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Abstract

The success of deep learning applications, within machine learning and artificial intelligence, is pushing

further this area’s development. However, the increasing performance and accuracy needs are usually

met with higher computational requirements, whose efficiency is, more often than not, disregarded.

General Purpose Graphics Processing Units (GPGPUs), being the state-of-the-art accelerators for these

applications, play a significant role in making deep learning models widely available. However, the

large power consumption increases operational costs and eschews resource-constrained environments

from using such devices. To mitigate this problem, the present work proposes an approach to study

the potential energy savings of reducing the supply voltage of those devices, using an AMD Radeon

Vega Frontier Edition GPGPU. This endeavor is first applied to synthetic benchmarks to characterize

the device’s voltage guardband and then to current deep learning models to provide an insight into

their behavior under minimum supply voltage. Results show deep learning models can achieve energy

savings of up to 24.79% (average of 15.35%) and still guarantee their initial accuracy. Nonetheless, the

energy savings can be further increased up to 30.16% (average of 18.37%) at the expense of the model’s

accuracy. Deep learning applications experienced an accuracy droop up to 61.52% (average of 10.61%)

when working at near failure supply voltage.
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Resumo

A crescente procura por aplicações de aprendizagem automatiza está a estimular o aumento da perfor-

mance das mesmas. No entanto, este incremento de performance é normalmente alcançado à custa de

um aumento dos requisitos computacionais, cuja eficiência energética é, por norma, ignorada. Dispos-

itivos de Processamento Gráfico de Propósito Geral (GPGPU), sendo os aceleradores de eleição para

este género de aplicações, têm um papel importante na sua disponibilização global. Todavia, estes

dispositivos apresentam consumos energéticos elevados que para além dos custos operacionais que

implicam, colocam ambientes com recursos limitados à margem destas tecnologias. Para mitigar este

problema, no âmbito desta tese, é proposta uma abordagem para estudar potenciais ganhos de energia

obtidos ao reduzir a tensão de alimentação de GPGPUs, usando o dispositivo AMD Radeon Vega Fron-

tier Edition. Este processo é inicialmente reproduzido utilizando aplicações padrão com o objetivo de

caracterizar a margem de tensão do dispositivo imposta pelo fabricante. Depois, é também reproduzido

utilizando modelos atuais de aprendizagem automática permitindo conhecer o seu comportamento sob

baixas tensões de alimentação. Os resultados mostram que os modelos de aprendizagem automática

podem atingir eficiências energéticas que chegam aos 24.79% (média de 15.35%) e ainda assim garan-

tir a precisão inicial. Não obstante, é ainda possı́vel obter melhores eficiências energéticas, até um

máximo de 30.16% (média de 18.37%) sob pena de perda de precisão do modelo quando o dispositivo

GPGPU trabalha a nı́veis de tensão próximos do seu colapso.

Palavras Chave

Margem de segurança da tensão de alimentação, Unidade de Processamento Gráfico, Eficiência en-

ergética, Aprendizagem automática
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Modern applications leveraged by deep learning technologies are feasible due to hardware accelera-

tors. In particular, General Purpose Graphics Processing Unit (GPGPU) devices are widely used in this

context given their unique characteristics. They are easier to configure taking advantage of high-level

programming languages, there is also an extensive user base community behind these devices, and

additionally, they are largely available in data centers and cloud-based services. Consequently, GPGPU

devices are considered the main accelerator for deep learning applications [1].

However, there is a high demand for performance improvements in deep learning applications. But,

more often than not, the performance enhancement is met with increasingly higher computational re-

quirements. As a result, there is a trade-off between deep learning application’s performance and the

available computing capabilities of GPGPU accelerators.

The literature on deep learning improvement techniques for GPGPU devices is also rapidly growing.

However, the majority of these works neglect the power consumption impact of the proposed solutions.

The increasing power consumption is a major challenge on the GPGPU device’s usage, especially

when considering resource-constrained environments. As a result, there is a need for performance

improvements to be weighed against their energy overhead, and for a deeper dive on lower precision

techniques that impose a trade-off between accuracy and efficiency [2].

GPGPU manufacturers design their processing units bearing in mind a given performance standard.

Naturally, each architecture will have its own minimum required supply voltage for the device to work

properly. However, taking into account phenomena that can negatively impact the device, manufacturers

add an extra safety margin on top. This opens up a window to improve the GPGPU devices energy

efficiency, given that the power consumption is deeply related to the supply voltage [3,4].

1.1 Objectives and Contributions

This thesis proposes an approach to study the potential energy savings of GPGPU devices on modern

deep learning applications by reducing the voltage guardband margin imposed by the manufacturers.

However, due to the limitations of NVIDIA devices for the prosecution of this work, it will focus on the

Advanced Micro Devices, Inc. (AMD) Radeon Vega Frontier Edition GPGPU device.

The main goal of this thesis is to achieve energy efficiency in deep learning applications. To accom-

plish this, the following objectives are proposed:

• Characterization of AMD Radeon Vega Frontier Edition GPGPU card voltage guardband. Moti-

vated by the potential energy saving results and the lack of literature featuring AMD devices.

• In-depth performance and energy efficiency evaluation regarding the proposed approach .

2



• Evaluation of the accuracy impact of the voltage guardband reduction approach on modern deep

learning applications.

1.2 Outline

The remaining of this thesis is organized into four chapters. Chapter 2 introduces deep learning appli-

cations and provides an overview of existing solutions to attain energy efficiency. Chapter 3 contains a

characterization of the GPGPU voltage guardband through two sets of benchmarks. Chapter 4 applies

the knowledge from chapter 3 into deep learning applications providing an insight into the voltage guard-

band impacts on their execution. Finally, chapter 5 provides the conclusions of the current thesis along

with future work opportunities.
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2.1 Deep Learning

Artificial intelligence (AI) is the capability of machines to exhibit human-like intelligence. However, a

machine with all our reasoning and consciousness is not the only definition that fits. This is actually, a

very specific branch of AI called General AI, which up until now, remains fiction. Nonetheless, Narrow

AI, another branch of AI, is currently feasible given that there are machines that can perform a specific

task with even greater ease and efficiency than a human. From computer vision and speech recognition

to self-driving cars, all are good examples of this technology.

This kind of machine can be developed using several different approaches. One of them is a hard-

coded approach, where the programmer has to define all the decisions the machine has to take within all

the different scenarios it might encounter. This is hard to accomplish, as the definition of all the different

scenarios might be impossible to consider since they can be unpredictable.

The ambition of creating something that can think dates back to ancient Greece [5]. The real problem

is the definition of learning and understanding the human learning capability so that it could be replicated

by a computer. This is itself, a scientific goal [6]. Anyway, all the effort in this area has led to a new

approach to AI called machine learning, which already existed around the decade of 1950 but was only

theoretical or required special experimental hardware [5].

The learning effect is achieved through the definition of abstract concepts that are created in this

parsing phase. However, this still requires a lot of hand-coded work to be done, to develop detectors,

such as edge or shape detectors. Despite being promising, this approach still did not allow the develop-

ment of outstanding applications, even in the Narrow AI branch.

Nonetheless, those first steps on machine learning allowed the development of a new stand in the

AI field: Deep Learning. Deep learning, as it derives from machine learning, is also a solution that

allows machines to learn, by using the same principle based on the definition of abstract concepts is

applied. The key difference is that, in deep learning, a hierarchy of concepts is defined, thus creating a

concept sequence that depends on each other. This sequence implies that the furthest in the hierarchy

the representation is the more abstract and complex a given concept would represent [5]. This hierarchy

can have multiple stages, hence the name deep learning.

2.1.1 Neural Network

To implement deep learning, neural network solutions, which are inspired by the brain structure and its

ability to learn, are used. Naturally, these neural networks do not work the same way our brains do,

but there is no reason to believe that the way humans learn is the only way to acquire knowledge

[6]. A neuron, in this context, is no more than a fraction that represents an activation. Given the

hierarchy architecture of deep learning, these neurons are organized in layers and the activation of

6



a given layer’s neuron is determined by the activations, i.e., the neurons, of the previous layer. This

behavior is analogous to biological brain cells, which are triggered when some other set of cells has

been triggered.

Figure 2.1 shows an illustration of a deep learning neural network model. Here, the input layer is

composed of the pixels of the input image, that is the first layer neurons’ activation corresponds to the

values of each pixel from the input image. In this example, and also the majority of the models, only the

first layer is visible. Given the input pixels in the first layer, the second layer can identify other features,

such as edges. Given the second layer, the third one can identify corners or contours. This could

continue, with the identification of specific parts of an object and even further. In this example, the last

layer, which is the output of the model, could be a score between classes that in this case allowed the

identification of a cat.

CAT

Figure 2.1: Illustration of a deep learning model.

There are two main different families of neural networks: feedforward neural networks and recurrent

neural networks. Feedforward neural networks, or multilayer perceptrons, are used to approximate

some function f∗, allowing, for instance, a classifier that maps from an input x to some class y, defined

by y = f∗ (x). This network approximates f∗ by defining its own f function, which depends on the input

x and also on the parameters θ, y = f (x; θ) [5]. The name ”feedforward” results from the fact that there

is no feedback between the output and any intermediary stage of the network, meaning that there are

no loops between the network’s neurons. On the other hand, when a network’s output is fed into itself a

recurrent neural network is obtained. The example in figure 2.1 is a feedforward network, as there are

no loops in its model.

Given the layered architecture of the neural network, one can conclude that function f (x, θ), which

approximates f∗ (x), is given by f (x, θ) = f (3)
(
f (2)

(
f (1) (x, θ)

))
, where the functions f (1), f (2) and f (3)

would correspond to the operations that are made in the the first, second and third layer of the network,

respectively.
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2.1.1.A Layers

A fully connected layer connects all inputs to all the defined outputs through a weight per connection

plus a bias. It can be viewed as matrix multiplication, as exemplified in the following equation 2.1, by

considering n inputs and m outputs.


y1
y2
...
ym

 =


w11 w12 . . . w1n

w21 w22 . . . w2n

...
...

...
wm1 wm2 . . . wmn

 ·

x1
x2
...
xn

+


b1
b2
...
bm

 (2.1)

The fully connected layer is usually used in the last layer of a network, because it correlates all the

previous layer neurons, that at this time represent some high-level abstract feature, with the desired

output. This allows the definition of how much impact each high-level feature has on each specific

output.

A convolutional layer is the most used layer in a Convolution Neural Network (CNN), which belongs

to the feed-forward neural network family. These networks are currently the best approach towards

computer vision, having obtained good results in the field [7,8]. The way this layer works is almost self-

explanatory: it outputs the convolution result between the input and a given kernel. The kernel size of

this convolution usually varies from 1× 1 up to 7× 7, but ultimately is the model designer who chooses

its size. Other parameters are up to the model designer to define, such as the stride and the padding

of the convolution. It is important to note that the kernel depth must match the depth of the input. For

example, if an RGB image is used as input, the kernel must have a depth of 3, i.e. the format x× x× 3,

to cover the 3 channels of an RGB image.

Since the convolutional or the fully connected layers both provide linear operations, it would not

be possible to define a non-linear function model using those layers exclusively. Therefore, different

activation layers are added to the model’s architecture specifically to introduce a non-linearity. One, of

such layers, is the Rectified Linear Unit (ReLU) which is widely used in CNNs. Naturally, depending on

the model’s end goal different activation layers might be chosen.

Nonetheless, the operation on a ReLU layer consists of the application of a function as the one

present in Figure 2.2. Even though the ReLU activation function is not globally linear it is the composition

of two linear functions, and as result, many of the properties that make linear models easier to optimize

are preserved. This property contrasts with activation functions such as the tanh and sigmoid, which still

introduce the desired non-linearity, but have other problems of their own, e.g. the vanishing gradients

[5,9].

Finally, the pooling layer, which is also denoted by the downsampling layer consists of defining a filter

of a given custom size (3 × 3 for instance) and of a stride of the same length. Then, it goes through

the input of the layer and applies a max, an average, or some other pooling function. An example of a
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Figure 2.2: ReLU function graph.

max-pooling layer is shown in Figure 2.3. The purpose of this layer is to reduce the computation cost

of the following layers, by drastically reducing the number of outputs. In the context of computer vision,

this layer is highly viable after some convolutional layers, because after a given feature is identified in

the previous layers (i.e., some inputs have high activation values), the exact location of that occurrence

is not so important.

1 0 2 3

1

1 1

2 2

03

4

4

6 6 8 6 8

3 4

Figure 2.3: Example of a max-pooling layer with 2× 2 filter.

Unlike a feedforward neural network, a recurrent neural network can receive as input a sequence

of data and produce also a sequence of outputs. This property makes them important for applications

such as speech recognition or video classifiers. Long short-term memory (LSTM) is a recurrent neural

network layer that can be stacked, similarly to the convolution layer in a CNN. Figure 2.4 depicts such a

layer diagram.

This layer has a neuron that acts as a memory cell preserving some past input for as long as ”keep

gate” determines. ”Keep gate” is also a neuron that defines how long the memory cell information should

be preserved. This layer contains two more neurons called ”read gate” and a ”write gate” which define

when read and write access to the memory cell should be granted, respectively. This way, since the

memory cell is fed into itself, this layer has the capability of storing information and thus adapting to the

sequence at the input.
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Figure 2.4: LSTM RNN architecture.

2.1.1.B Execution Phases

There are two different execution phases a deep learning model goes through. They are the training and

the inference phase. The training phase is where the model learns what the expected result is based on

a set of input data. The inference phase occurs after the training phase is completed and the model is

deployed, to infer the output of some real-world input. In supervised learning, it does so by defining the

θ parameters that would best approximate the desired function f∗. To achieve this approximation, two

important concepts are needed: a cost function and an optimizer function.

A cost function, also called the loss function, is a measure of how far the model is from the intended

result, given by f∗(x). The mean squared error and the negative log-likelihood are both examples of this

kind of function, the latter being one of the most widely used in this context.

The job of the optimizer is to minimize the previously defined cost function in each iteration of the

training phase, by redefining the model’s parameters. This is done through a process called backpropa-

gation, since the model’s real and desired output for a given input is known, the error can be calculated

using the cost function. Afterward, the error is backpropagated into the model, now updating the models’

parameters so that the error can be minimized. This process is repeated until the desired accuracy is

achieved.

A decrease in the cost function means the accuracy of the model is increasing and thus the model is

learning. However, this is not as straightforward as it sounds, due to a phenomenon named overfitting.

Accordingly, the accuracy of a model should be measured with a set of data, the test data set, that does

not belong to the training data set, to check the model’s ability to extrapolate from the training data to

real data. A model can have a high accuracy rate within the training data set, but perform poorly with

data it has not seen before. This is the definition of overfitting. Hence, a decrease in the cost function

means the model’s accuracy increased solely concerning the training set. To attain this objective, the

training phase of a model should be held while both the training data and the test data accuracy are
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increasing. Once the test data accuracy stops increasing and the other keeps going up, overfitting is

starting to happen.

