
1

Vehicle tracking in urban environment
Sofia Teodoro Bebiano

sofia.teodoro.bebiano@tecnico.ulisboa.pt
Instituto Superior Técnico, Lisboa, Portugal

Abstract

The main purpose of this work is to develop a vehicle tracking system based on video images. The developed
system uses a webcamera and the objects, in this case vehicles, are detected using the You Only Look Once
(YOLO) system. The matching between detections is done with a Kanade-Lucas-Tomasi (KLT) feature tracker.
Which by using corner point features from the initial detections and tracking them to the following frames,
it is able to match detections across frames. Once matched, the projection of the objects in the camera plane
onto the ground plane is calculated and presented. The main challenges of this task are object occlusion and
object association across frames. The approach for this was the integration of the feature tracking method into
the object detection method. This way when the detector fails (occlusion for example) it is still possible to
track features and keep an object track continuous. The feature tracking also aids with object association since
each feature will be associated with an object. The system was tested and evaluated in a real traffic scenario
of a crossroad. It performs well in regular traffic, while being able to keep tracks in situations with small and
medium occlusion. This work shows how using both a static object detection method and a dynamic feature
tracking method results in a more robust multi object tracking system.
Keywords:YOLOv3; Kanade-Lucas-Tomasi; Homography; Multiple vehicle Tracking; Object Detection on Image.

I. INTRODUCTION

I-A. Motivation
Images are extremely rich sources of information and
coupled with the widespread availability of digital
cameras is making image based technologies a major
source to monitor and model human activity. Thus,
being able to detect and follow objects is an indis-
pensable resource to recognise different patterns and
trends in our world. The knowledge provided by the
understanding of these patterns becomes particularly
relevant when it comes to the creation of models that
are used to analyse and predict future actions and
distinguish typical behaviours from atypical ones.

Video tracking is a broad subject with many ap-
plications. In particular, surveillance is useful in real
world applications. To name a few: monitoring the
behaviour of human drivers to improve autonomous
vehicle development; predicting ship and plane anoma-
lies by analysing their past trajectories; and improving
security by detecting anomalous behaviours in crowded
environments.

I-B. State-of-the-art
Object detection and tracking represent one of the
main challenges in the field of image processing. Many
methods have been proposed to meet these challenges
of image processing, to name two: background subtrac-
tion methods or more complex methods that are based
on movement estimation techniques. Furthermore, fac-
tors such as occluded vehicles, obstacles or changing
atmospheric conditions can influence and affect vehicle
tracking.

It is important to distinguish object tracking from
object detection since the latter is a prerequisite of

the former. In other words, in object detection, an
object of interest is localised in one single frame, while
object tracking associates the detection of the object of
interest throughout several frames. This means that the
accurate detection of a moving object is the necessary
condition for a tracking system.

There are currently two main object tracking frame-
works: Detection Based Tracking (DBT) and Detection
Free Tracking (DFT) [1]. DFT needs to manually
initialise the tracking target, so it is only applicable
when tracking a specified target. It is not able to
automatically detect and track a new target that appears
in the monitoring process. DBT integrates detection
and tracking and can automatically detect the emer-
gence of new targets or the disappearance of existing
targets. Thus, DBT is capable of meeting the actual
requirements of the random disappearance of targets
or the dynamic change of targets in the monitoring
scene.

Concerning the quantity of tracked objects in traffic
sequences, vehicle tracking can be divided into two
main fields: single-vehicle tracking and multiple ve-
hicle tracking. Traditionally, Multiple Object Tracking
(MOT) algorithms have been customised for scenarios
with multiple distant objects far from the sensor and
each other. MOT based on small objects is a highly
complex problem due to sensor noise, missed detec-
tions, the sudden appearance of objects of interest in
the frame, major object occlusion, and an unknown
and time-varying number of targets. In recent years,
the increasing use of the artificial neural networks in
the field of object tracking has led to the improvement
of performance in dealing with such challenges.

2

Detection

The purpose of object detection lies in obtaining an ob-
ject’s position and classification in an image. Generic
object detection remains a complex task, since it is dif-
ficult to design a detector that can successfully detect
targets in multiple and different scenarios. A detection
process can be done by extracting and processing
certain image properties: area, contours, shape, blob
radius and centre, among others [2]. The combination
of these properties comprises an image feature. Con-
sequently, the quality of the feature extraction affects
the efficiency of the detection.

