
GNSS-based Attitude Estimation using Single Baseline

André Oliveira

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Prof. Paulo Jorge Coelho Ramalho Oliveira
Prof. Pedro Tiago Martins Batista

Examination Committee

Chairperson: Prof. José Fernando Alves da Silva
Supervisor: Prof. Paulo Jorge Coelho Ramalho Oliveira

Member of the Committee: Prof. José Eduardo Charters Ribeiro da Cunha Sanguino

January 2021



ii



Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iii



iv



Agradecimentos

Em primeiro lugar, gostaria de agradecer aos meus orientadores, Professor Paulo Oliveira e Professor

Pedro Batista, por terem proposto este tema e desafio. No decorrer deste longo ano, ambos foram in-
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Resumo

Esta dissertação foca-se no desenvolvimento, implementação e validação preliminar de um algoritmo

de estimação de atitude baseado em Sistemas Globais de Navegação por Satélite (GNSS, de Global

Navigation Satellite Systems), adequado para aplicações de navegação.

O problema é primeiramente definido usando uma formulação de mı́nimos quadrados, da qual segue

uma decomposição ortogonal tı́pica deste tipo de problema de minimização não-linear com restrições

de números inteiros. A solução proposta combina um filtro de Kalman estendido, guiado por medições

de um giroscópio, com um método de determinação de ambiguidades inteiras atual, focando a maneira

como estes são fundidos. Posteriormente, estuda-se a observabilidade do filtro recursivo usando o

modelo linearizado do sistema. Destaca-se o estudo do caso onde são utilizadas apenas duas ante-

nas GNSS. Tratando-se de um problema não trivial, são efetuadas validações adicionais experimental-

mente.

A solução é então validada em cenários realistas, usando dados quer simulados quer obtidos ex-

perimentalmente. É apresentada uma visão global do software de pós-processamento implementado,

junto com o ambiente de simulação desenvolvido e o equipamento usado durante os ensaios experi-

mentais. Após uma breve descrição dos ensaios realizados, são apresentados os respetivos resultados

e conclusões chave acerca da percentagem de sucesso da determinação de ambiguidades inteiras e

consequente precisão da atitude estimada. Novamente, é realçada a análise do uso de apenas duas

antenas GNSS. Por último, são enumerados os aspetos que não foram abordados devido à complexi-

dade deste trabalho, os quais são sugeridos para um possı́vel trabalho futuro.

Palavras-chave: Estimação de atitude, GNSS, Resolução de ambiguidades, Filtragem,

Fusão Sensorial
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Abstract

This work deals with the development, implementation and preliminary validation of a Global Navigation

Satellite Systems (GNSS)-based attitude estimation algorithm suitable for navigation applications.

The problem is first formulated in a least-squares sense, from which follows an orthogonal decom-

position typical to this type of nonlinear minimization problem with integer constraints. The proposed

solution combines an Extended Kalman Filter (EKF), fed by gyroscope measurements, with a state of

the art integer ambiguity determination method, with special focus given to how these are joined. Then,

some insight on the observability of the recursive filter is provided, using a linearized model of the sys-

tem. The scenario where only two GNSS antennas are used is highlighted. Being a non-trivial topic,

further validations are performed experimentally.

The solution is then validated in realistic scenarios using both simulation and experimental data. An

overview of the implemented post-processing software is given, along with the developed simulation

environment and hardware setup used during the experimental trials. Following a brief description of the

performed trials, the respective results and key conclusions about the success rate of integer ambiguity

determination as well as the consequent attitude estimation accuracy are then presented. Once again,

the evaluation of the single baseline case is emphasized. Lastly, the issues that could not be tackled

due to the complexity of this work and remain for future work are enumerated.

Keywords: Attitude estimation, GNSS, Ambiguity resolution, Filtering, Sensor fusion

ix



x



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Agradecimentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Topic Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical Background 7

2.1 Attitude Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Coordinate Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Global Navigation Satellite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Observation Equations and Error Sources . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Double Differenced Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Problem Definition 15

4 Attitude Estimation 21

4.1 The Least-Squares Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Nominal System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Discrete Quaternion Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.2 Nonlinear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



4.4 Extended Kalman Filter for Float Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1 Prediction Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.2 Update Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.3 Observability Analysis for Single vs Multiple Baseline . . . . . . . . . . . . . . . . 30

4.5 Integer Ambiguity Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5.1 LAMBDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5.2 MC-LAMBDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Solution Fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Implementation and Data Acquisition 45

5.1 Software Design and Overall Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.1 Hardware Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.2 Testing Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Trials Description and Results 51

6.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.1 Simulation and Processing Parameters . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.2 Integer Ambiguity Determination Success Rate . . . . . . . . . . . . . . . . . . . . 53

6.1.3 Static Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.4 Dynamic Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2.1 Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.2 Static Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.3 Dynamic Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Conclusions 73

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 75

A Analytical validation of the system solution in the observability analysis 79

B Derivations 81

B.1 Quaternion to rotation matrix uncertainty propagation . . . . . . . . . . . . . . . . . . . . 81

B.2 Hessian matrix of the Lagrangian function for the nonlinear least-squares . . . . . . . . . 82

C DD correction model due to non-synchronized receivers 84

D Managing changes in the observed satellites and reference satellite 86

xii



List of Tables

2.1 Approximate magnitude of the most significant errors affecting GNSS measurements. . . 13

5.1 Electrical specifications of the GPS antennas. . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Integer Ambiguity Determination success rates (%) of the EKF+MC-LAMBDA integration

under different scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Performance metrics of the estimated attitude solutions for the static trial, evaluated for

t > tfix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Performance metrics of the estimated gyro bias for the static trial, evaluated for t > tfix. . 58

6.4 Performance metrics of the estimated attitude solutions for the multiple baseline dynamic

trial, evaluated for t > tfix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5 Performance metrics of the estimated attitude solutions for the single baseline dynamic

trial, evaluated for t > tfix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xiii



xiv



List of Figures

2.1 Earth-fixed coordinate frame and local-level ENU frame. . . . . . . . . . . . . . . . . . . . 10

3.1 Antennas and gyroscope configuration in the body frame. . . . . . . . . . . . . . . . . . . 15

3.2 Approximation of parallel signals for very short baseline. . . . . . . . . . . . . . . . . . . . 17

4.1 Flowchart of the proposed attitude estimation solution. . . . . . . . . . . . . . . . . . . . . 24

4.2 Representation of example initial, intermediate and decorrelated search space defined by

the covariance matrix of the DD ambiguities. . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Detailed flowchart of the algorithm used to process the GNSS and gyroscope data. . . . . 46

5.2 GNSS antennas and receiver hardware used in the experimental trials. . . . . . . . . . . 49

5.3 GPS antennas mounted with ground planes. . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Setup of the equipment required to obtain the GPS and IMU observables. . . . . . . . . . 50

6.1 Simulated angular velocity measurements for the static trial. . . . . . . . . . . . . . . . . . 55

6.2 Static trial attitude estimates, including intermediate solutions. . . . . . . . . . . . . . . . . 56

6.3 EKF without fixing and fixed solutions’ bias estimates during the simulated static trial. . . 58

6.4 Simulated angular velocity measurements for the dynamic trials. . . . . . . . . . . . . . . 59

6.5 Dynamic trial, multiple baseline attitude estimates, including intermediate solutions. . . . 60

6.6 Dynamic trial, multiple baseline EKF without fixing and fixed solutions’ bias estimates. . . 61

6.7 Dynamic trial, single baseline attitude estimates, including intermediate solutions. . . . . . 62

6.8 Dynamic trial, single baseline EKF without fixing and fixed solutions’ bias estimates. . . . 64

6.9 Measured angular velocity during the experimental static trial. . . . . . . . . . . . . . . . . 65

6.10 Fixed solutions’ estimated Euler angles during the static experiment. . . . . . . . . . . . . 66

6.11 Changes in the GPS satellites in view during the static experiment. . . . . . . . . . . . . . 67

6.12 Fixed solutions’ estimated gyroscope bias during the static experiment. . . . . . . . . . . 68

6.13 Trajectory and key points describing the experimental dynamic trial. . . . . . . . . . . . . 69

6.14 Measured angular velocity during the experimental dynamic trial. . . . . . . . . . . . . . . 69

6.15 Fixed solutions’ estimated Euler angles during the dynamic experiment. . . . . . . . . . . 70

6.16 Fixed solutions’ estimated gyroscope bias during the dynamic experiment. . . . . . . . . . 71

xv



xvi



Nomenclature

Observation models

P ki Code measurement of satellite k provided by receiver i.

Ψk
i Carrier phase measurement of satellite k provided by receiver i.

ρki Distance between the phase centers of antenna i and the transmission antenna of satellite k.

ri Position of receiver i.

rk Position of satellite k.

τki Propagation time of the signal transmitted by satellite k and received by antenna i.

dti Clock offset of receiver i.

dtk Clock offset of satellite k.

Iki Ionospheric delay of the signal transmission between satellite k and antenna i.

T ki Tropospheric delay of the signal transmission between satellite k and antenna i.

R3 Rotation matrix relative to rotation around the Z axis.

φi,0 Initial offset of the signal phase at receiver i.

φk0 Initial offset of the signal phase at satellite k.

nki Integer ambiguity of the observations given by receiver i, relative to satellite k.

