tk. It is reasonable to assume that all ground stations produce observations that are independent

from one another. Hence, the covariance matrix is expressed by

Rk “ diagpR1
k, . . . ,R

r
kq , (3.39)

where diagp¨q is the diagonal matrix formed from the input parameters, r is the number of available

stations at tk and Rj
k is the covariance associated to station j, which, in its turn, incorporates the

standard deviations of the noise sequences associated to each unidimensional observation in the set

tsj , βj , δj , 9sju, according to Rj
k “ diag

´

pσjsq
2, pσjβq

2, pσjδq
2, pσj9sq

2
¯

, where it was further assumed that

each station produces independent unidimensional observations.

9The following derivative property is useful in the derivation
Bpu ¨ vq

Bpwq
“
BuT v

Bw
“ uT Bv

Bw
` vT Bu

Bw
.
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3.2.2 Station Availability

It was stated, previously, that the observation vector yptkq is formed from measurements of all avail-

able ground stations. Therefore, a condition for station availability must be defined.

A GS is said to be unavailable when the line of sight path between the target satellite and the observer

GS is blocked by the Earth. An availability (field of view) condition can be defined by assuming that

the GS tracking capabilities are limited to some azimuth and elevation angular intervals. Therefore,

measurements are only available when β P rβmin, βmaxs and δ P rδmin, δmaxs.

In the present work, it is assumed that the whole azimuth domain is available (βmin “ 0 rad and βmax “

2π rad), but only positive elevation angles (above the local horizon plane) are available (δmin “ 0 rad and

δmax “ π rad).

3.3 Model Linearization

For the EKF, linearization of the state dynamics and measurement model requires computing the

Jacobian of those models, i.e., their derivatives with respect to the state. Section 3.3.1 models the

Jacobian of the osculating dynamics fpx, tq, Section 3.3.2 models the Jacobian of the mean dynamics

f̄pĒ, tq, and Section 3.3.3 models the Jacobian of the measurement function hdpx, tkq, yielding:

F pxptq, tq “
Bfpxptq, tq

Bxptq
, (3.40a)

F̄ pĒptq, tq “
Bf̄pĒptq, tq

B Ēptq
, (3.40b)

Hpxptkq, tkq “
Bhdpxptkq, tkq

Bxptkq
. (3.40c)

3.3.1 Osculating Dynamics Jacobian

In filtering applications, evaluating the state Jacobian usually requires much heavier computations

than evaluating the state function itself. To reduce the computational burden in the linearization, it is

common to simplify the force model of the Jacobian. This simplification seldom yields significantly worse

results than those obtained with a full force model, and is much more lightweight [3, 20].

As an example, real-time implementation of an EKF on-board the Bispectral and Infrared Remote

Detection (BIRD) satellite, launched in 2001, made use of a dynamic state model yielding a 10 ˆ 10

gravitational field, whilst the state dynamics Jacobian was evaluated considering only a point-mass

(0ˆ 0) field [58].

In view of the discussion above, a 2 ˆ 0 gravitational field is chosen for the Jacobian computation

since, cf. Figure 2.5, at LEO altitudes, the second-order zonal harmonic (commonly known as J2) is

several orders of magnitude stronger than the following perturbation. The 2 ˆ 0 gravitational field is

characterized by the following acceleration10[3]

10Notice that, since polar motion has been neglected (see Section 2.2.4), the z axes of ECI and ECEF coincide. Furthermore,

42



ai “ ai,0 ` ai,J2 “ ´
µC

r3

»

—

—

—

–

xi

yi

zi

fi

ffi

ffi

ffi

fl

´
3J2µCR

2
C

2r5

»

—

—

—

–

´

1´
5z2
i

r2

¯

xi
´

1´
5z2
i

r2

¯

yi
´

3´
5z2
i

r2

¯

zi

fi

ffi

ffi

ffi

fl

, (3.41)

where ai,0 and aii,J2 are the two-body acceleration and the p2, 0q (J2) harmonic acceleration, respec-

tively. The Jacobian is given, in matrix form, by

Bfpxptq, tq

Bxptq
“

»

—

–

Bvi
Bri

Bvi
Bvi

Bai
Bri

Bai
Bvi

fi

ffi

fl

“

»

—

–

03ˆ3 I3ˆ3

Bai
Bri

03ˆ3

fi

ffi

fl

. (3.42)

The partials Bai{Bvi reduce to zero because the gravitational field acceleration does not depend on

the state velocity and the partials Bvi{Bri are zero because the state vectors are independent. The

partials Bai{Bri are found by differentiating (3.41) with respect to the position vector components. The

derivatives of ai,0 are given, in matrix form, by

Bai0
Bri

“

»

—

—

—

—

—

–

´
µC

r3
`

3µCx
2
i

r5

3µCxiyi
r5

3µCxizi
r5

3µCxiyi
r5

´
µC

r3
`

3µCy
2
i

r5

3µCyizi
r5

3µCxizi
r5

3µCyizi
r5

´
µC

r3
`

3µCz
2
i

r5

fi

ffi

ffi

ffi

ffi

ffi

fl

, (3.43)

and the derivatives of ai,J2 are

Baxi ,J2

Bxi
“ k1

„

1

r5
´

5x2
i

r7
´

5z2
i

r7
`

35z2
i x

2
i

r9



,
Baxi ,J2

Byi
“ k1

„

´5xiyi
r7

`
35z2

i xiyi
r9



,

Baxi ,J2

Bzi
“ k1

„

´5xizi
r7

`
35z3

i xi
r9



,
Bayi ,J2

Bxi
“
Baxi ,J2

Byi
,

Bayi ,J2

Byi
“
yi
xi

Baxi ,J2

Byi
`
axi ,J2

xi
,

Bayi ,J2

Bzi
“
yi
xi

Baxi ,J2

Bzi
,

Bazi ,J2

Bxi
“ k1

„

´15zixi
r7

`
35z3

i xi
r9



,
Bazi ,J2

Byi
“
yi
xi

Bazi ,J2

Bxi
,

Bazi ,J2

Bzi
“ k1

„

3

r5
´

30z2
i

r7
`

35z4
i

r9



.

(3.44)

The constant k1 is equal to
´3J2µCR

2
C

2r5
. These partials are then readily assembled together in matrix

form

Bai,J2

Bri
“

»

—

—

—

—

—

–

Baxi ,J2

Bxi

Baxi ,J2

Byi

Baxi ,J2

Bzi
Bayi ,J2

Bxi

Bayi ,J2

Byi

Bayi ,J2

Bzi
Bazi ,J2

Bxi

Bazi ,J2

Byi

Bazi ,J2

Bzi

fi

ffi

ffi

ffi

ffi

ffi

fl

. (3.45)

The derivative Bai{Bri is then given by the sum of (3.43) and (3.45).

since zonal acceleration does not depend on longitude (it only depends on latitude), Equation (3.41) can be evaluated directly in
the True of Date (TOD) ECI frame [55], without the need to first compute the acceleration in the ECEF frame.
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3.3.2 Mean Dynamics Jacobian

The Jacobian of the mean dynamics function f̄ is approximated with finite differences. Let the Jaco-

bian be divided into variational vectors of the six state variables Ej , that is,

F̄ pĒptq, tq “
Bf̄pĒptq, tq

B Ēptq
“

„

Bf̄

B Ē1

. . .
Bf̄

B Ē6



, (3.46)

where each column-vector partial Bf̄{B Ēj is computed with the double-sided finite difference [15]

Bf̄

B Ēj
“
f̄pĒ`∆Ej , tq ´ f̄pĒ´∆Ej , tq

2 ‖∆Ej‖
. (3.47)

∆Ej “ r0, . . . , 0,∆Ej , 0, . . . , 0s
T is the finite-difference vector of element j, that is, a null vector where

the jth zero entry is replaced by the difference step ∆Ej .

In the present work, it was found that setting the finite-difference increments on each element ac-

cording to ∆Ej „ 10´5Ej yields good results, which is consistent with Green’s findings in [15]. After

propagating a representative LEO satellite, for a propagation period of a couple of days, the following

increments were set: ∆E1 “ 10´3 km, ∆E2 “ 10´7, ∆E3 “ 10´7, ∆E4 “ 10´6, ∆E5 “ 10´6 and

∆E6 “ 10´6 rad.

Green also performed in [15] some comparison tests regarding the computation of the Semianalyt-

ical Jacobian. He found that the partial derivatives computed with the osculating (Cowell) formulation,

F px, tq, consistently agree with the ones obtained with the mean (Semianalytical) formulation, F̄ pĒ, tq. It

should be noted these derivatives are not with respect to the same state variables, therefore some state

reduction transformations are needed. Green also compared the Semianalytical Jacobian using different

force models and found that the use of simple models (low degree zonal harmonics) is sufficient.

In view of Green’s findings, the finite-difference computation of the Jacobian considered in this work

makes use of a reduced 2 ˆ 0 (J2) gravitational field, which is consistent with the one implemented for

the osculating (Cowell) dynamics.

3.3.3 Measurement Model Jacobian

The Jacobian of the measurement model is, at a given state xptkq and time tk, given by

Bhdpxptkq, tkq

Bxptkq
“

„

Bhdpxptkq, tkq

Bri

Bhdpxptkq, tkq

Bvi



. (3.48)

It should be noted that the dimension of the matrix above is pr ¨mqˆ6, where r is the number of available

stations and m “ 4 is the number of unidimensional observations for each station. Below, the partials

of the four measurement types for a generic station j (the superscript is dropped for simplicity) are

presented. Concatenation of these partials to form the Jacobian is then straightforward.

Denoting by y a generic unidimensional measurement function, i.e., either one of s, β, δ or 9s, it can

be shown that the partials with respect to the inertial state x can be expressed in terms of the topocentric
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quantities as [20]:

By

Bri
“
By

Brs

Brs
Bri

“
By

Brs
T sfT

f
i , (3.49a)

By

Bvi
“
By

Bvs

Bvs
Bvi

“
By

Bvs
T sfT

f
i . (3.49b)

Differentiating (2.3b), (2.3c), (3.37a) and (3.37b) with respect to rs and vs yields

Bs

Brs
“
rTs
s
,

Bs

Bvs
“ 0 ,

B 9s

Brs
“
svTs ´ 9srTs

s2
,

B 9s

Bvs
“
rTs
s
,

Bβ

Brs
“

«

sN
s2
E ` s

2
N

,
´sE

s2
E ` s

2
N

, 0

ff

,
Bβ

Bvs
“ 0 ,

Bδ

Brs
“

«

´sEsZ

s2
a

s2
E ` s

2
N

,
´sNsZ

s2
a

s2
E ` s

2
N

,

a

s2
E ` s

2
N

s2

ff

,
Bδ

Bvs
“ 0 .

(3.50)

The derivatives above yield the Jacobian with respect to the state vector x. For Semianalytical-based

filtering algorithms, this Jacobian needs to be defined with respect to the mean equinoctial state Ē. The

derivative Bhd{B Ē is readily divided into the following partials, using the chain rule

Bhd

B Ē
“
Bhd
Bx

Bx

BE

BE

B Ē
. (3.51)

The first partial is the Jacobian of the measurement model with respect to the osculating state vector

and its computation was already discussed above. The middle partial is the derivative of the state vector

with respect to the equinoctial set and is provided in Appendix D (Section D.2). Finally, the last partial is

obtained by differentiating the near-identity transformation (3.34) with respect to the mean state. First,

the map is written in a more compact form:

E“ Ē` ηpĒq . (3.52)

The desired partial is then
BE

B Ē
“ I `

Bη

B Ē
. (3.53)

Finally, the derivative
Bη

B Ē
is computed with finite differences, using the same procedure that was

described in Section 3.3.2. Again, using a simplified J2 gravitational field force model, the following

finite-difference increments were found: ∆E1 “ 10´5 km, ∆E2 “ 10´10, ∆E3 “ 10´10, ∆E4 “ 10´10,

∆E5 “ 10´10 and ∆E6 “ 10´10 rad.

3.4 Forming Orbit Determination Filters

Having modeled both the state dynamics and the measurement function, Orbit Determination filters

are now introduced. Since two state dynamical formulations were developed — Cowell (osculating
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dynamics) and Semianalytical (mean dynamics) — two kinds of filters are designed, in order to take

advantage of both formulations. Cowell filters are described in Section 3.4.1 and Semianalytical filters

are presented in Section 3.4.2. To conclude, Section 3.4.3 discusses filter initialization procedures.

In the implemented simulation environment, filters run at a fixed step of 5 seconds, that is, ground

stations produce synchronized measurements every 5 seconds. It should be noted that ground sta-

tions will not always be available at the update-step times (cf. Section 3.2.2). Thus, in the absence of

measurements, only the predict steps are used. Once the line of sight is restored, filters resume their

predict-update cycle normally. On the other hand, if multiple stations are available at the same update

time, since all stations produce independent observations, the update step is divided into separate up-

date steps, to be performed in series, one for each station. This procedure, which reduces the dimension

of the matrices involved and hence the computational cost, stems from the fact that all stations produce

independent observations, hence global matrices for the recursive filter update are block diagonal and

can be efficiently handled through sequential updates [59].

3.4.1 Cowell Filters

Cowell filters are one of the most common and straightforward ways to perform Orbit Determination.

They have been extensively studied before, for instance, in Orbital Mechanics textbooks [3, 20, 21] and

in recent research papers [18, 19]. They have also been successfully implemented in many orbital

software packages, for instance, open-source software like GMAT or Orekit, or space-agency software

like the Goddard Trajectory Determination System (GTDS) from NASA or the NAvigation Package for

Earth Orbiting Satellites (NAPEOS) from the European Space Agency (ESA). In view of this, the Cowell

filters presented in this section have already been studied and tested before, thus providing a convenient

baseline comparison with Semianalytical filters in the context of this thesis.

