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ABSTRACT
We address the problem of representing dynamic graphs using
𝑘2-trees. The 𝑘2-tree data structure is one of the succinct data struc-
tures proposed for representing static graphs, and binary relations
in general. It relies on compact representations of static bit vec-
tors. By adding dynamism to the static compact data structures,
we can also represent dynamic graphs. However, this approach
suffers from a well known bottleneck in compressed dynamic in-
dexing, the problem of maintaining a changing collection so that
we can query the data structure efficiently. In this work we present
a 𝑘2-tree based implementation which follows instead the ideas by
Munro to circumvent this bottleneck. We refactored and extended
the work of Coimbra by building a C++ library. The library includes
efficient edge and neighbourhood iterators, as well as some illus-
trative algorithms. We also included a study on the add operation
first proposed by Munro. Our experimental results show that our
implementation is competitive in practice.

1 INTRODUCTION
Graphs are a natural way of modeling connections in the World
Wide Web and social networks [7]. In the World Wide Web, each
web page corresponds to a graph node, and each link corresponds to
a graph edge. Such a directed graph is called a web graph. In social
networks, the population’s behavior and attributes are typically
represented by social network graphs. Analyzing the structure and
data of the graph enables the in-depth mining of network char-
acteristics. The most common representations of a graph are the
adjacency matrix and list. For small scale graph data, these two
approaches can provide efficient querying. However, interesting
Web graphs are very large and their classical representations do
not fit into the main memory of typical computers, whereas the
required graph algorithms perform inefficiently on secondary mem-
ory. Compressed graph representations drastically reduce their
space requirements while allowing their efficient navigation in
compressed form. Most compression algorithms require decom-
pressing all of the data from the beginning before we can access an
element from the data structure. Compact data structures aim pre-
cisely at this challenge. According to Navarro et. al. [15] a compact
data structure maintains the data, and the desired data structures
over it, in a form that not only uses less space, but is also able to
access and query the data in the compact form, that is, without
decompressing it. Thus, a compact data structure allows us to fit
and efficiently query, navigate and manipulate much larger datasets
in main memory unlike if we used the data directly from its plain
form and classical data structures on top.

2 GRAPH REPRESENTATIONS
A graph is a structure consisting of a set of vertices 𝑉 = {𝑣1, 𝑣2, ...}
and a set of edges 𝐸 = {𝑒1, 𝑒2, ...}, where each edge has two vertices
and they are not necessarily distinct, so we have that 𝐸 ⊆ 𝑉 ×𝑉 .
This data structure can be denoted as 𝐺 = (𝑉 , 𝐸).

2.1 Adjacency Matrix
An adjacency matrix representation of a graph is preferred when
representing a dense graph where |𝐸 | is close to 𝑉 2 or when we
need to be able to query quickly if there is an edge connecting two
given vertices which can be given inO(1). In this representation, we
assume that the vertices are numbered 1, 2, ..., |𝑉 | in some arbitrary
manner. Then the adjacency matrix𝑀 representation of𝐺 consists
in a |𝑉 | × |𝑉 | matrix of Boolean values, with the entry in row 𝑣 and
column 𝑤 defined to be 1 if there is an edge connecting vertex 𝑣
and vertex𝑤 in the graph, and to be 0 otherwise [19]. So the time to
retrieve an edge in this representation is O(1) and it takes O( |𝑉 |2)
memory.

2.2 Adjacency List
The standard representation for sparse graphs (where |𝐸 | is much
smaller than |𝑉 |2) is the adjacency list representation. In this graph
representation we keep track of all the vertices connected to each
vertex on a linked list [19]. A graph 𝐺 consists of an array 𝐴𝑑 𝑗 of
|𝑉 | lists, one for each vertex in 𝑉 . For each 𝑢, 𝑣 ∈ 𝑉 , the adjacency
list 𝐴𝑑 𝑗 [𝑢] contains all the vertices 𝑣 such that the edge (𝑢, 𝑣) ∈ 𝐸.
There are variations to implement a adjacency list. Another possible
implementation associates each vertex in a graph with an array of
adjacent vertices using a hash table. In this case, there is an extra
memory usage for the hash table, however it allows to search an
edge in O(1) instead of O( |𝐴𝑑 𝑗 [𝑢] |).

