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Abstract

This thesis refers to acoustic navigation systems based on single range measurements. The difficulty
of accurately determining the speed of sound on the propagation medium, a matter of special relevance
in sub aquatic and aeronautic applications, is addressed by considering that the range measurements
acquired by the system are affected by an unknown multiplicative coefficient. The inherent nonlinear
nature of the navigation problem is tackled by performing state augmentation. The discrete-time linear
system obtained with this approach is shown to be observable and a Kalman filter is employed in order
to obtain state estimates with globally exponentially stable error dynamics. Simulations, assuming
noisy environments, are conducted to compare this solution with common nonlinear estimation
techniques, namely the extended Kalman filter and the unscented Kalman filter. The latter are
shown to obtain comparable results, but fail to provide global convergence guarantees. Monte Carlo
simulations supply further insights on filtering performances. Finally, experiments in a controlled
environment are carried out, attesting the applicability of the proposed solution.
Keywords: single ranges, navigation, speed of sound, Kalman filter, Bayesian Cramér-Rao bound,
Monte Carlo simulations

1. Introduction

The need for underwater vehicle (UV) positioning
has increased in the recent years. Breakthroughs
in the field of artificial intelligence have lead to a
significant burst of autonomous UV applications.
Other engineering quests, such as offshore energy
production and seafloor mapping, often require the
operation of UVs to achieve prosperous results.

Nowadays, acoustic systems are the standard
for accurate underwater navigation. Three major
classes of systems are available for position deter-
mination. These are the long baseline (LBL) sys-
tems, the short baseline (SBL) systems, and the
ultra short baseline (USBL) systems. Each of these
solutions comprises its own specific implementation
and expected performance, but they all have in
common the fact that, like in the global position-
ing system (GPS), multiple waves, from multiple
transponders, are propagated between the naviga-
tion system and the user. From these multiple range
measurement systems a series of problems arise.
One of them, and, probably, the most important
one is the fact that multiple range measurements,
by requiring multiple transponders, amount to in-
creasing system complexity and deployment costs.
Another problem is the fact that a fail in one or

more transponders might lead to the system be-
ing rendered useless, since common multilateration
techniques might become compromised. A way to
solve these two issues is to use just one transponder
capable of performing the same task as all the sys-
tems mentioned before. Having this in mind, acous-
tic navigation based in single range measurements
has attracted the interest of the scientific commu-
nity in the recent years.

One of the first works addressing the concept of
underwater navigation based on single range mea-
surements to a stationary beacon dates back to the
beginning of the century [1]. The author proposes a
solution to overcome the known limitations of dead-
reckoning navigation by combining a high perfor-
mance dead-reckoning system with an innovative
synthetic long baseline. The latter consisting on
a set of consecutive discrete-time range measure-
ments from the moving vehicle to a stationary bea-
con. Kalman filtering was applied to a linearized
version of the system dynamics. In [2], the navi-
gation problem is addressed with special concerns
for known current velocities. System linearization
is performed and an extended Kalman filter is used
to produce state estimates, but no guarantees of
global asymptotically stable error dynamics are pro-
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vided. The same strategy was then employed in
[3] and [4], where unknown currents are considered.
In [5], algebraic methods are used to study system
observability and to perform state estimation. A
state augmentation approach, which yields state es-
timates with globally exponentially stable (GES)
error dynamics, is brought forward in [6]. Also
motivated by state augmentation processes, the au-
thors in [7] propose a novel estimator based on the
least entropy-like estimator [8] capable of dealing
with unavoidable measurement outliers.

A very important factor when considering acous-
tic range measurements for navigation purposes is
that the speed of sound needed to obtain those mea-
surements tends to vary according to specific en-
vironment conditions. Studies combining the con-
cept of single range measurement navigation and
the difficulties of proper speed of sound determina-
tion have recently emerged. In [9] speed of sound is
explicitly estimated in a single pseudo-range mea-
surement navigation/source localization problem,
where state augmentation is the preferred route.
The new system obtained with this technique is in-
spected for observability purposes and a Kalman fil-
ter provides state estimates with GES error dynam-
ics. The work [10] proposes a solution to overcome
the errors associated with a misidentified effective
sound velocity (ESV) in navigation models. The
researchers treat ESV as a model parameter and
use the expectation maximization method to obtain
estimates of this unknown parameter. The overall
single-transponder navigation method also incorpo-
rates a Kalman filter. To tackle noise sensitivity
and initial vehicle position errors, which might lead
to fails in the two previous solutions, [11] treats the
ESV as a random variable with unknown proper-
ties. Both the ESV and its statistical properties are
then estimated resorting to a variational Bayesian
approximation method.

