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Universidade de Lisboa

Lisboa, Portugal
Janeiro 2021

Abstract—This article describes the work undertaken in the
development and testing of a soft robot with an improved
torsional stiffness capable to withstand torsional loads. The
design of the manipulator was based on a wave spring that
allows an increment of its torsional stiffness while maintaining its
capacity to extend and compress. The number of waves per level
was obtained from a static and dynamic finite element analysis.
With all the parameters defined the elements were modelled and
3D printed with rigid and flexible filaments. Several experimental
tests were performed. The first test obtained the work volume,
the second test evaluated the repeatability of the manipulator,
and lastly, a static and dynamic loading test was performed. In
the end three trajectories were applied to the inverse kinematics
models obtained from the training of neural networks. These
models can be divided into: models trained with a varied number
of data points from the theoretical model; models trained also
with a varied number of data but from the manipulator; and
models trained with all the manipulator data but with a variable
number of neurons. From this study it was possible to design a
structure for a continuum soft robot able to maximize its torsional
stiffness without a significant loss of degrees of freedom. It was
also demonstrated that a soft robot is capable to have an off-axis
loaded motion with a considerable weight.

Index Terms—Soft Robots, Continuum robots, Wave spring,
Additive manufacturing, Neural Networks

I. INTRODUCTION

Nowadays, robots play a significant role in the world around
us, they are present in the most diverse areas of work not only
from medicine, [1] - [6], to the manufacturing industry, [7],
but also in our day-to-day life.

The majority of robotic manipulators is made of rigid
structures, this feature is of paramount importance in order to
obtain precise, strong, reliable and durable robots. In the man-
ufacturing industry the use of robots have gained an increased
importance in the most diverse assembly lines. These industrial
robots are characterized by their precision and accuracy, their
discrete rigid links, their considerable weight and required
clearance volume to operate. Nonetheless, if they happen to
operate alongside humans or any other living form some
of these characteristics may raise security concerns. These
discrete and rigid robots tend also to have some limitations
when interacting with its surrounding environment, when in
constrained, unstructured or delicate scenarios, [8].

The constraints previously mentioned can be overcome with
a different approach based on continuum robots. This type of

robots can be defined as a continuously bending robot without
any rigid links and identifiable rotational joints, [9] - [11].
Continuum robots, due to its architecture, are able to exploit
situations where neither the robots with rigid structure nor
the humans are capable to operate, these include scenarios in
unstructured and constrained environments. One of the reasons
is that these robots are considered to have an infinite number of
degrees of freedom (DOF) and since not all DOF are actuated,
the robot will exhibit some form of passive compliance.
Despite this passive compliance displayed appearing to be
a disadvantage when tasks with precision and accuracy are
required, it becomes a valuable asset for safer interactions and
in fragile environments, [10].

Like everything that humans build, biology has always been
a source of inspiration and the field of continuum robots
follows suit. The inspiration to this field can be drawn from
animals and plants as they result from an evolution with mil-
lions of years. Biology may then be considered an important
source of intellectual material to be used in engineering, from
the design of a bullet train mimicking a kingfisher’s peak to
a tentacle inspired soft robot, [12], [13].

An alternative to the usual rigid structures for the con-
tinuum robots, with inspiration drawn from biology, can be
accomplished with soft materials. Soft robots, as they are
called, use soft materials as its structure and main body instead
of the usual discrete rigid links. With these softer materials
the robot inherits several of its characteristics, namely its
softness and flexibility. These inherited properties allow the
soft robot to have a safe interaction when handling fragile and
soft elements, and when operating in a delicate environment
without the need to have a range of sensors and a complex
controller, [14]. These materials are able to absorb external
forces and deform accordingly with the contact surface, [13].

Soft continuum robots have been studied in the last years,
[15] - [17], and one of the main posed challenge is the off-
axis manipulation. Since the material of a soft manipulator
is malleable it does not have a significant torsional stiffness
and so may result in undesirably large deformations when in
off-axis scenarios. In [17] it is proposed a pneumatic structure
reinforced with an elastomer structured inspired by a wave
spring geometry.