2.3 Compressed Sparse Row and Column
These are widely known and most used formats of sparse data
structures. Mainly, they are used for write-once-read-many tasks
and these daa structures make absolutely no assumptions about the
sparsity structure of the matrix. In this case most of the entries of
the matrix representation are zeros. The Compressed Sparse Row
or Yale format [10] are commonly used to compress this kind of
matrices. However, this data structure is only memory efficient for
matrices where the non-zero entries (𝑛𝑛𝑧) are less than𝑚 × (𝑛 −
1) − 1/2. Comparing with the direct array representation where the
required memory is 𝑛2 while the Compressed Sparse Row requires
2× 𝑛𝑛𝑧 +𝑚 + 1. Analogous to Compressed Sparse Row, we have the
Compressed Sparse Column where the values are indexed first by
column with a column-major order.
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2.4 Compact Representations
Now we will continue our data structure analysis with the compact
data structures. he Web Graph is relative to a certain set of Uniform
Resource Locator (URL)s. It is represented as a directed graph where
the URLs are nodes and edges represent the links from 𝑥 to 𝑦

whenever page 𝑥 contains a hyperlink towards page 𝑦 [1]. The
features of the links of a Web Graph that are usually quoted are
locality and similarity were originally exploited by LINK database
[18]. The locality feature refers to most links contained in a page
lead the user to some other pages within the same host ("home",
"next"). All these links share the same prefix, which by ordering
lexicographically, the index of the source and target are close to
each other. Additionally, the similarity refers to the pages that
occur close to each other (in lexiographic order) tend to have many
common successors; this is because many navigational links are
the same within the same local cluster of pages, and even non-
navigational links are often copied from one page to another within
the same host.

2.4.1 LINK Database and WebGraph. The latter approach, which
can be referred to as Web Graph compression, can be traced back
to the LINK database [18]. This work presented techniques to com-
press the links in order to accommodate larger graphs, where some
of them presented around 6 billion edges. In the LINK database
work they noticed the locality and similarity features leading them
to conclude that URL-ids in the same adjacency list tend to be
close together in the URL-id space. Thus, they presented reference
compression techniques, where they represented the graph as an
adjacency list. More recently, the LINK database [18] has led to
the development in Java of the WebGraph framework [1] which
still provides some of the best practical compression-versus-speed
trade-offs. In similarity to the LINK database, this work also exploits
both locality and similarity features by using the same techniques
as previously mentioned. This work introduces a new technique
where instead of compressing directly based on the delta technique,
they first isolate subsequences corresponding to integer intervals
whose length 1 is not below a certain threshold. Thus, each list of
extra nodes will be compressed by using a list of integers inter-
val and also a list of residuals which are only compressed using
differences. This technique is named the differential compression.

2.4.2 𝑘2-tree. The 𝑘2-tree [3] is a very efficient compressed data
structure that competes directly with WebGraph framework. The
𝑘2-tree, a novel Web graph representation based on a compact tree
structure, takes advantage of large empty areas of the adjacency
matrix of the graph offering the least space usage 1–3 bits per link.
The 𝑘2-tree is a 𝑘2-ary tree where all nodes present 𝑘2 child nodes
or no children if they are a leaf node. In a graph with 𝑛 nodes,
the height of the 𝑘2-tree is ℎ = ⌊log𝑘 𝑛⌋. The 𝑘2-tree will consist
in two bit vectors based on the bit vectors [17]. 𝑇 (tree) which
stores all the bits of the 𝑘2-tree except those at depth ℎ. The bits
are placed following a levelwise transversal: first the 𝑘2 binary
values of the children of the root node, the values of the second
level, and so on. In addition, 𝐿 (leaves) – stores the last level of
the tree. This it represents the value of (some) original cells of the

1The authors consider the length of an integer interval is the number of integers it
contains.

adjacency matrix. The representation 𝑇 | |𝐿 permits fast navigation
to get the 𝑖𝑡ℎ child of a node 𝑥 in the tree, for any 0 < 𝑖 < 𝑘2.
Consider 𝑐ℎ𝑖𝑙𝑑𝑖 (𝑥) where 𝑥 is a position of 𝑇 such that 𝑇 [𝑥] = 1.
Then 𝑐ℎ𝑖𝑙𝑑𝑖 (𝑥) is at position 𝑟𝑎𝑛𝑘1 (𝑇, 𝑥) · 𝑘2 + 𝑖 of 𝑇 | |𝐿, where
𝑟𝑎𝑛𝑘1 (𝑇, 𝑥) is the number of 1s in 𝑇 [0, 𝑥]. In order to carry out
the operation 𝑐ℎ𝑖𝑙𝑑𝑖 (𝑥) efficiently, we need to support 𝑟𝑎𝑛𝑘1 (𝑇, 𝑥)
queries efficiently. The 𝑟𝑎𝑛𝑘 operation can be carried out in constant
time and fast in practice using sublinear space on top of the bit
sequence [5]. Moreover, this data structure allows to query directly
from the compressed form of the data structure. In fact, it allows
to query the following: list successor and predecessor nodes and
check a link in the graph.

