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Instituto Superior Técnico - University of Lisbon
Lisbon, Portugal

rui.maranhao@tecnico.ulisboa.pt

Manuel Lopes
IST Computer Science department
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Abstract—Continuous Integration is the process of merging
code changes into a software project. This mechanism of keeping
the master branch of a project always updated and unfailingly,
raises problems in terms of computational costs, considering the
enormous amount of code existent in large software systems
that needs to be tested first. Given this situation, the work of
developers also becomes harder because of the amount of time
they have to wait for feedback on their commits - median of 50
mins.

Recognizing this problem in an Outsystems context, this paper
proposes a solution that aims to reduce the execution time of the
testing phase, by selecting only a subset of all the tests, given
some code changes. This is accomplished by training a Machine
Learning Classifier with features such as code/test files history
fails, extension code files that tend to generate more errors the
during testing phase and others.

The results obtained by the best Machine Learning classifier
trained showed great results which could be compared to recent
literature done in the same area. This model managed to reduce
the median test execution time by nearly 10 minutes while
mantaining 97% of recall. Additionally, the impact of innocent
commits and flaky tests was taken into account and studied to
understand the industrial context of OutSystems.

Index Terms—Continuous Integration, Test Selection, classifier
model, flaky tests, innocent commits

I. INTRODUCTION

A. Motivation

Normally, in a software company, the software complexity
is directly proportional to its code base size. During software
development there is a long and costly need for debugging.
When doing so, a team of developers need to write code, test
it, commit it to their repository, and possibly correcting after
the execution of batches of tests. The practice of merging all
developers’ working copies to a shared mainline is referred to
as Continuous Integration (CI).

As the software complexity increases, the time it takes to
test if a software is according to the specified standards of
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a company, also increases. This will ultimately increase the
computational costs and delay the work of developers, who
will not receive feedback on their commits during the time
they are focused on the problem, which makes them lose track
of the work done.

Given the current situation of the Regression Testing at
OutSystems, in which developers have to wait nearly 1 hour
to receive feedback on their commits, we present a solution
that tackles the problem of the excessive execution time of
test suites. This approach tries to solve this by selecting a set
of test cases that are more likely to generate fails given a new
code submission. This set of selected tests should be executed
in a pre-commit stage (e.g., on a developer’s local machine),
giving faster feedback to developers on their (possible) faulty
changes.

The solution proposed in this paper will be based on a Test
Suite Selection using a Machine Learning approach, using
features related the test suite and code files changed. This
features will be described in detail further ahead.

Although, this thesis is integrated in an OutSystems en-
vironment, its conclusions should help future applications of
test suite selection approaches based on Machine Learning
techniques.

B. Objectives

Given the OutSystems context of this thesis, it aims to assist
in two aspects of the CI process at OutSystems:

• Primarily, reduce the time of the developers’ feedback
loop, i.e., the time that developers need to wait to receive
feedback on which tests failed for their newly submitted
commits.

• Secondly, reduce the computational costs of the current
method of OutSystems’ regression testing process, of re-
running the entire test suite for a set of commits.



C. Organization of the Document

This document is organized in 7 sections which can be
summarized as follows:

1) Introduction: provides an overview of the motivation
and the objectives for this thesis.

2) Related Work: provides an overview of the state-of-art
regression test selection techniques with an emphasis on
approaches that use Supervised Learning.

3) Solution Proposal: describes the analysis done of the
OutSystems processes’ of CI and Regression Testing, as
well as the architecture of the proposed solution for this
problem.

4) Implementation: provides an overview of the state-of-
art regression test selection techniques with an emphasis
on approaches that use Machine Learning.

5) Results: describes the analysis done of the OutSystems
processes’ of CI and Regression Testing, as well as the
architecture of the proposed solution for this problem.

6) Conclusions: contains the evaluation methodologies to
be used in this work regarding the performance of the
solution.

II. OUTSYSTEMS CONTEXT

A. Test Selection

At OutSystems the process of re-running all tests for a given
project takes up to 1 hour. In the CI process of OutSystems
(summarized in Fig.1), when developers submit code to their
work repository, it needs to go through a Build process. After
this, if the build is successful, it is be assigned a Test Run,
which contains a suite of tests. This Test Run is run over the
built project and afterwards it will return a ”report” (Test Run
Result) that includes which tests failed. Then the developers
are notified, and proceed to rectify (if needed) the code faults,
which they are responsible for.

