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Resumo

O trabalho desenvolvido nesta tese foca-se na conceção, validação e comparação de diferentes soluções

de controlo que permitam um robô móvel particular - veículo tipo romba seguir uma dada referência. O

veículo tipo romba está equipado com dois módulos dirigíveis e direcionáveis, cada módulo com duas

rodas nas laterais. A modelação do veículo é baseado nas equações cinemáticas e dinâmicas. O

simulador do veículo é desenvolvido em Simulink /Matlab. O modelo cinemático do veículo aderente a

restrições não-holonómicas é projetada para o projeto de controlo, é também realizada uma lineariza-

ção do modelo em torno do ponto de funcionamento, obtendo assim um sistema linear em espaço de

estados.

O controlo de movimento é desenvolvido com a seguinte abordagem hierárquica: i) lei de baixo nível

para o controlo de velocidade do motor e ii) lei de controlo de alto nível para o controlo de posição. A

lei de controlo de baixo nível é baseado na teoria de controlo Proporcional-Integral-Derivativo (PID). A

modelação do sistema do atuador específico, e ainda uma implementação do controlo de velocidade é

realizada. As metodologias de controlo desenvolvidas para lei de controlo de alto nível são métodos de

controlo geométrico e de controlo ótimo. Os resultados da simulação demonstram que com as soluções

apresentadas, o veículo tipo romba segue a referência desejada com uma margem de erro aceitável, e

as vantagens e desvantagens de diferentes soluções de controlo são estudadas.

A tese permitiu uma contribuição significativa no âmbito do projeto de investigação e desenvolvimento

FORMULAfusion do Instituto de Plasmas Fusão Nuclear no Instituto Superior Técnico da Universidade

de Lisboa.

Palavras-chave: Robô móvel, Veículo tipo romba, restrições não-holonómicas, Controle de

movimento, Controlo linear, Controlo geométrico
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Abstract

The work developed in this thesis focuses on the design, validation, and comparison of different control

solutions allowing a particular wheeled mobile robot - rhombic like vehicle to follow a reference path. The

rhombic like vehicle equips with two drivable and steerable modules, and each module has two wheels

on the sides. The vehicle’s modeling is based on kinematic and dynamic equations. A simulator is built

in Simulink/Matlab. Furthermore, the vehicle’s kinematic model adherence to a nonholonomic constraint

is studied for the control design purpose. The linearizing of the kinematic model around the operating

point is performed to obtain the linear state-space system.

The motion control is developed with the hierarchical approach: i) low-level law for the motor speed

control and ii) high-level control law for the position control. The low-level control is based on the Pro-

portional–Integral–Derivative (PID) control theory. The modeling of the specific drive system followed by

implementing the speed control is performed. The high-level control methodologies developed for posi-

tion control are geometric control and linear optimal control methods. The desired performance criteria

are defined to allow proposed solutions to be compared. Simulation results demonstrate the presented

solutions enable the vehicle to follow the desired reference with an acceptable error margin, and the

advantages and disadvantages of different control solutions are studied.

The work presented in this thesis played an essential contribution to the project FORMULAfusion of the

Instituto de Plasmas Fusão Nuclear in Instituto Superior Técnico, University of Lisbon.

Keywords: Wheeled mobile robot, Rhombic like vehicle, Nonholonomic constraints, Motion

control, Linear control, Geometric control
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Chapter 1

Introduction

International thermonuclear experimental reactor (ITER) project is one of the most aspiring energy

projects today; it aims to explore nuclear fusion as a viable energy resource for the future. In order

to achieve the ITER’s main objective, the Remote Handling (RH) technique was needed due to the

restrictive presence of humans in inactivated areas during the maintenance operations. A particular

configuration of a wheeled mobile robot (WMR), the rhombic like vehicle system (RLVs), is expected to

operate in the ITER to transport the heavy load between two buildings: the Tokamak Building (TB) and

the Hot Cell Building (HCB). RLVs is a type of vehicle equips with two drivable and steerable modules,

the front and rear modules, each module with two wheels on the sides, thus enables higher maneuver-

ability. From now on, the RLVs is used to refer to the rhombic like vehicle system for simplicity.

The dissertation’s theme is integrated into the FORMULAfusion project. It aims to demonstrate a proof-

of-concept with a scale robot of RLVs with 250 kg of payload, transport necessary equipment, and move

along a highly confined space in complex paths.

This chapter introduces the mobile robot history, the significant challenges in the autonomous navigation

problem, and the dissertation’s main objectives and contributions.

1.1 Historical overview of mobile robots

The first unique WMR was built in the 1950s by Grey Walter (the UK, University of Bristol), a three-

wheeled, turtle-like mobile robotic vehicles. These vehicles are equipped with a light sensor, touch sen-

sor, propulsion motor, steering motor, and a two vacuum tube analog computer. He named the Adam

and Eve of his robots Elmer and Elsie (Electro-Mechanical Robots, Light Sensitive). Figure 1.1(a))

shows the Elsie without her shell. Even with the simple design, his robot was unique because they do

not have fixed behavior by the different responses to their environment.

Also, in the 1950s, the first AGV was invented by Barrett Electronics, USA. It was only a tow truck that

followed a wire on the floor instead of a rail (see Figure 1.1(b)). In 1969s, Shakey (Stanford University)

invented the first mobile robot controlled by vision(see Figure 1.1(c)). It was recognized as “the first

general-purpose mobile robot to be able to reason about its actions.” because it recognizes the environ-
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ment by the vision and creates plans to recover the error from the plan execution.

Later in 1979s, the first computer controlled autonomous vehicle was built by Hans Moravec - Stanford

Cart(see Figure. 1.1(d)), it successfully traverses a chair-filled room and circumnavigates the Stanford

AI Lab without any human intervention.

The research on solving the problem of making robots intelligent became popular in the 1980s and 90s.

The Hilare robot (see Figure 1.1(e)) was designed in 1977 at the LAAS (Laboratory of Analysis and

Architecture of Systems) in Toulouse. It is recognized as the first French mobile robot capable of au-

tonomously negotiating an unknown environment. It has an ultrasonic sensor to detect the nearby object

and a laser sensor to perceive the environment, and an odometer to get the distance measurement and

make appropriate decisions with all the in formations. The successive versions of this research project

were performed during the 1977s to 1992s; it led to significant progress in modeling the environment and

the autonomy, reactivity, and programming of mobile robots. Later on legged robot has been studied;

roboticist RodneyBrooks created Genghis, a six-legged insect-like robot at MIT in 1989s. He intended to

create robots that displayed intelligence and react to the world around them. The Genghis design was

inspired by the insect, which has limited brain function but still has tremendous functionality. In order to

do so, Brooks’ main idea is to" removed all cognition processors from Genghis and left only the sensors

and the code/hardware to allow it to walk." It does not have any pre-defined path; the robot took ac-

tions when the sensor detects the obstacles. In Portugal, the first Automatically Guided Vehicles system

(a) Elsie without her shell in 1950s (b) First AGV in 1950s (c) First mobile robot
to be controlled by vi-
sion in 1969s

(d) First computer controlled au-
tonomous vehicle in 1979s

(e) The Hilare I in France in
1977s

(f) Genghis in 1989s

Figure 1.1: The history of mobile robot [1]

for the automatic transport of materials in industrial units was built in 1991 for the joint project with a

EFACEC by Maria Isabel Ribeiro, IST Professor and currently part of the Intelligent Robotic Systems

group (ISR) in IST. A particular mobile robot is now developed by IST on the field of remote handling
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(a) Material loading (b) Operation in industrial environment

Figure 1.2: Instituto de Sistemas e Robótica (ISR) - EFACEC project: first AGVs in industrial units in
Portugal

operations in the ITER related with a transfer casks system. Gonzalez Gutierrez et al. [2] give a brief

induction about the transfer cask system in ITER, and [3] presents an overview of the work developed

in IST. A ongoing FORMULAfusion project aims create a scale model of the vehicle to be used at ITER,

is developed in IST, an automated vehicle with two steerable modules for cargo transportation using 3D

CAD software is already developed.

1.2 Motivation

The interest in using WMR for several different applications is increasing worldwide nowadays [4], such

as transportation in factories, warehouses, and places where there is a need for material delivery. In

warehouse robotics, two types of mobile robot are widely used for automating internal transportation

tasks: Automated Guided Vehicles (AGVs) 1 and Autonomous Mobile Robots (AMRs) 2. The most sig-

nificant differences between the AGVs and AMRs, are AMRs equips with sophisticated sensors that

enable them to understand and interpret their environment, which helps them to perform their task most

efficiently. Thus on most occasions, an AMRs is preferable to AGVs because it has higher maneuver-

ability and it is more flexible.

The WMR is defined as a robot capable of moving on a surface through the actuation of wheel assem-

blies mounted on the robot and in contact with the surface. A wheel assembly is a device which provides

or allows relative motion between its mount and a surface on which it is intended to have a single point of

rolling contact. Each wheel (conventional, omnidirectional or ball wheel) and all links between the robot

body and the wheel constitute a wheel assembly. Wheeled mobile robot can be classified according to

the drive system:

• Differential drive

1AGVs is a robot with minimal on-board intelligence and can only obey simple programming instructions, it is restricted to follow
the fixed routes, which require additional cost and disruption of the facilities infrastructure.

2AMRs is any robot that can understand and move through its environment without being overseen directly by an operator or
on a fixed predetermined path.
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• Car type

• Omnidirectional

• Synchro drive

The type of WMR as differential drive mobile robot is subject to the nonholonomic constraints. On the

other hand, the omnidirectional robots is subject to the holonomic constraints. General speaking, a holo-

nomic constraint is a constraint on space configuration and a nonholonomic constraint is a constraint on

velocity. Each type of mobile robot system has its own advantages and disadvantages. The selection of

the system for a certain task should take into account simultaneously maneuverability, controllability, and

stability. A particular rhombic like vehicle RLVs with nonholonomic constraint is developed that allows

transportation of equipment inside of the ITER.

ITER project is officially announced in 1997 as part of a seven-party consortium (six countries and the

EU). It aims to produce a fusion plasma ten times more fusion power than the power put into the plasma

and is currently under construction in Cadarache, France. The two main buildings of ITER are: the TB

were lodging the tokamak reactor and the HCB as a technical support area (see Figure 1.3). The ex-

Figure 1.3: Overview of the two main buildings of ITER: the tokamak reactor building (left) and the hot
cell complex (tight) [5]

treme work conditions of the reactor did not authorize the human’s presence in activated areas. Remote

handling (RH) operations are required to perform maintenance operations. Therefore, RH equipment will

play an important role in the success of ITER. The main operation of RH equipment in ITER includes

manipulating and exchanging components with weight up to 100 tons. The mission mentioned above

required the WMR moves autonomously along an optimized path or trajectory. Due to a complexity of

the ITER work conditions (see Figure 1.4), a particular configuration of a WMR, the RLVs, is expected

to perform the missions. This type of vehicle equips with two drivable and steerable modules, the front

and rear modules, each module with two wheels on the sides. This configuration of mobile robot is

preferred than others, because it enables higher maneuverability, which is a crucial attribute to consider

ITER’s cluttered environment. The advantage of the using the RLVs becomes more evident with a case

study mission in Figure 1.5. The possibles maneuvers of the RLVs system are: turned with the path as

showed in Figure 1.5(a) or sliding to the desired position with all wheels oriented in the desired orien-

tation (see Figure 1.5(b) and 1.5(c) ). The variety of the RLVs maneuver is possible because of high

degree of freedom on the modules steering configuration. Depending on the work condition and space
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Figure 1.4: Simplified versions of two levels in the main buildings of ITER: storage and maintenance
areas in the hot cell building (left) and divertor level of the tokamak reactor building (right) [5]

(a) (b) (c)

Figure 1.5: Maneuverability advantage of the RLVs: three scenarios

constraints, some of the driving configurations are preferable to others, and it should be take in account

in the motion planning stage. This dissertation only concerns if the designed controller can ensure all

the possible motion of the RLVs system.

There are three critical challenges in the mobile robot autonomous navigation: localization, motion plan-

ning, and motion control. This thesis studied the mobile robot motion control problem, which the system

receives as the input the motion plan in the previous stage - motion planning, and develop the feedback

control law that allows the vehicle to track the desired reference correctly.

1.3 Objectives and Contributions

The dissertation focus on the motion control problem of the scale prototype of a rhombic like vehicle,

developing the feedback control law that allows the RLVs to track the desired reference. In order to reach

the goal, the dissertation has two major objectives:

• Vehicle Modeling Analysis. This first part of the dissertation is the mathematical modeling of the

RLVs scale prototype. In order to reach this objective, different steps have been reached:

– A mathematical modelling of the vehicle based on the kinematic and dynamic equations is

performed, which the vehicle is divided into three systems: the drive system, the modules
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system, and the vehicle system

– The vehicle’s kinematic model adherence to a nonholonomic constraint is studied for the

control design purpose

– A vehicle simulator is developed in Simulink/Matlab for the validation of the control system

• Development of control solution for the vehicle motion control problem. This part aims to develop

motion controller that is able to allow the vehicle to follow the desired reference. The proposed

solutions are the following:

– A speed controller for the DC motor based on the PID control theory

– Geometric controller

– Optimal controller

Analysis of case study missions is performed to evaluated the proposed controllers performance.