2.4.3 Dynamic 𝑘2-tree. The dynamic 𝑘2-tree introduces the in-
sertion and deletion operations without having to decompress the
whole data [14]. In their work, they demonstrated that the gap
between static and dynamic variants of the indexing problem can
be almost closed. The main idea behind the dynamic 𝑘2-tree is
to keep the data distributed among several static 𝑘2-trees struc-
tures also known as collections 𝐶 = {𝐸1, ...𝐸𝑟 }. However, the 𝐸0
is represented through a dynamic and uncompressed adjacency
list in order to achieve the optimal amortized cost for each oper-
ation we must control the number 𝑟 of edges is each set 𝐸𝑖 . The
uncompressed container 𝐸0 can be implemented with an adjacency
list and a hash table that maps an edge to a position in the ad-
jacency list. This way we can access an edge in O(1). Moreover,
the first set 𝐸0 contains at most𝑚/log2𝑚 edges according to [14].
In general, each 𝐸𝑖 has 𝑚𝑖/log2−𝑖𝜀𝑚𝑖 , for some constant 𝜀 > 0,
where𝑚𝑖 is the number of edges in 𝐸𝑖 . If we have that 𝑖 = 𝑟 then
we have that𝑚𝑟 = 𝑚/log2−𝑟𝜀𝑚 and that𝑚𝑟 ≤ 𝑚 which implies
that 𝑟 ≤ 2/𝜀, when𝑚 is at least 3. In [8] it was demonstrated we
should use 𝜀 = 1/4 which gives us 𝑟 = 8, so we will have 7 static
𝑘2-trees to represent each 𝐸𝑖 . Hence for each 𝐸𝑖 maximum edges
follows a geometric progression. Regarding the space required to
represent the data structure we must consider 𝐸0 and the collec-
tions 𝐶 . For 𝐸0 we have O(𝑚0 log(𝑚0)) to represent the adjacency
list plus O(𝑚0 log(𝑚0)) bits for a coupled hash table to answer
the existence of edges in constant time, where 𝑚0 ≤ 𝑚/log2𝑚
is the number of edges in 𝐸0. Regarding the collections 𝐶 , the
required space for each set 𝐸𝑖 , where 1 ≤ 𝑖 ≤ 𝑟 is represented
by a static 𝑘2-tree which requires 𝑘2𝑚𝑖 (log𝑘2 (𝑛2/𝑚𝑖 + O(1))) bits
[4], where 𝑚𝑖 ≤ 𝑚/log2−𝑖𝜀𝑚. Hence, overall the space required
is 𝑘2𝑚(log𝑘 (𝑛2/𝑚) + 2𝑙𝑜𝑔 log(𝑛)) + O(𝑘2/𝜀) + O(𝑚)𝑏𝑖𝑡𝑠 [8]. The
operations supported by this data structure are insertions, deletions,
listing neighbors of a node and checking the existence of an link.
The insertion is carried out depending on the current size of 𝐸0. If
|𝐸0 | < 𝑚0, then we just add the new edge (𝑢, 𝑣) in the adjacency list
and we are done. Otherwise, we first build a new 𝑘2-tree with all
the edges in 𝐸0 and then we need to find the container 𝐸 𝑗 0 < 𝑗 ≤ 𝑟