In this thesis the most simple form of underwater
navigation in terms of setup and deployment, i.e.,
navigation with a single fixed transponder, is stud-
ied. The notion of an unknown speed of sound in
the medium is also a subject of this work. Along
these lines, range measurements acquired from a
transponder system are considered to be affected
by an unknown multiplicative factor. Taking this
into consideration, a nonlinear discrete-time system
representative of the navigation problem is derived,
and estimates of the position of the vehicle as well
as the speed of sound unknown multiplicative coeffi-
cient are obtained with the solution proposed in [9].
In order to compare the novel solution with com-
mon nonlinear estimation techniques, an extended
Kalman filter (EKF) and an unscented Kalman fil-
ter (UKF) are also employed to provide vehicle and
speed of sound estimates. Filtering parameters are

subject to an optimization process called Bayesian
optimization (BO) . Extensive Monte Carlo simu-
lations provide further comprehension of the per-
formance of each filtering solution by allowing the
determination of bias in the estimation process as
well as estimation error covariance. Finally, exper-
iments in a controlled environment are performed,
attesting the applicability of the new solution.

1.1. Notation
Vectors are represented in bold with each compo-
nent appearing as an upper index. For example, px,
py, and pz represent the first, second, and third
components of a vector p ∈ R3. The bold upper
case is reserved for matrices such as a n × n iden-
tity matrix, In, or the zeros matrix, 0n. A block
diagonal matrix is represented by diag(A1, ...An).
The inner product of p ∈ R3 and q ∈ R3 is p · q.
Finally, the special orthogonal group of dimension
n is represented as SO(n).

2. Problem statement
The navigation systems proposed in this thesis fore-
see the use of a single fixed acoustic transponder to
acquire discrete-time range measurements to an op-
erating vehicle. The aforementioned systems rely
on a basic principle of wave propagation which
states that, in the absence of a variable speed of
sound, the distance traveled by the acoustic wave
is equal to its speed of propagation in the medium
multiplied by the time it took for the wave to travel
said distance. The problem regarding this simple
formulation is that the speed of sound considered
to compute distances might not correspond to the
true value, be it from inaccurate determination or
complete lack of information. Having this in mind,
one can assume that the range measurements pro-
vided by the system are affected by an unknown
multiplicative factor. It is also assumed that these
systems comprise the use of other navigation equip-
ment such as a Doppler velocity log (DVL) and
an attitude and heading reference system (AHRS)
to determine the inertial speed of the vehicle and
its orientation relative to a reference frame, respec-
tively.

2.1. System dynamics
As usual in navigation systems, consider the ex-
istence of {I }, a local coordinate inertial reference
frame, and {B}, a coordinate frame that moves with
the vehicle along its motion through the medium,
the so-called body-fixed frame.

The variation of the inertial position of the vehi-
cle, ṗ(t) ∈ R3, can be written as

ṗ(t) = R(t)v(t), (1)

where R(t) ∈ SO3 is the rotation matrix from {B}
to {I } and v(t) is the velocity of the vehicle rela-
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tive to {I }, expressed in body-coordinates. In this
thesis, it is assumed that the vehicle is capable of
acquiring both the rotation matrix R(t) and the
velocity v(t). In practice, the first is usually ob-
tained through the aforementioned AHRS and the
second through the DVL if the later has established
bottom-lock.

Discrete-time range measurements to a station-
ary beacon, r(k), can be obtained through

r(k) = vs(tk) ‖ s− p(tk) ‖ (2)

where s ∈ R3 is the inertial position of the beacon,
tk is the sampling instant, defined with respect to
the sampling period T > 0 and the initial time t0,
as tk := t0 + kT , k ∈ N. Finally, vs(tk) > 0 denotes
the strictly positive scaling factor that accounts for
the uncertainties in the speed of propagation of the
acoustic waves.