To prevent the model from overfitting, there is a special layer that is often particularly useful: the

dropout layer [10]. This layer is only used while the model is in the training phase and it simply drops out

a random set of activations in its input, by setting them to zero. This forces the model to output some

result even if activations, considered relevant for that output, were dropped out.

The optimization procedure is what grants a deep learning model the ability to learn. This optimiza-

tion procedure consists of finding the global minimum of the cost function. Sometimes, this algorithm can

get trapped in a local minimum and therefore not converge towards the desired point. That is why the

choice of this procedure is important. Depending on the gathered information about the cost function,

many different optimization procedures can be used (e.g., function values, first derivatives, or second

derivatives).

The most commonly used optimization procedure is gradient descent. In order to minimize a given

function y = f (x), this iterative method starts at a random value of x. Then, at each iteration, it moves

towards the symmetrical value of the derivative of that function at the current value of x multiplied by

a constant named learning rate, η, which defines how fast the method converges. The mathematical

expression of this method is defined in the equation 2.2.

x(t+1) = x(t) − η · ∇f
(
x(t)
)

(2.2)

Naturally, this method does not converge in all cases, and the definition of η can influence its conver-

gence rate. There are several optimizations to this method available that would allow a more robust and

faster convergence, such as the momentum technique or the adaptive step sizes.

In short, almost all deep learning algorithms follow the same recipe: a dataset, a cost function, an

optimization procedure, and a model. The particular implementation of each of these pieces is what

differentiates one approximation from another [5].

2.1.2 Deep Learning Frameworks

Deploying state of the art deep learning models by a researcher or engineer would require a long de-

veloping period if no specialized toolboxes were available, given the amount of work developed in the

area.

Hence, a deep learning framework provides an environment where deep learning algorithms can be

expressed, thus defining and subsequently executing a computation graph. A computation graph is the

collection of operations that must be executed in a certain order to obtain a given result. An example of

a simple neural network computation graph is depicted in Figure 2.5.
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Figure 2.5: Example of the neural network computation graph.

Defining the computational graph, by providing the framework’s users tools to do so in an efficient way

is the main focus of a deep learning framework. However, the efficient execution of the computational

graph is also decisively important. To accomplish that, deep learning frameworks resort to libraries that

already implement the needed operations efficiently allowing framework developers to focus on their

own paradigm instead of low-level optimizations. Furthermore, such libraries can provide abstractions

from specific hardware or operating systems allowing easy portability.

The main libraries used by deep learning frameworks are efficient mathematical implementations re-

quired by deep learning algorithms both with and without GPGPU accelerations, depending on the sup-

port a given framework provides. Basic Linear Algebra Sub-routines (BLAS) and specific deep learning

algorithms libraries are both a must-have in this kind of frameworks, being cuBLAS and cuDNN exam-

ples of such libraries.

Given the popularity increase of deep learning models, several specialized frameworks were devel-

oped to address this necessity. Currently, there are many frameworks available, and selecting one can

itself be a complicated task. The framework stability, reliability, and ability to keep up to date with new

developments are all factors to take into account in this process.

The table 2.1 lists some of the most widely adopted frameworks available for deep learning develop-

ment, which fit the mentioned criteria.

2.1.2.A Torch

Torch is one of the oldest machine learning frameworks, which has been available since 2000. Torch

allows setting up, training, and running a deep learning network by configuring its hyper-parameters,

enabling the development of a large number of deep learning models. It was initially implemented in

C++ by following a modular strategy, permitting further modifications and new algorithm extensions [12].
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Table 2.1: Deep learning frameworks [11].

FRAMWORK CORE LANGUAGE BINDINGS CPU GPU PRE-TRAINED MODELS

Torch Lua • •
PyTorch Python • •
Caffe C++ Python, Matlab • • •
TensorFlow C++ Python • • •
CNTK C++ Python, C#, Java • • •
MXNet C++, Python Java, R, Scala, Javascript • • •

However, from Torch3 on, the development was ported to the Lua programming language.

Lua is an embeddable scripting language that focuses on lightweight. This makes it highly suitable

for resource-constrained environments, such as embedded systems. Lua was written in C and is known

for its fast performance. This language is best known within the gaming community, but not so much by

the general public, which offers a big barrier to entry since access to support is reduced and also the

number of third-party libraries is limited.

Also, Lua is easily embeddable, which means an effortless integration into a final product or system

is granted after the program itself is written. And it also targets a wide range of devices and operating

systems. For these reasons, Torch developers chose Lua, as it satisfies their main constraints out of the

box: easy extendability and fast performance [12].

2.1.2.B PyTorch

To circumvent the Lua programming language barrier, a group of developers, inspired by Torch’s pro-

gramming style, implemented Torch in python, naming it PyTorch. First of all, PyTorch is not a python

wrap around another language, as many frameworks that support python, are. This framework is deeply

integrated with python and implements two paradigms that might be the reason behind its popularity

rise: imperative programming and consequently dynamic computation graphs.

Imperative programming means computation statements are executed right away, thus immediately

modifying the program’s state. On the other hand, symbolic programming means explaining what a

program should do without explicitly stating how it should be done, leaving that implementation up to

a compiler. Thus, creating a separation between defining and executing a computation. Algorithms

2.1 and 2.2 depict the contrast between these programming paradigms. In sum, symbolic programs first

define all computations to obtain a given result and only then execute them, that execution is represented

in line 6 of the algorithm 2.2, whereas imperative programming explicitly defines each step towards the

result. Naturally, symbolic programs are more efficient, since management of the program’s control flow

and its required resources can be made, whilst imperative programs are more flexible and allow easier

debugging and understanding of stack trace reports.
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Algorithm 2.1 Imperative programming

1: x = variable(x)
2: y = variable(y)
3: z = x+ y . The value of z is calculated once this line is executed
4: w = z × x . The value of w is calculated once this line is executed

Algorithm 2.2 Symbolic programming

1: x = variable(x)
2: y = variable(y)
3: z = x+ y . Defines how the variable z is going to be calculated, but its result is not calculated yet
4: w = z × x . Defines how the variable w is going to be calculated, but its result is not calculated yet
5:
6: COMPILE(w) . Only here, the computational graph is executed, thus obtaining the result of w

The dynamic computation graph means PyTorch generates its computation graph structure at run-

time, whereas a static computation graph paradigm means the computation graph is first defined and

only then executed, with the advantage of allowing graph optimizations before its execution, analogously

to imperative programming. However, for some use cases, such as recurring neural networks, it would

be useful if the computation graph could change depending on the input data.

2.1.2.C Caffe

Caffe is also one of the oldest deep learning frameworks and was developed by Berkeley AI Research.

It became open source in 2014 and currently supports all major desktop platforms.

This framework is based on a symbolic programming approach since there is a separation between

the models’ representation and implementation. This framework was originally developed for computer

vision tasks, which suit well feedforward neural networks and more especially CNNs. Nonetheless,

newer versions expanded their development to speech and text recognition too. It also supports all

stages of the deep learning model’s development, from training to deployment.

A large set of pre-trained models and also the code to reproduce them is available through Caffe’s

community, providing, this way, a starting boost since the expensive learning phase is avoided [11].

Caffe is fully implemented in C++ and Compute Unified Device Architecture (CUDA) through the cuDNN

library, offering a smooth transaction between Central Processing Unit (CPU) and GPGPU executions.

Python and MATLAB interfaces are also provided.

In Caffe’s computation graph, each node is considered a layer, and a new layer definition requires its

full behavior description, such as the forward and backward gradient updates. This makes Caffe quite

inflexible to changes. However, to ease the development, a long list of different layers is provided by the

Caffe community, even though this does not solve the problem, only mitigates it.
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2.1.2.D TensorFlow

TensorFlow was developed by Google, based on their previous proprietary deep learning project called

DistBelief, to allow an efficient implementation of large scale models for a variety of different devices,

ranging from resource-constrained environments to systems consisting of hundreds of machines. In

essence, Tensorflow would improve deep learning algorithms’ portability, to ease their commercial use

[13].

TensorFlow’s core is developed in C++ and a Python API wrapping around it is provided. This

way, heavy computations are executed in a high-performance programming language while models’

descriptions can be done in a high-level programming language. Tensorflow provides both a symbolic

and imperative programming approach.

In contrast with the Caffe framework, each TensorFlow computation graph’s node represents either

data or a math operation. Hence, a layer can be defined as a set of nodes. This makes TensorFlow

building blocks smaller, which translates to more modularity and less programming verbose. Edges, in

this computation graph, represent the flow of data between nodes and this data that flows through nodes

is a multi-dimensional array called a tensor, hence the name TensorFlow. The output of one operation is

then fed into the next until the result is obtained. Despite TensorFlow being developed to support neural

networks, it can be used by any application whose computation could be modeled as a data flow graph.

GPGPU acceleration is supported, currently only for Nvidia devices, through the cuDNN library.

Nonetheless, Open Computing Language (OpenCL) support is foreseen in the future, which will allow

TensorFlow GPGPU acceleration on non-Nvidia devices. For algebra implementations, TensorFlow uses

cuBLAS and Eigen libraries, which are implementations of Basic Linear Algebra Sub-routines (BLAS)

with and without GPGPU support respectively.

2.1.2.E MXNet

MXNet is an open-source deep learning framework developed by Apache. One of its main focuses is

scalability allowing for a distributed deployment into a cloud infrastructure. Furthermore, MXNet allows

developers to use both imperative and symbolic programming, depending on their preferred program-

ming style and offers a wide range of programming languages, including C++, Python, Julia, Matlab,

JavaScript, Go, R, Scala, Perl, and Wolfram [14].

2.1.2.F CNTK

Microsoft Cognitive Toolkit, also known as CNTK, is a deep learning framework developed by Microsoft.

It supports multiple programming languages, such as Python, C++, C#, and Java.

This framework eases the integration of deep learning applications into Microsoft’s products, such
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as Azure. It uses a direct computation graph to describe a neural network and can be used to create

a wide range of models, including CNNs and RNNs. CNTK also handles the neural network’s learning

stage automatically as soon as it is modeled.

The latest and final version of CNTK was published in April 2019. It was one of the first frameworks

to support Open Neural Network Exchange (ONNX): a format representation of deep learning models.

An advantage of this format is allowing interoperability between frameworks, meaning the model can be

deployed to different execution engines out of the box [15].

2.1.2.G Other Frameworks

Some frameworks rely on existing frameworks as engines. For example, Keras is a framework, released

in 2015, that initially was executed on top of TensorFlow or a few other frameworks depending on the

user preferences, depending on the developer’s choice. However, after version 2.4, Keras fully integrates

with Tensorflow only working as an interface to it.

Keras uses an object-oriented design so all the components of the other frameworks are considered

objects. This provides a cleaner and easier to understand interface. As a drawback, the full functionality

of Tensorflow is not available through Keras.

Keras is better optimized for usage with Theano. Theano is also a deep learning framework deeply

similar to TensorFlow since its computations could also be modeled as a data flow graph. However,

Theano, whose first release dates back to 2007, has been recently discontinued.

2.1.2.H Deep learning frameworks benchmarking

Given the mentioned deep learning frameworks, they have their architectural similarities and differences.

However, there are other concerns to take into account, such as the performance, when it comes to

selecting one either for research or commercial development. With that in mind, a study was made at

the beginning of 2017, featuring current CPU and GPGPU devices, to obtain a running time performance

comparison of such frameworks [16].

This study covered the execution of three different neural networks: Fully Connected Neural network

(FCN), CNN, and RNN. Overall results are depicted in Figures 2.6 and 2.7

The performance scalability is poor when using CPU, except for TensorFlow that scales better than

the other tested frameworks. Using only a single GPGPU, Caffe, CNTK, and Torch surpass MXNet and

TensorFlow’s performance. But in general, when using GPGPU acceleration all frameworks obtained a

significantly higher efficiency when compared to the CPU implementation. However, it is important to

notice Torch’s remarkably scaling capacity when using AlexNet, a CNN [16].
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(a) FCN-R (b) AlexNet (c) ResNet

Figure 2.6: Performance comparison on multi-GPU platform [16].

(a) FCN-R (b) AlexNet (c) ResNet

Figure 2.7: Performance comparison on Intel i7-3820 CPU [16].

2.2 General Purpose Graphics Processing Unit

GPGPU devices are known to be the state of the art in both the training and inference phase of deep

learning neural networks as they provide high levels of speed and energy efficiency [17]. However, the

search for neural networks’ accuracy empirically leads to increasing computational requirements as the

number of parameters and hidden layers grow larger.

The computation requirements of the training phase surpass inference by several orders of magni-

tude due to a high number of iterations and gradient calculations. Therefore, the training phase cost

considering an extremely large neural network, with over 1 billion parameters, becomes overwhelm-

ing. Nonetheless, such a large neural network was trained in just a few days using a system built with

TensorFlow predecessor, DistBelief, which used 1000 machines and a total of 16 000 CPU cores [18].

However, the vast majority of researchers and developers have no access to that amount of resources.

Notwithstanding, another system with just 3 machines and adopting GPGPUs to leverage computing

capabilities managed to train a neural network 6.5 times larger, with over 11 billion parameters, within the

same amount of time [19].
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2.2.1 Parallel computing

A GPGPU is a specialized hardware component designed to allow the exploitation of massive data

parallelism. For instance, image rendering is an application that benefits from these devices given its

high-level parallelism.

To program these kinds of devices several Application Programming Interface (API), are available,

such as CUDA and OpenCL. CUDA and OpenCL both provide low-level access to GPGPUs, which

ultimately translates to better performance ratings.

CUDA is a proprietary API developed by Nvidia which is only available for their own devices. On

the other hand, OpenCL is open-source and can run on a wider set of devices. Notably, translations

between CUDA and OpenCL are straightforward.

Figure 2.8: Hierarchy of threads, blocks, and grids on parallel computations (from [20]).

The representation of a parallel program, written CUDA or OpenCL, is depicted in the figure 2.8.

When creating such a program, the programmer first defines which kernels should be executed. Each

kernel is executed in parallel by several threads that the programmer can configure.

The threads, in their turn, are organized in blocks. Usually, thousands of threads are used per

kernel execution. Each thread has an ID within its block and access to its registers and private memory.

Threads belonging to the same block can cooperate using shared memory and barrier synchronization.

