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Resumo

A utilização de materiais supercondutores em máquinas elétricas é um tema que tem adquirido con-

siderável relevância durante os últimos anos, permitindo projetar e conceber máquinas com maior

eficiência e densidade de potência que as convencionais. No entanto, devido à complexidade destes

materiais quando comparados com os materiais magnéticos convencionais, é necessário a realização

de um estudo preliminar e qualitativo de modo a comparar as diferentes topologias.

O propósito desta dissertação passa por realizar um estudo comparativo entre máquinas conven-

cionais e máquinas com supercondutores de altas temperaturas (HTS), usando para esse efeito o con-

ceito de leis de escala. Primeiramente, será apresentado a aplicação das leis de escala em máquinas

elétricas com imãs permanentes (PM). De seguida, serão introduzidos os HTS, tais como as respetivas

perdas, sendo este estudo realizado através de um modelo analı́tico simplificado, modelo de KIM. Será

feito ainda um estudo comparativo entre máquinas convencionais e máquinas com HTS a substituirem

PM ou os tradicionais enrolamentos de cobre. Finalmente, estudos experimentais e simulações foram

realizados de modo a quantificar e validar as perdas encontradas nos blocos HTS, mais especificamente

no YBCO.

Conclui-se, através das leis de escala, que as máquinas com HTS apresentam maior eficiência e

densidade de potência, no entanto, novas topologias devem ser consideradas, especialmente para a

situação em que os HTS substituem os PM. Tanto os estudos experimentais como as simulações real-

izadas em software de elementos finitos (FEM) revelaram-se inconclusivas, reforçando a necessidade

da realização de experiências com um maior grau de precisão e complexidade.

Palavras-chave: Leis de Escala, Supercondutores de Alta Temperatura (HTS), YBCO, Per-

das por Histerese
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Abstract

The use of superconducting materials for implementation on electric machines is nowadays a rele-

vant subject of research, for the design of new, more efficient, and power dense machines. Based on

the physical behaviours of superconductors being more complex than conventional magnetic materi-

als present in electric machines, preliminary and qualitative studies are necessary to compare the new

potential superconducting electrical machines to conventional ones.

The aim of this dissertation is, then, to make a comparative study of both types of machines, using

similitude laws, also called scale laws. This dissertation presents the study of similitude laws for high

temperature superconductors (HTS) inserted in electric machines. First, scale laws are presented for

the case of electric machines with permanent magnets. Then, HTS are introduced, as well as the

scale laws representative of their losses regarding current density, magnetic flux density and volume.

This study was made using a simplified analytical model, the Kim model. Second, the comparison

between conventional machines and machines using HTS, being as permanent magnets, or as coils

was performed. Third, experimental tests were performed, to quantify and validate the losses in YBCO

bulks, also with additional validation on FEM simulations.

It was found by scale laws that HTS electric machines are indicative of having higher efficiencies and

more power dense, however, the machine’s topologies need to be different, especially using HTS as

permanent magnets. The experimentations were inconclusive, as well as the FEM simulations, which

indicates that a more precise and complex experiments need to be performed.

Keywords: Similitude Laws, High Temperature Superconductors (HTS), YBCO, Hysteresis

Losses
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Chapter 1

Introduction

This chapter describes how this dissertation is structured. A brief topic overview of electromechanical

superconductor machines and similitude laws in conventional machines is also presented. To conclude,

the objectives and thesis outline are stated.
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1.1 Motivation

Superconducting electromechanical machines have been researched since the 1950s for applications

where higher efficiency and power density is required, however only with the discovery of the high tem-

perature superconductors (HTS) in 1986, there was a major development in electric power applications.

At this time were created the first HTS synchronous machines where an HTS field excitation winding

can provide high magnetic flux density in the air gap with major reductions of excitation losses, this type

of performance was unachievable with traditional field excitation systems, like copper coils or permanent

magnets (PM). A PM motor rated at 7 MW for marine pod propulsor weighs about 120 tonnes, when

an HTS synchronous motor concept would drastically reduce the weight of a podded electromechanical

drive by 50% [1].

Another approach is the design of a synchronous reluctance machine with HTS bulk in the rotor. In

synchronous reluctance machines, the rotor moves towards a position favouring a value of maximum

magnetic flux. The torque produced by these machines is proportional to the difference between the

stator inductance maximum value, Lmax, and the minimum value Lmin. It is possible to amplify this

difference by using bulk HTS blocks on the rotor. The diamagnetic properties of superconductors make

them ideal, leading to an increase of the Lmax, which results in an increase of torque. In the last years

had been a development in HTS machine solutions for industrial applications, the first HTS industrial

motor rated at 1.2 MW was built by Rockwell Automation, and for energy production, like the 4MVA HTS

generator developed by Siemens [2][3].

Another relevant subject is similitude (or scaling) laws. They are used to predict the performance of

a new design based on data from an existing, similar design. In the electromagnetics, new design and

similar design will have a similar geometry, but in general not the same materials and electromagnetic

excitation [4]. This subject is very used in synchronous permanent magnet machines built to offshore

wind turbines to maximized the relation available power and occupied volume (or weight) and for reduc-

ing the operational costs [5]. It is also used in switched reluctance motors (SRM) [6].

1.2 Objectives

The objectives of this thesis are: to study the losses and efficiency in an HTS (more precisely YBCO)

and develop an experimental or simulated model that validates that; to study the losses and efficiency

of YBCO when subject to similitude laws; to compare the losses and efficiency between a conventional

machine and a machine with YBCO when subject both to similitude laws.

1.3 Thesis Outline

This thesis is divided into six chapters. Chapter 1 is an introductory one. Chapter 2 is dedicated to

explaining and give some background in similitude laws. Chapter 3 is dedicated to give some background

in HTS and to implement the KIM electromagnetic model for hysteresis losses estimation. Chapter 4
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describes the application of similitude laws in YBCO and the comparison between them and conventional

machines. Chapter 5 presents the experimental and simulation models. Chapter 6 completes this work

presenting the main conclusions of this work.
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Chapter 2

Similitude Laws

This chapter provides some background in dimensional analysis of generic electrical machines with per-

manent magnets and understand how the losses and consequently efficiency changes by increasing or

decreasing the machine’s size. This analysis comprises in seeing how the size of one machine influ-

ences the overall coil current density and the air gap magnetic flux density, as also as the implications of

maintaining either the current density or the magnetic flux density constant.With the study of dimensional

analysis, a modular configuration is considered, meaning the study of several smaller machines linked

together mechanically, being the total combined mechanical power equal to a singular larger machine.
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2.1 Introduction

One of the most important characteristic in electrical machines sizing is the relation between power avail-

able and occupied volume. The maximization of this relationship allows the decreasing of operational

costs in facilities where electrical machines have a preponderant role.

Another important factor in operational costs regarding electrical machines is the pieces degradation,

that leads to a partial or sometimes total replace of the machine, with increase the costs. One solution is

the utilization of machines with modular configuration, this enables an easier replacement of the damage

pieces, reducing the operational costs due to maintenance [5].

Therefore, the focus of this chapter will be understand how the machine efficiency can be maximized

with the increase of size and with the use of a modular configuration.

2.2 Characteristic length

A very important concept in similitude laws is the concept of characteristic length, l, which represents

one spacial dimension. To better understand this concept, consider a simple geometric body, like a

parallelepiped. Dimensionally speaking, its volume, V , and its surface area, A, have a proportional

relation with the characteristic length, l, that goes by,

V ∝ l3 (2.1)

and

A ∝ l2 (2.2)

The focus in this analysis is not to find the strict relationship between the variables, but the dimen-

sional relationship between them, hence being proportional and not equal. With these characteristics, a

first preliminary study can be made, to verify qualitatively what are the best approaches for the design

of electric machines, regarding their efficiency.
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2.3 Nominal Power

To understand what kind of proportionality the machine’s efficiency has with its volume, is necessary to

compute the nominal power of a generic electrical machine with PM. The nominal power of a machine

can be stated as,

PN ∝ mppUI ∝ UI (2.3)

where U is the voltage, I is the current, mp is the number of phases and p is the number of pole pairs.

