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Abstract

Magnetic Levitation is a field of study whose research is up to date and it poses as a technology
with a vast potential in our world. For several reasons, it has been a technology that is not always used,
however it can answer many different problems found today in our society. In order to complement the
knowledge in this specific area and possibly help spread its application, this thesis analyses different
simulation methods of the behaviour of a magnetic levitation system, with the intent to thoroughly
study and take advantage of all the benefits it can provide. All the methods studied have different
simplified assumptions that facilitate their use and help differentiate them, but all the results obtained,
as a consequence, end up with slight variations. Several calculation algorithms are developed that
provide the characteristic parameters of the system. These are also obtained with a finite element
method model. With this, one can understand how the system works, how the variables behave and
all their relations. All these methods are applied to a certain system, the results are compared and
many different conclusions are reached. This analysis is fundamental because it helps to understand
the system as a whole.
Keywords: Magnetic field, Electromagnetic induction Magnetic Levitation

1. Introduction

Magnetic levitation is a topic that is unknown to
the general public. Usually, only people that study
it acquire knowledge about it, even though it has
a wide range of applicability in our society. To in-
crease and expand this technology there has to be
a deep study about it.

In this article, several methods that simulate the
behaviour of a magnetic levitation system will be
examined and applied in order to understand how
such a system can be used and to take advantage
of all its benefits. All the methods consider several
simplifying hypotheses that facilitate the equations
behind the behaviour of the system and help under-
stand how the characteristic parameters vary with
each variable. All the methods consist of a coil car-
rying a time-varying current that levitates above
a conducting sheet. The current has a frequency
equal to 50 Hz and has a uniform distribution along
the cross section of the coil.

In the first method analysed, present in [5], the
author considers that the conducting sheet is per-
fect and has infinite thickness, which means, the
losses in the conducting sheet are equal to zero. The
coil has a circular cross section This approximation
is an oversimplification of the problem, even though

it facilitates the calculations.

Afterwards, the methods present in [4] and [7]
were studied. Both these methods approach the
problem in a similar manner. In contrast with the
previous method, these ones consider the losses and
a finite thickness regarding the conducting sheet.
The differences are that in [4] the cross section is
circular whereas in [7] the cross section is rectan-
gular. In the latter, the inductance is given by its
exponential approximation.

All these three methods consider the problem as
a two dimension planar configuration and each re-
spective author calculates every variable per unit.

Finally, the last method that is studied is present
in [3], which considers a circular cross section with
a conducting sheet with finite conductivity and fi-
nite thickness. The main difference between this
method and all the others is that this author uses
an axisymmetric configuration.

The methods discussed previously are used to cal-
culate the value of the magnetic field in the various
regions of the systems and from this value the induc-
tion coefficient of the coil and the levitation force
are found. Calculation, practical and simulation
methods are used and its results are compared so
that conclusions can be reached in order to increase

1



the knowledge of this technology.
Simulation and calculation methods help under-

stand the reality of magnetic levitation systems
without the need for practical trials.

2. Description of the used methods
2.1. Planar Configuration
The first method that was studied in order to de-
velop this article is present in [5]. The author con-
siders a conducting sheet with infinite thickness and
infinite conductivity. Assuming all the simplifying
hypotheses previously mentioned and present in the
article cited, the value of the inductance can be
given by

Ln =
µr
2

+ 2 ln

(
2hcd

r0
√
d2 + h2c

)
, (1)

where µr is the relative permeability of the material,
hc the distance between the center of the conductor
of the coil and the conducting sheet, d the distance
between the center of the conductor of the coil and
the center of the coil (radius of the coil), and, finally,
r0 the radius of the conductor of the coil.

The normalization used in the previous equation
is equal to

Lnorm =
µ0

2π
N2l, (2)

with l equal to the coil length and N the number
of turns in the coil.

Using the virtual work principle through the
derivative of the system inductance coefficient for
varying height of the coil in relation to the con-
ducting sheet it is possible to calculate the value of
the normalized magnetic force, which is given by

Fn =
2

hc
r0

[
1 +

(
hc
d

)2] . (3)

The normalization used for the force is

Fnorm =
1

2
I2coilrms

µ0

2πr0
N2l, (4)

where Ibef is the root mean square value of the cur-
rent in the coil.

A MATLAB [6] routine, named placaperf.m, was
developed using the equations formerly mentioned
to simulate and further understand the behaviour
of a magnetic levitation system. The results present
in this article were obtained using this routine.