Finally, the blocks themselves are organized in grids. Each grid is composed of all the blocks execut-

ing the same kernel and allows both access to global memory and synchronization between dependent

kernel calls [20].
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2.2.2 GPGPU Architecture

The basic computational building block of a GPGPU is called Streaming Multiprocessor (SM) or Compute

Unit (CU) when manufactured by Nvidia or AMD, respectively. Each GPGPU device has at least one

of these, whose responsibility is processing a kernel’s workload. More precisely, given a workload

composed of a given amount of threads organized in blocks, the GPGPU has to schedule such blocks

to SMs or CUs. The same SM or CUs can be used for multiple blocks’ execution as long as it has the

necessary resources to do so. Hence, the maximum number of different kernels being executed at the

same time is limited to the number of SMs or CUs a given GPGPU has.

Usually, there are no resources to handle all the blocks at once, which means some blocks have to

wait for others to complete their execution before being assigned a SM or a CUs. Furthermore, blocks

are assigned to these processors in order, which means all blocks from a given grid are already assigned

before another grid’s block can be.

Inside the SM, threads are organized in warps, particularly, each warp is commonly composed of 32

threads in current Nvidia’s microarchitectures. On the other hand, inside the CU, threads are organized

into wavefronts instead, each composed of 64 threads on the Graphics Cores Next (GCN) architecture

[21]. Both the warps and wavefronts are executed by Single Instruction, Multiple Data (SIMD) stream

processors that the SM and the CU are equipped with.

2.2.2.A Nvidia

Nvidia’s Fermi microarchitecture, depicted in figure 2.9, was launched back in 2010 but allows further

understanding of the concepts explained above.

Nvidia’s Fermi microarchiteture GPGPU device is equipped with 16 SMs organized into 4 Graphic

Processing Clusters (GPCs). The device has an engine called GigaThread responsible for scheduling

blocks into SMs.

Inside the SM, the warp scheduler and the instruction dispatch unit are responsible for scheduling

and issuing each warp’s instructions, and since there are two sets available in this architecture, it is

possible to execute two warps concurrently within the same SM. The issued instruction for each warp

can then make use of 16 out of the 32 stream processors, also known as CUDA cores, the 16 load/store

units, or the four 4 Special Processing Unit (SPU). The warp scheduler relies on a scoreboard that

analyzes each warp’s dependencies to check which ones are ready for execution.

CUDA cores have a pipelined Floating Point (FP) unit and an integer Arithmetic Logic Unit (ALU). On

the other hand, SPUs allow the execution of other kinds of instructions such as sin, cosine, reciprocal,

and square root. Since there are only four units available, and one instruction is executed per clock

cycle, a full warp takes eight cycles to complete within the SPU. To further improve performance, SPU

are decoupled from the dispatch unit so that other instructions might be issued while it is occupied [20].
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Figure 2.9: Nvidia’s Fermi microarchitecture.

A – Tensor Core Nvidia announced in 2017 a microarchitecture named Volta heavily focused on

deep learning. It provided optimizations concerning the development of such applications.

The Volta microarchitecture has a redesigned SM architecture and a new processing unit called

the tensor core, both optimized for deep learning algorithms [22]. A tensor core is a programmable

matrix whose operation is depicted in Equation 2.3. It is located in the SM along with CUDA cores and

load/store units. Tensor cores, applied in the first Nvidia GPGPU to support this architecture, Tesla V100,

deliver up to 125 TFLOPS, equivalent to a 12 times boost compared to the previous microarchitecture

flagship, Nvidia Tesla P100. Both the training and inference phases of a neural network benefit from this

unit, as they require, as mentioned, intensive matrix multiplications.

D =


A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

×

B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

+


C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3

 (2.3)

A tensor core performs the operation D = A × B + C as described by the equation 2.3. In a

multiplication operation where both operands have the same precision, the result has to have twice

as much precision to guarantee no precision loss. With this in mind, matrixes A and B only need to

support FP16 (Floating Point represented with 16 bits) to provide a result, matrix D, with FP32 precision.

Whereas matrix C has to support FP32 precision operands.

CUDA and also other libraries implemented with it, such as cuDNN and cuBLAS, which were up-
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dated to take advantage of tensor cores. Since many deep learning frameworks use these libraries

to support their GPGPU acceleration, such as Caffe2 and Tensorflow, they directly benefit from these

improvements.

2.2.2.B AMD

AMD’s Vega microarchitecture, launched in 2017, is depicted in figure 2.10. It features 64 Next-generation

CU, each with a total of 64 stream processors as mentioned above. Similarly to the Nvidia’s clusters,

GPC, the CU are organized into compute engines.

Figure 2.10: AMD’s Vega microarchitecture (from [23]).

The design goals of the Vega architecture include power efficiency improvements and scalable per-

formance. One of the ways it achieves that is by shipping new power management microcontrollers that

allow implementing more sophisticated power-control algorithms.

Furthermore, the Vega microarchitecture delivers higher frequency clocks when compared to its

predecessor. Achieving this metric required redesigned the chip to meet the required timing targets [23].

A – Rapid Packed Math Processing units are vastly optimized for 32-bit FP operations. However,

some specialized applications, including deep learning, video processing, and computer vision, do not

always require this precision level. Thus, computing 32-bit FP in such cases translates into an overhead.

21



With this issue in mind, AMD added the Rapid Packed Math feature in the Vega microarchitecture,

which adds a new set of 16-bit FP and integer instructions into the instruction set. This set of instruc-

tions allows doubling the throughput when compared to their 32-bit counterparts. Naturally, using lower

precision calculations also requires less register space and bandwidth.

B – Adaptive Frequency and Voltage Scaling AMD’s Vega microarchitecture includes a feature

called Adaptive Frequency and Voltage Scaling that targets performance efficiency, which was intro-

duced in the previous microarchitecture named Polaris. The GPGPU device is equipped with sensors

responsible for choosing the device’s supply voltage and operating frequency. This technique improves

the fact that there is a conservative design approach, leading to higher voltage guardbands, and conse-

quently sacrificing efficiency.

To achieve the proposed goal, the GPGPU has a specific circuit that mimics the device’s critical path

under constant monitoring. Allied with a power supply monitor, that evaluates the available voltage at

different regions of the chip, Adaptive Frequency, and Voltage Scaling can measure and intelligently

choose the best supply voltage and operating frequency.

After the device boot’s up both monitoring systems are used to choose the device’s supply voltage

and operating frequency. This also has the advantage of accounting for other factors such as aging. The

material used to build the GPGPU tends to deteriorate as time goes by, but having this system allows

updating the device’s supply voltage and frequency accounting for those phenomena [24].

2.2.3 GPGPU accelerated libraries

CUDA and OpenCL, as mentioned, enable the development of low-level parallel kernels in GPGPU

devices, by providing an API that a programmer can use within a project. In truth, the programmer

does not need to know the actual implementation behind those libraries and still be assured that he is

using optimized and efficient primitives. Nonetheless, the programmer might not use those primitives

efficiently.

In this subsection, the focus is on libraries that are currently used in deep learning implementations.

2.2.3.A cuDNN

Nvidia provides a library, called cuDNN, which extends their low-level GPGPU library, CUDA, to provide

efficient neural networks algorithms accelerated by a GPU. Deep learning algorithms such as activation

functions, pooling operations, convolutions, among others are provided in this library whose main inten-

tion is to reduce the need for parallel code within deep learning implementations. In fact, it is possible to

deploy such programs without writing any parallel code, using only these libraries’ functions [25].
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Currently, there is no other library providing the same set of GPGPU accelerated primitives as cuDNN

provides. Nonetheless, it is possible to use CUDA or OpenCL alone, or even some BLAS library, to build

custom primitives as needed [25].

2.2.3.B cuBLAS

Basic Linear Algebra Sub-routine (BLAS) is a set of linear algebra primitives that specify operations such

as vector addition, scalar multiplication, dot products, linear combinations, or matrix multiplications.

Nvidia is also in the vanguard of this libraries’ implementation featuring GPGPU acceleration. They

provide cuBLAS, which also uses CUDA to deploy efficient kernel executions into the GPGPU. This

library can relieve intensive algebra computations by distributing them to a single or a cluster of Nvidia

GPGPUs.

However, there are more BLAS libraries available. For instance, MAGMA, which allows the exploit

of heterogeneous systems, with both CPU or GPGPU. MAGMA has the advantage of providing both

OpenCL and CUDA implementations of its library so that any given GPGPU device can benefit from it.

Besides, MAGMA also provides specialized libraries for embedded computing [26].

There are also BLAS libraries without GPGPU acceleration, i.e., using only the CPU, such as Eigen,

openBLAS, and LAPACK.

2.2.3.C ROCm

Radeon Open Ecosystem (ROCm) is an open-source ecosystem, built by AMD that supports the de-

ployment of scalable systems for high-performance computing and machine learning applications. It

includes a collection of libraries, development tools, APIs, drivers, and monitoring tools that support

AMD’s and other GPGPU devices. Given the open-source nature of the project, existing deep learning

frameworks, such as TensorFlow and PyTorch, are integrating ROCm.

At the core of the ROCm ecosystem is Heterogeneous Interface for Portability (HIP), which allows

developers to create code ready to compile either into Nvidia’s or AMD’s GPGPUs. It does do by lever-

aging Nvidia’s proprietary libraries or ROCm libraries themselves, respectively [27].

Similarly to Nvidia’s libraries discussed above, ROCm, also includes BLAS libraries through rocBLAS

and deep learning libraries through MIOpen [28].

2.3 Computing power performance

GPGPU devices are the main accelerators for deep learning models, and it is widely used across such

applications. At the same time, there is a high demand for performance improvements on those appli-

cations. However, the performance enhancement of deep learning applications is met with increasingly
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higher computational requirements. Consequently, the improvements in the deep learning field can

outpace the improvements on the GPGPU devices.

As an example, current computer vision applications are expected to require more than 2 weeks of

training on a single GPGPU device. Therefore, researchers opt for large clusters of GPGPU devices

to reduce those timings. However, the performance success of this approach depends heavily on an

efficient rate of resource utilization and low communication overhead. The same is true for inference,

whose challenge is guaranteeing a low latency whilst simultaneously keeping an efficient rate of resource

utilization and throughput.

The literature on deep learning improvement techniques for GPGPU devices is rapidly growing. How-

ever, the majority of these works neglect the power consumption impact of the proposed solutions. The

increasing power consumption is a major challenge on the GPGPU device’s usage, especially when

considering resource-constrained environments. There is a need for performance improvements to be

weighed against their energy overhead, and for a deeper dive on lower precision techniques that impose

a trade-off between accuracy and efficiency [2].

2.3.1 Dynamic Voltage and Frequency Scaling Techniques

Dynamic Voltage and Frequency Scaling (DVFS) is a technique used to improve a given processing

unit power management. It consists of dynamically updating the processing unit working frequency:

Reducing the working frequency will consequently trigger a supply voltage reduction.

Equation 2.4 translates the relationship between the processing unit’s frequency f , supply voltage

V , and power consumption P .

P ∝ f × V 2 (2.4)

Since the processing unit’s frequency is proportional to its supply voltage, the relationship on the

equation 2.4 strongly encourages DVFS when seeking energy efficiency.

First of all, note that DVFS is transversal to any processing unit, including both CPUs and GPGPU.

Secondly, reducing the operating frequency has the advantage of reducing the supply voltage and conse-

quently improving the overall energy consumption. However, this is possible at the expense of execution

performance, since a lower frequency leads to longer execution timings [29].

Jiao et al. [30] studied how frequency scaling impacts the performance and power consumption of

a GTX 280 GPGPU. To achieve that, they used distinct sets of applications categorized into three

different groups: compute-intensive, memory-intensive, and hybrid. They observed that the DVFS im-

pacts on energy efficiency are dependent on the application itself. More specifically, it is dependent on
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the relationship between global memory transactions and computation instructions. Finally, based on

the application properties, both the memory and the cores frequency of the GPGPU device would be

adjusted.

Guerreiro et al. [31] proposed a new model to evaluate the potential performance and power con-

sumption improvements of applying DVFS to a given application. They used the profiling result of a

set of synthetic benchmarks to train a machine learning model classifier. With the trained classifier it is

possible to characterize any kind of GPGPU application performance-wise and power consumption-wise

when submitted to DVFS. Their results show that the classifier can successfully predict the optimal fre-

quency for each application, obtaining an average energy saving improvement of 16% with a maximum

of 36%.

2.3.2 Voltage operating limit

Even though DVFS techniques do achieve high energy saving potentials, its implementations focus

mostly on frequency scaling to achieve energy savings. The voltage reduction is usually a byproduct of

the frequency scaling since lower frequencies require lower supply voltages. In other words, the device’s

supply voltage, within common DVFS implementations, is not actively managed.

However, processing unit manufacturers when designing a processor must account for phenomenons

that might negatively impact its performance. When doing so, they usually add a voltage guardband on

top of the minimum supply voltage required for the device to function properly. It is estimated that the

voltage guardband is approximately 20% of the recommended voltage by the manufacturer, i.e. 20% of

the nominal voltage [3,4].

Leng et al. [3] study the benefits of exploiting the voltage guardband using a set of commercial

GPGPU devices from Nvidia. Their results show energy-saving results ranging up to 25%. Further-

more, they conclude that the GPGPU device’s minimum operating voltage is dependent on the running

application.

Additionally, based on each application’s performance counters they build a model to predict a given

application’s minimum operating voltage. The prediction error of their model ranges up to 3% with an

average of 0.5%. As the authors suggest, their accurate model opens up possibilities to a dynamic

voltage guardband scheme with potential energy savings ahead.

2.4 Summary

This chapter provided a brief introduction to deep learning. It discussed deep learning models, provided

an insight into the different layers currently available and which frameworks developers can use to deploy

this technology.
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GPGPU devices are the main accelerators of deep learning applications. Thus, this chapter also

explained how they work behind the scenes, exemplifying with architectures from Nvidia and AMD.

Finally, the computing performance of GPGPU devices was discussed along with existing DVFS

techniques used to improve it.
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The previous chapter laid down the established knowledge regarding deep learning, how GPGPU

devices are important accelerators of that technology, and how GPGPUs themselves are designed.

Additionally, issues regarding the scalability of deep learning applications under resource-constrained

environments were discussed along with potential solutions.

This chapter focus on characterizing an AMD Radeon Vega Frontier Edition GPGPU under a pro-

gressively lower supply voltage, effectively forcing the reduction of the voltage guardband imposed by

the device’s manufacturer. To do so, a set of benchmarks, characterized by their focus on a specific

architecture area of the GPGPU, are used.

The choice of an AMD device is twofold. On one hand, the literature regarding DVFS techniques

applied to AMD devices is scarce when compared to Nvidia, whilst, on the other hand, AMD does

provide the required tools to proceed with this endeavor.

The goal is to identify the minimum working voltage for each benchmark, i.e. the lowest supply

voltage that still produces the correct output result. Additionally, this chapter will identify what factors

might have an impact on the voltage reduction results, namely frequency, temperature, aging, process

variation, and voltage noise. Finally, provides an evaluation of the potential energy savings that reducing

the voltage guardband produces.