Fig. 1. From code submission to code correction (OutSystems)

Given the complex product developed at OutSystems, which
is constantly being upgraded, there are several stages that
represent different releases. Inside each stage, there are also
different projects.

As mentioned above, when a project is successfully built, a
Test Run containing test files are run over this project. For
a specific stage and project there is a Test Run assigned,
which will test the built project that includes the new changes.
However, there is no selection process for the test cases in the
Test Run given a code change, meaning that if a Test Run
is selected to test a built project, all of the the test cases
in it will be executed. Given the size increase of the code
base at OutSystems, the number of the test cases in each Test

Run tends also to increase and consequently the time to test a
successful Build increases. In order to save time and resources
of tests execution and help developers receive feedback in a
shorter period of time, Test Selection techniques represent a
good option to aid in this recurrent problem.

B. Flaky Tests

At OutSystems, flaky tests are identified in a more simple
manner that does not require the re-running of tests when
these fail. By not re-running these tests, OutSystems saves
some computational cost. The way they do it is by analysing
the behaviour of all tests during previous regression testing
phases. As mentioned before, OutSystems keeps an history of
the outcome of all tests. By analysing the last 25 executions
of a test, OutSystems ranks tests based on the intermittency in
their executions. This ranking is done based on the following
metrics:
• 1 point every time a test passes with retry1.
• 2 points every time a test has the execution pattern pass-

fail-pass.
The tests that ”score” the most points are considered to

be more flaky than the others2. However, this approach does
not totally guarantee that the tests marked are indeed flaky,
because the executions analysis does not take into account the
code which the test was covering. One test may get a high
ranking only by ”scoring” only on the second metric above.
And there is no guarantee that the test is not failing due to
faults introduced by changes in the code. The main purpose of
this approach, at OutSystems, is to let developers know which
tests, in the present, have been showing the most intermittence
and encourage them to rectify these tests.

C. Innocent Commits

At OutSystems, developers commit changes to the same
branch of code over where sequential test executions occur
sequentially every time a commit arrives. Therefore, it may
happen that a commit reports failing tests that were already
failing due to a previous commit. In this case, this commit
should be tagged as an innocent commit for the purpose of
evaluating the prediction accuracy of the classifier fairly since
the code change was not related with the tests that failed.

In [1], Daniel Correia applied the concept of innocent
commits, by identifying and filter them in his data sets. He
presents one strategy to identify innocent commits in a set
of multiple commits, which he called Superset. The ”rule” of
this strategy is ”if the previous commit’s set of failing tests is
a super set of the current commit’s, then the current commit
is innocent”. Putting it in a simpler way, for a commit to be
innocent its set of failing tests has to be in the set of failing
tests from the previous commit. Therefore, to identify innocent
commits following the Superset strategy, it is necessary to

1Important to mention that when a test file fails, it is immediately set for
another execution (retry).

2The score can only be as high as 25, given that only the last 25 executions
are analysed



iteratively compare the set of failing tests from one commit to
the previous one.

III. RELATED WORK

In the next section it will be presented a briefly overview
of the state-of-art techniques related to the most important
subjects of this paper: Test Suite Selection, Feature Selection
and Flaky Tests.

A. Test Suite Selection

Rothermel et al. in [2] provides insight on the issues in
regression testing selection (RTS) techniques and presents a
framework to classify these techniques which is based on four
categories:
• Inclusiveness - capability of the RTS to capture modi-

fication -revealing tests, i.e., tests that have a different
outcome given a new change.

• Precision - capability of the RTS not selecting tests that
are not modification-revealing.

• Efficiency - measures the space and time requirements of
an RTS.

• Generality - capability of the RTS to adapt to real world
situations ( for e.g. handle realistic program modifica-
tions).

Wei et al. in [3] present a study regarding the effectiveness
of a test coverage quality metric (branch coverage) on software
testing. The intuition is that covering branches relates directly
to uncovering faults. However, the results obtained by the
authors show that branch coverage is not a good indicator for
the effectiveness of a test suite, where the correlation between
branch coverage and the number of uncovered faults reveals
to be weak.