If the voltage drop in the windings is negligible, the equation that defines the voltage in one phase of

the machine can be approximated to,

U ≈ dψ

dt
(2.4)

where ψ represents the linked magnetic flux through each phase. In order to simplify the formulation of

scale laws, the steady-state regime will be used, only considering the fundamental component, making

the voltage U

U ≈ ωFψ (2.5)

where ωF is the angular electrical frequency in the stator poles.

In integral terms, Φ and I can be expressed as,

Φ =

∫
S

(B · ns) dS (2.6)

I =

∫
S

(J · ns) dS (2.7)

where (2.6) and (2.7) are considered fluxes, which are dependent on a surface through each the vector

field passes (in this case, the vector field are the B and J). Using the proportional relations between

area and l, Φ and I can be expressed by

Φ ∝ Bl2 (2.8)

I ∝ Jl2 (2.9)

Concluding, (2.3) with (2.5), (2.8) and (2.9) can be established as

PN ∝ ωFBJl4 ∝ l4 (2.10)

If it is considered that, for a given electric machine, the number of phases, number of pole pairs,

the electric frequency, the magnetic flux density and the current density are kept constant, the nominal

power will be then proportional to the characteristic length raised to 4, PN ∝ l4 [5].
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2.4 Power Losses and Efficiency

The relationships between the machine’s size and efficiency are closely related to the machine’s losses.

In this sense, the relationships for the joule losses and iron losses need to be established.

2.4.1 Joule Losses

The joule losses in PM machines are due to the current that flows through the copper conductors. The

volumetric density of power losses by the Joule’s effect,PJ , is given by,

PJ =

∫
V

E · JdV (2.11)

where E is the electric field vector, J is the current density vector and V is the volume. Knowing that for

a conductor E = ρJ, the (2.11) becomes

PJ =

∫
ρJ2dV (2.12)

Thus, using (2.12) for the proportional relation, PJ is

PJ ∝ J2l3 ∝ l3 (2.13)

assuming that the resistivity and current density are constant values.

If the joule losses are the only one considered, the efficiency is written as

ηJ =
1

1 + PJ
PN

(2.14)

where

PJ
PN
∝ mpJ

2l3

mppωFBJl4
∝ J

B

1

l
∝ 1

l
(2.15)

considering J and B constants.

To consider a machine with η = 91% when the linear dimension is normalized, l = 1, it is necessary

to transform (2.14) in (2.16)

ηJ =
1

1 + K1

l

(2.16)

where K1 = 0.099.
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Figure 2.1 shows the evolution of the efficiency η as the linear dimension l of the machine increases.

Figure 2.1: Efficiency η as a relation of the linear dimension l. The efficiency is only considering joule
losses.

It is clear that, as the machine increases its size, the efficiency increases, with its limits at 100% of

efficiency.

2.4.2 Iron Losses

The iron losses are divided in hysteresis losses and in losses due to eddy currents. The first ones are

based on Steinmetz empirical relation given by

PH ∝ Bαl3 (2.17)

where α depends on the material used. If B is considered constant the relation (2.17) becomes

PH ∝ l3 (2.18)

The losses due to eddy currents are given by the relation

PE ∝ B2l3 (2.19)

if B is considered constant the relation (2.19) becomes

PE ∝ l3 (2.20)

It is possible to conclude that iron losses and joule losses have the same proportional relation with

the linear dimension [6]. In further analyses, the variable chosen will be the joule losses however, that

deductions are equally valid for iron losses.
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2.4.3 Efficiency

The total efficiency is defined by equation (2.21),

ηT =
1

1 + PT
PN

(2.21)

where PT represents the total power losses. The total power losses in the model is given by equation

(2.22).

PT = PJ + PH + PE (2.22)

Considering (2.13),(2.18) and (2.20), the (2.22) becomes

PT ∝ 3l3 (2.23)

and the equation (2.21) becomes

ηT =
1

1 + 3K1

l

(2.24)

Figure 2.2 shows the comparison between total efficiency and efficiency only considering joule losses

with the increase of linear dimension.

Figure 2.2: Comparison between total efficiency and efficiency only considering joule losses with the
increase of linear dimension, l.

It can be seen that when all losses are considered, the efficiency when the linear dimension is

normalized, l = 1, is smaller than when only joule losses are considered. However, it is possible to

conclude that when the linear dimension increases, this difference become smaller, meaning that with

the increase of sizing, considering the total losses or only joule losses will have the same practical effect.
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2.4.4 Temperature Dependence

Another variable that needs to be controlled is the temperature elevation, this have extreme importance,

since it dictates the continuous point of operation of the machine, as well as its operation lifetime.

It is considered that the thermal inertia in a magnetic material is higher than in a conductor, therefore

the joule losses are the only relevant losses considered for this analysis. This means that the thermal

variation, ∆θ, is proportional to the joule losses dissipated in an area through convection, as shown in

(2.25),

∆θ ∝ PJ
heAe

∝ mJ2l3

l2
∝ J2l (2.25)

where he is the equivalent conduction coefficient for all heat exchanges, and Ae, the cooling equivalent

surface area [5]. To control the temperature elevation, it is necessary to keep the thermal variation

constant (∆θ = cte)

∆θ ∝ J2
θ lθ = J2l = cte (2.26)

J =

√
lθ√
l
Jθ (2.27)

with Jθ and lθ the current density and linear dimension with temperature constraints, respectively.

The nominal power when the temperature constraint are considered is given by (2.28)

Pθ ∝ ωFBJl4 ∝ ωFBJθ
√
lθl

3,5 ∝ l3,5 (2.28)

Figure 2.3 shows the comparison between the power available when the temperature constraint are

considered or not, with the increase of the linear dimension.
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Figure 2.3: Logarithmic relation between power available with increase of l, considering temperature
constraints or not.

It can be seen that the difference between the power considering temperature constraints or not is

negligible for small linear dimension increases but relevant for bigger ones.

2.5 Modular Configuration

Another approach for a drive system is to have a modular configuration, i.e., multiple machines mechan-

ically connected to achieve the same mechanical power and torque.

In this way, the modular power, Pm, i.e., the power that corresponds to one of the modules, can be

expressed as

Pm =
P

n
(2.29)

where n represent the number of modules and P represents the total power of the original drive system

with only one machine.

Assuming B and J as constants and that the cubic linear dimension represents the volume of a

geometry,

n =
P

Pm
=

l4

l4m
(2.30)

Vm
V

=

(
lm
l

)3

=
1

( 4
√
n)3

(2.31)

equation (2.31) relates the ratio between the volume of the module, Vm, and the volume of a single
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machine configuration, V , with the number of modules [5].

Figure 2.4 shows the comparison between Vm
V and Pm

P for an increase in the number of modules.

Figure 2.4: Modular and singular ratio for power and volume

Through the analysis of figure 2.4 it is possible to conclude that the volume ratio is bigger than the

power ratio. This means that if a 4 module machine is compared with a single machine configuration, the

power in each module will be 25% of the single configuration machine power. However, the dimensions

of each module will be approximately 35%, this means that the total volume occupy by the 4 modules

will be bigger than the volume occupied by the single machine configuration, for the same power.

2.5.1 Joule Losses

The next step is to analyse the joule losses considering the modular configuration.

According to (2.32), the joule losses in one module is related to its volume as,

PJm ∝ l3m (2.32)

and, using (2.32) and (2.29), we derive at

PJmT ∝ nl3m ∝ n0,25l3 (2.33)

where PJmT is the sum of each module joule losses.

The relation that enable the comparison between joule losses in a modular configuration and in a

singular configuration is given by equation (2.34),

PJmT
PJ

∝ l3n0,25

l3
∝ n0,25 (2.34)

where PJ is the joule losses in a single machine. With equation (2.35) , the efficiency can be computed
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as

ηmT =
1

1 + n0,25PJ
PN

(2.35)

Figure 2.5 shows the relationship between the total modular efficiency with respect to the number of

models. In this figure, the efficiency of the single machine is considered to be η = 91%.

Figure 2.5: Relation between total module efficiency ηmT and the number of modules n

It is possible to conclude that the module configuration shows a decreasing in efficiency with the

increasing of number of modules, this is a major drawback in module configuration when compared with

singular configuration.