such that
∑𝑗

𝑖=0𝑚𝑖 ≤ 𝑚 𝑗 , and rebuild 𝐸 𝑗 with all the edges from
𝐸0, ..., 𝐸 𝑗 by performing successive unions of 𝑘2-trees [4]. The amor-
tized analysis of the insertion cost follows the argument presented
by [14] for the general case with 0 < 𝑗 ≤ 𝑟 = ⌊2/𝜀⌋, gives us a time
complexity ofO(log𝑘 (𝑛) log𝜀𝑚(1/𝜀)). Similarly to the insertion op-
eration, the deletion operation also takes into consider both 𝐸0 and
the collection 𝐶 . In the first case, if the edge exists in 𝐸0, then we
remove it from the hash table. Otherwise we need to find 0 < 𝑗 ≤ 𝑟
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such that (𝑢, 𝑣) ∈ 𝐸 𝑗 and, if there is such 𝑗 , set the corresponding
bit to zero in 𝐸 𝑗 . During the deletion, we need to mark how many
edges have been deleted in 𝐶 until 𝑚′ > 𝑛/𝑙𝑜𝑔𝑙𝑜𝑔𝑚 edges were
marked. Once we reach this value we need rebuild 𝐶 again. Delet-
ing and edge in 𝐸0 takes constant time. Checking and deleting an
edge in our collections takes O((log𝑘 𝑛) = 𝜀), since checking if an
edge exists in a given 𝑘2-tree takes O(log𝑘 𝑛) [4], and we might
have to look in each collection 𝐸𝑖 , with 0 < 𝑖 ≤ 𝑟 = ⌊2/𝜀⌉. Once
an edge is found, marking it for deletion takes constant time. How-
ever, in need of rebuilding, after𝑚 = 𝑙𝑜𝑔𝑙𝑜𝑔𝑚 deleted edges, the
costs in this case is O(𝑚 log𝑘 𝑛), since it has an amortized cost of
O(log𝑘 𝑛𝑙𝑜𝑔𝑙𝑜𝑔𝑚) per deleted edge. Overall deleting an edge has
then an amortized cost of [8] O((log𝑘 𝑛)/𝜀 + log𝑘 𝑛 log(log(𝑚))).

3 GRAPH APIS
This is a concept in software that essentially refers to how multiple
applications can interact with and obtain data from one another.
A Library is a well-defined interface by which the behavior is in-
voked. In addition, the behavior is provided for reuse by multiple
independent programs. Libraries typically follow design patterns
and have its code organized in such a way that there is no need
to re-implement the same behaviour. We have analysed four dif-
ferent graph libraries [2] [13] [9] [1]. We verify that all of them
present a similar interface for their different graph data structures
and algorithms.

3.1 Extended functionality
The union operation was extended to the SDSL, since it is pivotal
to be able to implement the insertion and deletion operations in
the dynamic 𝑘2-tree. Besides, the node, edge and neighbor iterators
were added. For the insertion operation after the size of the 𝐸0 is
surpassed we need to create a new 𝑘2-tree with all its edges and af-
terwards we need to perform successive unions until the collection
that can accommodate all the edges from the previous containers
plus the 𝐸0. However, this operation was not implemented in SDSL
so we had to extend this functionality in the library. All libraries
support a wide range of useful algorithms for its data structures.
Accordingly, we intended for our API to support some basic search
algorithms, namely BFS and DFS and also more specific algorithms
more related to Web Graphs: the counting triangles in a graph [11]
and pageRank [16].

3.2 Improved performance on the addition of
an edge

We also decided to add to our work another implementation for the
add operation suggested by Munro in [14]. During the addition of a
new edge, when the container 𝐸0 is full, it is needed to integrate the
new 𝑘2-tree from the 𝐸0 with the others 𝑘2-tree containers perform-
ing consecutive unions. In this phase of the operation represents a
bottleneck that can be mitigated. We present two different kinds of
approaches to tackle this issue.

3.2.1 Munro and Delayed Union. As discussed in [14], it is possi-
ble to mitigate this bottleneck. This can be achieved by delaying
the union operation while the 𝐸0 container is not yet complete. So
instead of waiting for the completion of all the necessary unions,

this is mitigated by processing proportional iterations of the union
operation while the 𝐸0 is yet incomplete. Nonetheless, this approach
is complex to implement, so we also implemented a much more sim-
pler version of the union delay for comparison and testing purposes.
In this second delay version we only delayed the union operation
(as a whole) to the next addition. It is important to note, that a copy
of the 𝑘2-trees collections no longer is needed, since after the first
union process, although is unfinished, the data structure remains
coherent with all the edges (including the new edge) are present
in the data structure. Overall, it is expected to this version take as
much time and memory as the original add operation version while
reducing some of the spikes.

3.2.2 Background Thread. Additionally, it was also implemented
a parallel version where a background thread processes all time-
consuming operations, that is the conversion from 𝐸0 and the new
edge to a 𝑘2-tree and the unions operations. There is an edge case
however. At the time of adding a new edge, the previous rebuild the
data structure might not be over. Two different approaches were
carried out. In the first approach, the 𝐸0 is incremented and the edge
is inserted in this container, delaying the new union processing in
the background. Hence, the thread in the background is triggered
to process the unions as soon as the prior union processing has
finished. This method has the disadvantage of having extra memory
usage. Due to the extra rebuilds of 𝐸0 we also implemented a second
version of the parallel version, where instead of inserting the edge
in the 𝐸0, the main thread waits for the previous rebuild to be finish
in order to avoid the increase growth of the 𝐸0.