Considering, for the sake of simplicity, that the
velocity of propagation in the medium does not
change over time, the previous equations can be
condensed to represent the system dynamics as

ṗ(t) = R(t)v(t)

v̇s(t) = 0

r(k) = vs(tk) ‖ s− p(tk) ‖ .
(3)

The above equations depict a continuous nonlinear
system that can be discretized as

p(tk+1) = p(tk) + u(tk)

vs(tk+1) = vs(tk)

r(k) = vs(tk) ‖ s− p(tk) ‖,
(4)

where the system input, u(tk), accounts for the
traveled distance, in inertial coordinates, between
consecutive pseudo-range measurements. It can be
computed through the integral

u(tk) =

∫ tk+1

tk

R(τ)v(τ)dτ. (5)

The problem addressed in this thesis is that of
estimating p(tk) and vs(tk) assuming that both the
pseudo-range measurements r(k) and the system in-
put u(tk) are available at each time step k.

3. Linear Kalman filter

To perform state estimation on the system under
study, a novel solution proposed in [9] was imple-
mented. This consists primarily in performing state
augmentation, thus obtaining a new augmented sys-
tem. State estimates are then obtained using a sim-
ple linear Kalman filter (LKF).

3.1. Theoretical foundation

Consider a generic system of the form


x1(k + 1) = x1(k) + u(k)

x2(k + 1) = x2(k)

r(k + 1) = x2(k + 1) ‖ x1(k + 1) ‖ .
(6)

This formulation is equivalent to (4) if x1(k) and
x2(k) are defined as{

x1(k) := p(k)− s

x2(k) := vs(k).
(7)

Assumption 1: All pseudo-ranges, r(k), are
greater than zero, i.e., r(k) > 0 for all k.

By applying the following state augmentation
process, new system states are defined as

z1(k) := x22(k)x1(k)

z2(k) := x22(k)

z3(k) := r(k).

(8)

Regarding z1(k) and z2(k), these have a very easy-
to-infer evolution which, when taking into account
(6) and (8), can be stated as{

z1(k + 1) := z1(k) + z2(k)u(k)

z2(k + 1) := z2(k).
(9)

The evolution of the third state is, after some con-
siderations and substitutions (here omitted due to
space limitations), given by

z3(k + 1) =2
u(k)

r(k + 1)
· z1(k) +

‖ u(k) ‖2

r(k + 1)
z2(k)

+
r(k)

r(k + 1)
z3(k).

(10)

Now, notice that (9) and (10) linearly describe
time-step transitions of z1(k), z2(k), and z3(k) since
both u(k) and r(k) can be viewed as system inputs,
which are available over time. Also, notice that
z3(k) := r(k) can be viewed as a system measure-
ment. Having this in mind and defining the state
vector

z(k) :=
[
z1(k) z2(k) z3(k)

]T
, (11)

the system dynamics can be written in the form{
z(k + 1) = A(k)z(k)

y(k + 1) = Cz(k),
(12)

with

A(k) =

 I3 u(k) 03×1
01×3 1 0

2 uT (k)
r(k+1)

‖u(k)‖2
r(k+1)

r(k)
r(k+1)

 ∈ R5×5

and
C =

[
01×3 0 1

]
∈ R1×5.
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3.2. Observability analysis

The two measurements needed to determine the dy-
namics matrix A(k) can be viewed as discrete func-
tions of time, since they are assumed to be avail-
able at every time instant k. For this reason, the
system (12) can be seen as a discrete-time linear
time-varying system from an observability perspec-
tive [12]. Theorem 1 refers to the observability of
the system (12).

Theorem 1[9]: Assuming that the matrix L(ka),
defined for time instant ka ≥ 0 as

L(ka) :=

L0(ka)
...