In feature-based object detection, it is important to
find invariable image features. The aim is to model
objects of interest based on these extracted features
and not in raw pixels. First, start with the most basic
information about an image, the raw pixels, and try to
extract more meaningful information from it. Detection
using this approach usually involves two steps. In the
first phase, the specific features are calculated in two
or more consecutive frames. Feature extraction will
simultaneously reduce the amount of information to
be processed and obtain a better understanding of the
scene. In the second step, features are matched between
frames.

Deep Convolution Neural Networks (DCNNs) for
object detection and classification have attracted a lot
of interest in recent years. With their ability to learn
parameters themselves, a higher degree of accuracy
can be achieved. Girshick et al. [3] suggested the
concept of object detection using a Convolutional Neu-
ral Network (CNN). Girshick et al. used the Region
Proposal (RP) method and proposed Regions with
CNN (RCNN). Given its the slow detection speed, He
et al. proposed Spatial Pyramid Pooling in deep con-
volutional Networks for the visual recognition network
(SPPNet) [4]. He et al. also suggested Fast RCNN
[5]. However, it maintains selective search, which is
a slow and time-consuming process, making RP the
bottleneck of its performance. Therefore, Ren et al.
proposed the removal of selective search algorithms,
based on the Fast RCNN that resulted in the Faster
RCNN [6]. The accuracy of the Faster RCNN has been
greatly improved. In comparison to current detection
algorithms, it is rated the best, but speed is still one
of the disadvantages. Redmon et al. suggested a new
method for detecting objects called You Only Look
Once (YOLO) [7]. The RP phase was totally dropped
and a single convolutional network was used as seen in
1. Removing the RP step enhances detection efficiency.
YOLO can detect the objects while operating around
45 fps in real-time. YOLOv2 [8] and YOLOv3 [9] are
the later improvements on YOLO. YOLOv3 makes use
of multiple scale predictions and improves the basic
classification network with fast detection speed, low
false detection rate, and great versatility.

Fig. 1: The YOLO Detection System. The system (1)
resizes the input image to 448×448, (2) runs a single

convolutional network on the image, and (3)
thresholds the resulting detections by the model’s

confidence. Source: [7].

Data Association and Tracking
Currently, there are two main solutions for object
tracking that can be subdivided into the described
methods:
• Initially, objects must be detected for each frame

of the video sequence. Then, one has to complete
the tracking based on the detection results of
consecutive frames to finally obtain the trajectory
information.

• Firstly, objects must be detected in the initial
frame to get the features. Then, the area matching
the features in the subsequent image sequence
must be found. Lastly, the objects must be tracked
to get the trajectory information.

In the first solution, Meyer et al. [10] proposed
a contour-based target detection and tracking method
that obtains good results. However, this method has
two big disadvantages: poor noise suppression capa-
bility and a large amount of computation.

The second solution is less based on object de-
tection, which avoids the disadvantage regarding the
first solution mentioned above. Extracting reference
features is the key. One approach is to extract the
feature of the entire object, such as shapes, textures,
colour histograms or image edges. By combining sev-
eral features, the reliability of the object is improved.
After feature extraction, the object is redetected using
the similarity measurement to obtain object tracking.
Another approach is extracting feature points from the
object, for which the Harris Corner [11] and SIFT [12]
are frequently used methods. On the one hand, feature
point-based methods can adapt to changes in rotation
and lighting of the object. But on the other hand,
excessive feature extractions often result in difficulty
in matching, while too few feature extractions can
easily lead to false positives. Moreover, the feature
extraction process is complicated and time-consuming.
One example of the feature-based tracking algorithm
is the Lucas-Kanade method proposed in [13] and
later improved in [14]. However, it is still sensitive to
image noise or blur. The quality of features is hugely
dependent on the setting of extraction parameters. Shi
and Tomasi features are proposed in [15] to deal with
the issue of selecting features that can be tracked
well. The Kanade-Lucas-Tomasi feature tracker is the
result of LK method with these good features to track.

3

Additionally, the correspondence between consecutive
frames is a challenge and has an impact on tracking
performance.

II. BACKGROUND AND PROPOSED APPROACH
The key elements to automatic vehicle tracking based
on the DBT framework are the object detector, the
object tracker design and the strategy for integrating
the detector and the tracker. To better illustrate the
problem and how this work proposes to tackle it, refer
to 2, where three consecutive images of a typical real
traffic situation are depicted. Common systems rely
on simple nearest neighbour matching to associate
detections between consecutive frames. However, due
to the high speed of vehicles, one missed detection in
the second frame of 2, prevents the correct association
to the correct vehicle in the third frame.