εkP,i Unmodelled error in the code measurement model, relative to receiver i and satellite k.

εkΨ,i Unmodelled error in the carrier phase measurement model, relative to receiver i and satellite k.

σkP,i Standard deviation of code measurement relative to receiver i and satellite k.

σkΨ,i Standard deviation of code measurement relative to receiver i and satellite k.

φk0 Initial offset of the signal phase at satellite k.

we Earth’s mean angular rotation velocity: we = 7.292 115 147× 10−5 rad/s.

c Speed of light in vacuum: c = 299 792 458m/s.

xvii



f Signal carrier’s frequency. At the L1 frequency, f = 1575.42MHz.

λ Signal carrier’s wavelength.

uki Line of sight vector from antenna i to satellite k.

bij Baseline vector between antennas i and j written in the reference frame.

lij Baseline vector between antennas i and j written in the body frame.

m Number of satellites −1.

n Number of antennas −1, or number of baselines.

Y Matrix of double differenced observations.

S Design matrix linking the integer ambiguities to the observations.

N Matrix of double differenced integer ambiguities.

Υ Matrix of line of sight vectors.

U Design matrix linking the baseline coordinates to the observations.

B Matrix of baseline coordinates in the reference frame.

F Matrix of baseline coordinates in the body frame.

Qvv Covariance matrix of vector v.

QMM Covariance matrix of vector vec(M , for a matrix M .

In n× n identity matrix.

Attitude representation

R Rotation matrix.

q Unit quaternion.

qw Real part of the unit quaternion.

qv Imaginary or vector part of the unit quaternion.

R(q) Rotation matrix corresponding to unit quaternion q.

e Euler axis.

ϕ Roll angle.

θ Pitch angle.

ψ Yaw angle.

Attitude estimation

xviii



ω True angular velocity.

p, q, r Angular velocities around the X, Y and Z axis.

ωm Measured angular velocity.

b Gyroscope bias.

ηv, ηu White noise processes.

M̌ Estimator of matrix M in the integer constrained problem.

M̂ Estimator of matrix M in the float solution problem.

v̂ Estimator of vector v in the float solution problem.

R(N) Conditional rotation matrix.

q(N) Conditional unit quaternion.

xk Nominal system state vector.

n Vector of double differenced ambiguities.

Ψ∗k+1,k Jacobian matrix of the quaternion discrete kinematics in relation to quaternion.

L(xk) Jacobian matrix of the quaternion discrete kinematics in relation to the gyro bias.

F k Propagation step state transition matrix.

Qk Process noise covariance matrix.

Kk Kalman gain.

zk Extended kalman filter measurements vector.

Hk Update step observation matrix.

Rk Measurements noise covariance matrix.

g(q) Nonlinear function relating the unit quaternion to the measurements.

G′(q) Jacobian matrix of the measurements in relation to the quaternion.

Jq Jacobian matrix of the quaternion rotation in relation to the quaternion.

xix



xx



Glossary

ARW Angular Random Walk

C-ILS Constrained Integer Least Squares

C-LAMBDA Constrained LAMBDA

DD Double Differenced

ECEF Earth-Centered Earth-Fixed

EKF Extended Kalman Filter

ENU East-North-Up

FOAM Fast Optimal Attitude Matrix

GNC Guidance, Navigation and Control

GNSS Global Navigation Satellite Systems

GPS Global Positioning System

IAD Integer Ambiguity Determination

ILS Integer Least Squares

IMU Inertial Measurement Unit

INS Inertial Navigation System

KF Kalman Filter

LAMBDA Least-squares AMBiguity Decorrelation Adjust-

ment

LOS Line of Sight

LS Least Squares

LTI Linear Time-Invariant

MC-LAMBDA Multivariate Constrained LAMBDA

OPP Orthogonal Procrustes Problem

QUEST Quaternion Estimator

RF Radio Frequency

RINEX Receiver Independent Exchange Format

RRW Rate Random Walk

RTK Real Time Kinematic

UAV Unmanned Aerial Vehicle

WLS Weighted Least Squares

xxi



xxii



Chapter 1

Introduction

In the context of Guidance, Navigation and Control (GNC) systems engineering, navigation deals with

monitoring the movement of a craft or vehicle. Historically, the concept of navigation was usually asso-

ciated with the art of directing ships at open sea, through determining its position and course in order to

be able to safely get from one point to another. Most recently, through the technological advances that

led to the development of rockets, spacecrafts, or autonomous vehicles, the concept of navigation has

been extended in order to include land, aeronautic and space navigation as well. Notably, the advent of

airplanes in the early 20th century sparked a growing interest in this field, enabling innovative solutions

for airborne vehicles. Even more so after World War II, with the development of new inertial and elec-

tronic navigation systems. Nowadays, navigation solutions are often digital, implemented on embedded

systems and allow flying the skies, exploring space, and for anyone who carries a smartphone to know

their approximate location.

At a given time, a complete navigation solution should be able to provide the vehicle’s position and

velocity, as well as its attitude or orientation relative to a certain reference frame. The required in-

formation varies according to the specific application. Autopilot systems, spacecraft launch vehicles,

satellites, unmanned aerial vehicles (UAVs) or guided missiles applications are just a few that can be

highlighted. When it comes to attitude estimation, the common approaches usually integrate information

from at least two sensors. Inertial navigation systems (INS) used in vehicles such as ships or aircrafts

commonly use rate gyros coupled with magnetometers, accelerometers and other devices in order to

estimate the attitude parameters of the body. For vehicles such as rockets or other spacecrafts, typically

used sensors include also gyroscopes and magnetometers, along with Earth sensors or star trackers

and Sun sensors, giving the vehicle’s relative orientation with respect to celestial bodies. Estimation

theory, and Kalman filtering in particular, establish tools based on a thoroughly studied mathematical

formulation for combining the measurements from different sensors, also known as sensor fusion.

On the other hand, navigation satellite systems are more commonly used for autonomous geo-

spacial positioning. Previously, radio navigation systems such as the LOng RAnge Navigation (LORAN)

or OMEGA [1], currently no longer in use, relied on the same principle of broadcasting radio signals, and

measuring the delays relative to the signal’s propagation. The first navigation satellite system, TRAN-
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SIT, was based on measuring the Doppler frequencies of the signal broadcast by a satellite traveling in

a known orbit [2]. The change in frequency over time, combined with knowledge of the precise satellite’s

position, allowed determining the location of the signal receiver.

Modern systems use signals from several satellites in order to determine the position instantaneously,

using a kind of trilateration process [3]. They are also simpler and more direct, as the information broad-

cast by the satellites is all that is needed by the receiver to perform the computations. Examples of

such satellite systems providing global coverage, broadly designated Global Navigation Satellite Sys-

tems (GNSS), are the Global Positioning System (GPS), owned by the United States government, or

Russia’s GLONASS, among others. Having been around for decades, applications of these systems

include navigation systems, surveying and mapping or providing precise time references, among others.

Apart from precise positioning applications, estimation of a vehicle’s attitude is also possible by using

multiple GNSS antennas.

This work focuses on using the information provided by the Global Navigation Satellite Systems for

attitude estimation. The reasons behind this choice are given next. Then, a brief description of what

solving this problem entails is given, followed by an overview of the state of the art methods currently in

use. The goals of this thesis are enumerated, and lasty the structure of this document is described.

1.1 Motivation

The problem of attitude estimation using GNSS has been tackled extensively over the last decades, such

that the advantages and disadvantages of doing so are clearly known. While the accuracy of a GNSS-

based attitude system by itself may not be comparable to other modern solutions integrating several of

the sensors enumerated before, this system requires very low maintenance. Global coverage is always

available and the reliability of the satellites is guaranteed by control ground stations. Furthermore, these

solutions are driftless, as opposed to a rate gyro, and the GNSS antennas and receivers are overall

considerably less expensive that other space-grade sensors such as star trackers, INS or Ring Laser

Gyros (RLGs) [4]. Notably, even using single-frequency low-cost GPS receivers, precisions of 1.6° are

possible [5].

These types of attitude estimation solutions are also highly versatile. As their INS counterparts,

GNSS-based attitude systems have been implemented on board size constrained, low-weight UAVs

[6], ships [7], aircrafts [8], spacecrafts [9] and even very small nano-satellites [10]. Furthermore, GNSS

observations can be fused with information from Inertial Measurement Units (IMU) [7, 10], compensating

for some of the shortcomings of these sensors, for example correcting the gyroscope drift. Since the use

of GPS and other satellite navigation systems is already the golden standard when it comes to precise

positioning systems, the antennas and receivers are already commonly installed as part of the overall

navigation solution for these vehicles. Thus, augmenting the attitude solution so as to include GNSS

measurements comes at a very low additional cost while providing the benefits previously described.

For these reasons, GNSS-based attitude estimation still draws attention from the navigation community

[11].
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The large amount of possible combinations between the type and number of GNSS receivers and

antennas, integrated IMU or other sensors and integer atittude determination (IAD) schemes present

in the literature allow for the development and testing of novel solutions, even after decades of GPS

availability. In the present work, a solution based on the novel Multivariate Constrained LAMBDA (MC-

LAMBDA) method [8] is proposed, along with a recursive filter integrating rate-gyro measurements. The

motivation behind this solution lies with studying how integration of a kinematics model allows full attitude

determination using a single baseline (two antennas) in certain scenarios, as well as how it impacts the

accuracy of the solution.