In Cowell filters, the dynamical state is represented with the osculating state vector x. Two filters are

proposed: Extended Cowell Kalman Filter and Unscented Cowell Kalman Filter. These filters match the

general implementation of EKF and UKF filters, respectively, as given by Algorithm 2 and Algorithm 3

in section 2.5.2. However, slight changes are needed, since update steps are skipped in the absence

of station availability, as previously mentioned. The state dynamics are modeled with (3.2) and the

measurement model resorts to (3.38). The Jacobian of the state and measurement models, needed for

the EKF, are given, respectively, by (3.42) and (3.48). Furthermore, the UKF takes discretized dynamics,

which are obtained by discretzing the continuous-time state dynamical model with (2.17). A flowchart

illustrating an algorithmic implementation of Cowell filters, that is straightforwardly adapted to both EKF

and UKF algorithms, is provided in Appendix A (Section A.3).

3.4.2 Semianalytical Filters

The idea of coupling Semianalytic Satellite Theory (SST) with filtering algorithms, namely, the Differ-

ential Correction Batch Least Squares and the Extended Kalman Filter, was first proposed and demon-

strated in great detail in Green’s thesis [15] in 1979, making use of the DSST propagator. Green hinted
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that: 1) this coupling would increase computational speed of Orbit Determination systems due to the

computational efficiency of the propagator and its large allowable integration step sizes, and 2) would

also increase the accuracy because the linearization assumptions used in the algorithms would be better

satisfied due to the near-linear behavior of the mean dynamics over an integration step. After Green’s

theoretical work, Taylor [25] designed, implemented, verified and tested in his thesis in 1982 the Ex-

tended Semianalytic Kalman Filter (ESKF), that couples a traditional EKF with DSST. More recently,

in 2008, Folcik [26] coupled DSST with a Backward Smoothing Extended Kalman Filter. The afore-

mentioned research relied on the original software implementation of DSST. In contrast, the present

work departs from DSST reliance, and is supported, instead, by the Semianalytical theory introduced in

Section 3.1.2, which is based on Ely’s work.

The fundamental idea of coupling SST with filtering algorithms involves the following time frame

definitions [25]:

• Integration grid - the time frame used by the semianalytical integrator, which means that the

points on this grid are greatly spaced in time, according to the integrator step size;

• Observation grid - the time frame that contains the arrival times of the observations to be pro-

cessed by the filter.

The operation of Semianalytical filters is the following: 1) the integrator propagates the trajectory

along the integration grid points at times tk,0, originating the nominal trajectory ĒN ptk,0q; 2) this nominal

trajectory is then interpolated, in-between integration grid points, to the arrival times of observations,

i.e., interpolated to observation times tk,i, for i “ 1, . . . ,M (where M is the last point before the next

integration time tk`1,0), originating the nominal trajectory ĒN ptk,iq along the observation grid; 3) after the

measurements at times tk,i are processed, the filter corrections are propagated through the observation

grid, without an explicit update of the nominal trajectory, which is then only updated at the next integration

grid point at time tk`1,0. By avoiding the relinearization of the nominal trajectory after every update step,

large integration step sizes are possible, which evidences the efficiency of Semianalytical filters.

In the remainder of this section the Extended Semianalytical Kalman Filter (ESKF) is introduced.

Next, a novel algorithm that couples the Semianalytical model with an Unscented Kalman Filter — the

Unscented Semianalytical Kalman Filter (USKF) — is proposed. A flowchart illustrating an algorithmic

implementation of Semianalytical filters is provided in Appendix A (Section A.3), for better visualization

of the algorithms presented below.

Extended Semianalytical Kalman Filter

In the ESKF proposed by Taylor, filter corrections are propagated with the State Transition Matrix

(STM). To illustrate this process, let ĒN ptk,iq be the nominal state at time tk,i and let ∆Ēk,ik,i be the filter

correction after the measurement at tk,i. The a posteriori state is then

Ē`ptk,iq “ ĒN ptk,iq `∆Ēk,ik,i , (3.54)
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If the dynamics are linear, the a priori state at the next observation time tk,i`1 may be computed with

Ē´ptk,i`1q “ Φptk,i`1, tk,iqĒ
`ptk,iq

“ Φptk,i`1, tk,iqĒN ptk,iq ` Φptk,i`1, tk,iq∆Ēk,ik,i

“ ĒN ptk,i`1q `∆Ēk,ik,i`1 ,

(3.55)

where Φ is the system’s STM. The notation ∆Ēlk indicates a filter correction at time tk given observations

until time tl: if l ă k it is a predicted correction and if l “ k it is an updated correction.

Equation (3.55) states that the a priori state is computed by adding up the nominal state with the

filter correction from the previous step, propagated in time with the STM. In order for this process to

work, it is assumed that the system dynamics are linear (or, at least, near-linear in some sense), which

is true for mean orbital dynamics. It is then evident that the solve-for dynamical state to be estimated

with Semianalytical filters is the mean equinoctial set, in contrast to the solve-for osculating state vector

of Cowell filters.

The complete operation of the ESKF, paraphrased from [25] but adapted to the present Semianalyti-

cal propagator, is provided in Appendix A (Section A.2).

Taylor verified with some simulations that the underlying assumptions that were made, namely, the

near-linear behavior of the dynamics and the linearization of the measurement model in successive

steps, are held true to some degree of precision [25]. Furthermore, Green demonstrated that Fourier

coefficients have smooth variations over time and hence can be accurately interpolated [15].

Unscented Semianalytical Kalman Filter

Although the ESKF makes use of continuous-time state dynamics, the novel USKF proposed in this

work is implemented considering discretized state dynamics, according to the traditional implementation

of UKFs, cf. Section 2.5.2. Discretization of (3.33), between integration grid nominal points at times tk,0

and tk`1,0, with (2.17) yields

ĒN ptk`1,0q “ f̄dpĒN ptk,0q, tk,0q ` w̄k,0 . (3.56)

where w̄k,0 is the discretized process noise.

The underlying idea of coupling the Semianalytical propagator with the UKF is the same as with

the ESKF, i.e., after each observation is processed, the filter correction is propagated with linearized

dynamics around the nominal trajectory. However, in the present case, the linearization of the nominal

trajectory is performed using Weighted Statistical Linearization (WSL), cf. Section 2.5.1. The WSL of

(3.56) around the nominal state ĒN ptk,iq enables propagation between observation grid time steps, that

is,

Ēptk,i`1q « A
N
k,i Ēptk,iq ` b

N
k,i ` w̄k,i , (3.57)

where AN
k,i and bNk,i are the coefficients of the WSL. Replacing the first-order Taylor linearization used in
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the filter correction propagation (3.55) with the WSL defined above gives

Ē´ptk,i`1q “ A
N
k,i Ē

`ptk,iq ` b
N
k,i

“ AN
k,i ĒN ptk,iq `A

N
k,i∆Ēk,ik,i ` b

N
k,i

“ ĒN ptk,i`1q `A
N
k,i ∆Ēk,ik,i .

(3.58)

The first term on the right-hand side of the last equality is the nominal state at tk,i`1, which, according

to the linearization just defined, is given as (neglecting process noise) ĒN ptk,i`1q “ A
N
k,i ĒN ptk,iq ` b

N
k,i.

It is then observed that the filter correction may be propagated in time using the linearization coefficient

AN
k,i, which is, therefore, the WSL equivalent of the STM.

The operations on the integration and observation grids of the proposed USKF are given below. The

filter is initialized with an initial state estimate Ēpt0q, covariance P 0 and with null corrections ∆Ē0,0
0,0 “ 0.

Operations on the Integration Grid

1. At the current time tk,0, update the nominal state, ĒNnewptk,0q, for the new integration step, valid

on the interval t P rtk,0, tk`1,0q, from the old nominal state ĒNoldptk,0q (defined on the previous

integration grid step), using:

ĒNnewptk,0q “ ĒNoldptk,0q `∆Ēk´1,M
k,0 , (3.59)

where ∆Ēk´1,M
k,0 is the filter correction from the last observation, at tk´1,M , propagated until the

current time tk,0. Then, set the nominal covariance with PN
k,0 “ P´k,0. The correction ∆Ēk´1,M

k,0

and covariance P´k,0 are found by performing steps 2, 3, 4 and 5 of the observation grid (described

below) from tk´1,M to tk,0;

2. With ĒN ptk,0q and PN
k,0, construct the 2n`1 nominal sigma points XN

i ptk,0q defined by (2.26), and

store them in XS . To simplify the notation, the sigma points are concatenated in vector-form as

XN ptk,0q. Then, initialize the filter correction:

XS “ XN ptk,0q , (3.60a)

∆Ēk,0k,0 “ 0 ; (3.60b)

3. Numerically propagate the nominal trajectory and covariance using the UT (Algorithm 1 in Section

2.5.1) until time t “ tk,0 `∆t “ tk`1,0, saving intermediate results at t “ tk,∆t{3 and t “ tk,∆2t{3,

“

ĒN ptk`1q,P
N
k`1,

‰

“ UT
`

f̄d, ĒN ptkq,P
N
k

˘

, (3.61)

from initial conditions ĒN ptk,0q and PN
k,0, that were set on step 1. With the state and covariance

at the requested times, construct the associated nominal sigma points. With the sets XN ptk,0q,

XN ptk,∆t{3q, XN ptk,2∆t{3q and XN ptk`1,0q, set up a Lagrange interpolator for XN ptq.

Operations on the Observation Grid
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The operations on the observation grid are triggered by receipt of a new observation. The observation

grid procedure is followed in a loop-wise manner until no more observations are available or the next

observation is not inside the interval rtk,0, tk`1,0q, i.e., is later than the next integration time step. In that

case, the integration step procedure described above is followed to advance the integration by one grid

point. The observation grid is operated by the UKF: steps 2 to 5 belong to the filter’s predict step and

step 6 to the update step. It is noted that, if the first observation comes exactly at time t “ tk,0, then

steps 2 to 5 are ignored for that observation, since the predicted state and covariance are already known

from the integration step.

1. Obtain a new observation to process yptk,iq for i “ 0, . . . ,M , where yptk,M q is the last observation

before the next integration point;

2. Interpolate XN ptq for t “ tk,i. Get XN ptk,i´1q from the value stored in XS . Compute the nominal

state and covariance at the two epochs using:

ĒN ptk,iq “
2n
ÿ

j“0

Wpmq
j XN

j ptk,iq , (3.62a)

ĒN ptk,i´1q “

2n
ÿ

j“0

Wpmq
j XN

j ptk,i´1q , (3.62b)

PN
k,i “

2n
ÿ

j“0

Wpcq
j

`

XN
j ptk,iq ´ ĒN ptk,iq

˘ `

XN
j ptk,iq ´ ĒN ptk,iq

˘T
, (3.62c)

PN
k,i´1 “

2n
ÿ

j“0

Wpcq
j

`

XN
j ptk,i´1q ´ ĒN ptk,i´1q

˘ `

XN
j ptk,i´1q ´ ĒN ptk,i´1q

˘T
, (3.62d)

PN
k,i,i´1 “

2n
ÿ

j“0

Wpcq
j

`

XN
j ptk,iq ´ ĒN ptk,iq

˘ `

XN
j ptk,i´1q ´ ĒN ptk,i´1q

˘T
, (3.62e)

where the UT weights are given by (2.28);

3. Compute the nominal WSL coefficient AN
k,i

AN
k,i “ P

N
k,i,i´1

`

PN
k,i´1

˘´1
; (3.63)

4. Obtain the predicted filter correction and compute the a priori mean state Ē´ptk,iq:

∆Ēk,i´1
k,i “ AN

k,i ∆Ēk,i´1
k,i´1 , (3.64a)

Ē´ptk,iq “ ĒN ptk,iq `∆Ek,i´1
k,i ; (3.64b)

5. Discretize the process noise covariance and compute the predicted covariance:

Qdptk,i, tk,i´1q “ A
N
k,iQptk,iq

`

AN
k,i

˘T
¨ ptk,i`1 ´ tk,iq ,

P´k,i “ A
N
k,iP

`
k,i´1

`

AN
k,i

˘T
`Qdptk,i, tk,i´1q ,

(3.65)

where Qptk,iq is the continuous-time noise covariance matrix;
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6. Consider the measurement function with respect to the mean equinoctial state as

h̄pĒptqq “ hd

´

X
`

Ēptq ` ηpĒptq, θptqq
˘

, t
¯

, (3.66)

where X is the conversion from osculating E to x and η is the mean-to-osculating map written in

compact form. Do the traditional UKF update step:

rŷptk,iq,P y,P Eys “ UT
´

h̄, Ē´ptk,iq,P
´
k,i

¯

, (3.67a)

Kk,i “ P Ey rP y `Rk,is
´1

, (3.67b)

∆Ēk,ik,i “ ∆Ēk,i´1
k,i `Kk,i pyptk,iq ´ ŷptk,iqq , (3.67c)

Ē`ptk,iq “ Ē´ptk,iq `∆Ēk,ik,i , (3.67d)

P`k,i “ P
´
k,i ´Kk,iP yK

T
k,i . (3.67e)

where Rk,i is the measurement noise covariance matrix;

7. Save the sigma points of the current step into XS , i.e., XS “ XN ptk,iq, to be used in the next

observation.