Machalica et al. in [4] proposes a different predictive test
selection strategy using ML techniques. The authors make use
of a data set of historical test outcomes to train a machine
learning classifier model. This model then tries to predict the
outcome of a test execution over some changes (passed or
fail). Ultimately, this model will help selecting a subset of
tests to exercise on a particular code change. In their results
the authors report that:
• They manage to catch over 95% of individual test failures

and over 99.9% of faulty code changes (a code change is
marked faulty if any of the individual tests run in response
to the code change fails).

• The test selection procedure selects fewer than a third
of the tests that would be selected on the basis of build
dependencies.

• They also succeeded in reducing the total infrastructure
cost of change-based testing by a factor of two.

However, the authors do not take into account the possibility
of subsets of tests having overlapping coverage and thus
correlated results. Such addiction to the predictive strategy
could produce even better results.

Philip et al. in [5] present Fast-Lane, a system that performs
data driven test minimization. Although the authors describe

Fast-Lane as test minimization system, their work shows
similarities to test selection techniques. The authors analyse,
not only, test file logs as well has commit logs in order
save test resources and decreasing time-to-deployment. The
authors based their work on three different approaches towards
predicting test outcomes and therefore saving test resources:
• Commit Risk Prediction - The authors train classification

models to predict the complexity of a commit, i.e., which
commits are more ”risky” than others.

• Test Outcome-based Correlation - The authors learn as-
sociation rules that find test-pairs that pass together and
fail together. Thus showing test-pairs that potentially test
the same functionalities.

• Runtime-based Outcome Prediction - The authors esti-
mate a runtime threshold for test files, i.e., they separate
passed runs from failed runs based on their runtime.

B. Feature Selection

Memon et al. in [6] present a study done at Google, which
aims to reduce test workload by avoiding the re-running of
tests unlikely to fail. And second, to use test results to inform
code development. Aided by a dependency graph with a file-
level granularity, the authors empirically studied relationships
between developers, their code and test cases. This lead
to the formulation of several hypothesis which then were
examined. The authors managed to get some specific results
and correlations within the context of the Google database:
• Code files at higher distances than 10 from test files (in

the dependency graph) do not cause test failures on those
test files.

• Code files more often changed are more likely to appear
in commits that generate test failures.

• C++ files are more prone to cause test failures than Java
files.

• Certain authors cause more test failures than others.
• Code files modified by multiple developers are more

prone to test failures.
Philip et al. in [5], with FastLane, used historical data about

test files and commits and used a total of 133 features to
characterize commits, categorized in five types: File type and
counts, change frequency, ownership, developer/reviewer his-
tory and component risk. The authors found that the file types,
code hotspots3 and code ownership-based metrics increased
the most the accuracy of the classifier model.

Machalica et al. in [4] in their predictive Test Selection
approach train a ML classifier. Such a classifier is trained
based on historical data. The classifier model is created based
on three types of features:
• Change-Level: Change history for files, number of files

touched in a change, number of tests triggered by a
change, files extension and number of distinct authors.

• Test-Level: Historical failure rates, associated project
name (or namespace) and number of tests.

3Components with high risk of failure generation



• Cross-Features: distance (between test files and code
files) in build dependency graph and lexical distance
between file paths (test and code files).

C. Flaky Tests
Machalica et al. in [4] filter flaky tests from a test suite

by re-running a test ten times. They classify it as flaky if all
the runs aren’t coherent, i.e., if among all runs there are more
than two different outcomes (pass and fail). In their results, the
authors report that, by filtering these tests before training and
evaluation of the classifier model, the accuracy of their model
improves considerably, where its ability to ”catch” failed tests
does not decrease.

Bell et al. in [7] describe a new technique to identify flaky
tests called DeFlaker. DeFlaker is able to detect if a test failure
is due to a flaky test without re-running it and with very
low run time overhead. DeFlaker marks as flaky, tests in two
situations: a test that changed from passed to failed and did not
cover any code that changed; or a test that changed from failed
to pass and was executed on unchanged code. The authors
implemented DeFlaker for Java, integrating it with popular
build and test tools, and found 87 previously unknown flaky
tests in recent projects and 4,846 flaky tests in old projects.

