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Resumo 
 

O Radar de Abertura Sintética (SAR) é um radar capaz de criar imagens coerentes de 

alta resolução. Para produzir imagens a partir de informação recolhida por um SAR é necessário 

usar um algoritmo de formação de imagem. Backprojection é um algoritmo conhecido por gerar 

imagens de alta qualidade com a desvantagem de ser computacionalmente intensivo. Devido a 

esta desvantagem o Backprojection nunca foi adoptado em aplicações em tempo real ou em 

dispositivos de baixo consumo energético e dimensões e poder computacional reduzido. 

O primeiro contributo deste trabalho é o estudo do algoritmo Backprojection e a sua 

conversão para fixed-point. A caracterização temporal foi feita através de profiling. Para fazer a 

conversão foram conduzidos dois estudos de forma a escolher os parâmetros do formato fixed-

point. 

O segundo contributo é a implementação do algoritmo Backprojection num dispositivo 

System-on-Chip (SoC) Field Programmable Gate Array (FPGA). A implementação deve ser 

capaz de produzir uma imagem de 512 x 512 pixeis por segundo. A optimização é focada na 

aplicação e uma arquitectura pipeline. 

Usando uma placa Zybo Z7-10 foi possível implementar o sistema de processamento 

capaz de produzir uma imagem com um SNR de 99.21 dB em apenas 959ms. Sendo o 

dispositivo escolhido da gama mais baixa, este trabalho comprova o enorme potencial que esta 

família de dispositivos tem no futuro do processamento de imagem em tempo real. 

Palavras-chave: Synthetic Aperture Radar, Backprojection, FPGA, ponto fixo, projecto HW/SW, 

optimização  
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Abstract 
 

The Synthetic Aperture Radar (SAR) is a type of radar capable of high-resolution 

coherent Imaging. To produce images from SAR data, an image forming algorithm must be used. 

The Backprojection Algorithm is known for generating high resolution images at the expense of 

computational intensity. Due to this drawback, the Backprojection Algorithm has never been 

widely adopted for real time applications or implementation in Small, Weight and Power (SWaP) 

devices.  

The first contribution of this work is the analysis and fixed-point conversion of the 

Backprojection Algorithm while providing high-quality images. The time characterization was done 

by means of profiling. To perform the fixed-point conversion two studies were conducted in order 

to set the parameters of the fixed-point format. 

The second key contribution of this work is the implementation of the Backprojection 

algorithm in a System-on-Chip (SoC) Field Programmable Gate Array (FPGA) device. The 

implementation should be capable of producing an image with 512 per 512 pixels, per second. 

The optimization is focused on the development of a pipeline architecture. 

Using a Zybo Z7-10 board it was possible to achieve a successful design, capable of 

producing an image with a signal-to-noise ratio of 99.21 dB in 959ms. With the target system 

being an entry-level device this works proves that these devices have an immense potential in 

the future of image processing for real-time applications. 

Keywords: Synthetic Aperture Radar, Backprojection, FPGA, fixed-point, optimization, Hw/Sw 

system design 
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1 Introduction 
 

This work was developed in the scope of a master’s thesis to conclude the IST Integrated 

Master’s in Electrical and Computer Engineering course. The thesis is integrated in the Synthetic 

Aperture Radar Robust Reconfigurable Optimized Computing Architecture (SARRROCA) project 

(PTDC/EEI-HAC/31819/2017).  

The overarching goal of this project is to promote mass adoption of Synthetic Aperture 

Radar (SAR) imagery and its deployment on aircraft by providing reliable, portable and lighter 

computational on-board systems to produce real-time SAR images. This will be achieved by 

coupling known optimization techniques with the flexibility, power efficiency and performance of 

System-on-Chip (Soc) Field-Programable Gate Arrays (FPGA).  

The SAR is a complex imaging data collection system with diverse sensing applications. 

It captures several target parameters, providing unique information that complements standard 

optical remote sensing methods, which can use a wide range of image formation algorithms. The 

Backprojection algorithm is one of the most well-suited for use in non-ideal conditions, as its 

working principle overcomes most of the obstacles that others can only compensate for. Being a 

high-quality image formation algorithm also implies being a complex and resource-intensive 

algorithm. For these reasons, the optimization of the Backprojection algorithm is an active field of 

research [1].  

The main goal of this work is the optimization of the Back-Projection Algorithm for On-

Board Embedded SAR Imaging System. 

 

1.1 Motivation 
 

 Radar data has historically been used to advance the Earth study science, with 

applications in areas ranging from resource identification and monitoring, to landscape mapping 

and monitoring of the Earth’s natural changes.  

However, radar data is also expensive and complicated to use. The advances in the past 

decades in this area have broadened the scope of radar uses, allowing satellite remote sensing 

datasets to be used in a series of applications as an option for sustainable and replicable methods 

Technological advances in electronic appliances have unveiled unique opportunities that 

take advantage of the enhanced data processing capacity of simple devices, like FPGA, allowing 

the exploitation of algorithms operating in real time applications using a small, lightweight, mobile, 

energetically efficient and battery-powered device, which is an ever growing need [2].  

The advantages of coupling data collection with image formation techniques in the 

devices is the reduced time consumption for image processing at the receivers [1]. This allows 
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the widespread use of these devices and technology in applications such as surveillance radars 

and mapping of natural resources and geological structures, among others.   

 

1.2 Scope and Objectives 
 

The Backprojection Algorithm is an algorithm capable of generating high quality images 

of the Earth’s surface. However, it is one of the most computationally intensive image formation 

algorithms which has led to it being overlooked for real time applications (especially in small, light 

and power efficient platforms) [3].  

The purpose of this work is to develop a Hardware/Software implementation of the 

Backprojection Algorithm capable of producing a 512x512 pixels image per second, using a small, 

lightweight, power-efficient device. At the same time, this work aims to build a generalized 

methodology for optimizing algorithms. 

The developed architecture implements the Backprojection Algorithm for image formation 

using SAR data samples. The architecture is composed of a hard-core Central Processing Unit 

(CPU) coupled with FPGA fabric, forming a Soc device. The target device used in this work is the 

Zybo Z7-10 (Digilent.inc, Washington, USA) which has a Zynq 7000 FPGA containing a dual-core 

ARM Cortex-A9 processor and Programmable Logic (PL) in which custom hardware will be 

implemented. The advantages brought by the target device chosen coupled with the use of fixed-

point arithmetic will allow the implementation to surpass the previous software implementations 

without compromising too much the quality of the output. This work will accompany the 

development of this system with all the studies performed to guarantee reproducibility for 

optimization studies of a range of algorithms.  

 

1.3 Contributions 
 

The main contributions of this thesis are: 

• Wordlength study of the Backprojection algorithm; 

• Conversion of the algorithm from floating-point to fixed-point; 

• Development of a methodology for algorithm optimization 

• Hardware/Software (Hw/Sw) implementation of the Backprojection algorithm in a 

SoC device. 
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1.4 Structure and Organization 
 

This thesis is structured in six chapters: 

Chapter 1: Motivation, objectives, main contributes and structure of this work are 

described.  

Chapter 2: Presents context and the basic knowledge about SAR, Backprojection 

Algorithm, Reconfigurable Hardware and numeric formats needed in the scope of this work. It 

concludes by presenting the approximate techniques used in the acceleration of the algorithm. 

Chapter 3: Presents the studies performed to the Backprojection Algorithm and its 

implementation in the C language, along with a study about the target system. This chapter 

includes a profiling study, a word-length study, a resource study and a schedule study. 

Chapter 4: The full implemented architecture is described in detail. The chapter focus is 

on the Datapaths, the resources used and the timing considerations of the modules.  

Chapter 5: Presents the results obtained in terms of output quality, energy consumption, 

performance and resources used, and the respective analysis.  

Chapter 6: Presents the conclusions drawn from the work and discusses future work. 
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2 Background and State of the Art 
 

This chapter introduces the state of the art for this work. It begins by introducing the SAR 

technology in terms of main characteristics, functioning principle, image formation algorithms and 

image quality evaluation, with emphasis on the image formation algorithm chosen for this work, 

the Backprojection algorithm. The chapter continues by presenting the reconfigurable hardware 

technology, presenting its advantages and disadvantages when compared to common computer 

systems and Application Specific Integrated Circuits (ASICS). Following is the numeric format 

section, in which the floating-point and fixed-point representations are presented and compared 

in the context of this work. The chapter finishes with an explanation of the approximate computing 

techniques studied for use on the implementation of the square root operation and trigonometric 

functions. 

 

2.1 SAR 
 

The SAR is a type of coherent radar capable of high-resolution coherent imaging [4][5]. 

This type of radar uses the relative motion between itself and the target to generate high resolution 

2-D or 3-D images, making it ideal for mounting on moving platforms such as satellites, aircrafts 

or drones [1][4][6]. In development since the 1950's, it has since then evolved into a powerful and 

valuable tool for monitoring the Earth’s environment, among other uses [7][8][6]. 

Due to being an active sensor, i.e. a sensor that provides its own source of illumination, 

a SAR can operate during day or night [4][5][7][6]. By selecting the operating frequency correctly, 

the microwave signal can penetrate clouds, haze, rain and fog and precipitation with very little 

attenuation, allowing SAR to operate in weather conditions that make the use of visible 

light/infrared systems unviable [1][4][5][7][9]. 
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Figure 1-RADARSAT-1 100-metre resolution mosaics of the Canadian provinces over a brief 

seven-day period in January 1999 (https://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-

imagery-and-air-photos/sensors-and-methods/synthetic-aperture-radar/10968). 

 

SAR has been successfully used over a wide range of applications, including surveillance 

[3], forest, sea, snow and ice monitoring, mining, oil pollution monitoring, oceanography and 

classification of terrain [4] [7] [10]. Figure 1 shows an example of these applications. 

 

2.1.1 Functioning Principles 
 

The SAR gets its name from the signal processing method it uses, emulating an antenna 

with big aperture using a moving antenna of smaller aperture[2] [7]. This represents the main 

difference to its predecessor, the Side-Looking Aperture Radar (SLAR), that had poor azimuth 

resolution and could only solve the problem by using shorter wavelength signals (that have high 

attenuation in the atmosphere) or using an impractically long antenna [7]. 

In a SAR system an antenna is usually mounted on an airborne or spaceborne moving 

platform [2][5]. The platform moves in a straight line with the antenna pointing in a direction 

perpendicular to the azimuth, while illuminating the desired surface at an angle, the Slant Range 

(with 0º being the direction straight down from the platform) [9][10] .  



7 

 

 

Figure 2 - SAR's functioning principle [10] 

 

The SAR works by periodically emitting pulses with a well-defined spectrum and then 

collecting the echoes reflected back to the antenna at regular time intervals, resulting in samples 

containing information regarding amplitude and phase [2][3][4][8][11][12]. Allying the samples with 

the precise time at which they were recorded creates a data set that can be passed to an imaging 

forming algorithm to obtain the final image [12]. 

 

2.1.2 Image Formation Algorithms 
 

To create SAR images an image formation algorithm is necessary [1][3]. The algorithm 

reads the collected raw data and, through several calculations defines an output image, as 

schematically presented in Figure 3 [5]. 
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Figure 3 - SAR data flow [9] 

 

Image formation algorithms can be divided in two groups: frequency-domain algorithms 

and time-domain backprojection algorithms [13][5]. Due to their computational efficiency, 

frequency-domain algorithms are the most widely used [5][12]. Despite this advantage, 

assumptions regarding squint, range curve mitigation, the planarity of both the surface and the 

wavefront and the idealized trajectory of the radar platform, among others, reduce the 

computation costs but degrade the quality of the image formed [2][5][13]]. Compensation 

techniques can be applied for deviations from these assumptions, but image quality degrades as 

the deviation increases [2].  

The Backprojection Algorithm is a time-domain algorithm [1] capable of generating 

images with superior quality than those generated with frequency-domain algorithms, being 

sometimes referred to as the gold standard in terms of quality for SAR image forming [3][6]. It 

makes nearly no assumptions and can work in a range of modes and geometries [3][5][8], with 

its biggest drawback being the high computational cost [1][3]. This algorithm will be described in 

greater detail in the next section.  

 

2.1.2.1 Backprojection Algorithm 

 

This work uses the Global Backprojection Algorithm[3] as an example to show the generic 

functioning of these algorithms. The following parameters are needed as inputs [2][5][6]: 

• Carrier Frequency; 

• Range from platform to centre of the swath; 

• Range Bin Resolution; 

• Image pixel spacing; 

• Number of pulses; 
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• Number of samples per pulse; 

• Output image dimensions; 

• Platform Locations (Aperture Points); 

• Samples from the radar. 

 

To calculate the final value for each pixel, the Backprojection Algorithm executes the following 

steps for every pair (pixel<->pulse) in the order they are presented [1][3][6]: 

1. Calculate the distance between the SAR and the pixel. 

2. Convert the previously calculated distance into a position (range bin) in the 

sample data set. 