In a concise way, the main idea is that by combining
object detection with feature tracking, whenever the
detector fails to recognise one vehicle, the image
features are still detected and can be tracked. This way
one is still able to keep track of the vehicles and know
in the following frames which vehicles are which, as
shown in 2 where the identification of each bounding
box matches the identification on the first frame.

Fig. 2: Example of the problem and proposed
solution. Top image - Object detector and feature

selection identify vehicles and image features inside
the bounding box. Middle image - object detectors

often miss bluntly. However feature trackers can still
match corresponding points (blue line). Bottom
image- if objects are detected again, the feature

tracker allows the association of the correct object
(red lines).

Considering the complexity and application feasi-
bility of the algorithm, in the object detection step,
the detection result provided by YOLOv3 were post-
processed and then used as the input for the tracker.

For the tracker, an KLT tracker was implemented to
extract and track image features. Finally, these features
are combined with YOLO detections to track multiple
vehicles in traffic scenes.

In summary, in this work the tracking of multiple
vehicles will be divided into three main steps:

• Detection: Using a state of the art CNN-based
object detector, locate vehicles in video frames

• Prediction: Predict the object locations in the next
frame by tracking feature points using reliable
methods

• Data association: Use the predicted locations to
associate detections across frames to form detec-
tion tracks

II-A. Object detection - You Only Look Once
The object detection stage aims to identify the category
and location of the vehicle object in a picture. Object
detection algorithms for natural images can be roughly
divided into two categories. One based on traditional
handcrafted features, commonly used until 2013, and
a dominance of deep learning thereafter.

Since the emergence of deep learning, object de-
tection has made a huge breakthrough. The two most
important kinds of deep learning are: region proposal-
based method represented by RCNN such as Fast-
RCNN, Faster-RCNN, among others; regression-based
method represented by YOLO such as YOLOV3, SSD
and others. The former is superior in accuracy, and
the latter in speed. Because the deep learning method
has an excellent performance in object detection in
real time, the YOLOv3 algorithm was selected to
implement the detection task.

YOLO is an algorithm of object detection of im-
ages using a single CNN and in a single inference.
In the initial paper, the workflow of YOLO works
as follow: Pre-train a CNN network on the image
classification task. Divide an image into S ∗ S cells.
If an object’s centre falls into a cell, that cell is
responsible for detecting the existence of that object.
Each cell will propose a) the location of B bounding
boxes, b) a confidence score and c) a probability of
object class conditioned on the existence of an object
in the bounding box. In total, one image contains
SxSxB bounding boxes with each box corresponding
to 4 location prediction, 1 confidence score and C
conditional probabilities for object classification. The
final layer of the pre-trained CNN is modified to output
a prediction tensor of size S∗S∗(B∗5+C), 3 ilustrates
YOLO detection model.

YOLO is improved in the second paper and
YOLOv2 is born. Since some of the complaints about
YOLO were related to the difficulty in detecting small
objects, modifications were made in that regard. One
of these modifications was fine-tuning the base model
with high-resolution images to improve the detec-
tion performance. The method of predicting bounding

4

Fig. 3: YOLO system models detection as a
regression problem. It divides the image into an S×S

grid and for each grid cell predicts B bounding
boxes, confidence for those boxes,and C class

probabilities. Source: [7].

boxes was also changed. Rather than predicting the
bounding box position with fully-connected layers over
the whole feature map, YOLOv2 uses convolutional
layers to predict locations of anchor boxes, like in
Faster RCNN. The prediction of spatial locations and
class probabilities are no longer coupled. This lead to
an increase in recall. YOLOv2 runs k-means clustering
on training data to find good priors on anchor box
dimensions. Multi-scale training is implemented to be
robust to an input of different sizes. For that, a new size
input dimension is randomly sampled every 10 batches.
YOLOv2 adopts a different base model, DarkNet-19
supplemented with 11 more layers for object detection.
With a 30 layer architecture, YOLOv2 often struggles
with small object detection.