In this paper it is presented a similar 3D printer soft



continuum manipulator design and inspired by a wave spring
structure capable to sustain torsional and off-axis loads. Con-
trary to [17] the present manipulator does not have a pneumatic
actuator to extend and compress, instead it is actuated by semi-
rigid cables.

The main contributions from this work are as follows:
the design and construction, using almost fully automated
procedures, of a soft continuum manipulator module capable
to sustain torsional loads; a lightweight and fully working
prototype actuated by semi-rigid elements (cables); an opti-
mization of the number of waves per level of the wave spring
based on simulation results; an off-axis manipulation capable
to sustain loads with more than 4 times the module weight;
the use of an additive manufacturing process, 3D printing,
to produce a soft continuous module; a characterization of
the model repeatability, with a mean radius of 2.98 mm, and
of motions in off-axis scenarios with several loads without
any fatal deformation; and finally, a first approach to the
modelling of inverse kinematics using neural networks with
a variable number of training points and neural networks
with a variable number of neurons in order to obtain the
minimum number of training points and the evolution of the
modulation of nonlinearities according to the neurons used.
Both resultant mean errors are in the same order of magnitude
as the repeatability radius.

Part of the work developed here resulted in a paper accepted
for publication in an international conference, [18].

II. DESIGN AND ANALYSIS

The design of the manipulator is a product of several
requirements and practical constraints. The most important
requirement to be fulfilled is the necessity to have an increased
torsional stiffness able to resist torsional and off-axis loads.
The geometry chosen due to its torsional stiffness was the
wave spring. To take fully advantage of this design all the
elements that compose the prototype should be delimited by
the volume of the spring and cable driven. This manipulator is
also required to bend at least 90º. On the other hand, the 3D
printing of the flexible module may constrain some parameters
of the wave spring. The analysis and fabrication of the module
were developed simultaneously with several iterations. As a
result of being cable driven with 3 actuators, the number of
waves per level should be a multiple of it to maintain the
symmetry.

A. Static and Dynamic Analysis

Almost all the parameters were defined according to the
functional constraints of both the fabrication method and the
requirements for a functional manipulator. The number of
waves per level is the only parameter still undefined. For that it
was realized a finite element analysis to obtain the model with
the greatest torsional stiffness in relation to the extensional
and bending stiffness. The models used in the simulations can
be seen in the figure 1 with 3, 6 and 9 waves. The material
used was FilaFlexTM from Recreus Industries S.L.TM (tensile

storage modulus: 48 MPa, density: 1200 kg/m3, Poisson’s
ratio: 0.49).

Fig. 1. Wave spring structure with 3, 6 and 9 waves per level respectively

For the static simulation the three models had a constrained
displacement at the base, and were subjected to four types of
loads: extension and compression forces, axial torque, and a
transverse force, all applied at the top section. The results of
stiffness for each model and load case can be analysed in table
I. The extension and compression forces are a direct result of
the maximum applied torque by the actuators.

TABLE I
SPRING STIFFNESS FOR SEVERAL LOAD CASES

Test A (Extension) Test B (Torsion) Test C (Transverse)
3 Waves 29.482 N/m 1.345 Nm/rad No reliable data
6 Waves 747.496 N/m 6.158 Nm/rad 59.242 N/m
9 Waves 5051.015 N/m 9.155 Nm/rad 403.226 N/m

Test D (Compression)
3 Waves 29.542 N/m
6 Waves 748.951 N/m
9 Waves 5056.6345 N/m

The results in figure 2 show a better torsional stiffness to
extension and bending stiffness for the module with 6 waves.
Such result can be a result of two factors, the resulting material
density and the maximum angle of the wave relative to the
base plane. The first is a resultant of the increase number of
waves while maintaining all the remaining parameters. The
second is a consequence of decreasing the period wave, as
the number of waves increases so does the maximum angle
made by the wave. These factors can be observed in figure 1
where the angle evolution and the increased density is seen.
With a lower angle the model will have a lower compression
and extension stiffness and a more vertical wave will have
a higher compression and extension stiffness. The increasing
angle will result in a minor increment of torsional stiffness
when compared to the extending and bending stiffness. The
model with 6 waves presents a longitudinal stiffness 6.8 times
inferior to the model with 9 waves but a torsional stiffness
only 1.5 times inferior. In comparison to the model with 3
waves the manipulator increases 25,4 times the extension and
compression stiffness and has an increment of 4.6 times for the
torsional stiffness. The manipulator with 3 waves showed to
have a weak compression stiffness to support its own weight.
Therefore the model chosen was with 6 waves per level.
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Fig. 2. Evolution of the stiffness with respect to the number of waves per
level

A modal analysis was performed for the model with 6
waves, and the most important natural frequencies are shown
in table II, the corresponding mode shapes are displayed in
figure 3. Under dynamic loads the torsional stiffness has a
natural frequency considerably higher than the bending and
extension modes, a result in accordance with the aim of the
work and with the previous results.