2.5.2 Temperature Dependence

Considering the temperature elevation constraints (∆θ=cte), the equation(2.29) becomes,

Pθm =
Pθ
n

(2.36)

where Pθm is the power that corresponds to one of the modules considering temperature constraints

and Pθ the total power of the original drive system with only one machine considering temperature

constraints. Assuming (2.28), the relation for the number of modules if given by

n =

(
lθ
lm

) 7
2

(2.37)

The ratio Vm
V is given by equation (2.38)

Vm
V

=
1

( 7
√
n)6

(2.38)
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In figure 2.6 is represent the volume ratio, considering temperature constraints or not, and the power

ratio.

Figure 2.6: Relation between total module efficiency ηmT and the number of modules n

It is possible to conclude that in fact, the temperature constraints reduce the volume of each module

however, the sum of them remains bigger than the volume of a single machine configuration.

Considering (2.27), the joule losses in each module with temperature constraints are find through

PJm ∝
lθ
lm
J2
θ l

3
m ∝ n−

4
7 J2

θ l
3
θ (2.39)

The sum of each module joule losses is given by,

PJmT ∝ n
3
7 J2

θ l
3
θ (2.40)

and with this relation, a similar to (2.34) can be defined

PJmT
PJ

∝ n 3
7 (2.41)

Figure 2.7 shows the relationship between the total modular efficiency with respect to the number of

models for a situation with temperature constraints and without. In this figure, the efficiency of the single

machine is considered to be η = 91%.

15



Figure 2.7: Relation between total module efficiency ηmT and the number of modules n

It is possible to conclude that with the increasing of modules, the solution without temperature con-

straints shows higher values of efficiency when compared with the solution with temperature constraints.

The explanation for this is due to the fact that with temperature constraints the volume of each module is

smaller for the same power and efficiency, this decreases the dissipative area with leads to an increases

of joule losses for maintain the temperature in a constant value.
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Chapter 3

High Temperature Superconductors

This chapter provides a summary of high temperature superconductors characteristics, describing their

behaviour, the electromagnetic model used and the respective losses.
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3.1 Introduction

At the beginning of 20th century, H. K. Onnes found that when certain materials are cooled below a

transition temperature (4.2 K) they showed no resistance with current flowing through them. This was

the major characteristic that defined superconductor materials during several decades until 1933 when

W. Meissner and R. Ochsenfeld discover the Meissner effect, which showed that a superconductor is

almost a perfect diamagnet. Later, it was discovered that some composites, could be superconductive

with temperatures as high as 35 K. This results marked the first steps to the development of high-

temperature superconductors (HTS). Nowadays, the temperatures of superconductive state of some

materials are around 100 K, such as the YBaCuO (YBCO) composite, used in this dissertation, and

liquid Nitrogen can be used (boiling point of 77 K) to refrigerate. During the last years, it was discovered

that superconductors can be divided in type-I and type-II. Type-I superconductors are the ones that need

temperatures below 30 K to be superconductive [7] [8]. In this dissertation, the main focus will be the

type-II, also called HTS.

3.2 Maxwell’s equations

The principles of this model stand on Maxwell’s equations in a quasi-stationary regime, neglecting the

displacement current vector ∂D
∂t , since the capacitive effects are negligible. Maxwell’s equations are

presented in the differential form in (3.1), (3.2), (3.3) and (3.4)

∇ ·E =
ρq
ε0

(3.1)

∇×E = −∂B
∂t

(3.2)

∇ ·B = 0 (3.3)

∇×H ≈ J (3.4)

where E is the electric field vector, ρq is the total charge density, ε0 is the permittivity of free space,B is

the magnetic flux density vector, H is the magnetic field strength vector and J is the current density vector

[3]. Besides those four equations and to completely solve them, two isotropic constitutive relations,

equation 3.5 and 3.6, can be established

B = µH (3.5)

J = σE (3.6)
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where µ is the magnetic permeability and σ is the electrical conductivity.

3.3 E-J Power Law for HTS

In normal conductors, the constitutive relationship between the electric field, E, and the current density,

J, is a proportional one, being the proportionality constant the conductivity, σ, of the material.

In type II superconductors, the relation between E and J is non-linear and is defined by

E = E0

(
J

JC

)m
(3.7)

where E0 is the electric field that defines the critical current density, m is the power constant and JC is

the critical current density, which depends on the magnetic field density inside the superconductor, as

well as its temperature [7].

Figure 3.1 shows the variation of the current density ratio with the electric field for different m param-

eter values.

Figure 3.1: Dependency of the electric field with relative current density andm parameter at a logarithmic
scale.

As said previously, the critical current, JC , is dependent of the magnetic flux density distribution

inside the superconductor, and the temperature, as equation 3.8 shows,

JC = JC0(T, TC)
B0

B0 +B
(3.8)

where JC0 represents the maximum critical current density of the material, dependent on temperature

and critical temperature, B0 represents the value of the applied magnetic flux density that reduces the

value of the critical current density to half of its maximum value, and B is the norm of the magnetic flux

density vector [3].
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Figure 3.2 shows the critical current density and maximum critical current ratio with the increase of

magnetic flux density, B, for different values of B0.

Figure 3.2: Critical current density and maximum critical current ratio in function of applied magnetic flux
density for different values of B0

The dependence of JC0 with the temperature, T , and critical temperature, TC , is stated as

JC(B, T ) = JC0(T, TC)

[
B0

B0 +B

]
= JC0β

(
1−

(
T

TC

)2
) 3

2 [
B0

B0 +B

]
(3.9)

where JC0β represents the critical current density at 0 K with no applied field [3].

In figure 3.3 is shown the relationship between the critical current density ratio, JC0

JC0β
, and the tem-

perature ratio, T
TC

.

Figure 3.3: Critical current density and maximum critical current ratio in function of applied magnetic flux
density for different values of B0
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The critical temperature, TC , is also affected by the magnetic flux density inside the superconductor,

being

TC(B) = TC0e
−B
30 (3.10)

where TC0 is the critical temperature when B = 0. Figure 3.4 shows the critical temperature variation

with the magnetic flux density [3].

Figure 3.4: Critical temperature dependency with magnetic flux density
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3.4 Critical Region and Superconductor Type

The superconductor state in a certain material is characterized by three parameters, the critical temper-

ature TC , the critical magnetic field HC or the critical magnetic flux density BC and the critical current

density JC . These parameters only can be exceeded locally otherwise the material loses his supercon-

ductivity state. Figure 3.5 shows the surface defining the superconductive region [7].

Figure 3.5: 3D graph defining superconductive region [3].

There are two types of superconductors. The type I is characterized by having one critical magnetic

flux density field value, BC , that when is surpassed, leads the material to lose its superconductivity. An-

other characteristic of type I is the absence of magnetic flux density inside the superconductor, meaning

that the magnetization field, M, is opposing the magnetic field, H, inside the superconductor [3]

B = 0→M = −H (3.11)

B 6= 0→M = −H (3.12)

Figure 3.6 represents the magnetization in a type I superconductor. As expected, the magnetization

function behaves like a straight line, µ0H, until it reaches the critical magnetic flux density, BC , and after

that the magnetization is zero, losing is superconductivity.
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Figure 3.6: Magnetization of a type I superconductor [10]

In type II superconductors, it is necessary to consider two critical fields, the lower critical field BC1

and the upper critical field BC2 higher then BC1. Until BC1, the superconductor behaves as a type I.

Above BC1 the magnetic flux density starts to penetrate the superconductor. A vortex is a magnetic

flux quantum that penetrates the superconductor. Where the vortex appears the superconducting order

parameter drops to zero. In this region, the material is no longer a superconductor and a current starts

to circulate the vortex. Even though the vortices have formed, the rest of the material stays supercon-

ducting [9]. If the field surpassed the second critical field BC2 the material stops to be superconductive.

Figure 3.7 represents the magnetization of a type II superconductor.

Figure 3.7: Magnetisation of a type II superconductor [10]

Finally, it is important to emphasize that BC2 is usually a lot bigger than BC that’s why type II super-

conductors are typically used for superconducting magnets [9].
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3.5 Meissner effect and flux pinning

The Meissner effect exist in type I superconductor for B lower than BC and for type II superconductor for

B lower than BC1. This effect is characterized by repelling all the magnetic field that tries to penetrate

the superconductor (diamagnetic state). This happens because induced currents are created inside the

material, that generates a magnetization that expels the external magnetic field as shown in figure 3.8

[7].