3.1 Data acquisition

3.1.1 Vmin and Vcrash

Voltage guardband is the difference between nominal voltage and Vmin, the lowest voltage at the

GPGPU terminals that allows an application to run correctly. Further reducing the supply voltage below

Vmin will lead to incorrect results or the device’s failure.

The correctness of the applications’ execution is here defined as the one whose results exactly

match the results obtained from the same execution at nominal voltage. Hence, the nominal voltage

execution is used as a reference towards the remaining executions, since it is assumed that using the

manufacturer’s recommended settings will produce the correct result.

Nevertheless, the voltage can be reduced even further allowing errors to happen, and thus affecting

the execution correctness. Naturally, this extra reduction is finite leading to the definition of Vcrash: the

voltage value at which the application is no longer executed. There are multiple types of error observed

when the device’s voltage is reduced below Vmin, such as Silent Data Corruption (SDC), run-time errors,

system crashes, and indefinitely long executions.

SDC occurs when the execution finishes and no warning or error message is triggered, but the

final result is not correct, i.e. apparently no error has occurred but the device wrote erroneous data

into memory [32]. Run-time errors, on the other hand, occur when the program execution fails during
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run-time due to memory access faults and such failure is logged by the system. System crashes and

indefinitely long executions require a manual system reboot so that the normal GPGPU device access

can be restored.

All programs are executed three times at all voltage levels ranging from the nominal voltage and 30%

below the nominal voltage, with a resolution of 6.25mV as explained in the following sections. Due to the

mentioned potential errors which are more prominent below Vmin, each execution is done after a system

reboot.

Rebooting the system before each program execution largely increases the experimental period, but

ensures that the system attempts to execute the program at each voltage level. Furthermore, each

execution is preceded by a set of instructions that ensure a known state on the GPGPU device. These

instructions are issued using a AMD tool as discussed in section 3.1.4. Naturally, the supply voltage is

defined at this stage, but also the device’s core frequency and fan control. Allied with the system reboot,

this set of instructions establishes a common ground for all executions.

3.1.2 Power Measurements

A voltage reduction at the GPGPU terminals naturally implies variations in consumed energy. To quantify

this variation and evaluate its advantages, power measurements were collected during all applications’

execution.

The power consumption monitoring tool, gpowerSAMPLER [33], is used to register the power metrics

of each application execution. This tool allows sampling the applications with customizable intervals

providing not only a report of the energy consumption evolution on the GPGPU device but also an

overall report of the average consumed energy.

Additionally, gpowerSAMPLER allows sampling of the GPGPU device’s temperature using the same

customizable intervals. All applications tested during this work were executed using this tool.

3.1.3 Noise Control

Some variables might affect the quality of the measurements and even distort the Vmin results, such as

the temperature and background activities.

In order to minimize the temperature impact i.e., to stabilize the temperature throughout the exper-

iment, the fan speed was fixed for all sets of applications where the same core frequency was used.

Thus, guaranteeing that each program is executed under the same temperature conditions.

Regarding the impact of background activities, no other process was running in the GPGPU during

the applications’ execution, thus reducing background activities’ influence on the results. This is further

enforced by the system reboot before each program execution.
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3.1.4 GPGPU Card

The tests mentioned in this work were executed using the AMD Radeon Vega Frontier Edition graphics

card, whose specifications are listed in Table 3.1. This GPGPU device is featured in this study due

to three reasons. First of all, there is a lack of studies characterizing AMD devices’ behavior when

submitted to such constraints, since the majority of the literature focuses on Nvidia devices. Secondly,

and as a consequence of the first reason, the GPGPU card used is one of the AMD flagships currently.

Lastly, AMD provides all the required tools to proceed with this endeavor and on top of that is growing

within the deep learning field, which will be the focus of the next chapter. AMD has recently launched

several open-source tools and frameworks dedicated to deep learning which are relevant to the field [27].

To control the voltage at the GPGPU’s terminals, AMD GPU Tool (AGT) is used. This tool is also

used to control the fan speed during the experiments and to stabilize the working frequency of the cores

and memory. However, AGT allows a wider range of tweaks and customizations of the GPGPU device

settings.

The minimum resolution allowed by the AGT tool, regarding the core voltage of the GPGPU device, is

6.25mV. Therefore, the GPGPU core’s voltage was decreased using steps of 6.25mV as stated above.

Table 3.1: AMD Vega Frontier Edition specifications.

Architecture Vega
Technology 14 nm

Thermal Design Power (TDP) 300W

Compute Units 64
Stream Processors 4096
Peak Single Precision (FP32) 13.1TFLOPs
Peak Double Precision (FP64) 819GFLOPs

Memory Size 16GB
Memory Type (GPU) HBM2
Memory Bandwidth 484GB s−1

All benchmarks are executed using the 1028.57MHz frequency level. However, in order to study the

frequency impact on Vmin in the subsection 3.3.2.A, the 1107.69MHz frequency level is also studied.

Note that the higher frequency is always explicitly mentioned throughout this document. In all stud-

ies, irrespective of the frequency, voltage is progressively reduced from its nominal value, which varies

depending on the chosen frequency, until the GPGPU fails to continue such process.

3.2 Benchmarks

Different types of applications, spanning through three distinct sets, were used to characterize the volt-

age guardband.
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The first set includes synthetic benchmarks, which stress only a given component of the GPGPU

architecture. This allows understanding to which degree each architecture component impacts Vmin.

Synthetic benchmarks are detailed in subsection 3.2.1.

The second set includes benchmarks with dependencies. Whilst these benchmarks still stress only

a given component of the architecture, the instructions are organized in a way that forces dependencies

with previous instructions to happen. Different degrees of dependencies were used, ranging from 1

instruction dependency to 8 instruction dependency for each stressed architecture component. Depen-

dency benchmarks are detailed in the subsection 3.2.2.

Both synthetic and dependency benchmarks are based on previous work targeting Nvidia devices.

These benchmarks were adapted from CUDA into HIP, which is a portable programming language that

can be built using CUDA or Heterogeneous Compute Compiler (HCC), for Nvidia and AMD devices

respectively. In this work, given the chosen graphic card, HIP applications were built using HCC [34,35].

3.2.1 Synthetic benchmarks

The first studied set is composed of synthetic benchmarks. Each of these benchmarks stresses only a

given component of the GPGPU architecture.

Benchmarks are named according to the architecture component they focus on. DRAM, L2 and Shared

refer to the memory unit, corresponding to Dynamic Random-Access Memory (DRAM), L2 cache, and

shared memory, respectively. On the other hand, Int, SP, DP and SFU refer to the functional unit, corre-

sponding to integer, single precision, double precision, and special function unit operations, respectively.

Algorithm 3.1 depicts the kernel code for Int, SP and DP depending on the value type, integer, float

or double respectively, of the template variable named T. The template variable is one of the arguments

of the benchmark itself, defined on line 1 of the algorithm 3.1.

Thus, algorithm 3.1 is an abstract implementation of Int, SP and DP. Each of these benchmarks will

instantiate this implementation with the correct data type they represent.

The variable COMP ITERATIONS used in line 3 of the algorithm 3.1, which defines how many iterations

should the benchmark complete, has a different purpose besides the simple iteration count cap. By

varying COMP ITERATIONS, one can force different combinations of memory accesses and actual com-

putations which, ultimately, translates into slightly different ways of exciting the GPGPU regarding the

same functional component.

The variable UNROLL ITERATIONS acts in the same fashion as COMP ITERATIONS, in the sense that it

controls the number of iterations executed by the benchmark. The difference is that UNROLL ITERATIONS

is preceded by the #pragma unroll compiler optimization.

All the tests, including the dependencies benchmarks depicted in subsection 3.2.2, use the following

configuration
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Algorithm 3.1 Example of synthetic benchmarks code

1 template <class T> __global__ void benchmark(int aux, T * result_device){

2

3 for(int j=0; j<COMP_ITERATIONS; j+=UNROLL_ITERATIONS){

4 #pragma unroll

5 for(int i=0; i<UNROLL_ITERATIONS; i++){

6 r0 = r0 * r0 + r1;

7 r1 = r1 * r1 + r2;

8 r2 = r2 * r2 + r3;

9 r3 = r3 * r3 + r0;

10 }

11 }

12

13 result_device[hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x] = r0;

14 }

COMP ITERATIONS = 1024 (3.1)

UNROLL ITERATIONS = 32. (3.2)

Having the same configuration ensures all benchmarks execute the same number of operations, thus

guaranteeing consistency across all the benchmarks.

The #pragma unroll optimization tag, used in line 4 of algorithm 3.1, is also worth further detailing.

It is, as mentioned, a compiler optimization which, as the name suggests, unrolls a loop. An example

of this behavior is presented in algorithms 3.2 and 3.3. By doing this optimization, the compiler will

translate each of the loop’s iterations into explicit instructions as exemplified in algorithm 3.3, i.e unroll

the loop.

More precisely, and using the algorithm 3.2 as an example, apart from assigning the value of the

variable index to the vector vector, by not unrolling the loop the processor would need to initialize the

variable index, increase the variable index 8 times and evaluate 9 times if index is less than 8.

Another advantage of loop unrolling lies in the enhancement of Instruction-Level Parallelism, since

GPGPU’s execution incurs a performance penalty for every branch it executes.

Algorithm 3.2 Simple loop

1 for (int index = 0; index < 8; index++ )

2 vector[index] = index;

Even though the algorithm 3.1 does not show any evidence of that, all the benchmarks were initialized
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Algorithm 3.3 Compilation result of algorithm 3.2 using #pragma unroll

1 vector[0] = 0;

2 vector[1] = 1;

3 vector[2] = 2;

4 vector[3] = 3;

5 vector[4] = 4;

6 vector[5] = 5;

7 vector[6] = 6;

8 vector[7] = 7;

with a known value allowing for the extraction of the benchmark final result. The benchmark final result

is used to evaluate its execution correctness when compared against the same value under normal

conditions, i.e. at the GPGPU nominal voltage.

3.2.2 Dependencies benchmarks

Dependency benchmarks extend the previous synthetic benchmarks. Thus, dependencies benchmarks

also have the same architecture-specific type of application with a focus on functional architecture.

However, a new element is introduced: dependencies.

The execution of a given program is described by the sequential processing of each of its instructions

by the processing unit. Since the execution is sequential, when the program loads a new instruction it

is assumed that the previous ones are completed and their results are available. However, due to the

architecture of modern processing units, some instruction’s result might not be ready by the time a new

instruction is trying to fetch it.

This means the processing unit must either stall the execution until the result is ready, actively push

data from the previous instruction execution stage or a combination of both [36,37].

Within the realm of dependencies, there are different types of dependencies: control and data de-

pendencies, depending on whether the execution is compromised due to control instructions or data

instructions, respectively. Control dependencies occur when the execution of an instruction is decided

by the evaluation of a previous one. On the other hand, data dependencies occur when contiguous

instructions share the same resources e.g., registers.

Algorithm 3.4 exemplifies what a control dependency looks like. The execution of the last instruction

depends on the result of the first one. Thus, that instruction is control dependant on the first one. The

processing unit must solve this dependency to guarantee the program’s correctness, considering that

the following statements might use the same resource R2.

Furthermore, data dependencies can be torn down into different subgroups. More specifically, Read-

after-Write (RAW), Write-after-Read (WAR), and Write-after-Write (WAW) dependencies, which are ex-
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Algorithm 3.4 Control Dependency

1 IF (R1 = A)

2 R2 = B

emplified in the algorithms 3.5, 3.6 and 3.7 respectively.

The names of these data dependencies are self-explanatory. RAW dependency, or flow dependency,

occurs when the processing unit is trying to read a value that hasn’t yet been written in previous instruc-

tions. This is what happens in the algorithm 3.5: The value A might not be available in R1 by the time the

processing unit starts executing that last instruction.

Algorithm 3.5 RAW - Flow Dependency

1 R1 = A

2 R2 = R1

Similarly, a WAR dependency, also known as an anti-dependency, happens when the processing

unit reads from a resource that is updated afterward. In the algorithm 3.6, the variable R1 is updated

immediately after its value being read.

This dependency is also known as a name dependency because using another processor resource

would solve the issue. In the example, using any other variable besides R1 would be innocuous.

Algorithm 3.6 WAR - Anti-dependency

1 R2 = R1

2 R1 = A

Finally, a WAW dependency arises when a program as two contiguous instructions updating the same

resource. As the WAR dependency, this one is also a name dependency due to the same reasons.

Plugging this knowledge into the synthetic benchmarks described in the previous section creates the

dependencies benchmarks. As mentioned, processing units have the means to solve these issues as a

given program is executed. Nonetheless, the processing flow suffers an overhead whilst solving them.

The goal with this set of benchmarks is to characterize the processing unit’s voltage guardband under

the known overhead these benchmarks introduce.

Considering the nature of each of the previous data dependencies, this section solely focuses on

RAW dependencies, which are also known as true dependencies. This is because name dependencies,

which include WAR and WAW, are easily solved by the compiler itself.

Algorithm 3.8 illustrates the data dependency kernel used in this study. The core kernel instructions,
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Algorithm 3.7 WAW - Output Dependency

1 R1 = A

2 R2 = R1

3 R1 = B

from line 6 through line 9, all depend on the result of the previous one i.e., one instruction dependency,

thus forcing the RAW data dependency.

To evaluate the degree to which these hazards influence the execution, variants of the illustrated

kernel are created. Variants are created by varying the number of instructions between the dependent

ones. As an example, a two instruction dependency means that the current instruction depends on the

result of the second last instruction. Similarly, a three instruction dependency means that the current

instruction depends on the result of the third last instruction. Dependency benchmarks are named in the

same manner as the synthetic ones with a suffix stating the number of instructions the kernel depends

on.

Algorithm 3.8 Dependency benchmark kernel (1 instruction dependency)

1 template <class T> __global__ void benchmark(int aux, T * result_device){

2

3 for(int j=0; j<COMP_ITERATIONS; j+=UNROLL_ITERATIONS){

4 #pragma unroll

5 for(int i=0; i<UNROLL_ITERATIONS; i++){

6 r0 = r0 * r0 + r3;

7 r1 = r1 * r1 + r0;

8 r2 = r2 * r2 + r1;

9 r3 = r3 * r3 + r2;

10 }

11 }

12

13 result_device[hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x] = r0;

14 }

This code is also compiled using the AMD HCC. Then, each benchmark variant is executed for the

three frequency levels and all the voltages ranging from the frequency nominal voltage until the GPGPU

device failure with 65mV decrements.

Energy consumption and execution time metrics are extracted from each execution using the tools

mentioned in previous sections. Doing so allows characterizing the GPGPU device under the depen-

dencies constraints.