An approximation to reality was made and the
conducting sheet was considered to have finite con-
ductivity and finite thickness. These hypotheses are
present in [4] and [7], the former being a theoretical
approach and the latter a practical approach.

The author from [4] is able to reach a value for
the normalized inductance, considering all the sim-
plifying hypotheses mentioned

Ln = Lpsn + Lcsn, (5)

where Lpsn corresponds to the inductance for the
perfect sheet case and Lcsn corresponds to the in-
ductance for the conducting sheet with finite con-
ductivity case.
Lpsn is already present in (1), since this contri-

bution is exactly the same as the case discussed in
[5].

When finite conductivity is considered, a correc-
tion must be done, so the value of this correction is
equal to

Lcsn = 8Re

[ ∫ +∞

0

V (ξ)e−2hcnξsin2(ξdn)dξ

]
, (6)

with

V (ξ) =
1√
ξ2 + j

cosh(υ) + βsinh(υ)

2βcosh(υ) + (β2 + 1)sinh(υ)
,

(7)

β =
|ξ|√
ξ2 + j

, (8)

υ =
√
ξ2 + jtn. (9)

hcn is equal to the normalized distance between the
center of the conductor of the coil and the conduct-
ing sheet, dn is equal to the normalized distance
between the center of the conductor of the coil and
the center of the coil (radius of the coil) and, fi-
nally, tn is equal to the normalized thickness of the
conducting sheet.

The normalization used for the inductance is
equal to (2). The other values obtain are normal-
ized with a multiplication by a factor q, equal to

q =

√
2

δ
, (10)

where δ is the penetration depth

δ =

√
2

ωµσ
, (11)

in a medium with permeability µ and conductivity
σ. ω corresponds to the value of angular frequency.

The magnetic force is given by

Fn =
Fav
Fnorm

, (12)

with

Fnorm =
1

2

µ0lI
2
coilrmsN

2

2πr1
, (13)

and
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Fav =
1

2
I2coilrms

∂L

∂h
. (14)

Icoilrms is equal to the value of the current in each
turn of the coil and l is the length of the coil.

By contrast, the author in [7] considers the expo-
nential approximation of the inductance, which is
the following

L = L0 − Lre−
h
γ , (15)

L0 represents the terminal inductance (value of the
inductance when the height of the coil is equal to
infinity). Lr describes the way the value of the in-
ductance lowers when it comes closer to the con-
ducting sheet. The γ is the attenuation factor, as
described in [7].

In order to study and understand the method de-
scribed, a MATLAB routine named placaimperf.m
was developed, where this method is recreated using
the equations present in this section.

2.2. Axisimetric Configuration

To analyse this configuration two articles were stud-
ied, [3] and [2]. The main difference between them
is that the author in [2] considers the conducting
sheet to have infinite thickness and advocates that
considering the value of the thickness in the calcu-
lations is not an adequate method since it adds on
complexity and the final result only deviates 3 %,
in the cases it was applied, which in his opinion is
not worth the effort. The author in [3] takes the
value of the thickness of the conducting sheet into
account.

In [3], the author considers a system that is
symmetric to a vertical axis, so despite being a
three-dimensional system, only two coordinates are
needed (radius and height) to calculate all the char-
acteristic parameters, which helps understand the
behaviour of the system as a whole. With the help
of Bessel functions, the author is able to calculate
the value of the potential vector of the magnetic
field in every region of the system. From this value,
he is capable of reaching the value of the impedance
of the system and thereafter the values of the induc-
tance, losses and magnetic force, which allow a full
understanding of the system as a whole.

2.3. Simulation Using a Finite Element Method

Finally, to compare the results and help validate the
methods previously described, the program FEMM
[1] was used. The finite element method is impor-
tant because it solves differential equations numer-
ically. This particular case serves as a tool to find
the value of the magnetic field. It poses as a versa-
tile and rigorous simulation program.

3. Results
3.1. Planar configuration
The placaperf.m algorithm was applied to the fol-
lowing data set

• relative permeability µr = 1;

• radius of the conductor in the coil r0 = 10 mm;

• distance from the center of the conductor to
the center of the coil d = 40 mm;

• number of turns N = 100;

• axial length l = 100 mm;

• resistance of the coil R = 0, 38 Ω;

• weight of the coil mg = 3, 5 N .

