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Abstract

The rapid expansion of Information and Communication Technologies (ICT) brought with it at the same

pace cyber threats through the medium of security faults in software [1]. Fixing these require expert

knowledge and a thorough understanding of systems. Within the field of software engineering, plenty of

research has been made [2–4], proposing repair tools and techniques to increase the quality, productivity

and reduce human intervention within the activities of debugging and testing. However, these must

reason about significantly more security faults and give greater insight to human analysts [5]. We analyze

the studies in the area to find these did not explore enough security faults nor a common baseline

standard for evaluating them. That motivates a system for assessing, evaluating, and comparing the

ability of Automatic Program Repair (APR) tools. With that system, we conduct the first case study

to investigate the repairability, specificity, and suitability of APR tools to fix security faults. Our findings

show that current state-of-art repair techniques can repair specific categories of security faults. However,

these are farther from being effective as the subject tools fix individually at most 21.4%, and together

30.4% of 56 vulnerable applications which are among the top 25 most dangerous software weaknesses,

such as CWE-664, CWE-118, and CWE-682. Also, we found that state-of-art tools can generate patches

that fix the security fault but mostly compromise a program’s functionality. As for the repair technique,

genetic programming is more effective, and the data-driven is more efficient for repairing security faults.
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Resumo

A rápida expansão das Tecnologias da Informação (TIC) e Comunicação trouxe consigo ameaças

cibernéticas por meio de falhas de segurança no software [1]. Corrigir essas falhas requer conheci-

mento especializado e uma compreensão completa dos sistemas. Na área da engenharia de software,

muitos estudos têm sido feitos [2–4], propondo ferramentas e técnicas de reparo para aumentar a qual-

idade, produtividade e reduzir a intervenção humana nas atividades de depuração e teste. No entanto,

devem tratar de significativamente mais falhas de segurança e fornecer uma melhor percepção aos

analistas humanos [5]. Analisamos os estudos na área e descobrimos que as falhas de segurança

são pouco abordadas. Motivados pela lacuna, desenvolvemos um sistema para avaliar e comparar a

capacidade das ferramentas de reparo. Com esse sistema, conduzimos o primeiro estudo onde inves-

tigamos a capacidade de reparo, especificidade e adequação das ferramentas de reparo para corrigir

falhas de segurança. Os nossos resultados mostram que as técnicas de reparo podem corrigir falhas

especı́ficas de segurança. No entanto, estão longe de ser eficazes, e essas corrigem individualmente no

máximo 21,4% e em conjunto 30,4% dos 56 programas vulneráveis avaliados. As vulnerabilidades dos

programas são classificadas no top 25 das falhas mais crı́ticas em software. As principais classes são

CWE-664, CWE-118 e CWE-682. Além disso, descobrimos que ferramentas podem gerar patches que

corrige a falha de segurança mas que comprometem bastante a funcionalidade do programa. Quanto à

técnica de reparo, a programação genética é mais eficaz, e a baseada em dados é mais eficiente para

reparar falhas de segurança.
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Since the emergence of the Internet in the 1980s, interconnected computer networks have reached a

global scale, connecting society through a wide variety of devices. Today’s trends feature technologies to

improve both cognitive and physical parts of the human body — e.g., prosthetic limbs and biochips [14].

Although the Internet of Things (IoT) being in its infancy, it’s expanding rapidly and promises a future with

smarter and better cities. Information and Communication Technologies (ICT) are becoming increasingly

part of our lives and even our organism. We are dealing with a complex domain, cyberspace, deeply

embedded in our surroundings, and in a permanent state of risk.

The rapid expansion of ICT, brought with it at the same pace cyber threats through the medium

of security faults in software. The Common Vulnerabilities and Exposures (CVE) database [1] lists

over 146,400 records of security vulnerabilities. These originate from exploitable faults in the software,

allowing malicious individuals to perform unauthorized actions in a system. A common attack vector is

malware, malicious software that takes advantage of security vulnerabilities to cause harm and spread

to new victims by the same means [15]. These can take the form of advanced persistent threats to cause

serious damage by sabotaging systems, as Stuxnet [16] did in the Iranian nuclear power station.

Merely manual approaches performed by human experts can not cope with the increasing quantity,

complexity, and variation of vulnerabilities. These require expert knowledge, a thorough understanding of

systems, and large amounts of time and effort invested when performed manually. Not to be forgotten the

window of exposure in the affected system. Within the field of software engineering, plenty of research

has been made [2–4], proposing repair tools and techniques to increase the quality, productivity and

reduce human intervention within the activities of debugging and testing. These solutions are far from

removing the need for an in-depth understanding of systems and expert assistance, and even further,

from fixing security faults.

A leaping step towards the automation of cyber defense was fostered by Defense Advanced Re-

search Projects Agency (DARPA) with Cyber Grand Challenge (CGC) in 2014-2016. The tournament

pitted computers against each other to explore the potential of automatic discovery and correction of

vulnerabilities in systems. DARPA’s CGC successfully bridged the gap between software and system

testing technologies with cybersecurity. Recent advancements in the field of Artificial Intelligence (AI)

bring promising technologies with the potential to be integrated into a fully automated system capable of

discovering and patching a wide variety of security faults.

Within the immense body of published work relating to Automatic Software Repair (ASR), the corpus

of literature relating to AI techniques have started to gain shape, and the literature related to cyberse-

curity is rudimentary. ASR techniques must be able to reason about significantly more types of security

faults and to give a greater insight over the addressed security faults to human analysts [5]. These

security faults have many dimensions to be considered — e.g., programming languages, technology,

behavior.
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1.1 The Problem

Program repair bots [17] have demonstrated their potential in the industry for identifying and repairing

faults in programs. These are now generalized to the repair of critical faults such as security vulnerabili-

ties [18–24]. However, no study has evaluated and compared their ability to repair security faults. That

leads us to the open challenge of evaluating with a common baseline Automatic Program Repair (APR)

tools in a security context. Therefore, to achieve that, the following issues need to be solved:

Issue 1: past studies did not consider a method focused on security aspects that allow for the

assessment, evaluation, and comparison of repair techniques.

Issue 2: past studies techniques did not evaluate a set of programs that transmute and stress the

wide variety of security faults.

Issue 3: past studies did not leverage a common language or taxonomy to describe and discuss

their ability to patch security faults.

Issue 4: past studies provide negligible insight into the performance of repair techniques with re-

spect to common metrics that allow pointing differences that reveal their suitability.

1.2 Contributions

Considering the issues listed above, this dissertation has the following contributions:

A framework to assess, evaluate, and compare repair techniques concerning security faults. The

solution has the name SecureThemAll, and Section 4.3 describes its implementation;

Adaptation of a benchmark with 56 vulnerable programs to support APR techniques. The solution

has the name cb-repair, and Section 4.4 describes its implementation;

Adaptation of a data-driven approach into a test-based tool for fixing security faults. The ap-

proach has the name CquenceR, and Section 5.2 describes its implementation;

A curated dataset of security vulnerabilities in C language for training data-driven approaches.

Section 5.3 describes the data selection, collection, and preparation;

A quantitative comparative study on 3 state-of-the-art repair techniques, evaluating their ability

to fix specific classes of security faults.

1.3 Organization of the Document

This thesis is structured as follows:
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Chapter 2 defines the fundamental concepts used throughout this dissertation, summarizes and

structures the body of work related to automatic software repair, introduces the Cyber Reasoning System

(CRS), and provides an overview on the state-of-the-art data-driven approaches.

Chapter 3 formulates the context around security faults and describes the techniques for repairing

security faults.

Chapter 4 presents the research questions, points out the open challenges, describes the proposed

system, explains the underlying design decisions and the consideration made during the selection of

resources.

Chapter 5 presents CquenceR, an adaptation of a data-driven approach to patch security faults,

along with its implementation details, data construction and analysis, and evaluation.

Chapter 6 reports the results gathered from the comparative study with particular focus on the ques-

tions that drive the problem and presents the main findings.

Chapter 7 reflects on the main contributions of this dissertation, presents the limitations, and provides

discussion on the future work.
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This chapter introduces the core concepts, provides an overview of the techniques related to the

problem addressed in this dissertation, and demonstrates how it’s scope goes beyond the academic

context. In section 2.1 is described and organized the automatic software repair literature. Then in

section 2.2 is introduced the first technology for automated cyber defense. Finally, in sections 2.3 are

presented the recent studies that explore promising data-driven technologies.

2.1 Automatic Software Repair

M. Monperrus [25] organizes the body of knowledge into two families of repair techniques, behavior and

state repair. L. Gazzola et al. [3] introduce a comprehensive survey that names these technologies as

software repair and software healing, respectively. Further, the survey illustrates a conceptual framework

that covers the commonalities and differences of the technologies. Software repair techniques locate

faults and change a program’s behavior by altering its code with corrective adjustments that fix the

faults. Software healing consists of changing a program’s state to restore its normal execution and often

mitigates software faults or prevents failures. Thus, the terms of behavior repair and state repair are

interchangeable with software repair and software healing. The term APR is widely used throughout

the literature to refer to the family of behavior repair techniques, and we stick with it. Software healing

technology repairs programs by responding to failures. That’s beyond our scope, as patching security

faults revolves around fixing source code faults. Within the behavioral repair domain, Y. Liu et al. [26]

introduce a taxonomy for the many repair techniques using test-suites as specifications, coined as Test-

Based Repair.

2.1.1 Terminology

This subsection introduces the core terms used within software repair literature, and throughout the

following chapters. Although the terms have several synonyms in the literature, these maintain the

clarity of the core concept. The definition for the terms below are borrowed from [25].

Definition 2.1.1 (Failure). ”A failure is an observed unacceptable behavior of a program execution”.

Definition 2.1.2 (Error). ”An error is the incorrect state prior to the failure, propagating without yet having

been noticed”.

Definition 2.1.3 (Fault). ”A fault is the root cause of the error, in the incorrect code”.

Definition 2.1.4 (Bug). ”A bug is a deviation between the expected behavior of a program execution and

what it actually happened”.

Remark. The term bug is interchangeable with terms of fault and defect.

6



Definition 2.1.5 (Specification). ”A specification is a set of expected behaviors”.

Definition 2.1.6 (Test-suite). ”A test suite is an input-output based specification”.

Remark. The term test-suite is interchangeable with term oracle, since is the most used validation

method.

Definition 2.1.7 (Automatic Repair). ”Automatic repair is the transformation of an unacceptable behavior

of a program execution into an acceptable one according to a specification”. The repair is performed on

the source code.

Remark. The term repair is interchangeable with terms of patch and fix.

2.1.2 Automatic Repair Process

Overall, the automatic repair process consists of collecting information from a program’s correct and

faulty executions. That’s used to identify the faulty locations and apply the necessary corrective changes

through algorithms. The correctness of the changes is proven when the program executes all cases

from the test suite correctly. The process assembles through the activities of localization, repair, and

validation, as described in [3]. Below we define these based on that.

Localization has the purpose of identifying possible faulty locations in code by employing tech-
niques that rank statements according to their relationship with the fault. Automatic repair tech-
niques generally adapt for this step Fault Localization (FL), section 2.1.3
Repair consists of replacing the faulty statements with possible corrective changes, namely can-

didate patches. Those are generated with algorithms that leverage internal/external information
to the program. Such approaches are distinguished by classes, depending on the way the repair
is defined and addressed, section 2.1.4
Validation considers a specification to determine whether the generated candidate patches

repair the fault and maintain the program’s functionality. A vast amount of repair techniques
make use of a test suite as a type of specification. Tests allow obtaining assertive information
such as expected output from the program’s execution.

2.1.3 Fault Localization

FL techniques serve the purpose of guiding the activity of program debugging by identifying the location

of faults. W. Wong et al. [27] present a comprehensive overview of FL techniques and discuss the key is-

sues. These are classified into eight categories, from which spectrum-based is one of the most dominant

approaches, and commonly used by repair techniques, hence, here briefly described. Spectrum-based

FL (SBFL) techniques use a program’s execution information to identify suspicious code, such as the
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similarity coefficient-based approach. It uses a formula over the coverage results to compute the sus-

piciousness value of each statement. The coverage comes from the execution of passing and failing

tests.

2.1.4 Repair Techniques

In [3] the repair techniques are categorized into generate-and-validate fig. 2.1 and semantics-driven

fig. 2.2. The former defines a search space which is explored for potential solutions, while the latter rep-

resents the problem of repairing a program as a formula or procedure, whose solutions might be found

with constraint solving or program synthesis, respectively. Generate-and-validate techniques produce

candidate patches through change operators classified as atomic changes, pre-defined and example-

based templates, as described in [3]. Below we define these based on that.

Atomic Changes modify a program in a single point with insert, delete or modify statements.
Pre-defined templates modify a program with pre-defined patterns.
Example-based templates modify a program with systematic changes or evolving techniques

extracted from historical data.

Figure 2.1: Generate-and-validate repair process (cf. [3]).

2.1.5 Validation Methods

As described in section 2.1.2, the correction of the changes applied in the repair process is proven

based on a specification. Beside test-suite, other types of specifications, less used, are reference im-

plementation [2], design-by-contract and abstract behavioral models [25]. The former can make use of

a program that implements a specification that demonstrates the correct behavior. Design-by-contract
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Figure 2.2: Semantic-driven repair process (cf. [3]).

dictates ”what a program does” with preconditions, and ”how it does” with postconditions, for comput-

ing the possible program states. Abstract behavioral models represent the program with a model that

captures its behavior, such as a state machine.