35



3.3 Evaluation

3.3.1 Minimum operating voltage

3.3.1.A Synthetic Benchmarks

Figure 3.1 plots the measured Vmin for the studied synthetic benchmarks. Further reducing the voltage

below Vmin results in either run-time errors, system crashes, or indefinitely long executions. In other

words SDC did not occur when the device’s voltage was below Vmin. Thus, Vcrash matches Vmin results

for the synthetic benchmarks.
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Figure 3.1: Obtained Vmin for synthetic benchmarks.

The first empirical conclusion is that multiple Vmin results were obtained across the different bench-

marks. The group of benchmarks that target the ALU, which includes Int, SP, DP and SFU, all obtained

along with Shared a Vmin of 0.8V at 1028.57MHz. DRAM and L2 benchmarks obtained a Vmin of 0.8375V

and 0.843 75V, respectively.

Despite the synthetic benchmarks being a small set of programs and that some Vmin clusters can be

defined nonetheless, there are different Vmin results across different applications. This is aligned with

the expectations that Vmin depends mostly on the application itself [3]. Section 3.3.2 focus on exploring

this the cause of the Vmin variability.

It is important to note that the DRAM component of the GPGPU plays an important role across all

benchmarks. All benchmarks rely on the DRAM memory to communicate back with the CPU. This

communication is crucial so that it is possible to evaluate the correctness of the benchmark result.

What distinguishes the DRAM benchmark from the remaining ones is that DRAM executes multiple
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writes to the DRAM memory whilst the other benchmarks only write in that memory at the end of their

execution. Given the results of the DRAM, benchmark it is also possible to conclude that writing to the

DRAM has a high impact on Vmin.

Further analyzing the results presented in figure 3.1, one can infer that a significant voltage guard-

band is obtained for all the benchmarks ranging from 12.34% to 16.88% with an average of 15.68%

regarding nominal voltage of 0.9625V. These values are slightly below the 20% range obtained in previ-

ous works [3,38,39].

3.3.1.B Dependencies benchmarks

The obtained results for benchmarks with dependencies are plotted in figure 3.2. Naturally, as previously

mentioned, no memory benchmarks are present since data dependencies cannot be forced on memory-

only applications.
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Figure 3.2: Obtained Vmin for benchmarks with dependencies.

Hence, the considered set of benchmarks include Int, SP and DP applications, that is integer, single-

precision and double-precision only applications, respectively. There are also 4 types of data depen-

dencies for each application. Each of these data dependency types is identified by suffixing the name

of the application with 1 inst, 1 inst 2 inst, 3 inst and 8 inst. These suffixes are self-explanatory.

For instance, 1 inst means each issued instruction has a dependency with the last issued instruction,

i.e. 1 instruction dependency. Analogously, 8 inst means each issued instruction has a dependency

with the eighth last issued instruction, i.e. 8 instructions dependency. 1 inst 2 inst means there is

simultaneously a dependency with the last and the second last issued instruction.
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Empirically, a larger adjacency between dependent instructions implies a higher computational cost,

since more stalls have to be introduced by the processor to guarantee the correct result is available for

a given instruction’s operand before it is issued. With that in mind, it is expected for Vmin to be lower on

1 inst suffixed applications, when compared with 8 inst suffixed applications, as an example. How-

ever, that conclusion cannot be inferred from the results presented in figure 3.2 since mixed results are

obtained: for DP instructions it is observable the exemplified expected behavior. Yet, for SP instructions,

the opposite is observed.

Additionally, one other thing to note is that similarly to the synthetic benchmarks, dependencies

benchmarks’ execution did not lead to incorrect results, meaning that Vcrash is equal to Vmin in all these

applications.

Finally, even though the Vmin variation is not as steep as expected within the dependencies bench-

mark, when these are compared, as a whole, to the synthetic benchmarks one can observe a few

differences. For Int, SP and DP, Vmin is on average 0.853 75V, 0.8475V and 0.851 25V on the depen-

dencies benchmarks, respectively. These values correspond to an undervoltage of 11.30%, 11.95% and

11.55%. The obtained undervoltage for the dependency benchmarks is lower than the one benchmarks

obtained for the synthetic benchmarks. This result is aligned with the expectations that dependency

benchmarks would produce a lower voltage guardband optimization when compared to the synthetic

benchmarks.

3.3.2 Impacts of voltage guardband and frequency optimizations

The previously presented experimental results show that Vmin varies depending on the program that is

executed. More specifically, results show a Vmin variation ranging from 0.8V to 0.86V, corresponding to

a variability of 0.06V or 6.2% when compared to the nominal voltage.

The obtained 0.06V variability is 40% lower than the variability of 0.1V obtained by Leng et al. [3].

This difference can be explained by the different frequency settings used and the set of benchmarks

used in the current study.

First of all, this study features a smaller set of benchmarks where each of them focuses on a specific

GPGPU architecture unit of the processing device. Thus, these benchmarks are, by nature, less complex

and less resource-dependent. Contrasting these properties with the broader set of programs used in

the mentioned work explains the variability difference. Furthermore, the results discussed in chapter 4

prove the variability increase as the complexity of programs analyzed also increases.

Despite results showing a lower Vmin variability, different programs indeed showed different Vmin re-

sults. The goal of this subsection is to study which variables are the main contributors to such variability.

The discussed variables include operating frequency, temperature, aging, process variation, and voltage

noise.
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3.3.2.A Operating Frequency

To evaluate the impact the frequency has upon Vmin variability, the voltage guardband experiment de-

scribed previously was repeated under different constraints. All the controlled variables, such as fan

speed, were kept and frequency was increased to a higher level using AGT.

Note that AGT allows manipulating two different frequencies of the GPGPU device: memory fre-

quency and core frequency. As the names suggest, these properties are used to set the frequency at

which the GPGPU dedicated memory and cores are working on, respectively. In this study, the focus is

on the latter: the cores frequency. This is because those cores are responsible for the actual program

processing.

Figure 3.3 shows the obtained Vmin readings at the two studied frequency rates: 1028.57MHz and

1107.69MHz.

Figure 3.3: Vmin obtained for the benchmarks at 1028.57MHz and 1107.69MHz.

On an empirical analysis, benchmarks that attained a higher Vmin reading at 1028.57MHz, also

obtained a higher Vmin result at 1107.69MHz. Once again, it is noticeable that synthetic benchmarks

achieve lower Vmin results when compared to their dependency counterpart at both core frequencies.

Additionally, the Vmin variability on the higher frequency experiment matches exactly the variability

of the lower frequency experiment. The difference between the minimum and maximum obtained Vmin
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is 0.06V in both cases.

Furthermore, one can observe the considerably higher Vmin reading of the higher frequency, at

1107.69MHz. Whilst that is true, it is also true that the GPGPU device requires a higher nominal voltage

to operate at a higher frequency level. Nominal voltage is defined as the out of the box voltage setting,

established by the manufacturer. Specifically, to the AMD Radeon Vega Frontier featured in this study,

its nominal voltage is 0.9625V when its cores are working at 1028.57MHz and 1.0375V when its cores

are working at 1107.69MHz.

Thus, to establish a common ground of comparison between both frequency experiments, Vmin

results were normalized against the nominal voltage using equation 3.3. Note that, as mentioned above,

Vnominal is not the same at different operating frequencies. The goal of normalizing Vmin is to evaluate

the real impact of the GPGPU core frequency on the device’s voltage guardband.

Vnormalized =
Vmin

Vnominal
(3.3)

The figure 3.4 plots Vmin normalized for the lower frequency vs Vmin normalized for the higher fre-

quency for all benchmarks. In other words, each point in the plot represents one benchmark: its nor-

malized Vmin at 1028.57MHz dictates its position on the vertical axis, whilst the normalized Vmin at

1107.69MHz dictates its position on the horizontal axis.

Furthermore, the figure 3.4 also includes two dashed lines. The first assumes a scenario the voltage

guardband is proportional to Vnominal on both frequencies. If this is the case, each benchmark will obtain

the same normalized Vmin when the GPGPU is working at different frequencies, i.e. Vmin@1028.57MHz =

Vmin@1107.69MHz. The frequency impact on the voltage guardband can be measured from how far away

from this dashed line the actual results are. Consequently, the second dashed line represents the linear

regression of all points in the graph. It allows evaluating how far from the first dashed line the results are

on average, effectively measuring the frequency impact on the voltage guardband.

The linear regression from the data points extracted from figure 3.4 is defined on equation 3.4. There

is an observable proclivity for higher Vmin readings on lower core frequency settings, which translates

into a lower voltage guardband on lower frequencies.

According to figure 3.4, Vmin tends to be higher on lower core frequencies, as proven by the linear re-

gression of the data points in the figure, described by equation 3.4 and identified with the label ”Average

Impact” on the figure.

Vmin@1028.57MHz = Vmin@1107.69MHz + 0.0258 (3.4)
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Figure 3.4: Benchmark’s normalized Vmin at 1028.57MHz plotted against their normalized Vmin at 1107.69MHz.

The linear regression defined by equation 3.4 reveals that the lower core frequency, running at

1028.57MHz, achieves on average 2.58% higher Vmin results. This means that the gap between Vnominal

and Vmin is negatively impacted by 2.58% on the higher frequency experiment when compared to the

lower frequency counterpart. In other words, the voltage guardband is 2.58% lower the higher frequency

experiment at 1107.69MHz.

Furthermore, figure 3.4 also contains two dashed lines identified with the label ”Max Impact”, which

are described by equation 3.5 and equation 3.6. These lines, with a unitary slope, correspond to the

boundaries of all the data points in figure 3.4, representing the maximum impact the GPGPU device’s

core frequency had on Vmin.

Vmin@1028.57MHz = Vmin@1107.69MHz − 0.0062 (3.5)

Vmin@1028.57MHz = Vmin@1107.69MHz + 0.0402 (3.6)

In conclusion, results show that the frequency has virtually no impact on the Vmin variability since

both experiments achieved the same 0.06V Vmin variability. However, programs running at a higher

frequency show the proclivity to have a lower voltage guardband, i.e. a reduced distance between

Vnominal and Vmin. Nonetheless, this tendency is a negligible 2.58%.

3.3.2.B Temperature

As mentioned, all program executions were encapsulated within gpowerSAMPLER which allows mea-

suring a set of metrics, including the GPGPU device temperature.

In order to study the temperature impact in Vmin measurements, both synthetic and dependency,
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benchmarks were executed in the same fashion as before and using two different temperature levels at

a fixed frequency.

With the available equipment, it is not possible to enforce a steady temperature reading on the device.

However, AGT allows controlling the fan speed of the AMD Radeon Vega Frontier. Using this property

of the tool one can choose to set the fan speed to low, medium, or high intensity. There is also a fourth

setting called auto that, as the name suggests, adjusts the fan intensity dynamically according to the

temperature sensor.

In light of the temperature study, benchmarks were executed using both medium and high fan inten-

sity at a fixed frequency. Tests using low fan intensity led the program execution to lag indefinitely and

in some cases to system failures, thus preventing tests to reach a wider temperature range.

Figure 3.5 depicts the minimum, average, and maximum temperature reading levels for each of the

benchmarks. The figure is composed by two sub-figures, 3.5(a) and 3.5(b), which represent the high

and low fan intensity, respectively.

(a) Low-temperature (b) High-temperature

Figure 3.5: Minimum, average and maximum temperature variation for both synthetic and dependency bench-
marks.

The mentioned figure reveals a wide range of temperature levels at the GPGPU throughout the

program execution, both on the low and the high-temperature experiments. More specifically, the low-

temperature experiment resulted in temperature readings varying, on average, from a minimum of 23.5 ◦C

to a maximum of 34.7 ◦C, with a global average of 32.9 ◦C. The high-temperature experiment resulted in

temperature readings varying, on average, from a minimum of 31.9 ◦C to a maximum of 42.0 ◦C, with a

global average of 39.7 ◦C. The minimum to maximum variation is 31.7% and 39.3% respectively.

Despite the limitations of the temperature enforcement method, the obtained results show an average
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difference of 6.8 ◦C between the low-temperature and the high-temperature experiment.

Given the foundation of the experiment and the obtained temperature values, figure 3.6 plots the Vmin

results from the low-temperature experiment against the high-temperature experiment in an attempt to

study the temperature’s impact on the voltage guardband.

It is also important to note that this study used the same frequency in both low-temperature and

high-temperature experiments, thus removing one variable impact.
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Figure 3.6: Benchmark’s Vmin at different temperatures. The distance between the dashed lines represents the
impact of the device’s temperature on Vmin.

According to figure 3.6, Vmin tends to be higher with higher temperature values. There are three

dashed lines plotted along with the Vmin scattered pairs. Those lines are described by the following

equations:

Vmin@LowTemperature = Vmin@HighTemperature (3.7)

Vmin@LowTemperature = Vmin@HighTemperature − 0.0148 (3.8)

Vmin@LowTemperature = Vmin@HighTemperature − 0.0250 (3.9)

Naturally, points plotted coincidentally on equation 3.7 represent those benchmarks where the ob-

tained Vmin is the same in both the low-temperature and the high-temperature experiments. All Vmin

pairs are plotted at or below that dashed line, which validates that Vmin tends to be higher with higher

temperature values.

Moreover, the second dashed line, described by equation 3.8, is the regression of all the Vmin pairs,
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i.e. the linear approximation that best fits the given data set. From that, one can infer that the temperature

has an average impact of 0.0148V in the Vmin variability.

Lastly, the third dashed line, described by equation 3.9, corresponds to the linear equation, with a

unitary slope, that crosses the data points further away from the first dashed line. Thus, the temperature

had a maximum impact of 0.0250V on Vmin. More specifically, Vmin was at most 0.0250V lower on the

low-temperature experiment.

In conclusion, the impact temperature has on the Vmin variability is not enough to explain the whole

magnitude of the Vmin variability observed. This result is aligned with [3], where the temperature impact

was evaluated at 0.02V which is similar to the current results. The slightly reduced impact obtained here

might be related once again to the nature of these benchmarks and also to the extreme temperature

levels they were able to test. Due to the limitations explained above, those temperature levels were not

possible to achieve here. It is also important to note that this study used the same frequency in both

low-temperature and high-temperature experiments.

3.3.2.C Aging

AMD Vega Frontier is built using 12.5 billion 14 nm transistors using Low Power Plus (LPP) FinFET

process technology [23]. FinFET is a Metal Oxide Semiconductor (MOS) Field Effect Transistor (FET)

which uses a different architecture than the conventional MOS FET. With the increasing reduction of the

transistor gate’s size, it’s effects on the source to drain channel is reduced, thus reducing the transistor

performance. The new FinFET architecture solves this problem by wrapping the gate electrode around

the source to drain channel [40].