Figure 3.8: Example of meissner effect [3]

In type II the same occurs until BC1, above that enters in the mixed state, where the magnetic

field lines penetrate the superconductor in non superconductive regions, where impurities exist, and

microscopic tubes are created, allowing the concentration of a magnetic flux (vortices) [7].

Figure 3.9: Example of Flux Pinning [11]
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3.6 Joule Losses

For conductor materials, and using equation 2.12, the proportional relation of joule losses is given by,

PJ ∝ ρ(T )J2 (3.13)

where ρ(T ) is the electrical resistivity in function of temperature.

This same relation can be found for YBCO as presented in [7] but in this case, using equations 3.7

and 3.8, the electric field in function of current density is given through equation 3.14,

E =
E0

JC0

(
B0 +B

B0

)m(
J

JC0

)(m−1)

J (3.14)

and the resistivity of YBCO can be considered as

ρY BCO =
E0

JC0

(
B0 +B

B0

)m(
J

JC0

)(m−1)

(3.15)

Next step is to make a qualitative comparison between losses in YBCO and the losses in a regular

conductor material such as copper. To achieve that, it is necessary to know how the resistivity of copper

changes with temperature and that is found through equation 3.16

ρ(T ) = α(T0)ρ(T0)(T − T0) + ρ(T0) (3.16)

where ρ(T0) is the resistivity at reference temperature T0, ρ(T ) is the resistivity at temperature T and

α(T0) is the temperature coefficient ( for T0=20oC is 3.9× 10−3).

Figure 3.10 shows the comparison between the copper and YCBO resistivities for temperatures

between 40 K and 91 K with B = 0.1 T, J = Jc and the values for YBCO presented in table 3.1.

Figure 3.10: Resistivity in a logaritmic scale in function of Temperature
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Table 3.1: Parameter values for YBCO [14]
Parameter YBCO
m 21
E0[V m−1] 10−4

B0[T ] 0.1
TC0[K] 92
JC0β [Am−2] 1.134x108

Is perceptible that in general, the resistivity of copper is one hundred times bigger than the resistivity

of YBCO except when the temperature approaches the boundary temperature of superconductivity for

YBCO (T=93K).

To understand how this affects the temperature of an object made by copper or YBCO, heat conduc-

tion and convection need to be considered. For that will be considered the internal heat generation in a

massive cylinder in stationary regime [15]. This is a good approximation to the internal heat generated

through joule effect due to electrical current. Starting with the general heat conduction equation

∇2T +
qG
k

=
1

α

∂T

∂t
(3.17)

Using the Laplaciane for cylindrical coordinates,

∇2T =
1

r

∂

∂r
(r
∂T

∂r
) +

1

r2
∂2T

∂φ2
+
∂2T

∂z2
(3.18)

To simplify the calculations, it will be consider as hypothesis a radial symmetry ( ∂2

∂φ2 = 0) and a very

long cylinder compared to the radius ( ∂
2

∂z2 = 0). Introducing this simplifications in 3.18,

1

r

d

dr
(r
dT

dr
) +

qG
k

= 0 (3.19)

and integrate both sides of the equation,

T (r) = −qGr
2

4k
+ C1ln(r) + C2 (3.20)

the expression for temperature in function of radius is found. The next step is to find the constants C1

and C2. To do that is necessary to define conditions, the first one saying that the temperature at the

cylinder’s wall is known (T (r = r0) → TW ), the second is to assume that in the centre of the cylinder,

the variation of temperature is 0 (dTdr = 0 in r=0). Finally, the heat conduction equation becomes,

T (r) =
qG
4k

(r20 − r2) + TW (3.21)

in which qG are the joule losses per volume, k the thermal conductivity, r0 the cylinder radius and TW

the temperature at the cylinder’s wall.

Another consideration that should be taken into account is the temperature in the walls of the cylinder

due to convection. The equation 3.22 show this relation

26



TW = Tout +
PJ
hA

(3.22)

where Tout is the temperature that surrounds the cylinder, PJ is the power due to joules effect, A is the

surface area and h is the thermal transfer coefficient.

Considering a copper and YBCO wire with a radius of 0.89 mm and a length of 1 m, table 3.2 gives the

comparative values of losses and increase of temperature for different situations with h = 10 Wm−2K−1,

A = 5.59 × 10−3m2 (values for air). The variation of temperature inside the cylinder will be considered

negligible, since the cross-section is extremely small, leading to a wall temperature very similar to the

center temperature and the variation of temperature in the cylinder walls will be given by ∆TW .

Table 3.2: Wall Temperature increase for different situations
Material Current Density [A/m2] Joule Losses [W ] ∆TW [oC]
Copper (Air Temperature) 9.07 ×106 3.52 62.96
Copper (Cooled at 77K) 9.07×106 5.5×10−1 9.83
YBCO 9.07×106 2.2×10−3 0.04

As it can be seen in table 3.2, the cooled copper has a temperature increasing of only 15.16% when

compared with the temperature increasing at air temperature. However, the YBCO has a temperature

increasing of 0.41% when compared with copper cooled, showing an increase of temperature almost

imperceptible, making this material a better solution than the copper for solution where is necessary

high values of current density.
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3.7 KIM Electromagnetic Model

3.7.1 Introdution

Considering an external magnetic field, Ha, defined as (3.23)

Ha = Hmsin(ωt) (3.23)

where Hm is the amplitude of the waveform, ω the angular frequency and t time.

This external magnetic field is applied uniformly to an HTS bulk along the z axis, like shown in figure

3.11.

Figure 3.11: Superconductor bulk representation

In this configuration, the magnetic quantities have only z components, and the induced currents have

only x and y components. This model involves only macroscopic induced currents, magnetization, flux

density, and field.

The applied magnetic field, Ha, is defined as

Ha =
B

µ0
(3.24)

where B is the macroscopic flux density and µ0 is permeability of free space. If Ha is the applied

magnetic field and Mi is the local magnetization, that is, the field produced by bulk induced currents, the

equation (3.25) relates these variables with H, the local magnetic field inside the bulk [12]

H =
B

µ0
+Mi (3.25)

The total magnetization M is the average of Mi over the sample cross section.
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The induced currents density J, the H and the Mi along a given circuit are uniform and are written

as functions of x: J(x), Hi(x), and Mi(x).

The magnetization Mi(x) can be found through (3.26)

Mi(x) =

∫ R

r

Ji(x) dx (3.26)

The J(x) is given through (3.27)

J(x) =
sgn(J)k1√

(H0)2 − sgn(JHi)2k1(x+ c)
(3.27)

where c is an integration constant to be determined by the boundary conditions and where k1 and

H0 are constants.

If the length and width of the cross-section are the same, can be approximated to a cylindrical

specimen of radius a, where the area is πa2 and the differential area element is 2πxdx and the height

is a too. This cylindrical geometry will be used in the implementation (subsection 3.7.2) due to the

simplification of variables [12].

Considering the initial state, where Ha=M=0, and consider the increase of Ha in z direction. Accord-

ing to Faraday’s Law (3.2), the induced currents J , with negative sign, will penetrating the bulk from the

surface inward. Considering now that these induced currents only penetrates until a certain x = r, this

means that the local internal field, H, in the bulk will be Hm at x = R, decreasing to 0 until x = r and

remains in that value for x<r, as figures 3.12(a) and 3.12(b) exemplify [12].

(a) Induced current in functio of x (b) Magnetic field inside bulk in function of x)

Figure 3.12: Schematic representations of KIM model current and magnetic field behaviour

If the value of Hm increases, r will be decrease. This means that when r = 0, the bulk is completely

full-penetrated and Hp is the corresponding field, as can be seen in figure 3.13(a) and 3.13(b) [12].

29



The value of Hp is defined as

Hp =
√

(H0)2 + 2k1R−H0 (3.28)

where R is the radius of the cylindrical YBCO and k1 is a variable that depends on the temperature.

The shaded part in 3.11 represents the area where the induced currents are formed by the external

magnetic field, Ha.