TABLE II
MODAL MODES AND FREQUENCIES

Mode Type Frequency
Modes 1,2 1st Bending mode 12 Hz

Mode 3 Extension 37 Hz
Modes 4,5 2nd Bending mode 61 Hz

... ... ...
Mode 9 Torsion 172 Hz

III. PROTOTYPE DESCRIPTION

The final dimensions that were used to 3D print the wave
spring and produced the best results after 3D printed are shown
in table III

The final prototype and remaining elements elements can
be seen in figure 4 alongside the experimental setup. In the
figure on the right it is also seen several parts printed in a rigid
filament, PLA. These include: a tip element that clamps the
cables; several clamps to attach this top element to the flexible

Fig. 3. Mode shapes from modal analysis. From the top left in clockwise
direction: 1st mode (1st bending), 3rd mode (extension), 9th mode (torsion)
and 4th mode (2nd bending).

TABLE III
FINAL MEASURES OF THE MODULE

Length 84.5 mm
Inner Diameter 29.5 mm
Outer Diameter 45.5 mm

Number of wave levels 26
Wave thickness 1.25 mm
Wave amplitude 1.90 mm

Contact area between waves 4 mm
Number of waves per level 6
Number of guiding holes 6

Diameter of the guiding holes 4.25 mm

module; clamps to attach the flexible module to the base plate;
and the servo mounts with the pulley to drive the cables. Nylon
tubes with a inner diameter of 2 mm were added to the pass-
through holes in the wave spring to reduce the friction.

Fig. 4. Experimental set-up and components.

The actuators, in 5, convert the rotational motion to a linear
actuation using an enclosed pulley where the cable is pulled
and pushed. The lid, top element in red, locks the cables
to transfer the motion from the cables to the manipulator.
Although this design can be improved for both friction and
durability, no significant friction forces or wear were found
during these experiments, and no lubricant was used.

Due to the design and work that the top clamps will be
subjected, a finite element analysis was also made to these.
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Fig. 5. Motor and cable assembly details.

Figure 6 show the expected concentration of stress on its
inner face with a 34,88 MPa. This value is very similar to
the tensile strength at break when the force is perpendicular
to the printing layers with 39 MPa. However, if the force is
applied in the same direction of the layers this value increases
to 50 MPa. For such reason this element should be 3D printed
sideways.

Fig. 6. Motor and cable assembly details.

In the process of 3D printing the rigid parts of the module
there weren’t experienced any major difficulties since PLA is
one of the most easiest material to print with. However, when it
comes to the soft spring a more cautious approach was needed.
Several prototypes were produced in order to allow and refine
the 3D printer parameters for the FilaFlexTM filament.

The hardware required to perform the experiments can also
be seen in figure 4 and consists of:

• Embedded controller - Arduino TM UNO Rev3
• Power Supply - JopowerTM ALP-3005M 0-30V 0-5A
• Servo Motors - Tower ProTM MG996R
• 3D Tracking System - Polaris SpectraTM

Two sets of markers are used with the 3D Tracking System:
one attached to the base plate to provide the global reference
frame (OP −XPYPZP ), and a single marker at the tip of the
robot module to track its position (O2 − X2Y2Z2). Data ac-
quisition from the Polaris SpectraTM system was accomplished
by using the manufacturer’s own software.

IV. KINEMATICS

To control a robotic manipulator it is necessary to obtain a
forward and an inverse kinematic model that approximates the

manipulator behaviour. The first gives the end-effector position
when the inputs of the actuators are defined. While the second
gives the inputs required for the end-effector to reach a desired
position.