3. Compute sample value by linear interpolation between the sample of the position 

obtained before and the sample in the next position. The interpolation can be 

described by Eq.1: 

 𝑔𝑥,𝑦(𝑟𝑘) = 𝑔(𝑛) +
𝑔(𝑛 + 1) − 𝑔(𝑛)

𝑟(𝑛 + 1) − 𝑟(𝑛)
∗ (𝑟𝑘 − 𝑟(𝑛)) (1) 

 

𝑔(𝑛) – Radar sample in range bin 

𝑔(𝑛 + 1) - Radar sample in adjacent range bin after 

𝑟(𝑛) – Corresponding range to bin 

𝑟(𝑛 + 1) - Corresponding range to adjacent bin after 

4. Compute the values for the matched filter described by the Eq.2, with 𝑑𝑟 

calculated according to Eq.3:  

 𝑒𝑖.𝜔.2.|𝑟𝑘⃗⃗ ⃗⃗  | = cos(2. 𝜔. 𝑑𝑟) + 𝑖𝑠𝑒𝑛(2. 𝜔. 𝑑𝑟) (2) 

   

 𝑑𝑟 = √(𝑥 − 𝑥𝑘)
2 + (𝑦 − 𝑦𝑘)

2 + (𝑧 − 𝑧𝑘)
2 − 𝑟𝑐 (3) 

 

𝑥, 𝑦, 𝑧 – Coordinates of the pixel. 

𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 – Coordinates of the radar. 

5.  Scale the sampled values by the matched filter to obtain the pulse’s contribution. 

6. Accumulate the contribution for the pixel. End cycle. 
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The mathematical formulation for this algorithm is described in Eq.4: 

 𝑓(𝑥, 𝑦) = ∑𝑔𝑥,𝑦(𝑟𝑘 , 𝜃𝑘). 𝑒
𝑖.𝜔.2.|𝑟𝑘⃗⃗ ⃗⃗  |

𝑘

 (4) 
 

 

𝑓(𝑥, 𝑦) – Output of Algorithm, final value of pixel (x, y) 

𝜃𝑘 - Aperture point 

𝑟𝑘 – Range from pixel (x,y) to aperture point 𝜃𝑘 

𝜔 – Angular velocity of radar waveform 

𝑔𝑥,𝑦(𝑟𝑘, 𝜃𝑘) – Reflection received by radar at 𝑟𝑘 at 𝜃𝑘 

The C language implementation of the Backprojection Algorithm present in the PERFECT 

suite [14] differs from the algorithm above in the use of the range from the platform to the centre 

of the swath [15]. In this implementation it is replaced by R0, representing the minimum distance 

for which the radar collected samples [15]. Distances inferior to R0 do not have a corresponding 

sample in the data set. 

The pseudocode for this implementation is presented in figure 4: 

 

Figure 4 - Pseudocode of the Backprojection Algorithm [15] 

The value Ku present in the pseudo-code is defined as 
2𝜋𝑓𝑐

𝑐
, where c is the speed of light 

in vacuum and 𝑓𝑐is the carrier frequency. 
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2.1.2.2 Image Quality Assessment 

 

The Signal-to-Noise-Ratio (SNR) metric was chosen to evaluate the quality of the output 

image. The SNR provides the relation between the power of the desired signal and the power of 

the background noise, expressed in dBs and calculated using the Eq.5 [1][15], 

 𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔10(
∑ |𝑠𝑘|

2𝑁
𝑘=1

∑ |𝑠𝑘 − 𝑛𝑘|
2𝑁

𝑘=1

) (5) 
 

 

where the 𝑠𝑘 and 𝑛𝑘 terms represent the reference and output image values of the k-th element 

respectively, and N represents the number of values to be compared. The noise is defined as the 

difference between the reference and the result obtained. This reference is provided in the 

PERFECT suite. Eq.5 is computed by the pseudocode in figure 5, where 𝑡𝑒𝑠𝑡 represents the 

output image of the Backprojection algorithm and 𝑟𝑒𝑓 represents the reference image. The 𝑟𝑒 

and 𝑖𝑚 fields represent the real and imaginary parts of the value of each pixel. 

 

Figure 5 - Pseudocode to compute the SNR of an Image [16] 

 

Large positive numbers of SNR represent a high degree of similarity between the two 

images. Each 20 dB of SNR correspond roughly to a single digit of accuracy between values [15]. 

The PERFECT suite manual sets 100 dB as the reasonable correctness threshold [15]. 
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2.2 Reconfigurable Hardware 
 

 Reconfigurable computing refers to the use of a computer architecture that combines the 

flexibility of software with the high performance of very flexible high-speed computing fabrics 

hardware [1]. The family of devices that best embodies this philosophy results from the fusion of 

a SoC with a FPGA device. The FPGA part of the device provides the configurable high-speed 

computing fabric while the SoC architecture guarantees a tight coupling between components, 

the existence of a microcontroller or microprocessor, the existence of external memories or 

connectors for external memories and a range of peripheral ports [17]. 

The most important difference between these devices and regular microprocessors is the 

ability to make substantial changes to the Datapath [18]. Modern microprocessors are complex, 

mainly sequential devices designed to be applicable for solving virtually any mathematical 

problem and as such are not fully optimized to solve simple calculations [18]. The FPGA, on the 

other hand, allows the Datapath to be designed with only the necessary elements while offering 

a parallelization-friendly environment [19]. By fusing the two systems a new one is created with a 

generic CPU and connectors granting high portability and compatibility, tightly coupled with a 

programmable fabric allowing the design of high-performance modules that perform specific 

operations considerably faster than the CPU [20].  

The Graphics Processing Unit (GPU) based accelerators are usually preferred over their 

CPU-based counterparts due to their improved throughput, but the high-power consumption of 

GPU has brought up concerns regarding cooling in data centres [19][21]. When comparing these 

to a SoC-FPGA device, a considerable difference lies on power consumption [21][20]. This topic 

has been a case study over the last decade, with some studies reporting an increase in energy 

efficiency of 75 times in the most favourable situations and an increase of 9.5 times when working 

in the mode most favourable to the GPU architecture [18][21].  

 

Another type of devices that can offer this granularity in the design of the Datapath are 

the ASICs. What the ASICs offer in specificity, they lose in flexibility. These devices are built to 

perform only very specific operations offering no means of re-configuration [20]. FPGA devices 

have clear advantages in design revisions and development costs by making available a high 

performance system from the get-go with well-known available resources, unlike the ASICs that 

must make a lot more decisions regarding the chip composition and production [22]. 

There are several accelerators for the Backprojection algorithm. Some target High performance 

systems [23], while others target embedded systems using variants of the algorithm like the works 

in [24] and [25]. Previous work on implementations of the Backprojection algorithm using a SoC 

device can be found in [1] and [6]. The work in [6] presents an accelerator, developed with the 

High-Level-Synthesis tool, to compute the more time consuming operations identified through 

profiling, using floating-point. 
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2.2.1 Zybo Z7-10 
 

This work was developed to be implemented in a Zybo Z7-10 board [26] containing a 

Zynq 7000 device from Xilinx.inc (Califórnia, USA), an external DDR3 memory with capacity for 

1GB and I/O peripherals. The Zynq 7000 is composed of a Processing System (PS) and PL block. 

The main components in the PS are the Dual-core ARM Cortex-A9, containing cores identified as 

CPU0 and CPU1, the memory controller and the Advanced Microcontroller Bus Architecture 

(AMBA) Interconnect bus. The ARM processor has two levels of cache, the L1 cache being 

composed of a 32KB memory for data and another 32KB memory for instructions and the L2 

cache having 512KB and being shared between the cores. Additionally, it features a 256KB On-

Chip-Memory split into two continuous address spaces, the Random Access Memory (RAM) 0 

and 1, with 192KB and 64KB respectively. The ARM processor has a clock frequency of 667MHz 

and a dedicated Phase-Locked Loop (PLL) capable of generating up to four reference clocks, 

each with settable frequencies, that can be used to clock custom logic implemented in the PL. 

The AMBA Interconnect bus links all the peripherals as slaves to the processor and 

contains readable/writable control registers (reg) that are addressable in the processors’ memory 

space. The main connections used in this project are the High-Performance (HP) ports and the 

General Purpose (GP) ports. Although it is not a physical component is important to mention the 

Advanced eXtensible Interface (AXI) protocol, that is the Intellectual Property (IP) interconnect 

standard chosen by Xilinx. It provides not only improved performance and flexibility to build 

custom IP cores, but also compatibility with the Xilinx IP-catalog and a worldwide community of 

ARM Partners. 

The PL is a Xilinx 7-series FPGA. The resources available are shown in table 1. 

Table 1 - Zybo Z7-10 PL main resources. [26] 

LUT elements Flipflops DSP BRAM Slice 

17 600 35 200 80 60 (270KB) 4400 

 

The schematic of the APSoC (All Programmable SoC) is shown in figure 6. 
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Figure 6 - Overview of the Zynq APSoc Architecture [26] 

 

The board was selected due to its embedded architecture, reconfigurable capabilities, 

and low power consumption. 

The implementation, that is detailed in chapter 4, uses primarily:  

● the Double Data Rate (DDR) memory to store the input files and the final output; 

● HP ports with Direct Memory Access (DMA) capabilities and high bandwidth to link 

the DDR memory to the Hardware Accelerator; 

● the GP ports used by the CPU for controlling the AXI-DMA modules that manage the 

channels between the Hardware Accelerator and the HP ports; 

● the CPU for controlling the DDR memory accesses through the control of the AXI-

DMA modules; 

● the PL fabric to implement the Hardware Accelerator. The PL uses only one clock, 

from the four references made available by the PS. 
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2.3 Numeric Formats 
 

The design of embedded systems usually starts at the algorithmic level where an 

execution model is created from the general concept of an algorithm. The development at this 

stage in the design process is made invariably using the Floating-Point numeric format since it 

provides the best precision of all formats and is natively supported in most Personal Computer 

(PC) systems [27].  

After the initial phase, design constraints change drastically due to the target system 

changing from a common PC system to an embedded system. In the new target, the use of a 

fixed-point format is known to allow drastic savings in the traditional cost metrics: silicon area, 

power consumption and latency/throughput [27][28].  

In this section both types of numeric formats are presented, followed by a comparison 

based on the differences observed in the multiplication operation and the impact they have in an 

FPGA implementation. 

 

2.3.1 Floating-Point 
 

 The floating-point format stores in a variable three numbers to represent a value. These 

numbers are unsigned integers and have a specific position in the word, i.e. each value is 

interpreted by the position it occupies. The size of these numbers (in bits) differs between floating 

point formats. The floating-point representation is composed by the following fields, in the order 

presented below from Most Significant Bit (MSB) to the Least Significant Bit (LSB): 

• the sign field (0 = positive, 1= negative); 

• the exponent field; 

• the significant field. 

To categorize a floating-point format, it is also necessary to know the base and the bias value 

used, with 2 and 127 being the values adopted in the Institute of Electrical and Electronics 

Engineers-754 (IEEE) for the 32-bit single precision floating-point numbers  [29]. Figure 7 

provides a graphical representation of the standard 32-bit single precision floating-point format. 

 

Figure 7 - Word structure of a number in Floating-Point format 
(https://courses.physics.illinois.edu/cs357/sp2020/notes/ref-4-fp.html) 
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A value stored in a floating-point format can be converted to a real value by performing 

the operations in Eq. 6, where 𝜎 represents the signal, 𝜎 = ±1.   

 𝑋 = 𝜎 ∗ 2(𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡−𝑏𝑖𝑎𝑠) ∗ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 (6) 

 

The bias was introduced to allow the representation of very small numbers, allowing the 

use of negative powers of two without the need to use a sign bit in the exponent field. Although 

the floating-point format allows the representation of real numbers, a single floating-point format 

cannot represent all real numbers in any given interval.  

 

2.3.2 Fixed-Point 
 

 The Fixed-Point formats store a value in a variable in 2’s complement [30]. The name 

fixed-point stems from the fact that in a word there is a fixed number of bits to represent the 

integer part of the value and a fixed number of bits to represent the decimal part of the value, 

creating an imaginary binary-point in the number. 

 

Figure 8 - Word structure of a number in Fixed-Point format [30] 

 

To interpret the true value represented by a fixed-point variable it is necessary to know 

the scale factor used, as its value will determine the location of the binary-point. The scale factors 

are usually positive powers of two, enabling the use of bit shift operations as a replacement for 

multiplications whenever the scale of a variable needs to be adjusted. To store a value in a fixed-

point format the following operation is performed: 

 𝐹𝑖𝑥𝑃 = 𝑉𝑎𝑙𝑢𝑒 ∗ 𝑆𝑐𝑎𝑙𝑒 𝐹𝑎𝑐𝑡𝑜𝑟; (7) 

 

To interpret the actual value stored in a variable the complementary operation is 

performed: 
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 𝑉𝑎𝑙𝑢𝑒 =
𝐹𝑖𝑥𝑃

𝑆𝑐𝑎𝑙𝑒
𝐹𝑎𝑐𝑡𝑜𝑟; (8) 

 

2.3.3 Numeric Format Comparison 
 

This section presents a brief comparison between the two previously described numeric 

formats. The comparison focuses on the differences between implementations of basic arithmetic 

operations and the impact they have on hardware implementations. This analysis does not regard 

precision since the target system chosen for this work supports fixed-point operations with a 

maximum input size big enough to achieve higher precisions than required.    

The multiplication operation will be used to exemplify the differences with greater impact 

in the choice between the two formats. Figure 9 shows the architecture of a floating-point 

multiplication which includes chain of operations, starting with the multiplication of the significands 

and composed of four stages, that is required to maintain the precision of the result. This becomes 

a critical path in the Datapath.  