L3(ka)

 ∈ R4×4,

where

Li(ka) :=

[
2
∑i
j=0 u(ka + j)

‖
∑i
j=0 u(ka + j) ‖2

]T
∈ R1×4,

is a full rank one, i.e.,

rank(L(ka)) = 4, (13)

then the initial state z(ka) is uniquely determined
by the input { u(k) : k = ka, ..., ka + 4} and the
output { y(k) : k = ka, ..., ka + 4}. This means
that system (12) is observable in the time interval
[ka, ka + 5].

Nevertheless, showing that system (12) is observ-
able is not enough to prove that state estimates
of this relate to estimates of the original nonlinear
system (6), since the state augmentation process
required the output r(k) = x2(k)||x1(k)|| to be dis-
carded and new artificial states to be created. The
following theorem proves this relation.

Theorem 2[9]: If (13) holds, then :

1. The initial state of the original nonlinear sys-
tem (6), (x1(ka), x2(ka)), is uniquely deter-
mined by the input { u(k) : k = ka, ..., ka + 4}
and the output { r(k) : k = ka, ..., ka+4}. This
is the same as saying that the nonlinear system
(6) is observable in the time interval [ka, ka+5].

2. There is a match between the initial conditions
of both the augmented (12) and the original (6)
systems, i.e.,

z1(ka) = x22(ka)x1(ka)

z2(ka) = x22(ka)

z3(ka) = x2(ka)||x1(ka)||
(14)

The proof of both Theorems 1 and 2 is given in
[9].

3.3. Linear Kalman filter
Under the conclusions obtained in the previous sec-
tions, a Kalman filter was employed to perform
state estimation on system (12). The estimates ob-
tained with this solution will show globally expo-
nentially stable (GES) error dynamics if the system
(12) is shown to be uniformly completely observable
[13]. In the previous subsection it was only shown
that the system is observable, but an identical, yet
more space consuming, process could be employed
to prove uniform complete observability.

Recall the augmented system (12) for which the
LKF provides state estimates. The estimated state
z(k) does not correspond directly to the pursued es-
timates of the vehicle position, p(k), and the speed
of sound multiplicative coefficient, vs(k). To obtain
those, the following assumptions are needed.

Assumption 2: The speed of sound multiplica-
tive factor, vs(k) = x2(k), is comprehended between
a maximum and a minimum value, VM > 0 and
Vm > 0, respectively, as given by

Vm ≤ x2(k) ≤ VM . (15)

Assumption 3: The state tied to vehicle posi-
tion, x1(k), is norm-bounded.

Possessing estimates of z(k), the speed of sound
multiplicative coefficient estimates, v̂s(k), can be
determined by

v̂s(k) = x̂2(k) =


Vm, ẑ2(k) < V 2

m√
ẑ2(k), V 2

m ≤ ẑ2(k) ≤ V 2
M

VM , ẑ2(k) > V 2
M ,

(16)
and the vehicle position estimates, p̂(k), by

p̂(k) = x̂1(k) + s =
ẑ1(k)

x̂2(k)
+ s. (17)

Furthermore, it can be shown that, as estimates of
z(k) have GES error dynamics, then estimates of
speed of sound multiplicative coefficient and posi-
tion also have GES error dynamics. The proof of
this statement is shown in [12, Proposition 1].

4. Simulations
To assess the performance of the novel solution,
simulations were carried out in the Matlab� envi-
ronment. The results are compared to those ob-
tained when using an extended Kalman filter and
an unscented Kalman filter. To better determine
the performance of the filtering solutions, Monte
Carlo simulations were conducted. This method is
useful to detect possible filter bias. Also, Monte
Carlo simulations allow for the determination of er-
ror standard deviations which, when compared to
the lower bound provided by the Bayesian Cramér-
Rao Bound (BCRB) [6, Section V], grant further
insights of filtering performance.
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The trajectory described by the vehicle was cre-
ated by determining a set of waypoints in the three-
dimensional space. The aforementioned set was
obtained by consecutively adding inertial position
variations to the trajectory already described. In
order to avoid valueless results of the filtering solu-
tions, a rich trajectory, i.e., one without straight
lines and lack of changes in direction, was pre-
ferred. The variation of each position component
(∆px,∆py,∆pz), in meters, was modeled as

∆px(k) = cos
(
2π
30 kT

)
∆py(k) = cos

(
π
10kT + π

6

)
∆pz(k) = cos

(
2π
45 kT + π

9

)
,

(18)

where k ∈ N represents the time step and T the up-
date rate used to compute the position variations.
Assuming new positions are determined at a fre-
quency of 1 Hz, it follows that T = 1s. Each tra-
jectory was limited to 4000 seconds (approximately
one hour). The initial inertial position of the vehicle
was set to the origin of the inertial reference frame,
i.e., p̄0 =

[
0 0 0

]T
. A tree-dimensional view of

the trajectory is presented in Fig. 1.