IV. SOLUTION PROPOSAL

The solution presented in this thesis focus on training a ML
classifier. The optimal solution for this classifier is to return
the smallest subset of tests that reveal all faults given a set of
commits. In this section it will be described the various steps
to achieve this classifier built to solve the problem that arises
from the current regression testing approach at OutSystems.

A. Data Set and Features definition
The first step to create a classifier is to define a data set.

The data set needs to aggregate information about the code
files changes done by developers and the tests that are run
over this code changes (during the regression testing phase).
So, each entry of the data set has features regarding the code
files submitted in one commit, one test run over those code
files and the class of the entry corresponds to the outcome of
the test (pass or fail).

The work done in [8], helped us understanding the features
that made sense to include in the data sets in the context of
OutSystems. Of course, said work was backed by the latest
literature regarding Test Selection techniques guided by ML.
Nonetheless, with the analysis performed to the OutSystems’
CI and Regression Testing processes, it was possible to extract
some initial statistics related about test files, code files and
commits. These statistics led us to some features and others
were added after. The following list briefly each feature that
made it into the data sets:
• Test failure rate - This feature relates to each test and

refers to the number of times a test fails for all its
executions.

• Author failure rate - This feature relates to every author
and refers to the number of times an author is involved
in failling testruns for all testruns linked to him/her.

• File failure rate - This feature refers to the number of
times a code file generates a failed testrun compared to
the total of times it is submitted to a testrun.

• File/test failure rate - This feature compares the number
of times a test runs over a code file and fails with the total
number of runs between the test and code file.

• Author/file failure rate - This feature compares the num-
ber of times an author submits a code file and generates
a failed testrun with the total number of submissions of
that code file by that author.

• Extension file type - Identification of the code file’s
extension.

• Tokens shared file/test - This feature compares the
name’s test with a code file’s name.

• Number of distinct files changed - This feature simply
determines the number of code files submitted by an
author in the commit stage.

• Number of distinct authors - This feature represents the
number of authors responsible for each testrun.

• File change history - This feature represents the fre-
quency which a code file is submitted by authors in 3
different time intervals.

• Test failure rate history - This feature presents the same
purpose of the test failure rate feature, however, like the
previous feature we pre-define 3 time intervals.

• File failure rate history - This feature presents the same
purpose of the code file failure rate feature, but similarly
to the previous feature we pre-define 3 time intervals.

Flaky tests and innocent commits are also be taken in
consideration. So in total we will have 3 data sets to train to
train the ML classifier: The unfiltered data set (No-filter data
set), the data set filtered by flaky tests (Flaky-filter data set)
and the data set filtered by innocent commits (Innocent-filter
data set).

Flaky tests: Each day, OutSystems identifies a set of flaky
tests. Therefore, for each day, the flaky tests will be removed
from the data set. This removal effect will be studied similar to
what was done in [4], where, basically, the prediction accuracy
of the classifier is analyzed by filtering the original data set
and excluding the flaky tests.

Innocent commits: Similarly, the same will be done re-
garding innocent commits. Using the strategy Superset, the
innocent commits are excluded from the No-filter data set and
the prediction accuracy of the classifier is analyzed.

B. Classifier Models’ Training and Tuning

Once the data sets are created we need to select the
algorithms to create the classifiers models.

Classifier Models’ Baseline: Given the amount of algo-
rithms from which to choose to create this classifier, we make
a pre-selection of several algorithms. Each of these algorithms
will produce a classifier by training the algorithms with the
training set (No-filter data set). After the classifiers generation,
each of them will be evaluated with the testing set (No-filter
data set). The classifiers which show the best results will be
chosen for the next steps of the solution pipeline production.



Hyper Parameter Tuning: Every algorithm used to create
the classifiers depend on various parameters. Therefore, these
parameters can influence the results shown by the classifiers.
For this reason, for the classifiers that showed the best results
in the Baseline section, we perform an hyper parameter tuning
for these classifiers’ algorithms. During this tuning process,
the classifier is trained and evaluated iteratively with different
sets of parameters. In the end of the process, we end with the
best parameters for each algorithm, given the different set of
parameters supplied. Important to notice that the parameters
which we end up may not be the optimal ones. The following
picture shows an example of the set of parameters used in
the hyper parameter tuning of the Balanced Random Forest
algorithm.