 

Figure 9 - Floating-Point Multiplication Architecture [29] 

 

While the entirety of figure 9 represents the blocks needed to perform a floating-point 

multiplication, only the highlighted block is necessary for a fixed-point multiplication. The designer 

must, however, be mindful of the increase of the scale of the output. It can be concluded that a 

fixed-point implementation incurs in less complex operations than a floating-point operation, 

allowing for a greater performance and lower resource allocation. The scale adjustments in the 
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fixed point operations do not pose a constraint because they can be performed by bitwise 

operations that in hardware can be implemented by splitting a bus or concatenating 2 buses (The 

architecture “performs” the operations, not the logic cells). 

 

2.4 Approximate Computing Techniques 
 

In this section the methods studied for alternative implementations of mathematical 

operations are presented in detail. As stated in the introduction of this chapter, there are 

operations in the algorithm that do not have a standard implementation in a fixed-point format. To 

overcome this limitation, new implementations were made using methods capable of producing 

approximate results. These methods can be implemented in hardware and are resource-effective, 

albeit producing less precise computations than the standard library implementation of these 

operations in C language.  

Due to the context of this work, the methods are studied with two purposes: the first is to 

choose a method for software implementation; the second is to choose a method for hardware 

implementation. The software implementation is not essential but can be useful for the initial 

studies of the algorithm. The performance of the methods varies greatly with the platform were it 

is being executed and because software and hardware implementations are fundamentally 

different in nature, methods chosen for each case can be different. 

This section is split into two parts, one regarding the square root operation and the other 

regarding the trigonometric functions. 

 

2.4.1 Square Root 
 

This section presents the methods studied for the fixed-point implementation of the 

square root operation.  

 

2.4.1.1. Newton-Raphson 

 

Named after Isaac Newton and Joseph Raphson, the Newton Raphson method is an 

iterative root-finding algorithm, meaning it is used to solve algebraic equations of the form [31]:  

 𝐹(𝑥) = 0 (9) 

 

The method needs an initial guess to produce the first iteration while the successive 

iterations are calculated using the eq.10: 
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 𝑋𝑛+1 = 𝑋𝑛 −
𝐹(𝑋𝑛)

𝐹′(𝑋𝑛)
 (10) 

 

The definition of 𝐹(𝑋𝑛) chosen to approximate the square root function of 𝑌 using this 

method is presented in the following equations: 

 𝐹(𝑋)  = 𝑌 − 𝑋2 (11) 

 

This definition yields the following derivative in 𝑋: 

 𝐹′(𝑋) =  −2𝑋 (12) 

 

 

 

Using eq.11 and 12, the adapted formula for the method results in: 

 𝑋𝑛+1 = 𝑋𝑛 +
𝑌 − 𝑋𝑛

2

2𝑋𝑛

 (13) 

The resulting formula can now be optimized in terms of the operation composition, to 

reduce the costs of a hardware implementation (Some optimizations are fixed point exclusive). 

By application of the distributive property on the division and subtraction, the of eq.13 can be 

changed to eq.14: 

 𝑋𝑛+1 = 𝑋𝑛 + (
𝑌

𝑋𝑛

− 𝑋𝑛) 2⁄  (14) 

 

The new form produces the same output but has the advantage of performing no 

multiplications (1 less than the original formula) and of replacing the division by 2 with an 

arithmetic shift left (Due to the use of the fixed point format). 

The stop criteria used for the method is defined in eq.15: 

 
−𝐹(𝑋𝑛)

𝐹′(𝑋𝑛)
 >  0 (15) 

 

2.4.1.2 Binary restoring square root extraction 

 

The binary restoring square root extraction algorithm finds the square root 𝑥 of a 

nonnegative integer number, R, satisfying the following constraints [32]: 

 𝑥2 <=  𝑅  𝐴𝑁𝐷 (𝑥 + 1)2 > 𝑅 (16) 
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This method takes 2 bits of the Radicand to produce 1 bit of the result in each iteration, 

resulting in a complexity of O(n/2), with n being the size in bits of the radicand [33]. Below is 

presented a C language implementation of this algorithm [32]: 

#define FRACBITS 30; 

#define ITERS (15 + (FRACBITS >> 1)); 

typedef long TFract; /* 2 integer bits, 30 fractional bits */ 

TFract 

FFracSqrt(TFract x) 

{ 

register unsigned long root, remHi, remLo, testDiv, count; 

root = 0; /* Clear root */ 

remHi = 0; /* Clear high part of partial remainder */ 

remLo = x; /* Get argument into low part of partial remainder */ 

count = 30; /* Load loop counter */ 

do { 

remHi = (remHi<<2) | (remLo>>30); remLo <<= 2; /* get 2 bits of 

arg */ 

root <<= 1; /* Get ready for the next bit in the root */ 

testDiv = (root << 1) + 1; /* Test radical */ 

if (remHi >= testDiv) { 

remHi -= testDiv; 

root++; 

} 

} while (count-- != 0); 

return(root); 

} 

From the code presented it can be deduced that this algorithm does not use any 

multiplication or division and has a simple loop composed only of shift-add operations that execute 

quickly in software and especially in digital hardware, making it a competitive solution for the 

computation of the square root.  

 

2.4.2 Trigonometric Functions 
 

This section presents the algorithms studied for the fixed-point implementation of the 

trigonometric functions. 
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2.4.2.1 CORDIC 

 

The Coordinate Rotation Digital Computer algorithm (CORDIC) is a hardware-efficient 

iterative method especially suitable for solving trigonometric functions and hyperbolic functions 

[34]. CORDIC’s main concept is the usage of a series of optimized rotations to achieve the input 

rotation. The great advantage of this algorithm is that it belongs to the shift-add family, meaning 

it does not need multipliers to be implemented. The CORDIC’s main working principles are 

explained in this section. 

 

 

Figure 10 - Rotation of a vector by an arbitrary angle 

( https://www.allaboutcircuits.com/technical-articles/an-introduction-to-the-cordic-algorithm/) 

 

A rotation around the origin in the 2-D plane (shown in figure 10) can be defined by eq.17 

and 18: 

 𝑋𝑅 = 𝑋𝑖𝑛 ∗ 𝑐𝑜𝑠(𝜃) − 𝑌𝑖𝑛 ∗ 𝑠𝑖𝑛 (𝜃) (17) 

 𝑌𝑅 = 𝑋𝑖𝑛 ∗ 𝑠𝑖𝑛(𝜃) + 𝑌𝑖𝑛 ∗ 𝑐𝑜𝑠 (𝜃) (18) 

 

Re-writing eq.17 and 18 into the matrixial form yields eq.19: 

 [
𝑋𝑅

𝑌𝑅
] = [

𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛 (𝜃)

𝑠𝑖𝑛 (𝜃) 𝑐𝑜𝑠(𝜃)
] [

𝑋𝑖𝑛

𝑌𝑖𝑛
] (19) 

 

Eq.19 can be simplified into eq.20. 

 [
𝑋𝑅

𝑌𝑅
] = 𝑐𝑜𝑠(𝜃) [

1 −𝑡𝑎𝑛 (𝜃)
𝑡𝑎𝑛 (𝜃) 1

] [
𝑋𝑖𝑛

𝑌𝑖𝑛
] (20) 
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There are two fundamental ideas behind the CORDIC’s implementations. The first is that 

rotating a vector by an arbitrary angle 𝜃 is the same as rotating the same vector by several smaller 

angles; the second is that it is possible to compute the rotations by substituting the multiplications 

by tan(𝜃) with simple bitwise shift operations, by choosing these smaller angles in a way that 

eq.21 is satisfied, 

 tan(𝜃𝑖) = 2−𝑋 (21) 

 

where 𝑋 is a positive integer. A CORDIC interpretation of an angle composed by the sum of 3 

smaller angles is explained in eq.22: 

 [
𝑋𝑅

𝑌𝑅
] = 𝑐𝑜𝑠(𝜃0)𝑐𝑜𝑠 (𝜃1)cos (𝜃2) [ 1 −20

20 1
] [ 1 −2−1

2−1 1
] [ 1 −2−2

2−2 1
] [

𝑋𝑖𝑛

𝑌𝑖𝑛
] (22) 

 

The only multiplication left to perform can be ignored until the end of the process because the 

product defined by eq.23 converges to the value in eq.24: 

 𝐾(𝑛) = ∏cos (𝜃𝑘)

𝑛−1

𝑘=0

 (23) 

 lim
𝑛→∞

𝐾(𝑛) = 0.60725293500 (24) 

 

Leaving the iterations of the algorithm to be defined by eq.25: 

 [
𝑋[𝑖 + 1]

𝑌[𝑖 + 1]
] = [

1 −𝜎𝑖2
−𝑖

𝜎𝑖2
−𝑖 1

] [
𝑋[𝑖]

𝑌[𝑖]
] (25) 

 

Where 𝜎𝑖 represents the direction of each rotation, σ𝑖 = ±1. As stated before, it is still necessary 

to perform the final multiplication by the factor 𝐾. 
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2.4.2.2 Taylor Series 

 

The Taylor Series is a method of approximating functions through an infinite sum of terms 

that are expressed in terms of the function's derivatives at a single point. The Taylor Series of a 

function f(t) around point t=tr can be defined by the equations 26 and 27 [35]: 

 𝑓(𝑡) = ∑
𝑓(𝑘)(𝑡𝑟)

𝑖!
∗ (𝑡 − 𝑡𝑟)

∞

𝑖=0

 (26) 

 
𝑓(𝑘)(𝑡) = (

𝜕(𝑘)𝑓(𝑡)

𝜕𝑡(𝑘)
) 

(27) 

 

The Taylor series applied to the trigonometric functions cosine and sine takes the forms 

in eq. 28 and 29 respectively: 

 cos(𝑥) = ∑(−1)𝑛 ∗
𝑥2𝑛

(2𝑛)!

∞

𝑛=0

 (28) 

 
sin(𝑥) = ∑(−1)𝑛 ∗

𝑥2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

 
(29) 

 

Although this method can produce precise results, the need for multiplications makes it a 

less ideal candidate for implementation in FPGA fabric when CORDIC can produce results with 

the same precision [1], without the use of multiplications. 
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3 Optimization Methodology 
 

 

The design of the optimized Hw/Sw system begins with the study of the algorithm as 

along with the environment of the new implementation to understand what new tools and 

functionalities are available and how and where they can be used. 

This chapter presents the optimization methodology, composed by the studies of the C 

language implementation of the Backprojection Algorithm, the studies of the target environment 

and the design decisions they support. 

The chapter begins with the profiling study followed by the Hw/Sw partition. The word-

length study is then presented, followed by the hardware resource utilization study guided by the 

previous study’s conclusions. This chapter concludes with the algorithm’s re-scheduling that aims 

to further improve the optimized system’s architecture. 

 

3.1 Algorithm Profiling 
 

The first step in the optimization of the Backprojection algorithm is to identify the most 

time-consuming instructions of the algorithm, as these will be the ones with the higher potential 

for acceleration. To this end a profiling study was developed to quantify the time resources 

required by each operation.  

 This section presents the profiling of the C language implementation of the algorithm 

provided in the PERFECT suite [15]. The first step of this study was performed in a PC to obtain 

an initial estimate using the already fully functional available materials. Table 2 details the main 

specifications of the PC used along with relevant configuration options. 

 

Table 2 - Computer Specifications and Configuration 

CPU Operating system Multi-Threading Compilation flags 

Intel I7-7700K Ubuntu 20.04.1 No default 

 

This provided a basis to compare the forthcoming results from the algorithm execution in 

the target system’s CPU. Table 3 details the CPU present in the target device, along with the 

relevant configuration options. 
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Table 3 - Target device Specifications and Configuration 

CPU Operating system Multi-Threading Compilation flags 

ARM Cortex-A9 Bare metal No -O3 

 

The profiling study of the implementation using the PC was made using the gprof tool 

available in the Ubuntu 20.04.1 LTS release1. The profiling was made using an image set that 

has the sample data of 512 pulses and produces an output image of 512 x 512 pixels. 

The next step of the process is the profiling of the algorithm’s execution in the target 

system. The C code used in this stage is the same as the one used in the PC, except for 

adaptations made regarding the reading operations of the input files. Profiling in the target system 

was performed using the xil_time.h library functions. The results obtained are detailed in table 4. 

 

Table 4 - Profiling results of the C language implementation of the Backprojection Algorithm 

Algorithm Operation Desktop Computer (-O3) Zybo Z7-10 (-O3) 

Pythagorean Theorem 0.00425 us 0.12 us 

Pow ^2 0.00365 us 0.04 us 

Square Root 0.00059 us 0.06 us 

Cos & Sin 0.00231 us 3.40 us 

Complex Multiplication 0.00618 us 0.06 us 

Total 6.97 s 480,729,250.04 us (481 s) 

 

The differences observed between the profiling results obtained in the PC and in the 

target system can be explained by the different architectures used to manufacture the CPU of the 

two systems. From this point onward the results obtained regarding the target system will be used 

as reference for future comparisons. 

 
1 https://ubuntu.com/download/desktop 

https://ubuntu.com/download/desktop
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Figure 11 - Graphic representation of the profiling results of the zybo board from table 4 

 

From analysis of the results, it can be concluded that the Cosine and Sine operations 

should be the focus of the optimization process, as these are responsible for 91% of the 

processing time. These findings correspond to the conclusions of previous works [1][2][6].  