The algorithm provides, after each update step, the estimated equinoctial mean state and covariance

Ē`ptk,iq and P`k,i. If requested, these quantities may be transformed to the osculating state vector space

using [25]:

x`ptk,iq “X
´

Ē`ptk,iq ` η
`

Ē`ptk,iq, θptk,iq
˘

¯

, (3.68a)

P`x ptk,iq “ G
`

Ē`ptk,iq
˘

P`k,iG
T
`

Ē`ptk,iq
˘

, (3.68b)

where G “ pBx{BEq
`

BE{B Ē
˘

. These partials were defined in Section 3.3.3.

The USKF proposed here avoids an additional linearization of η around the nominal state, which, in

contrast, is made in the ESKF (see (A.18b)), since the measurement function (3.66) is evaluated directly

with the predicted state Ē´ptk,iq. Although this is slightly computationally heavier, it should hold better

results, especially for higher nonlinearities in the measurement model.

To conclude, Figure 3.5 shows the key idea of Semianalytical filters. The real, nominal and output

(estimated) 3-D trajectories are plotted for a filtering simulation.

3.4.3 Filter Initialization

In Bayesian estimation, prior knowledge of the parameters being estimated is essential to the suc-

cess of filtering algorithms and to avoid filter divergence issues. In this work, the initialization procedure

is chosen to be self-starting, in the sense that the filter should be able to initialize taking into account

only available ground station observational data. Following [1], a set of GS measurements is collected

at the first N time instants of station availability, that is, Y init “ tpt1,ypt1qq, . . . , ptN ,yptN qqu .
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Figure 3.5: Illustration of real (blue), nominal (yellow) and output estimated (green) trajectories for a
Semianalytical filtering simulation. At the beginning of the integration grid step (triangle marks), the
nominal trajectory is defined with the current best filter knowledge. Then, as the measurements arrive,
the estimated trajectory approaches the real one through the prediction-update cycle of the filter correc-
tions. However, only when the integration grid step ends (black circle marks) is the nominal trajectory
updated with the current filter knowledge, i.e., with the estimated state.

Then, Gauss’s method of Initial Orbit Determination (IOD) is performed producing crude orbit esti-

mates (without statistical treatment, i.e., without covariance estimation). The output of Gauss’s method

is then fed to a Differential Correction Batch Least Squares (LS) method that produces refined orbit,

x̂pLSq
ptN q, and covariance, P pLSq

x ptN q, estimates at time tN , that, in turn, initialize the filters.

The routine used in this work for Gauss’s method is provided in Appendix D.15 of [34]. A straight-

forward translation to Python language was required. The batch LS method is presented in Appendix A

(Section A.1) of this thesis and was readily adapted from [21].

It is emphasized that the described procedure produces an osculating prior estimate in state-vector

form (x̂pLSq
ptN q and P pLSq

x ptN q), which is sufficient for Cowell filter initialization. For Semianalytical filters,

this initial distribution must be transformed to the mean equinoctial state-space. After converting the orbit

estimate from (osculating) cartesian to equinoctial form, ÊpLSqptN q “ Xpx̂pLSq
ptN qq, the epoch point

conversion of (3.36) yields ˆ̄EpLSqptN q. Covariance transformation is achieved by inverting the inverse

transformation (from mean equinoctial to osculating state vector) proposed in (3.68b), that is,

P
pLSq
Ē
ptN q “ G

´1 P pLSq
x ptN q

`

GT
˘´1

. (3.69)
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Chapter 4

Simulation Results

In this chapter, simulation results of propagation and filtering algorithms, which were modeled in the

previous chapter, are presented and discussed, for a variety of test cases and experiments. The purpose

of these experiments is to illustrate and outline the performance and main characteristics of both Cowell

and Semianalytical propagation models and their coupling with OD filters. An evaluation of Cowell and

Semianalytical propagation accuracy, computational cost and filter performance is thus envisioned. The

influence of initialization errors and different measurement configurations are also analyzed.

Section 4.1 considers the case of a single ground station located in Lisbon and section 4.2 adopts

the same simulation environment set up in [26], which considers four ground stations.

4.1 Test Case 1 - Single Ground Station

The simulation tests of this section consider a Sun-synchronous (SS) Low Earth Orbit (LEO) satellite.

SS are near-polar orbits that maintain their constant orientation towards the Sun throughout the year,

i.e., the satellite passes over any given point of the planet’s surface at the same local mean solar time

[3]. These orbits find many applications in Earth observation (remote sensing). Design of SS orbits

requires selecting an inclination i that satisfies the following relation [3]

9Ω “ ´
3nJ2R

2
C

2a2p1´ e2q2
cos i “

2π

1 sidereal year
, (4.1)

where 1 sidereal year is „ 365.2421897 days [3]. The initial epoch and Keplerian state of the designed

orbit are given in Table 4.1. Elements a and e were chosen in order to obtain a near-circular LEO. i was

chosen to satisfy the relation above. Finally, Ω, $ and ν were chosen arbitrarily.

Initial orbital conditions

Epoch 6 April, 2000 11:00:00 UTC
Osculating Keplerian set

pa, e, i,Ω, $, νq

p7178 km, 0.03, 98.6°, 20°, 0°, 00q

Table 4.1: Initial epoch and orbital state for Test Case 1.
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In order to conduct the simulation (propagation and filtering) studies, a reference (true) orbital tra-

jectory needs to be defined. This reference trajectory is used to generate noisy observations, which

are obtained by summing the true observations (computed with the true trajectory) with random noise,

according to the defined measurement model and noise statistics. The random noise sequences are

realizations of zero-mean GRVs, with predefined covariance. Table 4.2 shows the selected standard

deviations of each individual measurement type. These noise statistics were chosen arbitrarily, but rep-

resent typical values of LEO radar tracking systems [3, 60]. Furthermore, the reference trajectory is also

used for evaluating filter performance, through the Root Mean Square Error (RMSE) metric (cf. Section

2.7.1).

Measurement type Standard deviation

Range 100m

Azimuth and elevation 0.02°
Range-rate 10 cm s´1

Table 4.2: Sensor measurement noise standard deviations for Test Case 1.

The reference orbit (characterized by the initial conditions of Table 4.1) was generated using GMAT1

Cowell propagation. Table 4.3 depicts the important configurations used set up the GMAT script. It is

emphasized that the selected force model is much more accurate than the one to be implemented in the

dynamical model of the filtering schemes. The idea is to simulate a realistic scenario where the satellite

is indeed affected by a full-force model, whereas the filter dynamics only includes the most important

perturbations. The difference in force models is accounted for by process noise. Figure 4.1 illustrates

the reference trajectory, as obtained by the GMAT software.

GMAT Reference Orbit Generation

Force Model:
Gravitational Field 180ˆ 180 field with EGM96 model
Atmospheric drag Jacchia Roberts atmospheric model

Solar Radiation Pressure (SRP) cannonball (spherical) model
Third bodies Sun, Moon and Jupiter

(DE405 ephemeris file)
Solid and pole Earth tides

Relativistic corrections

Integration Solver: Runge–Kutta 89 with Root Sum Square error control
Tolerance 9.999ˆ 10´12

Reference frames: Integration frame J2000 (realization of ECI)
Earth-fixed frame ITRF (realization of ECEF)

Table 4.3: GMAT configuration for reference orbit generation.

The single ground station is located in Lisbon, with the following geodetic coordinates: altitude h “

1GMAT is an open-source orbital mission analysis tool provided by NASA. Available online at (last access on 12th December
2020) https://software.nasa.gov/software/GSC-18094-1.
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Figure 4.1: Illustration of the reference trajectory obtained with GMAT for Test Case 1. The red, green
and blue axes are the x, y and z axes of the J2000 frame, respectively. The simulation propagation
period was 20 days. As evidenced in the figure, perturbations force oscillations in the orbit’s shape and
orientation.

0m, latitude φgd “ 38.7° and longitude λ “ ´9.2°. Moreover, the physical properties of the satellite (held

constant throughout the simulations) are shown in Table 4.4.

Satellite Property Numerical Value

Mass m 25 kg

Drag Area Adrag 0.5m2

Coefficient of Drag CD 2.0

SRP Area ASRP 0.5m2

SRP Coefficient of Reflectivity CR 1.5

Table 4.4: Physical properties of the satellite. It is noted that ASRP and CR are only defined to be used
in the GMAT reference trajectory generation, since SRP is not part of the filter dynamical model.

4.1.1 Propagation Results

The tests conducted in this section try to find and establish a baseline comparison between the Cow-

ell and Semianalytical propagators developed in this thesis and similar algorithms from known publicly

available software packages. The objective is then to validate the software developed in this work, if

the results are satisfactory. In view of this, the developed Cowell propagator is compared with GMAT

propagator and the developed Semianalytical propagator is compared with DSST propagator, accessed

through the Orekit2 orbital package. Finally, this section concludes with a computation cost study, where

the efficiency of semianalytical propagation is evidenced.

2The open-source Orbit Extrapolation Kit (Orekit) Java flight dynamics library is available online at (last access on 12th Decem-
ber 2020) https://www.orekit.org.
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Choosing the Numerical Integration Solver

First of all, it is crucial to select a numerical integration routine (solver), whose purpose is to numer-

ically propagate/integrate the orbital dynamical models. Following a brief analysis of commonly used

numerical solvers for orbital propagators performed in [20, 61], low-order Runge-Kutta methods were

chosen, since the solver is intended to be implemented in OD problems, where integration steps be-

tween measurements are typically small. Use of higher order methods would reduce the integration

efficiency, since the exploitation of large integration step sizes supported by them would not be used [4].

In view of this, two Runge-Kutta methods are analyzed: a Runge-Kutta 5(4) (denoted as RK45) [62],

and a variation of an 8th order Runge-Kutta developed by Dormand & Prince known as DOP853 [63].

These solvers are accessed via the SciPy package. In both solvers, relative and absolute tolerances of

numerical integration are set to 10´3 and 10´6, respectively.

A straightforward test for the assessment of numerical integration performance is to apply the solver

to a problem which has a known analytical solution. This comparison finds limitations of the numerical

routines, by setting an absolute error according to the selected integration method, step size, accuracy

and order [61]. The natural test concerning orbital propagators is the propagation of the Keplerian Orbit,

whose analytical solution was discussed in Section 2.4.1. The numerical solution is found by integrating

the osculating state dynamical model with perturbations turned off, i.e., considering two-body dynamics

only. Results of RK45 and DOP853 numerical integration, in terms of trajectory averaged position and

velocity RMSE , are shown in Figure 4.2, as a function of different integration step sizes, for a 20-day

propagation period, given the initial conditions of Table 4.1.
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Figure 4.2: Averaged position and velocity RMSE as a function of the integration step size, for a Keplerian
Orbit propagation during 20 days. Numerical results are compared with the analytical true solution.

For the considered orbit, both integrators perform equally well with small integration step sizes (below

5 seconds). However, when the step increases DOP853 clearly outperforms RK45 by several orders of

magnitude. For instance, for a step of 60 seconds, the position error of RK45 is around 800m, whereas

DOP853 has an error of approximately 0.1mm.

As mentioned before, OD systems require small integration steps. In fact, the designed filtering
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simulation environment is set up with a fixed step of 5 seconds. With this step, both integrators produce

similar results, however RK45 is lighter [61]. Therefore, RK45 is the chosen numerical solver, to be used

in the remaining simulations of this chapter, set with relative and absolute tolerances of 10´3 and 10´6,

respectively.

Accuracy of Cowell Propagation

After defining the numerical solver, the developed Cowell propagator may now be compared to the

GMAT’s. Two experiments are conducted.

First, the implementation of the gravitational field is tested. Both propagators are set up with the

same force model, that is, a low degree and order gravitational field, and propagate the same initial

orbital conditions. The averaged position and velocity RMSE between the two propagators is shown in

Table 4.5, for a 20-day propagation period. It is observed that the two propagation schemes produce

similar outputs, since the errors are small. Although there is no force model mismatch between the

propagators, their computer implementation is different. Differences also arise in the implementation of

the transformations between ECI and ECEF frames and due to the numerical solvers. However, it is

noted that these differences are small.

Grav. Field RMSE

Position [m] Velocity [m/s]

2ˆ 0 3.1773 3.3073ˆ 10´3

5ˆ 0 3.1846 3.3146ˆ 10´3

5ˆ 5 3.1875 3.3176ˆ 10´3

10ˆ 0 3.1857 3.3157ˆ 10´3

10ˆ 10 3.1819 3.3117ˆ 10´3

Table 4.5: Gravitational field study. This table shows the averaged position and velocity RMSE of the
developed Cowell propagator compared to GMAT’s. Both propagators are set up with the same force
model.

Then, reduced force models implemented by the developed Cowell propagator are compared to

the full-force model of the GMAT propagator. The time evolution of the position and velocity RMSE is

depicted in Figure 4.3, for a variety of reduced force models, considering a 10T propagation length,

where the orbital period T is approximately 100 minutes. It is noted that higher gravitational fields yield

smaller differences3.

The simulations performed in this section evidence that the mismatch between realistic and simpli-

fied force models is a great source of error in orbital propagation. Indeed, the use of simplified force

models creates great uncertainty in the propagation model. Nevertheless, the purpose of using Orbit

Determination filters is to relax the dynamical models, when non high-precision mission requirements

are set, i.e., the inclusion of measurements enables a simplification in the state dynamics, since the

uncertainty in the propagation is compensated by the observations.

3It is also noted that the atmospheric models are different: the developed Cowell propagator uses a simplistic exponential
atmosphere, whereas GMAT uses a more sophisticated and accurate model (Jacchia Roberts).
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Figure 4.3: Full force model study. Time evolution of position and velocity RMSE for the developed
Cowell propagator is plotted for a variety of force models.

The dynamical model of the Cowell propagator is therefore tuned with a 5ˆ 5 gravitational field and

atmospheric drag.