For the computation of the forward kinematics it was used
the constant curvature theory that assumes that the module has
a perfect curvature when bent. Some model formulations can
be found in, for instance, [10], [11], [13], [19]. Later it was
added an offset to this theory to better approximate it to the
assembled prototype.

The inverse kinematics for the constant curvature theory
with an added offset, relative to the rigid part at the top of
the model, is more complex so a different approach to the
mathematical one is required. For that, it was used neural
networks. This first approach to the neural networks allows
to, besides obtaining the inverse kinematics for the theoretical
model, prepare for the training of the neural networks using
the data collected from the prototype. The neural networks
architectures used for the inverse kinematics of the constant
curvature model and the prototype followed the architectures
from [20]. With 3 inputs, Cartesian position, 3 outputs, actu-
ators position, 1 hidden layer with 100 neurons and sigmoid
activation function, and an output layer with a linear activation
function. The neural network was created using a toolbox from
Matlab, trained with the Levenberg-Marquardt backpropaga-
tion algorithm and evaluated with the mean-squared error. The
samples were divided in 70% for training, 15% for validation
and the last 15% for testing.

The first networks were created for the constant curvature
model and for training them it was necessary to generate
training data. For this, 1000 input data was randomly generated
and the respective output was obtained using the forward
kinematic model. Next, the models were trained with a variable
number of training points, 100 from 100 to 1000. The resultant
R evolution, value that measures the relation between the
inputs and outputs, is demonstrated in figure 7, as well as
the R evolution for other models that will be explained later.
A value of R closer to 1 means a closer relationship and less
randomness.

Fig. 7. Overall R evolution for neural networks trained with theoretical and
experimental data
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With the inverse kinematic models it was calculated the
inputs from three different trajectories, and then applied to
the simulated manipulator using its forward kinematics. From
the several trajectories obtained it was possible to calculate the
mean and maximum error evolution according to the number
of training points. The first is seen in figure 8 while the second
shows a similar evolution to the first.

Fig. 8. Average error evolution for the models trained with theoretical data

From the two graphics referenced earlier, figures 7 and
8, it is possible to relate the R evolution with the mean
error evolution. It is possible to state that as soon as R
stabilizes at its maximum, the mean error ceases to decrease
significantly. From the model with 300 training points onwards
the mean error of all trajectories varied between 0.015 and
0.085 millimeters. From this it is possible to validate the neural
network architecture and so train it with the data acquired
from the prototype. The respective R evolution can be also
visualized in figure 7. With these values and the previous
conclusion it is possible to assume that the minimum number
of points to train correctly the model will be greater than 400.
The error evolution can be seen in the next section.

After the examination of the mean error and the paths
from the previous neural networks, in the experimental part,
it was made an attempt to improve the performance of the
manipulator. For that, the number of neurons was varied in the
hidden layer, to 25, 50, 75, 150 and 200 neurons, while using
all the training data collected for the previous models. From
the R evolution it is not possible to reach a clear conclusion
for the expected error evolution as it only shows a slightly
decreasing trend in a small range (approximately between
0.9993 and 0.9995).

V. RESULTS AND DISCUSSION

In the present section it will be shown and discussed the
most important results obtained. These include: the experimen-
tal work volume; repeatability results from the prototype; static
and dynamic loading tests; and the trajectories obtained from
the inverse kinematic models trained with neural networks.

A. Passive Compliance

Figure 9 shows the resultant displacement, in an s-shape,
of the manipulator after a lateral force is applied to the
manipulator on a vertical position. It is noticed that even
though the force is applied to the top face, this will not bend
but rather maintain approximately the same direction and move
almost parallel to it.

Fig. 9. Passive compliance after a lateral force is applied

B. Experimental Work Volume

In the graphs presented here, figure 10, it is possible to anal-
yse several lines. Two of them represent the perfect constant
curvature model and result from its forward kinematics. One
of them represents the origin of the extremity of the flexible
module while the other represents the offset added. This added
offset accounts to, besides the pieces needed to assemble the
prototype, an offset added to prevent the marker from being
hidden by the manipulator own body.