A first proposition for the optimized system architecture that can emerge from the 

conclusion explained above is to have the Cosine and Sine operations implemented in the PL of 

the SoC while the rest of the algorithm still executes in the CPU. However, this architecture’s 

execution time would still be far from the initial goal defined in the introduction of this work. This 

is due primarily to the fact that a cycle of the algorithm (instructions comprised in the calculations 

of a single pulse’s contribution to a single pixel) has too many instructions to allow a serial 

execution in the CPU to be efficient, even if we consider the Cos and Sin execution time is 0 and 

that the CPU’s clock is 4 to 5 times faster than the fastest clock that a circuit implemented in the 

PL can achieve (CPU frequency = 667MHz; PL frequency = 150MHz). In light of these 

considerations, it becomes easy to understand that the goal of a total execution time of one 

second requires the system’s architecture to take maximum advantage possible from the 

pipelining and parallelization opportunities made available by the PL system.  
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3.2 Hardware/Software Partition 
 

The target’s system family devices were presented in this work as the fusion of two 

independent systems. This section is focused on the partition of the system’s execution between 

the PS and PL systems.  

To achieve the initial goal of total execution time below the one second mark, the system 

needs to take advantage of the reconfigurable hardware’s characteristics in terms of pipelining 

and parallelization. In this case it means that most, if not all, of the algorithm should be executed 

in the PL because of the limitations of the PS system when handling the serial execution of a 

program with many cycles (134,217,728 cycles in this case). This idea is further supported by the 

work in [6], that registered a speedup of 7.7x, achieved by implementing the more time consuming 

operations in reconfigurable hardware. 

A system partition is proposed, based on the observations made in the previous 

paragraph, with the following characteristics: 

Table 5 - Hardware / Software partition 

PS PL 

• Initialization of AXI-DMA 

modules; 

• Control of the read and write 

operations to the DDR memory. 

• Calculus of the Distance between the 

Satellite and the pixels; 

• Calculus of the matched filter values 

relative to the Distances calculated before; 

• Sample selection using the calculated 

Distances; 

• Sample linear interpolation; 

• Complex multiplication between the 

samples and the matched filter; 

• Accumulation of the products of the 

complex multiplication. 

 

This proposal is made assuming the following: 

• Due to the size of the input data files, they are initially stored in the DDR memory; 

• The hardware accelerator will access the DDR memory in DMA mode, through 

the HP ports (using a well-known xilinx IP core, the AXI-DMA); 

• The PL and PS will also communicate using the GP ports.  

 

Figure 12 illustrates the proposed partition. 
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Figure 12 - Overview of the proposed system's partition 

 

With this architecture the optimization can go much further than the first proposal made 

in the previous section in terms of execution time, because now we can pipeline all the algorithm’s 

operations, achieving a higher throughput. The working frequency was chosen to allow the target 

system to achieve the desired execution time of 1 second. Solving eq. 30 and 31: 

 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = ( 𝑁º 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑠𝑡𝑎𝑔𝑒𝑠 +  𝑁º 𝐶𝑦𝑐𝑙𝑒𝑠) / 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (30) 

 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =  (0?  + 134 217 728 )/ 𝑥 = 1𝑠 (31) 

 

 

We obtain a minimum frequency of 135 MHz. However, the closest possible clock 

frequency allowed in the target device is 140 MHz. Although the number of pipeline stages is 
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unknown at this point, we can consider it almost zero, because the number will always be small 

when compared with the number of iterations in the algorithm. 

Initially, for a clock frequency of 140MHz the circuit did not achieve the timing 

requirements. In the combinatorial logic part of the circuit, these issues were solved though the 

placement of pipeline stages, leaving the communications and memory accesses as the potential 

limiting factors, which are addressed in sections 3.4 and 3.5.  

This is only a proposal, as it is still necessary to evaluate its feasibility in terms of 

resources used and the performance of these resources (not all resources all fully customizable).  

 

3.3 Word-Length Optimization 
 

To design an optimized circuit, it is fundamental to choose the right size for its signals as 

this decision has a great impact over the resources allocated and in achieving the timing 

requirements of the circuit.  

This section presents the word-length study made on the Backprojection Algorithm for 

implementation of the algorithm using the fixed-point numeric format. This study has two parts: 

the first aims to provide the length, in bits, that the integer part of every signal needs in order to 

accommodate its biggest possible absolute value avoiding overflow; the second part aims to 

provide the length that the decimal part of every signal needs in order to attain precision that will 

guarantee the overall quality performance of the system of 100dB of SNR [28].  

The first part begins by executing the original program while collecting information about 

the interval of values each variable can take. With these results a final number of bits can be 

defined for the integer part of each signal, that will be able to hold every value needed and avoid 

overflow of operations. These results do not consider the bit used for the signal because this is 

inferred case by case. 

The requirements for the word lengths found by this study are presented in the tables in 

appendix A.  

To perform the second part of this study it was necessary to develop a new software 

implementation of the Backprojection algorithm using fixed point. Due to the complexity of the 

relation between the attained SNR and the length of the decimal part of the variables, this part of 

the study was made by trial and error.  

The new implementation was developed taking into account that after the loss of precision 

occurring in the conversion of the input values to the fixed-point format, no other loss of precision 

is present (meaning all significant bits of the output values of mathematical operations are carried 

forward). Considering that every variable’s fixed-point format can be deducted from the variable’s 

relation to the input variables, the latter were split in two groups: 
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• Variables belonging to the calculation of the distance between the Satellite and 

a pixel. (satellite positions, pixel positions, Pythagorean theorem variables, 

sample selection variables); 

• Variables belonging to the Filter and Samples (samples, matched filter, 

interpolation coefficients, complex multiplication variables, accumulation 

variables). 

Some operations don't have an implementation in the standard libraries for operators 

bigger than 64 bits and some operations like the square root and the Cosine and Sine don’t have 

an implementation in fixed point. As such, new implementations were made for those cases, 

implementing the square root and trigonometric functions using the chosen methods among those 

detailed in section 2.4.2. Although the mathematical operations do not cause loss of precision, 

the method used for the trigonometric functions does not guarantee precision to the LSB. This 

new implementation of the algorithm was executed several times using different size 

combinations for the variables. The integer part of the variables was fixed with the help of the 

results of the first part of this study while the decimal part was chosen to occupy the remaining 

bits. The different sizes varied in a 1-byte interval starting at 24 bits and going up to 64. Table 6 

shows the SNR (in dB) obtained for each combination. The size of the variables from the Data 

group vary between lines and the size of the variables from the Distance group vary between 

columns. 

 

Table 6 - SNR (dB) obtained for each word-length combination studied 

Data/Distance 64 56 48 40 32 24 

64 182.876 183.976 151.595 103.129 54.967 9.252 

56 182.876 183.976 151.595 103.129 54.967 9.252 

48 182.876 183.976 151.595 103.129 54.967 9.252 

40 182.819 183.904 151.595 103.129 54.967 9.252 

32 153.005 153.007 149.326 103.129 54.967 9.252 

24 103.609 103.609 103.610 100.469 54.965 9.252 

 

 

From the results in table 6, it can be concluded that to achieve the quality minimum of 

100dB of SNR while minimizing resource utilization, the best size combination is:  
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● Distance - 40 bits. 

● Data/Filter - 24 bits. 

This combination achieves an SNR of 100.469dB and results in the following fixed-point 

formats: 

● Distance [39:0] - 15Q25 (signed).  

● Data/Filter [23:0] - 2Q22 (signed). 

To further corroborate the conclusion drawn here, this part of the study was extended by 

conducting an extra experiment with the chosen sizes and the chosen sizes minus 1 bit. The 

results yielded by this experiment in terms of SNR (in dB) are presented in table 7. 

Table 7 - SNR (dB) obtained for the word-length combinations closest to the threshold  

Data/Distance 40 39 

24 100.469 96.359 

23 96.543 94.401 

 

From these results it is concluded that the best possible combination of formats that can 

be found while using the methodology followed in this work is the previously elected one, 

highlighted in tables 6 and 7.  

It should be noted that in the implementation developed for the second part of this study 

some operations incurred in precision loss. This loss occurs in the calculation of the argument for 

the trigonometric operations, where a right shift is executed on the output of a multiplication that 

converts a value in scaled radians to a value in radians. This operation is performed to reduce 

the bit width necessary to represent the value of the argument. The CORDIC algorithm performs 

an iteration for each bit of the input, therefore reducing the input size reduces the number of 

iterations needed as well.  

Figure 13 presents the code that performs the detailed operations, with the operation 

responsible for the precision loss highlighted.  

 

Figure 13 - Snippet of code responsible for performing the error inducing operation. 
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From the results presented in table 6 it can be concluded that, in the ranges considered 

for the bit width of the signals, the width of the Distance group variables has a greater impact on 

the output image quality than the width of the Data group variables. This conclusion further 

supports the choice of a precise method for the implementation of the square root operation: the 

Binary restoring square root extraction. 

The chosen fixed-point formats all use rounding as the quantization mode. The need for 

an overflow mode was overcome with the selected choices for the word-lengths. The full list of 

the fixed points formats for each signal in the circuit will be shown in the next section 4.1.2. 

 

3.4 Resource Utilization Study 
 

The Zybo Z7-10 board used in this work has limited resources and the use of those 

resources adds complexity to the circuit and has an associated power consumption. From an 

optimization perspective, the possibility of freeing unnecessary resources that could otherwise 

have a very negative impact in the efforts to meet the timing constraints offers room for 

improvements. The goal of this study is to provide a relation between the size of the operators 

(inputs and output) and the resources allocated for that IP core to obtain the information needed 

to identify potentially expensive areas and make estimates on the values of the resources 

allocated by the future design. Although this work was developed with a specific target system in 

mind, the results from this type of study can inform the choice of a suited device when working in 

projects that start with an undefined target system.  

The study was developed by making a synthesized design in Vivado 2019.2 of the main 

IP cores used, with varying operator sizes, varying pipeline stages and with the clock frequency 

set to 140MHz (estimate frequency needed to achieve final timing goal). The variations in pipeline 

stages only occur until the design meets the timing requirements. The results are presented in 

the tables in appendix B. 

The number of IP cores needed to implement the circuit that performs the mathematical 

operations described in the C language implementation of the Backprojection algorithm can be 

estimated to further assess the total resources of the top-level modules. 

Since the use of extra IP cores and their configurations in this project was expected, some 

were studied to get better estimates. The referred IP cores are the AXI DMA, the AXI Interconnect 

and the AXI Data FIFO. Table 8 shows the resources used in the implementation of these support 

IP cores. 
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Table 8 - Resources used by support IP cores* 

IP core Quantity Unit Cost Total Cost 

AXI DMA 2 LUT: 1954 

Reg: 2570 

F7 MUX:5 

BRAM 36Kb: 3 

LUT: 3908 

Reg: 5140 

F7 MUX: 10 

BRAM 36Kb: 6 

AXI Interconnect (HP ports) 2 LUT: 684 

Reg: 783 

LUT: 1368 

Reg: 1566 

AXI Interconnect (GP port) 1 LUT: 551 

Reg: 694 

LUT: 551 

Reg: 694 

AXI Data FIFO 2 LUT: 61 

Reg: 89 

BRAM 36Kb: 4 

LUT: 122 

Reg: 178 

BRAM 36Kb: 8 

* The configurations of these IP cores are detailed in chapter 4. 

 

With the information needed to make the circuit estimates gathered, two estimations 

were, one for the circuit made using the formats chosen in the previous section (Estimate A) and 

other for a hypothetical circuit made based on 64 bit wide input variables (Estimate B). The 

estimates include only the circuit responsible for performing the mathematical operations of the 

Backprojection algorithm, excluding control, support and memory related IP cores. The estimates 

also exclude the square root operation due to the fact that this operation is implemented by a 

custom module with fixed input size. Tables 9 and 11 compile all the basic arithmetic IP cores 

that need to be used to compute the algorithm 
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Estimate A 

 

Table 9 - Breakdown of resource estimate for system with input variables of width of 64 bits 

IP core Signal + Operator size [inA,inB,Out] Quantity 

Subtractor S + [64,64,64] 3 

Multiplier S + [64,64,128] 3 

Adder U + [128,128,128] 2 

Adder U + [14,1,14] 1 

Multiplier S + [64,64,128] 4 

Adder S + [64,64,64] 2 

Subtractor U + [64,64,64] 2 

Multiplier U + [20,6,26] 1 

Multiplier U + [64,64,128] 2 

CORDIC S + [48,96] 1 

Multiplier S + [64,64,128] 2 

Multiplier S [64,64,128] 4 

Subtractor S + [128,128,128] 1 

Adder S + [128,128,128] 1 

Adder S + [128,128,128] 2 

 

Table 10 - Resources required by Estimate A 

Estimate A: Total Hardware Resources 

LUT Register DSP 

16 823 21 691 226 
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Estimate B 

 

Table 11 - Breakdown of resource estimate for system with input variables of optimal width 

IP core Signal + Operator size[inA,inB,Out] Quantity 

Subtractor S + [40,40,40] 3 

Multiplier S + [40,40,80] 3 

Adder U + [79,79,79] 2 

Adder U + [14,1,14] 1 

Multiplier S + [24,24,48] 4 

Adder S + [24,24,24] 2 

Subtractor S + [40,40,40] 1 

Multiplier U + [20,6,26] 1 

Subtractor U + [26,25,26] 1 

Multiplier U + [64,64,128] 2 

Cordic S + [25,24] 1 

Multiplier S + [24,24,48] 2 

Multiplier S [24,24,48] 4 

Subtractor S + [48,48,48] 1 

Adder S + [48,48,48] 1 

Adder S + [64,48,64] 2 

 

Table 12 - Resources required by Estimate B 

Estimate B: Total Hardware Resources 

LUT Register DSP 

8 997 11 452 69 

 

As per tables 9 and 11, the resource consumption is much lower using optimized word 

lengths, validating this method as a valuable optimization procedure. From the analysis of this 

study it is expected that the design will fit the chosen target device.  