2.1.6 Faults Design

As described in [3], the design of repair techniques concerning faults can be general or fault-specific,

meaning their ability to address software faults can be broader or narrower. Thus, we use the term

fault design to refer to the software faults a repair technique targets. The notorious buffer overflow

vulnerability is a specific fault that results from simple errors in unsafe languages, such as C. A. Smirnov

et al. propose PASAN [28], a compiler extension able to generate patches that detect and seal buffer

overflows attacks. The authors suggest the tool can be generalized to accommodate a broader scope

of attacks.

Representative repair techniques with general fault design can repair specific faults. The popular

generate-and-validate tool, GenProg [29] combines Genetic Programming (GP) with atomic change

operators to repair automatically generic faults in C code. The tool can cover classes of vulnerabilities,

such as buffer overflows and format strings. In the category of semantic-driven repair, S. Mechtaev et al.

propose the tool Angelix [30], which synthesizes repairs based on semantic information of the program.

The tool can repair dependent multiple buggy locations and is the first work that reports the automated

repair on the well-known Heartbleed vulnerability.

2.1.7 Root Cause of Faults

As described in section 2.1.4, one way of approaching the automatic repair process is to get to the

root cause of faults, as done by some generate-and-validate techniques that use template operators.

That points out another paradigm, one where repair tools are categorized by their ability to fix faults. M.

Monperrus similarly organized the literature on automatic software repair into a living review [2]. Most
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repair techniques target dynamic errors, errors raised during run time, and static errors such as syntax

errors. The rest of the repair techniques are grouped into targeted repairs, such as tests, concurrency

errors, build scripts, web applications, software models, and security vulnerabilities. However, that’s not

the same as targeting common root causes of faults. Gemma et al. [31] give a better understanding of

that with a taxonomy for faults, resulting from the analysis of a large corpus of existing bug reports. Their

taxonomy characterizes faults into nine common root causes:

(A) Configuration issue; (B) Network issue; (C) Database-related issue; (D) GUI-related is-
sue; (E) Performance issue; (F) Permission/Deprecation issue; (G) Security issue; (H) Program
Anomaly issue; (I) Test Code-related issue.

2.1.8 Empirical studies

M. Martinez et al. [32] perform the first experiment on evaluating test-suite based repair on a benchmark

of real-world Java bugs, assessing the real correctness of patches that pass the test suite. Y. Jooyong

et al. [33] conduct the first correlation study of APR with traditional metrics used in software testing —

statement coverage, branch coverage, test-suite size, and mutation score. The repair tools, GenProg

and SemFix, were evaluated on ten subject C programs. The results imply the metrics are adaptable

to APR, and the reliability of generated repairs proportionally increases with the number of metrics. X.

Kong et al. [34] investigate the impact of five representative repair techniques on general APR, regarding

the repair effectiveness and efficiency. The experiment considers 17 subject C programs and measures

the output with three metrics — success rate, false-positive rate, and repair execution’s CPU time. M.

Tufano et al. [35] validated through an empirical study the feasibility to patch defects in Java methods

via Neural Machine Translation (NMT) techniques trained with bug-fixing patches in the wild. K. Liu et

al. [36] conduct a critical review on the evaluation of 11 APR tools’ repair on Java programs and propose

eight evaluation metrics regarding the performance for reducing the comparison biases. These metrics

cover the impact of the used FL, patch generation limitations and efficiency, intrinsic attributes of bugs,

and the benchmark over-fitting.

2.2 Cyber Reasoning Systems

Throughout the years, research scholars introduced related techniques for handling security faults in

software — i.e., vulnerability detection [37], exploitation [38, 39], and patching. With the attempt to

reduce human effort, these became progressively automated, and their separable use for defending

software came together, pointing to a unified technology. That has the name of CRS, an automated sys-
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tem capable of performing vulnerability detection, exploit generation, and software patching to defend

software [40]. To that end, DARPA put out a call to the experts in computer security through the means

of a competition.

Vulnerability detection — software analysis performed for detecting the presence of vulnerable
statements in software.
Exploit generation — programs or data crafted to trigger the vulnerable elements in code that

enable the undesirable behaviour of a security fault.

2.2.1 DARPA’S Cyber Grand Challenge

To pave the way towards a future where software safety is the expert domain of machines, DARPA

launched the CGC, the world’s first CRSs competition [41]. The competition was held through two

events, the CGC Qualifying Event in 2015 and the CGC Final Event in 2016. DARPA’s CGC challenged

highly trained experts to have their autonomous systems compete against each other on a Capture the

Flag (CTF) tournament circuit to defend a set of software services.

Services — instances of applications purposely designed and build as network services, each
containing at least one memory corruption security fault, for challenging autonomous vulnerabil-
ity discovery and remediation systems [7]. These are named challenges and have two unique
properties, exclusivity — i.e., excludes analogy with other applications — and singularity — i.e.,
restrains the context to the competition, without any real-world impact — of security faults.

Competition Model

In a CTF tournament, contestants discover, exploit, and fix security faults in their services in real-time

as in a battle against their adversaries. CGC’s contestants were fully autonomous CRSs responsible for

addressing the discovery, proof, and mitigation of software security faults.

A CRS scored points by protecting and keeping its services running and by exploiting adversaries’

services. A CRS lost points by having their systems exploited or by damaging their services. Therefore,

the game was centered around two activities, defense, and offense of vulnerable software in services.

Below we briefly explain these activities based on [42].

Defense — CRS had to rely on intrusion detection and binary patching. The former was per-
formed by writing and deploying firewall rules, and the latter by finding and patching vulnerabilities
in the services at the machine-code level.
Offense — CRS had to prove the existence of a security fault in the software of the target

service, with a program that either executed code within the target or leaked it’s privileged data

11



Research Challenges

The CGC dared the contestants with the challenge of identifying, proving, and patching security faults

in unseen binary code, without disrupting functionality [42]. That required a holistic approach, through

fully autonomous systems, and at the speed of seconds or minutes. Contestants overcame those chal-

lenges with techniques central to cybersecurity, achieving full automation of cyber defense and offense.

DARPA’s CGC success validates the concept of automated cyber defense. The first generation of CRSs

bridge the gap between software security and program analysis research. Meanwhile, as pointed in the

related literature [40,43], there are many open challenges, and the astounding development of AI brings

new opportunities for addressing the further improvements of CRSs.

2.3 Data-driven Software Repair

In recent years, advancements in AI brought a wave of progress within the fields of software engineering.

Particularly for programming languages, from research exploring the applications of probabilistic models

[44]. This trend gained thrust as well with automatic software repair, coined as data-driven [2, 45]. The

approaches connect prior knowledge to a large code corpus, rather than the traditional techniques based

on manually written rules resulting from intuition or expert experience.

The goal of AI is to produce intelligent agents with the cognitive ability to solve problems, make

decisions, and learn from the environment. Before diving into the data-driven repair, we give a brief de-

scription based on [44, 46] of the subsets of AI commonly used for data-driven software repair, namely

Machine Learning (ML) and Natural Language Processing (NLP).

Machine Learning - is about making data-driven decisions, that is, decisions based on learning
from data. It consists of a series of methods, models, and algorithms used for data analysis. The
data defines the quality of results even more than the choice of the algorithms employed. In ML
patterns are identified in data to make predictions. All that matters are the input data and output
results, functioning as a black box.
Natural Language Processing — bridges natural languages and computers by aiding ma-

chines to understand, process, and analyze human language. A relevant core concept in NLP
is sequence-to-sequence (seq2seq), a model representing both input and output as a sequence.
Examples of applications for these models are machine translation, text summarization, speech-
to-text, and text-to-speech. NLP methods are increasingly reliant on data-driven approaches.
[46].

Both ML and NLP involve supervised or unsupervised learning. Supervised learning uses labeled

data to learn general rules by matching input with output information and predict new unseen data.

Unsupervised learning makes sense of unstructured data without supervisory signals and tries to identify

implicit patterns, structures, and relationships within the data set.
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2.3.1 Repair Techniques

F. Long and M. Rinard [47] introduce the first data-driven repair tool, Prophet. The approach has the

insight that correct code properties are shareable across applications and can be leveraged to fix incor-

rect applications. The approach uses a probabilistic and application-independent model of correct code,

trained to generate a search space of candidate patches which are prioritized in order of likely correct-

ness. During the same year, D. Le et al. [48] come with the intuition that program repair can be guided

with derived patterns from bug fixes from development history of software projects. Genesis tool [49]

implements the same core idea of using common fix patterns by abstracting specific details from multiple

patches, namely patch generalization as introduced by F. Long et al. That is further combined with a

search space inference algorithm to generate a search space of candidate patches. Delvin et al. [50]

address the repair of four classes of common Python bugs, with a system that learns from a large cor-

pus of real-world source-code to predict both bug locations and fixes, without any information about the

correct functionality of the program. In their approach is used a neural neural network to encode the AST

input and a specialized network module to scores each repair candidate. Daniella et al. [45] frame the

problem of finding and fixing bugs in Javascript programs as a structured prediction problem on a graph-

based representation of programs. The approach targets a wide range of bug types, and is implemented

into a tool named HOPPITY. Z. Yu et al. [51] propose and approach to learn the relation between code

and edits by representing code as Abstract Syntax Tree (AST) annotated with information and edits as

code transforms — i.e., changes on the AST structure. The system takes as input a program’s code and

predicts using structured prediction the most likely edits to be applied.

NMT-based Repair

Y. Pu et al. [52] follow the intuition that frequent and similar code fragments across programs can be

re-used for automatic program correction. For that, a neural network model used in NLP is modified and

trained to recover correct fragments from a large corpus of programming assignments. Those are used

to replace incorrect fragments to generate candidate fixes. A system called sk p implements the ap-

proach, and shows decent ability of correcting both syntactic and semantic errors in small programming

assignments in Python. Hata et al. developed [11] Ratchet, an NMT-based technique following the idea

of corrective patch generation by learning code hunks from past fixes—the pairs of pre-correction and

post-correction statements that are contiguous. Ratchet focuses on single-statement changes within

Java methods, and performs better than pattern-based patch suggestion. That demonstrates NMT-

based learning approaches have the ability to address the issue of automatic patch generation. Although

the promising results, NMT approaches suffer from out-of-vocabulary—rare words used infrequently in

specific contexts are not included in the vocabulary. The vocabulary challenge is overcome by Chen et

al. in [9] with a copy mechanism that allows to capture the rare words from the input. The technique

is implemented along with an abstract buggy context—for capturing long-range dependencies—into a
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program repair tool called SEQUENCER. The tool is based on sequence-to-sequence learning and pro-

duces well formed one line fixes for one line bugs for Java programs. The same technique is used

with a different approach to handle the vocabulary problem in [23] by Chen et al. to predict patches for

vulnerabilities in C code from the CVE database. L. Thibaud et al. [53] combine convolutional neural

networks (CNNs) and a context-aware NMT architecture to automatically fix bugs in multiple program-

ming languages. The approach separates the faulty lines from the context, and combines models to

capture different relations between faulty and clean code. The approach fixes 509 bugs over six bug

benchmarks in four programming languages.
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Table 2.1: Data-driven Repair Techniques

Study/Repair Tool Probabilistic Model Programming Languages

Prophet [47]
Parameterized likelihood

function assigns each candidate
patch a probability

C

sk p [52] seq2seq neural network model Python

History Driven
Program

Repair [48]

Graph-based representation of
bug fixes and stochastic search

algorithm as optimization
Java

Genesis [49]

applies a generalization
algorithm on subsets to infer a
transform, and formulates and

solves an integer linear program

Java

SSC model [50] we encode the AST with a
sequential bidirectional LSTM Python

Ratchet [11]
NMT-based technique
tokenizes statements

uses a single layer of LSTM cells
Java

SEQUENCER [9]
NMT-based technique
tokenizes statements

sequence-to-sequence model
Java

Using Sequence-to-Sequence
Learning for Repairing C

Vulnerabilities [23]

NMT-based technique.
Tokenizes statements.

Sequence-to-sequence model
C

HOPPITY [45]
parse code into an AST

represents programs using graphs
use a Graph Neural Network

JavaScript

Learning the Relation between
Code Features and Code

Transforms with Structured
Prediction [51]

Code represented as AST
nodes. Uses conditional

random field, appropriate for
tree-based data

Java

CoCoNuT [53]

Tuples of buggy, context, and
fixed lines. Input as sequences

of tokens. NMT model uses
CNN layers

Java, C,
Python, and
JavaScript
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This chapter builds the background for the problems addressed in this dissertation. Section 3.1

formulates the context and gives an insight into the root cause of security faults.

3.1 Context Formulation

The previous chapter gives an overview of automatic software repair, shows its scope in the context of

cyber defense, and describes state-of-art techniques using AI technologies. This section elaborates the

focus of the dissertation within the context of security. It begins by describing security faults followed by

a review of the related automatic repair techniques.

3.1.1 Security Faults

As discussed in section 2.1.7, software faults have several root causes, and security faults are among

them. Although the same defect nature, it’s important to have under consideration what originates a

security fault. The main difference is that faults cause expected scenarios not to run, while security

faults leave an open window for violating the Confidentiality, Integrity and Availability (CIA) of a system.