1.4 Thesis Outline

Chapter 2 presents a general view of the mobile robot’s autonomous navigation problem, different sys-

tem constraints, and the existing solution. Chapter 3 introduces an analysis of rhombic like vehicle

motion behavior, developing the simulator for the validation of the control system. In this chapter, a

mathematical modelling of the vehicle is based on the kinematic and dynamic equations. The vehicle is

divided into three systems: the drive subsystem, the modules system, and the vehicle system. the motor

system modeling, followed by an analysis of the modules system, is provided. The dynamic and kine-

matic analysis of the RLVs and an evaluation of the building simulator is presented. The chapter closed

with an introduction of a control-oriented kinematic model and general consideration of vehicle motion

capabilities. Chapter 4 explained a control theory, including PID control, geometric motion control, and

optimal control methodology. With the model presented in Chapter 3 and theoretical background in

Chapter 4, the different control strategy is presented in Chapter 5 to track the predefined reference

trajectory. The simulation of the designed controller with several challenging paths shows the control

design can follow the desired reference with a reasonable error. The comparison between the proposed

controller is presented in Chapter 6, and the assessment is made considering parameters such as track-

ing errors and actuators’ request for a case study. In Chapter 7, the conclusions of this work summarize

the knowledge gained and point the directions of our forthcoming investigation.
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Chapter 2

State of the Art

Autonomous navigation is an essential issue in robotics research. Three general problems are involved

in autonomous navigation: localization, path planning and motion control. Since in this work only con-

sider the nonholonimic mobile robots, the nonholonomic system is introduced in section 2.1. The system

constraints are studied to identify the RLVs system and design a controller for it. Section 2.2 described

the importance of the localization and path planning problem in the autonomous navigation problem.

The existing solution of mobile robot motion control problem is presented in Section 2.3.

2.1 Nonholonomic Mechanical System

The concept of nonholonomic and holonomic systems is introduced to understand the mobile robot

system constraints. The system is holonomic if it withholds holonomic constraints; otherwise, it is non-

holonomic. The term constraints in the mechanical system refer to constraints of position and velocity,

which means that the relation between the position and velocity must be satisfied. The conception of

holonomic constraints in wheeled mobile robots refers to the constraints on the position (configuration).

There are two type of holonomic contrains[6]:

• Constraints in which time explicitly enters into the constraint equation are called rheonomic.

f(x1, x2, x3, t) = 0 (2.1)

with t time as an explicit variable.

• Constraints in which time is not explicitly present are called scleronomic.

f(x1, x2, x3) = 0 (2.2)

where the x1,x2,x3 are the system coordinate.

On the other hand, the nonholonomic constraints also know as velocity constraints or kinematic con-

straints. These constraints limit the space of possible velocities, and the relation is non-integrable to
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position constraints [7]:

f(x1, x2, x3, ẋ1, ẋ2, ẋ3) = 0 (2.3)

where the x1,x2,x3 are the system coordinate, ẋ1, ẋ2, ẋ3 respect velocities.

Since the studied system is a type of nonholonomic mobile robot, let us look at the nonholonomic me-

chanical system. The wheeled mobile robot, such as a RLVs, is subject to nonholonomic constraints

because of the constraints of rolling wheels. As many WMR literature concerns methodologies for ana-

lyzing, designing, and controlling the mobility system due to rolling without slip constraints, the kinematic

methodology is widely used. Muir and Neuman [8] describe nonholonomic kinematic constraints of a

unicycle and several wheeled mobile robots’ kinematic models, and the general kinematic methodology

for a different type of WMRs is presented.

Moreover, Kelly and Seegmiller [9] applied the kinematic approach to several different examples, in-

cluding differential steer, ackerman steer, a generalized bicycle model and the different cases of four

steered and driven wheels. A nonholonomic mechanical system with symmetry is discussed using the

Lagrangian mechanic approach to view the control application by Bloch et al. [10]. A dynamic model

for three case studies is performed in [11] to provide more accurate studies of wheeled mobile robot

motions, which can be later used in control system design and simulation.

In many studies, the kinematic model of the complex mobile robot are determined based on the kine-

matic model of the unicycle system (see Figure 2.1). Without a loss of generality, the kinematic modeling

of a unicycle can be expressed as follows:

Figure 2.1: Relevant variables for the unicycle system


ẋ

ẏ

θ̇

 =


v cos θ

v sin θ

ω

 (2.4)

with (x, y, θ) the pose in the global frame, (ẋ, ẏ, θ̇) the velocities in the global frame, v the linear velocity,

ω the angular velocity in the local frame, and θ is the angle of the wheel with respect x axis. The unicycle

system is under a Rolling Without Slip (RWS) condition, where the following relation must be obey:

ẋ sin θ − ẏ cos θ = 0 (2.5)

Based on the previous equations, the kinematic modeling of rhombic like vehicle and analysis of motion

capabilities is proposed in Fonte [5]. The type of thombic vehicle in study is a nonholonomic vehicle
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with two driven wheels, and presents increasing maneuvering ability compared to the remaining non-

holonomic vehicles because of the unique mechanical configuration. However, it does not model the

kinematics in the modules level. Based on a formulation of kinematic modeling of a RLVs described

by Fonte [5], this dissertation presents a kinematic analysis of each module’s system and kinematic

modeling of the vehicle.

2.2 Localization and Path Planning

The localization problem is a crucial key for the path planning and motion control problem. In short, the

localization problem intent to estimated the mobile robot position and orientation in a certain instant of

time. The precise localization of the robot ensure the accurate navigation. In general, there are two

type of localization approach: absolute (global) localization and relative (local) localization [12]. The

absolute localization method use the beacons, landmarks or satellite based signals to obtain the abso-

lute positions, while the relative localization method evaluate the position using on-board sensors. Li

et al. [13] propose a mobile robot localization method which combines relative positioning with absolute

orientation. It use the Extended Kalman Filtering (EKF) to realize the precise localization of wheeled

mobile robot. Doumbia and Cheng [14] introduce algorithm of state estimation and localization based

on sensor fusion for four wheeled mobile robot, in indoor environment.

The motion planning problem is as much important as the localization problem, because it calculates

the robot’s feasible path for the robot in a particular environment. The path planning algorithms can also

be divided into two broad categories: global path planning and local path planning. If the work condition

of the robot is well known before the robot moves, then the robot path can be obtained by global path

planning algorithms, take in consideration of the travelled distance, energy expended, time exposed to

danger. Different kinds of approaches have been proposed, such as cell decomposition Glavaški et al.

[15]. The cell decomposition is a type of the path planning algorithm that divides the space into con-

nected regions, which called cells, and the desired path can be obtained by connecting the midpoints

of the adjacent cells. Another approach is the visibility graph method in Dudek and Jenkin [16], and

it has been used for path planning of mobile robots among polygonal obstacles for a long time. This

approach has the advantage of calculating the shortest collision-free optimal trajectory quickly and easy

implementing.

When the robot has partial knowledge about the environment before it starts, the robot has to plan the

path locally. Defoort et al. [17] describes the path planning problem as a linear optimal problem with

constraints, which guarantees the navigation of the robot in unknown environments.

Laumond et al. [18] presented a efficient motion planner for a car-like robot that involved the metric in-

duced by the shortest viable path length in the absence of obstacles. Several approaches are presented

by Triggs [19] that enable plan complex paths for vehicles that are subject to nonholonomic constraints.

It proposed Dubin’s theorem and Reeds-Shepp theorem to calculate the shortest paths for car-like vehi-

cles. For the RLVs in studied, Fonte [5] proposed two different motion planning problem: the refinement

planning strategy and the Rapidly-exploring Random Tree (RRT), and the simulation results show the
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good proficiency of the presented solutions on handling feasible reliable paths in cluttered scenarios. A

complete and feasible path planning for the RLVs that will operate in the buildings of the ITER provided

a insight for the trajectory guidance and path following in the next stage.

2.3 Motion Control

Many WMR applications required the capacity of moving autonomously along a desired path or trajec-

tory. Therefore, after the mobile robot’s motion planning stage, how the system reaches the desired

trajectory involves developing a control system. The possible motion tasks are classified as follows:

• Path following: The path following problem concerns the design of control laws that allows an

object (robot manipulator, mobile robot ,etc) to reach and follow a geometric path. It only concerned

with the geometrical error between the actual pose of the vehicle and the path to be followed, and

the controller of the speed is usually provided by a additional velocity controller.

• Trajectory tracking: The trajectory tracking problem concerns on the minimization of a function

error that includes the mismatch between the actual configuration of the object and the virtual

configuration. A trajectory is normally defined as a time or velocity parameterized path.

Different kinds of approaches have been proposed for the motion control problem of mobile robot. The

pure pursuit algorithm has been used in the robotics field as a tracking algorithm for many years. Amidi

and Thorpe [20] proposed and tested this type of algorithm under various conditions and found it has

the most outstanding results as a general-purpose tracking algorithm. Campbell [21] presents a novel

approach to the implementation of the traditional "pure pursuit" style controller in which a dynamic vehi-

cle model is used to map from the path curvature specified by the pure pursuit algorithm to the vehicle’s

actual steering angle. This pure pursuit controller is then contrasted with a simulation-based controller

that uses a kinematic model to predict the vehicle’s response to a series of different steering inputs.

Various advances made in guidance problem have been published in the mobile robot path following

and trajectory tracking problem using linear control and nonlinear control. An path following of a dy-

namic wheeled robot in the presence of parameter uncertainty by Soetanto et al. [22], which a control

law was developed to control the rate of progression of a virtual target to track the desired path and

offered a formal demonstration of convergence of the robot to the path. In Kanjanawanishkul et al. [23] a

path following for unicycle mobile robot with a optimal forward velocity is performed with model predictive

control (MPC). Oelen and van Amerongen [24] proposed a linear tracking controller with two degrees

of freedom, where the controller’s accuracy only depends on the geometry of the reference trajectory.

The fractional PI controller was applied for Four Wheel Drive Skid-Steered Mobile Robot in Orman et al.

[25] in which the controller produces the torques of each motor of a mobile robot for trajectory tracking

and stabilization in the desired position, and the comparison between the fractional PI controller and the

conventional PI controller is evaluated.

Micaelli and Samson [26] present two types of controller for path following problem for the unicycle type

and two steerings wheeled mobile robot based on the relative path to vehicle distance and orientation.
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The first one is designed through feedback linearization, while the second one is based on the Lyapunov-

oriented approach. It also studied a solution to overcome the mobile robot singularities. Both linear and

nonlinear solutions achieved satisfactory results for path following problems. On many occasions, the

linear control is preferable to nonlinear control because of its simplicity compared to the nonlinear con-

troller; however, its robustness is limited. The study of De Luca and Oriolo [27] showed that the absence

of smooth stabilizability for nonholonomic systems is limited to stabilizing an equilibrium point, which

means the problem is genuinely nonlinear. Since the nonlinear feedback controllers can be complicated

in real applications and implementation, a model-based control design for trajectory tracking of mobile

robot based LQR is often used for tracking problem in recent years. It is one of the most widely used

static state feedback methods.

The research Morales et al. [28] presents an LQR trajectory tracking control of an omnidirectional

wheeled mobile robot, where an LQR controller is designed for speed control at the motor level, and

a comparison between the LQR controller and PI controller is discussed. Lin et al. [29] showed a LQR

controller for a car-like robot, based on a linearized kinematic model around the origin. The study shows

the effectiveness of the optimal LQR controller for the straight and curve trajectories. A LQR controller

for a particular two wheeled mobile robots - KHEPERA IV is presented in Abbasi and Moshayedi [30].

The studies discussed this type of robot’s complete dynamic model and applied several challenge path

to the system. The simulation results showed the control design could track applied reference paths with

an acceptable tracking error.

Both linear and nonlinear solutions have their advantages and disadvantages. Therefore, various re-

searchers try to combine both solutions for better performance. Demirbaş and Kalyoncu [31] proposed

a PID controller with a kinematic-based backstepping controller for a differential mobile robot trajectory

tracking problem. The backstepping controller is used to overcome the system’s non-linearity, and the

PID controller was used for the motor speed adjustments. As for the rhombic-like vehicle, four types of

path-following control of rhombic like vehicles are presented in Silva et al. [32], all based on the vehicle’s

kinematic model. However, this study suggests room improvement by include vehicle and actuators

dynamics. It also demonstrates that as the vehicle’s mass in the analysis is significant, the controller’s

performance deteriorates as the mass increases. And for the best of us knowledge, there is no de-

signed controller for the type of RLVs in the study: a vehicle with two modules, each module has two

driven wheels. This work aims to develop a controller based on the vehicle’s kinematic and the modules,

including the actuators’ dynamic, for RLVs to track the desired reference.
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Chapter 3

Mathematical Modeling

A formulation of the system aims to model the motion of the rhombic vehicle system. It is an essential

phase in the simulation and control problems. For this reason, this chapter presents the RLVs modeling.

In order to provide a general idea of this kind of vehicle system, like available actuators, their configura-

tion and limitations, the RLVs prototype is described in Section 3.1. Section 3.2 to Section 3.5 describes

the complete RLVs model. The kinematic control oriented model is introduced in Section 3.6.

3.1 Rhombic Like Vehicle System

The Computer-aided design (CAD) representation of the system is presented in Figure 3.1. The RLVs

Figure 3.1: CAD representation of the RLVs without platform

is composed of a front module and a rear module. Each module has two wheels, and a motor is asso-

ciated with each wheel. The system’s planar representation is presented in Figure 3.2 to illustrate the

main component of the system. To discuss the vehicle’s motion, it is necessary to define the its position-

ing information and coordinate frame. According to the Figure 3.3, the vehicle motion is defined with the

body-fixed coordinate frame (xB , yB) and the fixed coordinate frame (XI , Y I). ψ is the projection of the
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Figure 3.2: Planar representation of the vehicle

angle from the XB to the world’s XI and Y I plane. It increases in the counter-clockwise direction, which

implies that the vehicle’s left turn signifies a positive radius. The vehicle pose is defined as (x, y, ψ), and

it moves with linear speed v and angular speed ω.