Given that we have 3 different data sets, for each classifier
algorithm, we perform 3 hyper parameter tunings, where each
of them are trained and evaluated with each of the data sets.
This way, each process of tuning may come up with its own
parameters, different from the others, eliminating bias from
the parameters used.

V. IMPLEMENTATION

In this chapter we present a resume of the processes of
data gathering for the data sets’ assembly, calculation of
features values and training of the ML classifiers. For each
process mentioned, we also present the challenges faced and
the decisions made.

A. Data sets creation

In order to build our data sets with data from OutSystems,
we first need to understand the structures behind the Out-
Systems processes’ of CI and Regression Testing. Recalling
the OutSystems’ CI process described earlier, OutSystems’
database stores information regarding developers commits, test
suites to test newly added (or changed) code and the result of
the execution of these test suites. The database’s tables relevant
to create the data sets are the ones shown in Fig. 2.

Fig. 2. Simplified view of the relevant database tables

To build our data sets we need to merge the information
from all tables based on the common parameters between
them. Fig. 2 shows which parameters of the tables can be
used to relate these tables. For example, we merge the tables
OS Commit and OS Build through the parameters Revision
and Build Revision. The information relevant to build the
data sets are the parameters Author, Changelog, DateTime,
TestRunId, StageName, TestName and Failing.

During this step of the solution construction, one detail
presented itself as a problem. Upon analysing the results
from the queries on the first 3 tables, we noticed that not
all Revision values (from table OS Commit) appeared in the

OS Build table. The same happened with Build ID values
in the OS TestRun table. After some investigation, we come
to the conclusion that various commits may be aggregated
into the same Build, and the same for various Builds that are
aggregated into the same TestRun. This is due to the constant
submission of code by developers. And, in order not to waste
computational resources on every code change individually,
commits and builds are aggregated. Therefore to deal with the
problem of missing revisions and builds, something was done.

So, in the end we can see that, because commits and builds
may be aggregated, a test’s outcome of one TestRun may
not depend exclusively on one commit. Instead, they may
depend on the aggregate of builds, which may be composed by
various commits. Hence, when building our data set we must
concatenate all ”Changelogs” and ”Authors” from commits
which are assigned to the same ”TestRun ID”.

Now that we have our data set (no-filter data set), the next
step is to create the two filtered data sets (Flaky-filter and
Innocent-filter data sets) by filtering the original one.

The process of creation of the flaky-filter data set is a little
trickier. As mentioned in a previous section, at OutSystems
the flaky tests are identified everyday at midnight. Hence, to
build our flaky-filter data set, first we need to retrieve the data
relative to the flaky tests from the OutSystems database.

B. Classifier models’ generation

Once we have finalized the construction process for our data
sets, the first step before we starting the classifiers training is
to split the data sets into training and testing set. The training
set is the part of the data set which will be used to generate the
classifiers and train them. The testing set is used to evaluate
the classifiers’ prediction accuracy.

Classifier Models’ Baseline: The first step is to train all
classifiers with only the no-filter data set as our baseline
classifier models. This process is done by selecting various
algorithms which will generate our classifiers. The algorithms
are used without any arguments so that we can have a baseline
for each of the classifiers generated by each one.

The algorithms used to create the classifier models were:
• K-Nearest Neighbour
• Logistic Regression
• Random Forest
• Balanced Random Forest
• Xgboost

Balancing data sets: Our data sets, showed some unbal-
ance, which is normal given that, for all testruns its expected
to have more non failing failing tests than failing tests. There is
a majority of class 0 (”not failing”) over the class 1 (”failing”).
The ratio between the classes in the no filter data set is 59:1.
Hence, besides not using any arguments like in our baseline
models, we also create over and under samplings of the no-
filter data set to balance the frequency of each class in our
data sets.

Note that, not all algorithms are suited for over and/or
under sampling, given that some already implement it in
their training process over the training. Also, there are some



algorithms with a ”balanced” argument, so we also used it to
balance the data sets.

Therefore, we create additional model classifiers using
different versions of the no-filter data set (O-Sample no-
filter data set, U-Sample no-filter data set). We also use the
”balanced” argument (whenever makes sense) to generate a
model classifier.

Hence, besides the classifier models generated as our base-
lines, we also generated others by sampling the no-filter data
set using the various techniques presented above.