Furthermore, a given MOS transistor can either be a n-type Metal Oxide Semiconductor (NMOS) or

a p-type Metal Oxide Semiconductor (PMOS) depending on whether it is built using an n-type or p-type

semiconductor. An n-type semiconductor is a dielectric that has been doped with an electron donor

dopant, whilst the p-type semiconductor was doped with an electron acceptor dopant. These dopped

semiconductors are the key element of modern electronic components and digital circuits.

Now, within the semiconductor industry, there is an issue, known for more than 50 years, called

Negative Bias Temperature Instability (NBTI) that negatively impacts the reliability of the PMOS tran-

sistor technology [41]. Similarly, there is the Positive Bias Temperature Instability (PBTI) phenomenon

counterpart which mainly affects the reliability of the NMOS.

NBTI consists in the accumulation of positive charges at the transistor’s gate insulator due to a

negative bias voltage, Vg, at the transistor’s gate. This process is aggravated by temperature, hence

its name. The accumulated positive charges partially cancel out the gate’s applied voltage, since the

PMOS is activated by a negative electric potential difference at the gate’s terminal. Consequently, the

source to drain current flow is reduced because the accumulated charges reduce the effect of the gate
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and at the same time do not contribute to the transistor conduction channel. Ultimately this phenomenon

leads to the transistor’s performance loss.

Conversely, PBTI occurs due to a positive bias voltage, Vg at the transistor’s gate. In this case,

negative charges are accumulated in the gate’s insulator which has the same effect of canceling out the

gate’s applied voltage, since NMOS is activated by a positive electric potential difference at the gate’s

terminal.

As mentioned, the GPGPU featured in this study, AMD Vega Frontier, uses MOS transistors, which

are subjected to NBTI and PBTI effects. Given that transistors are the building blocks of a digital circuit,

any effect on the device’s building blocks is bound to also have an impact on the device itself. Hence the

importance of the NBTI and PBTI.

Regarding the current study, all the test executions on the GPGPU device were completed during

a period of six months. This period is considerably low when compared to the typical lifetime of such

devices of ten years. Furthermore, some techniques can be applied to slow down the aging processing

with minimum overhead [42].

During the period of this study’s tests, no shreds of evidence of Vmin variability, due to the aging

process on the GPGPU device, were found. It is also important to note that the impacts of aging are not

the main focus of this study.

Furthermore, related work in this field shows a performance impact of up to 2% under real-use

conditions on International Business Machines Corporation (IBM) microprocessors [43]. In conclusion,

it is unlikely that aging factors alone could explain the Vmin variability observed in this study.

3.3.2.D Process Variation

Production processes are liable to degrees of variation that impact the quality of the final product. The

quality of the products themselves can be used to describe the process quality, through which they were

produced, using two variables: accuracy and precision.

Figure 3.7 is a conceptualization of these two variables. It assumes a normal distribution of the

number of products produced along with a given quality standard.

On one hand, a production process can be on target, but with high variability. This means the

production process is accurate. On the other hand, it might be off-target, but consistent. This means the

production process is precise.

Furthermore, a production process can be both off target and have high variability. This scenario

means it is not accurate nor precise. Finally, the production process can be on target and consistent,

which means it is both accurate and precise [44].

Naturally, problems that cause a process to be off-target are easier to identify than problems that

cause it to be variable. In order words, accuracy problems are easier to solve than precision problems.
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Figure 3.7: Accuracy and precision differences when plotting the outputs of a process against a quality standard.

The transistor manufacturing process is also exposed to such quality variables. Particularly, there

are precision issues with the manufacturing process that have been broadly studied by the community.

These precision issues are called Process Variation (PV) and refer to the variability of the device’s

parameters, such as the transistor’s gate width, the channel length, or the oxide thickness, from their

nominal specifications.

PV has become increasingly more severe due to the increasing difficulty to precisely control the

fabrication process as the transistor size became smaller. The chip yield i.e., the fraction of fully working

chips within the wafer where they are produced, was reduced from 90% to 50% and then 30% when the

transistor size scaled from 350 nm to 90 nm and then to 30 nm respectively [45].

In order to study the PV impact on the Vmin variability, it is necessary to complete the Vmin study

using multiple GPGPU devices, and evaluate how each of those devices performs. This way, the effects

of PV would spread along with the devices and a conclusion can be made in that regard.

Due to constraints, during this study, there was only a single AMD Radeon Vega Frontier Edition

GPGPU device available. Thus, an experimental study of the PV effects on the Vmin could not be

conducted.

Leng et al. [3] briefly studied the impact of PV in the voltage guardband of Nvidea GPGPU devices.

They used only five different Nvidia GTX 780 GPGPU devices, which, as the authors themselves sug-

gest, is not statistically robust. Nonetheless, the results provide insights into the PV effect on such

endeavors that are useful to comprehend the root cause of the Vmin variability.

They observed a constant offset of Vmin between each of the tested GPGPU devices, with deviations

on a few programs as shown by figure 3.8(a). This offset means that a given program experiences V 1
min

and V 2
min on GPGPU device 1 and 2, respectively, but V 1

min 6= V 2
min. More precisely, Leng et al. [3]
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observed a 0.07V maximum offset between the five GPGPU devices. Naturally, this offset is introduced

by PV of the GPGPU production process.

The constant Vmin offset is also depicted in figure 3.8(b), where the Vmin of two of the five GPGPU

devices are plotted against each other. Their results also show a slight increase in the offset as the

frequency increases.

On top of the constant offset, it is important to note that the applications they tested also showed

random Vmin deviations from each GPGPU device to the other. Even though each GPGPU device ex-

perienced deviations from the constant offset on some programs, those deviations happened in different

programs at each device.
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Figure 3.8: Leng et al. [3] results of PV impact on Vmin.

The observed Vmin variability is caused by PV, which is known for creating both systemic and random

variances on the device’s building blocks parameters [46]. Thus, the constant offset can be attributed to

the systemic variance imposed by PV, whilst the observed deviations from that offset can be attributed

to the random variance imposed by PV.

A slight variation on the digital circuit components has the potential of changing the circuit’s critical

path. Therefore, programs that do not rely on the critical path in one device, might do rely on it on other

devices, thus explaining random Vmin deviations from the constant offset.

Notwithstanding, there was Vmin variability on the tested programs across each GPGPU device.

Additionally, that variability has approximately the same magnitude, on all devices. However, there were
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indeed differences in the absolute values of Vmin, which can be attributed to PV, but PV itself cannot

explain the observed variability.

3.3.2.E Voltage Noise

The voltage signals that powers a digital circuit is not steady as one might expect because there is a

degree of fluctuation associated with it. This fluctuation is called voltage noise.

Voltage noise is not desired, except for some circuits with specific goals. Therefore, a considerable

drop in the voltage signal can lead to unexpected behavior from the circuit. With this in mind, digital

circuit manufacturers increase the supply voltage above the circuit’s intrinsic voltage. Thus creating

the mentioned voltage guardband which acts as a safe margin usually greater than 20%. With the

increasing scaling of the digital circuit manufacturing process, this margin percentage has the potential

to increase [39].

The voltage guardband is also added as a protection against phenomenons such as temperature,

aging, PV, and voltage noise. As discussed in the previous subsections temperature, aging and PV

does not explain, by themselves, the whole extent of the Vmin variability. Thus, by exclusion, voltage

noise is the main contributor towards the Vmin variability [3].

Note that, the voltage guardband does not directly include concerns regarding the device’s operating

frequency. This is because increasing the frequency reduces the available signal propagation time.

Consequently, the intrinsic Vmin has to increase to support those timings. This is the reason why the

higher frequency has a higher nominal voltage imposed by the manufacturer.

The voltage at a given point, A, in an electrical circuit is given by the equation 3.10.

VA = VDD − I ·R− L ·
di

dt
(3.10)

From the equation, 3.10 one can conclude that two factors impact the voltage: the current draw and

the current draw’s increasing rate.

Leng et al. [3] studied further how each of those factors impacts the voltage at the same point A.

Given the equation 3.11 differentiated from Ohm’s law, the hypothesis of I ·R being the dominant factor

in the voltage (equation 3.10) was tested.

P = R · I2 (3.11)

If this hypothesis holds, a program with a high power consumption would have a high voltage noise

and consequently a higher Vmin.

Using power consumption measurements and also the Instructions Per Clock (IPC) as a predictor for
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power consumption, no evidence of a correlation between those properties and Vmin was found. Thus,

I ·R is not the dominant factor of the voltage noise, and consequently, di/dt is.

Leng et al. [3] proceed even further to study which program activity is responsible for generating the

most di/dt droop. The study included CUDA runtime activities, inter-kernel activities, initial-kernel activ-

ities, and intra-kernel activities. CUDA runtime activities refer to the activities launched by the runtime

API to manage the kernels’ execution. In the current study, those would be HCC runtime activities.

Their conclusion is that the greatest driver of di/dt droop and consequently the driver o voltage

noise is the intra-kernel activities. These are related to the nature of the kernel itself, which varies from

application to application. They also identify cache misses and pipeline stalls as a driver for di/dt droop.

Focusing on the current study, it is possible to conclude that the results match the established knowl-

edge. Dependency benchmarks obtained significantly higher Vmin results when compared to their syn-

thetic counterpart. Whilst recovering from pipeline stalls, the GPGPU moves away from an idle state.

Thus, there is a sudden increase in the drawn current which in its turn produces a voltage spike.

3.3.3 Energy gains

With Vmin values obtained for each application, it is now feasible to evaluate how the energy consump-

tion improves when the voltage is set to those levels at the GPGPU’s terminals. Energy savings are

measured by comparing the consumed energy when the GPGPU is operating at Vmin against the same

metric when the device is running at the nominal voltage for the selected core frequency: 1028.57MHz.

With everything set up, gpowerSAMPLER is used to obtain the energy consumption metrics. The

obtained results are displayed in figure 3.9.

First of all, considering both benchmarks sets, results show an average energy saving of 26.4%.

These values ranged between the lowest energy saving percentage of 14.58% to a peak of 45.05%.

It is observable that synthetic benchmarks present better energy-savings compared to dependencies

benchmarks. More precisely, synthetic benchmarks show an average energy saving of 33.77% which is

significantly higher than the 22.95% average energy saving obtained by dependencies benchmarks.

This difference between the energy savings obtained by both benchmarks set is deeply connected

with the Vmin differences also obtained for both benchmark sets. In fact, the energy consumption per

unit of time i.e., power, is proportional to the voltage raised to the power of two as translated in equation

3.12. Thus, a small variation in the supply voltage of a GPGPU device can greatly increase the device’s

energy efficiency.

P ∝ f × V 2 (3.12)
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Figure 3.9: Energy savings attained by operating at Vmin voltage on both synthetic benchmarks and benchmarks
with dependencies.

3.4 Summary

A set of benchmarks each designed to stimulate a specific area of a GPGPU architecture were executed

under a progressively lower supply voltage. This allowed extracting Vmin for each benchmark, i.e. the

lowest GPGPU supply voltage that still guarantees the execution correctness.

Results showed different Vmin values across the benchmarks with variability of 0.06V. To further

understand the observed Vmin variability, the study was repeated to evaluate other variables, such as

the device’s operating frequency, temperature, aging, process variation, and voltage noise. Each stud-

ied variable made contributions to the variability, but conclusions shown voltage noise was the most

preponderant.

Finally, when operating with the minimum voltage guardband, results show an average energy saving

of 26.4%, ranging from the lowest energy saving percentage of 14.58% to a peak of 45.05%.
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The focus in previous chapters was to analyze the impact of a progressively reduced voltage supply

at the AMD Vega Frontier Edition GPGPU device’s terminals. Results shown an energy-saving potential

ranging from 14.58% to 45.05% with an average of 26.4%. Furthermore, conclusions demonstrated that

Vmin, and consequently the energy efficiency potential, was related to the application itself rather than

other factors such as the device’s operating frequency, temperature, age, or process variation.

In this manner, the goal of this chapter is to transpose the previous methodology into deep learning

applications and evaluate the energy-saving potential against the precision loss that the voltage reduc-

tion process might impose.

4.1 Data Acquisition

4.1.1 Vmin and Vcrash

Analogously to Chapter 3, voltage guardband is the difference between nominal voltage and Vmin, the

lowest voltage at the GPGPU terminals that allows an application to run correctly. Further reducing the

supply voltage below Vmin will lead to incorrect results or the device’s failure.

All deep learning models considered below produce an inference accuracy on a given data set. The

model’s accuracy at the nominal voltage is used as the accuracy reference, assuming the manufacturer’s

recommended settings will produce the correct result. Each deep learning model execution is considered

correct if its accuracy is no more than 0.1% deviated from the reference. Conversely, an accuracy

deviation greater than 0.1% is considered as an accuracy loss.

The voltage can be reduced even further allowing errors to happen, and consequently affecting the

execution correctness. Naturally, this extra reduction is finite leading to the definition of Vcrash: the

voltage value at which the application is no longer executed. There are multiple types of error observed

when the device’s voltage is reduced below Vmin, such as SDC, run-time errors system crashes, and

indefinitely long executions.

Data corruption occurs when the execution finishes and no warning or error message is triggered,

but the final result is not correct [32]. Run-time errors, which are logged by the system, occur when the

program execution fails during run-time due to memory access faults. System crashes and indefinitely

long executions require a manual system reboot so that the normal GPGPU device access can be

restored.

Deep learning models are executed three times at all voltage levels ranging from the nominal voltage

and 30% below the nominal voltage, with a resolution of 6.25mV. Due to the mentioned potential errors

which are more prominent below Vmin, each execution is done after a system reboot. Rebooting the

system before each program execution largely increases the experimental period, but ensures that the

GPGPU is initialized at the same state across all program executions.
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4.1.2 Deep Learning Framework

Implementing deep learning models requires a framework to ease and speed up models’ deployment.

The current study’s models are executed using Tensorflow version 1.9 rc-0, as it features many open-

source models and has an active community.

4.1.3 Deep learning models

Studying the impacts of the voltage reduction on deep learning applications imposes the usage of a

broad set of deep learning models. This is because each model has its own architecture and conse-

quently different management and handling of the processing unit. Thus, a wider range of models allows

obtaining statistically more relevant conclusions.

Furthermore, deep learning models are organized into classes according to their architecture. There-

fore, this study features deep learning models from the two main deep learning classes: CNN and RNN.

Thus, capturing results from both ends of the spectrum.

The models featured in this study are all pre-trained, and the Vmin study is conducted during the

inference execution.

4.1.3.A Convolutional Neural Networks

CNNs are the state of the art on computer vision applications, including image recognition and video

analysis. These models get the most attention from the community, considering the skewed amount

of work featuring them compared to other neural network architectures. Due to their popularity and

consequently availability, this study itself has a slight tilt towards the CNN architecture by featuring two

more models from this class.