Figure 3.3: Vehicle coordinate system

The modeling of a complex system, when possible, the approach is to separate the system into subsys-

tems and divide the task of modeling a complex system in modeling each of these simpler subsystems.

In this case, the goal is to model the motion of the RLVs, thus the equations are divided into three parts

as presented in Figure 3.4. Each system is described as follows:

• The drive system includes the four DC motors and the respect mechanical gear system. The input

to the drive system is the voltage source Vij , and the results of the drive system are the torque on

the wheel τij and the wheel angular speed ωij , with the i = f, r refer to the front or rear module

and j = r, l right or left side motor, respectively.

• The modules system includes the front and the rear module. Each module receives the actions

from the motors, in this case τij and ωij torque and angular speed of the wheel, and the result of

the modules system are the forces and moments acting on the center gravity of the vehicle.

• The equations of motion, where the forces and moment are responsible for the vehicle motion

according to the physics laws, dynamics, or kinematics equations. The state of the system is
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noted as x. It vary depending on the modeling perspective and will be refereed at the proper time.

Figure 3.4: Decomposition of the system

In the following sections, each system will be described from left to right in detail.

3.2 Drive System Modeling

In this section, a modeling process of the drive system is developed. It is assumed that the vehicle is

driven by four DC motors with mechanical gears. Therefore, the input of the drive system is four voltage

source Vij , while the output is the wheel’s rotational speed ωij and torque τij , with the i = f, r refer to

the front or rear module and j = r, l right or left side motor, respectively. The block diagram of the drive

system is shown in Figure 3.5.

Figure 3.5: Drive system of the vehicle

Each motor will be modeled as a DC motor with mechanical gears (see Figure 3.6). A motor has current

I, rotor angular speed ωm, inductance Le, moment of inertia J , resistance Re, the induced electromotive

force Eemf ,the voltage source V , KT is the constant that only depends on the force act on a conductor

in the magnetic field, Kb is the constant of friction.

The dynamic equation of the motor is presented as follows:

ReI + Leİ + Eemf − V = 0 (3.1)
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Figure 3.6: Schematic of DC motor with mechanical gear

Jω̇m = τm − cωm (3.2)

where the torque generated by DC motor τm is proportional to the current, and the electromotive force

Eemf proportional to the angular velocity as follows:

τm = KtI

Eemf = Kbωm

(3.3)

Using the equations (3.1) and (3.2), the motor system can be presented in the state space matrix form

as follows:

state : x =

 I

ωm

 (3.4)

input : u = V (3.5) İ

ω̇m

 =

 −Re

Le
−Kb

Le

Kt

J − c
J

  I

ωm

 +

 1
Le

0

V (3.6)

The motor engine model used in the project FORMULA fusion is the MDXL61GN3IP, a single and inte-

grated motor package (motor, drive and controller) sponsored by Applied Motion company (Reference:

J0200 − 408 − 4 − 000A), as illustrated in Figure 3.7. According to the information provided by Applied

Figure 3.7: MDX Servo Motor

Motion company (see Annex B), the motor specifications and parameters are given in Table 3.1.
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Table 3.1: Motor Model Parameters

Motor Parameters Value

Armature Resistance Re = 0.192 Ω

Armature Inductance Le = 0.56× 10−3 H

Torque constant Kt = 0.192 N ·m/A

Voltage constant Kb = 0.392 V/(rad/s)

Friction coefficient c = 3.0× 10−3 N ·m/s

Inertia J = 165× 10−7 kgm2

Supply Voltage 24-60 V

Maximum Speed 6000 rpm

Peak torque 1.9 N ·m

The block diagram of DC motor is presented in Figure 3.8, where the input is the voltage and the output

is the current I and rotor angular speed ωm. The drive system is equipped with a mechanical gear

Figure 3.8: Block diagram of DC motor

system as presented in Figure 3.9 where the transmission is consists of two stages: a small gearbox

and a set of gear wheels. The whole gear system provides the gear ratio n, where n = 84, therefore:

Figure 3.9: Mechanical gear system

τ = nKtI

ω = ωm
n

(3.7)
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with the τ is the torque acting on the wheels, and ω is denoted as the angular speed of the wheel until a

new definition is assigned. Additional dynamic effects related to the mechanical gear system are herein

not considered.

3.3 Modules System Modeling

This section, a detailed description of the modules system is being studied. After analyzing the drive

system, one obtains the torque τij and wheel angular speed ωij as the drive system’s output. To un-

derstand how the wheel torque effect the vehicle’s motion, the relation between the module velocity and

orientation with the wheel angular speed is presented in this section. The modules system is described

in which one obtains the equations that have the inputs as τij and ωij . The system’s outputs are forces

Fpx and Fpy, and moments Mpz in the center of the vehicle, which is a function of the forces acting on

the front module and rear module wheels, denoted as Fpfj and Fprj respectively, with j = r, l refer to

the right and left wheels (see Figure 3.10).

Figure 3.10: Representative diagram of modules system

The first module is implemented in the scope of the project. Figure 3.11 shows a module with two paral-

lel driven wheels, each wheel is attached with a drive system and a power supply. For the mathematical

analysis of the module model, based on the Figure 3.11, the model representative of the module is

presented in Figure 3.12. The (xm, ym) is the module fixed frame and (XI , Y I) is the global fixed frame,

and the ith module moves with forward linear velocity vi and angular velocity ωi. A module in general

moves in Two Dimensional (2D) world with forward speed and zero instantaneous lateral motion. As two

modules have same configuration, the modeling of the module system is identical for the front and rear

module. For notation simplicity, in this section, v and ω is refer to the modules linear and angular speed

until new definition is assigned.

Suppose that each wheel of the module has an angular velocity ωr and ωl with (r, l) refers to the right

and left wheel, and R the wheel radius. The model representative of the modules in the module fixed

frame (xm, ym) is presented in Figure 3.13, and the module rotates around the Instantaneous Center of
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Figure 3.11: Module prototype attached with drive system

Figure 3.12: Model representative of the front module

Rotation (ICR). D the distance between the wheels. According to the geometric relations presented in

Figure 3.13: Geometric relation of the front wheels
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Figure 3.13, the forward velocity v and angular rate ω depends on both two wheels angular velocities as:

vx = Rωr +Rωl
2 (3.8)

ω = Rωr −Rωl
D

(3.9)

Therefore the geometric relation in the front module can be summarized as follows:
vfx

vfy

θ̇f

 =


R(ωfr+ωfl)

2

0
R(ωfr−ωfl)

D

 =


R
2

R
2

0 0
R
D −R

D


 ωfr

ωfl

 (3.10)

with the ωfr the angular speed of the front module right wheel and ωfl the angular speed of the front

module left wheel. Analogously the same for the rear module:
vrx

vry

θ̇r

 =


R(ωrr+ωrl)

2

0
R(ωrr−ωrl)

D

 =


R
2

R
2

0 0
R
D −R

D


 ωrr

ωrl

 (3.11)

with the ωrr the angular speed of the rear module right wheel and ωrl the angular speed of the rear

module left wheel. Combining the equation (3.10) and (3.11), the modules linear and angular speed is

now expressed in function of ωfr, ωfl, ωrr and ωrl in the module frame. In the module frame, vfy and

vry are null, therefore the (3.10) and (3.11) can be simplified as:


vf

θ̇f

vr

θ̇r

 =


R
2

R
2 0 0

R
D −R

D 0 0

0 0 R
2

R
2

0 0 R
D −R

D




ωfr

ωfl

ωrr

ωrl

 (3.12)

with R the wheel radius and D the distance between the wheels.

Now one gets the modules velocities and orientations, how the force and moment affects the vehicle

motion is studied. The active force is generated by the motor, those forces are aligned to the wheels,

how those forces acting on the center gravity of the vehicle depends on the action of the modules system.

The force diagram with all active forces is presented in Figure 3.14: where θf and θr are the modules

orientations, and Fij the active forces of the vehicle with i = (f, r) refer to the front, and rear modules

and j = (r, l) to the left and right wheels, respectively. The Ff and Fr is the resulting force acting on the

front and rear module, respectively. Fpx and Fpy are the resulting forces in the x and y direction, and

Mpz the moment, in the center of the vehicle.

The active force is generated by the motor, and can be calculated as:

Fij = τij
R

(3.13)
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Figure 3.14: Force diagram for the vehicle

with τij the torque action on the wheels, and R the wheel radius.

The calculation of the resulting forces of the modules level in the vehicle frame is performed once each

module’s orientation is determined. For the analysis of the forces, the following relation is obtained

according to Figure 3.14:

Fijx
= Fij cos θi

Fijy
= Fij sin θi

(3.14)

with the index i refers to the ith module, j refers to the jth wheel.

The resulting forces in x and y direction, and moment from the action of the modules system are obtained

in relation to the vehicle center of gravity’s local coordinate system:

Fpx = Ffx + Frx = (Ffrx + Fflx) + (Frrx + Frlx) (3.15)

Fpy = Ffy
+ Fry

= (Ffry
+ Ffly ) + (Frry

+ Frly ) (3.16)

Mpz = D

2 (Ffrx + Frrx)− D

2 (Fflx + Frlx) + Lf (Ffry + Ffly )− Lr(Frry + Frly ) (3.17)

where the θf ,θr the front and rear orientation, respectively. D the distance between the left and right

wheels, Lf ,Lr the distance of the front, rear module to the vehicle center of gravity, respectively.

3.4 Vehicle Motion: dynamics and kinematics

Two sets of equations is used to describe the vehicle motion: the equation of dynamics, which relates

the forces acting in the body to it is acceleration or inertia, and the kinematics equations, which relate the

speed of the body to its position. When the vehicle is in motion, there are several force acting on center

of the vehicle (see Figure 3.15). As the type of the vehicle is expected to operate in the flat surface,

the dynamic model is simplified. According to the Newton’s second law of motion, the dynamic of the
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vehicle in the vehicle body frame can be described as:

Mv̇x + ωMvx = Fx

Mv̇y + ωMvy = Fy

Izω̇ = Mz

(3.18)

where the velocity vector expressed in the vehicle frame (xB , yB) as:

vB =


vx

vy

ω

 (3.19)

and M is the mass of the vehicle and Iz the vehicle inertia, and from now on the ω is denoted as the

angular speed of the vehicle.

After analyzing the drive system and modules system, one obtains the active forces (Fpx, Fpy) and

moments Mpz acting on the center of the vehicle. Additionally, the friction forces is considered. For

Figure 3.15: External forces acting on the vehicle

simplicity, all the resistant force presents in the vehicle is summarized as Fa, and defined as a function

of the vehicle’s speed :

Fax = µxvx

Fay = µyvy

(3.20)

where µx and µy are the friction coefficients. The value of the friction coefficients are related to the actual

pose of the RLVs and the surface condition of the work environment. It can be obtained experimentally.

Due to lack of the information, the first estimation of the friction value is made based on the Fonte [5],

and then adjusted to the RLVs model in studied.

Thus the velocities in the body frame is presented as follows:

v̇x = 1
M

(Fpx − µxvx − ωvx) (3.21)
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v̇y = 1
M

(Fpy − µyvy − ωvy) (3.22)

ω̇ = 1
Iz
Mpz (3.23)

For control and navigation purposes, the velocity vector expressed in the vehicle frame (xB , yB) as

(3.19) must be transformed to the global frame (XI , Y I):

vI =


ẋ

ẏ

ψ̇

 (3.24)

and this leads to the kinematics relations.

Consider the coordinates (x, y, ψ) give the vehicle position in the global frame; it may be regarded as an

integration of the inertial velocities vI in the global frame with the following relations:

vI =


ẋ

ẏ

ψ̇

 = RIB


vx

vy

ω

 (3.25)

with

RIB =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (3.26)

3.5 Rhombic Vehicle Simulator

Based on the modeling equations of the previous sections, the rhombic vehicle model can be expressed

in state space form as follows:

ẋ = f(x, u) (3.27)

where:

• the state x = [x, y, ψ, vx, vy, ω, θf , θr, Iij , ωij ]T

with (x, y) define the position of the vehicle, ψ define the orientation of the vehicle, vx, vy, ω define

the velocities of the vehicle in the local frame, and θf ,θr the modules orientations. Iij and ωij

are the current and angular velocity of four motors, respectively, with i = (f, r) the front and rear

module, j = (l, r) the left and right wheels.

• the input vector Vij = [Vfr, Vfl, Vrr, Vrl]T the voltage source of the four motors.

The RLVs model is based on (3.27) and block diagram presented in Figure 3.4. For simulation, the

following model parameters (see Table 3.2) is used.
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Table 3.2: Vehicle Parameters Simulation setup

Vehicle parameters Value

Distance of the front module to the Center of Gravity (CG) Lf = 0.5 m

Distance of the rear module to the CG Lr = 0.5 m

Vehicle width W = 0.7 m

Vehicle length L = 1.1 m

Distance between the wheels D = 0.25 m

Wheel radius R = 0.1 m

Vehicle Inertia Iz = 250 kgm2

Total Mass of the Vehicle M = 375 kg

Maximum speed v = 0.5m/s

A simulator was built in Matlab/Simulink for the validation of the control system (see Figure 3.16). In

Figure 3.16: Simulator in Simulink environment

additional a Matlab function is created for better visualization of the vehicle motion and the modules

orientations. The vehicle is simplified as a rectangle with nozzle on the head (see Figure 3.17(a)), the

size of the vehicle is design proportional to the parameter indicated in Table 3.2. The modules velocity

and orientation is expressed as vectors (see Figure 3.17(b)). The front and rear modules are presented

as green and red arrow, respectively. The size of the arrow is proportional to the value of the modules

speed. As for the better visualization, the ratio of velocities and size of arrow is changed case to case in
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the next chapter, and the function is used mainly for illustration of the modules orientation.