(a) Induced current in function of x (b) Magnetic field inside bulk in function of x

Figure 3.13: Schematic representations of KIM model current and magnetic field behaviour
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Using Ampere Law, equation 3.4, in the area where are the induced current, equation 3.29 can be

developed,

H = JC(R− r) (3.29)

where JC represents the critical current for this superconductor and H is the internal magnetic field [12].

Equation 3.29 can be written as,

H = JC0
H0

H0 +H
(R− r) (3.30)

if the temperature is considered negligible. To allow an analysis between the radius of penetration, r,

and the applied magnetic field, the equation 3.30 will be rearranged as,

H2 +H0H − k(R− r) = 0 (3.31)

where k = H0JC0.

In figure 3.14 is represented the variation of penetration in function of the internal magnetic field for

standard YBCO values and for a bulk radius of 2 cm.

Figure 3.14: Bulk penetration in function of the internal magnetic field

For Hi = 1.37× 105 all bulk have within induced currents, for this Hm = Hp.
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3.7.2 Implementation

Through the software MATLAB, it was developed a code, that can generate the M-H curve for different

radius dimension and for different external magnetic fields. Additionally, the code presents in real time

the variation of Ji(x) and Bi(x) in function of the radius when a magnetic flux density, Ba(t), is applied

as shown in figure 3.15.

Figure 3.15: Figure from Matlab code for M-H analytic curve
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In terms of M-H curves is important to note that when the amplitude of the external magnetic field is

lower or equal to Hp the shape of the curve have a characteristic shape as in figure 3.16.

Figure 3.16: M-H curve for external magnetic field amplitude’s lower than Hp

When the external magnetic field is higher than Hp, the M-H starts to change the shape, like figure

3.17 shows.

Figure 3.17: M-H curve for external magnetic field amplitude’s higher than Hp
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3.8 Hysteresis Losses

3.8.1 Introduction

In the electromagnetic model considered, the hysteresis losses will be associated withHi and is variation

when subject to a time-variant external applied magnetic field, Ha. To compute the hysteresis loops for

different values of Hm, it will be used the equations for Ji(x) and H(x) defined in (3.27) and (3.25).

The figure 3.18 is a YBCO generic M-H for Hm ≤ HP .

Figure 3.18: Generic M-H curve for YBCO, scaled by Hp, for Hm ≤ HP .

It is possible to see through 3.18 that the magnetization response to the applied magnetic field

is different in YBCO and in a ferromagnetic material. In YBCO, when Ha increases, the magnetization

decreases for negative values to cancel the imposed magnetic field inside the bulk. WhenHa decreases,

the magnetization increases until Ha increases again.

The total hysteresis losses will be calculated through the integration of the area inside the loop, as

given in equation (3.32) [3]

WH =

∮
BdM =

∮
µ0HdM [J/m3/cycle] (3.32)

The use of different frequencies is common, in this cases is necessary to see the result of 3.32 as a

power density loss

PH = f

∮
BdM [W/m3] (3.33)
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3.8.2 Implementation Examples

Through the M-H curves generated with Matlab code and applied equation (3.32) it is possible to know

the different losses for different radius or different applied magnetic fields.

Considering that the temperature remains the same, the increase of the radius dimensions leads

to an increase in the value of Hp, this means that is possible to achieve higher magnetization than in

smaller radius without changing the shape of the curve M-H.

In figure 3.19 is represented the M-H curves for different radius, r, for Hm = Hp.

Figure 3.19: M(H) curves for different radius and for Hm=Hp

It is perceptible that exists an increase of occupied area by the curve M-H with the increase of radius

size, this happens because the Hp increases with the increase of radius size, as equation (3.28) shown,

leading to more magnetic field penetration, that reflects into an increase of magnetization inside the

YBCO bulk.
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Another relevant comparison is between how this increase of size affects the maximum magnetiza-

tion value (Mmax) and the hysteresis losses per cycle (Wh).

To understand the behaviour of these values and further quantify them, figure 3.20 is necessary

because the conditions are the same that in figure 3.19 but the axis values aren’t divided by Hp.

Figure 3.20: M(B) curves with nominal values for Hm=Hp

In figure 3.21, is represent the normalized values of Mmax and Wh in function of radius for Hm = Hp.

Both variables are divided by the respective values when r=0.02m, this allows to focus only on the growth

comparatively with the initial value (r=0.02m).

Figure 3.21: Normalized (logarithmic) curve for Wh and Mmax in function of radius for Hm = Hp
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It is possible to conclude that for a constant value of penetration, the increasing of the radius leads to

a bigger increase in the hysteresis losses than in the maximum magnetization value. Another conclusion

that can be taken is that the growth rate of Wh is bigger for small radius variation than for bigger ones,

leading to conclude that can exist a certain benefit in efficiency with the increase of size.

The next step is study the relation of hysteresis losses with the increasing of radius and magnetic

penetration ( HHp ). Figure 3.22 represent this relation.

Figure 3.22: 3D plot for radius, ratio of penetration and hysteresis losses

As expected, the higher value for hysteresis losses occurs for the maximum ratio of magnetic pene-

tration and for the maximum radius size.
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Another relevant comparison is between different values of Hm. The figure 3.23 shows the curve

M(B) for different applied magnetic flux densities. Is perceptible that for H
Hp

< 1 the shape of the curve is

different than for H
Hp

> 1 and the occupied area variation is bigger for the first scenario than the second.

Figure 3.23: M(B) curve for different ratio of penetration with r=0.02m

To confirm this perception, it is compute the logarithmic variation of Wh for different Hm. It is possible

to conclude that the growth rate of Wh until H
Hp

= 1 is much bigger than for H
Hp

> 1.

Figure 3.24: Hysteresis density losses at a cycle for different ratio of penetration (logarithmic scale) with
r=0.02m
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Temperature effect

The temperature has an important role in the values of the M-H curves as can be seen in figure 3.25.

Figure 3.25: M(H) for different temperatures with r=0.02m

This happens because the variable k1,(3.28), depends on the temperature,

k1 ∝

[
1−

(
T

Tc

)2
] 3

2

(3.34)

where Tc is the critical temperature value defined as 92K. When the temperature decreases, the variable

k1 increases and this leads to an increase of Hp that enable to achieve higher values of magnetization

inside the YBCO without changing shape.

This is very similar to the variation of M-H curves with radius. This happens because both r and k1

affect Hp in the same way (equation 3.28). However, the figures 3.19 and 3.25 aren’t exactly the same

because when T varies between 77K and 37K, the value of k1 increases until six times, instead when

radius varies between 0.02 m and 0.32 m, the value of r increases sixteen times.
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Chapter 4

Similitude Laws for YBCO

The main scope of this chapter is the application of similitude laws in YBCO material. It will be also

made comparisons of efficiency between conventional machine designs and designs with YBCO bulks.
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4.1 Magnetic density flux constant

This condition is a necessary condition to compare the behaviour of a machine with PM with a machine

with YBCO bulks replacing the PM. It will be considered during this section that the average value of

magnetic density flux in YBCO bulk is maintained constant.

4.1.1 Singular Configuration

Using the code in Matlab and the function ”cumtrapz” it was possible to compute the total hysteresis

losses, WH , in a cycle (3.32) of any M-H curve. Figure 4.1 shows several acquired data for hysteresis

losses in function of volume, always keeping the average value of magnetic density flux in YBCO bulk

constant, and the correspondent fitting curve.

Figure 4.1: Acquired data for hysteresis losses in function of volume and the best curve fitting for the
situation with magnetic flux constant

The equation that fits better the above points is give by,

Wh = 2.6× 105 × V 0,4175 (4.1)

thus the variation of hysteresis losses with the volume is given by (4.2)

WH ∝ V 0,4175 (4.2)

From chapter 2, it is known that V ∝ r3 = l3 and from chapter 3 it is known that WH ∝ PH , so the

final expression that relates the hysteresis losses with dimension is given by (4.3).

PH ∝ l1,253 (4.3)

Considering the same conditions for PN as in chapter 2

PH
PN
∝ l1,253

l4
∝ l−2,75 (4.4)
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The relation for the efficiency of YBCO in function of linear dimension is given by (4.5).