The example below depicts the difference. The fault in listing 3.1 makes the pixels variable to not be

incremented. The security fault in listing 3.2 results from the wrong bounds-check in the for cycle,

making the system susceptible to a memory error. The error can be exploited by loading shell-code into

the allocated buffer memory, leaving the system exposed to potential malicious use cases. A security

fault that is accessible and exploitable is a vulnerability.

Remark. The term security fault is interchangeable with terms software weakness and vulnerability.

1 f o r ( i =0; i<numrows ; i ++)
2 f o r ( j =0; j<numcols ; j ++);
3 p i x e l s ++;

Listing 3.1: Fault example (cf. [12]).

1 vo id vu ln ( ) {
2 i n t i ;
3 i n t buf [ 1 2 8 ] ;
4

5 f o r ( i =0; i ¡= 128 ; i ++)
6 c in >> buf [ i ] ;
7 }

Listing 3.2: Security fault example (cf. [13]).

accidental
semicolon off-by-one

error

Figure 3.1: Difference between a security fault and a security fault.

Types

The MITRE Corporation [54] uses the term ”weaknesses” to cover a broad spectrum of security faults

that makes both hardware and software susceptible to unauthorized actions that can be performed by
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an attacker. To discuss security issues in a common language, MITRE developed a list of common

weakness types, namely Common Weakness Enumeration (CWE). The latest view of software weak-

nesses [55] contains 419 types of weaknesses encountered in software development.

(a) Number of entries related to a particular CWE
within the NVD data set (cf. [56]).

(b) Weaknesses score based on prevalence and
severity (cf. [56]).

Figure 3.2: 2020 CWE Top 25 Most Dangerous Software Weaknesses.

In fig. 3.2 are listed the top 25 most common and impactful software security faults experienced over

the years 2018 and 2019. According to MITRE, these security faults “are dangerous because they are

often easy to find, exploit, and can allow adversaries to completely take over a system” [56]. The list

was developed by leveraging published vulnerability data from National Vulnerability Database (NVD),

consisting of approximately 27,000 CVEs, each associated with a weakness.

Common Vulnerabilities and Exposures CVE — standardized description serving as one
identifier for one vulnerability or exposure [1]

The doughnut chart in fig. 3.2(a) shows that the top 5 weaknesses in the list account for more than

50% of the total CVEs in the data. The bar chart in fig. 3.2(b) shows the overall score associated with the

weaknesses—the numerical score represents their severity and is calculated based upon a standardized

set of characteristics. A high score was given to common weaknesses that can cause significant harm.

The following are the top 6 most severe weaknesses, with a score greater than 20:

1. CWE-79: Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’);

2. CWE-787: Out-of-bounds Write;

3. CWE-20: Improper Input Validation;
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4. CWE-125: Out-of-bounds Read;

5. CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer;

6. CWE-89: Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’).

Vulnerable Programming Languages

The latest Common Weakness Enumeration (CWE) list [6] contains additional helpful views with CWEs

that cover issues found in a programming language—C, C++, Java, and PHP—that are not common

to all languages. The bar chart in fig. 3.3 shows the number of CWEs by programming language with

issues uncommon to all languages. Additionally, those have been mapped to the CWEs in top 25 fig. 3.2.

According to that, C++ has the most uncommon issues to all languages, followed by C. Both have the

same CWEs from top 25—CWE-787, CWE-125, CWE-119, CWE-416, CWE-476. Three of them are in

the top 6 most severe weaknesses. CWE-502 from the top 25 is in both Java and PHP.

Figure 3.3: Number of CWEs by programming language that cover issues uncommon to all languages (cf. [6]).

3.1.2 Repair of Security Faults

As described in section 2.1.6, the same concept applies to repair tools that attempt to repair security

faults, their design can be general or specific.

Specific techniques

The techniques cover security faults such as buffer overflows, component hijacking, cryptographic mis-

ues, and memory leaks. F. Gao et al. [18] propose BovInspector, a method that inspects static warnings
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to detect, validate, and repair buffer overflows. The tool can fix six C programs with buffer overflow

faults, proposing patches similar to the official repair. In [19] M. Zhang et al. introduce the first approach

for automatic patch generation in Android applications, into a prototype called AppSealer that targets

component hijacking vulnerabilities. The technique tracks dangerous information flows, faults that com-

promise the data integrity by leaking and changing sensitive information without the related permissions.

In their evaluation, AppSealer was able to mitigate 16 vulnerabilities from SQL injection and delegation

attack threats.

S.Ma et al. [20] propose CDRep to repair seven cryptographic misuse defects—CWE-310 Crypto-

graphic Issues—in Android applications. The approach applies transformations on matching placehold-

ers from manually created patch templates—by generalizing cryptographic misuse fix examples. In their

experimentation results, the tool was able to repair the 94.5% of 1262 vulnerable apps. Q. Gao et al. [21]

propose LeakFix, a semantic-driven tool for fixing memory leaks. The approach fixes leaks in code by

inserting deallocation statements. In the evaluation, the tool fixed 25 out of 89 leaks in 15 C programs.

General techniques

In [24] Ma S. et al. propose VuRLE, a tool for automatic detection and repair of multiple types of vul-

nerabilities in Java source code. VuRLE performs that by applying learned repair templates containing

patterns extracted from previous fixes for vulnerable code. VuRLE was capable of repairing 101 out of

279 vulnerabilities. The types of vulnerabilities in VuRLE’s dataset are:

1. CWE-389: Error Conditions, Return Values, Status Codes;

2. CWE-772: Missing Release of Resource after Effective Lifetime;

3. CWE-1211: Authentication Errors;

4. CWE-310: Cryptographic Issues;

5. CWE-89: Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’).

J. Harer et al. [22] propose an adversarial learning approach that doesn’t require paired data exam-

ples for fixing security vulnerabilities in C code. The approach is evaluated on SATE IV, a dataset with

synthetic C/C++ vulnerable code examples across 116 different CWE types, achieving close results to

a sequence-to-sequence learning baseline. Z. Chen et al. [23] propose sequence-to-sequence learning

for repairing vulnerable functions in C code. The approach was evaluated on known CVE vulnerabilities

from the NVD data feeds and can fix 14 out of 630 large vulnerable functions.
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This chapter introduces the problem, describes the proposed solution, explains its underlying com-

ponents, and justifies the design decisions. In section 4.1 are presented the research questions for the

problem along with the open challenges. In section 4.2 is given an overview of the proposed solution

along with the requirements. Then in section 4.3 is introduced the framework solution along with the

considered subject repair tools. Finally, section 4.4 presents the benchmark solution along with the

considered subject benchmarks.

4.1 Problem Definition

Chapter 2 introduced considerable related work and resources on automatic software repair delivered by

researchers—such as tools, techniques, and empirical studies. The rise of new technologies brings hope

for further developments of the next generation of systems to overcome most of the current limitations.

In Chapter 3, the scope was focused on security faults, showing the progress made on the subject,

and pointing to some uncharted territory — the variety of types and critical faults, uncommon issues

specific to a programming language. Remarkably enough is general repair techniques for security faults

use a data-driven approach, in contrast to specific ones. That shows repair techniques began to follow

different approaches and consider more types of security faults.

4.1.1 Research Questions

The context in section 3.1 frames the current state of APR for security faults and positions it at the

beginning of a long road of development towards a mature state. Positively, the following questions will

take us closer to that destination.

Q1. [Repairability] Are the state-of-art repair tools able to patch security faults?

Q2. [Specificity] What categories of security faults are the state-of-art repair tools able to patch?

Q3. [Suitability] Which paradigm is the fittest for patching security faults?

4.1.2 The Problem

The previous questions and the comprehensive overview in chapter 2 reveals us the problem of past

studies not exploring enough security faults, nor a common baseline standard for evaluating

them. The problem is partitioned into the following issues and associated with the questions:

Issue 1: past studies did not consider a method focused on security aspects that allow for assess-

ment, evaluation, and comparison of repair techniques — Q1;

Issue 2: past studies techniques did not evaluate a set of programs that transmute and stress the

wide variety of security faults — Q2;
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Issue 3: past studies did not leverage a common language or taxonomy to describe and discuss

their ability to patch security faults — Q2;

Issue 4: past studies provide negligible insight into the performance of repair techniques with re-

spect to common metrics that allow pointing differences that reveal their suitability — Q3;

4.1.3 Open Challenges

The previous issues along with the related work, point out to the following challenges:

C1. Proposal of a framework that allows for a the assessment, evaluation, and comparison of repair

tools with respect to security faults - I1/I3;

C2. Proposal of a benchmark with a variety of vulnerable programs, and prepared for supporting

APR tools - I2/I3;

C3. Proposal of repair techniques with a general fault design, targeting security faults - I2/I3;

C4. Proposal of a comparative study that evaluates with performance metrics the ability of repair

tools to fix security faults. - I4;

4.2 The System

The challenges introduced in section 4.1.3 give us an idea of a solution suitable for answering the

research questions and capable of tackling the issues in section 4.1.2. That is, to develop a system

that permits the assessment, evaluation, and comparison of APR tools’ ability to fix programs

with security faults and conduct a comparative study with it.

We leverage previous work to borrow foundations, and the closes we found is the system proposed

in [4]. The RepairThemAll framework runs repair tools on different benchmarks of bugs and collects the

resulting patches for analysis. We follow the same paradigm, with the difference of the programming

language, and fault design. Also, we propose comparative capabilities for the system. Thus, the system

must execute repair tools on a benchmark with vulnerable programs and collect the generated results to

evaluate and compare their ability. Figure 4.1 illustrates the architecture of the proposed system with it’s

paramount components.

Remark. The RepairThemAll framework considers Java program repair tools, thus, covers existent

benchmarks for Java. In contrast, our scope is considerably different, as described throughout this chap-

ter. We consider that and only leverage the design as a basis, rather than extending the RepairThemAll.

Also, to avoid adding complexity from unnecessary functionalities and dependencies.
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Figure 4.1: System Architecture (cf. [4]).

4.2.1 Abstractions

Taking into account the abstractions in RepairThemAll, the system should provide an abstraction around

repair tools—repair tool plug-in, repair runner, and evaluation module—and benchmark—benchmark

plug-in. Below we describe these abstractions based on [4].

Repair tool plug-in ought to abstract the common parameters that are required by repair tools,

allow the addition and removal of tools, and process the generated results into a common format.

Abstracting the parameters for the repair tools is necessary as these require different parameters.

The common format should abstract the generated output and promote easy analysis and readabil-

ity. Results should contain the textual difference between the generated candidate patches for the

vulnerable program files.

Repair runner should allow for easy interaction with the system. Its role is to launch the execution of

repair tools on specific programs from the benchmark and write the results. Therefore, the received

input — a command with arguments — is processed and used to start the execution. In the end,

writes into a file the processed results from the repair plug-in.

Evaluation module should allow through a simple command to evaluate and compare the results

generated. The evaluation should take into account pertinent metrics related to the results. The

comparison should provide several visual representations of the results, demonstrating the following:

(1) categorization of programs fixes by type of security fault, (2) tools overlapping fixes, (3) each

tool’s coarse-grained performance accuracy, and (4) each tool’s fine-grained performance accuracy.

Benchmark plug-in should abstract operations performed over the vulnerable programs. The ab-
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stract operations map to concrete operations required by the tools. The plug-in should at least allow

for the following: (1) check out a specific program to a given location, (2) compile the vulnerable

program’s source code, (3) provide information on the vulnerable program to be given as input to

repair tools — i.e., scripts for testing, the number of tests, location of specific files.

4.2.2 Specifications

As much as we’ll like to make the system generalizable to cover most of the tools, techniques, and

programming languages, that’s not realistic and, we should limit our approach to a specific set of re-

quirements — i.e., strategy, validation method, errors class, programming language, and repair scope.

Thus, we determine the following:

Strategy is generate-and-validate, as the repair process is quite popular for APR. Additionally,

semantics-driven technology is studied less extensively, and some factors influence its effectiveness

[3].

Validation Method is test-based, as is the most common method based on the organization in

[2, 26] and the studies in section 2.1.8. Also, we consider this validation method for gathering a

broader spectrum of potential candidate repair tools and benchmarks.

Errors class is dynamic, as these errors occur during run-time and their root cause is related to the

program’s semantic and behavior, such as in security faults.

Programming Languages are C/C++. Based on fig. 3.3, both C/C++ have more CWEs with un-

common issues causing undefined behavior than Java. Since C++ is an extension of the C pro-

gramming language, these are considered as a group for program repair tools [57]. As well, many

datasets with security faults/patches pair them together [7,58–60].

Repair Scope must target a single vulnerable source code file to promote a fair evaluation. There-

fore, the programs under repair to be evaluated must contain a vulnerability confined to a single file.

The tools under evaluation do not necessarily have to perform FL, and if possible, these can assume

true fault localization, by supplying the exact location of the faulty lines.

4.3 Framework

The framework is the orchestrating component of the system, responsible to handle the repair workflow

for each tool, and evaluate the generated results. This section describes the considered repair tools, the

implementation details, the repair workflow, and the evaluation methodology. The implementation was

named SecureThemAll and is publicly available on GitHub. To access it use the following Uniform Re-

source Locator (URL): https://github.com/epicosy/SecureThemAll. Figure 4.2 illustrates the design
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of the framework with the paramount components for the repair workflow.