1.2 Topic Overview

In order to relate the collected GNSS measurements to the orientation of the vehicle, the antennas must

be mounted solid to the body. Then, after implementation of the attitude system, the processing can

occur autonomously. High accuracy GNSS-based attitude estimation solutions rely on carrier phase

measurements of the signal transmitted by each satellite. These provide a measure of the antenna to

satellite range, although ambiguously, being off by an integer multiple of the signal wavelength. The

noisier code measurements are often also used to help with determining the integer ambiguities present

in the carrier phase measurements. As such, the correct determination of the integer ambiguities is

crucial.

Some of the methods proposed in the literature employ a search algorithm which determines the

integer ambiguities based on the geometry between the GNSS antennas. The selected ambiguities

minimize a cost function built from the GNSS observables model, presented later on. In other solutions

propose obtaining a preliminary, less accurate solution, which becomes a starting point for the search

algorithm. Having the correct set of integer ambiguities, estimation of the body’s orientation relies once

again on the observation models with relate the observations with the body attitude. The process of

obtaining both the integer ambiguities and the attitude estimates can also be aided by other sensors,

such as the gyroscope or magnetometer. These and other variants of possible GNSS-based attitude

estimation schemes are described next.

1.3 State of the Art

Several techniques have been proposed in the literature in order to solve the attitude estimation problem

using GNSS observations.

Most solutions focus on using at least three GNSS antennas in order to obtain the complete orien-

tation of the body frame in relation to a reference frame, usually presented in the form of Euler angles.

Using only two antennas, it is generally not possible to do so, unless other sensors such as gyroscopes,

accelerometers and magnetometers are used. These solutions are of particular interest for applications

where low volume and complexity are important concerns. Other factors influencing the accuracy and
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stability of the attitude estimates are the antenna configuration, the integer ambiguity resolution method

used and the interferences and experimental scenario affecting signal quality.

In the following, an overview of the different possibilities, found in the literature, is given. Generally,

the GNSS-based attitude estimation methods can be divided into two categories.

The first group consists of baseline estimation methods, which are concerned with initially estimating

the coordinates of the baselines between the GNSS antennas. This process relies on an observation

model which relates the code and carrier phase measurements with the baseline coordinates in the

reference frame, as shown in the next Chapter. Them, these types of solutions can be further catego-

rized as instantaneous epoch-by-epoch methods, or recursive methods. A widely used epoch-by-epoch

method is detailed in [12], where the baseline coordinates are obtained from a linear least-squares (LS)

adjustment based on the baseline-based observation model. Initially, a preliminary float solution is ob-

tained by dropping the integer constraints. Afterwards, the integer ambiguities are determined, from

which follows an improved attitude solution. This decomposition of the estimation problem in several

steps is common throughout the literature.

On the other hand, Eling et al. [6] designed a recursive filter in order to estimate the baselines

using the GNSS measurements collected over time.In this Extended Kalman Filter (EKF) solution, the

overall attitude system also integrates attitude estimates obtained using real time kinematic (RTK) GPS

positioning techniques, IMU readings and magnetic field measurements. By doing so, angle precisions

of 0.2° are obtained and a single baseline can be used to estimate the full attitude of the body. For more

details on this solution, see [6]. In this first group of methods, the estimated baseline coordinates are

then used to obtain the body attitude. One of several available methods can be used to estimate the

rotation that relates the coordinates in the body and reference frames. Some possibilities are described

in [9, 13–15] and include, for example, Davenport’s q-method or singular value decomposition-based

methods.

Concerning the second category of methods, the attitude is estimated directly from the GNSS obser-

vations. This is done by replacing the baseline coordinates in the reference frame, present in the GNSS

observation models, with the rotation of the known body frame baselines.The resulting GNSS-based

attitude model is then used to estimate the body’s attitude. The LS approach introduced by Teunissen

in [16] precisely aims to solve this minimization problem. Again dropping the integer and nonlinear con-

straints, a float solution is estimated epoch-by-epoch using the normal equations. The decomposition of

the residual squared norm followed in this approach is the basis on which the work of this thesis is built,

as detailed later.

Other very interesting possibilities are presented in [9], based on both the baseline and attitude

models. For example, an iterative LS adjustment based on the linearization of an attitude model using

a quaternion parametrization is described. Since it is an epoch-by-epoch algorithm, no kinematics

models of the system are used in this solution. The accuracy of this method is then compared with

other solutions, such as that of an EKF using the same GNSS-based attitude model mentioned earlier,

integrated with a kinematics model of the body’s angular motion. As expected, the method using a

recursive filter improves the Euler angles accuracy, to around 0.31°.
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All the enumerated solutions require that the integer ambiguities relative to the number of wave-

lengths between antenna and satellite be correctly determined, in order to use the highly accurate carrier

phase observations. Due to the integer constraint of the unknown ambiguities, the methods in the liter-

ature usually involve some kind of search algorithm. Exceptions to this are the methods used in [9, 10],

where the ambiguities are determined by first estimating the baseline vectors, and then inverting the

baseline model to compute an approximate ambiguity solution. Afterwards, this solution is rounded to

the nearest integers. This approach is valid only for baseline lengths on the same order of magnitude as

the GNSS signal’s wavelength. Regarding the search approaches, efficient and highly successful integer

ambiguity determination (IAD) algorithms were proposed by Teunissen. The Least AMBiguity Decorrela-

tion Adjustment (LAMBDA) finds the integer set of ambiguities minimizing a cost function which weights

the distance to a preliminary float solution [12]. In turn, the Constrained LAMBDA (C-LAMBDA) [17] also

takes into account the known baseline lengths, restricting the possible integer ambiguity solutions. The

Multivariate Constrained LAMBDA (MC-LAMBDA) [8] also proposed by Teunissen makes use of both the

baseline lengths and the relative geometry between the baselines, increasing the success rate of IAD.

A comparison between these two methods is given in [18]. Using the simulated data, the MC-LAMBDA

computes the correct ambiguities set 100% of the time, compared to the slightly worse 98.9% using the

C-LAMBDA method.

The method proposed in this thesis draws from the recursive approaches enumerated in this Chapter,

since the attitude is estimated more accurately and it becomes possible to integrate information from

other sensors. For ambiguity determination, the MC-LAMBDA method is used and slightly modified in

order to fit the approximate solution provided by the recursive filter.

1.4 Objectives

Overal, this thesis aims at developing an attitude system which successfully integrates GNSS mea-

surements with IMU sensors, providing adequate accuracy for high precision applications such as au-

tonomous driving or UAVs. At this point of development, the goal is to focus on designing and validating

the solution in post-processing of the acquired data.

In the context of GNSS-based attitude estimation, the particular objectives of this work are summa-

rized as

• Designing a solution which takes advantage of the precise carrier phase measurements as well as

angular velocity measurements taken from a gyroscope;

• Defining and implementing a state of the art integer ambiguity resolution method with high success

rate;

• Utilizing the determined integer ambiguities to provide a attitude solution with, at least, sub-degree

precision;

• Analytically assessing the conditions in which the developed solution is capable of estimating the

full attitude of the vehicle;
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• Complete implementation of the attitude system using suitable software;

• Implemention of a simple GNSS observables simulator for validation of the developed solution in

a controlled environment;

• Performing actual experiments using GNSS hardware and a gyroscope in scenarios with different

attitude dynamics; and

• Evaluating the performance of attitude estimation using both simulated and experimental data.

1.5 Thesis Outline

Keeping in mind the objectives defined previously, this dissertation is organized as follows.

Chapter 2 serves as an introduction of the basic notions and theory relevant for the problem at hand,

such as possible attitude parametrizations and GNSS observation models.

This problem is then strictly formulated in Chapter 3, highlighting the GNSS-based attitude model on

which the attitude estimation solution is based.

The proposed framework to solving the problem stated in the previous Chapter is detailed in Chapter

4. The structure of the solution is described, involving an EKF which provides approximate attitude and

float ambiguity solutions, followed by the MC-LAMBDA method used for integer ambiguity resolution.

Furthermore, some insights on the observability properties of the filter are provided by means of a

linearized model.

Afterwards, Chapter 5 deals with presenting the overall structure of the designed software. The sim-

ulation and experimental setups through which GNSS and gyroscope data is obtained are also detailed.

Utilizing the setup described in the previous Chapter, the simulation and experimental trials done for

validation of the algorithm are presented in Chapter 6. The corresponding results are then shown and

discussed.

Finally, the main results concerning this research are written in Chapter 7. The dissertation would not

be complete without also enumerating this work’s contributions, as well as suggestions for improvements

and work to be done in the future.
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Chapter 2

Theoretical Background

This Chapter provides an overview of some mathematical concepts and topics that must be clearly

defined in order to formulate the main problem that the current thesis aims to solve.

Initially, possible ways of defining the attitude between two coordinate frames that are relevant to this

work are briefly reviewed in Section 2.1. As there are some representations that allow for a number of

possible definitions, namely the Euler angles and the quaternion, the conventions adopted are defined.

In Section 2.2, the coordinate frames in which vector quantities are to be expressed are enumerated.