Fig. 10. Obtained 2D action space with constant curvature model

The greatest errors in the trajectories occurs in the two
lowest points of both sides where the curvature is greater. This
difference can be a result of a non perfect curvature area in
both the top and base of the module due to the added elements.
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C. Repeatability

Repeatability is an important property for a manipulator,
the definition of repeatability used was based on [21], where
it was applied to an industrial manipulator.

Three different tests were developed to analyse different
aspects of the manipulator behaviour. The experiments were
conducted with 5 randomly generated inputs, maintained
throughout the tests, with each cycle repeated 10 times. The
first test studies the repeatability of every point when origi-
nated from the rest position and the impact that the reached
position has on the neutral point, (N → Pi → N). In the
second test the manipulator follows the numerical order of the
generated positions, (N→ P1 → P2 → P3 → P4 → P5 → N).
In this test it is maintained the initial position for each point,
however the initial position will not be the same for every
point as it is dependent of the numerical order. Finally, the
last test is very similar to the second one, however it follows
a random order for each of the 10 cycles. For each of the
cycles the first and last positions were also the neutral pose.

The average error evolution for the three tests and the
different positions can be examined in figure 13.

Fig. 11. Position of the origin from the first test

The results of the first test show a good repeatability with
an average radius of 0.35 millimeters for the end positions
and 0.41 mm for the origin. Besides this good repeatability,
it is possible to observe a clustering of points sorted by
the reached position. Figure 11 shows the clustering of the
neutral position where each cluster is slightly pulled to the
direction of the destination point, each color matches to the
destination points in 12. This scattered clusters can be a result
from the manipulator hysteresis. The second test shows similar
results, with an average repeatability radius of 0.53 mm and
an increment of 40.5%. This result reinforces the theory that if
the path is maintained constant the repeatability will be good
as the impact from the hysteresis is constant.

In the third and final test, figure 12, the radius for each point
increases significantly, about 456.5% with an average of 2.98
mm and a median of 2.69mm. Such increase can be linked
to the random order that the manipulator follows and to the
varied displacement resultant from the manipulator hysteresis
when the motion is originated from different locations.

Fig. 12. Position of the points following a random order

Fig. 13. Repeatability evolution according to the tests realized

D. Loading Experiments

To verify the improvements of this geometry, regarding the
torsional stiffness and off-axis manipulation, it was realized
two loading experiments with several weights. A static and a
dynamic experiment were conducted with the setup seen in
the next figure. The weights used in the next tests were: 0g,
50g, 100g and 150g.

Fig. 14. Vertical base mount for the static loading set-up

1) Static Loading: In this first experiment the manipulator
is submitted to weights in four different poses. The poses
considered are: 1) the original undeformed shape, neutral; 2)
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a fully extended (with a tip displacement of 35.4mm from the
neutral pose); 3) a fully compressed (with a tip displacement
of 28.4 mm from the neutral pose); 4) and a bent pose with a
rotation of the top face of 99.5º and an increment of the neutral
line length from the neutral position of 8.1 mm, seen in figure
14. The tip displacement was measured along the vertical axis
(y) after the different weights were added to the tip of the
manipulator, this displacement can be seen in the figure 15.
From these values and from the weight added it was possible
to calculate the resultant stiffness of the different poses in
figure 16.

Fig. 15. Displacements from the static loading test for several tip loading
conditions: 0 (baseline), 50, 100 and 150 grams.

Fig. 16. Stiffness estimated from the static loading test for several tip loading
conditions: 50, 100 and 150 grams.

From the experiment results it is noticed that even though
the neutral line length is larger in the bent pose than on the
neutral position, the displacement on the first is smaller and
its stiffness is more than two times greater. Another important
aspect is that the module has a weight of 36g and is able
to support loads 4 times larger. This result demonstrates the
capacity to sustain torsional and off-axis loads.

2) Loaded Trajectory Tracking: This second loading exper-
iment aims to verify the results so far obtained and guarantee

that the previous conclusion also applies to dynamic motions.
Two trajectories were applied, a circular in figure 17 and an
elliptical. The inverse kinematics to compute the inputs of the
trajectory were obtained from the constant curvature without
offset. The results in figure 17 display in light blue the desired
trajectory. It is noted that it does not only show a vertical
displacement, as expected, but also a displacement along the
z axis. In the second image of the referenced figure it is
possible to deduct that as the weight added increases so does
the diagonal observed in the figure. Such behaviour might be
a consequence of the passive compliance as explained before
resulting in a sideways movement. When the manipulator has a
slightly upwards orientation the tip, due to the applied weight,
will move downward (according to the vertical direction) and,
to follow the face orientation will move forwards (according
to the z axis). If the manipulator has a slightly downwards
orientation it will also move downward but backwards. The
base of the manipulator is at the plane xy. Nonetheless, the
results obtained show a good and consistence performance
with off-axis manipulation.