4 EXPERIMENTAL ANALYSIS
The experiments were performed on a 8-core machine AMD Ryzen
7 2700X Eigh-Core Processor @2.04GHz machine with 32K L1d
cache, 64K L1i cache, 512K L2 cache, 8192K L3 cache and system
memory of 64GB RAM. All the operations except the add, were
evaluated from a previously serialized dynamic 𝑘2-tree, reading
the whole graph from secondary storage. Our implementation was
compiled with g++ 7.5.0 and the SDK implementation was com-
piled with gcc 7.5.0 both using the -O3 optimization flag.We used
both real and synthetic datasets. In 1 we identify the datasets and
their properties. For each dataset, we present its vertex and edge
counts written as |𝑉 | and |𝐸 |, respectively, and bits per edge after
serialization. The sdk2tree2 corresponds to the SDK implemen-
tations and the sdslk2tree3 corresponds to our implementation
with the 𝑘2-tree from SDSL4. Real-world graphs were obtained from
the Laboratory of Web Algorithmics 5 [1]. Besides, the synthetic
datasets were generated from the partial duplication model [6].
Although the abstraction of real networks captured by the partial
duplication model, and other generalizations, is rather simple, the
global statistical properties of, for instance, biological networks and
their topologies can be well represented by this kind of model. The
generated random graphs [8] have a selection probability of 𝑝 = 0.5,
which is within the range of interesting selection probabilities [6].
The number of edges for those graphs is approximately 25 times

2https://github.com/aplf/sdk2tree
3https://github.com/joo95h/dynamic_k2tree
4https://github.com/joo95h/sdsl-lite
5http://law.di.unimi.it/datasets.php
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Dataset
|𝑉 |
(M)

|𝐸 |
(M)

sdk2tree
(bit/edge)

sdslk2tree
(bit/edge)

dm50K 0.05 1.11 21.26 25.01
dm100K 0.10 2.59 22.76 27.24
dm500K 0.50 11.98 27.97 32.25
dm1M 1.0 27.42 29.49 34.31
uk-2007-05 0.10 3.05 3.16 3.51
in-2004 1.38 16.92 3.14 3.56
uk-2014-host 4.77 50.83 9.58 11.02
indochina-2004 7.42 194.11 2.59 2.93
eu-2015-host 11.26 386.92 5.71 6.60

Table 1: Synthetic (dm) and real datasets’ information. The
first four datasets were synthetically generated using a du-
plication model. The last four datasets are real-world Web
graphs made available by the Laboratory for Web Algorith-
mics (LAW) [1] (uk-2007-05 is actually uk-2007-05-100000 in
the LAW website). Bit/edge ratio (post-serialization) is pre-
sented for each data structure.

the number of vertices. The elapsed time was measured using the
clock() function 6 and we considered the peak of memory usage
was obtained with GNU time 7 by the maximum resident size and
the disk space to. For all evaluated operations, we measured the
average time per individual operation where each time and mem-
ory resulted from the average of 5 individual executions. In 1, also
shows the compression ratio in bit per edge for both implementa-
tions. We denote a big gap between both datasets; in the real Web
Graphs datasets the compression ratio was much better than in the
dmgen datasets. In the real datasets the edges are ordered since the
websites usually point to links within the same website, promoting,
in our case, for the diagonal to be filled of the matrix representation
of the graph. Thus, in our 𝑘2-trees we will have less filled paths,
that is less 0𝑠 in T.

4.1 Union Operation
In 1 we have the average time and memory to perform the union
operation between the same 𝑘2-tree for the synthetic (dmgen) and
real Web Graphs datasets. For the synthetic and the Web Graphs
datasets, the average time for both implementations was very simi-
lar. However, there was some discrepancy regarding memory. The
memory plot shows the T and L bit vectors of the 𝑘2-tree in the
SDSL bit vector implementation consumes more memory than in
the SDK. In 1, it is difficult to understand the differences between
the two implementations regarding the average time. However,
from the collected data, we know that our implementation is faster
for smaller 𝑘2-trees than the SDK.