The values of the inductance of the coil and force
in relation to hc/r0 are present in Figures 1 and 2.

Figure 1: Normalized inductance in relation to the
height of the coil dividing by the radius of the con-
ductor in the coil.

Figure 2: Normalized force in relation to the height
of the coil dividing by the radius of the conductor
in the coil.
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The first conclusion to take from the results ob-
tained is that the value of the inductance increases
when the value of the height increases whereas the
value of the force decreases when the value of the
height increases. A point of equilibrium was found
when the force equals the value of the weight of the
coil, for a height of hc = 2r0 = 20 mm, present in
the Figure 2 in the dashed vertical line.

To apply the previously mentioned algorithm
placaimperf.m to the system, the upcoming data
set was used

• radius of the conductor in the coil r1 = 10 mm;

• distance from the center of the conductor to
the center of the coil d = 40 mm;

• thickness of the insulator in the conductor of
the coil e = 2 mm;

• height of the coil hc = 22 mm;

• number of turns N = 107;

• thickness of the conducting sheet t = 10 mm;

• axial length l = 91, 9 mm;

• resistance of the coil R = 0, 38 Ω;

• frequency f = 50 Hz;

• current in each turn Icoilrms = 26, 8 A.

The results obtained from this algorithm are
present in the Figures 3 to 10.

In Figure 3 the values of the normalized magnetic
induction in relation to the position dividing by the
height of the coil are present.

Figure 3: Normalized magnetic induction (Bn) in
relation to the position dividing by the height of
the coil (x/hc)

In this figure, the effect of the consideration of a
conducting sheet with finite conductivity is evident

in comparison with the case considering a perfect
sheet

In Figure 4 the values of the normalized induc-
tance in relation to the frequency are shown. It
is possible to understand that the inductance de-
creases with the increase of the frequency, even
though it tends to stabilize its value.

Figure 4: Normalized inductance of the coil in re-
lation to the frequency.

In Figures 5, 6 and 7 are shown the values of the
normalized inductance, normalized force and nor-
malized losses, respectively, in relation to the nor-
malized height of the coil. In Figure 5 are present
different curves, the dashed one corresponds to the
case when the conducting sheet is considered per-
fect, the dashed-dotted line corresponds to the cor-
rection of the consideration of a conducting sheet
with finite conductivity and thickness. Lastly, the
solid line corresponds to the standard case, which
is the result of the sum of the two cases previously
mentioned.

Figure 5: Normalized inductance of the coil in re-
lation to the normalized height, hcn = qhc.

In Figure 6 is not only shown the values of the
normalized force but also the effect of an exponen-
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tial approximation to calculate the inductance and
its consequences on the values of force. The formula
to calculate the inductance, present in [7] is given
by (15), where

• L0 = 980 µH

• Lr = 358 µH

• γ = 22 mm

Figure 6: Normalized force in relation to the nor-
malized height.

It is possible to observe in Figure 6 that the re-
sults obtained with this approximation do not drift
away from the ones obtained without it.

Figure 7: Normalized Joule losses in relation to the
normalized height.

In Figure 7, the normalization used is equal to

Pnorm =
lI2coilrmsN

2

πσr21
. (16)

In Figures 8, 9 and 10 are present the values of the
normalized inductance, normalized force and nor-
malized losses, respectively, in relation to the nor-
malized thickness of the conducting sheet. In Fig-
ure 8 the dashed line corresponds to the values of

the perfect sheet case, which is, as expected, a con-
stant, since the thickness of the conducting sheet is
irrelevant. The dashed-dotted line corresponds to
the correction of the consideration of a conducting
sheet with finite conductivity and thickness and the
solid line shows the values of the standard case.

Figure 8: Normalized inductance of the coil in rela-
tion to the normalized thickness of the conducting
sheet.

Figure 9: Normalized force in relation to the nor-
malized thickness of the conducting sheet.

In Figures 9 and 10 the dashed line represents
the value when the conducting sheet is considered
to have infinite thickness, as in [2]. It is possible to
conclude that this approximation is valid when the
value of the thickness is high.

In order to compare both approximations dis-
cussed it was considered a coil height of hc = 22mm
and the results in Table 1 were obtained.
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Figure 10: Normalized losses in relation to the nor-
malized thickness of the conducting sheet.

perfect
conducting
sheet

sheet with
finite
conductivity

Icoilrms[A] 22,4 26,8
Pjoule[W ] 190,6 273 + 16,8

Table 1: Comparison of a system with a perfect
conducting sheet and a system with a conducting
sheet with finite conductivity.