Fig. 17. Circular trajectory experimental results. The z axis is coincident with
the axis of the robot module in its unbent configuration, the y axis corresponds
to the direction of gravity.

E. Trajectories

With the obtained models from the inverse kinematics it was
possible to calculate the inputs for three different trajectories
for each model. It was then calculated the mean and maximum
error from the obtained trajectories according to the number of
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training points. Figure 18 illustrates the average error evolution
for the models created with the constant curvature model
and for the models created with the collected data from the
manipulator.

Fig. 18. Mean error for 3 trajectories for models with different numbers of
training data points

The error for the theoretical model is constant since, as
seen in kinematics, the required number of points to train
correctly the manipulator is 300, and from this model on, the
models will be very similar and produce similar results. From
the models trained with the collected data from the prototype
the error is inferior and seems to stabilize after the model
with 500 training points, with the exception of the square
trajectory for the model with 800 points. Considering this
evolution and the R evolution from figure 7 it is possible
to state that the minimum number of training data points,
for this neural network architecture, is from 500/600 as no
significant improvement is made after these. According to the
R evolution the error should stabilize after the model with 400
points, however it is not the case as this model shows a bigger
error than the previous model and might be a result from an
unfit training.

From the error evolution and the path described by the
manipulator it is perceived that the model that better suits all
trajectories is the model trained with 600 points. This model
has an average error, from the three trajectories, of 2.24 mm.
The remaining models, with the exception of the the model
trained with 300 and 400 points, have a mean error that is
in the range of 2.29 to 2.57 mm. This range is on the same
order of magnitude as the random repeatability radius test,
which leads to conclude that the neural networks were trained
correctly for the current setup.

Nonetheless, it was still attempted to improve the results so
far obtained with a different neural network architecture. From
these new models, with the error evolution in the next figure, it
is possible to see a small increase on the mean error evolution.
Such result can be linked to the rate of compensation of the
models nonlinearities.

Figure 20 shows the most clearer evolution among the
models with variable number of neurons, on the left and right
sides of the square trajectory. From left to right: it shows
a trajectory obtained with the theoretical model, a trajectory

Fig. 19. Mean error for 3 trajectories for models with different numbers of
neurons

obtained with a model with a low number of neurons (50), and
a trajectory obtained from a network with the highest number
of neurons (200). The model that apparently compensates
better all nonlinearities is the model with 50 neurons.

Fig. 20. Square trajectory. From left to right: theoretical model; model with
50 Neurons; And model with 200 Neurons.

VI. CONCLUSIONS

At the end of the work described in this paper it was
successfully achieved the design, fabrication, modulation and
experimental evaluation of a soft continuum manipulator capa-
ble to sustain torsional forces, improve the performance of this
type of robots in off-axis scenarios and define improvement
guidelines for further exploration in future works. Therefore
the work is divided in two major parts: in design and in
experimental sections.

On the first part it was optimized the design of the wave
spring in terms of the number of waves per level in order to
obtain the best torsional to extending and bending stiffness
relation. The finite element analysis was performed on three
different models with 3, 6 and 9 waves per level. The first
model showed a small extending and compressing stiffness,
crucial to support its own weight, as the wave angle with
the base plane is small. In contrast, the third model has an
extending and compressing stiffness too great as a result of a
more vertical wave. It also has the largest torsional stiffness.
The model with 6 waves showed a torsional stiffness only 1.5
times inferior to the larger torsional stiffness while having an
extending and bending stiffness 6.8 times smaller regarding the
same model. This model has also a torsional stiffness 4.6 times
greater than for the model with 3 waves and an extension and
bending stiffness 25.4 times larger, providing a good support
for its own weight. A modal analysis was then performed on
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the most suitable model with 6 waves. The resultant torsional
stiffness has the largest natural frequency when compared with
the remaining stiffness. The flexible module and the majority
of the rigid elements were 3D printed with a flexible and a
rigid filament respectively.