Figure 1: Vehicle trajectory

The pseudo-ranges, r(k), were obtained by com-
puting the euclidean distance between the true ve-
hicle position, p̄(tk), and the position of the fixed
beacon, s, and then multiplying it by the coefficient
vs(tk). The latter was initialized with a value of 1.1,
and, although it is not expressed in (4), its evolution
was assumed to be corrupted by additive zero-mean
white Gaussian noise with a standard deviation of
0.01 for BCRB determination purposes. This dif-
ference concerns the fact that (4) is a deterministic
model, whereas in practice one aims to be able to
estimate slowly time-varying parameters. Pseudo-
ranges are assumed to be available at a frequency
of 1 Hz, the same frequency used to create the tra-
jectory waypoints. The position variation integral,
u(k), was assumed as equal to the position varia-
tions used to determine the trajectory of the vehi-
cle, ∆p(k). This implies that, with the exception of
measurement noise, the integral would be perfectly

determined by the sensors on board the vehicle.
Both measurements were assumed to be cor-

rupted with additive zero-mean white Gaussian
noise with the standard deviations present in Ta-
ble 1.

Measure Standard deviation [m]
r(k) 10−2

u(k) 5× 10−2

Table 1: Standard deviation of the noise

4.1. Linear Kalman filter
Concerning the LKF, the initial estimation param-
eters x̂0 and P0 were arbitrarily chosen to exem-
plify the goodness of the solution. Furthermore,
process and measurement noise covariance matri-
ces, Qk and Rk respectively, were obtained via the
Bayesian optimization algorithm [14]. All the pa-
rameters, except for the initial state estimate, are
portrayed in Table 2.

Parameter Value
P0 I5
Qk diag(0.207I3, 6.466× 10−5, 0.876)
Rk 0.533

Table 2: LKF parameters

The initial state estimate vector x̂0 =[
100 141.42 141.42 1.0 100

]T
was used to

feed the filter. This corresponds to an initial
estimate where the norm of the position of the
vehicle is incorrect by approximately 200 meters,
the sound speed multiplicative factor by 0.1, and
the range by 100 meters. The convergence of the
position and speed of sound coefficient errors are
shown in Figures 2 and 3. The novel solution is able
to lead the estimation errors to zero quite rapidly,
while showing a good steady-state performance,
with the norm of position error being consistently
below 0.5 meters. Due to space limitations, no
more results regarding even higher initial condition
errors are shown. Nevertheless, it was observed
that, for the noise properties assumed and within
the considered simulation length, error convergence
was guaranteed up to initial absolute position
errors of more than 1000Km.

4.2. Extended Kalman filter
Two initial conditions were used to feed the ex-
tended Kalman filter. The tuning of the parameters
was also performed resorting to the BO algorithm,
being the results of this process shown in Table 3,
along with the initial error covariance matrix.

Figures 4 and 5 show the evolution of the posi-
tion estimation error, as well as that of the speed
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Figure 2: LKF position estimation error

Figure 3: LKF speed of sound coefficient estimation
error

Parameter Value
P0 I4
Qk diag(0.98339I3, 0.00015631)
Rk 0.99992

Table 3: EKF parameters

of sound multiplicative coefficient estimation er-
ror. The initial state estimate was set to x̂0 =[
0 6 8 1.0

]T
. This represents an initial error of

10 meters in terms of position estimate and 0.1 in
terms of the unknown coefficient estimate. As can
be inferred, these initial conditions lead to a result
fairly similar to that of the LKF, since both ini-
tial convergence and steady-state performance are
comparable. Oppositely, a divergence of the posi-
tion estimates error can be found in Fig. 6 (error
of the speed of sound coefficient estimates are omit-
ted due to space limitations). This was a result of
changing the norm of the initial position error to
30 meters, while maintaining the speed of sound
multiplicative coefficient error at 0.1. The initial
assumption that lead to the diverging result was
x̂0 =

[
20 20 10 1.0

]T
.