Accuracy of Semianalytical Propagation

In this section, the developed Semianalytical propagator is tested. First, the length of the DFT as-

sociated to zonal/drag perturbations, NZ,D, and the lengths NT and MT associated to tesseral/sectoral

perturbations need to be tuned. The Semianalytical propagator is also tuned with a 5 ˆ 5 gravitational

field and drag (note that if the model is changed, then the DFT lengths need to be retuned). Furthermore,

the order of the quadrature Nquad also needs tuning. After these parameters are selected, comparative

simulations with DSST are performed. For consistency, the DSST propagator is set up with an equivalent

force model.

The numerical solver for the mean element propagation is also RK45, with relative and absolute

tolerances set to 10´3 and 10´6, respectively. However, the integration step size is now set to 1 day.

Tuning parameters

Following the tuning procedure described by Ely in [29], the parameters NZ,D, NT , MT and Nquad are

found by trial and error. The idea is to define a variation grid for these parameters and then propagate

the same initial condition (defined in Table 4.1), with both Cowell and Semianalytical propagators, for

all the selected cases. Then, by analyzing the difference between the osculating elements obtained

with Cowell and Semianalytical propagation, one selects the smallest values for these parameters that

provide the smallest differences. Note that the difference between the two propagation models is only

associated to the averaging procedure (averaging the osculating element rates and computing the short-

periodic functions), hence by minimizing this error, one obtains the best match between the two models.

For example, Figure 4.4 illustrates the difference in semi-major axis a, referring to the zonal/drag pertur-

bations, for different NZ,D values. Clearly, the differences in a for NZ,D “ 16 (subplot (b)) and NZ,D “ 32
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(subplot (c)) are very similar, however for NZ,D “ 8 (subplot (a)) the error is much worse.

The following values were found to yield good results: NZ,D “ 16, NT “ 16, MT “ 16 andNquad “ 20.

Fortunately, once these parameters are found for a particular orbit, they remain relatively constant when

analyzing nearby orbits [29], which is inevitable in estimation problems. It is noted that using greater

values would not give better results but would be more computationally expensive. Moreover, DFT

lengths are chosen to be powers of 2, since FFT evaluations are more efficient in such cases [52].

(a) NZ,D “ 8. (b) NZ,D “ 16.

(c) NZ,D “ 32.

Figure 4.4: Tuning the DFT length for zonal (up to degree 5) and drag perturbations (NZ,D). Lengths
of 8, 16 and 32 are respectively given in subplots (a), (b) and (c). It is clear that no visible differences
exist between (b) and (c), which suggests that an order of 16 is sufficient. Results are shown for a 1-day
simulation.

Comparing with DSST

After tuning the DFT and numerical quadrature, the Semianalytical mean element propagation is com-

pared with the equivalent propagation implemented in DSST. The averaged RMSE for each equinoctial

mean element is shown in Table 4.6 for a 7500-day propagation4. It is emphasized that, in this simulation

4Since the mean elements are slowly varying, yielding only secular and long periodic variations, the simulation interval needs
to be extended for a large propagation period [64].
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the outputs are compared in the mean space, rather than in the osculating. The results obtained are in

line with similar propagation comparisons performed in [64].

Equinoctial mean RMSE
element

ā 5.152ˆ 10´10km

h̄ 2.033ˆ 10´6

k̄ 2.087ˆ 10´6

p̄ 4.665ˆ 10´5

q̄ 4.562ˆ 10´5

λ̄ 3.235ˆ 10´6rad

Table 4.6: RMSE of mean element propagation of the developed Semianalytical propagator relative to
DSST (assumed the true trajectory) for a 7500-day simulation period, using a 5 ˆ 5 gravitational field
and drag.

Next, after validating the mean element propagation, the mean-to-osculating map is tested. With that

in mind, the osculating trajectories outputted by the developed Semianalytical propagator and DSST are

compared to the Cowell trajectory. The time evolution of the osculating position and velocity RMSE is

depicted in Figure 4.5 for a 1-day propagation, taking the Cowell trajectory (obtained with the devel-

oped Cowell propagator) as reference. Furthermore, an analytical mean-to-osculating map, provided by

Brouwer analytical theory (formulated in Appendix G of [65]), coupled with the mean element propaga-

tion provided by the developed Semianalytical propagator, is shown for comparison. This analytical map

comprises a 2ˆ 0 (J2) gravitational field.

The simulation evidences that the DSST’s mean-to-osculating map captures the short-periodic vari-

ations better than the map from the developed Semianalytical model. This may be explained by the fact

that the DSST’s mean-to-osculating map is more complete, since it contains second-order treatment of

some perturbations [12, 27], whereas the map of the developed propagator was truncated to first-order

(cf. Section 3.1.2). Nevertheless, both maps clearly outperform the analytical mean-to-osculating map

provided by the Brouwer analytical theory.

Computation Cost

The propagation analysis is concluded with a CPU computation time test. As mentioned before,

Semianalytical propagation is expected to be much lighter than Cowell propagation.

This efficiency is corroborated by the results obtained in this section. Figure 4.6 depicts the CPU

computation time for different propagation periods (from 1-day to 7-day propagation). The trajectory is

outputted at a requested fixed step of 60 seconds.

The efficiency of the Semianalytical scheme is further improved if the output interval is enlarged.

Table 4.7 presents the Semianalytical propagation computation time for different requested output steps,

for a 7-day simulation. With this configuration, Cowell propagation needs approximately 90 seconds (cf.

Figure 4.6).
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(a) Position RMSE. (b) Velocity RMSE.

Figure 4.5: Position (a) and velocity (b) osculating RMSE of different propagation theories compared
with Cowell propagation (assumed the true reference trajectory). Orange and blue lines represent,
respectively, the error provided by DSST and the developed Semianalytical propagators, both tuned
with a 5ˆ 5 gravitational field and drag. The green line illustrates an analytical mean-to-osculating map,
provided by the Brouwer analytical theory [65] (yielding only the J2 perturbation) coupled with the mean
element propagation of the developed Semianalytical propagator. The initial osculating conditions are
provided in Table 4.1. 1-day propagation.

These results are in line with similar comparisons made between Cowell and DSST propagation in

[12].

To conclude, an efficient Semianalytical implementation was achieved. Nonetheless, this efficiency

comes with a slight loss in accuracy, when compared to Cowell propagation with a similar force model.

Depending on the mission requirements, the propagator that offers the best trade-off between accuracy

and computational effort is to be favored.

Requested output Semianalytical propagation
step CPU computation time [s]

5 s 65.54
60 s 15.07

100 s 9.88
1000 s 2.38

10000 s 1.59
half a day 1.51

1 day (1 integration step) 1.50

Table 4.7: CPU computation time for Semianalytical propagation with different output requested steps,
for a 7-day propagation period and force model comprising a 5ˆ 5 gravitational field and drag.

Finally, both the developed Cowell and Semianalytical propagators seem to hold satisfactory results

and acceptable performance when compared to propagation schemes from mature and established

software packages, namely, GMAT’s Cowell propagator and Orekit’s DSST propagator.
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Figure 4.6: CPU computation time comparison between the developed Cowell and Semianalytical prop-
agators, for propagation arcs from 1 day to 7 days. The orbital outputs are requested at a step of 60
seconds. The force model used is a 5ˆ 5 gravitational field with drag.

4.1.2 Filter Results

Having tested the performance of the propagation schemes alone, an evaluation of Orbit Determina-

tion filters is now sought. Two Cowell filters are considered: the Extended Cowell Kalman Filter (denoted

as EKF) and the Unscented Cowell Kalman Filter (denoted as UKF). Similarly, two Semianalytical filters

are considered: the Extended Semianalytical Kalman Filter (ESKF) and the Unscented Semianalytical

Kalman Filter (USKF), introduced in Section 3.4. As mentioned before, the propagation dynamical force

model comprises a 5ˆ 5 gravitational field with atmospheric drag. The simulations run at a fixed step of

5 seconds, i.e., the ground stations produce, if available, observations once every 5 seconds.

The measurement noise covariance matrix R, to be used in the filter update steps, is readily con-

structed referring to the same standard deviations considered in the measurement noise generation of

Table 4.2, in accordance to Section 3.2.1. Notice that, in this simulation setup, only one ground station,

located in Lisbon, is considered.

Determination of the process noise covariance matrix Q is relatively more complex. A trial and

error approach was used to define its diagonal entries, adjusting the values manually with the help of

simulations. The following osculating covariance, in state-vector form, was found

Qx “

»

–

10´9I3ˆ3 03ˆ3

03ˆ3 10´12I3ˆ3

fi

fl , (4.2)

where the velocity and acceleration entries are given, respectively, in km s´1 and km s´2.

This covariance is then transformed to the mean equinoctial space for use with Semianalytical filters,

using a transformation similar to (3.69), yielding QĒ. This transformation ensures equivalent process
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noise between the osculating and mean dynamics, which allows for better comparison of filter results

[25]. It is however noted that this transformation is time dependent, since the partials depend on the

orbital state, hence it needs to be determined for each predict-step evaluation.

Filter initialization was described in Section 3.4.3. In order to choose the length N of the set of obser-

vations to be collected for the initialization procedure, simulations with different lengths were conducted.

Figure 4.7 shows the position and velocity RMSE of the initial osculating estimate for different values

of N . A total of 100 Monte Carlo (MC) runs were performed. Since the purpose of the initialization

procedure is to simply produce a rough estimate that guarantees filter convergence, a length of N “ 15

was chosen.
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Figure 4.7: Position (above) and velocity (below) RMSE of the initialization procedure as a function of
the length of the IOD observation set, for 100 MC runs. Besides the 3D position/velocity RMSE, the
error in each component of RSW is also represented.

Figure 4.8 presents the time evolution of the position RMSE for a 7-day filtering simulation using the

four filters described (only one MC run was made). Table 4.8 further provides the trajectory averaged

position and velocity RMSE for the same simulation, as well as the error in each component of the RSW

frame. The errors are expressed in terms of the osculating quantities.

In this simulation, Semianalytical filters outperformed Cowell filters, with a position accuracy gain of

approximately 300m. The superiority of Semianalytical filters may be explained by the fact that the mean

dynamics, estimated in Semianalytical filters, are more linear than the osculating dynamics, estimated

in Cowell filters. Therefore, the former better satisfy the linearization procedures of filtering predict steps

[15]. Furthermore, previous research has shown that propagating covariances in equinoctial elements

is more advantageous than propagating them in cartesian state space [12]. Moreover, it is also ev-

ident that the UKF slightly outperforms the EKF and the USKF slightly outperforms the ESKF, which

reveals the advantages of the Unscented Transform over the Taylor series linearization in the nonlinear

transformation of the state and measurement models.
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Figure 4.8: Time evolution of the position RMSE of the filtered trajectories outputted by EKF (blue), UKF
(yellow), ESKF (green) and USKF (red) relative to the reference trajectory, for a single MC run. The
simulation length is 7 days.

Position RMSE [m] Velocity RMSE [m/s]

Filter R S W 3D R S W 3D

EKF 59.32 878.28 35.02 880.97 0.9198 0.0469 0.0717 0.9237

UKF 59.51 871.41 35.32 874.15 0.9143 0.0623 0.0756 0.9195

ESKF 94.91 582.10 89.81 596.59 0.6422 0.1017 0.1854 0.6761

USKF 92.44 537.54 88.86 552.62 0.5891 0.0999 0.1824 0.6248

Table 4.8: Trajectory averaged position and velocity RMSE for the same simulation run illustrated in
Figure 4.8. Besides the 3D position and velocity errors, the error is also provided in each component of
the RSW frame (R - Radial, S - Along-Track and W - Cross-Track).

A closer examination of Table 4.8 reveals that the major contribution to the position error comes from

the Along-Track (S) direction. This may be explained by asymmetries induced due to the atmospheric

drag models, since the model used in the reference trajectory is much more accurate than the simplistic

model used in the filter dynamics. It is emphasized that drag acts on the Along-Track direction, parallel

to the velocity vector, and is one of the main orbital perturbations at low altitudes. Furthermore, when

the satellite is at low elevation angles (relative to the ground station), small vertical errors can result in

large uncertainty about where the satellite is in its orbit, which further accentuates the Along-Track error

[3].

Figure 4.9 plots the time evolution of the position RMSE when the considered estimate is simply given

by the inverse of the measurement function (using only range, azimuth and elevation observations), for

a single ground station pass. Clearly, the error provided by these rough and unfiltered estimates is
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substantially worse than the error obtained with filter estimates, which further exhibits the performance

and relevance of the implemented algorithms.
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Figure 4.9: Position RMSE considering orbital estimates given directly by the inverse of the measure-
ment function (with range, azimuth and elevation), for a single ground station pass. 100 MC simulations
were ran.

Initial Error Analysis

In the simulations provided above, the filters were initialized with the IOD initialization procedure,

which provided initial position and velocity errors of approximately 200m and 2m s´1, respectively, cf.

Figure 4.7. Nonetheless, it is important to test how sensitive the filters are to initial errors, since bad esti-

mates may lead to filter divergence. With that in mind, in the next simulation, the initialization procedure

is replaced by direct initialization of the filters with known Gaussian distributions. For each MC run, the

initial estimate x̂pt0q of the state xpt0q is computed as a realization of the following distribution

x̂pt0q „ N
`

xpt0q, κdiagp0.1, 0.1, 0.1, 10´4, 10´4, 10´4q
˘

, (4.3)

where the position and velocity components are expressed, respectively, in km and km s´1. Different

initial error covariances (simulation environments) are thus created by varying κ. The designed covari-

ances (P 0 to P 5) are shown in Table 4.9 as a function of κ.