Following the discussion about the Hw/Sw partition proposed in section 3.2 another 

resource study was made to evaluate the proposed architecture, this one focused on the memory 

types chosen to store the input and output values, as well as the memory capacity required by 

this architecture. Before values are calculated, a theoretical analysis can offer information to 

inform decision-making regarding memory types. As mentioned earlier, to achieve the overall 

goals of this work the memory access operations must have a maximum latency of 1 clock cycle. 
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This is a necessity because for every cycle of the algorithm a new address for reading input values 

is calculated. To highlight the importance of this restriction, it can be inferred by equations 30 and 

31 that a simple increase in latency of 1 cycle would cause the execution time to almost duplicate. 

To meet the aforementioned latency requirements while maintaining the algorithm’s schedule, the 

only viable option is to hold all the data in the Block RAM (BRAM) cells present in the PL fabric 

of the target device. Table 13 shows the estimated memory capacity required to implement the 

algorithm with the original schedule using the Hw/Sw partition proposed earlier and the word 

lengths chosen in section 3.3. 

Table 13 - Estimate of memory capacity required to store all input values in BRAMs in the PL system 

Input 

Type 

Nº of 

values 

Nº of 

sets 

Bit 

width 

Packaging Word Size 

Used (bits) 

Word 

Depth 

Total 

(Kbits) 

Satellite 

Positions 

3 

 

512 40 1 64 1536 98 

Satellite 

Samples 

2 
 

4096 

x 

512 

24 2* 64 2,097,152 131,072 

*The real part and imaginary part are packed together. 

 

Table 14  - Estimate of memory capacity required to store all output values in BRAMs in the PL system 

Output 

Type 

Nº of values Bit width Packaging 
 

Word Size 

Used (bits) 

Word 

Depth 

Total 

(bits) 

Output 

Image 

2 59 1 64 2 128 

 

Converting the values of tables 13 and 14 to resources of the target system, table 15 is 

obtained. 

Table 15 - Estimate of BRAM cells required to store all input/output values 

Data 18Kb BRAM cells 36Kb BRAM cells 

Satellite Position: 0 3 

X 0 1 

Y 0 1 

Z 0 1 

Satellite Samples 0 3648 

Output Image 0, registers can be used; 0 

Board Resources 120** 60 
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**The board has 60 tiles of 36Kb BRAMs and each can be split into two 18Kb BRAMs for more 

flexibility. The total size of the BRAMs in the board is 270KB (36Kb *60 = 270Kb), not the sum of 

the types of BRAMs. 

Since the total size of the samples (in bits) is larger than the total capacity of the BRAMs 

in the board, all solutions considered from this point forward for the storage of the sample values 

are based on an architecture with 2 equal BRAMs, where one is being read while the other is 

updated with the next values. This dynamic happens throughout the execution of the system.  

  

3.5 Algorithm Rescheduling 
 

Due to the characteristics of the Backprojection algorihm, several schedules can be used 

when implementing it. This section presents the study of the schedule used in the original software 

implementation, as well as two new schedules. This study was motivated by the results presented 

in table 15, showing that the original schedule cannot be implemented in the chosen target system 

when considering the Hw/Sw partition proposed in section 3.2. To overcome this limitation, a 

combination of memory management and algorithm re-scheduling was used. As mentioned 

previously, the cycles of the Backprojection algorithm are independent from one another, so the 

outcome is not affected by the order in which they are performed. These characteristic increases 

flexibility in the re-scheduling, given that the accumulation phase is the only part where the 

dependency between cycles becomes relevant. To this end three schedules were studied: 

Pixel Computation: for each pixel calculate and accumulate the contribution of all 

pulses, then go to the next pixel. This was the original schedule.  

Pulse Computation: for each pulse calculate its contribution to every pixel, and then go 

to the next pulse. 

Pixel Region Computation: for each pulse calculate its contribution to every pixel in a 

region, then go to the next pulse. After the contribution of all the pulses has been 

calculated, go to the next region. A region is considered a parcel of the whole image 

under formation. 
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The pseudocode of the organization of each schedule is presented in table 16.  

Table 16 - Pseudocode of the loop hierarchy for the schedules studied 

Schedule Pseudo Code 

Pixel Computation For every Pixel do: 

    For every Pulse do: 

Pulse Computation For every Pulse do: 

    For every Pixel do: 

Pixel Region Computation For every Region do: 

    For every Pixel in the Region do: 

For every Pulse do: 

 

Table 17 presents an overall analysis of these schedules.  

Table 17 - Overview of the schedules’ requirements and implementation details 

 
Schedules 

Pixel Computation Pulse Computation Pixel Region Computation 

Input 

Requirements 

Every cycle: 

-X, Y and Z values for 

the new satellite 

position; 

-Real and imaginary 

parts of every sample 

from the next pulse; 

Every 262,144 cycles: 

-X, Y and Z values for 

the new satellite 

position; 

-Real and imaginary 

parts of every sample 

from the next pulse; 

Every REGION SIZE 

cycles: 

-X,Y and Z values for the 

new satellite position; 

-Real and imaginary parts 

of every sample from the 

next pulse; 

Intermediate 

values 

Requirements 

Hold 2 values at a time; 
Hold 524,288 values at 

a time; 

Hold 2*REGION SIZE 

values at a time; 

Output 

Requirements 

Every 512 cycles: 

-2 values to be stored 

in the DDR; 

End of Execution: 

-524,288 values to 

store in the DDR; 

Every REGION SIZE * 

512 cycles: 

-REGION SIZE values to 

be stored in the DDR; 

Advantages 

- Output: very low 

throughput; is the final 

value for each pixel. 

- Bandwidth 

requirements for storing 

-Updates:  the BRAM 

holding the samples 

only needs to be 

updated every 262,144 

cycles. 

Updates: the BRAM 

holding the sample values 

needs to be updated 

every REGION SIZE 

cycles. 
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output values: low; 

achievable with the 

Zybo board’s resources 

To work the REGION 

SIZE needs to be bigger 

than 4096 (amount of 

values to update). 

Disadvantages 

- Unfeasible input 

requirement regarding 

sample values. Too 

much Bandwidth 

required. 

- Unfeasible 

intermediate values 

requirement. Not 

enough BRAM 

available 

-Region size depends on 

BRAM available. 

-Region size cannot be 

smaller than the number 

of samples per pulse. 

Implementation 

Requirements 

- Does not require 

BRAMs in the output. 

-Does not need 

BRAMs for the 

Satellite positions; the 

time between the need 

for new positions 

allows other solutions. 

- 

36Kb BRAM 3651 924 45 

18Kb BRAM 0 3 4 

Resources 36Kb BRAMs: 60, each one can be split into two 18Kb BRAMs. 

Feasibility No No Yes 

 

It is important to mention that any of the three approaches could result in an optimized 

system if the constraints in timing and latency imposed thus far were more flexible.  

Due to the constraints applied, the third approach proved to be the only option viable.  
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4 Proposed System Architecture 

 

In this chapter the proposed architecture for Hardware Accelerator implemented in the 

PL system is presented and explained in detail. The presentation is focused on the IP cores and 

their configurations along with small but important implementation details that represent some 

finer optimizations performed and decisions made regarding the control system employed in this 

work. The circuit was designed in Vivado due to the program belonging to the same manufacturer 

as the FPGA device used, which makes it the less error-prone option. All the custom-built modules 

and circuits were debugged using the Vivado Simulator, except the montage of the whole system 

(that includes the PS+PL system), that was debugged using the Integrated Logic Analyser (ILA). 

The ILA was used both because the test bench to simulate the whole system would be too 

complex and because the ILA provides a direct reading of the values passing through the circuit 

instead of a theoretical simulation (where the effects of the chip temperature and overall 

degradation of the components cannot be accounted for). 

The architecture was divided by function into three parts to facilitate the comprehension 

of each part and the whole system architecture, schematically represented in figure14. 

A. Memory (Purple box + Pink box) 

B. Algorithm Execution (Orange box) 

C. System Control (light purple box) 
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Figure 14 - Proposed system architecture, discriminating memory units and inter-system communication. 

 

4.1 Memory 
 

 This section presents in detail all the memory related modules used in the Hardware 

accelerator, divided into two parts, the first presenting the memory units used and the second 

explaining the modules responsible for accessing those units. This explanation will be further 

divided into the considerations about the DDR and the considerations about the BRAMs.  

 

As stated in section 3.5, the algorithm’s execution will follow a different schedule than the 

original implementation due to resource limitations. After designing part of the circuit according to 
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the new schedule, decisions were made regarding the memory units and the size of the region to 

use: 

• The circuit will feature BRAM modules[36], that will store all the satellite positions 

(one for each coordinate); 

• The region size is set to 8192 (16 * 512); 

• The output FIFO’s  size will be decided based on the BRAM cells left unused in 

the device [37]. 

Although the chosen schedule’s requirement on receiving new satellite positions enables 

the use of methods that do not need BRAM cells, such as querying the CPU through GP ports 

and AXI protocols, the use of the BRAMs can make the circuit more easily implemented by 

improving synchronization. This was achieved by filling the BRAMs with all the positions needed 

before the algorithm starts execution, keeping the circuit's execution more organized. 

The region size used in the implementation of the circuit is 8192, that corresponds to 16 

rows out of the 512 in the final output image. This decision comes with the following 

consequences: 

• There are 32 regions in an image, meaning that during execution all the samples 

will be read from the DDR and stored in the BRAMs 32 times; 

• The BRAMs holding the positions of the satellite will be fully read 32 times; 

• The BRAMs in the accumulators will need to hold 8192 words; 

• The AXI DMAs [38] have 8192 clock cycles to update the BRAMs that hold the 

samples with 4096 values. 

With this analysis the decisions needed to design the memory units can be made. 

 

4.1.1 Memory Units 
 

DDR 

 The DDR memory is used to hold all the input data files and the output image. The inputs 

consist of the Satellite position file, containing all the positions of the Satellite in the format 24Q40, 

and the Satellite sample file, containing all the samples in the format 10Q22. The variable types 

used, along with the sizes of the files, are detailed in table 18.  

Table 18 - Input files format and size 

File Format (bits) Size in KBytes (Hex) 

Satellite Positions int (64) 12 (0x000C) 

Satellite Samples int (32) 16 384 (0x4000) 

Output Image int (64) 4096 (0x1000) 
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BRAM 

 The BRAM modules are used to hold all the Satellite positions, all the Samples from 2 

pulses at a time and the intermediate/final values of the pixels in a region. Table 19 presents the 

configurations for these modules along with their contents. 

Table 19 - BRAM modules configurations 

ID Content Format 
Word 

Size 

Word 

Depth 
Mode 

36Kb BRAM 

cells 

B1.1 
X coordinate 

(position) 

1 value per 

word 
64 512 

Simple 

Dual 

Port 

1 each B1.2 
Y coordinate 

(position) 

B1.3 
Z coordinate 

(position)* 

B2.1 
Samples from 

pulse X 

-Real 

part[63:32] 

-Imaginary 

part[31:0] 

64 4096 

True 

Dual 

Port 

7.5 each 

B2.2 
Samples from 

pulse X+1 

B3.1 
Real part of 

Output Image 

1 value per 

word 
64 8192 

Simple 

Dual 

Port 

14.5 each 

B3.2 
Imaginary part 

of Output Image 

1 value per 

word 

B4.1 
Output FIFO 

1 value per 

word 
64 2048 X 

4 each 

 B4.2 

*This BRAM module was supressed in the final system due to lack of BRAM available and 

because the data set used had fixed Z coordinate for the platform in all pulses. 

 

4.1.2 Memory Accesses 
 

DDR 

 As stated in section 3.2, the design of the circuit was made based on some initial 

decisions. One of them was to use the AXI DMA IP core to coordinate the accesses made by the 

circuit to the DDR memory, based on the high performance achievable using the HP ports and 

DMA feature. This core was used due to being a reliable module and the standard module for this 

type of memory accesses. Designing an alternative module is out of the scope of this work. 

The AXI DMA features a writing channel and a reading channel with the following 

interfaces: 

• M_AXI_MM2S, used to read value from the DDR; 

• M_AXI_S2MM, used to write values to the DDR; 
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• M_AXIS_MM2S, used to send values to the circuit; 

• S_AXIS_S2MM, used to receive values from the circuit; 

• S_AXI_LITE, used by the CPU to communicate orders to the module. 

All the interfaces used to read/write data feature a 64-bit wide data channel allowing for 

the processing of a word per clock cycle, in any direction. 

The use of the module is further incentivised by the fact that the connections to the circuit 

are made using the AXI Stream protocol. This protocol is the lightest protocol of the AXI standard 

in terms of number of channels and protocol messages, making it easy to implement the circuit 

to which the AXI DMA is connected (the protocol doesn’t use addresses, this is communicated to 

the DMA by the CPU).  

Two instances of this IP core are used, the first being responsible for reading satellite 

positions and writing the real part of the output image and the second being responsible for 

reading the satellite samples and writing the imaginary part of the output image.  