As demonstrated, the EKF is a valid solution to
solve the state estimation required for the naviga-
tion problem, since it yields converging results, al-
though these can only be obtained when setting the
initial state estimate close to the true initial state.
Therefore, the EKF fails to provide global conver-
gence guarantees.

Figure 4: EKF position estimation error conver-
gence

Figure 5: EKF speed of sound coefficient estimation
error convergence

Figure 6: EKF position estimation error divergence

4.3. Unscented Kalman filter

Similarly to what was done for the LKF and the
EKF, the process and measurement noise covari-
ance matrices were determined resorting to the BO
algorithm. The parameters used to feed the UKF
are presented in Table 4.

Parameter Value
P0 I4
Qk diag(0.032846I3, 0.0052031)
Rk 0.98731

Table 4: UKF parameters

As for the EKF, two sets of figures represent
two distinct results obtained when using the UKF.
Firstly, the initial condition which ultimately lead

6



to diverging state estimate errors when using the
EKF, x̂0 =

[
20 20 10 1.0

]T
, now results in a

valid estimation process as depicted in Figures
7 and 8. This confirms that the UKF exhibits
better performance than the EKF. Notice, how-
ever, that the transients take longer, increasing
by a factor of ten when compared to the tran-
sients of the EKF. Secondly, Fig. 9 shows the er-
rors of the position estimates obtained after sim-
ulating the filter with the initial condition x̂0 =[
100 141.42 141.42 1.0

]T
(errors of the speed of

sound coefficient estimates are omitted due to space
limitations). This time, although the UKF manages
to attain error convergence, this happens at a very
slow rate. In fact, convergence was only achieved
after extending the simulation length to 100000 sec-
onds (approximately 27 hours). Although this re-
sult does not depict a diverging estimation process,
it shows that the UKF is rendered useless for some
initial filter conditions.

To sum up, the UKF, like the EKF, is able to ob-
tain valid estimation results, but lacks the capabil-
ity to offer, in an acceptable time span, convergence
guarantees for all initial conditions.

Figure 7: UKF position estimation error conver-
gence

Figure 8: UKF speed of sound coefficient estimation
error convergence

For comparison purposes, Table 5 presents the
averaged steady-state (t > 3000s) estimation errors
of each filtering solution.

Figure 9: UKF position estimation error slow con-
vergence

Filter px[m] py[m] pz[m] vs
LKF −0.0154 −0.0181 0.0313 0.0038
EKF −0.0173 −0.0589 −0.0186 −0.0010
UKF −0.0076 −0.0487 −0.0351 0.0122

Table 5: Steady-state estimation average error

4.4. Monte Carlo Simulations
To better assess the performance of each solution,
Monte Carlo simulations were carried out. Each
simulation comprised its own randomly generated
noise signal and initial state, the later being por-
trayed by a Gaussian distribution centered about
the true initial state and with covariance equal to
the initial error covariance of the filter, P0. The
covariance matrices used for each Kalman filter are
expressed in Table 6. Note, in particular, that the

LKF EKF UKF
Error Covariance I5 I4 I4

Table 6: Initial state error covariance in the Monte
Carlo simulations

variation allowed for the initial unknown coefficient,
σ2
vS = 1, is a very liberal one. This makes for a very

broad-scenario of initial vs conditions when per-
forming Monte Carlo simulations. A total of 1000
runs of each filtering process were performed.

The averaged steady-state (t > 500s) mean es-
timation error is portrayed in Table 7. All three
filters show some bias, especially in the third po-
sition component, pz, and in the speed of sound
multiplicative coefficient, vs.