ηY BCO =
1

1 + K1

l2,75

(4.5)

Figure 4.2 shows a comparison between the efficiency of a machine if only hysteresis losses in

YBCO or only joule losses in the conductors are considered. It is important to remember that constant

K1 is defined to set the initial efficiency at 0.91.

Figure 4.2: Efficiency comparison between YBCO and joule losses in conductors.
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4.1.2 Modular Configuration

Based on subchapter 2.5, the YBCO hysteresis losses in each module is given by (4.6)

PHm ∝ l1m,253 (4.6)

and the total modular hysteresis losses is given by (4.7)

PHmT ∝ nl1m,253 ∝ n0,687l1,253 (4.7)

To find an efficiency relation is necessary first relate the total modular hysteresis losses with the

hysteresis losses for a singular configuration as show relation (4.8)

PHmT
PH

∝ n0,687 (4.8)

The respective efficiency of this modular configuration is give by relation (4.9).

ηmT ∼=
1

1 + n0,687PH
PN

(4.9)

In figure 4.3 is represented the total modular efficiency as a function of the number of modules for

the YBCO hysteresis losses when considered a singular configuration efficiency with η = 91%.

Figure 4.3: Modular efficiency in function of number of modules
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In figure 4.4 is represented the comparison between the joule losses with temperature constraints

and the hysteresis losses for YBCO in function of the number of modules when considered a singular

configuration efficiency with η = 91%.

Figure 4.4: Comparison between the joule losses with temperature constraints and the hysteresis losses
for YBCO in function of the number of modules

It is possible to conclude that the modular configuration for YBCO leads to a decreasing efficiency

when compared with joule losses. This substantial decrease occurs because when the number of mod-

ules increases, there is a reduction in the linear dimension, for each module, but the magnetic flux

density is constant in all, this leads to an increase in losses,(4.4), that leads to a decrease in efficiency.
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4.1.3 Machine with YBCO as PM

In a machine with YBCO instead of PM, the equation 2.22 becomes

PT = Piron + PJcoil + PHY BCO (4.10)

Considering the analytic relation found in (4.3), the equation 4.10 becomes the relation

PT ∝ 3l3 + l1,253 (4.11)

Finally to compute the efficiency is necessary divide (4.11) through the nominal power

PT
PN
∝ 3

l
+ l−2,75 (4.12)

The relation for the efficiency of a machine with YBCO in function of linear dimension is given by

(4.13).

ηα =
1

1 +K1

(
3
l + 1

l2,75

) (4.13)

In figure 4.5 is represented the comparison between the efficiency of a machine with PM and a

machine with YBCO instead of PM.

Figure 4.5: Efficiency for machine with PM and with YBCO

As it can be seen through figure 4.5, there is a smaller difference in efficiency between the conven-

tional machines with PM and machines with YCBO. This difference decreases with the increase of linear

dimension which leads to a convergence in efficiency of both machines. This was expected since for

smaller linear dimension values the term PHY BCO have some influence. However, with the increase of

linear dimension, this term starts to lose his influence.
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4.2 Current density constant

This condition is a necessary condition to compare the behaviour of a conventional PM machine with

copper coils with a machine with YBCO replacing the copper coils. It will be considered during this

section that the average value of current density in YBCO is maintained constant.

4.2.1 Singular Configuration

In figure 4.6 is shown the acquired data for hysteresis losses in function of volume and the best curve

fitting for the situation with current density constant.

Figure 4.6: Acquired data for hysteresis losses in function of volume and the best curve fitting for the
situation with current density constant

The equation that fits better the above points is give by (4.14),

Wh = 1.96× 106 × V 0,39 (4.14)

thus the variation of hysteresis losses with the volume is given by (4.15)

WH ∝ V 0,39 (4.15)

The final expression that relates the hysteresis losses with dimension is given through (4.16)

PHJ ∝ l1,17 (4.16)

Considering the same conditions for PN as in chapter 2

PHJ
PN

∝ l−2,83 (4.17)
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The relation for the efficiency of YBCO, considering current density constant inside, in function of

linear dimension is given by (4.18).

ηY BCOJ =
1

1 + K1

l2,83

(4.18)

Figure 4.7 shows a comparison between the efficiency of a machine if only hysteresis losses in

YBCO or only joule losses in the conductors are considered, for density current constant.

Figure 4.7: Efficiency comparison between YBCO and joule losses in conductors for density current
constant
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4.2.2 Modular Configuration

Based on subchapter 2.5, the YBCO hysteresis losses in each module is given by (4.19)

PHm ∝ l1m,173 (4.19)

and the total modular hysteresis losses is given by (4.20)

PHmT ∝ nl1m,173 ∝ n0,708l1,173 (4.20)

To find an efficiency relation is necessary first relate the total modular hysteresis losses with the

hysteresis losses for a singular configuration as show relation (4.21)

PHmT
PH

∝ n0,708 (4.21)

The respective efficiency of this modular configuration is give by relation (4.22).

ηmT ∼=
1

1 + n0,708PH
PN

(4.22)

In figure 4.8 is represented the comparison between total modular efficiency of a machine where

YBCO replaces the PM and a machine where YBCO replaces the coils. It was considered a singular

configuration efficiency with η = 91%.

Figure 4.8: Modular efficiency in function of number of modules

It is possible to conclude that with the increase of modules, the efficiency of a machine with YBCO

as coils starts to decreases when compared with another with YBCO as PM.
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4.2.3 Machine with YBCO as coils

In a machine with YBCO instead of copper coils, the equation 2.22 becomes

PT = Piron + PHY BCO (4.23)

Considering the analytic relation found in (4.16), the equation 4.23 becomes the relation

PT ∝ 2l3 + l1,173 (4.24)

Finally to compute the efficiency is necessary divide (4.24) through the nominal power

PT
PN
∝ 2

l
+ l−2,83 (4.25)

The relation for the efficiency of a machine with YBCO in function of linear dimension is given by

(4.26).

ηβ =
1

1 +K1

(
2
l + 1

l2,83

) (4.26)

In figure 4.9 is represented the comparison between the efficiency of a conventional PM machine, a

machine with YBCO as PM and a machine with YBCO as coils.

Figure 4.9: Efficiency of a conventional PM machine, a machine with YBCO as PM and a machine with
YBCO as coils with increase of linear dimension.

It is possible to conclude that for smaller linear dimension values there is a difference, especially

for YBCO as a coil. This happens because the in this machine there aren’t copper losses, enabling a

higher value of efficiency. However, with the increase of linear dimension, the iron losses start to be the

dominant factor, leads to a convergence in efficiency with the other machine designs.
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Chapter 5

Experimental and FEM simulations

In this chapter, it was implemented different methods to validate experimentally the losses due to hys-

teresis founded through the analytic model. It was also created a simulated model in a FEM software for

the same purpose.
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5.1 Losses in YBCO - Experimentation

The purpose of this sub-chapter is experimentally computing the losses due to hysteresis in a YBCO

bulk. Two different methods are purposed.

5.1.1 Experimental losses in a standard magnetic circuit

To understand how to compute experimentally the losses in a magnetic circuit is necessary to recap few

concepts, starting with the simple magnetic circuit made of an iron core and one coil as shown in figure

5.1.

Figure 5.1: Simple Magnetic Circuit [13]

Some considerations need to be taken, the first one is that the core is composed by a magnetic

material whose permeability, µ, is extremely bigger than the surrounding the material, air, µ0.

The cross-section is uniform and is excited by a winding with N turns, carrying a current of I. This

current produces a magnetic field in the core, as shown in figure 5.1. Due to the high permeability, the

magnetic flux is confined to the core and flow in the path represented in figure 5.1, also the flux density

is uniform because the cross-sectional area is uniform [13].

The Maxwell equation (3.3) states that the net magnetic flux entering or leaving a closed surface is

zero. This means that all the flux which enters the surface enclosing a volume must leave that volume

over some other portion of that surface because magnetic flux lines form closed loops. This can be used

to justify the assumption that the magnetic flux density (equation 2.6) is uniform across the cross-section

of a magnetic circuit such as the core of figure 5.1 [13].