(a) RLVs motion visualization (b) Modules Orientation: The green arrow represents the
front module and the red arrow represents the rear module

Figure 3.17: Motion visualization

3.6 Kinematic Model of the Rhombic Vehicle

The model presented in the previous sections provides a complete description of the RLVs behavior

and will be used in the simulation of the designed controller in chapter 5 or whenever high accuracy

simulations are needed. This model’s limitation is the complexity; it does not provide an insight into the

control design. Therefore a simple model based on the system kinematics is presented in this section

that preserves the primary characteristic of the RLVs motion for control-oriented studies. The vehicle

system and the respect coordinate system are presented in Figure 3.18. As mentioned in previous

Figure 3.18: Model representative of the vehicle

chapter, in many studied, the kinematic model of the complex mobile robot are determined by combining
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the kinematic model of a individual rolling system which is described as:
ẋ

ẏ

ψ̇

 =


v cosψ

v sinψ

ω

 =
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cosψ

sinψ

0

 v +


0

0

1

ω (3.28)

with (ẋ, ẏ, ψ̇) are the velocities in the global frame (XI , Y I), and v and ω, the linear velocity and its

angular velocity around the vertical axis, respectively,ψ the robot’s orientation with respect x-axis.

According to Ma [33] and Figure 3.18, a kinematic model is extended for rhombic like a vehicle as:
ẋ

ẏ

ψ̇

 =


v cos (β + ψ)

v sin (β + ψ)

ω

 =
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cos (β + ψ)

sin (β + ψ)

0

 v +


0

0

1

ω (3.29)

with β the side-slip angle of the vehicle.

Furthermore, for the studied of a rhombic like vehicle motion, it would be necessary to analyzes the

relation of rhombic like vehicle motion concerning modules velocities (vf , vr) and the steering angles

(θf , θr), therefore the bicycle based model is introduced.

3.6.1 Bicycle based model

Kinematics modeling based on the bicycle model for four-wheel steering vehicles is described in [34].

The kinematic bicycle model is one of the standard models used as a suitable control-oriented model,

and it is adherent to the nonholonomic constraints. It allows the vehicle motion simulation directly through

the modules velocities vf and vr instead of velocities of each wheel’s linear speed. The bicycle model

assumes the modules as a rigid body, as presented in Figure 3.19. According to the literature and

Figure 3.19: Bicycle model
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geometric relation in Figure 3.19, the following equations are valid:

vI =


ẋ

ẏ

ψ̇

 =


cos (β + ψ)

sin (β + ψ)
(tan θf−tan θr) cos β

Lr+Lf

 v (3.30)

where β is the slip angle of the vehicle.

β = arctan Lr tan θf + Lf tan θr
Lr + Lf

(3.31)

v = vf cos θf + vr cos θr
2 cosβ (3.32)

The RLVs is considered as rigid body itself therefore the geometric constraints must be obeyed. The

geometric constraints is expressed as follows:

vf cos θf = vr cos θr (3.33)

As mentioned above, Equation (3.30) assumes the modules as a rigid body, however the relationship

between wheel velocities and modules velocities is already expressed in (3.12) in the previous section.

3.6.2 Motion capabilities and maneuvering ability

The mathematical modelling of the RLVs is presented above. It is essential now to analyze some con-

siderations about the RLVs motion. Depending on the steering configuration of the modules system, the

type of system enables high maneuverability. Figure 3.20 and Figure 3.21 shows a combination of the

steering configuration that allows the rotation around the ICR. The RLVs presented a higher degree

(a) wheels steered in equal angles, in the
x-direction

(b) wheels steered in equal angles, in the
y-direction

Figure 3.20: RLVs motion capabilities: I

of freedom compared to the typical car-like robot, especially for the cluttered environment in the ITER.

In short, with this kind of vehicle configuration, which the motion of the vehicle is provided by modules

movement, the vehicle tuned more easily.
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(a) turning on spot, (b) rotation around the ICR

Figure 3.21: RLVs motion capabilities: II

Singularities and sensible drive configurations

The multitude of steering and driving configurations of each module allows the RLVs has higher ma-

noeuvrability. However there are still some constrains of the RLVs motion in order to prevent vehicle

physical damage. There is some combination of the steering and driving configurations of the RLVs that

requires a strict coordination in order to achieve a sensible driving. Figure 3.22 showed possible motion

singularities that might occur during the operations task. Most of this singularities cause the violation

of the geometric constraints presented in Equation (3.33). In the motion control stage, the design of

the control law is taking in account the geometric constraints in order to avoid those type of motion

singularities.

(a) (b)

(c) (d)

Figure 3.22: RLVs motion singularities
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Chapter 4

Control Theory

4.1 Problem Formulation

As stated in the previous chapters, this work focus on the motion controller design. In chapter 3, the

RLVs mathematical model is obtained. The design, implementation, and simulation of the control laws

that solve RLVs’ tracking problems will be the next task. The motion control is based on the schematic

diagram of the control system, as shown in Figure 4.1, where the system’s global input is the reference

position (xref , yref , ψref ), and suppose the current position (x, y, ψ) of the RLVs is measurable. The

position control output is the four angular speed of the wheel. The low-level controller (PID controller in

the motor level) is used to ensure the desired wheel velocities are reached. A designing process of a

controller based on the hierarchical approach is presented: i) low-level law for the motor speed control

and ii) high-level control law for the vehicle position control.

Figure 4.1: Schematic diagram of control system

Today’s commonly used control theories are classical control theory, modern control theory, and robust

control theory. In this chapter, a brief introduction of the analysis and design of the control system is

presented. Section 4.2 has given the design of the PID controller based on the root locus approach.

Section 4.3 offers the principle of the geometric based motion control approach for the motion control

problem. Section 4.4 discusses state space design methods with the linear quadratic optimal regulator

systems. The chapter closes by introducing some general concepts in the design and evaluating the

control law in the next chapter.
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4.2 PID Controller

The PID controller is widely used in the industrial controller, and can be used to improve both sys-

tem transient response and steady state performance. Many different ways of tuning rules have been

proposed in the literature. The PID transfer function is given by:

U(s)
E(s) = Kp +Ki

1
s

+Kds (4.1)

Kp is the proportional gain, Ki is the integral gain, Kd is the derivative gain, E(s) is a error tracking

signal and U(s) is the control actions. The proportional gain Kp decrease the rise time but leads in more

oscillation, the integral gain Ki eliminate steady state errors, but increase the plant system overshoot;

the gain derivatives Kd will decrease the overshoot, but increase the setting time and may possibly

cause instability. These suits as guideline for the parameter tuning.

If the mathematical modelling of the plant can be found, then the problem is addressed to apply the

design techniques to determining the controllers parameters that fulfil the transient and steady-state

specifications of the closed loop system. If the mathematical model of the plant is unknown, then a

experimental approaches to the tuning of PID controllers can be used. For the control system design

and the system analysis, the root locus method is often used. The closed loop system performance is

closely related with the location of the closed loop poles, thus one can plot the root locus plot by hand

or use software like Matlab to studied the basic characteristic of the system. For the control design, the

root locus method is used to predict the effects on the location of the closed loop poles by adding poles

and zeros to the system open loop transfer function, and try to force the root locus to pass the desired

closed loop poles in the s plan. The desired closed loop poles are often calculated according to the

desired steady state and transient requirements.

The PID control design via root locus method presented in [35] can be outlined as:

• Evaluation of the uncompensated system to determine how much improvement in transient re-

sponse is required

• Add zeros and/poles to the system to yield the transient and steady state requirement

• Simulation of the system to be sure all requirements have been met

• Redesign if simulation shows that requirements have not been met

4.3 Geometric Path Tracking Controller

Motion control problem aims to compute the control commands such that the vehicle can follow a refer-

ence path. The resulting control input should minimize the difference between the reference path and

the actual path. There are various methods presented in the literature; two of the most popular types

are a geometric and model-based method. In this section, a brief introduction of geometric methods is

presented.
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A geometric path tracking controller is any controller that tracks a reference path using only the geom-

etry of the vehicle kinematics and the reference path. A very first approach is known as pure pursuit

controller which initially was created to calculate the arc necessary to get the robot back to a path. Fig-

ure 4.2 intent to show the geometric relation between the desired path and the vehicle actual position.

Consider (xref , yref , ψref ) are the reference pose of the vehicle, the (x, y, ψ) are the actual pose in the

global frame. The (δx, δy, δψ) are the difference between the reference pose and the actual pose of the

vehicle. From the geometric relations:

Figure 4.2: Geometry of the Pure Pursuit algorithm. The curvature of the arc indicates a circle of radius
r. Parameter ld is the look ahead distance, with xref and yref defining the position of the look ahead
point relative to the vehicle.

δ2
x + δ2

y = l2d

d2 + δ2
y = r2

(4.2)

where d = r − δx.

According to Figure 4.2, the curvature of an arc is denoted as γ and it can be calculated as:

γ = 1
r

(4.3)

Combining the Equations (4.2) and (4.3), the curvature γ is obtained:

γ = 2δx
l2d

(4.4)

In short, the pure pursuit algorithm is a proportional controller based on the error between the current

heading angle and the desired heading angle δψ, where sin δψ = δx

ld
. For small heading angle error
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δψ = δx

ld
. Substitute this to the (4.4), one can get:

γ = 2δψ
ld

(4.5)

This algorithms (4.5) only has single parameter to tune: the looking ahead distance ld. Smaller look

ahead distance increases the maximum curvature of a path that can be tracked, and the system tracks

the path more accurately. Bigger look ahead distance allows the system to begin turning before it

reaches the curve, resulting in smoother trajectories.

The pure pursuit algorithm is effective because the control law is designed to calculate the arc based on

the cross track error, if the error increase, the arc necessary to get the robot to the path is also bigger,

therefore bring the robot to the path more aggressively. Knowing the necessary curvature to get the

robot to the path, using the kinematic model, one can get the desired linear and angular speed of the

robot, Coulter [36] describe in detail the implementation of the pure pursuit path tracking algorithm, and

can be outlined as follows:

• Determine the current location of the robot.

• Find the path point closet to the robot.

• Define the desired point.

• Calculation of the linear and desired angular velocity.

• Update the robot position.

An improvement of the pure pursuit algorithm but also based on the geometry relation is stanley con-

troller. It is the trajectory tracking approach used by Standford University’s Darpa Grand Challenge

team. Stanley algorithm not only take in account the heading angle error but also the cross tracking

error, thus more effective and steady. In brief, it treats automobile trajectory tracking in a new manner,

by considering the orientation of the front wheels, not the vehicle’s body with respect to the desired tra-

jectory, enabling collocated control of the system [37]. Based on the principle mentioned above, linear

or nonlinear control law can be design for calculation of the desired velocity. The reason why this type

of controller is often used in the autonomous navigation problem is because the implementation of this

type of controller is usually easy, and tend to work better for lower speed driving. As the RLVs is suppose

to work under a very low speed, the first approach of vehicle motion control is based on the geometric

controller principle.

4.4 Quadratic Optimal Regulator

This section briefly describes the optimal control theory. A explanation of the theoretical tools is pre-

sented, along with an analysis of the effects of the controller parameters. The optimal control methodol-

ogy aims to find an optimal control law for a given system with a respect cost function. Considering the
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optimal regulator problem that, given the system equation:

ẋ = Ax+Bu

determines the matrix K of the optimal control vector

u = −Kx

so as to minimize a certain cost function. Consider the following case, where the standard cost function

for a LQR problem is shown as:

J∗ = minu

∫ tf

t0

(x(t)TQx+ u(t)TRu(t))dt+ x(tf )T (tf )F (tf )x(tf )

ẋ(t) = Ax(t) +Bu(t)

x(0) = x0

(4.6)

where tf is a fixed time.

This is called a finite horizon LQR where Q is a positive-definite (or positive-semi-definite) Hermitian or

real symmetric matrix and R is a positive-definite Hermitian or real symmetric matrix. The matrices Q

and R determine the relative importance of the error and the dissipation of the energy. Therefore, if the

unknown elements of the matrix K are determined so as to minimize the performance function J , then

u = −Kx is optimal for any initial state x(0). The block diagram showing the optimal configuration is

shown in Figure 4.3. The feedback control law uopt(t) that minimizes the value of the cost is given as:

Figure 4.3: Optimal regulator system

uopt(t) = −K(t)x(t) (4.7)

where the K(t) is the gain matrix determined by LQR controller optimally:

K(t) = −R−1BTP (t)

P (t) is found by solving continuous time Riccati differential equation, numerically:

ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q = −Ṗ (t) (4.8)
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with the boundary condition:

P (tf ) = F (tf )

However a more simple case is when the matrices A,B,Q and R are constant together with an infinite

horizon problem. The cost function and conditions now is defined as:

J∗ = minu

∫ ∞
0

(x(t)TQx(t) + u(t)TRu(t))dt

ẋ(t) = Ax(t) +Bu(t)

x(0) = x0

(4.9)

The system is consider in the steady state condition, therefore the solution can be considered as an

Algebraic Riccati Equation (ARE) :

ATPss + PssA− PssBR−1BTPss +Q = 0 (4.10)

and

uopt(t) = −Kx(t) (4.11)

with

K(t) = −R−1BTPss

For the trajectory tracking problem, suppose given a system ẋ = f(x, u) and a reference trajectory

(xref , yref ), the problem becomes to calculate a compensator of the form u = K(x, xref , uref ) such that

when t goes to infinity, the position error is equals to zero.