The relevant relations between frames, used, in this case, to transform vector coordinates, are also

presented.

The proposed method for Attitude Estimation is based on Global Navigation Satellite Systems (GNSS)

observables, namely pseudorange and carrier phase measurements. To build a mathematical model

which allows to relate these measurement to the unknown quantities that are to be estimated, one must

understand some GNSS fundamentals. These are presented in Section 2.3.

2.1 Attitude Representation

In the context of attitude estimation, the attitude of a body is the relative orientation of a reference frame

fixed to the body, the appropriately called body frame, to a local-level frame such as the East-North-Up

(ENU) frame. More broadly, one can define the relative orientation between any two coordinate frames

using one of several possible attitude parametrizations, see [19]. Highlighted hereon are the direct

cosine matrix, Euler angle and quaternion representations.

The direct cosine matrix, or rotation matrix, Rb
a, will be defined as giving the relative orientation of a

coordinate frame ”b” in respect to a coordinate frame ”a”. Having the coordinates of a vector r written in

frame ”a”, ra, and considering that the frames differ only in orientation, the coordinates of the vector in

frame ”b”, rb, are computed by

rb = Rb
ara. (2.1)

The 3 × 3 rotation matrix Rb
a completely describes the relative orientation between the two coordinate

frames unambiguously and without singularities. One drawback of using this representation is that
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it includes nine parameters, the entries of the rotation matrix, even though there are in fact only three

degrees of freedom, due to the six magnitude and orthogonality constraints. Other representations, such

as the Euler angles or quaternion parametrization, only require three or four parameters, respectively,

decreasing the computational load.

A coordinate frame ”a” can be rotated into any other frame ”b” by performing a maximum of three

successive rotations around the coordinate axes. The magnitudes of each rotation are defined as the

Euler angles. The freedom of choice regarding which axes to rotate, in which order and whether the

rotation is defined around the axes of the initial frame or of each intermediate frame give rise to several

possibilities. As such, the attitude can be described by different triplets of Euler angles, depending

on the chosen convention. Through this document, the chosen Euler angles are the ones relative to

sequential intrinsic rotations around the z, y and x axes of right-handed frames. Defined in this way,

the Euler angles are commonly known as the yaw, pitch and roll angles (ψ, θ and ϕ). Representing

each sequential rotation using the direct cosine matrix allows to write the overall rotation matrix Rb
a as a

function of the Euler angles (2.2).

Rb
a =


cosψ cos θ cosψ sin θ sinϕ− cosϕ sinψ sinψ sinϕ+ cosψ cosϕ sin θ

cos θ sinψ cosψ cosϕ+ sinψ sin θ sinϕ cosϕ sinψ sin θ − cosψ sinϕ

− sin θ cos θ sinϕ cos θ cosϕ

 (2.2)

The Euler angles are commonly used to describe the attitude because they provide a convenient phys-

ical interpretation of the parameters. However, they can be troublesome to manage if used during

computations because singularities can occur at particular orientations. This must be taken into account

if the attitude of the body is unpredictable or if it is subject to high angular variations. In these cases, the

more common approach is using a quaternion representation.

The unit quaternion representing the orientation between two frames can be expressed as (2.3),

where qv is the imaginary or vector part of the quaternion and qw denotes the real part. As seen by this

definition, throughout this document the Hamilton convention of the unit quaternion will be used. For

details on different conventions and differences between them, see [20].

q = qw + iqx + jqy + kqz =

qw
qv

 , qv =


qx

qy

qz

 . (2.3)

A physical interpretation of the quaternion can be grasped by expressing its relation to the Euler rotation

vector. Any arbitraty rotation between two frames can be described by a rotation of an angle α around a

certain axis, whose direction is specified by the unit vector e. This can also be seen as an exponential

map of the rotation vector to the quaternion [20], as written in (2.4).

q{αe} , Exp(αe) = eαe/2 =

 cosα/2

e sinα/2

 . (2.4)
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From the definition in (2.4), it follows that the quaternion related to the orientation between two frames

has a unit-norm constraint, ‖q‖ = 1. Quaternions that obey this constraint represent a unique rotation

and are said to belong to the unit-quaternion group, denoted as H∗. Following its definition and relation

with the Euler vector, the rotation matrix describing the passive transformation between two frames can

be written as a function of the corresponding quaternion as

R(q) = (q2
w − q>v qv)I3 + 2qvq

>
v + 2qw[qv×]. (2.5)

Note that in the context of attitude estimation, this rotation matrix shall represent the local-to-global

transformation. The notation [v×] in (2.5) denotes the skew operator representing the cross-product

matrix (2.6).

[v×] =


0 −v3 v2

v3 0 −v1

−v2 v1 0

 (2.6)

Like the rotation matrix, the unit quaternion can be used to rotate vectors or transform vector coordinates.

Following the Hamilton convention, the coordinates in frame ”a” ra can be transformed into frame ”b” as

written in (2.7)

rb = R(q)ra = q ◦ ra ◦ q∗ =

qw
qv

 ◦
 0

ra

 ◦
 qw

−qv

 , (2.7)

where the operator ◦ denotes the quaternion product, defined in (2.8), and q∗ is the quaternion conjugate

q∗ = [qw − q>v ]>. In the case of the operation defined in (2.7), since the rotated vector rb ∈ R3, only the

vector or imaginary part of the result of the quaternion product is considered.

p ◦ q =

 pwqw − p>v qv
pwqv + qwpv + pv × qv

 (2.8)

The quaternion product expression (2.8) can also be written in matrix product form (2.9).

p ◦ q = [q]R p, [q]R =


qw −qx −qy −qz
qx qw qz −qy
qy −qz qw qz

qz qy −qx qw

 (2.9)

2.2 Coordinate Frames

The Earth-fixed or Earth-fixed Earth-centered (ECEF) frame is, as the name entails, fixed with respect

to the Earth. As the Earth rotates around its spin axis, so does the Earth-fixed frame. The origin of

the frame coincides with the position of the Earth’s center of mass, its X-axis points towards the mean

meridean of Greenwich while the Z-axis follows the direction of the mean spin axis of the Earth. The

remaining axis results from the right-handedness of the orthogonal frame.
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Along with this frame, one can define a more convenient surface which allows to write positions with

respect to the Earth’s surface. In geodesy, the reference surface is an ellipsoid of revolution [3]. The

shape of the ellipsoid is commonly defined by its semi-major axis a, and flattening f or eccentricity e.

Different values for these parameters result in different geodesic systems or datums. Each geodetic

system tries to minimize the error incurred by approximating the Earth’s surface as an ellipsoid whether

globally or in a particular area of the Earth. The coordinate system used by the GPS, and the one used

in this research, is the WGS84 datum. The relation between the ECEF frame and the reference ellipsoid

is shown in Figure 2.1.

Figure 2.1: Earth-fixed coordinate frame and local-level ENU frame.[21]

The represented geodetic coordinates latitude φ and longitude λ correspond to the angle formed

by a particular point with respect to the ECEF X-axis and the equatorial plane, respectively. Together

with the height h above the ellipsoid, which is measured perpendicularly to the ellipsoid tangent plane,

any position can be clearly defined. A given point P with geodetic coordinates φ, λ and h is written in

cartesian coordinates in the ECEF frame according to (2.10) [3]. The quantity N corresponds to the

distance between the ECEF z-axis and the ellipsoid surface, along the normal at P.


X = (N + h) cosφ cosλ

Y = (N + h) cosφ sinλ

Z = ((1− f)2N + h) sinφ

, N = a/

√
1− f(2− f) sin2 φ (2.10)

A coordinate frame whose axis are defined along the tangent and normal directions to the ellipsoid’s

surface, as in Figure 2.1, is often useful for referencing the attitude of a body or vehicle. In this case, a

East-North-Up (ENU) frame is chosen, whose axes and corresponding directions are also represented

in the figure. The X and Y axes are tangent to the surface of the ellipsoid and point East and North,

respectively. The origin of this local frame will be placed at the position of the reference antenna’s phase
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center, as described later on. Expressions for the transformation of vector coordinates between the

ECEF and local frame are simple to deduce, since the relative rotation between the frames is given by

the geodetic parameters φ and λ.

As mentioned before, the body frame is the coordinate frame attached to the platform or vehicle

whose attitude is to be estimated. The configuration of the antennas and auxiliary sensors in relation to

the body frame, as well as the respective coordinate transformations between the body frame and local

frame will be described in the next Chapter.

2.3 Global Navigation Satellite Systems

In the following, a brief description of a general Global Navigation Satellite System is given. The GPS

[22] is highlighted, as the measurements used in the implementation and testing of the solution are the

ones given by this particular constellation. Then, an overview of the signal processing that occurs in a

typical GNSS receiver is presented, leading to a mathematical model of its measurements. Known error

sources and the double differences used to reduce their effect are described.

2.3.1 System Description

Global Navigation Satellite System is a term referring to a system of satellites used to autonomously

estimate positions and other quantities with global coverage. GNSS receivers are able to estimate

the geodetic parameters relative to their position using radio signals transmitted from the satellites.

Some examples of satellite constellations built for this purpose are the United States’ GPS, Russia’s

GLONASS, China’s BeiDou and the European Union’s Galileo.