Finally, YOLOv3 is created by applying several
design changes to YOLOv2. These changes are based
on recent advances in object detection. Firstly, for
the prediction of confidence score for each bounding
box, instead of the sum of squared errors used on
previous versions, YOLOv3 uses logistic regression.
Since one image might have multiple labels and not all
are guaranteed to be mutually exclusive, YOLOv3 uses
multiple independent logistic classifiers for each class
rather than one softmax layer. Inspired by image pyra-
mid, YOLOv3 has multi-scale prediction by making
predictions at three different scales among the added
convolutional layers. The base model is also yet again
changed. YOLOv3 relies on the new Darknet-53. This
variant of Darknet originally has a 53 layer network
trained on Imagenet. For the task of detection, 53
more layers are staked onto it, giving a 106 layer fully
convolutional underlying architecture for YOLOv3,
shown on 4. This is one of the reason behind the
slowness of YOLOv3 compared to YOLOv2. Another
one is that YOLOv3 predicts more bounding boxes
than YOLOv2, for an input of the same size. This is
due to YOLOv3 predicting boxes at 3 different scales.

Less speed has been traded off for a boost in accuracy.
While the earlier variant ran on 45 fps on a Titan X,
the current version clocks about 30 fps but it is more
accurate.

Fig. 4: YOLOv3 architeture. Source: [16]

II-B. Prediciton and Tracking: The Lucas Kanade
Tracker (KLT)

Tracking is the process of locating a moving object or
multiple objects over time in a video stream. In general,
tracking is used in scenes where the displacement
between consecutive frames is very small compared
to image size.

The Lucas-Kanade tracker (KLT) is a feature tracker
technique firstly proposed by Lucas and Kanade in the
1980’s [13], improved in 1991 by Tomasi and Kanade
[14] and in 1994 by Shi and Tomasi that included
a keypoint selection method [15]. In this work we
used the later form of it, the KLT tracker. The KLT
feature tracker, hinges on Taylor series approximations
of the image sequence and reduces the cost of the
traditional image registration techniques by lowering
the dimensionality of the problem, and achieving the
’best match’ of an image by using a reduced number
of potential matches. Furthermore, relying on image
pyramids to reduce the inter-frame displacement (at
each level), it exhibits impressive precision but can also
cope with significant displacements between consecu-
tive images.

In this work, an implementation in MATLAB2018a
was used. The vision.PointTracker tool is applied. The
point tracker object tracks a set of points using the
KLT feature-tracking algorithm. The point tracker is
often used for short-term tracking as part of a larger
tracking framework which is the case in this work.
As the point tracker algorithm progresses over time,
points can be lost due to lighting variation, out of
plane rotation, or articulated motion. To track an object
over a long period of time, one needs to reacquire
points periodically. In this work points are reacquired
for every detection.

II-C. Association
Data association is the process of associating detec-
tions corresponding to the same physical object across

5

frames. The temporal history of a particular object
consists of multiple detections and is called a track.
A track representation can include the entire history
of the previous locations of the object. Alternatively,
it can consist only of the object’s last known location
and its current velocity. In this case, a track consists of
the previous locations of features associated with the
object.

In this work, the association of detections across
frames is done using the KLT method in combination
with the results from YOLOv3. Starting with the
YOLOv3 bounding boxes, features are extracted from
each bounding box according to the Shi-Tomasi criteria
for good features [15]. These features are tracked into
the following frame using a KLT tracker. To each
group of tracked features, a rectangle is fitted and
then compared with the YOLOv3 bounding boxes
for the current frame. If a certain degree of overlap
happens then it is considered to be the same bounding
box. If there is no correspondence with YOLOv3
bounding boxes, the fitted rectangle is considered the
bounding box for the current frame and is propagated,
compensating for failures in the detection step. Since
features are extracted from each bounding box, features
in the background can happen. To avoid propagation
of bounding boxes with only background features
(without proper detection from YOLOv3) a score is
given to these boxes. If there’s a match with a YOLOv3
detection the score is increased and for each iteration
without detection, the score is decreased.

II-D. Homography
In computer vision, homography is a transformation
matrix H which, when applied on a projective plane,
maps it to another plane (or image). In this work, the
intention is to produce a bird’s eye view image of the
scene. It is assumed the world is flat on a plane and
maps all pixels from a given view point onto this flat
plane through homography projection. This assumption
works well in the immediate vicinity of the camera. For
faraway features in the scene, blurring and stretching
of the scene is more prominent during perspective
projection, shown in 5.