4.5 Common Concepts

The design and evaluation of the control laws that solve the vehicle tracking problem requires the prior

definition of some concepts. This section gathers all the common elements used hereafter.

4.5.1 Velocity transformation

The kinematic relations that allows the transformation of the control variables (v, β, ω) to modules veloc-

ities and orientation (vf , θf , vr, θr) is proposed by Kelly and Seegmiller [9]. And in order to get output as

(ωfr, ωfl, ωrr, ωrl), the kinematic relation of the module system is used. Once the relations between the

modules velocities and vehicle velocities is obtained, the solution presented in this work can be used for

RLVs with more than two modules.

According to Figure 4.4, to obtain the values of (vf , θf , vr, θr), and meanwhile respecting the rigid body

constraint

vf cos θf = vr cos θr
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the following relations between the modules speed and vehicle speed must be verified:
vfx

vfy

vrx

vry

 =


1 0 0

0 1 Lf

1 0 0

0 1 −Lr



vx

vy

ω

 (4.12)

where

vx = v cosβ

vy = v sin β
(4.13)

Lf , Lr is the distance of the front and rear module to the CG, respectively. The orientation can be

obtained using the trigonometric relation:

θi = arctan 2viy
vix

(4.14)

and the linear velocity of the module:

vi =
√
vix2 + viy2 (4.15)

The module is equipped with two wheels, and each wheel is attached with a motor. In body frame, the

angular velocities of the wheels can be obtained from the modules speed as:
ωfr

ωfl

ωrr

ωrl

 = 1
R


1 D

2 0 0

1 −D2 0 0

0 0 1 D
2

0 0 1 −D2




vf

θ̇f

vr

θ̇r

 (4.16)

with R the wheel radius, and D the distance between two wheels. Hence, this transformation allows that

Figure 4.4: RLVs velocity transformation

motion control thought (v, β, ω), inside of (ωfr, ωfl, ωrr, ωrl).
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4.5.2 Position errors

The position error concept is introduced to evaluate the performance of the path following and tracking

controller. For the path following problem, the reference trajectory is defined as way-points, no time

dependent. This means the errors (δx, δy, δψ) are defined as the difference between the closet dis-

tances between the vehicle position (x, y, ψ) and the reference trajectory (xref , yref , ψref ) as presented

in Figure 4.5. Therefore, the position errors are defined as:

Figure 4.5: Errors definition

δx = xref − x

δy = yref − y

δψ = ψref − ψ

(4.17)

The big difference between the path following and trajectory tracking problem, is in the path tracking

problem, the reference trajectory in time-dependent variables. It can be given as function of the time

or way-points with predefined velocities. Consider the vehicle is at position (x(t), y(t), ψ(t)), and the

reference is given as (xref (t), yref (t), ψref (t)). The position errors in the local frame is given as:


δx(t)

δy(t)

δψ(t)

 =


xref (t)− x(t)

yref (t)− y(t)

ψref (t)− ψ(t)

 (4.18)

Both path following and trajectory tracking problem are studied in this work, and the conception of errors

is used for the evaluation of the problem. The root mean square (RMS) of the position error is used for

the comparison between the presented controllers.

4.5.3 Sensitivity and robustness to parameter uncertainty

In the described RLVs model, some of the parameter are likely to be uncertainty. And as the controller

design is mainly based on the kinematic relations, the sensitivity and robustness of some of the param-
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eter are performed to evaluated the controller performance.

The parameters for which some uncertainty is assumed are then:

• M - vehicle mass

• Lf - distance of the front module to the vehicle CG

• Lr - distance of the rear module to the vehicle CG

• R - wheel radius

The Lf , Lr, and R are geometric parameters used in the control design; therefore, it is essential to

analyze how much the uncertainty can affect the controller performance. The M is also an important

parameter to study because the controller is a design based on the kinematic model, and how much the

inertial influences the controller performance would be an interesting theme. The deterministic building

model of the RLVs is used for the control law evaluation. The case study considers the controller’s

sensitivity and robustness to parameter uncertainty correspond to a circular trajectory with a radius of

4 m. For the baseline simulation, it is assumed no error in the model parameters. The simulation is

repeated varying each of the above parameters for selected variables. The parameters vary one at a

time to allow the evaluation of each one’s influence with the comparison of the RMS of selected value in

the simulations.
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Chapter 5

Motion Control Implementation

5.1 Speed controller for the DC motor

For a motion control purpose, a speed controller in the motor level is needed to ensure the tracking

features. The mathematical modelling of the DC motor is already presented in Section 3.2, the problem

now is the determination of the controller parameters that satisfies the system requirements. Based on

Equation (3.6), the transformation is done to take the ratio of ωm(s)
V (s) , with V (s) the voltage source and

ωm(s) the motor angular speed, in the frequency domain. From Equation (3.6), the following equation is

obtained:

Re
Jω̇m(t) + cωm(t)

Kt
+ Le

Jω̈m(t) + cω̇m(t)
Kt

+KbKtωm(t) = V (t) (5.1)

where the time dependent variable now is no longer omitted.

A Laplace transform is defined as:

F (s) =
∫ ∞

0
f(t)e−stdt (5.2)

where s is a complex number frequency parameter. Apply the (5.2) to (5.1), the transfer function of the

DC motor is obtained:
ωm(s)
V (s) = Kt

LeJs2 + (Lec+ReJ)s+ (Rec+KbKt)
(5.3)

Replacing the motor parameters in the Equation (5.3):

G(s) = ωm(s)
V (s) = 1

1.42× 10−7s2 + 7.46× 10−5s+ 9.20× 10−3 (5.4)

with the input to the DC motor system is voltage source V and output of the angular speed ωm. Figure 5.1

shows the detailed implementation of the DC motor in Simulink/Matlab based on the transfer function

presented above and later will be used for the speed controller design. The structure of the control

system represented schematically in the vector form by the block diagram in Figure 5.2(a). The input

to the system is the reference of the angular speed, with Vsat the eventual voltage saturation of the DC

motor. The speed controller implementation is based on the PID theory. In this case, the control law is
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Figure 5.1: DC motor system implementation in Simulink/Matlab

defined as:
V (s)
E(s) = Gc(s) = Kp +Ki

1
s

+Kds (5.5)

where the E(s) is the speed tracking error:

E(s) = (ωref − ω)ij

and Kp is the proportional gain, Ki is the integral gain, and Kd is the derivative gain.

The illustrative implementation in the software Simulink/Matlab is showed in Figure 5.2(b). For the design

(a) Motor system with speed controller representation

(b) DC Motor with speed controller inMATLAB/SIMULINK

Figure 5.2: Drive system implementation

of the controller, the following design criteria are defined:

• Setting time less than 0.01 s

• Overshoot less than 5%

• Steady-state error less than 1%

The speed controller design via root locus method is performed, using the transfer function (5.4) derived

in the previous section. First of all, an evaluation of the performance of system by drawing the root locus

of the the closed-loop system with unit gain (see Figure 5.3(a)), and the closed-loop step response with
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a unit gain is illustrated in Figure 5.3(b). Figure 5.3(a) shows the dominant poles are at −326.43 and

(a) Root locus of the the closed-loop system with unit
gain

(b) Step response of the closed-loop system with unit
gain

Figure 5.3: Speed controller design: system performance evaluation

−198.25. All poles reside in the left-half of the plane which means the system is stable. Moreover, the

steady state error design requirements is satisfied with a unit gain as shown in Figure 5.3(b), however

the overshoot is too large. Toward the system characteristics, in order to improve the system transient

performance meanwhile not to compromise the steady state error, PID controller is desired. According

to the design requirement, the Matlab Control System Design and Analysis APPs is used to tuning the

controller parameter (see Figure 5.4). Final PID parameters are presented in Table 5.1. According to

Figure 5.4: PID tuning in Simulink/Matlab

the Equation (5.5) and Table 5.1, the transfer function of the PID controller is obtained:

Gc(s) = Kp +Ki
1
s

+Kds = 50 + 51
s

+ 0.5s (5.6)
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Table 5.1: PID speed controller parameters

Controller Parameters Value

Kp 50

Ki 5

Kd 0.5

The system response with PID controller is presented in Figure 5.5 and all design criteria are satisfied.

For the simulation, the reference speed for the motor with speed controller is ωr = 500 rad/s. The system

Figure 5.5: System step response with speed controller

response is presented in Figure 5.6(b) and the respect control actions after saturation is presented in

Figure 5.6(a). The actuator saturation which results additional nonlinear element in the real application.

(a) Control Action (b) Speed response

Figure 5.6: PID speed controller simulation

The maximum speed allow in MDX serve motor is ωr = 628.32 rad/s, the respect control action and

torques are limited according to system specifications.
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5.1.1 Experimental Results

Simulation setup

The motor will be used is MDX Integrated Servo Motor, and it equips with a speed controller - PID

with feedforward compensator. This section presents the simulation results of the speed controller in

Simulink, and the experimental results in MDX Servo Suite. The comparison between them is analyzed.

The MDX Servo Suite is an application provided by MDX Applied Motion company, and it is used to

tuning the gained parameters before actual system operation in order to optimize the servo systems

performance. The application standard configuration as well as the limitation of the motor is presented in

Figure 5.7. The application provide the initial control parameters and a detailed explanation of the tuning

Figure 5.7: General configuration of MDX Servo Suite

process. For simplicity, each parameters is turned once at the time in order to get better performance.

Figure 5.8 showed the final controller parameters in the left side, and in the right side is the speed plot

where the red line is the reference speed and blue line is the actual speed. The speed signal of the

motor presents significant noise, which may to related to the encoder. The simulation in Simulink using

PID parameters in Table 5.1 and experimental results in MDX Servo Suite is presented in 5.10. The

DC motor is model in noisy free condition, however during the tuning process in MDX Servo Suite, the

presented noise can not be ignored. Regarding to get more realistic results as showed in Figure 5.10(b),

additional noise was implemented to the motor model (see Figure 5.9). It is assumed the real angular

speed ωreal have an uncorrelated zero mean noise although no bias is added, and can be presented as:

ωreal = ω + σω
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Figure 5.8: Tuned controller parameters in MDX Servo Suite

which ω is the actual speed and σω is the random white noise 1. The Simulink tool is used to model

the noise, it requires the sample time of the sensor and the respective noise power, due to lack of the

information, the estimation of those parameter is a iteration process based on the Figure 5.10(b). The

Figure 5.9: Noise implementation

final result with implemented noise is presented in Figure 5.10. With the implemented speed controller

for each motor, the system’s input became four angular speed. For the simulation, the four angular

speed is given as ωrefij = 100 rad/s. The resulting vehicle trajectory is presented in Figure 5.11(a).

Four motors have the same angular velocity; therefore the vehicle intent to move in a straight line in

the x-direction. The resulting motor speed is presented in Figure 5.11(b) with respective implemented

noise. It can be seen in Figure 5.11(c) the resulting vehicle linear velocity starts to increase from zero

and stabilized around v = 0.24 m/s. Hence the system is in equilibrium condition at which a dynamical

system is steady

1White noise is a random signal having equal intensity at different frequencies, giving it a constant power spectral density
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(a) Speed Control : Simulation Results (b) Speed Control: Experimental Results

Figure 5.10: Comparison between the simulation and the experimental results

(a) RLVs trajectory (b) Four motor angular speed (c) RLVs velocity

Figure 5.11: Simulation in RLVs simulator with speed controller

5.2 Alonzo Kelly Modified Controller

In this section, a geometric controller is presented with a good compromise between complexity and

performance. Silva et al. [32] proposed the geometric controller based on the geometrical inspiration for

a rhombic vehicle with two driven wheels. Based on this approach and principle presented in Section

4.3, a geometric controller is modified and extended to the RLVs in studied. It is named AKM controller

because it is based on the Kelly and Seegmiller [9] study.

The main idea of the methodology is control the RLVs motion thought the control of (vc, βc, ωc) (see

Figure 5.12), which enable the front and rear modules follows the same path or different path. It requires

only as input the desired path pose (xref , yref , ψref ) upon the control of βc, vc and ωc. The output would

be the angular velocities of the wheel [ωcfr, ωcfl, ωcrr, ωcrl] that enable the RLVs follow the desired path.

The vc is assumed to be predefined and the speed information is contained in the reference trajectory.

The control variable βc can be obtained using the geometric law as presented in Figure 5.12, and is

used to direct the vehicle’s to the reference pose. As for control variable ωc, it aims to orientating RLVs

to the desired orientation. The control law for those two variables is presented as follows:

βc = arctan xref − x
yref − y

− ψ (5.7a)

ωc = kω(ψref − ψ)
tn

(5.7b)
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Figure 5.12: Alonzo Kelly Modified controller representation and variables definition

where the (xref , yref , ψref ) are the coordinate of reference path pose, and (x, y, ψ) the actual coordi-

nate of RLVs. tn the simulation step and kω a positive gain that tunes the RLVs to desired orientation. In

brief, the AKM controller works as a proportional controller, where the control variables are proportional

to the heading angle error and the cross track errors.

The implementation of AKM controller is straightforward. As mentioned in section 4.3, the use of look

ahead distance can improve significantly the performance of the controller. The big challenge of im-

plementation become how to deal with the path information and set a reasonable look ahead distance.