The accuracy of the models depends, not only on the model itself but also on the data they are

evaluating. Thus, all the CNN models featured in this study are image classifiers and are evaluated

against the same standard using the ImageNet database. ImageNet is a public image repository with

over 14 000 000 images organized into more than 21 000 groups. The goal of such networks is to compute

correctly each image group based on the image itself. The database owners have been running yearly

competitions where participants compete with their algorithms to achieve the best image recognition

accuracy. This contest has led to the popularity of some CNN featured in this study [47].

All CNN models mentioned below were obtained from TensorFlow-Slim, which an image classification

model library provided by TensorFlow [48].

A – AlexNet AlexNet is one of the CNNs that became popular during the with ImageNet Large Scale

Visual Recognition Challenge (ILSVRC). It achieved an accuracy that surpassed considerably the pre-
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vious state of the art through the usage of deep learning, hence its recognition. Its architecture is

composed of 5 convolutional layers followed by 3 fully connected layers. Some of the convolutional

layers are followed by a max-pooling layer summing up to 60million parameters and 650 000 neurons [49].

B – VGG-16 VGG-16 network is named after the VGG group from the University of Oxford, who also

participated in the ILSVRC. They introduced improvements over the AlexNet network and surpassed its

accuracy.

The large kernels in the first layers of the AlexNet architecture were replaced by smaller ones and

consecutive ones. This modification further increases the depth of these models. This increasing depth

with lower kernel sizes is known to enable the recognition of more complex features from the input

images, thus improve its performance.

As expected, the improvements come at the cost of higher computational and memory requirements,

due to the increased number of parameters.

C – VGG-19 VGG-19, as the name suggests, is similar to VGG-16. They are the best performing

models from the VGG group. The difference lies in the number o layers each one has. Whilst VGG-16

has 16 weight layers, VGG-19 has 19 [50].

D – Inception The Inception network, which is also called GoogLeNet, is also a convolutional neural

network and was the winner of ILSVRC in the year 2014. It pushed the top 5 test error further to 6.6%.

Google introduced the inception module with this network. Instead of stacking convolutional layers,

an inception module is an approach where different sized kernel convolutions, namely a 1 × 1, a 3 × 3,

and a 5× 5, are executed in parallel at the same level as shown in Figure 4.1.

Filter

Concatenation

Previous

Layer

3x3

Convolutions
5x5

Convolutions

1x1

Convolutions

1x1

Convolutions

1x1

Convolutions

1x1

Convolutions

3x3

Max Pooling

Figure 4.1: Diagram of the inception module.

Having different sized kernels executed in parallel at the same level revealed to be advantageous

due to the unpredictability of the input image’s scale. The input’s detail, that the network is trying to
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classify, can either occupy a small or a big portion of the whole image. However, large kernels thrive

when the detail is large, whilst small kernels thrive when the detail is smaller. The inception module has

both large and small kernels whose result is passed into the following module, hence its success.

The used inception network (InceptionV4) is composed of a total of 9 inception modules, each of

these having a depth of 2 layers as shown in Figure 4.1. In total the network has 22 layers and close

to 6.8million parameters. There are no fully connected layers that substantially reduces the number of

parameters when compared to the AlexNet and VGG networks. This property of the inception network

also allows it to execute faster when compared to the mentioned networks [51,52].

E – ResNet Empirical knowledge shows that increasing the depth of a neural network should also

increase its accuracy. However, some issues arise with this approach, namely over-fitting, the vanishing

gradients, and the degradation of the training accuracy.

Considering two neural networks: one whose architecture matches the first but with a few added

layers. Since the added layers on the deeper network can just preserve the result of the shallower

architecture, it is expected for the first network to produce the same or less training error than the latter.

However, experiments reveal that deeper networks are unable to attain equally good solutions within a

feasible time. This phenomenon is called the degradation of training accuracy. In short, it states that the

optimization of different architectures does not require the same effort.

Microsoft introduced the residual neural network, ResNet, along with a new module called a residual

block that tackles the degradation issue. It does so by creating a direct path between the input and

the output of the module, i.e. the input of the module is added to the output as shown in the figure 4.2.

Instead of the layers optimize a given mapping, the module forces them to optimize the residual mapping

instead.

Figure 4.2: Diagram of the residual module [53].

This module allowed the network to have a total of 152 layers: 8 times more layers than the VGG

network. Furthermore, ResNet was the first network to surpass human accuracy on the ImageNet

database classification, which granted this network first place on ILSVRC 2015 on the classification
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task [53].

F – Inception-ResNet Based on the success of the ResNet, Szegedy et al. [52] created hybrid ar-

chitectures of the inception network using residual modules. These models were able to achieve better

accuracies when compared to their counterparts.

This study features Inception-ResNet-v2, which is the top performer of the hybrid inception networks.

This network’s computational cost is similar to InceptionV4, also featured in this study.

4.1.3.B Recurrent Neural Networks

On the other side of the spectrum, there are RNNs which became popular due to their capabilities in

processing sequential data, including text and voice.

These models are known to have limited data parallelism and high data dependencies when com-

pared to CNNs. This limitation is caused by the complex input data these models process, which leads

to inefficient resource utilization [54].

Considering these limitations and recalling the slight worse Vmin results that dependency bench-

marks obtained in the previous chapter 3, it is expected for these models to also perform slightly worse

when compared to CNN.

A – Skip-Thoughts Skip-thoughts is a sentence encoder that predicts the surroundings of an input

sentence. It uses an encoder-decoder model: On one hand, the encoder is responsible for mapping

each sentence into a vector, called skip-thought vectors. Naturally, the encoder will generate similar

vectors when the input sentences share semantic and syntactic properties. On the other hand, the

decoder is used to predict the sentences, based on the vector provided by the encoder. Both the

encoder and the decoder are neural networks featuring an RNN architecture [55].

This study features a trained version of the Skip-Thoughts neural network trained under the Book-

Corpus dataset, which is a collection of novels written by unpublished authors [56]. This network uses

an unsupervised learning approach since the goal is to learn generic sentence representations, i.e. rep-

resentations that are not bound to a previously predetermined interpretation. This approach contrasts

with supervised learning that requires each sentence of the training set to have a label class, i.e. a

predetermined interpretation of the sentence.

In order to benchmark the Skip-thoughts network against other sentence representation learning

methods, Kiros et al. [55] used several experiments where the encoder is used as a feature extractor,

thus allowing for quantitative evaluations. One such experiment uses the question-type classification

(TREC) dataset. The dataset is a set of questions organized into classes such as abbreviations, entities,

descriptions, human, locations, and numeric. The experiment consists of encoding those questions
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using the Skip-thoughts encoder and evaluate the vectors’ proximity of those questions that belong to

the same subclass, using a logistic regression classifier. The model achieved an accuracy of 92.2%

under this experiment [55].

As part of the current study, this experiment is reproduced under the Vmin endeavor, as described

in the following subsection 4.1.1. The final performance is to be measured after each execution and

compared against the state of the art accuracy.

B – Sentiment Radford et al. [57], from OpenAI, published a RNN whose goal is to automatically

generate new product reviews or continue existing ones. The network was trained on a corpus of Ama-

zon product reviews collected from May 1996 to July 2014 containing over 82million reviews [58].

This model’s RNN architecture is a single layer with multiplicative LSTM units, amounting to a total

of 4096 units. The authors discovered that one of these units mapped directly to the review’s sentiment.

Meaning that a specific neuron would be activated or deactivated depending on the reviews’ tone. Fur-

thermore, explicitly changing the activation of this unit forces the network to output positive or negative

reviews.

The trained version of the model is used in inference mode under a similar task to the Skip-thought

network, to evaluate its accuracy. Given that this model also produces its language representation,

i.e. the unit’s activation values, it is possible to evaluate how close are the representations of pairs of

sentences extracted from Microsoft Research Paraphrase Corpus (MRPC). MRPC is a dataset contain-

ing pairs of sentences that are labeled by humans identifying the pair semantic relatedness [59]. This

procedure is used under the Vmin study.

C – ReactionRNN ReactionRNN is a RNN that can predict proportionate reactions from a 140 char-

acter input. The set output set of reactions include love, wow, haha, sad, angry. The text is handled

at the character level, contrasting with the Skip-thought network that handles the input at the sentence

level.

The model’s architecture is composed of two layers. The first layer contains 256 Gated Recurrent

Unit (GRU) that is followed by a fully-connected layer with 5 output nodes. Each output node corresponds

to one of the output classes. The model is trained on a collection of Facebook statuses’ reactions [60].

Analogously to the Sentiment network, the current Vmin study will use MRPC to evaluate the model’s

accuracy. The closeness of the sentence pairs from the data set translates into the model’s accuracy

[59].

57



4.1.3.C Other Neural Networks

RNNs are state of the art regarding Natural Language Processing (NLP) applications, including language

modeling and machine translation. Consequently, literature pushing these implementations forward is

largely available. However, the architecture itself inherently processes information sequentially, which

imposes limitations to data parallelization.

There are, however, different architectures with state of the art performance on NLP challenges. This

study features one such architecture.

A – BERT Bidirectional Encoder Representations from Transformers (BERT) is a NLP technique to

create language representations. More precisely, it produces a contextual representation of a word.

Contextual, in this scenario, means that the representation of a given word will vary depending on

the other words surrounding it within the same sentence. Furthermore, contextual models can either

be unidirectional or bidirectional depending if the word is contextualized using only words from one

of its sides, e.g. contextualized only using words to its left, or from both sides, respectively. BERT,

however, produces bidirectional context language representations that are used by Google to enhance

their understanding of Google searches [61,62].

Vaswani et al. [63] introduced the Transformer architecture intending to remove the sequential depen-

dencies, by relying exclusively on their own version of an attention mechanism. The attention mechanism

is an attempt to improve RNNs capability of relating words that are further apart. Originally, the module

was a simple feed-forward network with one hidden layer. It works by creating weighted shortcuts from

the input hidden state to the decoder, thus allowing all encoder’s hidden state to potentially have a direct

impact on the decoder.

BERT relies on the Transformer architecture, making it a multi-layer bidirectional Transformer en-

coder. Analogously to the Skip-though network, BERT was trained under the Book-Corpus dataset plus

a data collection obtained from Wikipedia.

The current study uses the trained version of the base implementation of BERT obtained from

Google’s research repository [64]. This version is used in inference mode in the same task as the Senti-

ment network. The MRPC dataset, containing pairs of sentences that are labeled by humans identifying

the pair semantic relatedness, is used to evaluate BERT’s accuracy within the Vmin study [59].

4.2 Classification accuracy

This study features a heterogeneous set of deep learning applications. Each one has its own architecture

and purpose. Consequently, it is not possible to evaluate all models under the same task, but having
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such a set up is also not in the scope of this study. The focus is to evaluate the degree to which the

accuracy is impacted by varying the GPGPU’s supply voltage.

Nonetheless, there was an effort to standardize the accuracy extraction method. All CNN models,

focused on image recognition, are evaluated based on their performance on the ImageNet dataset.

Whilst RNN models and BERT, focused on NLP, are evaluated based on their performance on MRPC

dataset.

Table 4.1 depicts the obtained accuracy for all the deep learning models, at their respective tasks,

with the default nominal voltage at the AMD Vega Frontier Edition GPGPU device’s terminals.

Table 4.1: Deep learning models inference accuracy at nominal voltage.

DEEP LEARNING MODEL ACCURACY

AlexNet 83.0%
VGG-16 89.8%
VGG-19 89.8%
Inception V4 95.2%
ResNet V2 94.1%
Inception-ResNet 95.3%

Skip-Thoughts 92.2%
Sentiment 73.0%
ReactionRNN 61.3%

BERT 89.3%

Based on the benchmark’s results from the chapter 3, it is known that the application itself is the main

responsible for the Vmin variation. It is also known that GPGPU’s memory management has a greater

sensitivity to voltage reduction.

With this in mind, and bearing that deep learning applications are highly demanding of computing

resources, it is expected for Vmin to be substantially higher than on the previous benchmarks. Conse-

quently, deep learning models should also experience a lower range of energy-saving potential.

Furthermore, results on chapter 3 did not display any SDC errors, i.e. all benchmarks either per-

formed correctly or didn’t perform at all at each voltage level. This was explained based on the appli-

cation’s lower complexity. However, SDC is expected to occur for deep learning models, allowing for

precision to energy efficiency trade-off.

4.3 Voltage Guardband Accuracy Impact

4.3.1 Minimum operating voltage

As it was previously stated Vmin is defined as the minimum voltage that ensures correct execution. For

the deep learning case, it corresponds to the minimum voltage that ensures a result within an error range
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of 0.1% regarding the reference accuracy. Conversely, Vcrash is the voltage level where the accuracy

loss might be greater than 0.1%, but the execution is still terminated successfully.

Figure 4.3 depicts the Vmin and Vcrash absolute values obtained at a lower and higher GPGPU core

frequency set up, 1028.57MHz, on the figure 4.3(a), and 1107.69MHz, on the figure 4.3(b), respectively.
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Figure 4.3: Obtained Vmin and Vcrash for deep learning models.

First of all, empirically, all deep learning models excluding ReactionRNN show a similar accuracy

sensitivity to the voltage guardband reduction. The average Vmin is 0.900 06V and 0.941 25V on the

lower and higher frequency experiment respectively.

Normalizing Vmin results from both frequencies based on the nominal value, further confirms the ob-

tained the results on subsection 3.3.2.A. Lower frequencies achieve higher Vmin readings, thus resulting

in a lower voltage guardband. At 1028.57MHz, the nominal voltage set by the GPGPU manufacturer is

0.962 50V resulting in an average normalized Vmin of 0.935 71. Conversely, at 1107.69MHz, the nom-

inal voltage set by the GPGPU manufacturer is 1.031 25V resulting in an average normalized Vmin of

0.912 73. This corresponds to an undervoltage of 6.43% and 8.73% when compared to the nominal

voltage of each frequency, 0.9625V and 1.031 25V, respectively.

The standard deviation of the Vmin readings is 0.021V and 0.017V for the lower and higher GPGPU

core’s frequency respectively. By excluding ReactionRNN results, the standard deviation calculation

decreases significantly to 0.008V and 0.010V respectively. This is caused by the smaller architecture of

ReactionRNN that features substantially fewer parameters than its counterparts.

It is interesting to note that none of the RNN models showed an accuracy loss with the voltage supply

reduction. All successful executions of these models did not incur in accuracy loss, meaning Vcrash =

Vmin.
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On the other hand, CNN models along with BERT displayed SDC occurrences resulting in an accu-

racy loss, hence Vcrash < Vmin. These models allowed further decreasing of the supply voltage by an

average of 0.005 09V and 0.013 13V on each frequency experiment, respectively. Therefore, there is a

lower precision opportunity within this supply voltage range.