Hyper Parameter Tuning: The next steps are to select the
classifiers which showed the best results and submit each ones
algorithm an Hyper Parameter Tuning. This way, we find a
better set of arguments and get better results for each model
classifier.

The algorithms chosen above were using only the no-filter
data set to train the classifiers. But remember that these are
still not the best possible results even for this data set, given
that the parameters used were all the default ones. Hence, the
next step is to submit these algorithms to an Hyper Parameter
Tuning process. Now, we must provide these data sets to the
algorithms above and check for improvements regarding the
no-filter data set and check the first results for the filtered data
sets. Something interesting to assess, is if the filtering process
brings any improvements to the classifiers prediction accuracy.

The process of Hyper Parameter Tuning requires an analysis
over the algorithms to see their parameter and the possible
values for each parameter. To perform this process of tuning,
we used the Bayes Search Cross Validation function. The idea
is that we collect a set of parameter values for each algorithm’s
parameter and iteratively run the algorithms every time with
different parameter values. Summing up, we need to run 3
hyper parameter tuning processes for each algorithm above,
using the 3 different data sets to iteratively train the algorithm’s
classifiers.

The Hyper Parameter Tuning function allows us to maxi-
mize different metrics such as accuracy, precision and recall.
As explained before, we prioritize recall, thus we need to
define the argument ”scoring” of the Bayes Search function as
”recall”. So, in the end of each tuning iteration, the arguments
returned are the ones the maximize the recall for each pair
of algorithm-data set. One important detail is that the set of
arguments returned, are the best set of parameters out of those
defined in the set of parameter values for each algorithm.
Hence, these may not be the optimal set of parameters.

An important component of the Hyper Parameter Tuning
is the usage of K-Fold cross validation, which prevents over-
fitting. In this tuning process, there is a testing phase for every
set of hyper parameters, completed after every training phase.
But, the testing set used to test each model’s iteration can not
correspond to the actual testing set of our data sets, in order
to maintain the actual testing set ”unseen” by the classifier
model.

Instead, with K Fold cross validation, the training set is
divided into k random subsets. Now, in each iteration of hyper
parameter values, the model’s training and testing is repeated

k times, such that each time, one of the k subsets is used as
the testing set and the other k-1 subsets are put together to
form a training set.

However, there is a particularity in our data set, where there
is a timeline through out our data set entries, i.e., each feature’s
value depend on the previous one. For example, an author will
have different failure rate through our data set because this
feature, such as many others, are dynamic. Therefore, in cases
where there is temporal dependency between observations, we
cannot choose random samples and assign them to either the
test set or the train set. In other words we want to avoid
”looking in the future” during the training of the model.

Considering this nuance, we need to use a variation of the
previous mentioned cross validation method called Time-series
cross validation. With this cross-validation method we are still
dividing our training set into K folds, but in each time we only
use sequential folds as our training and testing sets, without
”looking to the future”.

VI. RESULTS

A. General Details

Before entering in the experiments with the model classi-
fiers, first we need to present some general details regarding
the data extracted from the OutSystems database, the building
process of the data sets and of training of the model classifiers,
and the methodology behind the evaluation of each model
classifier.

Our data sets include testruns from March 1st 2020 to April
8th 2020. When performing this split on the data sets to create
the training and testing set, we did it such that the testing
set includes testruns from March 1st to March 31th. And the
testing set includes testruns from April 1st to April 8th.

Another detail, regarding the testruns included in the exper-
imental data sets, which we needed to look out for was the
types of files in each testrun. The thesis’ research application
focuses on the OutSystems’ main software component: Service
Studio. Therefore, given that testruns may aggregate various
files, all of testruns in our data sets have at least one Service
Studio code file with file extensions of .cs and/or .ts/.tsx (files
that contain functionality).

The other component of our data sets are the test files for
each testrun. In order not to overcrowd our data sets and to
maintain our focus on the Service Studio application, we select
specific stages of tests to be part of our data sets: Development
and CorePlatform. The Development stage contains 5910 test
files and the CorePlatform stages contains 5910 test files. The
median execution time of the stages are 2500 and 450 seconds
for CorePlatform and Development, respectively.

B. Evaluation methodology

The training of the baseline and balanced models were
performed to assess the most promising model classifiers.