For the path following problem, the path information can be represented as a set of discrete points and

contained following information:

• x location in global frame

• y location in global frame

• ψ heading angle in global frame

The (xref , yref , ψref ) appeared in the control law (5.7), is chosen as the closest point in the reference

path. Therefore a treatment of the path information is required. The closest point in the path with in

the vehicle actual pose is calculated, and the reference pose at that instant time is defined based on

the closet point. One additional tuning parameters will be the choice of look ahead point. Longer look

ahead distance cause the RLVs converge to the desired path more gradually with less oscillation. As

for the trajectory tracking problem, the reference to the system is time dependent information or velocity

parametric vector, hence the treatment of the path information is not necessary.
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5.2.1 Simulation: case study

This section illustrates the simulation results of the AKM controller. The evaluation of the controller

first tested using the kinematic model (see Figure 5.13.) with the kinematic model presented in (3.30),

afterward a more precise simulation is done in the RLVs simulator which is presented in Section 3.5. For

Figure 5.13: Alonzo Kelly Modified controller block diagram

the path following task simulation, as the RLVs will be operating the ITER with the cluttered environment,

in order to simulate the work conditions, the reference path is designed (see Figure 5.14), where the

RLVs starts in position (0, 0)m and stop at (0, 5)m and the desired speed of the RLVs is predefined

vc = 0.1 m/s.

Figure 5.14: Reference path: directional path

The simulation is done in both the kinematic model and the simulator built in Section 3.5. Figure 5.15(a)

shows the reference input for the AKM controller and one can notice there are nonuniform steps in

the reference causes by the algorithms that calculate the closet point between the set of the reference

point and the actual vehicle position. The resulting trajectory in Figure 5.15(b) showed with the AKM

controller, RLVs track the path’s geometric path with acceptable errors. And the stabilization of the

system in the desired pose is easily reached. The oscillation of the position error in Figure 5.15(c) is

mainly caused by introducing the look ahead distance. The ’error’ here is the distance between the look

ahead point and the actual pose. Figure 5.15(d) showed the RLVs oscillate around the desired speed

0.2 m/s. The simulation with the kinematic model was able to capture the essential characteristics of the

AKM controller. However, a more precise simulation is done with the simulator presented in chapter 3,

which intends to evaluate how the vehicle inertial influences the controller’s performance. The operating

conditions are maintained for the simulation. Table 5.2 summarizes the controller’s performance with

the given reference in both two models. The position errors in x and y direction, denoted as δx and δy,
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(a) Reference input (b) Resulting trajectory

(c) Errors (d) Resulting vehicle speed

Figure 5.15: AKM controller: simulation in the kinematic model

respectively, and the orientation error δψ are used for the evaluation of the controller performance.

The simulation in the RLVs simulator is worst because the vehicle dynamic is not considered at the

controller’s design stage.

Table 5.2: AKM controller: simulation result (RMS values of selected variables)

AKM controller δx(m) δy(m) δψ(deg)

Kinematic model 0.59 0.40 2.79

RLVs simulator 0.87 0.68 6.63

The previous simulation’s position error can be decreased if the look ahead distance is decreased. Table

5.3 demonstrates the position error decreased with the decrease of the look-ahead distance. However,

a smaller look ahead distance can cause strong oscillations, and the system became challenging to

stabilize. Figure 5.16 showed the RLVs’s wheel speed for the look ahead distance of 0.2 m and look-

ahead distance of 0.8 m. With a smaller look ahead distance, the requested wheel speed has more

oscillations. One principle drawback of this method is that without a high-quality speed controller, the

constant fluctuation in the requested wheel speed (see Figure 5.15(d)) may cause damage to the system

actuator.
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Table 5.3: AKM controller: Influence of the look ahead distance

Look ahead distance (m) δx(m) δy(m) δψ(deg)

0.2 0.15 0.10 2.58

0.5 0.38 0.26 2.67

0.8 0.87 0.68 6.63

(a) Look ahead distance = 0.2 m (b) Look-ahead distance = 0.8 m

Figure 5.16: Motor angular speed towards different look ahead distance

For the trajectory tracking problem, the simulation with the spiral path is detailed as follows, which

intends to illustrate the essential point of the AKM controller facing a trajectory tracking problem. The

spiral reference is presented in 5.17, where the trajectory equation is:

Figure 5.17: Reference trajectory: spiral

xref = 0.032t sin (0.08t)

yref = 0.032t cos (0.08t)

(5.8)

with sampling time of 0.01 s. Figure 5.18(a) shows the RLVs were able to follow the desired path. The

module orientation is presented in Figure 5.18(b), once the vehicle is in the right direction the variation

in the orientation of the modules became smaller. The AKM controller was able to follow the desired
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(a) Resulting trajectory (b) Modules orientation

(c) Errors (d) Resulting vehicle speed

Figure 5.18: AKM controller: spiral

reference with 0.76 m safety margin in the (x, y) position, and 25° in the heading angle (see Figure

5.18(c)). The resulting linear and angular velocity is presented in Figure 5.18(d).

For the pose tracking problem, the study is concentrated on stabilizing the RLVs system to a static point.

The RLVs initial position is given as (0, 0,−90°) and the reference pose is set to (5, 5, 45°). The simulation

results are presented in Figure 5.19(b). The system stabilized around t = 80 s.

(a) Resulting trajectory (b) Errors

Figure 5.19: AKM controller: pose tracking
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Conclusion

This chapter presents the AKM controller applied to the RLVs system. After the simulation with a dif-

ferent type of path, how the controller parameter influences the system is studied. The AKM controller

is sufficient for the short-term goal such as pose tracking and path following problem, but there is no

guarantee the solution is optimal, and the performance of the controller relied on the delicate tuning of

control parameters. The simulation result in RLVs simulator is worse than the simulation in the kinematic

model because the system with dynamics does not respond as quick as possible to a high speed re-

quested by the controller. Although it has relatively good simulation results since the operating speed

is low. A more agile methodology is proposed in the next section based on the optimal control theory,

which calculates the desired linear and angular velocity optimally.

5.3 Optimal Control-Linear Quadratic Regulator

A LQR optimal control for trajectory tracking of RLVs is developed in this section. For the study case,

the solution calculates a velocity variation that should be followed for a reference signal. As explained in

Chapter 4, the motion control is based on the hierarchical approach. Therefore, the output of the solution

should be the four angular speed reference. In the following, the procedure applied on the linearization

of the system around the operating point is described.

5.3.1 Model Linearization

For the given system:

ẋ = f(x, u)

the linearization of the system corresponds to the first-order term of its Taylor expansion in the interest

point (xe, ue) is:

ẋ = f(xe, ue) + ∂f

∂x
(xe, ue)(x− xe) + ∂f

∂u
(xe, ue)(u− ue) (5.9)

Substituting the jacobian matrices, one gets:

A = ∂f

∂x
(xe, ue) (5.10)

B = ∂f

∂u
(xe, ue) (5.11)

and the variation around the equilibrium point is given as:

x̃ = x− xe (5.12)

ũ = u− ue (5.13)
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One gets the linear model as:

˙̃x = Ax̃+Bũ (5.14)

For the trajectory tracking problem, suppose the system state is given as q = (x, y, ψ), and the reference

trajectory is qref = (xref , yref , ψref ). The goal is design a controller that limt→∞(qref − q) = 0, to do

so, the error system is construct based on the rhombic like vehicle kinematic model is presented above.

Those errors in the body frame can be expressed as follows:
q̃x

q̃y

q̃ψ


B

=


xref − x

yref − y

ψref − ψ

 (5.15)

A rotation matrix has been applied to obtain the error in the inertial frame (q̃x, q̃y, q̃ψ)I :
q̃x

q̃y

q̃ψ


I

=


cosψ sinψ 0

− sinψ cosψ 0

0 0 1



qx

qy

qψ


B

(5.16)

The linearization of the kinematic model (3.28) is done based on (5.9), however the system can be

extended once variable β is determinable.

Hence, the dynamic of state tracking error based on (5.15) and (3.28) is expressed as:
˙̃qx
˙̃qy
˙̃qψ


B

=


ẋref − ẋ

ẏref − ẏ

ψ̇ref − ψ̇

 =


ṽ cos ψ̃

ṽ sin ψ̃

ω̃

 (5.17)

with ṽ = vref − v and ω̃ = ωref − ω.

Linearization of the state space model form of the system around the point of interest, in this case is a

set of reference that enable the q̃I = 0 is performed which the equilibrium point are denoted by:

v = vref

ω = ωref

ψ = ψref

(5.18)

Applying a first order Taylor approximation around the equilibrium point as follows:

˙̃qI = ∂f

∂q
(xref , uref )q̃I + ∂f

∂u
(xref , uref )ũ (5.19)
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thus the tangent linearization of system about the reference trajectory in the global frame can be outlined

as:

˙̃qI =


0 ωref 0

−ωref 0 vref

0 0 0

 q̃I +


1 0

0 0

0 1


 ṽ

ω̃

 = Aq̃I +Bũ (5.20)

Detailed calculation is presented in Appendix A.

Controllability study

In the control problem, it is important to find out whether or not a system is controllable. A controllability

about a trajectory of a derived linearized system is studied in this section. The linerized system (5.20) is

time varying, a necessary and sufficient controllability is the controllability Gramian is non-singular [38],

where the controllability matrix C is defined as follows:

C =
[
A AB A2B

]
=


1 0 0 0 −ω2

ref vrefωref

0 0 −ωref vref 0 0

0 1 0 0 0 0

 (5.21)

The linear system is controllable if the matrix C has same rank of matrix A, in this case 3. This provided

either vref or ωref are nonzero.

For the tracking problem, with the reference trajectory defined as (xref , yref , ψref ), the vref and ωref can

be calculated from following equations according to Abbasi and Moshayedi [30]:

ψref = arctan ẏref
ẋref

(5.22)

having differentiation of (5.22) in order to get ωref as:

ωref = ẋref ÿref − ẏref ẍref
ẋ2
ref + ẏ2

ref

(5.23)

vref = ±
√
ẋ2
ref + ẏ2

ref (5.24)

The sign for vref will define forward or backward motion of vehicle. The desired cartesian motion refer-

ence (xref , yref ) should be twice differential according to the Equation (5.23).

The system has three state variables [q̃x, q̃y, q̃ψ], representing the dynamics of tracking error in coor-

dinate (x, y, ψ), and two input [ṽ, ω̃]. In order to determine inputs of the closed-loop system the LQR

optimal control is used. According to the LQR control theory, the solution can be obtained as

uopt(t) = −Kx̃(t)

where K is the gain matrix determined by LQR controller optimally. The Bryson method is used for the

first estimation of the weighting matrices of the states and inputs, respectively Q and R, as diagonal
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matrices where each term is the inverse square of the expected maximum for the variable during the

motion:

Q = diag(Qi)

Qi = 1
q2
i,max

(5.25)

with qi,max maximum acceptable value of qi in SI unit. According to the ITER project specification, the

vehicle has to move in cluttered environments with safety margins of 30 cm, therefore the maximum

accepted value for the q̃x and q̃y are approximately 0.3 m, and 0.15 radius for the vehicle orientation. The

final value is presented below based on the (5.25):

Q =


10 0 0

0 10 0

0 0 50

 (5.26)

Same principle is used for the matrix R:

R = diag(Ri)

Ri = 1
u2
i,max

(5.27)

with ui,max max acceptable value of ui.

R =

 5 0

0 1

 (5.28)

By changing the elements of Q, the sensitivity of the system to the state variables can be adjusted.

Therefore, to obtain the inputs of the system, the Equation (5.29) is available:

 vc

ωc

 = −K


q̃x

q̃y

q̃ψ


I

(5.29)

with K the gain matrix determined by LQR controller optimally. The system is extended with determina-

tion of βc (5.7a) and one can get the four angular speed ωij using the velocity transformation presented

in 4.5.1.

5.3.2 Simulation: case study

This section presents an illustrative simulation results of the RLVs linear controller based on the linear

model. As mentioned above, RLVs are supposed to operate in a cluttered environment. Therefore the

first simulation is done with the reference path (see Figure 5.14) used in the previous section, where the

vehicle starts in (0, 0)m and stops in (0, 5)m. The state Q and input R weighting matrices are set as (in
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SI units):

Q(q̃x, q̃y, q̃ψ) = diag(10, 10, 50)

R(ṽref , q̃ref ) = diag(5, 1)

(5.30)

A look ahead distance is also introduced as a tuning parameter, which cause steps in the reference

input (see Figure 5.20(a)). The vref is set as 0.2 m/s, the variation of vehicle speed is mainly related

with the error at the instant of simulation (see Figure 5.20(d)). The deviation of the vehicle trajectory

from the reference trajectory in Figure 5.20(b) can be decreased by tuning the element of Q matrix.

(a) Reference input (b) Resulting trajectory

(c) Errors (d) Resulting vehicle speed

Figure 5.20: LQR controller: Path following with look ahead distance

(a) Q(q̃x, q̃y , q̃ψ) = diag(50, 50, 50) (b) Q(q̃x, q̃y , q̃ψ) = diag(100, 100, 50)

Figure 5.21: Effect of weighting matrices Q
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Figure 5.21(a) and Figure 5.21(b) shows the resulting trajectory by increasing the values of the element

in matrix Q. The static error decreases with the increase of matrix Q elements (see Figure 5.21), and

RLVs also needs less space to perform the assigned task in this circumstance. However if the value is

too large, the system will begin to oscillate (see Figure 5.21(b)). Therefore, the value of matrix Q should

be chosen with a reasonable compromise between the stability and accuracy.

For the trajectory tracking problem, the first simulation intent to simulation the RLVs goes to the straight

line in the y-direction, where the reference is defined as:

xref = 0

yref = 0.1t

ψref = 90°

(5.31)

with sample time 0.01 s. The vehicle starts at (−2,−2)m and the reference trajectory starts in (0, 0)m. The

reference velocity vref = 0.1 m/s is calculated based on the reference trajectory according to Equation

(5.24). Figure 5.22(a) shows the resulting trajectory of the RLVs and how the vehicle enters the reference

trajectory.