Figure 15 shows the configurations of the AXI DMA modules. The values for Max Burst 

Size are the program’s defaults. 

 

 

Figure 15 - AXI DMA IP core configuration in Vivado Environment 
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BRAMS 

All the BRAM modules feature a memory controller interface and an AXI Stream interface 

along with a finite state machine to control them. The modules also feature a word counter to 

manage the addressing of writing operations and the memory switching while writing. 

The controllers are now divided by the 4 different memory modules: 

  B1 - memory module that holds the satellite position values; 

  B2 - memory module that holds the satellite sample values; 

B3 - memory module that holds the intermediate values of the accumulation; 

B4 - Output FIFOs. 

 

B1 

The B1 controller is responsible for controlling the writing operations on the B1.1, B1.2 

and B1.3 memories, featuring a memory controller interface and a Slave AXI Stream interface, 

along with a finite state machine to control them. The modules also feature a word counter to 

manage the addressing of writing operations and the memory switching while writing. 

  It waits for the signal from the AXI DMA to start receiving the coordinate values, which 

are then sent one coordinate at a time so that the memories are filled sequentially, facilitating the 

design of the module.  

The reading operations performed on these memories are controlled by a counter used 

for addressing. This counter is part of the Pixel Position module (detailed in the next section, 4.2). 

 

B2 

The B2 controller is responsible for controlling the reading and writing operations 

performed on the B2.1 and B2.2 memories, featuring a memory controller interface and a Slave 

AXI Stream Interface along with a finite state machine to control them. The modules also feature 

a word counter to manage the addressing of writing operations and the memory switching while 

writing.  

The B2 modules are configured with True Dual Port mode to enable the controller to read 

from both ports concurrently. This configuration enables the reading of the samples from two 

indexes at a time (as stated in section 2.1.2.1, the Backprojection algorithm reads samples from 

two indexes per cycle). The address of the reading operations is received by the controller from 

the Wbin module where it is incremented to obtain the second address needed. The memory 

switching for the reading operations is controlled by a flag that originates in the Pixel Position 

module. 



47 

 

 

B3 

The B3 memory controller is responsible for controlling the reading and writing operations 

performed in the B3.1 and B3.2 memories. This controller has a finite state machine but unlike 

the other controllers so far, it has 2 memory controller interfaces - one for reading and one for 

writing - and one Master AXI Stream Interface connected to one of the Output FIFOs. The 

controller features a word counter to manage the reading and writing addresses, and to switch 

between operation mode.  

The module has two operation modes. In the first mode the module reads a value from 

memory on one port and writes the result of the accumulation on the other port. In the second 

mode of operation the module reads a value from one port and writes the value zero on the other 

port, while sending the result of the accumulation through the AXI Stream interface. This second 

mode enables the initialization of memory between calculations from two different regions of the 

output image and is only used during the cycles of the calculations of the last pulse’s contribution. 

 

B4 

The B4.1 and B4.2 memory modules are used as part of another module, the AXI Data 

FIFO IP core. This IP core has one Slave AXI Stream Interface to receive the output values and 

one Master AXI Stream Interface to send the output values. 

 

4.2 Algorithm Execution Circuit 
 

This section presents the design of the part of the Hardware accelerator responsible for 

the execution of the Backprojection algorithm itself. To facilitate the comprehension of this work, 

the presentation of the circuit is divided into 5 parts, where each part has a well-defined purpose 

and functionality. This starts by explaining the module’s composition, followed by an explanation 

of its functioning, finishing with observations on the details of the implementation. The tables in 

appendix C detail all the signals from the figures in this section and their corresponding fixed-

point format. 

  The circuit is divided as follows: 

1. Distance -> Calculates the distance between the satellite and a given pixel. 

2. Sample -> Computes the sample values for each pair: pulse[i]  ↔  pixel[x, y]. 

3. Filter -> Calculates the values of the Matched Filter for the distance provided. 

4. MultC -> Computes the complex multiplication between the sample and the 

matched filter. 

5. Accumulator -> Accumulates the contribution of the pulses for each pixel. 
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Figure 16 - Hardware Accelerator Top-Level Architecture 

 

4.2.1 Distance Module 

 

The Distance module is composed of the B1 memories and the modules that perform the 

arithmetic operations responsible for calculating the distance between the Satellite platform and 

the Pixel coordinates.  



49 

 

 

Figure 17 -Simplified Distance module block design. 

To better organize the circuit, two sub modules were created: one for calculating the 

coordinates of the pixels in the sequence compatible with the schedule chosen for the algorithm’s 

execution and another for calculating the square root of a number using the Binary restoring 

square root extraction method, as described in section 2.4.1.2. 

Table 20 presents the Distance module composition in terms of basic IP cores, available 

from the free license of Vivado 2019.2. 
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Table 20 - Distance module composition in terms of basic arithmetic IP cores 

IP core Signal + Operator size[inA,inB,Out] Latency Quantity 

Subtractor [39] S + [40,40,40] 0 2 

Multiplier [40] U + [39,39,78] 5 2 

Adder [39] U + [78,78,78] 0 1 

Adder [39] U + [78,78,78] 1 1 

 

The module reads the satellite position from the B1 memories and receives the pixel 

position from the Pixel Position module, calculating the first part of the Pythagorean theorem 

(Radicant), described in the following equations: 

 𝑋1 = (𝑝𝑙𝑎𝑡𝑥  −  𝑝𝑥)
2 (32) 

 𝑌1 = (𝑝𝑙𝑎𝑡𝑥  −  𝑝𝑦)
2  (33) 

 𝑅𝑎𝑑𝑖𝑐𝑎𝑛𝑡 = 𝑋1 + 𝑌1 + 𝑍1 (34) 

 

The result is then passed to the Square Root module to obtain the final value of the 

distance. 

Since the Z coordinate of the satellite (𝑝𝑙𝑎𝑡𝑧) is constant and the z coordinate of the image 

is always zero, the optimization decision of cutting the Z coordinate part of the circuit was made. 

This decision allowed to free BRAM cells, which is the most used resource, allowing some 

flexibility during design. 

Next, the pixel position and square root sub modules used will be presented in detail. 

 

Pixel Position Module 

The Pixel Position module was implemented using binary counters, logic gates and one 

adder to produce the correct sequence of pixel positions, calculating a new value every clock 

cycle. It is also responsible for calculating the reading addresses for the B1 memories.  

The calculus of the pixel positions was original performed with the following equations: 

 𝒑𝒙  = (−𝟐𝟓𝟔 +  𝟎, 𝟓 +  𝒊𝒙 )  ∗  𝒅𝒙𝒅𝒚;   𝒊𝒙 ∈  [𝟎, 𝟓𝟏𝟏]; (35) 

 𝒑𝒚  = (−𝟐𝟓𝟔 +  𝟎, 𝟓 +  𝒊𝒚 )  ∗  𝒅𝒙𝒅𝒚;  𝒊𝒚 ∈  [𝟎, 𝟓𝟏𝟏]; (36) 
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But due to available options given by the technology used, the pixel positions can now 

be calculated using eq.38, 39 and 40: 

 𝑂𝑓𝑓𝑠𝑒𝑡 = (−255,5 ∗ 𝑑𝑥𝑑𝑦); (38) 

 𝑝𝑥  = 𝑂𝑓𝑓𝑠𝑒𝑡 +  (𝑖𝑥 ∗  𝑑𝑥𝑑𝑦);   𝑖𝑥 ∈  [0, 511]; (39) 

 𝑝𝑦  = 𝑂𝑓𝑓𝑠𝑒𝑡 +  (𝑖𝑦 ∗  𝑑𝑥𝑑𝑦);   𝑖𝑦 ∈  [0, 511]; (40) 

 

The new equations are a direct consequence of the use of the synchronized init feature 

of the binary counters. Due to the schedule chosen for the algorithm’s execution the equations 

are transformed into the new equations: 

 𝑅𝑦 = 16 ∗  𝑟𝑒𝑔𝑖𝑜𝑛;   𝑟𝑒𝑔𝑖𝑜𝑛 ∈ [0,32];  (41) 

 𝑂𝑓𝑓𝑠𝑒𝑡𝑥 = (−255,5 ∗ 𝑑𝑥𝑑𝑦);   (42) 

 𝑂𝑓𝑓𝑠𝑒𝑡𝑦 = (−255,5 ∗ 𝑑𝑥𝑑𝑦) + (𝑅𝑦 ∗ 𝑑𝑥𝑑𝑦);   (43) 

 𝑝𝑥  = 𝑂𝑓𝑓𝑠𝑒𝑡𝑥  +  (𝑖𝑥 ∗  𝑑𝑥𝑑𝑦);   𝑖𝑥 ∈  [0, 511]; (44) 

 𝑝𝑦  = 𝑂𝑓𝑓𝑠𝑒𝑡𝑦  +  (𝑖𝑦 ∗  𝑑𝑥𝑑𝑦);   𝑖𝑦 ∈  [0, 15]; (45) 

 

The Pixel Position module is also responsible for controlling one important flag, the 

Sample memory switch flag. This flag signals the Sample module when to switch memories for 

reading, meaning the next iterations are pertaining contributions of the next pulse. This flag is set 

to one every time the Pixel Position module reaches the position of the final pixel of a region. 

 

Square Root Module 

The Square root module is responsible for performing the square root operation that ends 

the calculus of the distance between the Satellite and the Pixel. This operation is performed by a 

custom module built to perform the square root using the Binary restoring square root extraction 

method. 
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Figure 18 - Simplified Square Root module block design. 

Table 21 shows the correspondence between the variables of the C code present in 

section 2.4.1.2 and the signals in figure 18: 
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Table 21 - Correspondence between C code variables and circuit signals for the square root 

implementation* 

Varibles Signals 

remLo Radicant_left 

remHi Radicant_x 

(remHi << 2) Mux_x 

(remLo >> 30) Remainder_x 

testDiv Root_test 

(remHi >= testDiv) Comp_x 

remHi -= testDiv Sub_x 

root Root_x 

*some signals represent the result of comparisons or other operations that do not have a 

correspondent variable in software. 

 

Because this method uses two input bits to calculate one bit of the output per layer, the 

total latency of the module is half the number of bits in the output rounded up, which in this case 

takes the value of thirty-nine cycles. 

 

4.2.2 Samples Module 
 

 The Sample module is composed by the B2 memory, the WBin module, the Interpolation 

module, an adder belonging to the B2 memory controller and a Shift Register. 
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Figure 19 - Simplified Sample module block design. 

The shift register was introduced to compensate for the difference in latencies in the 

Datapath of the Bin signal and the Datapath of the W1 and W2 signals. The adder is used to 

compute the address of the next sample of the pulse by adding one to the address of the current 

sample. The data1 and data2 signals have 64 bits because the real and imaginary parts are 

grouped in one signal. 

The sub modules will be presented next. 

 

WBin Module 

The WBin module calculates the address (Bin) where the correct sample for a given 

distance is, as well as the interpolation coefficients (W_1 and W_2) to be used by the Interpolation 

module. This module was implemented with basic arithmetic operation modules and the 

concatenation module.  
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Figure 20 - Simplified WBin module block design. 

 

The operations performed by this module are described in the following equations: 

 𝐵𝑖𝑛 =  ⌊(𝑅 − 𝑅0) ∗  𝑑𝑅𝑖𝑛𝑣⌋ (44) 

 𝑊2  = ((𝑅 − 𝑅0) ∗  𝑑𝑅𝑖𝑛𝑣) − 𝐵𝑖𝑛 (45) 

 𝑊1  = 1 − 𝑊2 (46) 

 

For efficiency purposes, in the implemented circuit the multiplication by the coefficient 

𝑑𝑅𝑖𝑛𝑣 was replaced by an arithmetic left shift due to 𝑑𝑅𝑖𝑛𝑣 being a constant whose value is a 

positive power of two (32 = 2^5). The subtraction was also replaced by simply splitting the bin_0 

bus to separate the integer from the decimal part. 

This module has a latency of one cycle due to the buffer on the outputs. 
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Interpolation Module 

The Interpolation module performs the linear interpolation described by the equations: 

 𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑒 = (𝑑𝑎𝑡𝑎1𝑅𝑒 ∗ 𝑊1)  + (𝑑𝑎𝑡𝑎2𝑅𝑒 ∗ 𝑊2) (47) 

 𝑆𝑎𝑚𝑝𝑙𝑒𝐼𝑚 = (𝑑𝑎𝑡𝑎1𝐼𝑚 ∗ 𝑊1)  + (𝑑𝑎𝑡𝑎2𝐼𝑚 ∗ 𝑊2) (48) 

 

The interpolation is done between the samples from the Bin address and the Bin+1 

address of the B2 memory, using the coefficients calculated by the Wbin module.  

 

Figure 21 - Simplified Interpolation module block design. 
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This module was built using basic mathematical IP cores. Table 22 presents their 

configuration. 

Table 22 - Interpolation module composition in terms of basic arithmetic IP cores 

IP core Signal + Operator size[inA,inB,Out] Latency Quantity 

Multiplier S + [24,24,24] 2 2 

Multiplier S + [24,25,24] 2 2 

Adder S + [24,24,24] 1 2 

 

 

4.2.3 Filter Module 
 

 The Filter module is responsible for calculating the matched filter values from the distance 

value received. The module was built using basic mathematical IP cores, the CORDIC Ip core, a 

Shift Register, a custom multiplexer and support cores, like the concatenation IP core. This 

module can be divided into three parts: Argument calculator, Trigonometric stage, and Quadrant 

normalizer.  
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Figure 22 - Simplified Filter module block design. 