Figure 4.2: SecureThemAll Architecture (cf. [4]).

4.3.1 Subject Repair Tools

We leverage the organization and selection done in [3, 57], and regarding the specifications in sec-

tion 4.2.2, the repair tools in Table 4.1 are selected as candidates for the framework.

Table 4.1: Generate-and-validate test-suite-based program repair tools for C/C++

Repair tool Benchmark used
in evaluation Bugs Patched Fixed

GenProg [29] ManyBugs § / SIR † 69 ∗ / 54 † 16 ∗ / 17 † 1 ∗ / 17 †

MUT-APR [61] † SIR [62] 54 47 17
Kali [63] ∗ ManyBugs § 69 25 2

Prophet [47] ManyBugs § 69 39 18
RSRepair [64] ‡ ManyBugs § 30 10 2

SPR [65] ∗ ManyBugs § 69 38 16
∗ Results selected from [47]. † Results selected from [61].
‡ Results selected from [63]. § ManyBugs Benchmark [66]. .

4.3.1.1 Selection criteria

There are additional factors necessary to consider for including candidate repair tools into the framework,

as indicated below.

1. The repair tool ought to be publicly available.

2. The repair tool ought to be possible to run.

3. The repair tool ought to require only the source code in C language and its test suite used as

validation.
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4. The repair tool ought to be easily adapted to run on a different benchmark beyond the one used in

its original evaluation.

From a total of 6 tools, 2 meet the specified inclusion criteria. These are listed below with a brief

description. Table 4.2 describes the rest of the tools along with the criteria not met.

Remark. Given the reduced number of tools, an additional tool named CquenceR was purposely devel-

oped and included. It’s implementation details are described in the next chapter.

GenProg [29] is a seminal APR tool that uses genetic programming to repair faults. The approach

uses FL to find faulty statements in a program and proceeds to modify these with mutation and

crossover operators to create a new variant. The variants that pass the test suite are used for the

next generation .

MUT-APR [61] mutates suspicious operators within a genetic programming algorithm to replace

faulty ones. It uses the same FL appraoch as in GenProg. The operators are picked randomly, and

each run generates a new copy of the program with one of them.

CquenceR is a data-driven repair technique that makes use of a NMT model trained — on patches

of security faults — to generate multi-line fixes. The implementation is detailed in Chapter 5.

Table 4.2: Excluded repair tools.

Repair Tool Criteria Explanation

Kali [63] 1 the author states that the tool ”is available on request for
the purpose of checking the results presented”

Prophet [47] 4 programs have to be compiled with specific libraries
RSRepair [64] 2 coverage program supplied by the author does not work

SPR [65] 4 programs have to be compiled with specific libraries

4.3.2 Implementation Details

In this subsection, we describe the main components of the framework. The details about the expected

underlying functionalities — i.e., OS interactions, logs, input parsing, multi-processing — are left aside.

Benchmark Interface allows the framework to interact with the benchmark, as described in sec-

tion 4.2.1. The interface mimics the benchmark’s operations and can be used to directly invoke

it—e.g., preparing a program’s working directory. The interface can be used to get operations in

the format of strings for crafting the command arguments passed to the tools—e.g., formulating a

program’s compile and test commands required by the tool.

Repair Tool Abstraction provides the common arguments and bindings used during the Repair

Workflow — i.e., benchmark binding, configurations, common methods, paths. This abstraction acts
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as a toolbox that allows the framework to be extended with repair tools. The abstraction binds the

results processing functionalities to the repair tool—methods for textual difference and stats parsing,

and the template for the results. Some common parameters are crafted by queering the Benchmark

Interface — e.g., the compile and test commands. These are written as scripts into the working

directory and used by the repair tools. Other common parameters, such as the number of posi-

tive/negative tests and the file path of the file under repair, are passed directly to the tools. Some

tools require specific parameters that need some workarounds — e.g., MUT-APR requires the files

with the tests’ outcome.

Repair Runner is responsible for the multiprocessing and receives parsed inputs along with the

instantiated abstractions. It initializes the execution of the specified repair tool on a given benchmark

program. The runner saves the results when the repair tool terminates its execution.

4.3.3 Repair Workflow

The overall repair workflow prepares the working directory along with the arguments passed to the repair

tool. The repair tool’s plugin crafts the command by using the help of the Benchmark Interface. The tool’s

plugin invokes a single command that starts the execution of the repair tool. The framework awaits for

the tool’s execution to finish. In case the time limit is passed, the framework forces the execution to

terminate. When the execution ends, the results, if any, are parsed into a standard format.

Preparation and Tool Execution starts by copying into a given directory the specified program’s

source code. Depending on the tool, it’s plugin queries from the benchmark, additional information

about the program, and its test suite. Next, the plugin formulates the benchmark’s compile and test

commands with the necessary arguments, written to bash files, and passed as arguments for the

repair tool. The respective plugin of tools executes them by simply invoking them with the crafted

command.

Results Processing assesses through the repair tool’s plugin the generated result after its exe-

cution terminates. The results are the generated source code files containing changes for a given

vulnerable source code file. The results are compared with the original file to produce the textual

differences in the format of unified diffs. In the working directory, a folder repair should contain a file,

the patch for the vulnerability. We consider the rest of the files generated as edits because these

didn’t patch the vulnerability. Further, the repair tool abstraction processes the compile and test

data generated by the benchmark as statistics. The repair runner saves the processed results into a

JSON file, similar to the example in fig. A.1.
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4.3.4 Evaluation Methodology

Our evaluation methodology must allow identifying the strengths and weaknesses of repair techniques

to assess their ability to fix security faults. To this end, the family of criteria — for evaluating repair

techniques in a comprehensive manner — introduced in [67], have been taken into consideration to build

an evaluation methodology. We base the criteria for our evaluation with performance metrics calculated

with statistics from the results. Framework’s abstractions deal with the transformation of the generated

results in statistics and metrics. We describe and justify the considered statistics and metrics below.

4.3.4.1 Statistics

The statistics make use of the results to calculate the following: compile success rate, positive and

negative tests success rate, edits score, fix score, and time score. The scores are developed to have a

range between 0 and 1.

compile success rate =
#successful compilations

#successful compilations+#failed compilations
(4.1)

positive tests success rate =
#passed positive tests

#passed positive tests+#failed positive tests
(4.2)

negative tests success rate =
#passed negative tests

#passed negative tests+#failed positive tests
(4.3)

We use success rates to assess the tool’s robustness in generating useful code changes. For ex-

ample, if the code doesn’t compile, then the tool’s score is penalized. We believe these give as well an

insight into the quality of the patches generated by the tools.

As for the scores, we use the fix and edits scores to assess the tool’s ability to generate useful

code changes. For example, when a tool generates plenty of edits, it means it might just explore a

search space. We believe that reflects the tool’s ability to ”reason” over the changes it performs. The

time score serves as the time cost spent in the repair process. The time and edits scores are inversely

proportional, which means we penalize the tools that take longer to execute and the tools that generate

a great number of implausible candidate patches.
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fix score =

{
1, if fix ∈ patches

0, if fix /∈ patches
(4.4)

edits score = 10−
edits
50 (4.5)

time score =


0, if duration ≤ 1

0, if duration ≥ time limit ∧∅patches

10−
duration
time limit , otherwise

(4.6)

4.3.4.2 Metrics

The performance metrics used to measure the ability of the repair tools are the efficiency and effec-

tiveness. The former is calculated with eq. (4.5) and eq. (4.6), as we believe these reflect the useful

work performed by a repair tool. The latter is calculated with eq. (4.4), eq. (4.6), eq. (4.1), eq. (4.2),

and eq. (4.3), as we believe these reflect a tool’s capacity to perform the task of repairing a vulnerable

program.

efficiency = edits score+ time score (4.7)

effectiveness = compile success rate+
pos tests success rate+ neg tests success rate

2
+fix score

(4.8)

4.3.4.3 Visual Representation

We approach the visual representations described in section 4.2.1 with plots that make use of the previ-

ous metrics and statistics. These have been matched as following.

1. Heat map: for representing the application fixes performed by tools according to a specific cate-

gory based, by using the fix score

2. Venn diagram: for representing the number of applications repaired by tools and how these over-

lap

3. Bar chart: ranking and comparing each tool’s performance according to the efficiency and effec-

tiveness metrics.

4. Radar chart: represents each tool’s relative performance with respect to the statistics.
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4.4 Benchmark

The benchmark serves as the ground truth for evaluating the repair tools’ ability to patch security faults

and make a fair comparison between them. This section describes the considered benchmark, its

implementation details, and the execution workflow. The implementation was named cb-repair and

is publicly available on GitHub. To access it use the following URL: https://github.com/epicosy/

cb-repair. Figure 4.3 illustrates the design of the benchmark with its paramount components.

Figure 4.3: Architecture of cb-repair (cf. [7]).

4.4.1 Subject Benchmark

We selected from [7, 58, 68] the benchmarks listed in the table below as candidates, as these contain

vulnerable programs written in C, along with the source code.
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Table 4.3: Available benchmarks with C/C++ vulnerable programs.

Benchmark Description Programs Defects

Codeflaws [69] defects in programs are classified across 40
defect classes 7436 3902

DBGBench [70] 291 plausible/correct patches from real
software professionals 2 27

IntroClass [66] small programs drawn from an introductory C
programming class 6 998

ManyBugs [66] well-established open-source programs
with mature codebases 9 185

CGC Corpus [7]
programs designed to contain vulnerabilities

that represent a wide variety of crashing
software flaws

250 739 †

C/C++ Juliet Test Suite [58] contains examples organized under 118
different CWEs 64099 ∗ -

∗ Test cases, which are simple programs. † The number of proof of vulnerabilities.

4.4.1.1 Selection criteria

Additionally, the benchmark must contain labeled vulnerable programs with enough complexity to ap-

proximate real software, having the source code limited to a single version, to provide specific insight

into security aspects of automatic repair techniques. Given the context of the problem, the creation of

one is arduous work, and even adapting existing work is a tough task. We consider the factors enumer-

ated below to cover the process of selecting a benchmark.

1. The benchmark must contain programs with security faults.

2. The benchmark must contain programs with a single version as source of data.

3. The benchmark must include, for each program, test cases to test its functionality.

4. The benchmark must include, for each program, at least one exploit that triggers the vulnerability.

Taking into account the scope of the benchmarks in table 4.3, these have a different set of concerns

with respect to the evaluation.

Codeflaws is designed to ”allow thorough investigation of the relationship between fault types and

the effectiveness of repair tools” [69]. However, Codeflaws’ software defects are classified based on

the syntactic differences between the buggy program and the patched program.

DBGBench is designed to ”to facilitate the effective evaluation of automated repair techniques” [70].

However, DBGBench contains programs with multiple versions of source data.

ManyBugs is designed to ”allow indicative evaluations whose results generalize to industrial bug-

fixing practice” [66].

32



IntroClass is designed to allow ”evaluations that can identify the factors that affect the success of

repair techniques” [66].

Juliet Test Suite is designed ”specifically for assessing the capabilities of static analysis tools”, and

the programs are intentionally the simplest form of the flaw being tested [58].

CGC Corpus is designed to allow the evaluation of vulnerability remediation systems.

Codeflaws, DBGBench, ManyBugs, and IntroClass contain security faults but are not dedicated entirely

to them. This first impression reveals that the available benchmarks are relatively far from the desired

goal. However, to a certain extent, one of them must be the closest to our scope, being only a matter

of extending with an appropriate design. The CGC Corpus implemented for Linux by Trail of Bits [71]

portrays that. The initial corpus was purposely built and designed for security, and it’s applications come

with extensive functionality tests, triggers for the security faults, and patches.

4.4.2 CGC Corpus Applications

The original DARPA Challenges Sets contains 250 C/C++ applications initially designed for DARPA’s

Cyber Grand Challenge (CGC) section 2.2.1. The applications approximate real software with enough

complexity and represent a wide variety of crashing software flaws. The verification of the applications

consists of two parts, functionality verification and vulnerability demonstration [7]. The former is made

up of specialized tests—service polls—intended to check complex interactions, thus, allowing to validate

the impact of the changes made to the application. The vulnerabilities are proved through special inputs

purposely crafted—Proof of Vulnerability (POV)—to trigger the memory corruption in the applications.

That’s achieved through two types of POVs, type 1 and 2.

Type 1 POV makes the application fault, allowing to gain code execution—e.g., instruction
pointer and general purpose register set to specific value
Type 2 POV leaks privileged data—e.g., bytes from a range of memory

4.4.3 Implementation Details

The initial applications were originally developed for a custom Linux-derived operating system. Trail

of Bits—CGC contestants—modified the application to support other operating systems. Their work fits

better within the context of program analysis and fault localization. However, the supplemental resources

provided enable benchmarking of automatic repair tools at the cost of additional modifications. For that,

part of the available applications and scripts have been selected and restructured. We then implement

complementary extensions and organized them into an abstraction layer with specific commands, as

illustrated in figure fig. 4.3.
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Abstraction Layer provides commands, logic, data objects, and state modules necessary for inter-

acting with the applications. The data objects are bind to the applications, dependencies, and scripts

to allow easy accessibility. We extend the abstraction layer with concrete operations and tasks. The

Operations allow the necessary interactions with the applications—e.g., test a given application. The

Tasks allow to deal with specific case scenarios — e.g., initialize tests. The main difference between

operations and tasks is the application’s context — i.e., operations make part of an execution workflow.