The usefulness of this mapping rests on the fact that
Google Maps images are registered to terrain maps, so
they can be used to build such bird’s eye view as well
as obtaining metric measurements.

Considering the world flat and having a fixed camera
makes the formulation of this homography a simple
case. The planar homography relates the transforma-
tion between two planes (up to a scale factor) and is
presented in 1, where homogeneous coordinates of the
corresponding points are x′ and x.

s

 x′

y′

1

 = H

 x
y
1

 =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 x
y
1

(1)

Fig. 5: Example of projection from camera
perspective into a bird’s eye perspective. The bottom
image shows the blurring on the scene further away
from the camera. The homography is computed by

mapping at least 4 corresponding points in both
images.

The homography matrix is a 3x3 matrix but with 8
degrees of freedom and can be estimated up to a scale
by linear methods, namely the DLT (Direct Linear
Transform). In general there are two common normal-
isations: normalising one element or normalising its
norm, for example

h33 = 1 (2)

or normalising its norm, that is imposing ‖H‖2 = 1

h2
11+h2

12+h2
13+h2

21+h2
22+h2

23+h2
31+h2

32+h2
33 = 1

(3)
In this work, we used MATLAB tools and func-

tions, namely cpselect to select the homologous corner
points in both perspectives as mentioned before. For
the best results, the selection will be spread out across
the image and more than 20 pairs of points will
be chosen. The function cp2tform will be used to
compute the transformation.

III. IMPLEMENTATION OF THE DETECTION AND
TRACKING PIPELINE

In the object detection phase, the framework YOLOv3
available on Redmon’s webpage was used [17]. After
running the video frames throughout YOLOv3, the
output was then processed into a MATLAB structure.
Which stores bounding boxes’ coordinates, confidence
and class, as well as frame number and file path of the
frame.

As the idea of this proposal is to track vehicles and
show their trajectories, the homography was calculated
before the tracking phase to allow the projection of the

6

tracking boxes onto the map during the tracking. Using
MATLAB function cp2tform the spatial transforma-
tion was calculated between the camera plane and the
bird’s view of the traffic intersection filmed. This way
it is possible to project the detected vehicles into a
map and make the trajectory more perceptible for the
human eye.

Afterwards the tracker phase was implemented using
the MATLAB function vision.PointTracker to track
corner point features from one frame onto the next one,
using the KLT method. These features are extracted
from each of the bounding boxes from YOLOv3. Each
has an identifier for its corresponding bounding box.
After tracking the features, a rectangular bounding box
is fitted to features with the same identifier. Then they
are compared with the bounding boxes obtained from
YOLOv3 for the analogous frame. To match boxes,
the intersection of the fitted bounding box with the
bounding box obtained with YOLOv3 must be at least
40% of the area of the box from YOLOv3. If none
satisfies this condition, the algorithm considers it a
false negative from the detector and stores the fitted
boxes as a detection.

A video of a crossroad will be the base to test this
system.

III-A. Evaluation
A reliable tracking requires a reliable detection to
begin with. For that it’s necessary to evaluate YOLOv3
results. To quantify YOLOv3 performance the number
of true and false detections needs to be assessed. The
definitions are as follow:
• False positive - detections that are incorrect
• True positive - correct detections
• False negative - vehicles that were not detected
To assess YOLOv3 performance we computed key

indicators such as precision, 4 and recall, 5, in a
specific dataset created ”in-house”. Subsequently, KLT
parameters were tuned and the tracker performance
evaluated.

Precision =
TruePositives

TruePositives+ FalsePositives
(4)

Recall =
TruePositives

TruePositives+ FalseNegatives
(5)

Dataset Characterization
All datasets used were extracted from a webcam video
of a crossroad with resolution of 560x690 pixels. The
dataset used to assess YOLOv3 performance consists
of 30 randomly selected frames with 244 annotations
of vehicles in total. This initial dataset was resized four
times into 90% ,80% ,70% and 60% of the original
size. The datasets used to tune KLT parameters consists
of 8 sets of 100 frames extracted at 15 fps. Each set
starts in a random frame of the video. Finally, the

dataset used to obtain the final results of the whole
system consists of 450 frames extracted at 15 fps.