 

Its composition in terms of basic modules is shown in table 23. 

Table 23 - Filter module composition in terms of basic arithmetic IP cores 

IP core Signal + Operator size 

[inA,inB,Out] 

Selected Output Latency Quantity 

Multiplier S + [24,24,24] [23 : 0] 1 2 

Multiplier M1 U + [40,64,64] [81 : 18] 7 1 

Multiplier M2 U + [62,64,24] [126 : 103] 7 1 
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The Argument calculator is the circuit responsible for converting the value of the distance 

(in meters) received into the value of an angle (in radians). After the conversion, the quadrant is 

stored in a shift register and the angle is rotated to the first quadrant following the software 

implementation. Looking at table 23 it can be seen that contrary to other basic arithmetic modules, 

the M1 multiplier has a special configuration regarding the width of his output signal, as it does 

not represent the full output of the operation. This output bit selection is done to avoid a large 

increase in the bit width of signals. 

The multiplier M1 performs a multiplication whose output represents an angle in scaled 

radians (meaning that to obtain the actual value in radians of the angle a further multiplication of 

the result by 2Pi must be performed), as shown in equations 50 and 51. 

The operation performed by the M1 module is the following: 

 𝑅 ∗ 2𝐾𝑢 = 𝐴𝑟𝑔 (49) 

 

Transforming this equation by replacing variables with their units yields the following: 

 
𝑚𝑒𝑡𝑒𝑟𝑠 ∗  2 (𝐿𝑎𝑝𝑠 𝑎𝑟𝑜𝑢𝑛𝑑 𝑡ℎ𝑒 𝑡𝑟𝑖𝑔𝑜𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑖𝑟𝑐𝑙𝑒 𝑝𝑒𝑟 𝑚𝑒𝑡𝑒𝑟)  

= 𝐿𝑎𝑝𝑠 𝑎𝑟𝑜𝑢𝑛𝑑 𝑡ℎ𝑒 𝑡𝑟𝑖𝑔𝑜𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑖𝑟𝑐𝑙𝑒 
(50) 

 𝐿𝑎𝑝𝑠 𝑎𝑟𝑜𝑢𝑛𝑑 𝑡ℎ𝑒 𝑡𝑟𝑖𝑔𝑜𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑖𝑟𝑐𝑙𝑒 = 𝑆𝑐𝑎𝑙𝑒𝑑 𝑅𝑎𝑑𝑖𝑎𝑛𝑠 (51) 

 

Combining this information with the periodicity of the trigonometric functions it is possible 

to conclude that the integer part of this value is redundant and can be disregarded without losing 

precision. The output bits chosen for the module are the result of this conclusion and the effort to 

maintain the maximum signal width close to 64 bits. This approach differs from the original 

software implementation in the value stored in the Ku variable, as the original implementation 

stored a value in radians per meter. This difference is supported by the fact that an early 

conversion of the Ku value to radians per meter would only increase the signal’s width without 

offering any advantage. 

The Trigonometric stage employs the circuit composed by the CORDIC IP core and it is 

responsible for calculating the sine and cosine of the angle received as input. Figure 23 shows 

the configuration used on the CORDIC IP core [41]. 
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Figure 23 - CORDIC IP core configuration. 

 

This configuration of the CORDIC IP core results in an IP core with a latency of 28 cycles. 

The Quadrant normalizer follows the Trigonometric stage and is responsible for 

correcting the effects of the angle rotation described in the first stage. As previously stated, it uses 

a shift register to compensate for the difference in latencies in the Datapath of the ARG signal 

and the Datapath of the Quadrant signal. This module was implemented by providing the sine 

and cosine values for all the possible 90 degrees angle rotations (sin(a), -sin(a), cos(a), -cos(a)) 

and using the quadrant number to select the correct option.  

 

4.2.3.1 Alternative Filter Module 

 

The filter module was designed so that de CORDIC IP core would receive an angle in 

radians rotated to the first quadrant, mostly to follow the fixed-point software implementation of 

the filter and reduce the impact of the unknown internal architecture of the CORDIC IP core. This 

module can be redesigned to use less resources by performing simple alterations. Setting the 

input of the CORDIC IP core to scaled radians allows the removal of the M2 multiplier from the 

circuit. By converting the input angles in the interval from [0,2] to the interval [-1,1] (1 = π radians) 

we can achieve a circuit without quadrant normalization while maintaining the resource 

consumption and latency of the CORDIC IP core. This idea was not part of the final design 

because Vivado could not implement it in a working circuit. The module can achieve the desired 



61 

 

timing, but Vivado could not find a working implementation for the whole system. Figure 24 shows 

the new version of the filter module. 

 

Figure 24 - Simplified Alternative Filter module block design. 

 

4.2.4 Complex Multiplication Module 
 

The MultC module is responsible for performing the complex multiplication between the 

samples and the matched filter. 
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Figure 25 - Simplified MultC module block design. 

It was implemented using only basic mathematical IP cores, performing the operations 

detailed in eq.52 and 53: 

 𝑃𝑟𝑜𝑑𝑅𝑒 = (𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑒 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟𝑟𝑒) − (𝑆𝑎𝑚𝑝𝑙𝑒𝐼𝑚 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟𝐼𝑚) (52) 

 𝑃𝑟𝑜𝑑𝐼𝑚 = (𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑒 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟𝐼𝑚) + (𝑆𝑎𝑚𝑝𝑙𝑒𝑖𝑚 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟𝑅𝑒) (53) 

 

The module’s composition is shown in table 24: 

Table 24 - MultC module composition in terms of basic arithmetic IP cores 

IP core Signal + Operator size [inA,inB,Out] Latency Quantity 

Multiplier S + [24,24,24] 2 4 

Subtractor S + [24,24,24] 1 1 

Adder S + [24,24,24] 1 1 
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4.2.5 Accumulator Module 
 

 The Accumulator module is composed by the B3 memory and the circuit that performs 

the accumulation of values.  

 

Figure 26 - Simplified Accumulator module block design. 

 

This module performs the accumulation and stores the results in the B3 memory for every 

cycle, with only one exception pertaining to the last accumulation of a pixel, where the result is 

passed to the FIFO in the next module. This module is the last belonging to the part of the circuit 

responsible for computing the algorithm. The operations performed by this module are detailed in 

eq.54 and 55: 

 𝐴𝑐𝑐𝑢𝑚𝑅𝑒𝑖+1
= 𝐴𝑐𝑐𝑢𝑚𝑅𝑒𝑖

+ 𝑃𝑟𝑜𝑑𝑅𝑒𝑖
;  𝑖 ∈  [0; 511]  (54) 

 𝐴𝑐𝑐𝑢𝑚𝐼𝑚𝑖+1
= 𝐴𝑐𝑐𝑢𝑚𝐼𝑚𝑖

+ 𝑃𝑟𝑜𝑑𝐼𝑚𝑖
 ;  𝑖 ∈  [0; 511] (55) 

 

The module’s composition is shown in table 25. 

Table 25 - Accumulator module composition in terms of basic arithmetic IP cores 

IP core Signal + Operator size[inA,inB,Out] Latency Quantity 

Adder S + [48,64,64] 1* 2 

* This adder has a latency of 1 cycle to achieve the timing constraint on the Datapath of that leads 

to the output of the module, not for the Accumulator’s Loop Datapath. 
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4.3 System Control 
 

To guarantee the correct execution of the Hardware Accelerator, a control mechanism 

was added. The need for this control system stems from the existence of an initialization phase 

to fill the BRAM modules. These BRAMs need to be populated with input values before the first 

iteration can begin, so the first condition of the control system is to wait until all the information 

needed for the first iteration is in the BRAMs. This means that all the positions of the satellite and 

all the samples from the first pulse were written in the BRAMs. The start flag changes its value to 

1 when the first sample of the second pulse is being written. 

The second condition of the control system is related to the output. Because the HWAccel 

output comes in bursts of values, the module that writes those values to the DDR, the AXI DMA, 

must start writing in the same cycle as the first value of a burst is calculated, otherwise that result 

is lost. This causes a problem since the AXI DMA doesn’t give any control of its side of the channel 

to the programmer. To solve the late start and unsynchronized reading operations of the AXI 

DMA, a FIFO was introduced configured with 2 flags, the programmable empty and 

programmable full flags. With these flags the control system can now halt the execution before 

the FIFO is overloaded, leaving enough space for the results of the iterations that already begun, 

and resume execution before the FIFO becomes empty. This architecture allows minimizes time 

consumption with the type of control existent. In order to allow the software to correctly control 

the AXI DMA transfers a custom module was built, the FIFO Transfer Control, with the sole 

purpose of managing the TLAST flag of the AXI-Stream channel between the Data FIFO and the 

AXI DMA. The accelerator has an enable signal that runs through the whole circuit, going from 

the System control module to the Accumulator modules. With this signal it is possible to know if 

a value stored in a pipeline stage is valid or not. 
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5 Results 
 

 This chapter details the results obtained from the developed Hardware/Software system, 

beginning by presenting the image quality obtained, followed by the resources required by the 

design described in the previous chapter and the timing considerations, finishing with the 

predicted energy consumption breakdown. 

 

5.1 SNR 
 

This section presents the SNR values obtained from the execution of the system, 

calculated using the method described in section 2.1.4. The Hardware/Software implementation 

produced an image with a SNR value of 99.210 dB. The result is below the projected SNR value 

of 100.469 dB by 1.259 dB and below the threshold of 100dB proposed in the beginning of this 

work by 0.79 dB. 

Figures 27, 28, 29 and 30 show the image taken as the golden reference and the images 

formed by the original floating-point implementation, the fixed-point software implementation that 

achieved the highest dB score and the fixed-point Hardware/Software implementation, 

respectively.   

 

Figure 27 - Image correspondent to the golden reference 
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Figure 28 - Output of original algorithm (139 dB) 

 

Figure 29 - Output of the fixed-point algorithm with the largest word-lengths (183 dB) 
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Figure 30 - Output of the final Hardware/Software implementation (99.21 dB) 

 

The SNR value obtained is below the estimation. This difference can be explained by the 

precision offered by the CORDIC IP core used in the design. When comparing the results from 

this IP core with the software implementation, a divergence of up to 2 bits can be found between 

the output values. This difference wasn’t predicted but was expected considering that the exact 

implementation of the CORDIC algorithm in the IP core is hidden to the user and is protected by 

Xilinx. 

 

5.2 Resources 
 

This section presents the resources of the SoC device allocated by the Hw/Sw 

implementation. The PL resources are detailed first, followed by the CPU resources and the 

external memory used.  

The resources allocated by the final design can be found in their entirety in the target 

device. Although the design fits the board, it does not leave room for much else, mainly due to 

the paths being used and not the resources being occupied. When comparing the resource 

allocation with estimations made in section 3.3, we can conclude that the predicted savings made 



68 

 

through the word length study are valid predictions and that the study allowed for some 

optimization in that area.  

 

5.2.1 Programmable Logic Resources 

 

 Table 26 shows the amount of resources from the PL system allocated by the design 

after the implementation phase performed in Vivado. The values in table 26 correspond to the 

resources allocated by one unit of a module. The shift registers present between the top-level 

modules are omitted, with their contribution appearing only in the total resources allocated. 

- 

Table 26 - Resources used in PL by the whole system 

Name LUTs Registers DSPs BRAMs Slice 

Distance 2292 2807 0 2 917 

Sample 398 356 10 13 199 

Filter 2198 2491 25 0 715 

MultC 0 68 10 0 16 

Accum 219 231 0 14.5 105 

Init 2 2 0 0 1 

Axi DMA 1636 2407 0 3 715 

Axi-Interconnect 

(Axi-Stream) 

543 650 0 0 234 

Axi-Interconnect 

(Axi-Lite) 

505 657 0 0 250 

Axi Data FIFO 60 88 0 4 36 

FIFO Transfer 

Control 

8 20 0 0 10 

Processor System 

Reset 

16 33 0 0 11 

TOTAL 10438 

(59.3 %) 

13304 

(37.7 %) 

55 

(68.8 %) 

58 

(96.7 %) 

3833 

(87.1 %) 

 

The rescheduling of the algorithm proved to be one of the biggest contributions to 

optimization in the design of the circuit, allowing to keep the architecture suggested after 

analysing the profiling study. This was achieved by lowering the BRAM resources needed by the 

implementation enough to fit the target device (as explained in section 3.5). This process reduced 

the BRAM needed by a factor of 77 times. It was through the rescheduling that the flexibility 

offered by this SoC system could be explored to this extent.  
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5.2.2 CPU and Memory 
 

 The final design only used one core of the Dual-core ARM Cortex-A9 CPU. Table 27 

shows the contents of the Processing system’s memories during execution (RAMs and DDR). 

Table 27 - DDR and RAM memories occupancy through the execution (PS memories) 

File Address Size Memory Unit 

Position.bin 0x01000000 8 KB DDR 

Samples.bin 0x02000000 16 384 KB DDR 

Output_real.bin 0x10000000 2 MB DDR 

Output_img.bin 0x20000000 2 MB DDR 

Code & Data 0x00000000 102.4 KB Ram 0 

Heap & Stack 0xFFFF0000 10 KB + 10 KB Ram 1 

 

 

5.3 Timing and Latency 
 

 The total execution time of the system was 0.96 seconds. This time was achieved with a 

working frequency of 140 MHz on the PL clock. Table 28 shows the paths with the longest delays 

in the circuit (Paths within one module have the same From and To). 