Operations are designed to work on a single applications at a time, within an execution workflow and

with the order below.

1. genpolls operation generates deterministic positive test cases.

2. checkout operation copies the application’s source code along with other relevant as-
sets—manifest information, compile configurations, dependencies—to a given working di-
rectory.

3. compile operation compiles the application’s source code along with the negative tests.
This operation allows to compile preprocessed files and link the generated objects into the
application’s binary—in the cases where such is necessary.

4. info operation provides information such as the location of compiled files, the description
of the challenge and the number of positive and negative tests

5. test operation runs single/multiple, positive/negative tests on a compiled challenge.

Remark. For simplicity, we omit optional operations — manifest, patch, make, test-coverage — which

apply to specific scenarios.

Tasks have a broader range, in the sense of performing specific/complex functions for multiple chal-

lenges, and might involve other tasks and operations.

catalog task lists the available applications.
check task executes the workflow aforementioned as a sanity check of applications that might

fail under specific circumstances—i.e., configurations or environment.
clean task cleans metadata generate during benchmark initialization and sanity check.
init polls task performs, for multiple applications, the same as the genpolls operation.
stats task gives and plots statistics about the benchmark’s applications—e.g., distribution of the

number of code lines per application

Test-based approach

The functional verification and vulnerability demonstration described in section 4.4.2 easily map to the

expected positive and negative tests described in section 2.1.5. Thus, the service polls—here, simply

called polls—are considered as positive tests. The underlying mechanism of polls can even execute

thousands of simple and basic tests per poll, to prove the program’s correct functionality and behavior.
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The POVs are considered as negative tests. The underlying mechanism of type 1 POVs make the

application terminate via a SIGSEGV, SIGILL or SIGBUS signal. Type 2 POVs demonstrated the ability

to read the contents of arbitrary memory locations within the applications.

The coarse granularity of polls only turns the validation more extensive and rigorous, leaving a

smaller margin for the repair tools to escape by changing original functionality. The applications come

represented as state machines to guarantee that the generation of polls is deterministic and unique.

That’s possible by connecting the application’s components into a directed graph, which allows explor-

ing different combination. The polls are generated in XML format. The POVs come as source code in

C and must be compiled to be executed. The CGC Corpus supplies the necessary tools for generating

the polls, compiling the POVs, and testing both types of artifacts.

The test operation makes use of the supplied tooling and extends them to enable accessibility. It

identifies the tests with a simple notation—e.g., p1 identifies the first poll and n1 identifies the first POV.

The extension allows among others to execute only the positive or negative tests, to print and write

specific outcomes from the execution, manipulate the execution return code, and generates stats with

relevant information about tests’ execution.

4.4.4 Execution Workflow

Given a working directory and a specific application from the benchmark, the simplest execution flow

consists of using the following commands: checkout, compile, and test. That copies the application’s

source code with necessary assets to the working directory, compiles the application’s source code with

its POVs, and tests the application with a given test that exists in the test-suite. The polls are expected

to be generated during the initialization of the benchmark, otherwise, these can easily be generated

with the operation genpolls. The info operation is expected to be used by the repair tools after a given

application is compiled—to query the number of tests or the prefix of the compiled files’ location.
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This chapter presents an adaptation of a data-driven approach to patch security faults, which we

name CquenceR. In section 5.1, we represent the problem and introduce sequence-to-sequence as

an approach to patch security faults. Then in section 5.2, we describe CquenceR’s implementation

details. Finally, section 5.3 presents the evaluation methodology along with the dataset construction and

analysis, and model’s testing results.

5.1 Approach

Given our limitations with the current repair tools, our goal is to adapt a data-driven repair approach

to patch security faults in C programs. As described in section 2.3, data-driven repair approaches

became a trend recently, and many techniques intersect AI techniques with software engineering. Data-

driven technologies are promising as these are language agnostic and can be adapted easily from one

context to another. That’s possible because the data and its representation weigh more rather than the

model used to learn. M. Allamanis et al. [44] suggest the naturalness hypothesis, which states ”similar

statistical properties shared between software corpora and natural language corpora, can be exploited

to build better software engineering tools”. That’s apparent in the literature from section 2.3.1, where

NMT-based approaches are used under a different context to tackle the problem of automatic software

patching. We base our intuition on the fact that ML and NLP technologies have the capacity of learning

patterns from a large corpus. In this section, we elaborate on that intuition, first by representing the

problem, and next by supporting it with some related work, and lastly, we give a brief description of the

technique considered.

5.1.1 Problem Representation

Figure 5.1: Example of a patch for CWE-190: Integer Overflow or Wraparound. On the left-side highlighted in red
is the vulnerability. On the right-side highlighted in green are the corrective changes from the patch.
(code snippets from program Square Rabbit [7])

As seen in fig. 3.1, we consider that the problem of patching security faults can be outwardly represented

as the following: given a vulnerable program Pv and assuming that the security issue Si is identified by a

set of ordered lines Sv = {l1, l2, ..., li}, then these can be replaced with a contiguous sequence of code

lines Sp = {l1, l2, ..., li}, namely a patch, that will fix Si in Pv such that it turns in a correctly functioning

program Pc. That’s represented in fig. 5.1, at line 372 on the left side highlighted with red, in the if
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statement, the increment of the variable split len can allow an integer overflow. However, the patch on

the right side highlighted in green separates the variable incrementation from the check.

The problem of patching security faults at first glance seems effortless. That’s a misapprehension

resulting from a simplistic representation of the problem. If we go in-depth, a variety of aspects arise. For

example, the granularity we considered is a contiguous snippet of lines, but overall that’s not the case.

Security faults come in many shapes and sizes, dispersed across multiple files, giving more shades

of complexity to the problem—as is evident in section 3.1.1. As a starting point, we purposely put the

blinders on to look in a constrained way at the vast context of the problem. Thus, we consider the

granularity of security faults to cover a single file, spawning across multiple hunks of code — contiguous

lines of code.

The changes introduced to Pv by a patch Sp will not guarantee Pc. For example, Sp might remove

some functionality from Pv or change its control flow to an incorrect location. We verify these introduced

changes with a test-based validation method. Lastly, the fault design we are looking for is general. We

leave out the data-driven technique to capture the variety of security fault types and their peculiarities

from the dataset.

5.1.2 Using Sequence-to-Sequence Learning to Patch C Security Faults

In our view, the previous representation of the problem, along with the example in fig. 5.1, share similari-

ties with machine translation. Thus, we approach the problem of patching security faults with sequence-

to-sequence learning, a branch from NMT, for several reasons. First, these are end-to-end probabilis-

tic models easy to train with datasets of pre-and post-correction, making them easy to apply to new

datasets [11]. Second, the technique has reached the necessary maturity level to deal with sequences

whose characteristics significantly differ from natural language [9]. Third, are powerful models able

to learn relations on a variety of granularities—e.g., token-by-token matches, to soft paraphrases [11].

Lastly, as outlined in the section 2.3, these have demonstrated success in a number of code patching

problems, and even feasibility and generality for fixing software vulnerabilities [23]. These insights give

us the motivation of applying sequence-to-sequence learning to the problem of patching security faults.

Thus, we give a brief explanation of the sequence-to-sequence learning as a core concept and leave

out the details for a more curious reader.
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Figure 5.2: Example of early neural-based sequence-to-sequence model (cf. [8]).

Sequence-to-sequence learning considers input as a sequence of elements, usually words
or characters, and predicts sequences, hence the name sequence-to-sequence. The sequence-
based models predict sequences by sequentially generating each element [44]. Neural models
are appropriate for that given their predictive performance, with the trade-off of large amounts
of data for the training. The most common sequence-to-sequence paradigm with neural models
consists of an encoder and a decoder. The encoder generates out of the sequence of input data
a mid-level output, which is passed to the decoder to produce the final outputs [46]. Figure 5.2
illustrates an example of sequence-to-sequence based on Long Short-Term Memory (LSTM)
architecture — a recurrent artificial neural network architecture.

5.2 CquenceR

We employ the intuition in the previous section by leveraging work in the literature and adapt it into

a generate-and-validate tool for patching security faults. The implementation consists of two parts,

learning, and repair. We train over a large corpus of security patches for vulnerabilities to learn a

probabilistic model. Then, we use the model to perform translations from a sequence of faulty statements

to a sequence of corrective statements. The validation follows the test-based method described in

section 2.1.5. The implementation was named CquenceR and is publicly available on GitHub. To access

it use the following URL: https://github.com/epicosy/CquenceR. Figure 5.3 illustrates the design of

CquenceR along with its workflow.

5.2.1 Sequence-to-sequence model

Out of the 5 NMT-based approaches introduced in section 2.3.1, we select the state-of-the-art sequence-

to-sequence model used in [9]. The model receives code in the form of a sequence of tokens as input

and generates an output sequence of tokens. The model learns by capturing common patterns from the

input sequence and uses the generated output sequence to predict the most likely next token given the

input. The whole output sequence is generated starting from an initial token, by feeding the produced

tokens in the network, as the next predicted token has a certain amount of dependency on preceding
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Figure 5.3: CquenceR architecture and workflow (cf. [8–11]).

tokens.

Our model selection takes into consideration the following: the solution must have its code publicly

available and share enough similarities with our problem representation. SEQUENCER stood out, as

its implementation is available on the open-science repository on GitHub along the data and scripts

used for evaluation. Additionally, it deals with limitations from previous works using similar network

architecture [11].

We replicate SEQUENCER’s model training as documented by the authors, achieving similar results

fig. A.2. As acknowledgment to the original work, we name our approach CquenceR. The main differ-

ences between SEQUENCER and CquenceR are related to the type of data and its representation, and

the sizes of input/output. The original work focuses on fixing general faults, while we target vulnera-

bilities. The programming language we choose is C instead of Java. The initial work applies one line

corrections as substitutions, while we consider substitution, addition, and removal of several continuous

lines — e.g., deleting by translating multiple faulty lines to a single newline character, and vice-versa.

Further in [23], SEQUENCER’s authors use sequence-to-sequence to patch security faults in vulner-

able functions written in C. Although seeking the same goal, CquenceR uses the original copy mecha-

nism for the rare word problem, while prior work uses byte-pair encoding. In CquenceR we represent the

problem as a mapping between hunks of code while prior work considers different sizes of functions. As

for model training, CquenceR’s model learns from pairs of vulnerability patches, while prior work trains

with pairs of general fault fixes.

Remark. The approach assumes true fault localization, as the scope of the adaptation is to train the

repair capabilities.
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5.2.2 Data Preprocessing

This step happens during both learning and repair phases, the only difference being the amount of

code processed. As an overview, the input dataset is preprocessed into the pair subsets of source and

target sequences, containing respectively the vulnerable and fix code hunks. The process consists of

identifying vulnerable and corrective hunks in code and extracting the corrective hunk, then tokenize,

and at last truncate.

Remark. The toolkit used in the learning step has it’s own preprocessing. The data preprocessing

is necessary as it transforms the input into the format for the training, and according to our problem

representation.

Hunk identification and extraction involves identifying the vulnerable hunk and extracting the

corrective hunk within the security patches. These come into the form of (unified) diffs—changes be-

tween code sequences. The changes can be additions or deletions and are identified with a leading

+ or −. The relation between additions and deletions expresses the transformation of the vulnera-

ble code into corrective code. Following [9] We uses the tags TOKENIZER START V ULN and

TOKENIZER END V ULN to surround faulty statements and identify the vulnerable hunks. The

corrective changes are extracted and segregated from the patch.

Tokenization is performed by splitting the source code with C programming language operators.

This step is performed because the NMT network requires the input sequences to be in the form of

separate tokens. Before the code tokenization, possible comments are removed by applying a simple

regular expression. The special token < NEW LINE > is used to represent the newline character,

and to embed multiple lines into a contiguous sequence of tokens to tackle the multi-line challenge

in [9].

Truncation limits the context of the input sequences, to a predetermined size and covers the cases

where the input sequence is too long. This step mimics the truncation described in [9]. The rationale

behind that is: code elements have dependencies; thus, including part of the original context and not

only the vulnerable hunks. The choice for the truncation size limit is described in the evaluation and

considers that most samples from the dataset don’t require it.

5.2.3 Learning

The learning consists of iterating over the preprocessed dataset pairs and train the network. Following

the original work, we implement the network with the PyTorch version of the OpenNMT project [10].

The OpenNMT toolkit gives the necessary abstraction over NMT techniques, allowing to build and

train models over the command line. We leverage that to build the necessary commands for train-

ing our model. Two configurable commands are used to perform the learning, preprocess and train.

41



These have been implemented over OpenNMT toolkit’s onmt preprocess and onmt train commands.