In this case, equation (2.6) is reduced to

Φ = BAc (5.1)
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Considering the integral form of equation (3.4) ,

∮
C

H dl =

∫∫
S

J · da (5.2)

and that the source of the magnetic field in the core is the product Ni, known as magnetomotive force,

F , equation (5.2) can be written as

F = Ni =

∮
C

H dl (5.3)

The core dimensions are such that the path length of any flux line is close to the mean core length,

lc. As result, equation (5.3) becomes simply,

Ni = Hclc (5.4)

where Hc is average magnitude of H in the core.

As can be seen through figure 5.2, the typical B(H) curve for a certain material, without considering

hysteresis (anhysteretic), is composed by a linear zone and a non-linear zone. In the non-linear zone

occurs the saturation, which represents the point from where the increasing of H does not imply the

same increase of B in the material.

Figure 5.2: Typical B(H) anhysteretic curve
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However, B and H cannot be measured directly, they need to be computed through equations (2.4)

and (5.4), concluding that B is a function of voltage and H is a function of current.

When a sinusoidal voltage is put on the terminal’s coil, the current waveform will be sinusoidal if the

material stays in the linear zone. When the material reaches the non-linear zone, a small variation in

voltage causes a major variation in the current leading to a current waveform with a triangular shape, as

figure 5.3 shows.

Figure 5.3: Example of Saturation Current [16]

Figure 5.4 shows an experimental example of current saturation. As it is possible to see, the current

start to enter in the non-linear zone, becoming triangular. However, it is still far from the saturation zone

because don’t have the same shape as the current in figure 5.3.

(a) Experimental circuit (b) Experimental current (yellow) and voltage (blue)

Figure 5.4: Experimental circuit and data
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5.1.2 Experimental losses in a YBCO bulk as in a magnetic circuit

The first method used to find the hysteresis losses in YBCO was trying to discover the non-linear zone

of this material through the current shape and after that compute the losses. For that, two coils of 400

turns were placed on top of each other, connect in series and the YBCO material placed in the middle

as shown the illustration in 5.6. In figure 5.5 is shown the experimental setup used, without the liquid

nitrogen necessary during the experiment to cooled the YBCO.

Figure 5.5: Experimental 2 coils of 400 turns each

Figure 5.6: Illustration of experimental set up
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Figure 5.7 represents the acquired voltage (at red) and current (at blue) from the experiment shown

in figure 5.5.

Figure 5.7: Experimental current (blue) in amperes and voltage (red) in volts YBCO bulk as in a magnetic
circuit

Figure 5.8 represents the respective applied magnetic field.

Figure 5.8: Experimental applied magnetic field for YBCO bulk as in a magnetic circuit

The first conclusion that can be taken is that neither the saturation nor the non-linear zone were

reached because the current waveform is sinusoidal and not triangular. This means that the B-H curve

of the material is still in the linear zone and it is necessary a higher applied magnetic field to reach the

non-linear zone.
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For achieve that, and due to the fact that exists a linear relation between turns and applied magnetic

field, a coil with 4000 turns was used.

Figure 5.9 shows the experimental setup used without the liquid nitrogen necessary during the ex-

periment to cooled the YBCO and 5.10 is an illustration of the experience.

Figure 5.9: Experimental set up for coil with 4000 turns

Figure 5.10: Illustration of experimental set up for coil with 4000 turns
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Figure 5.11 shows the current and the voltage acquired experimentally.

Figure 5.11: Experimental oscilloscope data

It is possible to conclude that when compared this solution with the previous one the number of turns

in the copper winding increase from 800 to 4000 however, the maximum amplitude current reduces

from 20A to 1A, and since this two variables changes linearly the applied magnetic field, the second

scenario will have must lower applied magnetic field. With this conclusion, it was necessary to change

the approach to calculate the losses.
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5.1.3 Iron Core Solution

In this subsection, it will be present a solution for estimation of YBCO losses through the utilization of an

iron core magnetic circuit.

The idea was using two different magnetic circuits, one with an air-gap and the other with the YBCO

in the space of the air-gap, as present in figures 5.12 and 5.13, and compared the losses in both circuits.

Figure 5.12: Experimental magnetic iron core circuit

The total power in the magnetic circuit of the figure 5.12 is

PT = PCu + Piron (5.5)

where PCu are the joule losses in the copper windings and Piron are the iron losses, that are mostly

composed by hysteresis losses due to the fact that the core is laminate.
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Figure 5.13: Experimental magnetic iron core circuit with YBCO

The total power in the magnetic circuit of the figure 5.13 is

PT = PCu + Piron + PY BCO (5.6)

Assuming that the losses in the iron are the same (for the same current and voltage) in the two

circuits, the only variable to find will be the losses in the YBCO.

In the table 5.1 are presented the power and respective losses at ambient temperature for the config-

uration illustrated in figure 5.12. To measured these values was used a Fluke 1735 Three-Phase Power

Quality Logger.

Table 5.1: Power and losses at air temperature for circuit iron + coil with air-gap
PT [W] Pcu [W] Piron [W]

9 5.19 3.81
35 20.2 14.8
75 42.77 32.23
125 68.95 56.05

With table 5.1 is possible to compute the power factor of the circuit and this value will be considered

the same for the cooled magnetic circuit with YBCO and without. The coil resistance was measured in

temperature ambient and cooled, having 1.5 Ω and 0.3 Ω, respectively.

The first measurement in a cooled environment was without YBCO and the results are shown in table

5.2.

In the second measurement was introduced the YBCO in the air-gap position, as illustrated in figure

5.13. It was considered that the iron losses remain the same. With these conditions, it was possible to

compute the losses regarding to YBCO, as shown in table 5.3
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Table 5.2: Power and losses for cooled circuit iron + coil with air-gap
PT [W] Pcu [W] Piron [W]

167.65 20.92 146.73

Table 5.3: Power and losses for cooled circuit iron + coil+ YBCO
PT [W] Pcu [W] Piron [W] PY BCO [W]

173.28 22.34 146.73 4.21

Considering that YBCO bulk as a volume of 13.5cm3, the power density losses in YBCO are

3.1× 105W/m3.

When compared with the analytic value for the same applied magnetic field, there is a considerable

difference since the analytic value is 4.3 × 104W/m3. This can happen due to multiple factors, one of

them can be associated with the lack of accuracy in the measurement due to the chosen set up or the

measurement instruments, the second factor can be related with some considerations made to compute

the YBCO losses, like iron losses or power factor constant values, and the last factor can be related with

the value founded through the analytic model since this model isn’t extremely accurate for low magnetic

field values.

To reach more precise values, it was developed a model through a FEM software.
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5.2 FEM Model - Introduction

Based on sub-chapter 5.1, there are several potential errors in the experimental measurement that can

lead to experimental results different from the results computed with the analytical model. To reduce

these potential errors, an analysis through FEM software was considered.

For that, it was necessary to create two different geometries, completely equals in dimensions and

shape to the ones used in the experimental setup. The first will be composed by an iron core and a coil

and will be used to model the behaviour of the B-H curve in the iron core. In figure 5.14 is represented the

design of this circuit. The other geometry will be composed by a coil, an iron core and a YBCO. Through

the last geometry, it will be estimate the losses in YBCO in the same way as in the experimental part.

Figure 5.15 represent the conceptual design of this circuit.

Figure 5.14: Conceptual design of circuit iron + coil

63



Figure 5.15: Conceptual design of circuit iron + coil +YBCO

5.3 FEM - Geometric Description of the System

5.3.1 Iron Core and Coil

Figure 5.16 shows the front view of the magnetic circuit. All measurements are in millimeters.

Figure 5.16: Front view of system iron + coil
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Figure 5.17 shows the top view of the magnetic circuit. All measurements are in millimeters.

Figure 5.17: Top view of system iron + coil

5.3.2 Iron Core, Coil and YBCO

Figure 5.18 shows the front view of the magnetic circuit. All measurements are in millimeters.

Figure 5.18: Front view of system iron + coil + YBCO

Figure 5.19(a) shows the YBCO front view and 5.19(b) shows the side view. All measurements are

in millimeters.
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(a) YBCO front view (b) YBCO side view

Figure 5.19: YBCO

5.4 FEM - Electromagnetic Model

5.4.1 A Formulation

This model assumed the A-formulation. The variable A is the magnetic potential vector and is defined

through (5.7)

∇×A = B (5.7)

Through (3.2) and (5.7) it is possible define the electric field vector as

E = −∂A
∂t

(5.8)

Considering that the current density vector can be define in

Jt = Je + Ji (5.9)

where Je is the external component and Ji the internal component.