To achieve global coverage, the United States’ constellation consists of at least 24 GPS satellites

distributed across six equally-spaced orbital planes at an altitude of approximately 20 200 km [23]. Apart

from the satellites composing the space segment, there is also a control segment with control and

monitoring stations and the user segment, which includes the receivers and user applications.

Each GPS satellite transmits radio signals that are phase modulated according to a sequence of

bits, a pseudorandom code, which is known by the receiver. The signal also contains navigation data

that includes the time of transmission (TOT) of the code epoch and the ephemeris used to compute

the satellite’s position. The receiver uses the pseudorandom code knowledge to create a replica of the

transmitted signal. Knowing the modulation of the carrier, it aligns the replica with the received signal.

In practice, this can be done by maximizing the output of a filter that tries to undo the modulation of the

carrier phase. After alignment, a Delay Lock Loop (DLL) maintains synchronization. For further details,

see [24]. This signal processing is the basis of obtaining the pseudorange measurements.

The actual signal modulation is twofold. Two different bit sequences are used – the Coarse/Acquisition

(C/A) code with a chipping rate of 1.023MHz and the Precision (P) code which is 10 times faster. Fur-

thermore, all GPS satellites use the same carrier frequencies. At present, they transmit at the L1, L2 and

L5 frequencies, which are 1575.42MHz, 1227.6MHz and 1176.45MHz, respectively. For distinguishability,
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each satellite uses a different pseudorandom sequence for modulation (PRN code).

Concerning the carrier phase measurements, other signal processing techniques are used to bring

the received signal to lower frequencies and track the phase using phase locked loops (PLL). Such

techniques fall out of the scope of the present work and are detailed extensively in the literature [24,

25]. Instead, our focus will be on the usage of these measurements to achieve high accuracy attitude

estimates.

2.3.2 Observation Equations and Error Sources

The observables that the typical GNSS receiver provides, used to compute the accurate position of the

antennas, are the pseudorange and carrier phase measurements. Before writing their mathematical

models, the typical error sources affecting these measurements, as well as their approximate magnitude

will be briefly discussed. All values are based on [3].

Starting from the transmitting end of the GNSS system, it must be mentioned that the satellite clocks,

although precise up to a relative accuracy of 10−12–10−13, are not perfect. The accumulated error over

a day multiplied by the speed of light can amount to several meters. Moreover, the orbital parameters

transmitted by the satellite also contain small errors that grow until corrected periodically by a ground

station. This deviation also accounts for a ranging error of several meters [26].

The largest errors are otherwise due to delay of the signal when traveling through the atmosphere.

The first significant delay occurs when the signal crosses the ionosphere and is related to its electron

density. One important detail is that the delay is inversely proportional to f2, f being the frequency of

the signal carrier, meaning that a dual-frequency receiver is capable of estimating the ionospheric delay

by measuring, for example, on the L1 and L2 frequencies. The troposphere also changes the speed

of the incoming signal due to its temperature, pressure and humidity. A simple model considers the

tropospheric delay as varying with the elevation angle [27].

Using a low-cost receiver, both the ionospheric and tropospheric delays must be estimated using

approximate models or its effects mitigated by means of differencing, as shown later on. Otherwise, the

ranging error can increase by another few meters, which is critical in high accuracy applications.

The last significant errors related with the propagation of the signals are multipath errors. What

arrives at a receiver is often the result of the transmitted signal reflected on different surfaces before

ultimately arriving at the receiver through different paths. In this way, the signal interferes with itself. This

effect is difficult to model, and so the antidote is often to improve the antenna design and the receiver

site so as to decrease the multipath.

On the user segment level, the receiver clock used is much less precise than the very expensive

satellite clocks. Unlike the satellite clock offsets which can be estimated using parameters transmitted

in the GPS message, the receiver clock offset must be estimated along with the other unknowns in the

measurement model. This necessity makes it so that the positioning problem using pseudorange data

can only be solved within reasonable accuracy by gathering measurements from at least 4 satellites on

each epoch.
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The approximate ranging errors due to the discussed effects are presented in Table 2.1 as given in

[3]. Assuming that the error sources are independent , the root mean square (RMS) corresponds to

the user equivalent range error (UERE) shown in the table. Next, the adopted pseudorange and carrier

phase models are described.

Table 2.1: Approximate magnitude of the most significant errors affecting GNSS measurements.

Error source Ranging Error (m)

Satellite Clock 2
Satellite Ephemeris Data 2
Ionosphere 4
Troposphere 0.5–1
Multipath 0–2

UERE (RMS) 5

As mentioned before, the pseudorange is determined by comparing the receiver internally generated

signal, the replica, with the signal received from the satellite. The delay between both signals is deter-

mined by aligning the known code modulation of the GNSS signal. For this reason, these pseudorange

measurements are also called code measurements. Knowing the propagation velocity of the signal and

its transmission time, the time delay is converted into a distance. One possible mathematical model of

the pseudorange measurement [3] can be given by the following equation,

P ki (t) = ρki + c(dti(t)− dtk(t− τki )) + Iki + T ki + εkP,i, (2.11)

where P ki (t), is the pseudorange measurement at time t and ρki =
∥∥R3(ωeτ

k
i )rk(t− τki )− ri(t)

∥∥ is the

distance between receiver i and satellite k. The position vectors of the receiver and satellite, ri(t) and

rk(t − τki ), are written in the ECEF frame. The delay τki is the propagation time corresponding to the

distance ρki , and the rotation matrix R3(ωeτ
k
i ) accounts for the effect of the Earth’s rotation, ωe, when

computing the distance between a receiver and satellite whose positions are evaluated at different times

in the ECEF frame. In (2.11), dti(t) and dtk(t − τki ) are the clock offsets of the receiver and satellite,

respectively. The troposphere and ionosphere delays are given by T ki and Iki . Other errors in the

modelling of the pseudorange, such as multipath effects, are grouped in the error term εki and will be

discussed later.

The carrier phase range is computed by mixing the replica and received signals to obtain a measure

of the phase of the incoming signal, given by the receivers in the form of a cycle count. Knowing the

wavelength λ corresponding to the GNSS signal frequency (for the present work, consider only the L1

frequency f = 1575.42MHz), it is possible to convert the phase into a distance. However, the phase

measurement is ambiguous by multiples of the wavelength since the exact cycle count between receiver

and satellite cannot be determined by the signal processing of the receiver. Therefore, the carrier phase

range can be given by

Φki (t) = ρki + c(dti(t)− dtk(t− τki ))− Iki + T ki + λ(φi,0 − φk0) + λnki + εkΦ,i, (2.12)
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where φi,0 and φk0 are offset terms of the signal phase at the satellite transmitter and receiver, respec-

tively, and nki is the integer cycle ambiguity. The ionosphere effect delays the signal but introduces a

phase advance, and so its contribution Iki to both measurements is opposite in sign, as seen in (2.11)

and (2.12).

The carrier phase measurement is typically much more precise than the code measurements that

provide the pseudorange. This makes the carrier phase measurements indispensable for applications

where precision is of the essence, such as attitude estimation. However, the integer ambiguities must

be determined.

2.3.3 Double Differenced Observations

High accuracy, when it comes to positioning and attitude estimation, is possible only when as many error

sources as possible are either modelled or mitigated. One way of doing so is using several receivers.

Since some error sources are satellite or receiver dependent, it results that by subtracting observations,

some terms in the observation equations are eliminated.

Considering two receivers, i and j, simultaneously tracking two satellites, k and l, one can define the

double differences (DD) both in terms of pseudorange and carrier phase range measurements as

P klij = P ki − P li − P kj + P lj , Φklij = Φki − Φli − Φkj + Φlk. (2.13)

Assuming that the measurements at the receivers are received at the same time epoch, the clock

delays and the initial phases in (2.12) are eliminated since they only depend whether on the receiver or

satellite and are considered constant over short time spans. Therefore, the double differenced observa-

tions can be modelled by P
kl
ij = ρklij + Iklij + T klij + εklP,ij

Φklij = ρklij + Iklij + T klij + λnklij + εklΦ,ij

, (2.14)

where the double differenced range, tropospheric and ionospheric delays, and integer ambiguities are

defined similarly to the DD observations in (2.13).

If the antennas are considered to be sufficiently near to each other (less than 1–2km) [3], as is the

case for attitude estimation purposes, one can consider that the troposphere and ionosphere delays

are approximately the same. That is, T ki ≈ T li ≈ T kj ≈ T lk and Iki ≈ I li ≈ Ikj ≈ I lk. The resulting DD

measurements are written in (2.15) for any two antennas i, j and satellites k, l.

P
kl
ij = ρklij + EklP,ij

Φklij = ρklij + λnklij + EklΦ,ij

(2.15)

In the next Chapter, these observations are related to the unknown body frame orientation and the

problem that this thesis is central to is formulated.
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Chapter 3

Problem Definition

In what follows, the models that link the available measurements to the unknown attitude are made

explicit and the problem to be solved is described.

Consider a platform where a 3-axis gyroscope and n+1 GNSS antennas, together with the respective

receivers, are mounted. The gyroscope and receivers are fixed to the platform, which is in turn static with

respect to the body frame coordinate system, as represented in Figure 3.1. Antenna i is designated as

the reference antenna. For simplicity, the corresponding GNSS receiver is also called reference receiver

i. The origin of the body frame coincides with the phase center of the reference antenna, as shown in

the Figure.