Filter px[m] py[m] pz[m] vs
LKF −0.0072 −0.0035 0.0133 0.0019
EKF −0.0020 0.0029 0.0024 0.00045
UKF −0.0266 −0.0072 0.0131 0.0151

Table 7: Monte Carlo steady-state estimation aver-
age error
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The standard deviation of the estimation er-
rors was determined and compared to the Bayesian
Cramér-Rao bound. Table 8 shows the steady-
state averaged standard deviations of the estima-
tion error. All filters perform fairly close to the
lower bound provided by the BCRB. Going into
further detail, it can be seen that the EKF tends
to consistently over-perform the BCRB. Also, for
the speed of sound multiplicative coefficient, vs, the
LKF shows, on average, error standard deviations
below the BCRB. These odd observations are ex-
plained by the biased nature of the filters. Since
the BCRB only sets a lower limit on the error stan-
dard deviations for unbiased estimators, a biased
estimator is allowed to achieve such results.

Filter px[m] py[m] pz[m] vs
LKF 0.2864 0.2595 0.1796 0.0088
EKF 0.1992 0.1842 0.1091 0.0065
UKF 0.2908 0.2503 0.2083 0.0189
BCRB 0.2392 0.2165 0.1757 0.0173

Table 8: Monte Carlo steady-state averaged stan-
dard deviation of the estimation error

5. Experiments
Experiments were performed to further test the fil-
tering solutions presented throughout this work.
These were carried out at the Institute for Systems
and Robotics installations, and consisted of a drone
autonomously describing a trajectory inside a flight
arena. Throughout the length of the experiment,
flight measurements were acquired for a posteriori
analysis.

The test arena is equipped with a motion capture
system (MOCAP) and off-board computers capable
of controlling drone position to a continuous trajec-
tory function [15]. As the trajectory presented in
Section 4 exceeded arena bounds, it was modified
to

p′(t) =

 1.6cos
(
2π
30 t
)

2.6cos
(
π
10 t+ π

6

)
1.2 + 0.6cos

(
2π
45 t+ π

9

)
,

 , (19)

where t > 0 ∈ R is the continuous variable repre-
sentative of the time elapsed since the start of the
trajectory. The full experiment lasted for approxi-
mately five minutes. This included the movement
between the initial position, set by hand close to
the center of the reference frame, and p′(0), and
that between the final point of p′(t) and the stop-
ping point on the ground. A plot of the trajectory
is shown in Fig. 10.

Two completely independent systems were used
to acquire both measurements needed to implement

Figure 10: Experimental trajectory

either of the three filters discussed in the previ-
ous sections. The pseudo-ranges, r(k), were ac-
quired by an off-the-shelf acoustic ”Indoor Posi-
tioning and Navigation System” offered by Marvel-
mind Robotics� [16]. Regarding the position vari-
ations, u(k), these were obtained through the mo-
tion capture system present in the arena. Although
discrete-time inertial position variations could have
been obtained directly from the MOCAP system,
a more realistic approach was implemented. This
consisted on both Euler angles and vehicle inertial
velocity, expressed in body coordinates, being ac-
quired in order to compute said position variations.
A more in-depth look into measurement acquisition
and computation follows.

5.1. Measurements

As said before, pseudo-range measurements were
acquired by implementing a simple solution based
on an off-the-shelf product. The non embarked bea-
con was placed on the floor of the arena in the iner-
tial coordinates s ≈

[
−2.31 −0.10 0.01

]T
[m]. Re-

garding the update rate of these measurements, this
was set to 1 Hz.

To determine the position variations, u(k), the
MOCAP system was used. This provides numerous
flight parameters sampled at a frequency of 30 Hz.
The set of used flight parameters comprises vehi-
cle inertial velocity, expressed in body-coordinates,
and orientation, given in terms of roll (φ), pitch (ψ),
and yaw (θ), more commonly known as Euler an-
gles. The position variations, were computed at a
frequency of 1 Hz (to match the pseudo-range mea-
surements frequency). As both the rotation matri-
ces (computed with the Euler angles) and the veloc-
ities needed to determine the integral are available
in discrete-time instants, the integral (5) can only
be approximated through a sum. To that end, the
trapezoidal rule was employed.