(a) Resulting trajectory (b) Resulting modules orientation

(c) Resulting vehicle speed (d) Errors

Figure 5.22: LQR controller: trajectory y-direction

The vehicle enters the reference trajectory after it runs 6 m in the y-direction. The position in y is well

followed with an error inferior to 0.5 m after the reference trajectory entrance. The module orientation

stabilized when the vehicle is in the right heading angle; the resulting module orientations are presented
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in Figure 5.22(b). The reference speed is vref = 0.1 m/s; however, as the vehicle start at the position

(−2,−2)m, as the controller calculate the rate of the velocities based on the error signal, for more

significant errors, the controller intent increase the speed up to vref = 0.25 m/s (see Figure 5.22(d)),

after the entrance to the reference trajectory, the velocity closes to the reference velocity as expected.

The simulation with the spiral path (5.8) is done to evaluate the controller performance toward different

speed reference. Figure 5.23(a) shows the trajectory described by the RLVs system. The position error

(a) Resulting trajectory (b) Errors

(c) Resulting vehicle speed (d) Resulting modules orientation

Figure 5.23: LQR controller: spiral

in x and y increase when the vehicle speed increase (see Figure 5.23(b)). Compared with the simulation

results of the AKM controller, the trajectory described by vehicle with LQR controller is smother and has

smaller position error (around 0.5 m).

Two pose tracking problems are now studied to investigate the stabilization feature and the relation

between the module’s orientation and the vehicle heading angle. The linear system is controllable if

neither vref nor ωref is non zero value. The system stabilizes when the error coordinate is close to

zero. The first reference for the system are position (5, 5)m with 45° heading angle. The chosen initial

conditions for the RLVs is (0, 0)m with−90° orientation, and the vref is set to a small value vref = 0.1 m/s.

The system stabilized around 125 s (see Figure 5.24(c)). For more significant speed, the stabilization

takes more time. The module’s orientation coincides with the vehicle heading angle (see Figure 5.24(b)).

The oscillations at the begging of the vehicle linear speed in Figure 5.24(d) is because the controller

intends to correct first the heading angle.

For the second case study, the desired pose is position (5, 5)m with zero heading angle. The chosen

initial conditions for the RLVs is (0, 0)m with zero heading angle. This case study aims to illustrate how
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(a) Resulting trajectory (b) Resulting modules orientation

(c) Errors (d) Resulting vehicle speed

Figure 5.24: LQR controller: initial conditions (x, y, ψ) = (0, 0,−90°); Desired Pose: (5, 5, 45°)

the vehicle can slide to the desired position without changing the vehicle heading angle. The vehicle

stabilized in the desired position around 100 s (see Figure 5.26(a)). The maneuver is possible with the

combination of the two modules steering configuration presented in Figure 5.25.

Figure 5.25: LQR controller: initial conditions (x, y, ψ) = (0, 0, 0); desired pose: (5, 5, 0)
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(a) Errors (b) Resulting vehicle speed

Figure 5.26: LQR controller: initial conditions (x, y, ψ) = (0, 0, 0); desired pose: (5, 5, 0)

5.3.3 Study of the robustness of the LQR controller

In this section, a study of how the model parameters’ variation on the controller performance is pre-

sented. For the baseline simulation, there is no variation of the model parameters. The simulation’s

case mission is considered a circle path, with the null initial conditions. The reference is defined as:

xref = 4 sin (0.05t)

yref = 4 cos (0.05t)− 4
(5.32)

According to the Equation (5.24) and (5.23), the reference velocities are calculated, where the vref =

0.2 m/s and ωref = 0.05 rad/s clockwise. Figure 5.27(a) is the resulting trajectory of the vehicle, and

the vehicle follows the reference trajectory with the minimum position error (see Figure 5.27(b)). The

(a) Resulting trajectory (b) Errors

Figure 5.27: Baseline simulation for the study of the robustness of the LQR controller: resulting trajectory
and tracking error

resulting vehicle velocities are presented in Figure 5.28(a), where the linear speed v oscillated around

the vref and angular speed approximated to the ωref . As the angular speed reaches the desired value,

the module orientation variation becomes constant (see Figure 5.28(b)). Several simulations are done

with the variation of the vehicle mass in the model. Figure 5.29 showed the position and orientation

errors increase with the increase of the vehicle mass. This is due to the fact of the LQR controller is

designed based on the kinematic model, and the controller performance deteriorated with the increase
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(a) Resulting vehicle speed (b) Resulting modules orientation

Figure 5.28: Baseline simulation for the study of the robustness of the LQR controller: resulting speed
and module orientations

of the mass. As the mass increases, the vehicle’s inertial effect becomes significant, and the system can

not respond to the request control action as quickly as it is supposed to be, which causes the controller

performance to become worse. Table 5.4 summarized the RMS value of selected variables (position

Figure 5.29: Influence of the vehicle mass: red mark represents the baseline simulation

errors and orientation errors) with different vehicle mass. The RMS values of the vehicle with mass of

375 kg is the baseline case and serves as a reference. The deviation of +70% of the vehicle mass, the

position error is up to 0.96 m which is out of the acceptable margin of the work condition, thus the LQR

is consider to be robust to 50% variation of the mass parameter.

Table 5.4: Robustness tests on Mass of the RLVs (RMS values of selected variables)

Mass δx(m) δy(m) δψ(deg)

M = 375 kg ∗ 30% 0.06 0.05 9.05

M = 375 kg ∗ 50% 0.07 0.06 9.52

M = 375 kg Baseline 0.13 0.08 10.70
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Table 5.4: Robustness tests on Mass of the RLVs (RMS values of selected variables)

Mass δx(m) δy(m) δψ(deg)

M = 375 kg ∗ 150% 0.75 0.60 14.13

M = 375 kg ∗ 170% 0.96 0.73 18.33

How the variation of the wheel radius influence the controller performance is also studied. According

to the vehicle specification in Table 3.2, the wheel radius is R = 0.1 m. Several simulations are done

with the variation of the wheel radius in the controller. LQR controller demonstrates to be robust to

a ±0.02m ≈ 20mm in the wheel radius parameter as presented in Table 5.5. The difference more

significant than 20mm in the controller’s design loses control of the RLVs system ( RMS value of δψ

is up to 40°) which means the mismatch between the wheel’s diameter of the model and the control

project can not vary more the 40mm. Figure 5.30 showed the variation of the wheel radius effects more

in the position x and y than the vehicle orientation. This kind of mismatch can be caused by various

reasons, such as tire wear or measurement errors. In reality, the tire’s wear can be a severe problem,

and depends on the type of tire will be used, the scale of variation can be considerable. However, as the

wheel radius parameter is a measurable variable, and generally speaking, for a large and heavy-duty

vehicle, the maximum tire wear permitted is around 60mm2, including the eventual measurement error,

the LQR is considered to be robust to 50% variation of the wheel radius parameter.

Table 5.5: Robustness tests on wheel radius of the RLVs (RMS values of selected variables)

Wheel radius δx(m) δy(m) δψ(deg)

R = 0.06 m 0.36 0.55 27.96

R = 0.08 m 0.24 0.17 9.13

R = 0.1 m Baseline 0.13 0.08 10.70

R = 0.12 m 0.32 0.47 14.65

R = 0.14 m 0.47 0.35 39.73

The Lf and Lr are the distance of the front and rear module to the vehicle CG, respectively. They are

parameters used in the velocity transformation during the control design. The methodology used in the

wheel radius applies to the Lf and Lr robustness study. Simulation result shows the influence of Lf and

Lr are similar, therefore only the Lr result is presented in Table 5.6. The variation of the Lr influence the

performance of the controller-less than 0.1m in the δx and δy, and less than 3° in the δψ. Compare to the

2Information provided by Technical Engineer in CRRC Tangshan Co., Ltd., a manufacturer of rolling stock located in Tangshan,
Hebei province,China
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Figure 5.30: Influence of the wheel radius: red mark represents the baseline simulation

dimension of RLVs, this kind of variation can be negligible. Hence the LQR is considered to be robust to

the parameters Lf and Lr.

Table 5.6: Robustness tests on Lr of the RLVs (RMS values of selected variables)

Lr δx(m) δy(m) δψ(deg)

Lr = 0.40 m 0.22 0.18 10.11

Lr = 0.45 m 0.22 0.17 8.04

Lr = 0.5 m Baseline 0.13 0.08 10.70

Lr = 0.55 m 0.23 0.18 8.70

Lr = 0.6 m 0.22 0.20 10.35

5.3.4 Influence of system constraints

As mentioned in Section 3.6.2, the RLVs presented high maneuverability because the variety on the

steering configuration of the modules system. The RLVs maneuverability advantage for a case study

presented in Figure 1.5 is now simulated in the RLVs simulator with a LQR controller. The directional

path is designed, several simulation is performed to illustrate the maneuverability advantage of the RLVs.

The simulation result is presented in Figure 5.31, the same reference path is reached with different

maneuver.
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(a) Scenario I (b) Scenario II (c) Scenario III

Figure 5.31: Maneuverability advantage of the RLVs: three scenarios simulation

The controller was able to perform different maneuvers of the system. The modules orientation of the

second scenario is illustrated in Figure 5.32 to highlight some essencial point of the case study. Figure

Figure 5.32: LQR controller: Scenario II- modules orientation

5.32 showed the modules system rotate intensively at the beginning to get the vehicle into a path with

the right orientation, and stabilized during the movement in the y-direction. When the vehicle reaches

the corner, the modules rotate again to ensure the vehicle move in x-direction without change of the

vehicle orientation.

However, all simulation until now assumes the modules system works as a differential robot without

any constraints in the physical configurations. This section presents an additional study for a particular

situation in which the module orientation is constrained. The reference input for the simulation is defined
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as:

xref = −0.2t

yref = 0.05t

ψref = 0

(5.33)

with sampling time of 0.01 second.

For the case mission study, the first simulation is made without any additional system constrain. The

vehicle was able to follow the reference trajectory with minimum errors (see Figure 5.33(a). The heading

angle error is increasing during the simulation time, however still small the 1° as showed in Figure

5.33(b). As the RLVs’ desired orientation is 0°, the front and rear modules have to rotate more than

135 degree (see Figure 5.34). This same simulation is done where now the modules can only turn

(a) RLVs trajectory (b) Errors

Figure 5.33: LQR controller: without constraints

(a) (b)

Figure 5.34: Modules orientations without constraints

[−135° + 135°]. Figure 5.35(a) showed the module orientations are constrained in the defined intervals.

As in the design stage, no considerations of the orientation constraints are considered; the vehicle loses

the tracking initially; With the module orientation constraints, the vehicle starts to rotate with a small

movement at the beginning. After the 50 s, when the modules are in admissible orientations, the vehicle

starts to track the reference trajectory. The simulation time for the case study mission is extended to

100 s, and the resulting trajectory of the vehicle with and without modules orientation constrains are
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(a) (b)

Figure 5.35: Modules orientations with constraints

presented in below: The additional module orientation constraints influence most the correction of the

(a) Resulting trajectory with modules orientation
constrains

(b) Resulting trajectory without modules orienta-
tion constrains

Figure 5.36: Comparison of the resulting trajectory: with and without modules orientation constrains

vehicle orientations. Although in some cases, the correction of the orientation error is not as much as

necessary as the position errors, and some fiscal constraints in the module system are unavoidable. The

adjustment in the control algorithm should be made considering the real situation. One possible solution

to face this type of system constraints is in the motion planning stage where the algorithm considers the

module orientation constraints and gives the feasible reference input; another solution is the designed

controller for each module and introduces the module system constraints in the design phase. However,

the additional fiscal constraints between the different modules have to be taken into account for this

approach.

Conclusion

Three types of tasks are studied to understand the feature of the controller in the study. All simulation

are done in the RLVs simulator. Several challenges trajectory is implemented to examine the system

capabilities facing the path tracking problem. The simulation with path in y-direction and the spiral

trajectory is used to illustrate essential points of the LQR controller, and the circle trajectory to study the

LQR controller’s robustness. The simulation result is summarized in Table 5.7, and LQR controller was
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able to executed the mission with an acceptable error margin.

Table 5.7: LQR controller: simulation results (RMS value of selected variables)

Type of path reference δx(m) δy(m) δψ(deg)

y direction xref = 0

yref = 0.1t

0.15 0.42 43.86

Spiral xref = 0.032t sin (0.08t)

yref = 0.032t ∗ 4 cos (0.08t)

0.25 0.24 13.53

Circle xref = 4 sin (0.05t)

yref = 4 cos (0.05t)− 4

0.13 0.08 10.7

Direction Path see Figure 5.14 constant speed 0.32 0.25 19.80
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Chapter 6

Results and Discussion

Two types of control solutions described in the previous chapters present their advantages and disad-

vantages, many of which are discussed in the respective chapters. An overall comparison between them

is crucial to provide a better overview of the different control options. In this chapter, this assessment is

made considering parameters such as path-tracking performance for the several challenge paths (see

Section 6.1), a case study mission which intent to evaluate the control effort of two controllers in Section

6.2.

6.1 Performance for case-study mission

This section summarises the simulation result of two controllers facing several challenging reference

trajectory. For the tracking error assessment, the cross-track error of the center of the RLVs, denoted by

ec, is used, and it is calculate as:

ec =
√
δ2
x + δ2

y (6.1)

where the δx and δy are the position error of the center of vehicle in x and y direction, respectively.