The values of the losses, in the case of the sheet
with finite conductivity, correspond to the losses in
the coil (273 W ) and the losses in the conducting
sheet (16, 8 W ). In the case of the perfect con-
ducting sheet, the value shown is for the losses in
the coil, as the sheet is perfect and does not have
losses.

3.2. Validation of the results obtained with planar
configuration

In order to validate the results obtained with the
algorithm placaimperf.m the same system was ap-
plied in FEMM. Both methods used the same data
set:

• radius of the conductor in the coil r1 = 10 mm;

• distance from the center of the conductor to
the center of the coil d = 40 mm;

• height of the coil hc = 22 mm;

• number of turns N = 100;

• thickness of the conducting sheet t = 10 mm;

• current in the coil Icoilrms = 1 A;

• axial length l = 92 mm.

A boundary condition was set in FEMM, a circle
with a radius of 1000 mm centered in the system
and the mesh size was set to 3 mm in the coil and

conducting sheet and 10 mm for the rest of the
space which is considered air.

The inductance calculated with placaimperf.m
is

Lcalc = 7, 46× 10−4H. (17)

The inductance using FEMM is equal to

Lsim = 7, 62× 10−4H. (18)

Both this values are in the same order of mag-
nitude. The values of the magnetic induction on
the surface of the conducting sheet are present in
Figure 11.

Figure 11: Magnetic induction on the surface of
the conducting sheet, for different values of x, using
FEMM (points) and the algorithm (line).

Finally, the force calculated with placaimperf.m
is

Fcalc = 0, 00425N. (19)

The force using FEMM is equal to

Fsim = 0, 00414N. (20)

The conclusion drawn from the analysis of the re-
sults obtained is that both method used reach ap-
proximately the same results, therefore the numeric
method in [4] is validated.

3.3. Influence of the cross section in a axisymmetric
configuration

The systems present in [4] and [7] are applied in
FEMM with the difference that the axisymmetric
configuration is considered for both of them.

The system with circular cross section has the
following dimensions

• radius of the conductor in the coil r1 = 10 mm;

• distance from the center of the conductor to
the center of the coil d = 40 mm;
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• height of the coil hc = 22 mm;

• number of turns N = 100;

• thickness of the conducting sheet t = 10 mm;

• current in the coil Icoilrms = 1 A.

And the system with rectangular cross section
has the following dimensions

• interior radius of the coil r1 = 31, 14 mm;

• exterior radius of the coil r2 = 48, 86 mm;

• distance from the center of the conductor to
the center of the coil d = 40 mm;

• inferior height of the coil l1 = 10 mm;

• superior height of the coil l2 = 27, 72 mm;

• number of turns N = 100;

• thickness of the conducting sheet t = 10 mm;

• current in the coil Icoilrms = 1 A.

In this case, the boundary condition was a semi-
circle with 1000 mm radius.

The inductance obtained with a circular cross sec-
tion is equal to

Lsim = 7, 64× 10−4H. (21)

While the value of the inductance obtained with a
rectangular cross section is

Lsim = 7, 27× 10−4H. (22)

In Figure 12 it is possible to observe the values
of the magnetic induction on the surface of the con-
ducting sheet for both systems.

Figure 12: Magnetic induction on the surface of the
conducting sheet, for circular and rectangular cross
sections.

For a constant value of current the values of
the Tables 2 and 3 were obtained. These tables
show the values of inductance and force for differ-
ent heights of the coil in the cases of a rectangular
cross section and circular cross section.

Height [mm] Inductance [µH] Force [N]
12 669 0,00696
22 764 0,00320
32 810 0,00161

Table 2: Inductance and force for different values
of height of the coil, with circular cross section.

Height [mm] Inductance [µH] Force [N]
12 614 0,00904
22 727 0,00404
32 788 0,00180

Table 3: Inductance and force for different values
of height of the coil, with rectangular cross section.

The variations found in the values above can be
explained by the differences in the value of the cross
section area and the radius of the coil.

3.4. Translation from a planar system to an axisym-
metric system

Results for the method present in [3] are not shown
due to the fact that the author does not provide the
means to verify the results obtained.