P 0 P 1 P 2 P 3 P 4 P 5

κ 1 10 100 1000 10000 100000

Table 4.9: Simulation environments for the initial error analysis.
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Simulation results for each environment are shown in Figure 4.10 for 50 MC runs, in terms of position

RMSE. The simulations encompass a period of 3 ground station passes, highlighted in yellow in the

plots.5

(a) EKF. (b) UKF.

(c) ESKF. (d) USKF.

Figure 4.10: Time evolution of the position RMSE for EKF (a), UKF (b), ESKF (c) and USKF (d), con-
sidering different initial error environments (cf. Table 4.9). The 50 MC runs last for 3 station passes
(highlighted in yellow). P 0 - blue lines, P 1 - orange lines, P 2 - green lines, P 3 - red lines, P 4 - purple
lines, P 5 - brown lines.

By looking at the time evolution of the RMSE, it is observed that, as expected, the error only reduces

(the estimated trajectory converges to the true one) when there exists line of sight with the station. In the

absence of update steps, the error grows due to the propagation uncertainty caused by the mismatch

between the simplified and real force models. Comparing the EKF and UKF filters, it is seen that the

latter is more robust to initial errors, since, at the end of the third passage, the error for all initial conditions

converged to the interval between 50m and 100m, whereas the EKF produced an error of 10 km when

5The authors of [66] suggest that there are no substantial differences in accuracy and filter performance after three or four
station passes.

66



P 4 and P 5 were tested. Nevertheless, it is apparent that both Cowell filters are able to converge for all

the tested cases, even if the initial estimate is poor.

On the other hand, the performance of the Semianalytical filters is not as good when adverse initial

conditions are considered. It is noted that most of the simulations running with P 4 and P 5 did not

converge, hence they are not shown. Nonetheless, when using P 0, P 1 and P 2 the obtained results are

similar to those of Cowell filters, with USKF slightly outperforming ESKF.

To conclude, the results suggest that Semianalytical filters need better initial estimates than Cowell

filters. The existence of long periods of station unavailability may explain this drawback, since the es-

timation of mean trajectories in Semianalytical filters is expected to be slightly slower to converge than

the estimation of osculating trajectories in Cowell filters, due to the inherent averaging procedure asso-

ciated to the mean dynamics. It is noted that GS passes last, approximately, between 10 to 15 minutes,

whereas one orbital period is „ 100 minutes.

Observability Analysis

To better understand the importance of the measurement types and how they affect the performance

of the different filtering algorithms, an observability analysis is conducted. With that is mind, three

measurement functions are created, considering different configurations of measurement types. They

are summarized in Table 4.10.

Sensor configurations Model

Range, azimuth, elevation, range-rate h
p1q
d “ rs, β, δ, 9ssT

Range, azimuth, elevation h
p2q
d “ rs, β, δ, sT

Azimuth, elevation h
p3q
d “ rβ, δs

Table 4.10: Measurement models for the observability analysis.

Generally, a system is said to be observable if, for any possible evolution of state and control vectors,

the current state can be estimated using only the available measurement information from sensors [67].

Observability of nonlinear systems is thoroughly studied in [68]. It is practically impossible to perform

a global observability test for general nonlinear problems. For that reason, local observability about

a given state or equilibrium point is usually considered [38]. Therefore, observability is evaluated by

performing a test on the linearized time-variant system, which is only guaranteed within a neighborhood

of the evaluated state, and, according to [38], is usually adequate for observability analyses.

The test consists of evaluating the observability of the state xpt0q by means of the observability

Gramian, G, which is defined, considering a measurement interval of d ` 1 discrete observations from

t0 to td, as [50]

Gpxptdqq “
d
ÿ

k“0

ΦT ptk, t0qH
T pxptkq, tkqHpxptkq, tkqΦptk, t0q , (4.4)

where Φp¨q is the State Transition Matrix (STM) of the linearized system (only osculating dynamics are

considered in this analysis).
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Then, the linearized system is said to be locally observable if and only if the Gramian Gpxptdqq is

nonsingular, i.e., full-rank n (where n is the dimension of the state vector). Notice in Equation (4.4) that,

since the rank of each term in the summation is at most m, (where m is the dimension of the measure-

ment vector), there is a minimum number d ě n{m of measurements that must be processed before

Gpxptdqq may become full-rank n. However, once satisfied, Gpxptdqq remains full rank. Consequently,

this measure offers little insight once the rank condition is satisfied [50]. According to [67], the calcula-

tion of the matrix condition number provides a more robust determination of the inherent ill-conditioning

for a given observability matrix. The matrix condition number coefficient κ is defined as

κpxptdqq “
|λmaxpG,xptdqq|

|λminpG,xptdqq|
, (4.5)

where λmaxpG,xptdqq and λminpG,xptdqq denote the maximum and minimum eigenvalues of Gpxptdqq,

respectively. A small value for κ indicates good observability (well-conditioned Gramian), whereas a

large value indicates poor observability (ill-conditioned matrix). As λmin approaches zero, κ approaches

infinity and the matrix becomes closer to being singular.

Figure 4.11 plots the time evolution of the Gramian’s condition number for a single ground station

pass, using the three measurement models defined in Table 4.10. Furthermore, Figure 4.12 shows the

trajectory averaged steady-state RMSE in terms of RSW components after one ground station pass,

using the same measurement models.
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Figure 4.11: Evolution of the condition number of the observability Gramian in one passage versus the
measurement arc length.

The condition number κ tends to stabilize for all three models. The most observable (in view of this

metric) is hp1qd followed closely by hp2qd . hp3qd is, by several orders of magnitude, the least observable. One

can glimpse that the lack of information on the Range direction greatly degrades filtering performance.

Furthermore, since the condition numbers of hp1qd and hp2qd are quite close for all time instants, one
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can infer that the addition of range-rate measurements does not provide any substantial gain, when

compared to range alone.

These remarks are corroborated by the RMSE filtering results of Figure 4.12. In fact, the loss of

range and range-rate data deteriorates the OD solution. Further studies could be made in order to infer

the reason why the error on the Along-Track direction is substantially bigger for Cowell filters than it is

for Semianalytical filters, when the same measurement model is considered.
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(b) Measurement model hp2qd .
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Figure 4.12: Steady state averaged RMSE after one ground station pass considering the measurement
models of Table 4.10 hp1qd in (a), hp2qd in (b) and hp3qd in (c). Errors are provided for each component of
the RSW frame. 50 MC runs.
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Final Remarks

There exist several strategies to improve filter performance. First, sensor noise statistics could be

tweaked, as there is some latitude for choosing suitable covariances for tracking filters (effectively regard-

ing them as ”tuning knobs”) when operating with a given set of sensors. In fact, experiences performed

in [66] showed the existence of a zone with linear dependency between measurement noise level and

Orbit Determination accuracy. However, there exists a technological limitation to how much these statis-

tics may drop down. Another approach could be to use data from several ground stations [69]. However,

the use of several stations may not significantly increase OD accuracy. In fact, sensors are often biased6

and need to be properly tuned, which adds to the difficulty of accurate estimation. Another approach is

to increase the frequency of measurement data [3]. Indeed, Fonte showed in [70] that dense, real-world

observations from a single station could produce orbits accurate to less than 10 meters for a 12-hour

prediction, at low altitudes.

Next, estimation results with multiple ground stations are presented.

4.2 Test Case 2 - Multiple Ground Stations

To conclude the simulation tests, a more in-depth comparison between the ESKF and USKF is

furthered. The simulation environment contains four ground stations. Table 4.11 shows the geodetic

location of these stations, as well as their associated measurement noise standard deviations. Range-

rate is excluded. The initial mean orbital state and epoch are provided in Table 4.12. The modeling

used to generate the reference true trajectory includes 30 ˆ 30 geopotential terms, Jacchia-Roberts

atmospheric drag, lunar and solar point mass gravity and Earth polar motion. In this experiment, the

reference mean and osculating trajectories are obtained with DSST. The reference mean trajectory is

used to compare the accuracy of the filter estimates, and the reference osculating trajectory is used to

compute the noisy measurements that are then fed to the filtering algorithms. The simulation setup just

described is similar to the one defined in [26], where the performance of the ESKF, coupled with DSST,

was evaluated. Hence, this experience is intended to serve as a baseline to compare the novel USKF

proposed in this thesis with other existing Semianalytical filters.

The filtering dynamical model, satellite constants, initialization procedure and process noise covari-

ances are the same as described for Test Case 1 in the previous section.

Figure 4.13 depicts the test case simulation results, in terms of absolute error time evolution of mean

equinoctial elements (true elements minus estimate elements), for a 6-day simulation. Furthermore, the

squared roots of the diagonal entries (associated to each element) of the estimated covariance are also

shown. These values represent the filtering online estimation error.

It is noted that the behavior of the ESKF (in terms of the absolute error time evolution of the mean

elements) is comparable to the one obtained in the referenced simulation test of [26].

6It is noted that, for simplicity, measurement bias was not considered in this thesis. In real-world applications bias is typically un-
known, and hence usually included in the solve-for estimation state, which adds more uncertainty to the overall filter performance.
Fonte suggests in [70] that using incorrect biases can produce almost a 70 meter error in LEO satellite filtering.
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Ground Station Geodetic Coordinates Measurement Noise
ph, φgd, λq Standard Deviations

1 (h “ 0m , φgd “ 42.617° , λ “ 288.509° ) 10m for Range
0.005° for Azimuth and Elevation

2 (h “ 0m , φgd “ 42.623° , λ “ 288.512° ) 10m for Range
0.005° for Azimuth and Elevation

3 (h “ 0m , φgd “ 9.395° , λ “ 167.479° ) 10m for Range
0.005° for Azimuth and Elevation

4 (h “ 0m , φgd “ 21.572° , λ “ 201.733° ) 23m for Range
0.019° for Azimuth and Elevation

Table 4.11: Location of the ground stations and their associated measurement noise standard deviations
for Test Case 2.

Initial orbital conditions

Epoch 18 January, 2003 00:00:00 UTC
Mean Keplerian set
`

ā, ē, ī, Ω̄, $̄, ν̄
˘

p6643 km, 8.9ˆ 10´2, 38°, 214°, 344°, 740q

Table 4.12: Initial epoch and orbital state for Test Case 2.

Analyzing the estimation results of Figure 4.13, the superiority of the USKF is evidenced. On one

hand, the USKF converged faster to the true trajectory, for instance, in the estimation of elements ā

(Figure 4.13 (a)), k̄ (Figure 4.13 (c)) or λ̄ (Figure 4.13 (f)). On the other hand, the USKF filter estimates

tended to suffer less destabilization than the ESKF estimates, indicating that the USKF is more stable

and robust than the ESKF. Furthermore, it better propagated the mean trajectory in the periods of station

unavailability.

Note that Test Case 2 may not be compared directly with Test Case 1 since: 1) the simulation

environment is not the same (in terms of measurement noise statistics and reference orbit generation),

and 2) the filter results are not evaluated in terms of the same error quantities and metrics. However, the

existence of more ground stations, distributed along the Earth’s surface, creates more periods of station

availability (and hence more observations to process), thus preventing filter estimates to further diverge

from the true trajectory, in view of the reduced force model used in the filter dynamical model.
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(a) Absolute error in ā (b) Absolute error in h̄

(c) Absolute error in k̄ (d) Absolute error in p̄

(e) Absolute error in q̄ (f) Absolute error in λ̄

Figure 4.13: Absolute error (true element minus estimated element) time evolution of the mean equinoc-
tial elements, for a 6-day simulation. The diagonal entries of the covariance matrix associated to each
element are also shown. Plots (a), (b), (c), (d), (e) and (f) represent the mean equinoctial elements
ā, h̄, k̄, p̄, q̄ and λ̄, respectively. Blue lines depict ESKF error and red lines depict USKF error.
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Chapter 5

Conclusions

This chapter summarizes the main conclusions that have been progressively presented throughout

the text. Afterwards, the main achievements and contributions are outlined, as well as some proposals

for possible future research paths linked to Orbit Determination in the context of Semianalytic Satellite

Theory (SST).

As outlined in Section 1.2, the main purpose of this thesis was to develop Orbit Determination solu-

tions to estimate LEO satellites in the absence of GNSS sensors, using only ground station data. The

majority of the simulations conducted further considered Sun-synchronous orbits, due to their vast real-

world applications. The sole use of ground station data is prone to difficulties in orbital filtering problems

when compared to GNSS-based approaches. In fact: 1) the filter may spend most of the time propagat-

ing orbital states without measurement data, since the update step is only possible when there exists

line of sight between the station and the target (station unavailability is especially severe in LEO mis-

sions tracked by a low number of stations, or with stations circumscribed to a limited land region), and 2)

indirect observation of the dynamical state variables to estimate through nonlinear functions (although

some GNSS-based filter solutions consider raw GNSS measurements — pseudorange and phase — it

is common to filter directly the position and velocity fixes outputted by GNSS receivers). Furthermore,

the present thesis also proposed to explore efficient implementation of filtering algorithms (in view of

real-time implementation) through the use of SST.

In Chapter 3 the osculating and mean orbital state dynamics, associated, respectively, to Cowell and

Semianalytical orbital propagators, were modeled. The process of averaging the osculating dynamics

using the Generalized Method of Averaging of dynamical nonlinear systems was thoroughly described.