Network Parameter Settings

The following are the parameter settings for the sequence-to-sequence model [9]:

• Token embedding (uses the same embedding for both learnable recurrence function): 1,004x256

(1,000 + 4 special tokens);

• Encoder bidirectional LSTM (part of learnable recurrence function): 256x256x4x2x2;

• Decoder LSTM (part of learnable recurrence function): 512x256x4x2 + 256x256x4x2;

• Token generator bidirectional LSTM (part of learnable function): 256x1004;

• Bridge between encoder and decoder (path of first encoder hidden state to initialize first decoder

hidden state): 256x256x2;

• Global Attention (attention vector weights): 256x256 + 512x256;

• Copy selector (part of learnable function): 256x1;

5.2.4 Repair

Given a source file with multiple vulnerable hunks — identified with start and end line numbers, as we

assume true fault localization — the repair process consists of applying the data processing aforemen-

tioned. We identify vulnerable hunks by surrounding each with the special tokens, tokenizes the source

code, and truncates each up to the defined size. The data processing output is passed as input to the

learned sequence-to-sequence model to predict a specified amount of corrective sequences. These are

post-processed and used to replace the vulnerable hunks in the source code and produce candidate

patches — i.e., the initial file has the vulnerable hunks replaced with corrective changes. Lastly, the

candidate patches are validated with the given compile and test scripts. The testing starts with negative

tests, and if these passes, then positive tests are executed. When all tests pass for a candidate patch, a

fix is found. The fix generation and post-processing steps are described below in more detail.

Fix Generation passes as input to the trained model the pre-processed file’s output — i.e, identified

and tokenized vulnerable hunks with a context up to a predefined number of tokens — to predict

the corrective changes. If vulnerable hunks are too close from each other, their context overlaps;

that’s not a problem, the prediction gets a greater context from the vulnerability. The prediction is

performed by running OpenNMT-py translation with beam search — i.e., predicts multiple likely fixes

for the same vulnerable hunk. Beam search keeps the most promising sequences up to the current

decoder state [9]. On top of that, the UNK tokens in the generated fix are replaced with the source

tokens that had the highest attention weight, by using the flag replace unk.
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Fix Post-Processing transforms the predicted sequences of tokens from the model into code syn-

tax as these are used as ingredients in the candidate patches that must compile. Firstly, the tokens

< NEW LINE > are replaced with the newline character to turn the predicted sequences into

multi-line hunks. Secondly, the spaces between operators are removed — e.g., the spaces around

the . operator used for accessing members of a structure are removed. Lastly, each vulnerable hunk

in the source code is replaced with respective predicted fix. CquenceR achieves that by keeping a

mapping between the vulnerable code and it’s predicted fixes, by associating an id to both and writing

them to files.

5.3 Evaluation

Our approach was trained and evaluated on a great corpus of security faults. The performance of

CquenceR was evaluated with consideration to the machine learning and program repair standpoints.

This section describes the gathering and preparation of the data used for training, followed by the eval-

uation process and it’s results.

5.3.1 Data Selection

We consider the selected corpus of data as a set of vulnerability-fix pairs — unified textual differences

or separate files. We base our intuition on the capacity to derive from vulnerability fixes the underlying

patterns for generating corrective patches for vulnerable applications. According to that, we leverage

from the literature 5 datasets. These contain in total 8,798 vulnerability-fix pairs across many languages.

Table 5.1 describes each dataset along with its name, the source from where the data was collected,

the study which introduced it, and a brief description of the samples.
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Table 5.1: Datasets of Security Patches

Name Source Study Description

Mozilla Mozilla Foundation
Security Advisories

Software Metrics and
Security Vulnerabilities:
Dataset and Exploratory

Study [72]

Contains patches for
security reports with at

least one Bugzilla report
or one versioning commit

associated.

SecretPatch

Common
Vulnerabilities and
Exposures (CVE)

list

Detecting ”0-Day”
Vulnerability: An

Empirical Study of Secret
Security Patch in

OSS [59]

Contains 1575 C/C++
security patches

processed and collected
from the reference URLs

from CVE list.

NVD

Common
Vulnerabilities and
Exposures (CVE)

list

A Comparative Study of
Deep Learning-Based
Vulnerability Detection

System [73]

Contains the vulnerable
and patched version for a
function from each 368

open-source C/C++
programs corresponding

to 368 CVEs.Secbench GitHub
SECBENCH: A Database

of Real Security
Vulnerabilities [74]

Contains 682 real
security vulnerabilities

from 238 projects.

MSR20

Common
Vulnerabilities and
Exposures (CVE)

list

A C/C++ Code
Vulnerability Dataset with
Code Changes and CVE

Summaries [60]

Dataset contains 3754
C/C++ code

vulnerabilities extracted
from 348 Git projects.

5.3.2 Data collection and preparation

We developed and abstraction around the selected datasets to facilitate their curation. The tool allows

through the command line to collect the datasets from the source, transform the data into a predefined

format, and filter it according to custom rules. These steps are briefly described below. The implemen-

tation was named PatchBundle and is publicly available on GitHub. To access it use the following URL:

https://github.com/epicosy/PatchBundle.

Collection — downloads the dataset’s raw data from a configured source;
Transformation — abstracts dataset’s content into well defined records within the context of

code patching, with the granularity of code hunks;
Filtering — selects based on specified properties the transformed patch records into an unified

dataset.

The patch record contains the following fields: project name, commit hash, year and the number of

the CVE, name and extension of the file, the code hunk, the number of addition and deletion changes

the hunk contains, the name of the hunk, and the number of contiguous changes.

The datasets are curated and unified into a single one by using the PatchBundle’s functionalities as

described above, to meet the input format for the learning step in section 5.2.3. The transformation step

discards part of the raw data if it doesn’t meet the format. Then the patch records are selected by C/C++
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programming language — by the .c, .h, .cpp, .cxx extensions — and are further filtered into patches

containing contiguous hunk changes with at least one type of change. Patches that don’t have hunks

without both additions and deletions are filtered out. A maximum limit of 20 lines is chosen for the hunk

size, which accounts for most samples. As some datasets pick the same sources, the preparation takes

into consideration the existence of duplicates and drops if any is found. Figure 5.4 summarizes the data

preparation process. Initially, the raw data is just transformed into the patch record format, accounting for

a high number of samples. Transformation and Filtering steps discard duplicates. After the preparation,

there’s a big discrepancy between the initial and final number of samples.

Figure 5.4: Amount of patch records in each dataset after Tranformation and Filtering steps.

5.3.3 Training Dataset Descriptive Statistics

The following statistics serve to give an insight into the data used to train the model and justify the choice

of network parameters, such as the source and target sequences length, truncation limit, and vocabulary

size. After the data preparation, the resulting dataset contains, in total, 7,156 samples — 18% of the

total amount of examples (40,289) used in the original work. The dataset was further shuffled and split

into the following subsets: 85% (6,081), 10% (716), and 5% (358) as training, validation, and testing

datasets, respectively. We discard samples with empty strings during the dataset splitting, as these

should at least contain the < NEW LINE > token.
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Figure 5.5: Vocabulary: tokens count occurrences

Vocabulary distribution is described in fig. 5.5 by a log-log plot with X-axis being log(rank) and

Y-axis being log(frequency). The tokens occurrences follows a near Zipf’s Law distribution. The full

vocabulary size contains 15956 unique tokens. As observed in the figure, at the lower ranks the expected

linear line crosses the 1000 rank and the observation roughly linear curve meets it. According to that

the limit for the training vocabulary was set to the 1000 most common tokens, the same size as the one

used by SequenceR.

Figure 5.6: Source and target tokens count histogram

Truncation limit is based on the distribution of the number of tokens per each sample sequence in

both source and target sets. As can be observed in fig. 5.6, most sequences in the source set have up
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to 255 tokens and in the target set have up to 100 tokens, in percentage, that’s respectively 99.68% and

99.64%.

Figure 5.7: Vulnerable hunk size in number of lines

Vulnerable hunk size is illustrated in fig. 5.7 by a bar plot with an X-axis describing the size of the

vulnerable hunks in terms of numbers of statements, and Y-axis describing the number of samples. Is

clear that the most vulnerable hunks are 1 line long.

5.3.4 Training

The network was trained on Google Colab with the parameters described in section 5.2.3 on a Tesla T4

GPU on the training set. We set the training to 4,000 steps, and enabled early stop with patience of 10.

The total execution time was 15 minutes, and given the early stop, the execution stops at 3,050 steps.

The best results for both training and validation occur at 2,350 iterations.

The accuracy and perplexity are used as metrics for evaluating how well the model performs during

the training and validation. The perplexity measures how well a model predicts a sample, a low perplexity

value indicates a high translation quality [9]. The accuracy and perplexity are calculated per token

generated. The results from the model training are illustrated in fig. 5.8. The accuracy, for both training

and validation, converges close to 80%. The perplexity for the training set converges around 2.30 and

for the validation around 2.80.
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Figure 5.8: Training and validation accuracy and perplexity

5.3.5 Model Testing

The trained model was tested on the testing dataset by comparing each prediction generated with the

target patch. A beam size of 50 was used for the prediction, meaning for each sample 50 predictions

were made. On the testing set, the model predicted the exact patch for 95 out of 358 vulnerabilities,

respectively 26.5% of the vulnerabilities. In total were predicted 17900 patches from which 218 of them

were perfect patches. In the original work, the accuracy to perfectly predict the fix is 20%, with the

golden configuration on a testing dataset with 4,711 samples.

Predictions similarity A similarity ratio was computed between the target patch and the predictions

generated to know how effective is the approach in generating patches. The similarity is based on

the Levenshtein distance [75], an edit distance that measures the difference between two strings.

The Levenshtein distances considers the minimum number of operations allowed to transform one

into another. The strings operations covered by Levenshtein distance are deletion, insertion and

substitution — appropriate for the context. The similarity ratio for the predictions was calculated

with the Python package python-Levenshtein [76] which implements the distance. The predictions

generated for the testing set have a similarity average and median of 64.8% and 69.5% respectively

to the target patches. In fig. 5.9 is shown the histogram for the similarity between predicted and

target patches in the testing dataset, which has a peak around 85%. That demonstrates the patches

generated that are not perfect fixes, still are very similar to the target patch.
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Figure 5.9: Histogram of similarity between predicted and target patches

The obtained results demonstrate our approach is able to predict perfect fixes, with a better accuracy

than in the original work. That proves our intuition that underlying patterns of corrective patches can be

leveraged to predict fixes for similar security faults. One threat to validity can be the existence of very

similar patches within the dataset, which can bias our accuracy for predicting perfect fixes. These results

are sufficient to validate our approach along other repair tools, and that is demonstrated in the following

chapter.
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This chapter conducts the comparative study were we investigate the given problem for this disser-

tation. In section 6.1 we describe the setup used in the experimentation, along with an overview of the

resources. Then in section 6.2 the results of the empirical study are reported and described with focus

on the research questions. Finally, in sections 6.3 we discuss our main findings and the possible threats

to their validity.

6.1 Experimental Setup

6.1.1 Benchmark

The modified CGC Corpus—by Trail of Bits [71]—contains 202 applications working on Linux. To achieve

an unbiased and controlled study, the criteria—for selecting candidate applications—enumerated below

have been considered.

1. Tests Initialization: both polls and POVs must respectively be generated and compiled
without any errors;

2. Sanity check: tests functionality must be verified—to validate that these do what are sup-
posed to;

3. Single file faults: applications’ vulnerabilities must be restrained to a single file—most
repair techniques fix a single file.

By applying the criteria above, 56 applications have been selected. The table below lists the number

of excluded applications along a description for the unmet criteria.

Table 6.1: Excluded applications.

Number of
Applications Criteria Explanation

52 1 generation of polls raised various errors
56 2 application’s POVs were not working properly
32 3 vulnerabilities spawned across multiple files
17 2 polls testing failed during sanity check

Remark. Some of the excluded applications have more than one unmet criterion, hence the sum of

numbers not adding up to the total.

Remark. Some applications don’t have a state machine script for generating the polls. These have been

excluded since the number of available pre-generated polls is less than what would be expected for a

study.

Tests initialization generates a number of 20 positive tests per application. The benchmark was
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configured to have a timeout of 60 seconds per test. The test timeout is necessary as the modifica-

tions performed by a repair tool can remove/change functionalities in the applications related to the

communication with the testing tools — as these employ a networked paradigm.

Remark. During the generation of polls assertion errors related to code coverage were suppressed—a

small number of applications require a high number of polls in order to cover all their code.

6.1.1.1 Descriptive Statistics

This section gives an overview of relevant information about the applications used in the study. Each

application has descriptive information that includes, among others, the vulnerability’s description along

the CWE class associated. Some applications contain more than one vulnerability. Figure 6.1 illustrates

the distribution of CWEs per challenge. The majority — i.e., 30 applications—contain one vulnerability,

followed by 16 applications containing two vulnerabilities. The number of different vulnerabilities per

application goes up to 6, however less occurring.

Figure 6.1: Histogram of the number of CWEs per Challenge

In total there are 34 unique CWE covering the benchmark. Those are grouped into 11 categories, as

shown in fig. 6.2. That was achieved by following the hierarchy of the CWE structure. First, the Research

Concepts CWE List available at [77] was parsed to capture the ’Related Weaknesses’ associated with

each CWE identifier. Next, each CWE identifier in the applications’ description was used to recursively

traverse with a depth of 3 to a more generalized type of weakness. The most present kind of weaknesses

is related to CWE-664 (Improper Control of a Resource Through its Lifetime) with 36.7%, followed by

CWE-118 (Incorrect Access of Indexable Resource (’Range Error’)) with 23.9% and CWE-682 (Incorrect

Calculation) with 14.7%. As to the top 6 most severe weaknesses in section 3.1.1, 7 applications cover

52



CWE-125, 5 applications cover CWE-20, 4 applications cover CWE-787, and 3 applications cover CWE-

119. In total, the benchmark has 19 applications in the top 6 most severe weaknesses.

Figure 6.2: Percentage of CWEs covering the benchmark’s applications

The following figures depict the distribution of the total number of code lines, the number of vulnerable

lines, and patched lines across applications. These were calculated by examining the files ending with

[’.c’, ’.cc’, ’.h’ ] and only the folders related to source code were searched, respectively [’src’, ’include’,

’lib’ ].