4.2 DKTree Operations
Now that we have analyzed the implemented operation in the
𝑘2-tree now we move on to the dynamic data structure. In this
section we will evaluate and compare the list neighbourhoods,
check individual link, add and delete edge operations between our

6http://man7.org/linux/man-pages/man3/clock.3.html
7https://www.gnu.org/software/time/
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Figure 1: Average time taken to perform the union operation
between the same 𝑘2-tree for synthetic (dmgen) and real Web
Graphs (webgraph) datasets.

implementation and the SDK’s. Finally, we also will evaluate the
edge and neighbour iterators and in the end of this chapter we will
analyze the implemented algorithms for the library. Since for all
implementations, the data structure was loaded from memory, all
operations present the same memory plot in 2. As previously seen
in 1, the SDSL implementation consumes more memory than the
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Figure 2: Resident memory peak for synthetic (dmgen) and
Web Graph datasets (webgraph).

SDK’s, consequently our serialized data structure will also occupy
more space.

4.3 Operations
From 3 4 5 and 6 we can see that our version had better performance
overall. Although, in 5 we can see that we had slightly different
results for the synthetic and Web Graph datasets. For the synthetic
dataset, our implementation had better performance regarding time
and worst regarding resident memory peak. On another hand, in the
Web Graphs datasets, the time difference between the two imple-
mentations was very close, although the SDK implementation was
faster. The reason behind this is that in 𝐶 we have smaller 𝑘2-trees
in each container, giving a small advantage to our implementation
during the union time. However, for the Web Graphs datasets, the
stored 𝑘2-trees in 𝐶 have more edges, turning the advantage to the
SDK implementation.

4.4 Augmented Add Operation Versions
We also implemented four more versions for the add operation. In
the following plots we compare time and resident peak memory
usage. As previously mentioned, the Munro’s version was divided
into two versions during the development phase and we also have
two alternative parallel versions. For easier understanding we have
the following:

• add edge – first implemented version.
• add edge delay – during the rebuild, each necessary union
(whole) operation is delayed for the next add operation.
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(dmgen) and real Web Graph datasets (webgraph).
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and Web Graph (webgraph) datasets.

• add edge munro – during the rebuild, the union operations
are distributed in 𝐸0 size iterations, according to Munro et.
al. [14].

• add edge parallel – A background thread runs the union
operations when rebuilding the data structure and the main
thread doesn’t wait for the background thread to finish.

• add edge wait – A background thread runs the union
operations when rebuilding the data structure and the main
thread waits until the background thread works.

Analyzing the plot in 7, for the add edge and add edge parallel
wait are visible some big and medium spikes. For the add edge
delay we have half of the size of the spikes from the two previous
versions and, finally, for the add edge parallel we can see fewer
and smaller spikes and finally for the add edge munro we there
are no spikes at all.

The implementations’ behaviour deviates in each dataset. Nonethe-
less, the maximum resident peak memory is the same for both. As
expected, the add edge delay took the same time and memory
comparing with the add edge, since the only difference between
these two versions is the moment of conclusion of the rebuild pro-
cess, where in the add edge delay is in the upcoming additions.
Next, we will be looking at the add edge munro version. This
was one of the slowest versions, due to the additional necessary
copies to keep the data structure coherent at the time of the unions
process. In fact, all extra implemented versions, except the add
edge delay need to create a copy of the current state of 𝐶 before
starting the rebuild process, however the add edge munro has no
background thread to help to speed the overall process. This is no-
ticeable in the memory plots, where the add edge munro and add
edge wait have very similar maximum resident peaks. Regarding
the add edge parallel was the fastest version in the synthetic
datasets and the slowest in the real Web Graphs datasets. The in-
crease of the size of 𝐸0 comes at a great cost for more dense graphs,
just like the Web Graphs. Moreover, this version had the highest
memory growth, ending consuming three times more memory than
the other versions. Lastly, we are going to analyze the add edge
wait. For the synthetic, this version took longer than the original
implementation add edge, meaning the main thread waited for
the background thread to finish quite often. Recall 5. Notice how
the average time to add an edge in the synthetic datasets is higher
than in the Web Graph datasets. The meaning of this difference is
that the unions operations take longer in the synthetic datasets. An
additional evidence that supports this is the compression ratios in
1. Hence, the performance of this version will be better in the Web
Graphs datasets as the background thread won’t make the main
thread wait as much as in the synthetic datasets.

4.5 Iterators
For both edge and neighbor iterators we only plotted against the
synthetic datasets. For the evaluation of the edge iterator, we loaded
the graphs from memory and iterated over the whole datasets. In
8, we have the comparison between the time and resident peak
memory consumption against the expected theoretical results. The
collected data shows the implemented edge iterator meets the the-
oretical bounds for time and memory. During the edge iteration,
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Figure 7: Average time and resident peak memory for the
four different versions of the add operation for the synthetic
(dmgen) and Web Graph (webgraph) datasets.

the whole 𝑘2-tree is visited. Thus, for a smaller 𝑘2-tree, the edge
iterator will take less time.