The SST used in this work was proposed by Todd Ely and diverges from more common theories, namely,

the Draper Semianalytic Satellite Theory (DSST), in the sense that: 1) averaging of the osculating

element rates is achieved through numerical quadrature, and 2) computation of short-periodic effects,

that enable reconstruction of the osculating trajectory, through the Fast Fourier Transform (FFT), as

opposed to analytical derivations employed traditionally in other SSTs. When compared to DSST, Ely’s

theory is more flexible, easier to implement in computational applications and covers a wider range of

problem domains, namely, eccentric orbits. However it is not as efficient, since numerical quadrature
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and FFT evaluations require sampling of the orbital state function.

Results shown it Section 4.1.1 demonstrate the feasibility of the implemented Cowell and Semiana-

lytical orbital propagators when compared to established propagators from publicly available software.

Furthermore, it is shown that the Semianalytical propagator is able to compete with the Cowell propa-

gator, yielding, respectively, position and velocity errors of at most 200m and 0.2m s´1 for a 1-day LEO

propagation, whilst retaining a speed improvement factor (Cowell/Semianalytical CPU computation time)

of „ 6. However, it is noted that no optimization of the computer code was attempted (simulations were

made in Python environment).

With the groundwork completed, Orbit Determination filters were then studied - Cowell and Semian-

alytical orbital propagators were coupled with Extended and Unscented Kalman Filters. Although the

EKF usually prevails in most real-world estimation software, the UKF provided improved orbital esti-

mates under all performed simulations. A comparison between the accuracy performance of Cowell and

Semianalytical filters was made in Section 4.1.2. It was found that Semianalytical filters outperformed

Cowell filters with accuracy gains of „ 300m and „ 0.3m s´1 in position and velocity vectors, respec-

tively, for a 7-day simulation. These results are valid under the simulation environment described in the

aforementioned section, especially noting that a simplified force model was used (5 ˆ 5 gravitational

filed and atmospheric drag). In contrast, the authors of [12] found in their experiments that Cowell filters

outperformed Semianalytical filters. However, the experiments performed in that article made use of

more complex and accurate force models. It is hinted that the accuracy gain associated to the use of

high-precision force models is overshadowed by the error associated to the averaging procedure under-

lying Semianalytical dynamics. On the other hand, when using simplified models, Semianalytical filters

better capture the long-term evolution of the trajectory. Further research is needed to support these

preliminary observations.

Sensitivity of the filters to initialization errors was also studied. This is relevant, since, in the context

of sub-optimal Kalman filters, bad estimates may lead to filter divergence. It was found that Cowell filters

are able to converge in much worse initialization environments than Semianalytical filters. For instance,

Cowell filters converged with initial position errors of up to 10 000 km, whereas both Semianalytical filters

started to diverge when position errors of 1000 km were provided. The existence of long periods of station

unavailability may explain this drawback, since the estimation of mean trajectories in Semianalytical

filters is slightly slower to converge than Cowell estimation of osculating trajectories, due to the inherent

averaging procedure associated to the mean dynamics.

To conclude the filter performance examination, it is interesting to compare the RMSE (Figure 4.8)

of the filter schemes with direct inversion of the measurement function (Figure 4.9). It is seen that

all filters yield better estimates than the ones directly provided by the noisy observations. In fact, the

propagation/filtering algorithms should always be able to enhance the accuracy of unprocessed obser-

vations. Moreover, the observability analysis that was conducted indicates that range-rate data could be

excluded from the observation set with only minor loss in accuracy. Further exclusion of range data led

to more significant degradation, however the algorithms still converged.
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5.1 Contributions

To the best knowledge of the author, the present work proposes the following original contributions:

• Prove and demonstrate the feasibility of Ely’s SST in the context of Orbit Determination, departing

from DSST-based solutions, which have already been studied before;

• Couple SST with an UKF, leading to the USKF. Compared to the existing ESKF, the proposed

USKF provided more accurate orbital state estimates, showed more robustness to destabilization

and to initialization errors. It also required less time and fewer observations to converge, as shown

in Section 4.2.

Ultimately, the fundamental conclusion to be drawn from this study is that substantial improvements

in efficiency can be attained with minor impact on accuracy by the application of SST within Orbit Deter-

mination problems.

5.2 Future Work

The following suggestions are left for future development of the line of work pursued in this thesis:

• Model resonant tesseral and sectoral harmonics of the gravitational field, which were excluded

from the present work, due to the lack of time. Resonant terms should be included in the prop-

agation/filter dynamics when the problem requires the use of complete gravitational fields. For

example, in LEO satellites (completing about 14 revolutions per day) the harmonics that resonate,

considering a 50 ˆ 50 gravitational field, are p14, 14q through p50, 14q and p28, 28q through p50, 28q

[12];

• The Orbit Determination solutions envisioned in this work are not autonomous, since they are de-

pendent on ground stations. In recent years, autonomous OD solutions have gained popularity

through the use of formation-flying constellations [71–73]. It would be interesting to couple Semi-

analytical filters within formation-flying problems. The resultant solution would be both autonomous

and computationally efficient;

• The present work adopts a greatly simplified measurement model. Realistic measurement models

should not exclude effects like the finite speed of light, stellar aberration and media atmospheric

corrections [20]. Furthermore, realistic sensors are usually affected by unknown sensor bias, which

is typically included in the solve-for filtering state;

• When comparing the developed Semianalytical propagator with DSST, it was found that the mean-

to-osculating map of DSST outperforms the one implemented in this work. Further research is

needed to find the source of this divergence. A good starting point wouldbe to augment Ely’s work

by building a second-order Semianalytical theory, as is done in DSST for some perturbations;
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• Test the filters with real spacecraft data. The present work only considered simulation data, how-

ever there exist publicly available sets of observational data for some satellites, for instance, by the

Satellite Laser Ranging network1;

• Study the impact of explicit discretization of the state dynamics employed by UKF. Recently, the

UKF has been extended to systems modeled directly in continuous time [51].

1SLR observational data is available online, for some satellites, at https://ilrs.gsfc.nasa.gov/index.html (last access on
31st December 2020).
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Appendix A

Orbit Determination Filters

A.1 Differential Correction Batch Least Squares

The Least Squares technique (LS) was initially developed for data fitting or estimation problems

where the relations between the variables are linear. The problem consists of choosing a mathematical

model and fitting the measurements as well as possible, by minimizing the sum of the squares of the

residuals, which are defined as the difference between the observed and model-computed values of the

dependent variables to estimate [3].

This idea of LS estimation may be extended to nonlinear dynamic problems. All observations are

reduced (using the state dynamics) to the initial epoch t0 and then the estimator finds the best state

x̂
pLSq
0 in the LS sense. Since the system is nonlinear, the solution is only approximate and thus, the

process may be iterated for better convergence. Furthermore, this procedure implies the availability of a

whole batch of observations [20].

Algorithm 4 presents the Differential Correction Batch Least Squares procedure. This algorithm is

paraphrased and adapted from [21]. Similar procedures were developed and explained in [3, 20]. In this

thesis, it is used for initialization of sequential Kalman filters and is intended to be coupled with osculating

state dynamics (in cartesian form). Alternative algorithms exist for coupling LS with Semianalytical mean

dynamics [15].

The stopping condition, defined in the while statement (line 6) is usually chosen to be the root mean

square of the observation residuals. For each iteration j it is given by

RMSpjq “

d

řT
i“1 riR

´1
i r

T
i

N
. (A.11)

T is the total number of time instants used in the batch and N “ T ˆ l, where l is the dimension of the

observation vector y. Convergence is assumed to be reached when:

ˇ

ˇ

ˇ

ˇ

ˇ

RMSpj´1q
´ RMSpjq

RMSpj´1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε ,
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Algorithm 4 Differential Correction Batch Least Squares

Input: x̂p0q0 ; Ź initialization (initial guess) of reference state trajectory
tpti,yi,Riq : i “ 1, . . . , T u. Ź sequence (batch) of observations (epoch, vector of observations,
weighting matrix)

Output: x̂pLSq
0 ; Ź iterated initial state

P̂
pLSq
0 . Ź iterated initial covariance

1: variables Ź algorithm variables
2: j “ 1; Ź iteration counter
3: IterationMax “ 10;
4: N “ 0nˆ1 , Λ “ 0nˆn. Ź LS variables
5: end variables
6: while (some stopping criterion is not met) or (j ă IterationMax) do
7: variables Ź iteration variables
8: x˚pt0q “ x̂

pj´1q
0 , Φpt0, t0q “ Inˆn. Ź initialize reference trajectory and state transition matrix

9: end variables
10: for ti P tt1, . . . , tT u do
11: Read next observation: pti, yi, Riq.
12: Numerically integrate the reference trajectory and state transition matrix in t P rti´1, tis, from

the initial conditions x˚pti´1q , Φpti´1, t0q, with:

9x˚ptq “ fpx˚ptq, tq , (A.1)
9Φpt, t0q “ F px

˚ptq, tq 9Φpt, t0q , (A.2)

where

F px˚ptq, tq “
Bfpxptq, tq

Bxptq

∣∣∣∣
xptq“x˚ptq

.

The integration produces x˚ptiq , Φpti, t0q.
13: Accumulate current observation:

H̃i “
Bhdpxptiq, tiq

Bxi

∣∣∣∣
xptiq“x˚ptiq

, (A.3)

ri “ yi ´ hdpx
˚ptiq, tiq , (A.4)

Hi “ H̃iΦpti, t0q , (A.5)

Λ “ Λ`HT
i R

´1
i Hi , (A.6)

N “N `HT
i R

´1
i ri . (A.7)

14: end for
15: Solve the LS normal equation for the correction-term ∆x̂

pjq
0

Λ ∆x̂
pjq
0 “N . (A.8)

16: Update the iteration reference state and compute the covariance

x̂
pjq
0 “ x̂

pj´1q
0 `∆x̂

pjq
0 , (A.9)

P
pjq
0 “ Λ´1 . (A.10)

17: j “ j ` 1. Ź new iteration
18: end while

where ε was set to 1.
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A.2 Extended Semianalytical Kalman Filter

The operations of the integration and observation grids of the ESKF are presented next, paraphrased

from [25]. The filter is initialized with an initial state estimate Ēpt0q, covariance P 0 and ∆Ē0,0
0,0 “ 0.

Operations on the Integration Grid

1. At the current time tk,0, update the nominal state, ĒNnewptk,0q, for the new integration step, valid

on the interval t P rtk,0, tk`1,0q, from the old nominal state ĒNoldptk,0q (defined on the previous

integration grid step), using

ĒNnewptk,0q “ ĒNoldptk,0q `∆Ēk´1,M
k,0 , (A.12)

where ∆Ēk´1,M
k,0 is the filter correction from the last observation, at tk´1,M , propagated until the

current time tk,0. Then set the covariance P´k,0. The correction ∆Ēk´1,M
k,0 and covariance P´k,0 are

found by performing steps 2, 4, 5 and 7 of the observation grid (described below) from tk´1,M to

tk,0;

2. Initialize the filter correction and transition matrices:

∆Ēk,0k,0 “ 0 , (A.13a)

Φptk,0, tk,0q “ I , (A.13b)

ΦS “ Φ´1ptk,0, tk,0q “ I , (A.13c)

where Φ is the system’s STM and ΦS is a local variable that stores the inverse of the STM;

3. Numerically propagate the nominal trajectory and STM dynamics until the next integration grid

point at t “ tk`1,0 “ tk,0 `∆t, saving intermediate results at t “ tk,∆t{2 and t “ tk,∆3t{4, with:

9̄EN ptq “ f̄pĒN ptq, tq ,

9Φpt, tk,0q “ F̄ pĒN ptq, tqΦpt, tk,0q ,
(A.14)

from initial conditions ĒN ptk,0q and Φptk,0, tk,0q. Functions f̄ and F̄ are defined in (3.33) and

(3.46), respectively. Furthermore, at times t “ tk,0, t “ tk,∆t{2 and t “ tk`1,0 save evaluations of

the right-hand side of (A.14), invert the transition matrices and obtain the inverse STM dynamics

using [25]
9Φ´1pt, t0q “ ´Φ´1pt, t0q 9Φpt, t0q Φ´1pt, t0q . (A.15)

With the values ĒN ptk,0q, ĒN ptk,∆t{2q, ĒN ptk`1,0q, Φptk,0, tk,0q, Φptk,∆t{2tk,0q, Φptk`1,0, tk,0q,

Φ´1ptk,0, tk,0q, Φ´1ptk,∆t{2, tk,0q and Φ´1ptk`1,0, tk,0q and their respective time rates set up Her-

mite interpolators for ĒN ptq, Φpt, tk,0q and Φ´1pt, tk,0q (cf. Section 3.1.2);

4. Compute the short-periodic DFT coefficients XiZ,D and XiT at times t “ tk,0, t “ tk,∆t{2, t “
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tk,3∆t{4 and t “ tk`1,0 and set up Lagrange interpolators for XiZ,D ptq and XiT ptq
1(cf. Section

3.1.2).

Operations on the Observation Grid

The observation grid is operated by the EKF: steps 4 to 7 belong to the filter’s predict step and steps

8 and 9 to the update step. It is noted that, if the first observation comes exactly at time t “ tk,0, then the

filter predict step is ignored for that observation, since the predicted state and covariance are already

known from the integration grid.