Figure 6.3: Histogram of the total number of code lines across applications

As shown in fig. 6.3, the distribution of the total number of code lines has a peak around the 2212-
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2712 range. There’s an outlier within the range of 14712-15212 lines of code. The vulnerable files

contain enclosed lines with the [’#ifdef, #ifndef, #elseif, #elif, #else, #endif’] logical directives of the

preprocessor. These logical operations were used for generating the vulnerable and patched compiled

version of the applications. Besides that, those were leveraged to identify and count the vulnerable and

patched lines of code across applications.

Figure 6.4: Histogram of the number of vulnerable code lines across applications

Figure 6.4 shows there are 21 applications with vulnerabilities of 1 line, followed by applications with

vulnerabilities that occur because of the lack of additional code.

Figure 6.5: Histogram of the number of patch code lines across applications
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Figure 6.5 shows the benchmark has 13 applications with a patch size of 1 line and 13 applications

with a patch size of 2 lines. The application BitBlaster is the only one requiring the removal of code.

6.1.2 Framework

Within the scope of this study, we configure the framework with a timeout of 1800 seconds per tool,

a timeout of 40 seconds per command, and 8 threads to use the cores of the machine to execute in

parallel 8 applications. We use tool timeout to guarantee unbiased results and is necessary as tools

don’t have an execution timeout. We use the command timeout to avoid locks within the framework’s

execution. The timeout for the tool is given in eq. (6.1). We consider the worst-case scenario for the

timeout, that is, a tool under analysis modifies the application making it hangs up during testing. Thus,

we calculate the timeout by multiplying the number of tests with the tests’ timeout, plus the estimated

time sanity check takes to be performed by a tool. We calculate that by estimating a test’s execution

time on average, assuming a maximum (test hangs up and takes timeout) and minimum (instant, the

test fails) time.

tool timeout = #tests ∗ test timeout+ (#tests ∗ min time+max time

2
) (6.1)

Tools Configurations are illustrated in the figures below. The repair tools stop when they find the

first fix. In fig. 6.6 the search is the strategy to search the program’s space, the crossover is the

operator type to create new program variants.

{

"--search" : "ga",

"--crossover" : "subset",

"--describe-machine" : "",

"--rep-cache": "default.cache",

"--seed": "0",

"--ignore-dead-code": "",

"--no-rep-cache":"",

"--keep-source": ""

}

Figure 6.6: GenProg arguments

{

"--mut" : 0.01,

"--seed" : 1

}

Figure 6.7: MUT-APR arguments

{

"--beam_size" : "50"

}

Figure 6.8: CquenceR arguments

6.1.3 Environment

The system has been tested on a machine with the specifications described in the table below.

55



Table 6.2: Machine Specifications

Specifications
Machine Speed 2.10 GHz.
Processor Intel(R) Xeon(R) CPU E5-2620v4 — 8 cores used
Memory/RAM 16 GB
Disk Space 75 GB
Operating System Ubuntu 18.04.5 LTS

6.2 Results

This section illustrates and describes the results of the comparative study for 3 subject APR tools —

MUT-APR, GenProg, and CquenceR. We conduct the study with the solution proposed in chapter 4 and

following the setup described in section 6.1. The results are mapped as an answer to the research

questions presented in section 4.1.1. The execution time of the overall workflow for each tool took 44

minutes for CquenceR, 1 hour and 57 minutes for MUT-APR, and 2 hours and 36 minutes for GenProg.

Remark. A repair/patch refers to a plausible fix, as we perform a quantitative study on the results gen-

erated by the tools and processed by the framework, based on the metrics proposed in section 4.3.4.2.

Thus, we rely on the system as a whole to conduct this study.

6.2.1 Repairability

We demonstrate with a Venn diagram the repairability of state-of-art repair tools for security faults.

Figure 6.9(a) illustrates the number of repairs achieved by each tool as overlapping sets. MUT-APR

repairs 12 applications (21.4%), followed by GenProg with 10 repairs (17.9%), and then CquenceR with

8 repairs (14.3%). From the diagram is clear that GenProg only repairs programs that MUT-APR and

CquenceR repair. Note that there are two programs repaired by all tools, two programs repaired only

by CquenceR and GenProg, and one program repaired only by CquenceR and MUT-APR. Figure 6.9(b)

illustrates the number of overlapped repaired applications per repair tool in comparison with the re-

maining tools. That is, MUT-APR repairs 80% of applications that are also repaired by GenProg, and

66.7% vice-versa. MUT-APR repairs 37.5% of applications that are also repaired by CquenceR, and

25% vice-versa. CquenceR repairs 40% of applications that are also repaired by GenProg, and 50%

vice-versa.
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(a) Venn diagram of patched applications per re-
pair tool.

(b) Table of the overlapped patched applications
per repair tool.

Figure 6.9: The number of overlapped patched challenges per repair tool

6.2.2 Specificity

The specificity of the repair tools’ results is demonstrated with the heatmap in section 4.3.4.3, to answer

the question ”What categories of security faults are the state-of-art repair tools able to patch?”. The

applications are categorized by common CWE classes and grouped into a heatmap. The columns in the

heatmaps represent the applications under repair, and the rows represent the subject repair tools. The

heat map score can assume two values, 1 for fix and 0 otherwise.

Figure 6.10 groups a considerable part of applications under the common CWE-664, which ac-

counts for 36.7% of the vulnerabilities in the benchmark. In this category, MUT-APR repairs 6 out of 24

applications, which is 25%. GenProg repairs 4 applications, which is 16.7%, and CquenceR repairs 2

applications, which is 8.3%.

Figure 6.10: Tools’ repair of applications with CWE-664: Improper Control of a Resource Through its Lifetime

Given the tools’ low fix percentages, we relaxed the correction criteria and considered corrections
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that correct the flaws with some compromise in the program’s functionality. In fig. 6.11, the vertical axis

represents the number of corrections and the horizontal axis represents the percentage of positive tests

that pass, taking into account that all negative tests pass. We also plotted the continuous probability

density curve for each tool’s results in the figure, for a better understanding of the results. The curves

in fig. 6.11 for GenProg and CquenceR have a denser distribution between the range of 0% to 30%,

which is, their patches greatly affect a program’s functionality. In contrast, MUT-APR’s curve has a peak

around 100%.

Figure 6.11: Patches that fix CWE-664 over the percentage of passing positive tests.

The table in fig. 6.12 explains fig. 6.11 in numbers. GenProg generates 45 patches, and 48.9% of

them maintain 5% or more of a program’s functionality, and 15.6% of the patches maintain 50% or more

of a program’s functionality. MUT-APR has a higher success rate, 100% of the patches generated by

the tool fixes the CWE-664 fault and maintains 50% or more of a program’s functionality, and 85.7% of

those patches maintain 100% of a program’s functionality. CquenceR generates 21 patches and 14.3%

of them maintain 5% or more of a program’s functionality.
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Figure 6.12: Table with the amount of patches fixing CWE-664 faults per tool.

Figure 6.13 illustrates the other considerable group of applications under the common CWE-118,

which accounts for 23.9% of the vulnerabilities in the benchmark. In this category, GenProg repairs 4

out of 17 applications, which is 23.5%. CquenceR repairs 3 applications, which is 17.6%, and MUT-APR

repairs 2 applications, which is 11.8%.

Figure 6.13: Tools’ repair of applications with CWE-118: Incorrect Access of Indexable Resource (’Range Error’)

The probability distribution curves in fig. 6.14 for GenProg and CquenceR are quite smooth, and

that demonstrates their patches have a fairly dispersed probability in terms of a program’s affected

functionality. In contrast, MUT-APR’s patches affect less a program’s functionality.
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Figure 6.14: Patches that fix CWE-118 over the percentage of passing positive tests.

In the table from fig. 6.15, 100% of MUT-APR patches maintain 50% or more of a program’s function-

ality, followed by CquenceR with 42.9%, and GenProg with 28.6%. GenProg generates more patches

that fix CWE-118 fault in comparison with CquenceR and MUT-APR, and 60.7% of them maintain 5%

or more of a program’s functionality. In contrast, all MUT-APR and CquenceR patches maintain 5% or

more of a program’s functionality.

Figure 6.15: Table with the amount of patches fixing CWE-118 faults per tool.

The heatmap in fig. 6.16(a) groups the applications with vulnerabilities within the class CWE-682. For

this category, both CquenceR and MUT-APR repair 2 out of 5 applications, which is 40%, and GenProg

1 application, which is 20%. Figure 6.16(b) illustrates that most CquenceR and GenProg patches that fix

the fault inhibit a program’s functionality. For programs with CWE-682, MUT-APR generates one patch

that maintains 5% of a program’s functionality.
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(a) Tools’ repair of applications with CWE-682: In-
correct Calculation

(b) Patches that fix CWE-682 over the percentage
of passing positive tests.

Figure 6.16: Heatmaps with the rest of the classes of vulnerable applications in the benchmark along with the
number of patches that fix the fault but compromise a percentage of a program’s functionality

The heatmap in fig. 6.17(a) groups the applications with vulnerabilities within the class CWE-707.

For this category, no repair tool can fix the programs such that all tests pass. Figure 6.17(b) illustrates

that most CquenceR and GenProg patches that fix the fault inhibit a program’s functionality. CquenceR

generates 4 patches that fix the fault and maintain 65% of a program’s functionality. MUT-APR does not

generate patches that fix CWE-707.

(a) Tools’ repair of applications with CWE-707:
Improper Neutralization

(b) Patches that fix CWE-707 over the percentage
of passing positive tests.

Figure 6.17: Heatmap with the rest of the classes of vulnerable applications in the benchmark along with the num-
ber of patches that fix the fault but compromise a percentage of a program’s functionality

The heatmap in fig. 6.18(a) groups the rest of the applications with vulnerabilities within the classes

CWE-697, CWE-710, CWE-388, CWE-284, CWE-690. For these categories, MUT-APR repairs 2 out

of 6 applications, which is 33.3%. Both Cquencer and GenProg fix 1 application, which is 16.7%.
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Figure 6.18(b) illustrates that most CquenceR and GenProg patches inhibit a program’s functionality.

GenProg generates 2 patches that fix the fault and maintain 55% of a program’s functionality, and 1 patch

that maintains 60%. MUT-APR generates one patch that maintains 15% of a program’s functionality.

(a) Tools’ repair of applications with other CWE
categories

(b) Patches that fix the rest of CWE classes over
the percentage of passing positive tests

Figure 6.18: Heatmaps with the rest of the classes of vulnerable applications in the benchmark along with the
number of patches that fix the fault but compromise a percentage of a program’s functionality

6.2.3 Suitability

We approach repair tools’ suitability with bar and radar charts as described in section 4.3.4.3, to illustrate

which paradigm fits better for fixing security faults, with different levels of accuracy. Figure 6.19 ranks

based on the metrics introduced in section 4.3.4.2, thus, the score goes up to 6, as there are 3 ratios and

3 scores that range between 0 and 1. However, the highest score is 2.3 and is achieved by GenProg,

followed by MUT-APR with 2.1, and then CquenceR with a score close to 2.1. As we base the rank on two

metrics, we can rank according to efficiency or effectiveness. Thus, MUT-APR is the most effective tool

with a score of 1.7, followed by GenProg with 1.6, and then CquenceR with 1.2. Regarding efficiency,

CquenceR is the most efficient tool with a score of 0.9, followed by GenProg with 0.7, and then MUT-APR

with 0.4.

Figure 6.20 illustrates the tools’ profiling based on the ratios and scores introduced in section 4.3.4.1.

That gives us a better insight into the tool’s performance. MUT-APR has the highest success rate for

positive tests, meaning it doesn’t compromise functionality. GenProg and MUT-APR have a high compile

success rate. That means their change operators don’t introduce new syntactic errors, in contrast with

CquenceR. That seems to give an advantage on the time score for CquenceR, justifying its efficiency.

As for the edit score, both MUT-APR and CquenceR have a low score comparing to GenProg, meaning

it generates fewer candidate patches. In terms of negative tests success rate, CquenceR has a higher

score in comparison to MUT-APR and GenProg, meaning its patches can pass more negative tests.
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Figure 6.19: Repair tools’ performance

Figure 6.20: Radio chart profiling the repair tools based on assessment metrics
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6.3 Discussion

In this comparative study, as an answer to Q1, we demonstrate that state-of-art repair tools can patch

security faults to a certain extent, that is, these can fix individually at most 21.4%, and together 30.4%

of applications in a benchmark containing 56 vulnerable applications, these among the top 6 2020 most

dangerous software weaknesses. In this study, as an answer to Q2, we found the specific categories

of security faults that state-of-art tools can fix, these are, CWE-664 Improper Control of a Resource

Through its Lifetime, CWE-118: Incorrect Access of Indexable Resource (’Range Error’), CWE-682

Incorrect Calculation, and Other less common weaknesses — i.e., CWE-690, CWE-388, CWE-697,

CWE-284. We also found that the current state-of-art techniques are not able to fix CWE-707: Improper

Neutralization faults. Another interesting finding regarding Q2, is a program’s affected functionality from

a fault fixing patch generated by a state-of-art repair tool. We found that MUT-APR generates fewer

patches that fix the fault, and overall these maintain a program’s functionality. In contrast, CquenceR

and GenProg, generate more patches that fix the fault, and overall most of them considerably affect a

program’s functionality. The state-of-art repair tools considered use a generate-and-validate strategy

and a test-based validation method. In particular, the families of the underlying techniques are mutation-

based, genetic programming, and data-driven. As an answer to Q3, we found based on the performance

metrics considered, that the most suitable approach for security faults is genetic programming. However,

in terms of effectiveness, data-driven perform better.