Table 28 - Slowest Datapaths between 2 endpoints, in the circuit 

From To Total Delay (ns) Logic Delay (ns) Net Delay (ns) 

AXI DMA 0 AXI DMA 0 7.02 3.80 3.23 

AXI DMA 1 AXI DMA 1 7.012 3.86 3.15 

*PP/Counter 0 PP/Counter 3 6.15 1.08 5.08 

*PP is a reference to the Pixel Position module. 

 

Table 29 shows the latency of the top-level modules of the system. 

Table 29 - Latency of the Top-Level modules 

Name Latency (cycles) 

Distance 46 

Sample 6 

Filter 44 

MultC 3 

Accum 1 

TOTAL 100 
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The timing objective was fulfilled. The total execution time obtained represents a speedup 

of 500x over the original software only implementation, executed in the PS system of the target 

device. The execution time is very close to the expectations presented in section 3.2. The 

prediction is close to the result because the overwhelming factor in the execution time was known 

from the begging to be the number of iterations. The pipelined architecture and the re-scheduling 

of the algorithm allowed the overheads from accessing the external memory to be hidden without 

impacting the execution time. This last consideration is very important when considering that the 

system copies the full extent of the sample data input file once per region during execution. 

Although the frequency of the PL is 4.7 times lower than the CPU’s, its capacity to initiate a new 

iteration in every clock cycle due to the pipeline architecture presents an advantage that the serial 

architecture of the CPU cannot compete with. 

To achieve a valid design with a working frequency of 140 MHz some adjustments were 

made to the circuit, along with the employment of an implementation strategy focused on 

achieving the timing constraints. The adjustments consisted of adding extra pipeline stages to 

give Vivado the flexibility to separate physically two consecutive modules in the Datapath.  

 

5.4 Energy Consumption 
 

The energy consumption estimate provided by Vivado appears in table 30. 

Table 30 - Power consumption discriminated by component of the target device 

Component Power (Watts) Power (%) 

CPU 1.406 75 

Signals 0.129 7 

BRAM 0.118 6 

Logic 0.101 5 

DSP 0.067 4 

Clocks 0.064 3 

 

From table 30 it can be concluded that the CPU is responsible for most of the energy 

consumption of the system. When relating the power consumption profile presented in table 30 

with the Hw/Sw partition employed in the final implementation, a large discrepancy between the 

CPU’s workload and its consumption can be found due to this component’s static consumption.  

These results also act as a proof of the superior energetic efficiency of the PL fabric.  
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6 Conclusion  

 

 This work explored the development of a method of optimization to be applied to a large 

range of mathematical algorithms, along with the design of an optimized system to compute the 

imaging forming algorithm for a SAR system. 

The methodology’s greatest contributions lie mainly in the world of embedded devices 

and microprocessors without a floating-point unit. The methodology was developed around 2 

main ideas: the advantage offered by flexibility of an FPGA regarding parallel and pipeline 

architectures and the advantages offered by the fixed-point format. The use of an FPGA device 

allowed for the design of a pipeline architecture, the development of custom modules with custom-

sized operators and custom storage solutions adapted to the memory access patterns of the 

algorithm. The fixed-point conversion allowed for several optimizations, including the replacement 

of multiplications by simple bitwise operations, the reduction of resources required and the use of 

binary arithmetic that can be easily implemented with digital logic. The influence of both these 

ideas is exposed throughout this work. 

Both the initial studies performed on the Backprojection algorithm and their conclusions 

are generic enough to be used in the study of almost every other algorithm, with the exception of 

the re-scheduling that presents a reasoning very specific to the characteristics of the algorithm.  

The results obtained in the software fixed-point implementations are one more proof that 

the methods used today to approximate mathematical functions can provide a high quality 

solution, opening a lot of opportunities to the adoption of fixed-point architectures in optimization 

efforts. 

Although Vivado provides a good environment to design these types of projects, the time 

consumed in the development of the system depended heavily on the size of the algorithm that 

would be executed in programmable hardware. The ways to perform the debugging and testing 

in these systems are still very slow.  

As a result of this work, a cheap, lightweight, small, power-efficient solution was achieved, 

capable of computing the Backprojection algorithm to form an image of 512*512 pixels in less 

than a second.  
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6.1 Future Work 
  

 The fact that the device used in this work is low-end should show the potential of the SoC 

FPGA family in optimization efforts. The cheapest investment that can be made to achieve a 

significant performance upgrade is the use of a larger device that can present parallelization 

opportunities that were not taken in this work due to the lack of resources. With a high-end device, 

the working frequency could be increased, and the circuit could be cloned to easily create a 

parallel architecture, requiring small modifications in the Pixel Position module.  

The energy consumption could be greatly improved. Due to the Hw/Sw partition present 

in the design, the CPU was left with very few instructions to perform. Furthermore, the instructions 

that the CPU still performs are only pertaining the control of the AXI-DMA blocks and can be 

easily implemented by a finite state machine. Furthermore, none of the logic applied or the 

instructions depend on the higher frequency of the CPU to function properly. With these 

considerations in mind, the cheapest-fastest way to reduce energy consumption would be to 

replace the CPU with a custom module implemented in the FPGA fabric and choosing a more 

appropriate target device. 

While maintaining the new schedule of the algorithm, a continuous working mode could 

be built. Because the circuit computes the output image strip by strip, it could be adapted to accept 

new samples and compute new areas as the SAR platform moves, creating a stream of images.  

Floor-planning is outside the scope of this work, however it could be an effective method 

to achieve a faster final circuit. This opinion is based on the high impact of the Net Delay values 

in the Total Delay values of the slowest paths in the circuit, detailed in table 28 in section 5.3. 

A combination of these improvements could result in a product with useful real-time 

applications in a device with good portability characteristics. 
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Appendix A – Word-length study results 
 

Table 31 - Results from Word-length study of Constants 

Constants Value No. Bits 

ku 33.333 5 

dxdy 0.25 0 

dR_inv 32 5 

Z0 0 0 

R0 9936 14 

 

Table 32 - Results from Word-length study of the Distance group variables 

Variables Max ** Nº Bits 

ix 511 9 

iy 511 9 

Px 63.875 5 

Py 63.875 5 

PosX 7071.067 13 

PosY 423.182 9 

PosZ 7071.067 13 

Xdiff 7007.192 12 

Ydiff 487.057 9 

Zdiff 7071.067 13 

X1 50,907,409.773 26 
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Y1 237,224.914 19 

Z1 50,000,000.837 26 

XY 50,963,934.279 26 

XYZ 100,963,935.117 28 

R 10,048.081 14 

 

Table 33 - Results from Word-length study of Sample group variables 

Variables Max ** Nº Bits 

Rdiff 112.081 7 

Bin 3586.59 11 

Bin floor 3586 11 

W < 1 0 

Wc < 1 0 

Data.Re < 1 0 

Data.Im < 1 0 

Sample.Re < 1 0 

Sample.Im < 1 0 
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Table 34 - Results from Word-length study of Filter group variables 

Variables Max ** Nº Bits 

Quadrant 3 2 

Arg * 669,872.077 20 

Filter.Re (cos) 1 1 

Filter.Im (sin) 1 1 

 

Table 35 - Results from Word-length study of Complex Multiplication group variables 

Variables Max ** Nº Bits 

Prod.Re 1.000 1 

Prod.Im 1.000 1 

Accum.Re 295.677 9 

Accum.Im 325.648 9 
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Appendix B - Area models for basic arithmetic 

operators with operands of different sizes 
 

The following tables contain the resources needed to implement basic arithmetic operators in the PL 

fabric. The operators are studied for several operand sizes. 

 

Table 36 - Resources used by a multiplier, latency = 0, implemented with DSP 

Input Size Output Size DSP Latency 

64 128 16 0 

56 112 10 0 

48 96 9 0 

40 80 5 0 

32 64 4 0 

24 48 2 0 

16 32 1 0 

 

Table 37 -Resources used by an adder, latency = 0, implemented with LUT 

Input Size Output Size LUT Latency 

128 128 128 0 

64 64 64 0 

56 56 56 0 

48 48 48 0 

40 40 40 0 

32 32 32 0 

24 24 24 0 

16 16 16 0 

 

Table 38 - Resources used by a multiplier, latency = 1, implemented with DSP 

Input Size Output Size Register DSP Latency (cycles) Slack (ns) 

64 128 102 16 1 -24.026 

56 112 85 10 1 -13.693 

48 96 68 9 1 -11.980 

40 80 51 5 1 -5.128 

32 64 34 4 1 -3.415 

24 48 17 2 1 0.011 

16 32 0 1 1 1.725 
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Table 39 - Resources used by an adder, latency = 1, implemented with LUT 

Input Size Output Size LUT Register Latency (cycles) Slack (ns) 

128 128 128 128 1 2.254 

64 64 64 64 1 3.225 

56 56 56 56 1 3.453 

48 48 48 48 1 3.681 

40 40 40 40 1 3.909 

32 32 32 32 1 4.137 

24 24 24 24 1 4.365 

16 16 16 16 1 4.593 

 

Table 40 - Resources used by an adder, latency = 1, implemented with DSP 

Input Size Output Size DSP Latency (cycles) Slack (ns) 

48 48 1 1 3.746 

40 40 1 1 3.746 

32 32 1 1 3.746 

24 24 1 1 3.746 

16 16 1 1 3.746 

 

Table 41 - Resources used by a multiplier, latency = 2, implemented with DSP 

Input Size Output Size Register DSP Latency (cycles) Slack (ns) 

64 128 102 16 2 -22.765 

56 112 85 10 2 -12.432 

48 96 68 9 2 -10.719 

40 80 51 5 2 -3.867 

32 64 34 4 2 -2.154 

24 48 17 2 2 1.272 

 

Table 42 - Resources used by a multiplier, latency = 3, implemented with DSP 

Input Size Output Size LUT Register DSP Latency (cycles) Slack (ns) 

64 128 27 102 16 3 -3.867 

56 112 9 85 10 3 -5.513 

48 96 9 68 9 3 -3.800 

40 80 0 51 5 3 -0.374 

32 64 0 34 4 3 1.272 
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Table 43 - Resources used by a multiplier, latency = 4, implemented with DSP 

Input Size Output Size LUT Register DSP Latency (cycles) Slack (ns) 

64 128 27 132 16 4 -8.994 

56 112 9 158 10 4 -5.513 

48 96 9 99 9 4 -3.800 

40 80 9 74 5 4 1.339 

 

Table 44 - Resources used by a multiplier, latency = 5, implemented with DSP 

Input Size Output Size LUT Register DSP Latency (cycles) Slack (ns) 

64 128 52 210 16 5 -2.087 

56 112 39 181 10 5 -0.374 

48 96 34 128 9 5 1.339 

 

Table 45 - Resources used by a multiplier, latency = 6, implemented with DSP 

Input Size Output Size LUT Register DSP Latency (cycles) Slack (ns) 

64 128 77 250 16 6 -0.496 

56 112 57 182 10 6 1.272 

 

 

Table 46 - Resources used by a multiplier, latency = 7, implemented with DSP 

Input Size Output Size LUT Register DSP Latency (cycles) Slack (ns) 

64 128 113 331 16 7 1.272 
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Appendix C – Fixed-point formats for circuit signals 
 

Table 47- Fixed-Point formats of the signals in the figures in section 4.2 

Signal Format 

DISTANCE:  

Platpos.X Q14.25 

Platpos.Y Q14.25 

Px Q14.25 

Py Q14.25 

XDiff Q14.25 

YDiff Q14.25 

X1 Q30.50 

Y1 Q30.50 

XY1 Q30.50 

Z1 Q29.50 

Radicant Q28.50 

R Q14.25 

FILTER:  

2ku Q7.57 

ARG Q0.64 

Quadrant Q2.0 

2PI Q3.61 

ARG_1 Q1.22 

ARG_2 Q9.22 

SEN Q1.22 

COS Q1.22 

SEN_B Q1.22 

COS_B Q1.22 

QUAD_0 Q48.0 

QUAD_1 Q48.0 

QUAD_2 Q48.0 

QUAD_3 Q48.0 

Quad Q2.0 

filter.re Q1.22 

filter.im Q1.22 

SAMPLE:  

    WBIN:  

    R0 Q14.25 
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    bin_0 Q13.25 

    bin_dec Q0.20 

    Bin Q14.0 

    W1 Q1.25 

    W2 Q0.25 

W1_ Q1.25 

W2_ Q0.25 

Bin_1 Q14.0 

data_1 Q64.0 

data_2 Q64.0 

    INTERPOLATION:  

    data_1.re Q1.22 

    data_1.im Q1.22 

    data_2.re Q1.22 

    data_2.im Q1.22 

    s_re_1 Q1.22 

    s_re_2 Q1.22 

    s_im_1 Q1.22 

    s_im_2 Q1.22 

sample.re Q1.22 

sample.im Q1.22 

MULT C:  

re_1 Q3.44 

re_2 Q3.44 

im_1 Q3.44 

im_2 Q3.44 

Prod.re Q3.44 

Prod.im Q3.44 

ACCUM:  

Accum_1.re Q19.44 

Accum_2.re Q19.44 

Accum_1.im Q19.44 

Accum_2.im Q19.44 

 

 