Figure 3.1: Antennas and gyroscope configuration in the body frame.

Consider also the local ENU frame centered at the phase center of the reference antenna and whose

orientation is defined according to the WGS84 ellipsoid. The rotation between the body frame and the

local frame can be described using the rotation matrix Rl
b, where l denotes the local frame and b the

body frame. As such, the local frame is considered the reference frame. Since Rl
b is the only rotation

matrix in discussion, the subscript and superscript indicating the coordinate frames will be dropped. The

transformation of vector coordinates between both frames can be written using either the rotation matrix
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or the corresponding unit quaternion as in (3.1), according to the conventions defined in the previous

Section.

rl = Rl
brb , rl = q ◦ rb ◦ q∗. (3.1)

Considering that the body frame rotates with respect to the reference frame with angular velocity

ω(t) = [p(t) q(t) r(t)]
> ∈ R3, measured in the body frame, the time derivative of the quaternion rep-

resenting the orientation between the two frames is given by (3.2). This relation defines the attitude

variation due to relative rotation between the two frames.

q̇(t) =
1

2

 0

ω(t)

 ◦ q(t) =
1

2
Ω(ω(t))q(t), Ω(ω(t)) =

 0 −ω(t)>

ω(t) −[ω(t)×]

 . (3.2)

The 3-axis gyroscope placed on the platform gives a measure of the angular velocity ω(t), albeit

with some error. The measurements are stochastic and there are several models that try to describe

its behaviour over time. The standard model used to describe the measurements of a three-axis rate-

integrating gyro is given by (3.3) [19]. In these equations, ωm(t) denotes the gyro measurements and

b(t) is the bias affecting these measurements, while ω(t) is considered the true angular velocity.

ωm(t) = ω(t) + b(t) + ηv(t)

ḃ(t) = ηu(t)

,

ηv(t) ∼ N(0, σ2
vI)

ηu(t) ∼ N(0, σ2
uI)

,∀t (3.3)

While this is a continuous-time model, in reality the angular velocity sampled by a gyroscope is given

in discrete-time. This adjustment to the model will be made later on. At this point, the continuous-time

model is sufficient to describe the problem.

Replacing the true angular velocity in (3.2) using the gyroscope measurements, one can write the

quaternion kinematics as a function of the measured angular velocity (3.4).

q̇(t) =
1

2
Ω(ωm(t)− b(t))q(t)− 1

2
Γ(q(t))ηv(t), Γ(q) =


−qx −qy −qz
qw −qz qy

qz qw −qx
−qy qx qw

 (3.4)

Now, considering the model for the GNSS double differenced observations in (2.15), some approxi-

mations can be made. The geometry between the antennas placed on the platform and each satellite is

represented in figure 3.2. For any pair of antennas i and j, the baseline can be defined as bij = rj − ri,

written in the local ENU frame. Assuming that the distance between the antennas is much shorter than

the distance between each antenna and each satellite, that is, ‖bij‖ � ρki , ρ
k
j , one can make the rea-

sonable approximation of parallel links between each satellite and both receivers. Doing this, the single

difference ρkij = ρki − ρkj can be written as

ρkij ≈ uki · bij , uki =
R3(ωeτ

k
i )rk − ri
ρki

, (3.5)
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Figure 3.2: Approximation of parallel signals for very short baseline. [5]

where uki is the line of sight (LOS) vector between receiver i and satellite k. Due to the short baseline

assumption, it is also assumed that the LOS vector is approximately the same for every antenna, given

any one satellite, and so the subscript i in uki is dropped from here on. The previous observations model

(2.15) is then rewritten as (3.6).

P
kl
ij = (uk − ul)bij + EklP,ij

Φklij = (uk − ul)bij + λnklij + EklΦ,ij

(3.6)

The model can now be expanded to fit observations from two receivers i and j trackingm+1 satellites

(3.7).

y = Sn+Ub+ ε ; y ∈ R2m, n ∈ Zm, b ∈ R3 (3.7)

Among m + 1 satellites and two receivers, only m independent differences can be made. Choosing

the reference satellite as satellite k, y is the vector of double differenced independent observations

y = [P k1
ij , . . . , P

km
ij ,Φk1

ij , . . . ,Φ
km
ij ]>, and n contains the corresponding DD integer ambiguities. Matrices

S and U are defined in (3.8). The LOS vectors are contained in Υ.

S =

 0m

λIm

 , U =

Υ

Υ

 , Υ =


uk − u1

...

uk − um

 (3.8)

To characterize the DD measurements error ε, the single measurements will be considered uncorre-

lated across different receivers and satellites. The code measurements are modelled as Gaussian

random variables, uncorrelated in time. As such, the covariance matrix of a vector of code mea-

surements at a single epoch can be written as Var([P 1
i , . . . , P

m+1
i , . . . , P 1

j , . . . , P
m+1
j ]>) = QP , where

QP = diag
[
(σ1
P,i)

2, . . . , (σm+1
P,i )2, . . . , (σ1

P,j)
2, . . . , (σm+1

P,j )2
]
. This definition is analogous for the carrier

phase measurements, with covariance matrix Var([Φ1
i , . . . ,Φ

m+1
i , . . . ,Φ1

j , . . . ,Φ
m+1
j ]>) = QΦ. However,

differencing techniques introduce correlation between the measurements, increasing the noise. Using

the differencing matrix D defined in (3.9), and defining 1m = [1, 1, . . . , 1]>, the covariance matrix of the
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DD pseudorange observations follows in (3.10).

D =
[
1m,−Im

]
(3.9) Var([P k1

ij , . . . , P
km
ij ]> = 2DQPD

> (3.10)

The covariance matrix of the measurements vector y in (3.7) can now be written as in (3.11).

Qyy = Var(y) =

2DQPD
> 0

0 2DQΦD
>

 (3.11)

At last, the measurement model can once again be extended to consider n + 1 receivers tracking

m + 1 satellites. Building on the previous single baseline model, the multi-baseline model is written in

(3.12). Y = SN +UB + Ξ ; Y ∈ R2m×n, N ∈ Zm×n, B ∈ R3×n

Var(vec(Y )) = QY Y

(3.12)

The baseline matrix B contains the n independent baselines B = [bi1, bi2, . . . , bin], choosing the ref-

erence receiver i. Each column of the measurements Y and the ambiguities N refers to the baseline

of the corresponding column of B. The vec() operator stacks the columns of the matrix it is applied to,

allowing in this case to write the covariance matrix of the measurements Y . The new measurements are

correlated even further by the common receiver i in the baselines – the expression forQY Y is presented

as (3.13), where ⊗ is the Kronecker product.

QY Y =

P n ⊗ 2DQPD
> 0

0 P n ⊗ 2DQΦD
>

 , P n =


1 0.5 . . . 0.5

0.5 1
...

...
. . . 0.5

0.5 . . . 0.5 1


(n×n)

(3.13)

From this point, there are overall two ways of estimating the attitude of the body frame in relation to

the reference frame.

The first consists of using the baseline model (3.13) to estimate the baseline coordinates in the local

frame, B. In this case, the problem to solve can be formulated as a minimization of the squared error

〈Ň , B̌〉 = arg min
N∈Zm×n,B∈R3×n

‖Y − SN −UB‖2QY Y
, (3.14)

where the squared norm is in this case defined as

‖A‖2Q :=
∥∥∥Q− 1

2AQ−
1
2

∥∥∥2

F
, (3.15)

with ‖A‖2F being the Frobenius norm, for a general matrix A. The type of minimization problem in (3.14)

has been called a Integer Least Square (ILS) due to the integer constraint [16, 28, 29]. After finding

the baseline solution B̌, estimating the attitude is a matter of solving a minimization problem that can

be formulated, for example, as Wahba’s problem [30]. Denoting the known baseline coordinates in the
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body frame as F = [li1, li2, . . . , lin], the cost function to minimize is

J(R) =
1

2

n∑
k=1

ak
∥∥b̌ik −Rlik∥∥2

, (3.16)

with R being the 3× 3 rotation matrix that describes the body frame to reference frame relative orienta-

tion. Several methods are discussed in the literature to solve this problem [31].

The second formulation, and the one used in this work, consists of using the GNSS-based attitude

model [8]. The model corresponds to replacing the baseline coordinates written in the reference frame

by the rotated baselines written in the body frame. That is, replacingB = RF , the GNSS-based attitude

model is written in (3.17).

Y = SN +URF + Ξ ; Y ∈ R2m×n, N ∈ Zm×n, B ∈ R3×n,

Var(vec(Y )) = QY Y .

(3.17)

Then, the optimization problem becomes the one in (3.18). This problem has additional constraints

compared to (3.14) due to the orthonormality property of rotation matrices. It has been named as a

Constrained Integer Least Squares (C-ILS) problem in the literature [8].

〈Ň , Ř〉 = arg min
N∈Zm×n,R∈SO(3)

‖Y − SN −URF ‖2QY Y
. (3.18)

This thesis proposes to solve this optimization problem by using also the gyroscope measurements

introduced in the attitude kinematics model (3.4), in a recursive manner. This framework is presented in

the next Chapter.
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Chapter 4

Attitude Estimation

The proposed method for attitude estimation, solving the problem formulated in the previous Chapter, is

built on the work presented by Teunissen in [16]. The separation of the original problem in three parts,

consisting of float solution, integer ambiguity determination and the fixing of the solution, is presented in

the first Section.