In sum, the results at 1028.57MHz reveal that there is a voltage guardband, that can be safely reduced

on deep learning applications, ranging from 4.55% up to 12.33% with an average of 6.43%. The voltage

guardband can be further reduced, up to 2.60%, thus allowing accuracy loss. Likewise, at 1107.69MHz

the voltage guardband can be safely reduced from 6.06% up to 12.73% with an average of 8.75%. By

allowing accuracy loss, the voltage guardband can be further decreased up to 3.03% on some of the

tested models.

4.3.2 Accuracy loss

The previous subsection revealed there is a lower precision energy efficiency opportunity by reducing

the GPGPU supply voltage further below Vmin. This opportunity gap corresponds to a maximum of

2.60% and 3.03% undervoltage, when the device’s core frequency is set to 1028.57MHz and 1107.69MHz

respectively. The purpose of this subsection is to evaluate the accuracy behavior within this undervoltage

range.

Table 4.2 depicts the obtained accuracy at Vcrash for all deep learning models, at their respective

tasks, at both studied operating frequencies. The table also includes, within brackets, the accuracy loss

when compared to the nominal accuracy whose values are depicted in the table 4.1 above.

Table 4.2: Deep learning models inference accuracy at Vcrash at 1028.57MHz and 1107.69MHz, including the ac-
curacy loss when compared to the reference accuracy.

DEEP LEARNING MODEL
REFERENCE
ACCURACY

1028.57MHz 1107.69MHz

AlexNet 83.0% 81.68% (1.32%) 76.58% (6.42%)
VGG-16 89.8% 38.57% (51.23%) 76.24% (13.56%)
VGG-19 89.8% 28.28% (61.52%) 65.31% (24.49%)
Inception V4 95.2% 95.12% (0.08%) 95.07% (0.13%)
ResNet V2 94.1% 89.14% (4.96%) 86.77% (7.33%)
Inception-ResNet 95.3% 93.18% (2.12%) 94.44% (0.86%)

Skip-Thoughts 92.2% 92.19% (0.01%) 92.19% (0.01%)
Sentiment 73.0% 72.99% (0.01%) 73.00% (0.00%)
ReactionRNN 61.3% 61.30% (0.00%) 61.30% (0.00%)

BERT 89.3% 84.61% (4.69%) 55.95% (33.35%)

Results, when operating at the low frequency, 1028.57MHz, show accuracy droops up to 61.52% with

an average of 12.59% when working at Vcrash supply voltage. Conversely, when operating at the high

frequency, 1107.69MHz, the accuracy droop achieved only a maximum of 33.35% with an average of
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8.62%.

It is also important to note that there are models that did not experience any accuracy loss at all

(Skip-Thoughts, Sentiment, and ReactionRNN) and a few more that had only a residual impact on the

accuracy when working near failure supply voltages (InceptionV4, and Inception-ResNet).

The remaining of the current subsection displays the inference accuracy distribution across an in-

creasing undervolt percentage.

4.3.2.A Convolutional Neural Networks

According to the previous subsection, CNN models displayed a gap between Vmin a Vcrash. This means

there is a voltage band where all executions are completed successfully but there is at least a 0.1%

accuracy loss.

To further characterize this issue, the execution of each CNN model is displayed in the figures 4.4 to

4.9. In these graphs, the y axis presents the percentage of failed executions out of a total of 10. While

the x axis presents the undervolt percentage (i.e., regarding the nominal voltage at the corresponding

frequency). The green zone corresponds to a condition where all executions presented an error lower

than 0.1%. The blue zone corresponds to a case of complete execution, but with accuracy losses; and

the red zone represent cases of incomplete/failed executions.

Furthermore, each graph has two vertical dashed lines corresponding to Vmin and Vcrash. Naturally,

the dashed line further to the left represents Vmin whilst the dashed line further to the right represents

Vcrash. However, these lines might overlap meaning Vmin = Vcrash, i.e. there was no accuracy loss for

the respective deep learning model.
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(b) AlexNet @ 1107.69MHz

Figure 4.4: AlexNet inference accuracy distribution across an increasing undervolt percentage.

First of all, it is important to note that the undervoltage increments have a resolution of 6.25mV. This
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(a) VGG-16 @ 1028.57MHz
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(b) VGG-16 @ 1107.69MHz

Figure 4.5: VGG-16 inference accuracy distribution across an increasing undervolt percentage.
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(a) VGG-19 @ 1028.57MHz
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(b) VGG-19 @ 1107.69MHz

Figure 4.6: VGG-19 inference accuracy distribution across an increasing undervolt percentage.
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(a) Inception @ 1028.57MHz
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(b) Inception @ 1107.69MHz

Figure 4.7: Inception inference accuracy distribution across an increasing undervolt percentage.
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(a) ResNet @ 1028.57MHz
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(b) ResNet @ 1107.69MHz

Figure 4.8: ResNet inference accuracy distribution across an increasing undervolt percentage.
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(a) Inception-ResNet @ 1028.57MHz
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(b) Inception-ResNet @ 1107.69MHz

Figure 4.9: Inception-ResNet inference accuracy distribution across an increasing undervolt percentage.

value is bounded by the AMD Vega Frontier Edition GPGPU device’s tools. Therefore, the resolution

corresponds to an undervoltage of 0.65% and 0.61% when the device’s cores are working at 1028.57MHz

and 1107.69MHz respectively.

Empirically, one can verify from the figures 4.4 to 4.9 that decreasing the GPGPU device’s supply

voltage further below Vcrash undervoltage, still produces successful executions. Unfortunately, some of

those executions fail due to run-time errors, system crashes, or indefinitely long executions.

The models with the most data corruption impact at Vcrash are VGG-16 and VGG-19. In both fre-

quency experiments, these models have the greatest amount of accuracy loss. The VGG models are

characterized by their high computationally requirements. These are the models with the most naively

stacked convolutions layers featured in this study.

On the other end of the spectrum, Inception has no data corruption on the lower frequency experi-

ment, having Vmin = Vcrash. On the higher frequency experiment, the gap between Vmin and Vcrash is

the bare minimum, matching the GPGPU device’s tool resolution of 6.25mV. The accuracy loss is 0.16%

which is barely noticeable on the graph.

There is also an apparent tendency for lower frequencies to display higher data corruption rates.

VGG-16, VGG-19, Inception, and ResNet all have a higher precision loss on their lower frequency

experiment.

4.3.2.B Recurrent Neural Networks

Figures 4.10 to 4.12 depict the accuracy loss evolution with an increasing undervoltage percentage for

RNN models. As inferred from the figure 4.3 in the previous subsection, none of the RNN models had

Vcrash results different than Vmin. Meaning that all models were either executed successfully without
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data corruptions or at least one of the executions failed.
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(a) Skip-Thoughts @ 1028.57MHz
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(b) Skip-Thoughts @ 1107.69MHz

Figure 4.10: Skip-Thoughts inference accuracy distribution across an increasing undervolt percentage.
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(a) Sentiment @ 1028.57MHz
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(b) Sentiment @ 1107.69MHz

Figure 4.11: Sentiment inference accuracy distribution across an increasing undervolt percentage.

None of the RNN models had SDC occurrences even when the GPGPU device’s supply voltage was

below Vcrash. Also, each model has a different evolution towards failed execution. Skip-thoughts had

a less steep progression, meaning that progressively more and more executions were failing with the

increased undervoltage. This contrasts with Sentiment and ReactionRNN that had an abrupt change in

that regard.
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(a) ReactionRNN @ 1028.57MHz
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(b) ReactionRNN @ 1107.69MHz

Figure 4.12: ReactionRNN inference accuracy distribution across an increasing undervolt percentage.

4.3.2.C Other Neural Networks

Finally, the figure 4.13 depicts BERT’s accuracy loss progression with an increasing undervoltage per-

centage.
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(a) BERT @ 1028.57MHz
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(b) BERT @ 1107.69MHz

Figure 4.13: BERT inference accuracy distribution across an increasing undervolt percentage.

Unlike the CNN models, BERT has higher data corruption readings on a higher frequency. It is also

the only model to have drastically different progression patterns on both frequencies studied.

On one hand, the low-frequency experiment had most of the data corruption incidents occurring

below Vcrash with the amount of failed executions progressively increasing after that point. On the other

hand, the high-frequency experiment had considerably more data corruption at Vcrash and the amount

of failed executions increased abruptly after that point. The accuracy loss at Vcrash with 1028.57MHz is
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0.41% compared to a 33.35% when the device’s core frequency is 1107.69MHz.

4.4 Voltage Guardband Energy Impact

Having Vmin and Vcrash results for each deep learning model along with the average power consumption

metric collected by gpowerSAMPLER, it is now possible to evaluate the energy efficiency attained with

the current study. Knowing the average power consumption and also execution time we can infer the

energy consumption for each execution through the equation 4.1.

E =
P

∆t
(4.1)

Figure 4.14 depicts the obtained energy saving results for the deep learning models featured in

the current chapter. Results on low frequency experiment, guaranteeing the execution correctness,

show an energy-saving potential ranging from 6.88% up to 24.01% with an average of 13.79%. The

average energy-saving potential can be further increased by an average of 1.84% by allowing the model’s

accuracy to drop.
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Figure 4.14: Energy savings attained by operating at Vmin and Vcrash voltage on deep learning models.

Analogously, on the high frequency experiment, the energy saving potential ranges from 12.97% up

to 24.79% with an average of 17.50%. This potential can be further increased from 3.77% to 5.38% with

an average of 3.60% by allowing the model’s accuracy to drop.

Naturally, given Vmin results, ReactionRNN achieved the highest energy consumption improvement

at Vmin. This improvement is only surpassed at the high frequency by the BERT model when the supply

68



voltage is at Vcrash.

By splitting the energy saving results across the deep learning models architectures: CNN mod-

els alone achieved an energy consumption improvement ranging from 12.97% up to 20.55% with an

average of 17.50%. Conversely, RNN models achieved an energy consumption improvement ranging

from 16.75% up to 24.79% with an average of 19.43%. While these results are retrieved from the high-

frequency experiment, similar conclusions can be inferred from the lower frequency experiment.

Also, CNN models achieved an average energy consumption improvement slightly below RNN. How-

ever, it is notable that it did so with approximately half the standard deviation error. This metric is 2.68%

for the CNN architecture and 4.64% for the RNN architecture.

As mentioned above, two metrics have an impact on the overall energy consumption: execution time

and average power consumption. To further comprehend how each of these metrics had an impact on

the results shown in the figure 4.14, the graphs in figure 4.15 are presented. These graphs portray

the improvement from both execution time and average power consumption metrics compared to the

reference execution.
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Figure 4.15: Execution time and average power consumption improvements at Vmin and Vcrash over the same
metrics at the nominal voltage.

Results also confirm the initial expectation that the average power consumption decreases with the

undervolting process, given the known relationship between power (P ) and the supply voltage (V ) rep-

resented in the equation 4.2,

P ∝ f × V 2 (4.2)
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where f represents the GPGPU device’s operating frequency. In particular, the power consumption

has an average improvement of 13.83% and 17.44% on the low and high frequency experiment, re-

spectively. These averages match the energy savings improvements on both frequencies, meaning the

GPGPU device’s power consumption is the driver of such energy-saving improvements.

Additionally, the execution time does remain stable at a lower supply voltage compared to the ref-

erence execution at the nominal voltage. As an illustrative example, the average execution time im-

provement on the high-frequency experiment is 0.06% with a standard deviation of 1.24%. There were

executions slightly faster than the reference and executions slightly slower than the reference, translating

into close to no impact on the energy savings.

However, the BERT results on the low-frequency experiment are worthy of notice. At 1028.57MHz,

the execution speed drastically decreased thus trumping the improvements obtained from the lower

power required. At Vcrash levels, the execution speed dropped even lower making the Vcrash energy-

consumption higher than the result at Vmin. This explains why the BERT model did obtain a Vcrash lower

than Vmin during inference, but there were no energy-saving improvements displayed in figure 4.14.

Overall, voltage guardband exploitation provides relevant improvements in the context of energy

efficiency maximization for deep learning applications.

4.5 Summary

The current chapter evaluates how deep learning models, including CNNs and RNNs, perform when

working at near-failure supply voltages.

Results showed an undervolt potential up to 9% whilst guaranteeing the reference accuracy on the

studied models. With that setup, results also showed an energy savings potential up to 24.79% with an

average of 15.35%.

Further decreasing the GPGPU device’s supply voltage leads to accuracy droops up to 61.52% with

an average of 12.59%, but further increases the energy savings potential up to 30.16% with an average

of 18.37%.
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The present thesis proposes an approach to study the energy savings potential of modern deep

learning applications on modern GPGPU devices, using a AMD Radeon Vega Frontier Edition GPGPU

as a case study.

First of all, the GPGPU device’s voltage guardband is characterized using benchmarks. To do so, two

sets of synthetic benchmarks were used. The first includes applications that target a specific GPGPU

architecture, such as the ALU unit. The latter extends the benchmark application set by introducing data

dependencies.

Results show an undervoltage potential ranging from ranging from 16.9% to 20.7% with an average

of 15.68% on the synthetic benchmarks set, and ranging from ranging from 11.04% to 12.34% with an

average of 11.60% on the synthetic benchmarks set. Thus, confirming the expectations that dependency

benchmarks would obtain higher Vmin readings, i.e. a lower voltage guardband.

When operating at Vmin, the GPGPU device achieved a energy efficiency ranging from 14.58% up to

45.05% with an average of 26.4%.

The benchmark results have also shown a Vmin variability of 0.06V corresponding to 6.2% when

compared to the nominal voltage. An analysis, bearing in mind potential causes for the Vmin variability,

concluded that it is deeply connected with the application itself. The device’s operating frequency, tem-

perature, aging, process variation, and inter-kernel executions all rendered an insufficient Vmin variability

to explain the variability magnitude observed in the benchmarks.

Knowing the application itself is the root cause of the Vmin variability, deep learning models were

introduced where the same endeavor was repeated.

Results showed deep learning models can achieve energy savings of up to 24.79% with an average of

15.35% whilst guaranteeing the nominal accuracy. Furthermore, by working at Vcrash, energy efficiency

can be increased by an average of 2.72% at the expense of the model’s accuracy. When the GPGPU is

set to work at near failure supply voltages, Vcrash, the observed accuracy droop achieved an average of

10.61% and a maximum of 61.52%.

Additionally, there were executions further below Vcrash that achieved even higher energy-saving

results. Obviously, given Vcrash definition, there were also failed executions at those voltage levels,

hence those executions were disregarded. Nonetheless, this means Vcrash is not the ultimate limit on

the voltage guardband reduction approach when seeking lower power consumption.

5.1 Future work

Based on the results showing tempting energy-saving opportunities, this work could be pushed forward

by implementing a model that would predict an application’s minimum operating voltage at a predefined

maximum accuracy loss. This model could then be used to dynamically set the GPGPU supply voltage
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based on the application itself, in a similar fashion current DVFS techniques are doing with the frequency

scaling.
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