In this section two similar systems are simulated
in FEMM where the only difference between them
is the configuration. One is planar whereas the
other is axisymmetric. The objective is to find a
relation between both this system in order to ob-
tain the same results. The data set to simulate the
systems is the following

• radius of the conductor in the coil r1 = 10 mm;

• distance from the center of the conductor to
the center of the coil d = 40 mm;

• height of the coil hc = 22 mm;

• number of turns N = 100;

• thickness of the conducting sheet t = 10 mm;

• current in the coil Icoilrms = 1 A.

The axial length of the planar system is equal to
92 mm.

In Figure 13 are shown the values of the magnetic
induction on the surface of the conducting sheet, for
both configurations mentioned.

In Figures 14 and 15 are present the values of
inductance and force for different values of height
of the coil.
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Figure 13: Magnetic induction on the surface of
the conducting sheet, for planar and axisymmetric
systems, with d = 40 mm.

Figure 14: Inductance in relation to the height of
the coil, for planar and axisymmetric systems, with
d = 40 mm.

Figure 15: Force in relation to the height of the coil,
for planar and axisymmetric systems, with d = 40
mm.

In order to approximate the systems, the value of

the distance from the center of the conductor to the
center of the coil (d) was adjusted to 55 mm for the
axisymmetric case. The magnetic induction on the
surface of the conducting sheet is present in Figure
16

Figure 16: Magnetic induction on the surface of
the conducting sheet, for planar system, with d =
40 mm, and axisymmetric, with d = 55 mm.

When the adjustment to the value of d, in the
axisymmetric configuration, is made, the values of
the magnetic field for both cases become similar. In
Figures 17 and 18 are the values of inductance and
force in relation to the height of the coil, for this
specific case.

Figure 17: Inductance in relation to the height of
the coil, for planar system, with d = 40 mm, and
axisymmetric, with d = 55 mm.

The values of inductance and forces actually devi-
ate from each other which results in the conclusion
that the value of the magnetic induction in the sur-
face of the conducting sheet is not an acceptable
indicator to compare systems.
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Figure 18: Force in relation to the height of the
coil, for planar system, with d = 40 mm, and ax-
isymmetric, with d = 55 mm.

4. Conclusions

The main objective of this article was to analyse,
study and understand different methods of simulat-
ing the behaviour of a magnetic levitation system
and to find an algorithm that is faster when faced
with reduced computational capacities. Therefore,
every simplifying hypothesis and its impact on the
system were carefully examined.

From the application of the algorithm called
placaperf.m it is possible to conclude how the in-
ductance and force vary in relation to the height
of the coil, the former increases and the latter de-
creases. From the application of the algorithm
called placaimperf.m it is possible to understand
the behaviour of others parameters of the system
and also to understand the behaviour of the system
when the thickness of the conducting sheet is con-
sidered. When the results of this two algorithms are
compared with the results of the practical applica-
tion in [7] it is possible reach the conclusions that,
the method in [5], which considers a perfect con-
ducting sheet, deviates from the real case, due to its
simplifying hypothesis, however, it is possible to un-
derstand the fundamental laws of the system from
it. The method in [4] is more broad and its results
are closer to the real case. It is also a more versa-
tile method since it is possible to consider different
simplifying hypotheses, depending on the data set
used.

Afterwards, FEMM was used to validate all the
results obtained with the algorithms previously
mentioned. The results obtained with FEMM are
on the same order of magnitude as the ones ob-
tained with the algorithms developed.

FEMM was also used to study the impact of the
cross section in the results. A circular and a rectan-
gular cross section were used and the results were
moderately different, but this difference can be ex-

plained by the difference in the area of the cross
section. The final conclusion is that there was no
evidence to support an effect on the results caused
by the shape of the cross section.

Finally, FEMM was used to find a relation be-
tween the planar and the axisymmetric configura-
tions. It is evident in the results present in the ar-
ticle that this relation does not exist. When some
variables approximate in both configurations, other
variables diverge at the same time, making it im-
possible to find a relation. But it is possible to
correlate each variable independently for both con-
figurations.

While analysing all the results presented in this
article it is possible to reach the conclusion that the
method present in [4] and developed in the MAT-
LAB routine called placaimperf.m is the most ver-
satil and broad of them all, being the best method
to fully understand the behaviour of the system as
a whole. The accuracy of its results is supported by
the simulation of the system with FEMM.
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