Euler angles and vehicle velocities were assumed
to be corrupted by zero-mean white Gaussian noise
with the standard deviations present in Table 9.
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Measure Standard deviation
Pseudo-ranges 10−2m
Roll (φ) 0.03°
Pitch (ψ) 0.03°
Yaw (θ) 0.3°
Velocity 0.01m/s

Table 9: Standard deviation of the noise

5.2. Results

All three filters were tested, each with different set-
tings. Each filter was initialized with a position
error on coordinate x. The input noise covariance
matrices were subject to the Bayesian optimization
process. Table 10 summarizes all input parame-
ters. Notice that, besides covariance matrix inputs
being different for each filter, also the initial state
estimate differs from the LKF to both the EKF and
UKF, since too large initial state errors lead to non-
converging results in the latter two, as seen in Sub-
sections 4.2 and 4.3.

The MOCAP system also provides the actual po-
sition of the drone along the trajectory, which can
be considered as the ground truth. This allows for
the determination of the position estimation errors
shown in Figures 11, 12 and 13. The better per-

Figure 11: LKF position estimation error

Figure 12: EKF position estimation error

forming solution is clearly the LKF since, even hav-
ing started with an initial error an order of mag-
nitude above that of competing solutions, it leads

Figure 13: UKF position estimation error

to fast estimation error convergence while attain-
ing remarkable steady-state performance, with er-
rors contained within a margin of centimeters. It
can also be seen that the EKF performs worse than
the LKF. However, it could be used as a viable way
to perform estimation in situations where there is a
good knowledge of the true initial position. Finally,
the UKF represents the worst performing solution
since, within the time span of the experience (ap-
prox. 5 min), it could not manage to lead state es-
timates to their true values. Notice, however, this
result is in accordance with what was concluded on
Subsection 4.3 about the convergence rates of the
UKF.

The estimates of the speed of sound unknown
multiplicative coefficient using the LKF are shown
in Fig. 14. No error can be computed to evaluate

Figure 14: LKF speed of sound multiplicative coef-
ficient estimation results

this particular estimate as true speed of sound in the
arena is not available; only rough estimates based
on temperature could have been performed. Nev-
ertheless, it is clear that the coefficient estimates
tend to a value of approximately 1.05, thus con-
firming the expected operation of the filter. To fur-
ther confirm the proper functioning of the speed of
sound multiplicative coefficient estimation, an arti-
ficial multiplicative error of 1.1 was applied to the
pseudo-range measurements acquired by the Mar-
velmind�system. The results presented in Fig. 15
show an approximate 10% increase in the steady-
state speed of sound multiplicative coefficient es-
timates in comparison to those obtained without
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LKF EKF UKF
Qk diag(0.2405I3, 0.0021, 0.0125) diag(0.7264I3, 00120) diag(0.8172I3, 0.0020
Rk 0.6922 0.9982 0.2535
P0 I5 I4 I4

p̂0 − p0

[
100 0 0

]T
[m]

[
10 0 0

]T
[m]

[
10 0 0

]T
[m]

Table 10: Experimental filter input parameters

Figure 15: LKF speed of sound multiplicative coeffi-
cient estimation results with artificial pseudo-range
input

artificial pseudo-range inputs. Hence, the proper
functioning of the LKF is confirmed.

6. Conclusions

The novel solution proposed in this thesis provides
position and unknown speed of sound multiplicative
coefficient estimates with errors that tend rapidly to
zero, while achieving respectable steady-state per-
formance. Its major advantage is the fact that it
has mathematically proven globally exponentially
stable error dynamics. This is something that nei-
ther the EKF nor the UKF, used to compare this
approach to, is able to provide. Monte Carlo sim-
ulations showed that the average steady-state es-
timation errors are well condensed within a thin
margin. Nevertheless, a small bias in all the fil-
ters was found. Regarding optimal performance, all
the solutions showed error standard deviations close
to the lower bound given by the Baeysian Cramér-
Rao bound. The experiments carried out in the test
arena showed that the new solution can be seen as a
viable method to perform vehicle navigation, even
when the initial position of the vehicle is poorly
determined. Further work on this subject could be
done by projecting and executing a new experiment
with real underwater vehicles equipped with inertial
measurement units. This configuration would un-
equivocally demonstrate the true potential of the
new solution when applied to real-life situations.
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