Based on this division, the general framework proposed in this research to solve this problem is then

presented in the following Section.

The method of obtaining the float solution using both the GNSS observations and the gyroscope

measurements in a recursive way is presented in sections 4.3 and 4.4. A study of the observability of

the linearized system is also included.

Lastly, the integer ambiguity determination method used is described in Section 4.5. The changes

made to the original MC-LAMBDA algorithm due to using an EKF for obtaining the float solution are

described. The solution fixing is also adapted to the chosen techniques, detailed in Section 4.6.

4.1 The Least-Squares Approach

The GNSS-based attitude model used in the minimization problem (3.18) is introduced in [16], along with

a way of solving it. As mentioned before, this is a C-ILS problem and so there is as of yet no closed form

solution. Because of the integer nature of the ambiguities, the methods to solve it always involve some

kind of search algorithm, as will be seen later on. The method proposed in this thesis takes advantage

of the same orthogonal decomposition of the objective function as in [16], and so this process will be

briefly described.

First, consider the minimization problem formulated in (4.1), where the vec() operator is applied to

the original observation model in (3.18). Note that since the model is now in column vector form, the

norm ‖(.)‖ represents the Euclidean or L2 norm. In the case of a weighted norm, it is computed as

‖(.)‖2Q = (.)>Q−1(.).

〈Ň , Ř〉 = arg min
N∈Zm×n,R∈SO(3)

‖vec(Y − SN −URF )‖2QY Y
. (4.1)
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Then, an orthogonal decomposition of the squared error is done, as in [28, 29]. Applying some properties

of the vec(.) operator [29], the squared norm can be decomposed as written in (4.2),

min
N∈Zm×n,R∈SO(3)

‖vec(Y − SN −URF )‖2QY Y
=

= min ‖vec(Y − SN̂ −UR̂F )‖2QY Y
+ min
N∈Zm×n

(
‖vec(N̂ −N)‖2QN̂N̂

+

+ min
R∈SO(3)

‖vec(R̂(N)−R)‖2QR̂(N)R̂(N)

)
,

(4.2)

where N̂ and R̂ are the float solutions, defined as the solution of the minimization problem in which the

integer constraints on N and nonlinear constraints on R are dropped (4.3).

〈N̂ , R̂〉 = arg min
N∈Rm×n,R∈R3×3

‖vec(Y − SN −URF )‖2QY Y
(4.3)

The covariance matrices QN̂N̂ and QR̂(N)R̂(N in (4.2) are relative to N̂ and the conditional solution

R̂(N), respectively. The conditional solution is obtained solving a least-squares problem where it is

assumed that the integer ambiguities N are known but the orthonormality constraints are dropped,

formulated in (4.4).

R̂(N) = arg min
R∈R3×3

‖vec(Y − SN −URF )‖2QY Y
(4.4)

A link can be made between the float solutions in (4.3) and the conditional solution (4.4) if both mini-

mization problems are solved using the standard weighted least-squares (WLS) normal equations. For

completeness, the normal equations of a WLS problem shall be described. Let r = y − Ax be the

residual one wishes to minimize, with x ∈ Rp the parameters to estimate, y the observations and Σy

the respective covariance matrix. The WLS solution is the result of the minimization of the squared error

function (4.5). The solution, estimate x̂, and its covariance matrix Σx̂ are written as (4.6) and (4.7) [3].

x̂ = arg min
x∈Rp

‖y −Ax‖2Σy
(4.5)

x̂ =
(
A>Σ−1

b A
)−1

A>Σ−1
b b (4.6) Σx̂ =

(
A>Σ−1

b A
)−1

(4.7)

Solving both minimization problems (4.3) and (4.4) in this way and replacing terms using the expressions

of the float solution, the conditional solution R̂(N) can be written as a function of N̂ and R̂ (4.8).

vec(R̂(N)) = vec(R̂)−QR̂N̂Q
−1

N̂N̂
vec(N̂ −N) (4.8)

The corresponding covariance matrix QR̂(N)R̂(N) is computed by applying the covariance propagation

law, resulting in

QR̂(N)R̂(N) = QR̂R̂ −QR̂N̂Q
−1

N̂N̂
QN̂R̂. (4.9)

The covariance matrices QR̂R̂, QN̂N̂ and QR̂N̂ are obtained by error propagation of the least-squares

estimates in (4.3), which corresponds to using equation (4.7). Note that QN̂R̂ = Q>
R̂N̂

, as per the

definition of the cross-covariance.
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Returning to the original problem, the minimization in (4.2) is taken with respect to the matrix of

integer DD ambiguities N and rotation matrix R. From equation (4.2), and having the float solutions,

the integer estimator of N is then given by

Ň = arg min
N∈Zm×n

(
‖vec(N̂ −N)‖2QN̂N̂

+ ‖vec(R̂(N)− R̆(N))‖2QR̂(N)R̂(N)

)
, (4.10)

with R̆(N) the solution of

R̆(N) = arg min
R∈SO(3)

‖vec(R̂(N)−R)‖2QR̂(N)R̂(N)
. (4.11)

If QR̂(N)R̂(N) turns out to be a scaled unit matrix or is diagonal, (4.11) is an Orthogonal Procrustes

Problem (OPP) [13], a particular case of Wahba’s problem [31]. There are several closed form solutions

available to solve this type of problem, such as the Quaternion Estimator (QUEST) method [14] or the

Fast Optimal Attitude Matrix (FOAM) [15], to name a few. However, if QR̂(N)R̂(N) is fully populated, as

is often the case [29], the solution of (4.11) has to be computed numerically. Several ways of doing so

are also presented in the work by Teunissen and Georgi [8]. The technique adopted in the present case

will be detailed later in this document.

The first term in (4.10) measures the distance between the ambiguities’ float solution and its near-

est integer matrix, weighted according to the covariance matrix of the float solution. The second term

weights the difference between the rotation matrix conditional solution and its orthonormal “projection”.

Thus, this minimization returns the integer ambiguities that best fit the configuration between the anten-

nas and their lengths, since this knowledge is implicit in the rotation matrix. Compared to the LAMBDA

problem, also introduced by Teunissen [12], this multivariate constrained method of determining the

integer ambiguities is expected to have a higher success rate.

The MC-LAMDBA method detailed in [8] proposes solving the complex ILS problem (4.10) in an

efficient way using bounding cost functions to decrease the computational load of evaluating the original

cost function a great number of times. In fact, each evaluation of the objective function in (4.10) entails

solving the nonlinear estimation problem (4.11), which is to be avoided if possible. A detailed description

of this algorithm is presented later in Section 4.5.

In the next Section, an overview is given of the overall method proposed in this thesis to solve the

problem in (4.1). It builds on the decomposition of the squared error in (4.2), solving first for the float

solution and then determining the integer ambiguities defined in (4.10).

4.2 Proposed Framework

In the previous Section it was discussed how, due to the decomposition of the squared error, the first

step to solving the minimization problem consists of determining the float solutions N̂ and R̂. In the

typical approach, they are computed using the WLS normal equations. This is a static method in the

sense that it solves for the float solutions in an epoch-by-epoch basis. However, in the problem definition
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it was assumed that the attitude kinematics of the body are known and can be written using angular

velocity measurements, provided by a 3-axis rate-gyro. Using this information, the float solution can

be computed in a recursive way by applying an EKF, as detailed in Section 4.4. One way of thinking

about the Kalman Filter (KF) is as a least-squares estimate that is updated as new information, or

measurements, are acquired [3]. As such, using a recursive filter to compute the float solutions should

still allow the usage of the decomposition in (4.2).

Next to obtaining the float solutions, the integer DD ambiguities Ň in (4.10) are determined using the

MC-LAMBDA method.

After obtaining the correct integer ambiguities, the float solutions’ accuracy can be improved by

using the fixed ambiguities as measurements and feeding them to the filter, due to the structure of the

EKF. Caution must be taken when feeding the fixed ambiguities to the filter since they will increase the

chance that the solution of the MC-LAMBDA in the next time step coincides with the fixed ambiguities of

the previous step. If the first set of fixed ambiguities is incorrect, it might take some time for the algorithm

to converge to the right solution. Therefore, there is a time period where MC-LAMBDA solutions are

collected, before selecting the one most likely to be correct at a time step t = tfix. Then, the conditional

solution of this set of ambiguities is fed to a second update step of the EKF. This is the method of

solution fixing described in Section 4.6. In the time steps following the fixing, the solution fed to the

second update step is instead taken directly from the MC-LAMBDA, since the ambiguities have already

been fixed.

A representation of the several steps done in order to solve problem (4.1), as enumerated before, is

presented in Figure 4.1. In the following sections, each part of the framework is detailed.

MC-LAMBDA

Float Solution
Estimation

Ambiguity
Resolution

Saving integer
solutions

Conditional Solution

,EKF 2nd Update Step

Update

If 

If 

,Angular
Velocity

GNSS 
data

Extended Kalman Filter
  Propagation

Update

Figure 4.1: Flowchart of the proposed attitude estimation solution.
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4.3 Nominal System Model

In the following, the system dynamics and observation model on which the EKF is based are formally

derived. Before writing the equations of the nonlinear system in discrete-time, the quaternion kinematics

are discretized.