6.3.1 Threats to validity

During the conduction of this study, the availability and flexibility of repair tools played a crucial role.

Although our best efforts, we were able to consider only 2 out of 6 repair tools. That required us to

adopt the third tool from previous work for our study. That is a threat to validity, as we have described in

Chapter 2 because the APR corpus is broad, and we obtain our discoveries from a small subset. Thus,

practitioners in the field need to consider the community when developing APR tools because these

allow to conduct similar studies and generate knowledge in several directions. The following are aspects

that might have influence over the results reported in section 6.2:

The system might not be free of faults, as with any implementation. Several iterations of the com-

parative study and deliberate analysis of evident anomalies have been performed before reporting

the results in section 6.2. That allowed to remove critical design/technical faults biasing the results.

The system and processed results are publicly available for potential users to check the validity of

our study.

The validation method we use in this study might not be sound. Test-based repair considers

patches generated that make the test suite pass. Although the applications are considered as fixed
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by patches that pass the test suite, that doesn’t guarantee patch quality as demonstrated in previous

studies [63]. The generated patches correctness is out of the scope of this dissertation. However,

that doesn’t invalidate the conclusions of the comparative study conducted in this chapter.

Execution duration is an important factor that determines the correctness of the applications. In

this study, the applications are assessed for their activity with a timeout. We use a timeout to indicate

when to terminate the applications’ execution that do not respond. The timeout is generalizable over

all tests, thus, if tools alter significantly the execution duration of the applications, then these might

suffer penalties that will reflect in the results.
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7.1 Conclusions

In this dissertation, we start by exploring security faults within the context of Automatic Program Repair.

That leads us to the first descriptive case study comparing automatic software repair tools for fixing

security faults.

We analyze preliminary studies and find that these did not explore enough security faults nor a

common baseline standard for evaluating them. We contextualize the problem on security faults, and

that reveals some uncharted territory. That raises some questions which help us break up our initial

problem into attainable issues. These relate to the assessment, evaluation, and comparison of program

repair tools on security faults. We see the open challenges in them and proceed to formulate our

objective. That is, to develop a system that permits the assessment, evaluation, and comparison of APR

tools’ ability to fix programs with security faults and conduct a comparative study based on it.

We leverage representative work to conduct such task and implement the system that consists of a

framework for repair tools, that we name SecureThemAll, and a benchmark with vulnerable programs

that we name cb-repair. Given the difficulty of adaptation and lack of repair techniques within our context,

we leverage and adopt a data-driven repair tool that we name CquenceR to populate our framework.

We conduct the first case study with the proposed system to investigate the repairability, specificity, and

suitability of 3 repair tools to fix security faults. Our study demonstrates their potential for repairing critical

flaws, as the literature addresses less these faults. Our findings lead us to conclude that state-of-the-art

repair tools that use a test-based validation method can repair security faults but are farther from being

effective. However, developers can use these tools in debugging and testing tasks to correct security

flaws, with the cost of compromising part of a programs’ functionality. Also, the genetic programming

technique is more effective, and the data-driven is more efficient for repairing security faults.

7.2 System Limitations and Future Work

We have confined our work to repair techniques that follow a generate-and-validate strategy. Semantic-

driven techniques have a noticeable background [3] and have been previously evaluated in empirical

studies [4]. Currently, our system is limited to a generate-and-validate approach as the underlying

benchmark dependencies implement the negative tests as executable binaries. Semantic-driven ap-

proaches require expected input and output. Our work opens opportunities for future investigations.

First, we make publicly available the solutions implemented in this dissertation and practitioners can

validate our findings, and further extend our work with, for instance, approaches that we had issues

table 4.2. Secondly, we propose an assessment, evaluation, and comparison methodology that can be

employed in other contexts. Lastly, we encourage the use of a common language such as CWE listings

to report research findings.
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[51] Z. Yu, M. Martinez, T. F. Bissyandé, and M. Monperrus, “Learning the relation between code

features and code transforms with structured prediction,” CoRR, vol. abs/1907.09282, 2019.

[Online]. Available: http://arxiv.org/abs/1907.09282

[52] Y. Pu, K. Narasimhan, A. Solar-Lezama, and R. Barzilay, “sk p: a neural program corrector for

moocs,” CoRR, vol. abs/1607.02902, 2016. [Online]. Available: http://arxiv.org/abs/1607.02902

[53] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut: Combining

context-aware neural translation models using ensemble for program repair,” ser. ISSTA 2020.

New York, NY, USA: Association for Computing Machinery, 2020, p. 101–114. [Online]. Available:

https://doi.org/10.1145/3395363.3397369

[54] M. Corporation. (2020, October) About CWE. Accessed 22-October-2020. [Online]. Available:

https://cwe.mitre.org/about/index.html

[55] Dec 2020. [Online]. Available: https://cwe.mitre.org/data/slices/699.html

[56] Aug 2020. [Online]. Available: https://cwe.mitre.org/top25/archive/2020/2020 cwe top25.html

[57] S. Mechtaev. (2020, December) Program Repair Tools. Accessed 24-December-2020. [Online].

Available: https://program-repair.org/tools.html

72

https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/3106237.3106253
http://arxiv.org/abs/1710.11054
http://arxiv.org/abs/1907.09282
http://arxiv.org/abs/1607.02902
https://doi.org/10.1145/3395363.3397369
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/slices/699.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://program-repair.org/tools.html


[58] N. C. for Assured Software. (2020, December) Test Suites. Accessed 26-December-2020. [Online].

Available: https://samate.nist.gov/SARD/testsuite.php

[59] X. Wang, K. Sun, A. Batcheller, and S. Jajodia, “Detecting ”0-day” vulnerability: An empirical study

of secret security patch in oss,” in 2019 49th Annual IEEE/IFIP International Conference on De-

pendable Systems and Networks (DSN), 2019, pp. 485–492.

[60] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A c/c++ code vulnerability dataset with code changes

and cve summaries,” in Proceedings of the 17th International Conference on Mining Software

Repositories, ser. MSR ’20. New York, NY, USA: Association for Computing Machinery, 2020, p.

508–512. [Online]. Available: https://doi.org/10.1145/3379597.3387501

[61] F. Y. Assiri and J. M. Bieman, “An assessment of the quality of automated program operator repair,”

in 2014 IEEE Seventh International Conference on Software Testing, Verification and Validation,

2014, pp. 273–282.

[62] K. El-Faramawi and L. Maggiore. (2020, December) Software-artifact Infrastructure Repository.

Accessed 27-December-2020. [Online]. Available: http://sir.csc.ncsu.edu/php/previewfiles.php

[63] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch plausibility and

correctness for generate-and-validate patch generation systems,” in Proceedings of the

2015 International Symposium on Software Testing and Analysis, ser. ISSTA 2015. New

York, NY, USA: Association for Computing Machinery, 2015, p. 24–36. [Online]. Available:

https://doi.org/10.1145/2771783.2771791

[64] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random search on automated program

repair,” ser. ICSE 2014. New York, NY, USA: Association for Computing Machinery, 2014, p.

254–265. [Online]. Available: https://doi.org/10.1145/2568225.2568254

[65] F. Long and M. Rinard, “Staged program repair with condition synthesis,” in Proceedings of the

2015 10th Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015. New

York, NY, USA: Association for Computing Machinery, 2015, p. 166–178. [Online]. Available:

https://doi.org/10.1145/2786805.2786811

[66] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu, S. Forrest, and W. Weimer, “The

manybugs and introclass benchmarks for automated repair of c programs,” IEEE Transactions on

Software Engineering, vol. 41, no. 12, pp. 1236–1256, 2015.

[67] Y. Qi, W. Liu, W. Zhang, and D. Yang, “How to measure the performance of automated program

repair,” 07 2018, pp. 246–250.

73

https://samate.nist.gov/SARD/testsuite.php
https://doi.org/10.1145/3379597.3387501
http://sir.csc.ncsu.edu/php/previewfiles.php
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2786805.2786811


[68] S. Mechtaev. (2020, December) Program Repair Benchmarks. Accessed 22-December-2020.

[Online]. Available: https://program-repair.org/

[69] Shin Hwei Tan, Jooyong Yi, Yulis, S. Mechtaev, and A. Roychoudhury, “Codeflaws: a programming

competition benchmark for evaluating automated program repair tools,” in 2017 IEEE/ACM 39th

International Conference on Software Engineering Companion (ICSE-C), 2017, pp. 180–182.
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{

"repair_begin": "2021-01-12 13:53:06.664504",

"repair_end": "2021-01-12 13:59:48.582585",

"patches": [

{

"target_file": "src/main.i",

"fix": "346c346\n< (*((int (*)())0))();\n---\n> \n",

"edits": [

"165a166\n> {\n166a168,169\n> gBoard[31] &= 4294967292U;\n> }\n",

"293a294\n> {\n294a296,297\n> \n> }\n",

"309c309\n< \n---\n> return (1);\n313c313\n< return (1);\n---\n> \n",

"346c346\n< (*((int (*)())0))();\n---\n> \n"

]

}

],

"compilations": 7,

"failed_compilations": 0,

"outcomes": {

"f8f06783": {

"outcome": 0,

"neg_tests": {

"n1": 1

},

"pos_tests": {

"p1": 1,

"p2": 1,

"p3": 1,

"p4": 1,

"p5": 1,

"p6": 1,

"p7": 1,

"p8": 1,

"p9": 1,

"p10": 1

}

}

},

"neg_tests": 1,

"pos_tests": 20,

"passed_neg_tests": 2,

"passed_pos_tests": 105,

"failed_neg_tests": 5,

"failed_pos_tests": 35,

"duration": 401.918081,

"errors": []

}

Figure A.1: Example of the processed results format (we include just the fix outcome in the example for 10 tests,
as the of the complete outcomes for the example is too extensive).
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(a) Training accuracy. (b) Training perplexity.

Figure A.2: Replication results for SequenceR’s model training with the golden configurations. (cf. [9])

77


	Titlepage
	Abstract
	Abstract
	Resumo
	Resumo
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms

	1 Introduction
	1.1 The Problem
	1.2 Contributions
	1.3 Organization of the Document

	2 Fundamental Concepts and Related Work
	2.1 Automatic Software Repair
	2.1.1 Terminology
	2.1.2 Automatic Repair Process
	2.1.3 Fault Localization
	2.1.4 Repair Techniques
	2.1.5 Validation Methods
	2.1.6 Faults Design
	2.1.7 Root Cause of Faults
	2.1.8 Empirical studies

	2.2 Cyber Reasoning Systems
	2.2.1 DARPA'S Cyber Grand Challenge

	2.3 Data-driven Software Repair
	2.3.1 Repair Techniques


	3 Background
	3.1 Context Formulation
	3.1.1 Security Faults
	3.1.2 Repair of Security Faults


	4 Proposed System
	4.1 Problem Definition
	4.1.1 Research Questions
	4.1.2 The Problem
	4.1.3 Open Challenges

	4.2 The System
	4.2.1 Abstractions
	4.2.2 Specifications

	4.3 Framework
	4.3.1 Subject Repair Tools
	4.3.1.1 Selection criteria

	4.3.2 Implementation Details
	4.3.3 Repair Workflow
	4.3.4 Evaluation Methodology
	4.3.4.1 Statistics
	4.3.4.2 Metrics
	4.3.4.3 Visual Representation


	4.4 Benchmark
	4.4.1 Subject Benchmark
	4.4.1.1 Selection criteria

	4.4.2 CGC Corpus Applications
	4.4.3 Implementation Details
	4.4.4 Execution Workflow


	5 Proposed Tool for Patching Security Faults
	5.1 Approach
	5.1.1 Problem Representation
	5.1.2 Using Sequence-to-Sequence Learning to Patch C Security Faults

	5.2 CquenceR
	5.2.1 Sequence-to-sequence model
	5.2.2 Data Preprocessing
	5.2.3 Learning
	5.2.4 Repair

	5.3 Evaluation
	5.3.1 Data Selection
	5.3.2 Data collection and preparation
	5.3.3 Training Dataset Descriptive Statistics
	5.3.4 Training
	5.3.5 Model Testing


	6 Comparative Study
	6.1 Experimental Setup
	6.1.1 Benchmark
	6.1.1.1 Descriptive Statistics

	6.1.2 Framework
	6.1.3 Environment

	6.2 Results
	6.2.1 Repairability
	6.2.2 Specificity
	6.2.3 Suitability

	6.3 Discussion
	6.3.1 Threats to validity


	7 Conclusion
	7.1 Conclusions
	7.2 System Limitations and Future Work

	Bibliography
	Appendix A

	A Artifacts