1. Obtain a new observation to process yptk,iq for i “ 0, . . . ,M , where yptk,M q is the last observation

before the next integration grid;

2. Interpolate ĒN ptq and Φpt, tk,0q for t “ tk,i obtaining the nominal state ĒN ptk,iq and STM Φptk,i, tk,0q

at the observation time. Get Φ´1ptk,i´1, tk,0q from the value stored in ΦS , resorting to the previous

observation;

3. Interpolate the DFT coefficients XZ,Dptq and XT ptq for t “ tk,i and use (3.34) to compute the

nominal short-periodic function ηpĒN ptk,iqq;

4. Compute the transition matrix

Φptk,i, tk,i´1q “ Φptk,i, tk,0q Φ´1ptk,i´1, tk,0q ; (A.16)

5. Obtain the predicted filter correction

∆Ēk,i´1
k,i “ Φptk,i, tk,i´1q ∆Ēk,i´1

k,i´1 ; (A.17)

6. Compute the a priori mean state Ē´ptk,iq with the nominal state and predicted correction. Then,

use it to compute the a priori osculating state estimate E´ptk,iq, by summing the short-periodic

function:

Ē´ptk,iq “ ĒN ptk,iq `∆Ek,i´1
k,i , (A.18a)

E´ptk,iq “ Ē´ptk,iq ` η
`

ĒN ptk,iq
˘

`
Bη

`

ĒN ptk,iq
˘

B Ē
∆Ēk,i´1

k,i . (A.18b)

Notice that the last two terms on the right-hand side of the second equation are a first-order

approximation of ηpĒ´ptk,iqq around the nominal state. The matrix
Bη

B Ē
is obtained by finite differ-

ences, cf. Section 3.3.3, and evaluated at ĒN ptk,iq;

7. Discretize the process noise covariance and compute the predicted covariance:

Qdptk,i, tk,i´1q “ Φptk,i, tk,i´1qQptk,iqΦT ptk,i, tk,i´1q ¨ ptk,i ´ tk,i´1q ,

P´k,i “ Φptk,i, tk,i´1qP
`
k,i´1 ΦT ptk,i, tk,i´1q `Qdptk,i, tk,i´1q ,

(A.19)

1The middle points were defined arbitrarily but it is important to have them widely spaced in the interval for improved perfor-
mance.
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where Qptk,iq is the continuous-time noise covariance matrix;

8. Convert the a priori osculating equinoctial state to the cartesian state vector x and then compute

the predicted observation:

x´ptk,iq “XpE
´ptk,iqq ,

ŷptk,iq “ hdpx
´ptk,iq, tk,iq ;

(A.20)

9. Do the EKF update step:

K “ P´k,iH
T
”

HP´k,iH
T `Rk,i

ı´1

, (A.21a)

∆Ēk,ik,i “ ∆Ēk,i´1
k,i `K pyptk,iq ´ ŷptk,iqq , (A.21b)

Ē`ptk,iq “ Ē´ptk,iq `∆Ēk,ik,i , (A.21c)

P`k,i “ pI ´KHqP
´
k,i . (A.21d)

whereH is the measurement Jacobian with respect to the equinoctial mean state (3.51), evaluated

with Ē´pti,kq, and Rk,i is the measurement noise covariance matrix;

10. Interpolate Φ´1pt, tk,0q for t “ tk,i and save the result, Φ´1ptk,i, tk,0q, into ΦS , to be used in the

next observation.

A.3 Filter Flowcharts

This section presents a flowchart representation of both Cowell and Semianalytical Orbit Determi-

nation filters. It is noted that these charts only give a general visualization of the algorithms, being

appropriate for computer implementation of simulation studies, running with a fixed simulation step δt.

They also assume perfect synchronization between the simulation step and the times of arrival of GS

measurements, i.e., with the update-step times. Real-time implementation of these filters in realistic mis-

sion scenarios requires a more robust approach. In fact, measurements may not come at fixed known

times and computation time of the predict and update procedures also needs to be taken into account.

This exhaustive and precise implementation goes beyond the objectives proposed for this thesis. How-

ever, as an example, a realistic and meticulous implementation of an on-board filter may be found in [58]

for the BIRD satellite mission.

Figure A.1 presents a flowchart of Cowell filtering and Figure A.2 presents a flowchart of Semiana-

lytical filtering. The simulations runs at a fixed step of δt “ 5 s for both filters, which is also the period of

arrival of measurements, if available. Furthermore, the Semianalytical filter is tuned with an integration

step size ∆t of 1 day.
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Start

Simulation and filter inputs:

• State model parameters (force model, process noise), satellite parame-
ters and measurement model.

• Numerical solver routine, integration error tolerance, simulation (integra-
tion) step size δt and simulation end tend;

• Filter initialization x̂pt0q , P pt0q.

Initialize filter routine.

Set ti Ð t1 “ t0 ` δt.

Predict step from ti´1 to ti:

x´ptiq, P´ptiq.

GS avail-

ability at ti?

xpoutq
Ð x´ptiq,

P poutq
Ð P´ptiq

Retrieve obs. from avail-

able stations yptiq “

ty1
ptiq, . . . ,y

r
ptiqu. j Ð 1

Update step from jth GS

x`ptiq, P`ptiq

j “ r? j Ð j ` 1

xpoutq
Ð x`ptiq,

P poutq
Ð P`ptiq

Output xpoutq and P poutq at ti

GS data

provider

ti “ tend?

End

ti Ð ti ` δt

no yes

no

yes

yes

no

new filter cycle

Figure A.1: Flowchart representation of Cowell Orbit Determination filters.
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Start

Simulation and filter inputs:

• State model parameters (force model, process noise), satellite parame-
ters and measurement model.

• Numerical solver routine, integration error tolerance, simulation step
size δt and simulation end tend;

• Semianalytical filter parameters (DFT lengths, quadrature order,
integration grid step ∆t);

• Filter initialization ˆ̄Ept0q , P Ēpt0q.

Initialize filter routine.
Set i Ð 0, j Ð 0

Set time variable ti,j Ð t0

Set corrections ∆Ē Ð 0

Update nominal trajectory with

∆Ē and perform integration grid

operations, defining nominal

trajectory from ti,0 to ti`1,0 “

ti,0 ` ∆t. Reset ∆Ē Ð 0.

GS availabil-

ity at ti,j?

Requested

output

at ti,j?

Retrieve obs. from avail-

able stations ypti,jq “

ty1
pti,jq, . . . ,y

r
pti,jqu.

Interpolate nominal trajec-
tory to ti,j and do predict
step of observation grid

∆Ē Ð ∆Ēi,j´1
i,j ,

Ē´pti,jq, P´pti,jq

Set l Ð 0.

Update step of obser-
vation grid from lth GS

∆Ē Ð ∆Ēi,ji,j ,

Ē`pti,jq, P`pti,jq

l “ r? l Ð l ` 1

Ēpoutq
Ð Ē`ptiq,

P poutq
Ð P`ptiq

Interpolate nominal traje-

tory to ti,j and do predict

step of observation grid

Ēpoutq
Ð Ē´pti,jq,

P poutq
Ð P´pti,jq

Output Ēpoutq and P poutq

ti,j “ tend?

End
ti,j ` δt ă

ti`1,0?

ti,j Ð ti,j`1 “ ti,j ` δt

ti,j Ð ti`1,0 “ ti,j ` ∆t

yes

no

yes

yesno

yes

no

yes

no

ne
w

in
te

gr
at

io
n

gr
id

no

Figure A.2: Flowchart representation of Semianalytical Orbit Determination filters.
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Appendix B

Linearization of Dynamical Systems

and Discretization of Process Noise

Since the KF algorithms are implemented on a predict-update cycling fashion and the state dynamics

(Equation (2.15a)) are modeled in continuous-time, a discretization of the process noise covariance

matrix in-between update steps is needed, for instance, in Equations (2.33b) and (2.36c) of the EKF

and UKF, respectively. Below, the linearization process of the predict step is described, resorting to the

first-order Taylor series regression, following similar derivations made in [3, 20]. Moreover, this process

is adaptable to the weighted statistical regression for use within the UKF framework.

Consider the state dynamics given by Equation (2.15a). The true value of the state x is never known,

but can only be estimated. The state estimate x̂ptq evolves according to

dx̂ptq

dt
“ fpx̂ptq, tq . (B.1)

The estimation error is then

eptq “ xptq ´ x̂ptq . (B.2)

The first-order error dynamics are found by differentiating Equation (B.2) and expanding f around x̂ptq,

that is

deptq

dt
“ fpxptq, tq ´ fpx̂ptq, tq `wptq

« F px̂ptq, tq eptq

(B.3)

where

F px̂ptq, tq “
Bfpxptq, tq

Bxptq

∣∣∣∣
xptq“x̂ptq

(B.4)

The formal discrete-time solution of Equation (B.3) from tk´1 to tk (filter update epochs) gives

eptkq “ Φptk, tk´1qeptk´1q `wdptk, tk´1q , (B.5)
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where Φptk, tk´1q is obtained by integrating

dΦpt, tk´1q

dt
“ F px̂ptq, tqΦpt, tk´1q (B.6)

in the predict interval t P rtk´1, tks, with initial condition Φptk´1, tk´1q “ Inˆn. Φ is the State Transition

Matrix (STM). Notice that integration of the STM dynamics requires the companion integration of the

state dynamics, as is performed in the EKF algorithm (Equation (2.32)). The sequence wdptk, tk´1q is

the uncertainty in the dynamics used in the propagation of the estimation process and is defined from

the white process noise wptq as

wdptk, tk´1q “

ż tk

tk´1

Φptk, τqwpτqdτ . (B.7)

In the predict step, not only the state estimate x̂´k is computed, but also the error covariance P´k ,

providing a statistical measure of the quality of the estimate. Since eptkq is assumed to be a zero-mean

process1, Ereptkqs “ 0, the covariance at tk is computed by propagating the estimation covariance P`k´1,

at the previous time-step tk´1, with

P´k “ Ereptkq eT ptkqs “ Φptk, tk´1qP
`
k´1ΦT ptk, tk´1q `Qdptk, tk´1q , (B.8)

where the discretized process noise matrix Qdptk, tk´1q is given by

Qdptk, tk´1q “

ż tk

tk´1

Φptk, τqQpτqΦ
T ptk, τqdτ . (B.9)

If the gap between measurements is small enough to assume a constant process noise, then the

equation above is simplified to:

Qdptk, tk´1q “ Φptk, tk´1qQΦT ptk, tk´1q ¨ ptk ´ tk´1q , (B.10)

which resembles a quadrature approximation of the integral of (B.9).

Regarding the UKF, the process is simpler, since the state dynamics are considered directly in dis-

crete time, xptkq “ fdpxptk´1q, tk´1q ` wdptkq. The statistically linearized dynamics are given by, cf.

(2.22), xptkq « Aptk, tk´1qxptk´1q ` b, where the linearization coefficient A is given by Aptk, tk´1q “

P k,k´1

`

P`k´1

˘´1, cf. (2.25). The covariance P k,k´1 describes the correlation between the states at

time tk and tk´1 and is obtained with rx̂´k ,P k,P k,k´1s “ UTpfd, x̂`k´1,P
`
k´1q (predict step of UKF).

Equation (B.10) is then rewritten as

Qdptk, tk´1q “ Aptk, tk´1qQA
T ptk, tk´1q ¨ ptk ´ tk´1q , (B.11)

where Aptk, tk´1q plays the same role as the STM.
1It should be noted that, if systematic errors cause Ereptkqs ‰ 0, then P´k becomes the mean square error matrix, rather than

the covariance.
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Appendix C

Numerical Implementation of Earth’s

Gravitational Acceleration

In this appendix, numerical considerations for the computation of the acceleration vector aif Earth grav.

of Equation (3.7) are outlined.

C.1 Recursive Computation of the ALFs

Implementation of the definition of ALFs (Equation (3.5)) is very inefficient for computer applications.

Therefore, recursive algorithms may be used instead. A recursive implementation of unnormalized ALFs

is presented by Vallado in [3]. It was adapted to the normalized version by following a normalization

procedure similar to that provided in [56] (illustrated below). The resulting recursive formulae is (where

the argument of Pn,mp¨q is dropped to simplify the notation):

P̄n,0 “
1

n

„

p2n´ 1q sinφgc P̄n´1,0
Nn,0
Nn´1,0

´ pn´ 1qP̄n´2,0
Nn,0
Nn´2,0



n ě 2 , (C.1a)

P̄n,m “ P̄n´2,m
Nn,m
Nn´2,m

` p2n´ 1q cosφgc P̄n´1,m´1
Nn,m

Nn´1,m´1
m ‰ 0,m ă n , (C.1b)

P̄n,n “ p2n´ 1q cosφgc P̄n´1,n´1
Nn,n

Nn´1,n´1
n ě 2 , (C.1c)

with the starting values

P̄0,0 “ P0,0N0,0 “ 1N0,0 ,

P̄1,0 “ P1,0N1,0 “ sinφgcN1,0 ,

P̄1,1 “ P1,1N1,1 “ cosφgcN1,1 .

It should be noted that in Equation (C.1b), Pn´2,m reduces to zero on the recursions where m ą n ´ 2,

because, in view of the definition of the ALFs, Pn,m “ 0 if m ą n.
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Next, the normalization procedure used to adapt the formulae above to the normalized version is

outlined, based on [56]. Notice that, in order to obtain the aforementioned recursive formulae, the

equations need to be written as a function of normalized polynomials, by replacing the conventional

unnormalized ones with their normalized counterparts.

The process is shown for Equation (C.1a) (the same idea applies to the other two). Consider the

unnormalized recursive formula, paraphrased from [3]

Pn,0 “
1

n
rp2n´ 1q sinφgcPn´1,0 ´ pn´ 1qPn´2,0s . (C.2)

The corresponding normalized Legendre polynomial P̄n,0 is found by multiplying the equation above with

the normalization factor Nn,0

P̄n,0 “ Nn,0Pn,0 “
1

n
rp2n´ 1q sinφgcNn,0Pn´1,0 ´ pn´ 1qNn,0Pn´2,0s . (C.3)

By substituting the normalization definition Pn,0 “ P̄n,0{Nn,0 in the equation above, one gets the normal-

ized recursion

P̄n,0 “
1

n

„

p2n´ 1q sinφgc
Nn,0
Nn´1,0

P̄n´1,0 ´ pn´ 1q
Nn,0
Nn´2,0

P̄n´2,0



. (C.4)

According to [56], this normalization procedure is only computationally valid up to n ` m ă 171

(therefore, valid for the tests conducted in this thesis), since for n ` m ě 171 the computation of the

normalization constant becomes prone to overflow errors (for 64-bit double precision real numbers). For

these cases, there exist more efficient and computational friendly algorithms to implement the recursion

of ALFs, namely, those developed by Samuel Pines, Bill Lear, and Robert Gottlieb.