Table 6.1 listed all the simulation results of two controllers. Both controllers can accomplish the mis-

sion in the study; however, the different performances are noticeable. The results showed for all the

path-tracking case in study, the LQR was able to follow the reference with less errors. However, the

performance of two controllers relied a lot on the tuning parameters, therefore a more precise study is

presented in the next section to evaluate the difference between the two controllers.

Table 6.1: RMS of ec for each of the controllers

Type of path Reference Type of controller ec(m)

Spiral xref = 0.032t sin (0.08t)

yref = 0.032t cos (0.08t)

AKM

LQR

0.45

0.36

Circle xref = 4 sin (0.05t)

yref = 4 cos (0.05t)− 4

AKM

LQR

0.43

0.15
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Table 6.1: RMS of ec for each of the controllers

Type of path Reference Type of controller ec(m)

Direction Path constant speed AKM

LQR

0.92

0.40

6.2 Comparison of controller performance: case study

The mission case study used to evaluate the control performance of two controller is defined as:

xref = 0.1t

yref = 0

ψref = 0

(6.2)

with sampling time of 0.01 s, the vehicle initial conditions are (−2,−2)m with zero heading angle.

For evaluating the LQR controller, the vref and ωref are calculated according to the Equations (5.24)

and (5.23). The baseline value for matrix Q and R are:

Q(q̃x, q̃y, q̃ψ) = diag(10, 10, 50)

R(ṽref , q̃ref ) = diag(5, 1)

(6.3)

The effect of weighting matrices Q and R on the control system performance for the case mission is

presented. Several simulation is done with the element of the matrixQ andR vary one at a time, allowing

the evaluation of each element’s influences. Figure 6.1 shows the variation of matrix Q in time domain

(a) Error δx for Q1 variation (b) Error δy for Q2 variation (c) Error δψ for Q3 variation

Figure 6.1: Effect of weighting matrices Q on the time response: R(ṽref , q̃ref ) = diag(5, 1)

performances. With the variation in matrix Q element, the overshoot slightly increases with a gradual

fall in rising time, and the system error decreases with the increase of the Q. Similar observations could

have been found for the matrix R. For high value of R the time response becomes quicker with increased
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overshoot. Based on the previous analysis of matrix parameters and the RLVs work conditions, the final

(a) Error δx for R1 variation (b) Error δy for R1 variation (c) Error δψ for R1 variation

(d) Error δx for R2 variation (e) Error δy for R2 variation (f) Error δψ for R2 variation

Figure 6.2: Effect of weighting matrices R on the time response: Q(q̃x, q̃y, q̃ψ) = diag(10, 10, 50)

value is set as:

Q(q̃x, q̃y, q̃ψ) = diag(50, 50, 50)

R(ṽref , q̃ref ) = diag(1, 1)

(6.4)

As for the AKM controller, the same reference is used. Different from the LQR controller, the LQR

controller is a heuristic controller; the performance of the controller depends much more on the tuning

process than the LQR controller. In this case study, without an introduced offset distanced, the only

tuning parameter of the AKM controller is the value of kω. A bigger value of kω decreases the static

error with an increase of the overshoot. The tuning process of kω should consider the compromise

between the position error and the transient system performance. Figure 6.3 showed the final path-

tracking results. The LQR has a smooth transition in the entrance of the reference trajectory compared

with AKM controller. After the entrance to the reference trajectory, both controllers are able to follow the

reference trajectory. The vehicle with LQR controller was able to enter the reference trajectory quicker

than vehicle with AKM controller. However, the deviation of the vehicle in the heading angle in LQR

controller up to 15° while in AKM controller is less than 1°. Figure 6.4 shows the comparison of errors

of two controllers. It is observable, after the entrance to the reference trajectory, the AKM controller

presents less static errors than the LQR controller. For better validation of two controller, the RMS of

position and orientations errors are calculated and presented in Table 6.2. The AKM has smaller value

in δψ as expected, because as showed in Figure 6.3(b), the AKM controller intent to correct first the

vehicle orientation, only after minimize the position errors. This type of performance has to do a lot with

the tuning process of the AKM controller. In the error point of the view, for the selected reference, the
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(a) LQR controller (b) AKM controller

Figure 6.3: Comparison of two controllers: resulting trajectories

(a) LQR controller (b) AKM controller

Figure 6.4: Comparison of two controllers: errors

LQR controller is preferably than AKM controller.

Table 6.2: Comparison between two controllers (RMS values of selected variables)

Type of controller δx(m) δy(m) δψ(deg)

LQR 1.16 0.49 5.95

AKM 0.87 0.69 0.01

Figure 6.5 showed the requested torque of four motors for both two controllers. The value of torque is

much smaller in the LQR controller, as the principle of the LQR is calculate the optimal control input that

minimized the defined cost function. Moreover, the excitation of the requested torque of AKM controller

in Figure 6.5(b) indicate that the AKM controller for each iteration try to get as quickly as possible, but

the RLVs may not reaches the reference speed as desired.
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(a) LQR controller (b) AKM controller

Figure 6.5: Comparison of actuators request

Conclusions

In this chapter we provides an overview of the advantages and disadvantages of the two control so-

lutions considered in this work, a geometric controller - AKM controller and a optimal controller - LQR

controller when applied to the path-tracking problem. In the previous sections we compared the results

obtained for each controller regarding a case study mission, tracking errors, a control effort and parame-

ter tuning process. In order to better visualize the relative results, Table 6.3 presents a qualitative overall

comparison between controllers.

Table 6.3: Overall Comparison between two controllers: (++ good, + average, – poor)

Type of controller AKM LQR

Tracking errors ++ +

Requested control effort – ++

Code simplicity ++ +

Design parameters tuning – +

The table overall comparison between two controller. The evaluation of the design parameters tuning

provides a comparative idea of the necessary effort of the designer to correctly tune the controllers

parameters. The AKM controller as a heuristic controller, the performance relies a lot in the selection

of the parameter while the LQR controller only requires the adjustment of the state and input control

matrices parameters. This evaluation is merely based on the knowledge acquired throughout this work,

and serves only as an indication of the future work.
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Chapter 7

Conclusions and Future Work

The WMR have a broad spectrum of transportation applications where there is a need for material de-

livery, such as as transportation in factories, warehouses, and places where there is a need for material

delivery. The rhombic like vehicle system is a type of a wheeled mobile robot with high maneuverabil-

ity. Considering its particular configuration, this type of especially suitable for the work environment like

ITER. RLVs’ role as autonomous transportation equipment depends on their autonomous navigation

capacity. The development of control solutions for autonomous vehicle navigation is essential to execute

different missions in the critical working environment.

The work presented in this thesis played an important contribution for the project FORMULAfusion, with

the RLVs modeling followed by the development of two types of motion control solutions for a scale

model of RLVs, valid for several challenge paths.

First, the development of an overall control solution depends on a good knowledge of the system be-

havior. The modeling of vehicle system based on the kinematic and dynamic equations is performed

which the RLVs is divided into three system: drive system, modules system and vehicle system. The

motor engine used in the project Forumulafusion is modeled with the respective actuation constraints.

The control-oriented kinematic model is also studied and linearized. A detailed analysis of the kinematic

models provided the necessary insight into the vehicle behavior characteristics, allowing the control so-

lution’s design.

The motion control solution is based on a hierarchical approach: i) low-level law for the motor speed

control and ii) high-level control law for the vehicle position control. A speed controller at the motor level

is developed based on the PID control theory. Two control solutions for the position control are proposed

: i) geometrical controller and ii) optimal linear control. The PID speed controller is implemented using

Simulink/Matlab, and the comparison between the simulation data and the real data is performance to

optimized the controller’s performance.

As for the position control, the geometrical controller, namely, the AKM controller, is a model-free con-

troller. This control algorithm based on the geometric relation between the reference path and the

vehicle’s actual pose. The simulation for the path following and set point case are done to illustrate the

controller performance facing a different control parameters. The simulation results also showed the
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AKM controller’s performance depends a lot on the tuning process of the controller parameter. This

method’s main advantages are the design simplicity and the main disadvantage is the time-consuming

tuning of the control design parameters.

The LQR controller is designed based on the kinematic model. The main advantages of this method,

compared with AKM controller, are the simplicity of tuning process. It still takes some time-consuming

tuning of the control design parameters, namely the state and input control matrices. However, this time

compared with the AKM controller is insignificant.

Both two control solutions, AKM and LQR controller, proved to be capable of executing different mis-

sions: trajectory tracking and set-point cases mission. An assessment of each controller’s advantages

and disadvantages and a comparison between them was also made, providing a comprehensive insight

into the RLVs autonomous navigation control problem and the solutions proposed.

During the development of this work, several issues remain unresolved, and some other methods can

be developed. However, given the time limitations for this thesis development, they have not been ad-

dressed:

• Development of the mathematical model of the RLVs including tire model and design of the con-

troller with the dynamic vehicle effects.

• Performed the control design in discrete time, it would be of interest to analyse the differences in

the continuous case.
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Appendix A

Linearization Calculus


ẋ

ẏ

ψ̇

 =


v cosψ

v sinψ

ω

 =


cosψ

sinψ

0

 v +


0

0

1

ω (A.1)

where the (ẋ, ẏ, ψ̇) are the velocities of the vehicle in the global frame, v and ω, the linear velocity of the

vehicle in the local frame and its angular velocity around the vertical axis respectively, ψ is the orientation

of the vehicle with respect x axis.

The reference state is defined as (xref , yref , ψref ) and the dynamic of the error related to each coordi-

nate in the body frame is expressed as follows:
˙̃qx
˙̃qy
˙̃qψ


B

=


ẋref − ẋ

ẏref − ẏ

ψ̇ref − ψ̇

 =


ṽ cos ψ̃

ṽ sin ψ̃

ω̃

 (A.2)

with ṽ = vref − v, ω̃ = ωref − ω and ψ̃ = ψref − ψ.

The linear quadratic solution is used, therefore the non-linear model from (A.1) needs to be linearized.

Linearization of the state space model form the system around the point of interest, in this case, a set of

reference vref , ωref and ψref that enable the q̃B = 0. Therefore, the equilibrium point are denoted by:

v = vref (A.3)

ω = ωref (A.4)

ψ = ψref (A.5)

Applying a first order Taylor approximation around the equilibrium point to the (A.2):

˙̃qB = ∂f

∂qB
(qrefB , uref )q̃B + ∂f

∂u
(qrefB , uref )ũ (A.6)

77



˙̃qB =


0 0 −vref sinψref
0 0 vref cosψref
0 0 0

 q̃B +


cosψref 0

sinψref 0

0 1


 ṽ

ω̃

 (A.7)

Those errors are expressed in base frame coordinate system, therefore a rotation matrix has been

applied to get the error in the inertial frame:
q̃x

q̃y

q̃ψ


I

=


cosψ sinψ 0

− sinψ cosψ 0

0 0 1



q̃x

q̃y

q̃ψ


B

= q̃I = Rq̃B (A.8)

According to the chain rules:

˙̃qI = Ṙq̃B +R ˙̃qB (A.9)

where:

Ṙ =


− sinψrefωref cosψrefωref 0

− cosψrefωref − sinψrefωref 0

0 0 0

 (A.10)

Using (A.8) and (A.10) the following eqations are obtained:

˙̃qI = Ṙq̃B +R ˙̃qB = ṘR−1q̃I +R ˙̃qB (A.11)

with

ṘR−1q̃I =


− sinψrefωref cosψrefωref 0

− cosψrefωref − sinψrefωref 0

0 0 0




cosψref − sinψref 0

sinψref cosψref 0

0 0 1

 q̃I (A.12)

Thus

ṘR−1q̃I =


0 ωref 0

−ωref 0 0

0 0 0

 q̃I (A.13)

And

R ˙̃qB =


cosψref sinψref 0

− sinψref cosψref 0

0 0 0





0 0 −vref sinψref
0 0 vref cosψref
0 0 0

R−1q̃I +


cosψref 0

sinψref 0

0 1


 ṽ

ω̃




(A.14)
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⇐⇒

R ˙̃qB =


cosψref sinψref 0

− sinψref cosψref 0

0 0 0





0 0 −vref sinψref
0 0 vref cosψref
0 0 0

 q̃I +


cosψref 0

sinψref 0

0 1


 ṽ

ω̃



(A.15)

⇐⇒

R ˙̃qB =


0 0 vref (− cosψref sinψref + sinψref cosψref )

0 0 vref (sin2 ψref + cos2 ψref )

0 0 0

 q̃I+


sin2 ψref + cos2 ψref 0

− cosψref sinψref + sinψref cosψref 0

0 1


 ṽ

ω̃


(A.16)

Thus

R ˙̃qB =


0 0 0

0 0 vref

0 0 0

 q̃I +


1 0

0 0

0 1


 ṽ

ω̃

 (A.17)

Combining the (A.13) and (A.17) the tangent linearization of system about the reference trajectory in the

global frame is obtained:

˙̃qI =


0 ωref 0

−ωref 0 vref

0 0 0

 q̃G +


1 0

0 0

0 1


 ṽ

ω̃

 = Aq̃I +Bũ (A.18)

with q̃I as trajectory error in the inertial frame.
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Appendix B

Technical Datasheets

B.1 DC SERVO MOTOR Datasheet
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SERIAL NO. XXXXXXX

OUTPUT: 200 W

RATED TORQUE: 0.64 N-m

INPUT: 48VDC, 10 A

RATED SPEED: 3000 RPM

MADE IN CHINA

  QR

CODE

MODEL NO. J0200-408-4-000

3-PHASE DC SERVO MOTOR

1 3
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