Considering the constitutive law in (3.6) and (5.8), the Ji can be define through (5.10)

Ji = σEi = −σ∂A
∂t

(5.10)

Considering (3.4), the (5.10) can be define as (5.11)

∇×H = Je − σ
∂A

∂t
(5.11)

Applying the vector operation rot in (5.8) at both sides of equation and considering the constitutive

law (3.5), the (5.11) can be define as

µ∇× (∇×A) + σ
∂A

∂t
= Je (5.12)
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and considering properties of the operator it is possible to achieve (5.14) that defines the A-formulation

used in the FEM software.

µ∇2A + σ
∂A

∂t
= Je (5.13)

To define the HTS it is considered the constitutive law

J = σY BCOE (5.14)

where σY BCO is the inverse of (3.15).

The iron material will be defined through (5.15)

B = f (H) (5.15)

where function f (H) is defined through the Jiles-Atherton model.

5.4.2 Jiles Atherton Model

The Jiles-Atherton model [17] is a model that defines the curve B-H of a material with hysteresis through

an analytic model, this will be the model used to define the B-H curve for the iron core. For that, the

model finds the magnetization derivative in function of the applied magnetic field, known as susceptibility,

χ, through the following equations,

He = H + αM (5.16)

Man = Ms

(
coth

He

a
− a

He

)
(5.17)

dMan

dHe
=
Ms

a

[
1−

(
coth

He

a

)2

+

(
a

He

)2
]

(5.18)

dMirr

dH
=

Man −M
kδ(1− c)− α(Man −M)

(5.19)

χ =
dM

dH
=

[
c
dMan

dHe
+ (1− c)dMirr

dH

]
1

1− ac
(5.20)

where H is the applied magnetic field, M is the magnetization, Ms is the magnetization saturation,

Man is the anhysteretic magnetization, Mirr is the irreversible magnetization, δ is a parameter that

depend on the signal of dHdt and α,a,c and k are the unknown parameters that change the shape of the

B-H curve, for different materials. To find this parameters that generates the B-H curve that better fitts

the experimental one, the algorithm in [18] and the Matlab/Simulink non linear inductor were used.

In table 5.4 are shown the Jiles-Atherton parameters that better fit the experimental iron core.
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Table 5.4: Jiles-Atherton iron parameters
Parameters

MS 1.1827 ×106[A/m]
a 61.86 [A/m]
k 900 [A/m]
c 0.04
α 2 ×10−4

In figure 5.20 are represent two B-H curves for the iron core, in blue the experimental one acquired

in laboratory and in red the simulation through Jiles-Atherton parameters shown in table 5.4. In terms of

hysteresis losses, this two curves have a difference of 0.6%.

Figure 5.20: Experimental and simulated B(H) curves
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It is possible to conclude that the simulated curve is a valid approximation of the experimental one

since the hysteresis losses and the saturation values are quite the same. Adding to this, the simulated

curve has a more standard shape, this not happen in the experimental one due to the degradation of the

materials used or due to errors in measurements.

5.5 FEM - 3D Model for Iron and Coil

The 3D model used will be the one represented in figure 5.14 surrounding by air. It will be a time

dependent simulation, where the magnetic field is generated through the coil, assuming a A-formulation.

The B-H curve for the iron core is defined through the Jiles-Atherton model using the parameters in table

5.4.

5.5.1 3D Simulation

A voltage of 300V at 50Hz was applied in the coil and it was considered a 0.02s simulation to eliminate

all the transient components.

In figures 5.21 and 5.22 are represented simulations results considering the magnetic flux density.

Figure 5.21: Magnetic flux density norm and streamlines results for an isometric view
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Figure 5.22: Magnetic flux density norm and streamlines results for a side view

In figure 5.23 are represented two B-H curves, at blue the experimental one and, at red the one

generates through the FEM software simulation. These two curves have a difference in hysteresis losses

of 12%. This difference was expected since the simulated curve in 5.20 was an ideal curve, however

the FEM software considers aspects like dispersion, the non-uniformity of the magnetic field or the real

path of the magnetic field instead of the mean path, and this can change the optimal Jiles-Atherton

parameters.

Figure 5.23: Experimental and simulated B(H) curve
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In figure 5.24 is represented the current, at green, and the voltage, at blue, for the simulation.

Figure 5.24: Current at green and voltage at blue compute through FEM software

In figure 5.25 is represented the current, at blue, and the voltage, at red, acquired experimentally for

the same conditions as the simulation.

Figure 5.25: Current and voltage acquired experimentally

It is possible to conclude that the shape of the current is identical, this indicates that the simulated

model can model the saturation in the iron core. However, the maximum values are different, this was

expected due to the differences observed in 5.23.
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5.5.2 Power losses

Considering that the active power in the circuit iron + coil is given through equation (5.21)

P = URMSIRMScos(φ) (5.21)

where φ is the phase angle between current and voltage. The phase angle can be compute using the

equation (5.22)

φ = tan−1

(
XL

R

)
(5.22)

where R is the DC resistance and XL the reactance associated to the magnetic circuit.

In table 5.5 are represented the computed values for this simulation

Table 5.5: RMS voltage and current and power factor for simulated model iron + coil
URMS [V] IRMS [A] cos(φ)

197.98 4.84 0.032

Considering (5.5), it is possible to compute the losses due to iron. Table 5.6 represent the total power

and respective losses.

Table 5.6: Power and losses for simulated model iron + coil
PT [W] Pcu [W] Piron [W]

30.65 19.89 10.76
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5.6 FEM - 3D Model for Iron, Coil and YBCO

The 3D model used will be the one represented in figure 5.15 surrounding by air. It will be a time

dependent simulation, where the magnetic field is generated through the coil, assuming a A-formulation.

The B-H curve for the iron core is defined through the Jiles-Atherton model using the parameters in table

5.4 and the YBCO is defined through (5.14).

5.6.1 3D Simulation

A voltage of 300V at 50Hz was applied in the coil and it was considered a 0.02s simulation to eliminate

all the transient components.

In figure 5.26 is represented the simulation result considering the magnetic flux density.

Figure 5.26: Magnetic flux density norm results for a side view for a Iron, Coil and YBCO system
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In figure 5.27 is represented the current, at blue, and the voltage, at green, for the simulation.

Figure 5.27: Current, at blue, and voltage, at green, compute through FEM software for a Iron, Coil and
YBCO system

As it possible to see, the values of current and the shape of current aren’t any similar between 5.27

and 5.25, this invalidates any possible iron losses computation.
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Chapter 6

Conclusions

6.1 Achievements

This dissertation is divided in two parts: the first one related with the application of scale laws, using the

KIM analytical model for HTS; and the second part is the experimental tests and FEM simulations.

Regarding the scale laws, the KIM model was implemented to study the losses due to hysteresis in

HTS. With the results of those studies, and based on those scale laws, it was possible to develop scale

relations for the HTS, i.e., the relationship between the hysteresis losses with its volume, current density

and magnetic flux density. These relations allowed a comparison between conventional PM machines

and new superconducting machines, where the HTS can either replace the PM or the coils. It was found

by scale laws that HTS electric machines are indicative of having higher efficiencies and more power

dense, however, the machine’s topologies need to be different, especially using HTS as permanent

magnets.

The experimentations were inconclusive, not being precise enough to quantify with good measure

the hysteresis losses of the YBCO bulks. the FEM simulations also did not prove to be useful, since they

did not validate the experimental tests

6.2 Future Work

To guarantee a more broad spectrum of results, other types of electrical machines need to consider.

Considering another type of electrical machine implies changing some relations of the scale laws, espe-

cially in considering if the current densities or the magnetic flux density remain constant, or if they have

a dependency between one another.

Regarding the experimental part, the simulations need to be made in a more controllable environ-

ment, with more precision in the measurements, coupled with a consistent FEM model of the experi-

mentations, to validate the results of the KIM model, and consequently, the scale laws.
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