C.2 Recursive Computation of the Potential Partials

Regarding the partials
BU

Br
,
BU

Bφgc
and

BU

Bλ
, they are computed recursively with:

BU

Br
“ ´

µ

r2
´
µ

r2

Nn
ÿ

n“2

minpn,Nmq
ÿ

m“0

´ae
r

¯n

pn` 1qP̄n,mpsinφgcq
“

C̄n,m cospmλq ` S̄n,m sinpmλq
‰

, (C.5a)

BU

Bφgc
“
µ

r

Nn
ÿ

n“2

minpn,Nmq
ÿ

m“0

´ae
r

¯n
„

P̄n,m`1
Nn,m
Nn,m`1

psinφgcq ´m tanpφgcqP̄n,mpsinφgcq



ˆ
“

C̄n,m cospmλq ` S̄n,m sinpmλq
‰

, (C.5b)

BU

Bλ
“
µ

r

Nn
ÿ

n“2

minpn,Nmq
ÿ

m“0

´ae
r

¯n

mP̄n,mpsinφgcq
“

S̄n,m cospmλq ´ C̄n,m sinpmλq
‰

. (C.5c)

These expressions were also adapted from the original unnormalized counterparts provided by Vallado

in [3], by performing the same normalization procedure presented above.
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Appendix D

Orbital State-Space Transformations

This appendix presents transformations to interchange between the cartesian state vector x “
“

priq
T , pviq

T
‰T and the equinoctial element set E “ ra, h, k, p, q, λsT . These conversions are widely

used throughout this work. Furthermore, some partial derivatives of these transformations are also

needed, and therefore are summarized below. All derivatives and transformations provided are para-

phrased from [27].

Moreover, a conversion between state vector and Keplerian elements was required in the Keplerian

orbit analytical vs. numerical propagation (Section 4.1.1). This conversion is not presented, but is

readily available in many orbital mechanics textbooks, namely, on Algorithms 9 and 10 of [3] (RV2COE

and COE2RV ).

D.1 Conversion Between State Vector and Equinoctial Elements

The equinoctial elements are defined with the help of the equinoctial system - basis vectors f , g

and w, which are illustrated in Figure D.1. These basis vectors are computed in terms of x, y and z

components of the ECI frame as:

f “ κ

»

—

—

—

–

1´ p2 ` q2

2pq

´2p

fi

ffi

ffi

ffi

fl

, g “ κ

»

—

—

—

–

2pq

1` p2 ´ q2

2q

fi

ffi

ffi

ffi

fl

, w “ κ

»

—

—

—

–

2p

´2q

1´ p2 ´ q2

fi

ffi

ffi

ffi

fl

, (D.1)

where

κ “
1

1` p2 ` q2
.
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D.1.1 From State Vector to Equinoctial Elements

The first step in converting from position and velocity to equinoctial elements is to compute the semi-

major axis a, which is obtained by inverting the well-known energy integral for the two-body problem

a “
1

2
‖ri‖ ´

‖vi‖2

µC

. (D.2)

The second step is to compute the basis vectors (f , g, w) of the equinoctial system. The w vector is

obtained by normalizing the angular momentum vector, that is

w “
ri ˆ vi

‖ri ˆ vi‖
. (D.3)

Equinoctial elements p and q are then given by:

p “
wx

1` wz
, (D.4a)

q “ ´
wy

1` wz
. (D.4b)

Vectors f and g are then computed using Equation (D.1).

The third step is to compute the eccentricity-related quantities. The eccentricity vector e is given by

e “ ´
ri
‖ri‖

`
vi ˆ pri ˆ viq

µC

. (D.5)

Equinoctial elements h and k are then given by:

h “ e ¨ g , (D.6a)

k “ e ¨ f . (D.6b)

The last step is to compute the mean longitude λ. First, compute the position coordinates of the

satellite in the equinoctial system:

X “ ri ¨ f , (D.7a)

Y “ ri ¨ g . (D.7b)

Then, compute the eccentric longitude F with:

sinF “ h`
p1´ h2bqY ´ hkbX

a
?

1´ h2 ´ k2
, (D.8a)

cosF “ k `
p1´ k2bqX ´ hkbY

a
?

1´ h2 ´ k2
, (D.8b)

where

b “
1

1`
?

1´ h2 ´ k2
. (D.9)
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Finally, λ is given by the equinoctial form of the Kepler’s equation, where F is previously computed as

F “ arctan 2psinF, cosF q, that is

λ “ F ` h cosF ´ k sinF . (D.10)

D.1.2 From Equinoctial Elements to State Vector

The first step in converting from equinoctial elements to position and velocity is to determine the

equinoctial system basis vectors (f , g, w) using Equation (D.1).

The second step is to find the eccentric and true longitudes F and L, respectively. F is obtained

by numerically solving Kepler’s (D.10), using, for instance, the Newton’s method. Then, compute b and

mean motion n using, respectively, (D.9) and

n “

c

µC

a3
. (D.11)

The true longitude L is then computed using:

sinL “
p1´ k2bq sinF ` hkb cosF ´ h

1´ h sinF ´ k cosF
, (D.12a)

cosL “
p1´ h2bq cosF ` hkb sinF ´ k

1´ h sinF ´ k cosF
. (D.12b)

The third step is to compute the position and velocity components (X, Y ) and ( 9X, 9Y ) of the satellite

in the equinoctial system. The radial distance is given by

r “
ap1´ h2 ´ k2q

1` h sinL` k cosL
. (D.13)

The position components are then given by:

X “ r cosL , (D.14a)

Y “ r sinL . (D.14b)

The velocity components are computed as:

9X “ ´
naph` sinLq
?

1´ h2 ´ k2
, (D.15a)

9Y “
napk ` cosLq
?

1´ h2 ´ k2
. (D.15b)

The final step is to compute the position and velocity vectors using:

ri “ Xf ` Y g , (D.16a)

vi “ 9Xf ` 9Y g . (D.16b)
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D.2 Partial Derivatives of State Vector With Respect to the Equinoc-

tial Elements

Let

A “
?
µCa , (D.17a)

B “
a

1´ h2 ´ k2 , (D.17b)

C “ 1` p2 ` q2 , (D.17c)

and compute (X, Y ) and ( 9X, 9Y ) by algebraically transforming Equations (D.16) to:

X “ ri ¨ f , Y “ ri ¨ g ,

9X “ vi ¨ f , 9Y “ vi ¨ g .
(D.18)

The partial derivatives of the position vector ri with respect to the equinoctial elements are given by:

Bri
Ba

“
ri
a
,

Bri
Bh

“
BX

Bh
f `

BY

Bh
g ,

Bri
Bk

“
BX

Bk
f `

BY

Bk
g ,

Bri
Bp

“
2rqpY f ´Xgq ´Xws

C
,

Bri
Bq

“
2rppXg ´ Y fq ` Yws

C
,

Bri
Bλ

“
vi
n
,

(D.19)

where n is computed with Equation (D.11) and where:

BX

Bh
“ ´

k 9X

np1`Bq
`
aY 9Y

AB
,

BY

Bh
“ ´

k 9Y

np1`Bq
´
aX 9Y

AB
´ a ,

BX

Bk
“

h 9X

np1`Bq
`
aY 9X

AB
´ a ,

BY

Bk
“

h 9Y

np1`Bq
´
aX 9X

AB
.

(D.20)

The partial derivatives of the velocity vector vi with respect to the equinoctial elements are given by:

Bvi
Ba

“ ´
vi
2a

,
Bvi
Bh

“
B 9X

Bh
f `

B 9Y

Bh
g ,

Bvi
Bk

“
B 9X

Bk
f `

B 9Y

Bk
g ,

Bvi
Bp

“
2rqp 9Y f ´ 9Xgq ´ 9Xws

C
,

Bvi
Bq

“
2rpp 9Xg ´ 9Y fq ` 9Yws

C
,

Bvi
Bλ

“ ´
na3ri
r3

,

(D.21)

where r “ ‖ri‖ and where:

B 9X

Bh
“
a 9Y 2

AB
`
A

r3

ˆ

akX

1`B
´
Y 2

B

˙

,
B 9Y

Bh
“ ´

a 9X 9Y

AB
`
A

r3

ˆ

akY

1`B
`
XY

B

˙

,

B 9X

Bk
“
a 9X 9Y

AB
´
A

r3

ˆ

ahX

1`B
`
XY

B

˙

,
B 9Y

Bk
“ ´

a 9X2

AB
´
A

r3

ˆ

ahY

1`B
´
X2

B

˙

.

(D.22)
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These derivatives may then be concatenated in matrix form:

Bx

BE
“

»

—

–

Bri

Ba

Bri

Bh

Bri

Bk

Bri

Bp

Bri

Bq

Bri

Bλ
Bvi

Ba

Bvi

Bh

Bvi

Bk

Bvi

Bp

Bvi

Bq

Bvi

Bλ

fi

ffi

fl

. (D.23)

D.3 Partial Derivatives of Equinoctial Elements With Respect to

Velocity

Regarding the partial derivatives of the equinoctial elements with respect to the state vector, only

the ones with respect to velocity are needed in this work (in the computation of the Gaussian VOP). Let
BEj

Bvi
denote the vector, in cartesian coordinates, whose components in the ECI frame are the partial

derivatives of the equinoctial element Ej with respect to (vx, vy, vz), i.e.,

BEj

Bvi
“

„

BEj

Bvx

BEj

Bvy

BEj

Bvz



(D.24)

The partial derivatives of the equinoctial elements with respect to velocity are given by:

Ba

Bvi
“

2vi

n2a
,

Bh

Bvi
“
p2 9XY ´X 9Y qf ´X 9Xg

µC

`
kpqY ´ pXqw

AB
,

Bk

Bvi
“
p2X 9Y ´ 9XY qg ´ Y 9Y f

µC

´
hpqY ´ pXqw

AB
,

Bp

Bvi
“
CYw

2AB
,

Bq

Bvi
“
CXw

2AB
,

Bλ

Bvi
“ ´

2ri

A
`

k
Bh

Bvi
´ h

Bk

Bvi

1`B
`
pqY ´ pXqw

A
.

(D.25)

(a) The equinoctial element set is associated
with vectors f , g and w, which are the basis
vectors of the equinoctial system. f and g
lie in the orbital plane and w is parallel to the
angular momentum vector h. h and k are, re-
spectively, the f and g components of the ec-
centricity vector e, p and q are, respectively,
the f and g components of the line of nodes
vector n. Source [27].

(b) Visualization of line of nodes vector n, eccentricity vec-
tor e and angular momentum vector h, along with some
Keplerian orbital elements, namely i, $, Ω and ν. Source
[3].

Figure D.1: Representation of the equinoctial system in (a) and representation of auxiliary vectors in (b).
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Appendix E

Equations of Averaging

In this appendix, the first-order Equations of Averaging (3.15) of SST are derived, following [27].

Expanding Fi about the mean elements and npaq about the mean semi-major axis, using Taylor series

expansions, and rearranging the result as a power series of ε yields:

Fipα, λ, θq “ Fipᾱ, λ̄, θq `
8
ÿ

j“1

εjf ji pᾱ, λ̄, θq , i “ 1, . . . , 6 , (E.1a)

npaq “ npāq `
8
ÿ

j“1

εjN jpāq , (E.1b)

where the first-order terms are given by f1
i “

ř6
j“1

BFi
Baj

η1
j and N1 “ ´

3

2

η1
1

ā
npāq. Thus, substituting

(E.1) into (3.12), the osculating VOP may be expressed as a function of mean elements as

dEi
dt

“ δi6

´

npāq `
8
ÿ

j“1

εjN jpāq
¯

` ε1Fipᾱ, λ̄, θq `
8
ÿ

j“1

εj`1f ji pᾱ, λ̄, θq , i “ 1, . . . , 6 . (E.2)

Next, differentiating (3.14) with respect to t leads to another expression for the osculating VOP

dEi
dt

“
dĒi
dt

`

8
ÿ

j“1

εj

˜

6
ÿ

k“1

Bηji
B Ēk

dĒk
dt

`
Bηji
Bθ

dθ

dt

¸

, i “ 1, . . . , 6 . (E.3)

Substituting (3.13) into (E.3) and rearranging terms yields

dEi
dt

“ npāqδi6 `
8
ÿ

j“1

εj

˜

Aji ` npāq
Bηji
Bλ̄

`

6
ÿ

k“1

Bηji
B Ēk

8
ÿ

l“1

εlAlk `
Bηji
Bθ

ωC

¸

, i “ i, . . . , 6 . (E.4)

Equating the right-hand sides of (E.4) and (E.2) yields an expression where each term is a power of

ε. Requiring the terms of the same power to be equal yields, for j “ 1, 2, . . . , the Equations of Averaging

of order 1, 2, . . . , respectively. The first-order dynamics are be modeled by

Opε1q : A1
i pᾱq `

Bη1
i

Bλ̄
npāq `

Bη1
i

Bθ
ωC “ Fipᾱ, λ̄, θq `N

1δi6 . (E.5)
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