The neighbor iterator was evaluated with the same dataset in
3 and we also plotted against the list neighborhood method for a
richer comparison between the two implementations. From the ex-
perimental results in 9 show a straight line for the synthetic datasets.
However, there is a cost for maintaining a stack with the current
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Figure 8: Edge Iterator operation average time (dmgen) and
average memory resident peak (webgraph) for synthetic
datasets.

state of the navigation in the 𝑘2-tree. Nonetheless, the memory
usage was identical for both iterator and method implementations.

5 ALGORITHMS
We implemented some well known graph algorithms, for which we
compare consumed memory and execution time against expected
theoretical results.

5.1 Breadth First Search and Depth First Search
In 10 we show the behavior of BFS. For the running time, as we
increase the dataset size, the plotted curve is a straight line for the
duplication model and an almost straight line for the Web graphs,
which shows the implementation follows the expected theoretical
time of BFS given by O(𝑛

√
𝑚 +𝑚). Note the

√
𝑚 due to the cost of

listing of neighbourhoods. As expected, the peak memory while
running BFS is bounded byO(𝑛+𝑚). The results for DFS are shown
in 11. It has a behavior similar to 10 for both the Web graphs and
duplication model graphs, as expected.

5.2 Clustering Coefficient and Count Triangles
with Hash table

For clustering coefficient and triangle counting algorithms, we
present their running time and memory usage results only for
the duplication model graphs. We omit results on the Web graph
datasets as they are structurally different and thus performance
measurements with these algorithms does not follow the same
behavior as we increase dataset size. Note that we used a classic
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resident peak (webgraph) for synthetic datasets.
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Figure 11: DFS operation average time and average memory
resident peak (webgraph) for synthetic datasets.

algorithm for computing both the clustering coefficient and count-
ing triangles with an hash table. We present the evaluation for the
computation of the (global) clustering coefficient in 12. On the left
side we have the execution time while on the right side we have the
peak resident memory. The theoretical and empirical complexities
were in tune as we tested with bigger datasets. This algorithm iter-
ates over all edges (𝑢, 𝑣) and, without loss of generality, it iterates
over the neighbourhood of 𝑢, checking if each neighbour 𝑤 of 𝑢
is such that edge (𝑤, 𝑣) exists in the graph, where edge existence
is checked against a hash table with all edges. Neglecting heavy
hitters, i.e. vertices with more than

√
𝑚, neighbours which are un-

common for large scale-free networks, the expected running time
is O(𝑚

√
𝑚).

5.3 Count Triangles Visiting Neighbors
Since we can answer queries on edge existence with proposed
data structures in O(log2 (𝑛) log(𝑚)) time, we implemented an al-
gorithm for counting triangles using edge queries directly against
the data structure, and without relying on a hash table. Results
are provided in 13, being accordingly to the expected theoreti-
cal bounds. Note that the expected running time becomes now
O(𝑚

√
𝑚 log2 (𝑛) log(𝑚)) since we no longer can have edge queries

in expected constant time. But now we need much less memory
since we do not need a hash table to track edges, with memory
usage being essentially the space required to the compact graph
data structure.

5.4 PageRank
For the pageRank algorithm we plotted with the duplication model
graphs. We did not test with the Web Graph datasets since the



A graph algorithm library based on compact data structures

0

100

200

300

400

500

600

700

800

4e+10 8e+10 1.2e+11

t 
(s

)

m √m

Clustering Coefficient (dmgen)

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

m
e
m

o
ry

 (
M

B
)

n + m

Clustering Coefficient (dmgen)

Figure 12: Clustering coefficient time (dmgen) and memory
peak usage (webgraph) for the synthetic dataset.
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Figure 13: Counting triangles with neighborhood iterator
time (dmgen) and memory peak usage (webgraph) for syn-
thetic datasets.
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Figure 14: PageRank time (dmgen) and resident peakmemory
(webgraph) for synthetic datasets.

number of iterations to converge the algorithm is different due to
the different graph properties. In 14 we show the computation for
the pageRank algorithm with our data structure. On the right side
we have the execution time and on the left side we have the peak
resident memory. The theoretical and empirical memory complexity
is in tune as we tested with bigger datasets.