When evaluating the classifier models results, for the prob-
lem we have in hands, we prioritize high values of recall over
precision. Recall relates to the ability of a classifier model to
correctly identify the positive values (tests that fail). Where



precision relates to the ability of correctly distinguish the
positive values from the negative values. For the problem in
hands, given the large amount of tests per stage there are
(approximately 5000 tests), we give more value to classifiers,
which show the best ability to identify all positive values,
rather than to distinguish between the positives and negatives.
In other words, we do not mind if the classifier selects a few
negatives values (tests that do not fail) as tests probable to fail,
while selecting the maximum number of failing tests. Notice
that the recall values that are analyzed is the one highlighted
in red, because they are the ones related to the identification
of the positive values (tests classified as ”failed”). So the
evaluation guideline during the training of the baseline and
balanced models is to first compare recall values (1).

Recall =
#failing tests selected

# failing tests
(1)

And so, the evaluation of the results from the baseline and
balanced models take only into account the values of recall
from all the model classifiers.

Although recall is one of the most important metrics to
considerate, when comparing the classifier models results,
it must be complemented with other important metric: the
execution time of the selected tests. When training our models
we do not want one that optimizes the results based solemnly
on recall, because for that we would select all tests we would
achieve perfect recall values. Remembering one of the goals of
this solution of reducing the developers’ feedback time, we use
the median execution time of the selected tests to complement
the recall metric and we need to do a trade-off between this
metrics.

After the hyper parameter tuning of all classifiers, the
evaluation guidelines are more complete.

Once we get the returned parameters from the hyper pa-
rameter tuning process, we train the correspondent classifiers.
Since we are in the final stage of evaluation, we do not want
to only evaluate each classifier by its recall.

To produce more specific data and choose a model classifier
to use in the final product of the solution tool, we decided to
evaluate the classifiers performance for each testrun. Instead
of just looking at the macro recall (recall over all data set) re-
turned by the classifiers’ classification report, we, additionally,
calculate the following metrics:

• Average micro-recall (2) per testrun
• Median of selected tests per testrun
• Median of failing tests per testrun
• Median of number of times the classifier selects at least

one test per testrun
• Median of execution time of the tests selected per testrun
• Median of time saved per testrun

The micro-recall equation is defined in (2).

Micro−Recall(n) =
#failing tests selected in TR(n)

# failing tests in TR(n)
(2)

The metrics calculated are differentiated by stage, i.e., we
calculate the metrics values for stages Core Platform and

Development separately. The reason why we choose median
over average in the majority of the metrics (except micro-
recall) is because the first is more resilient to outliers than the
second.

An important thing to notice about micro-recall is that,
for this metric, only testruns which have failing tests count,
because in cases where no tests fail the micro-recall would
be zero for that testrun. By doing this, we eliminate these
outliers testruns. Using average instead of median would be
more precise if we did not calculate the micro-recall as we
explained, but by doing it this way the average micro-recall is
equally reliable.

C. Experiments

Due to the limitation in the number of pages for this paper,
we will show only the most important results, regarding only
the classifier models trained after the Hyper Parameter Tuning
process.

After the training of the baseline and balanced models, the
models which stood out were:

• Model 1 - Logistic Regression (Oversampled) trained
and tested with the no-filter data set - 92% recall

• Model 2 - Logistic Regression (Balanced) trained and
tested with the no-filter data set - 92% recall

• Model 3 - Balanced Random Forest trained and tested
with the no-filter data set - 92% recall

• Model 4 - Balanced Random Forest trained and tested
with the innocent-filter data set - 93% recall

After these results we calculated the other metrics for these
4 classifier models. Table I shows these metrics’ values.

TABLE I
THRESHOLD VARIATION RESULTS WITH THRESHOLD AT 0.5

One experiment decided to implement in the evaluation of
the classifier models is the variation of the threshold value
for each one. It is expected that, by increasing / decreasing
the threshold value, the number of tests selected decreases /



increases, respectively. By doing this, the metrics mentioned
above change and we can obtain better results.

Also, instead of just showing a table with values, we decided
to plot the variation of thresholds (as x) with the average
micro-recall values and the execution time of the selected tests
(as y1 and y2, respectively). We chose recall and execution
time metrics, given that these two are the ones whichare more
representative of the classifier models performance. For each
classifier model we plotted 2 graphs, one for each test stage.