On the second part of this work, with the manipulator fully
assembled, it was possible to evaluate its working volume, its
behaviour with and without loads, its repeatability, and the
trajectories resultant from several inverse kinematic models
trained with neural networks. The working volume allowed to
validate the theoretical model. The loading test provided an
assurance that the module is capable to work with off-axis
loaded motions. In the static loading test, 4 different weights
were applied to the manipulator in 4 different poses, from these
only one pose was off-axis. The obtained vertical stiffness of
this pose was greater than two of the on-axis poses, only being
smaller than the fully compressed pose. In the dynamic loading
test the manipulator described a consistent and reliable motion
with a load 4.16 times its own weight. The repeatability was
obtained from two tests with a defined order and from a third
test with a random order. For the first two the repeatability
radius was very similar, 0.35mm and 0.53mm. While for the
third test the radius increases significantly to 2.98 mm due to
its random order. On the first test it is possible to visualize
the effects of hysteresis by a clustering of points depending on
the previously reached pose. This may be the reason why, with
random order, the repeatability radius increases significantly.
In the last experimental work it is possible to analyse the
nonlinearities of the model present on the trajectories obtained
from the models trained with the theoretical data. To analyse
the evolution of the mean error according to the number of
training points and obtain a minimum number of 500. And to
evaluate the impact that the number of neurons have on the
modulation of the manipulator. From the trajectories described,
especially from the square trajectory, it was seen that as the
number of neurons increase, the compensation rate of the
nonlinearities also increase. The model that better followed
the square trajectory was the model trained with 50 neurons.

VII. ACHIEVEMENTS

The main accomplishment of this work was the design
and construction, using almost fully automated procedures,
of a soft continuum manipulator module capable to sustain
torsional loads that allows to approximate this soft manipulator
to a fully functional and useful robot.

Several other findings can be listed next:

1) Parameter optimization of a wave spring capable to
sustain torsional forces and operate in off-axis scenarios;

2) The design of a lightweight with hollow center soft
continuous manipulator;

3) A simple actuation method with few moving parts;
4) The combination of a 3D printing production method,

using flexible filaments, with the necessity of quickly
prototyping a soft continuous deformation robot;

5) A manipulator capable to sustain, without significant
deformation, a weight of at least 4,16 times the module
weight in static and dynamic scenarios;

6) The characterization of the manipulator work space and
repeatability with a mean radius of 2.98 mm;

7) A first approach to modeling the kinematics of the
prototype using neural networks, that includes a study
of the number of training points required to effectively
model it (500) and the impact of the number of neurons
used (from 25 to 200, with the first ones obtaining the
best results).

This geometry is a step further for the soft robots to
be commonly used in more diverse areas. 3D printing can
be extremely helpful in future developments of soft robots,
however it may not be the answer if the manipulator will
be subjected to extreme stress scenarios where the material
can malfunction due to the method of printing by layers, or
if the aim is to mass produce. Regarding neural networks
and artificial intelligence, they are a valuable tool to model
behaviours that may be too complex for detailed modelling
by other means and were an important asset for the prototype
here created.

VIII. FUTURE WORK

This work might be a starting point for future works that
can follow multiple directions according to the selected project
goals.

1) A first area that can be improved is the characterization
of the materials used and a research into alternative
materials to these. This study can also help choosing
a material that minimizes the hysteresis of the flexible
module. Next, it can be examined the resultant properties
of the 3D printed elements;

2) Another possibility for improvement is the design of
the actuation mechanism in order to reduce the overall
volume of the robot module. For this, linear actuators,
or miniature actuators embedded in the structure of the
link itself can be investigated;

3) Another area to be studied is the addition of propriocep-
tive sensors to the module to have a better perception of
the robot curvature. This inclusion will allow a better
control, accuracy and also to reduce the dependency
of external sensors like the Polaris system used in this
work;

4) Following the development of the single module, a full
robot structure comprised of several modules can be
assembled and studied, in order to develop both low
level, and also high level behavioural control algorithms.
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