6 CONCLUSION
In this work we provide a tested and refactored C++ version of the
SDK library while also extended its functionality by implementing
edge and neighborhood iterators. To achieve this, we used the bit
vector and 𝑘2-tree from SDSL [12]. Nonetheless, the union opera-
tion, edge and neighborhood iterators were lacking in this library,
so we had to implement them too. We started our experimental
analysis with the union operation. In fact, we compare our imple-
mentation against the SDK’s.We have seen that our implementation
was faster for 𝑘2-trees with less edges, although it presented a faster
growth. So overall the SDK union operation was faster and also pre-
sented a smaller maximum resident memory peak for all datasets.
Indeed, the higher memory occurred for all studied operations due
to our representation having a higher memory consumption in the
𝑘2-tree, as seen during the study of the union operation. Regarding
the comparison between our implementation and the SDK’s, first
we analysed the list neighbors and check the presence of a link,
where our implementation showed better time performance and
a higher memory usage. Also, we performed the same study for
the add and delete operations. For the add operation, our imple-
mentation showed better results for the synthetic datasets than the
Web Graphs due to our union operation being faster for 𝑘2-trees
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with less edges and slower otherwise. Last but not least, our imple-
mentation performed better for the delete operation for the same
reason. In addition, we conducted a study on the addition operation
followed by Munro’s et al. [14] suggestion. From this work, two
implementations emerged: one that delays the (full) union opera-
tions to the next addition operation and a more granulated version
where all the unions cycle’s are split and distributed among the
next |𝐸0 | add operations. In fact, the Munro’s version takes slightly
more time and memory than the previous version since it is needed
to copy the 𝑘2-tree collections before the rebuild process, in order
to keep the coherence of the data structure. Moreover, two paral-
lel versions were implemented. The first one which at the time of
rebuilding the 𝑘2-tree collections when the 𝐸0 is full and the previ-
ous rebuild is unfinished, instead it inserts the new edge in the 𝐸0,
increasing its size. This parallel version demonstrated to be fast for
less dense graphs (dmgen) while consuming three times more mem-
ory than any other implementation. For the Web Graphs datasets,
the need for rebuilding the 𝐸0 demonstrated to be really costly
for both in time and space, being out performed by all the other
implementations in this environment. Thereafter, a second parallel
implementation was also studied. This implementation waits when
the 𝐸0 is full while the previous rebuild is unfinished. The results
for this version were highly linked with the size of the bit vectors of
the 𝑘2-trees, since for the synthetic datasets, the wait periods were
higher as the unions in the background thread took longer to per-
form while in the real Web Graph datasets, since the bit vectors of
the 𝑘2-trees were smaller, consequently the union operations took
less time to perform paving the way for this version to out perform
all other versions in these datasets. As our intention was to develop
a graph library, we also implemented some well-known algorithms
for basic search, namely the BFS and the DFS and also some web
graph’s related algorithms: the Clustering Coefficient, two different
counting triangles algorithms and finally the pageRank algorithm.
The results show that our algorithm implementations were correct,
since all plots’ curves were straight lines. Moreover, we conducted a
small study over the Counting Triangles algorithms. We compared
two different implementations; one used an edge table to query the
existence of an edge inO(1) and another implementation where we
used the neighborhood iterator over the data structure. Although
the neighborhood version is slower, the collected data shows that
the maximum amount of memory used in the hash implementation
was 2.2GB while in the neighborhood version was 350MB.

7 LIMITATIONS AND FUTUREWORK
An additional method that could be added is the processing of
the reverse neighborhoods for a node: both the method and the
iterator. This could be easily done since SDSL already offers this
method for a 𝑘2-tree. Another interesting operation that could be
implemented is the common neighbors between two vertices since it
is widely used in social graphs. There are common intuitions about
how social graphs are generated, for example, it is common to talk
informally about nearby nodes sharing a link. Our data structure is
well suited for parallelism. Since we have 𝑟 𝑘2-tree sub-collections
the read operations such as listing neighbors and checking if the
graph contains an edge. Since they are read-only operations these
could be computed in parallel, likely improving the performance

of these operations. The purpose of any library is to be used. In
our case, more general graph and Web Graph algorithms could be
introduced to the Algorithm class. Finally, the dynamic structure
implemented in this work with 𝑘2-trees, where its composition
consists in an uncompressed container 𝐸0 and a collection of the
static data structures 𝐶 , can be implemented with other static data
structures such as the WebGraph [1]. Thus, we could add dynamism
to WebGraphwhere𝐶 is composed several containers of WebGraphs
instead of 𝑘2-trees.
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