YOLO Performance
Assessing YOLOv3 performance involves comparing
YOLOv3’s results for different sized inputs. For the
comparison , the confidence score of YOLOv3 entry
parameter was set to 0.7 for all the frames, meaning
it only considers detections with a confidence higher
than 70%. This value was obtained throughout several
tests, as to have a lower amount of false positives while
still being able to detect the majority of the vehicles in
the scene. The recall and precision calculated for our
dataset is presented in table I.

TABLE I: YOLOv3 performance for several
dimensions of input in the context of this thesis. The

dataset used had 30 frames.

Precision Recall
original size 97.9% 77.9%

90% size 95.2% 80.7%
80% size 95.9% 77.5%
70% size 90.7% 52.5%
60% size 96.5% 45.5%

The initial step of tracking needs to have totally
reliable detection, which means no false positives.
Therefore the original size is the most appropriate as
it has the highest precision. Although the original size
corresponds to the second-best recall, this only means
a higher number of false negatives. Since the system
is using a KLT tracker, it will compensate for that lack
of detections.

Tuning of KLT
The used MATLAB function vision.PointTracker
allows for the configuration of the number of pyramid
levels as well as the forward-backward error threshold.

The point tracker implementation of the KLT algo-
rithm uses image pyramids. The tracker generates an
image pyramid, where each level is reduced in resolu-
tion by a factor of two in width and height compared to
the previous level. A higher number of pyramid levels
allows the algorithm to handle larger displacements
between frames. However, the computation cost also
increases.

Using forward-backward error allows the tracker to
track each point from the previous to the current frame,
then track the same points back to the previous frame
and calculate the bidirectional error. This value will
be the distance, in pixels, from the original location
of the points to the final location after the backward
tracking. When the error is higher than the set value,
the points are considered invalid. Meaning that, by
using bidirectional error, points that could not be
reliably tracked are eliminated.

Since the dataset used was obtained by sampling 15
frames per second from a crossroad, the displacement
of points will not be large. Therefore the values set

7

were: 2 pyramid levels and 3 pixels for the forward-
backward error threshold. This allows for reliable
tracking while not being very computationally heavy.

Another point worth evaluating is how well the
KLT tracking component performs. This instance was
evaluated by firstly randomly selecting a frame of
the video. Then obtaining the YOLOv3’s detection
and extracting features within these detections. Finally,
initialising tracking and running it for 100 frames.
It ran for 8 different initial frames with the average
results presented in table II.

TABLE II: KLT tracker performance for 8 iterations
of tracking across 100 frames, with randomly

selected initial frames.

average
#detected features initially 406.8

of features tracked until frame 25 375.1
of features tracked until frame 50 366.5
of features tracked until frame 75 360
of features tracked until frame 100 355.1
% of features tracked until frame 100 88.8%

Features were tracked throughout most of the
frames, with an average of 88.8% being tracked until
the end. Features will inevitably be lost, either due to
being weaker or because they leave the frame. Since a
vehicle takes around 100 frames to enter and leave the
frame, most of the features lost will probably either
correspond to vehicles leaving frame or to weaker
features not being reliably tracked.

Bounding boxes association
For the KLT tracker phase it was important to find
a balance for the matching of YOLOv3 bounding
boxes with the predicted bounding boxes from KLT.
This matching is based on the area of the intersection
between both boxes being at least 40% of the area of
the box from YOLOv3. When none of the detected
boxes meets this criterion then the predicted box will
be considered a detection. New features will be de-
tected inside these matched boxes and used to predict
the boxes in the next frame. The threshold of 40%
was obtained by testing several values and assessing
which lead to better association results. If YOLOv3
detects two vehicles very close, their bounding boxes
will cover part of the other vehicle. Then, using too
low of a threshold the system will increase identity
switches. While using too high of a threshold will be
too restrictive and rarely able to match. When using
40% a good level of matching is obtained even when
bounding boxes with significant overlap exist.

IV. RESULTS
The final tracking results of this system were obtained
using a real traffic scenario video. The tracking results
concerning the camera view are represented in 6, while
the ones concerning the map perspective are illustrated
in 7. The trajectories displayed in 7 correspond to the

last detected positions for each vehicle, projected onto
a map view from Google Maps.

(a) Initial frame

(b) 30 frames later

Fig. 6: Experimental results - camera view.

(a) Initial frame

(b) 30 frames later

Fig. 7: Experimental results - map view.