Once again, given the limitation in pages we decided to
include the graphs for each stage from one of the 4 classifier
models - the Balanced Random Forest trained with the no-filter
data set (Figures 3-4.

Fig. 3. Threshold variation for the BRF (no filter data set) classifier model -
CorePlatform stage

Fig. 4. Threshold variation for the BRF (no filter data set) classifier model -
Development stage

Regarding each stage individually, the results were similar
trough out all classifier models. Still, the one which gets better
results is model 1, where the execution time of the stage
reaches the 1000 secs (more than half of the median time),
while maintaining 90% micro-recall. Behind, this one come
the Logistic Regression classifiers with 88%-83% micro-recall
values and 1000 seconds of test execution time. And in last
comes the BRF-innocent filter data set with 80% micro-recall
and 1000 seconds of test execution time.

In terms of the Development stage, we saw that the classi-
fiers 1 and 2 models managed to achieve perfect micro-recall
for the stage Development, while reaching execution times
below the 200 seconds. This means that the median execution

time of this stage is cut down to more than half. In the Logistic
Regression classifiers, we saw a bigger cut down from this
stage median execution time, with test execution times below
the 50 seconds. However in both classifiers, to achieve these
values, the micro-recall is no superior than 95%.

Another experiment decided to implement is one that fits
more into the real world and the developers’ necessities when
trying to test their code - the Time limit variation. We did
this by ordering the tests of each model’s predictions by their
predicted probability and put a limit on the execution time of
that list of tests 4. Given the results of all the models from
the previous experiment, we set the best pair of time limits for
each classifier model (one for each stage). And then, calculated
the metrics’ values using all 4 pairs time limits for all models.

Table II shows the metrics’ values for one of the pair of
time limits: Core Platform - 2200 secs, Development - 167
secs

TABLE II
TIME LIMIT VARIATION RESULTS - CORE PLATFORM - 2200 SECS,

DEVELOPMENT - 167 SECS

VII. CONCLUSIONS

A. Discussion

From all the classifier models trained, there were four which
stand out from the rest: the Balanced Random Forest classifiers
trained with the no filter (1) and the Innocent-filter data set (2);
the Logistic Regression classifier model trained with an Over-
sample of the no filter data set (3); and the Logistic Regression
”balanced” classifier trained with the no filter data set (4).
Right after the tuning process it was clear that the classifier
model (2) was the most promising since it had the highest
recall values (93%). However, when varying the models’
threshold values and calculating more specific metrics, we saw
different outcomes. In the Development stage, the classifier (1)
showed the best results, achieving 100%of micro-recall, while
reducing the median test execution time by more than half

4each test has a execution time value calculated from previous executions



(down to 167 seconds). Regarding the CorePlatform stage, the
classifiers (1), (3) and (4) had pretty similar results with micro-
recalls of 93% and reducing the median test execution time to
2000 seconds. However, in the mark of the 1000 seconds of
execution time for this stage, the classifier (1) achieved better
micro-recall values with values of 90%.

Regarding the time limits experience, the time limits which
showed best recall and micro-recalls values were the 2200 and
167 for CorePlatform and Development stages, respectively.
Given this results we can see that, by limiting the test stages
with these values, we manage to achieve recall values near
98%, for classifiers (1), (3) and (4), while reducing the
CorePlatform stage execution time by 300 seconds (-12%) and
the Development stage execution time by 283 seconds (-63%).

Summing up, the results presented his results are promising
for a possible integration of this tool in the CI pipeline
at OutSystems, and also that the implementation procedures
could be applied in other companies’ context. Given the results
of all classifier models, the one chosen to be used in a future
iteration of this thesis tool is the Balanced Random Forest-no
filter data set model.

B. Contributions

The work developed in this thesis resulted in a contribution
regarding the current CI pipeline at OutSystems. Although we
only targeted the company’s main component, Service Studio,
this solution is exepected to work well if implemented across
other OutSystems’ departments which do no work directly
with Service Studio.

C. Future Work

Throughout this thesis there were some approaches left
aside due to limited time.

One example of an addiction to the work done would be
to produce warning messages for developers in a pre-commit
stage like Memon et al. do in [6]

Also, a different approach would be to use Contextual
Bandits to support the test selection process.
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