Benchmark
The benchmark will evaluate how many times, for
a full track, did YOLOv3 not detected the vehicle.
During tracking, 60 vehicles were identified. For the

8

450 frames in this dataset there were 4943 instances
of track. On average, a full track lasts for 82 frames,
with the longest track being 427 frames and the short-
est only 12. From the 4943 instances, there was no
YOLOv3 detection for 1284, which means 25.9% of
instances came from the KLT tracking. Since in this
tracking, there are 2 vehicles that are detected in every
frame and their tracks last for 427 frames it is relevant
to calculate the average based on each individual track.
Considering the individual track length and individual
lack of YOLOv3 detection, one has, on average, 21.8%
of instances from KLT exclusively. By analysing the
final results, 6 and 7, we can conclude the system
devised in this thesis achieves a reliable matching and
tracking of multiple vehicles. During missed detections
from the detector and partial occlusion of vehicles, the
tracking performs well and is able to keep following
the vehicles, even when YOLOv3 lacks detection on
an intermediate frame.

IV-A. Analytics
Using all the tracking data, metrics about occupation
and velocity were calculated. In 8, the occupation of
the crossroad during the duration of the tracking is rep-
resented as a heatmap. In it, the shape of the crossroad
is clearly visible, with some hot spots existing near the
areas where traffic lights are positioned.

Fig. 8: Heatmap of vehicles positions throughout the
tracking.

The maximum and average velocities locally are
presented in 9(a) and 9(b), respectively. The velocities
were calculated based on the scale of the Google
Maps and the time difference between frames is 1/15
seconds. All velocities displayed are based in meter
per second. In 9(a) displays the maximum velocity
reached in each section of the map. The higher values
are more concentrated in the middle of the crossroad
with some hotspots between 20 to 25 m/s. As it will
be the zone with more movement, higher the chance
of speeding. In 9(b) displays the average velocity in
each section of the map. In this one, the majority of
velocities displayed are on a lower range of 7 to 15
m/s. These are approximately equivalent to 25 to 54
km/h and are within the expected values since it is
an average velocity in a crossroad scenario, within a

zone of 50 km/h speed limit (legal speed limit inside
Lisbon).

(a) Heatmap of maximum velocity, in m/s, obtained throughout the
tracking.

(b) Heatmap of average, in m/s, velocity by region.

Fig. 9: Velocity heatmaps of experimental results.

Lastly, 10 shows the average velocity for each of the
detected and tracked vehicles. Around 70% of vehicles’
average velocity is in the range of 6 to 10 m/s, that is
approximately 20 to 36 km/h. Once again, since it is
an average and it is in the context of a crossroad with
traffic lights, these values make sense as most vehicle
would have not been moving at some point waiting for
the green light.

All these metrics show how this system could be
helpful for traffic management, as it enables the ex-
traction of metrics for the traffic in one area, allowing
for a better understanding of how the traffic flows.
This would provide valuable information for future
city planning and public transportation reconfiguration,
making streets safer and freer.

Fig. 10: Histogram of average velocity for each
detected vehicles during the tracking.

9

IV-B. Failure Mode

For every technology developed there are always cases
where it will not work. For this work, an important
point to mention is that using the KLT tracker helps
counteract false negatives in the detection phase al-
though it still can fail if the tracker fails. An example
of this can be seen in 11. Initially, the system can
track the partially occluded vehicle with id 4, 11(a)-
11(b), and displays the bounding box based on the
previously tracked features. Since the tracker in 11(b)
only has tracked features in the back part of the vehicle,
when in the next frame, 11(c), the back portion of the
car is occluded, the previous features are not tracked
into this frame. When YOLOv3 detects the vehicle
again in 11(d) there are no previously tracked features
therefore the system considers this a new vehicle.
For the following frames, the tracking of this ”new”
vehicles goes smoothly.

V. CONCLUSIONS

V-A. Lessons Learned and Final Remarks

The major objective of this work is to track the moving
vehicles on the road. The track by detection frame-
work was applied for multiple vehicle tracking. The
YOLOv3 object detection system was used to detect
the vehicles and the concept of the KLT algorithm was
applied for tracking. By combining object detection
with feature tracking, the proposed system enhances
the tracking performance by reducing the number of
identity switches. If using only feature tracking, the
system would fail since features would eventually get
lost. On the other hand, the movement of the vehicles
is not ideal for a KLT tracker. Having said that, while
YOLO is a fast and effective detector if the system
relies exclusively on YOLO, it would divide many
tracks when detection failed. YOLO has high precision
but only 77% of recall, in the case of this thesis. This
means that in 23% of the cases, YOLO will not detect
a vehicle. By combining it with the KLT, the system
does not need YOLO to detect in every frame since the
KLT will track features of previous detections. Taking
into consideration, for every completed track, YOLO
missed detection on 24% of cases, one can see that
this system performs better for the used dataset. In
cases where big images with high resolution are used,
YOLO will have good results and this system will not
bring a big improvement. However, when using smaller
images, YOLO is not enough and this system will
have better results of tracking. Surveillance systems
and traffic cameras usually have a lower resolution
which would make YOLO faster but less useful. In
these cases, this system would be the answer since
it complements YOLO’s detections and allows for
continuous tracking.

(a) Initial frame

(b) 5 frames later

(c) 10 frames later

(d) 12 frames later

(e) 15 frames later

(f) 20 frames later

Fig. 11: Experimental results - tracker and detector
fail

10

V-B. Future work
For future work it would be interesting to improve the
merging of tracks for a more optimal final trajectory.
As shown in 11 the tracker occasionally is not able
to track features for long enough to match with a
future detection and, thus, considers the appearance
of new vehicles in the middle of the frame. One way
of improving would be to impose constraints on the
specific areas of the frame in which vehicle entry or
exit is possible. This would not allow new vehicles to
just appear in the middle of the frame.

ACKNOWLEDGEMENTS
I would like to thank my mom, my supervisors and
my pets.

REFERENCES
[1] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, X. Zhao, and

T.-K. Kim, “Multiple object tracking: A literature review,”
Artificial Intelligence, vol. 293, 4 2021.

[2] R. Szeliski, Computer Vision: Algorithms and Appli-
cations. Springer London, 2011. [Online]. Available:
http://szeliski.org/Book/

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich
feature hierarchies for accurate object detection and semantic
segmentation,” in 2014 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 6 2014, pp. 580–587.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid
pooling in deep convolutional networks for visual recognition,”
2015 IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 6.

[5] R. Girshick, “Fast r-cnn,” in 2015 IEEE International
Conference on Computer Vision (ICCV), 4 2015, pp. 1440–
1448. [Online]. Available: http://arxiv.org/abs/1504.08083

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn:
Towards real-time object detection with region proposal
networks,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2015.
[Online]. Available: http://arxiv.org/abs/1506.01497

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 6 2016, pp. 779–788. [Online]. Available:
https://arxiv.org/abs/1506.02640

[8] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,”
in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 7 2017, pp. 6517–6525. [Online].
Available: https://arxiv.org/abs/1612.08242

[9] J. Redmon, “Yolov3: An incremental improvement,” University
of Washington, Tech. Rep., 2018. [Online]. Available:
https://arxiv.org/abs/1804.02767

[10] D. Meyer, J. Denzler, and H. Niemann, “Model based ex-
traction of articulated objects in image sequences for gait
analysis,” in Proceedings of International Conference on Image
Processing. IEEE Comput. Soc, 1997, pp. 78–81 vol.3.

[11] C. Harris and M. Stephens, “A combined corner and edge
detector,” in In Proc. of Fourth Alvey Vision Conference.
British Machine Vision Association and Society for Pattern
Recognition, 4 1988, pp. 147–151.

[12] D. G. Lowe, “Object recognition from local scale-invariant
features,” in Proceedings of the Seventh IEEE International
Conference on Computer Vision, vol. 2, 1999, pp. 1150–1157
vol.2.

[13] B. D. Lucas and T. Kanade, “An iterative image
registration technique with an application to stereo vision,”
in Proceedings of the 7th International Joint Conference on
Artificial Intelligence (IJCAI ’81), 1981. [Online]. Available:
https://www.researchgate.net/publication/215458777

[14] C. Tomasi and T. Kanade, “Detection and tracking of point
features,” International Journal of Computer Vision, Tech.
Rep., 1991.

[15] J. Shi and Tomasi, “Good features to track,” in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition
CVPR-94. IEEE Comput. Soc. Press, 1994.

[16] A. Kathuria, “What’s new in yolo v3?” 2018.
[Online]. Available: https://towardsdatascience.com/yolo-v3-
object-detection-53fb7d3bfe6b

[17] Joseph and A. R. Farhadi, “Yolo: Real-time object detection.”
[Online]. Available: https://pjreddie.com/darknet/yolo/