4.3.1 Discrete Quaternion Kinematics

The continuous-time quaternion kinematic equations introduced in (3.2) assume that the angular velocity

ω is known at every time instant. However, in practice the angular velocity measurements are sampled

in discrete-time by the gyroscope. To be able to use these measurements to predict the body attitude,

the quaternion kinematics model needs to be written in discrete-time.

Whitmore [32] presents a closed-form integrator for the quaternion kinematics equation, which can

be written in a recursive form appropriate for numerical integration. This method consists of finding

an analytical solution for the differential equation (3.2) by introducing the integrating factor (4.12). The

anti-symmetric matrix Ω(ω(t)) was defined back in (3.2).

I(t, t0) = exp

[∫ t

t0

−1

2
Ω(ω(t))dt

]
(4.12)

By applying the integrating factor to the kinematics equation (3.2), integrating from a time t0 to time

t, expanding the exponential in Maclaurin series form and simplifying it, a closed-form solution of the

kinematics equation is found (4.13), with δθ(t, t0) and Θ(t, t0) written in (4.14).

q(t) = Ψ(t, t0)q(t0) =

(
cos
‖δϑ(t, t0)‖

2
I4 +

2

‖δϑ(t, t0)‖
sin
‖δϑ(t, t0)‖

2
Θ(t, t0)

)
q(t0) (4.13)

δϑ(t, t0) =


δφ(t, t0)

δθ(t, t0)

δψ(t, t0)

 , Θ(t, t0) =
1

2

 0 −δϑ(t, t0)>

δϑ(t, t0) −[δϑ(t, t0)×]


δφ(t, t0) =

∫ t

t0

p(t)dt, δθ(t, t0) =

∫ t

t0

q(t)dt, δψ(t, t0) =

∫ t

t0

r(t)dt

(4.14)

It is simple to see that the closed-form solution in (4.13) can be made recursive between instants tk and

tk+1 by replacing t0 = tk and t = tk+1. Then, the closed-form solution for the quaternion kinematics

in discrete-time form is given in (4.15), where Ψ̄k+1,k is the quaternion’s transition matrix and all the

needed definitions are written in (4.16). Note that the subscripts (·)k, (·)k+1 or (·)k+1,k denote the time

instants, for example tk, at which each variable is evaluated.

qk+1 = Ψk+1,k qk =

(
cos
‖δϑk+1,k‖

2
I4 +

2

‖δϑk+1,k‖
sin
‖δϑk+1,k‖

2
Θk+1,k

)
qk (4.15)
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δϑk+1,k =


δφk+1,k

δθk+1,k

δψk+1,k

 , Θk+1,k =
1

2

 0 −δϑ >k+1,k

δϑk+1,k −[δϑk+1,k×]


δφk+1,k =

∫ tk+1

tk

p(t)dt, δθk+1,k =

∫ tk+1

tk

q(t)dt, δψk+1,k =

∫ tk+1,k

tk

r(t)dt

(4.16)

It is proven that the quaternion kinematics using Ψk+1,k maintains the norm of the quaternion, as re-

quired. That is, q>k+1qk+1 = q>k qk. This can be easily seen by rewriting the discrete-time quaternion

kinematics (4.15) as a quaternion product. Such is achieved by taking into account the property intro-

duced in (2.9), from which (4.17) follows, where it becomes clear that the norm of q̃k+1,k is unitary.

qk+1 = Ψk+1,k qk = qk ◦ q̃k+1,k, q̃k+1,k =

 δϑk+1,k

‖δϑk+1,k‖ sin
‖δϑk+1,k‖

2

cos
‖δϑk+1,k‖

2

 (4.17)

As a final note, a different approach is followed in [20], which is based in a Taylor series expansion of

(3.2) around time instant tk (qk), for computing the value at time tk+1 (qk+1). Assuming that the angular

velocity is constant during the time step between tk and tk+1, a very similar expression to the one in

(4.17) is found, the only difference being due to the method used to numerically integrate the angular

velocity.

The motivation behind the discretization of the kinematics equation is being able to use the gyroscope

measurements. As such, the discrete angular velocity measurements taken from the gyroscope must

also be modelled. The discrete-time equivalent of the continuous-time gyroscope model (3.3) is given in

(4.18), as presented in [33]. It is defined as a function of the noise parameters σv and σu written in the

continuous-time model. As before, the k subscript denotes the value at the k-th time step, and both zvk
and zuk

are white Gaussian noise processes with covariance matrix given by the identity matrix.

ωmk+1
= ωk+1 + b̄k+1,k +wvk+1

bk+1 = bk +wuk+1

,

b̄k+1,k =
1

2
(bk+1 + bk), wvk+1

=

(
σ2
v

∆t
+

1

12
σ2
u∆t

)1/2

zvk+1
, wuk+1

= σu∆t1/2zuk+1

(4.18)

To introduce the gyroscope measurements in model (4.15), the angular rates integrals in (4.16) must

be evaluated approximately since the angular velocity measurements are only available at time instants

tk and tk+1,∀k ≥ 0. Using the trapezoid rule over a time step ∆t = tk+1 − tk allows computing the

approximate integrated angular velocities as in (4.19).

δφ̄k+1,k =
∆t

2
(pk + pk+1), δθ̄k+1,k =

∆t

2
(qk + qk+1), δψ̄k+1,k =

∆t

2
(rk + rk+1) (4.19)

The discrete-time gyroscope measurements model (4.18) can be used to write the exact angular velocity

as ωk+1 = ωmk+1
−b̄k+1,k−wvk+1

. Replacing in (4.19), the integrated angular velocity can now be written

as (4.20). The resulting skew-symmetric matrix Θ̄k+1,k is now written from the integrated measured
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angular velocities (4.21).

δϑ̄k+1,k =
∆t

2

[
(ωmk

− b̄k,k−1 −wvk) + (ωmk+1
− b̄k+1,k −wvk+1

)
]

(4.20)

Θ̄k+1,k =
1

2

 0 −δϑ̄ >k+1,k

δϑ̄k+1,k −[δϑ̄k+1,k×]

 (4.21)

Then, following the same approach as before, the model of the quaternion kinematics in discrete-time

using gyro measurements is given by (4.22), with the previously defined δϑ̄k+1,k and Θ̄k+1,k.

qk+1 = Ψ̄k+1,k qk =

(
cos
‖δϑ̄k+1,k‖

2
I4 +

2

‖δϑ̄k+1,k‖
sin
‖δϑ̄k+1,k‖

2
Θ̄k+1,k

)
qk (4.22)

4.3.2 Nonlinear Model

Using the body attitude kinematics and the observation model that relates the GNSS observations with

the attitude and integer ambiguities, a nonlinear model can be defined. The state vector representing

the variables of the system is given by xk =
[
q>k , b

>
k , n

>
k

]>, where qk is the unit quaternion giving the

attitude between the reference and body frame, bk is the 3-axis gyroscope bias, and nk is the vector of

double differenced integer ambiguities defined as nk ≡ vec(N), for N in (3.12).

The dynamics of the state vector are written in (4.23), according to the quaternion kinematics and

discrete-time gyroscope model in (4.22) and (4.18), respectively.

xk+1 =


qk+1

bk+1

nk+1

 =


Ψ̄k+1,k qk

bk +wuk+1

nk

 =


f̄(qk, bk,wvk+1

)

bk +wuk+1

nk

 = f(xk,wvk+1
,wuk+1

) (4.23)

The output vector consists of the GNSS observables described in Chapter 3. Namely, the double

differenced pseudorange and carrier phase range measurements, considering the short baseline ap-

proximation. The measurements model considered in this system is based on the GNSS-based attitude

model (3.18). To relate the measurements with the state vector xk, one can write the rotation of the

baseline vectors in the body frame, RF , using the quaternion product introduced in (2.7). The resulting

observations model (4.24) is nonlinear in relation to the state vector and time variant. Note that the

following definitions have been made: the measurements vector zk ≡ vec(Y ) and the measurement

noise vk ≡ Ξ.

zk = Snk + g(qk) + vk = h(xk) + vk,

S =

 0mn

λImn

 , g(qk) =

12 ⊗


Υ qk ◦ li1 ◦ qk∗

...

Υ qk ◦ lin ◦ qk∗


 (4.24)

The complete nominal system model is then written as (4.25), containing both the state dynamics

and output models.
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xk+1 = f(xk,wvk+1
,wuk+1

)

zk = h(xk) + vk

(4.25)

4.4 Extended Kalman Filter for Float Estimation

In this Section, the equations of the filter used to compute the float solution of the proposed attitude

estimation framework are presented. Note that in this context, the notation (̂·) represents the Extended

Kalman Filter estimate and not the float solution as in the previous sections. Furthermore, an observ-

ability analysis of the linearized system is also given.

4.4.1 Prediction Step

To compute the a priori estimates, the usual EKF expressions apply (4.26) [34], where x̂k|k−1 and P k|k−1

are the predicted state vector and error covariance matrix, respectively.

x̂k|k−1 = f(x̂k−1|k−1)

P k|k−1 = F kP k−1|k−1F
>
k +Qk

(4.26)

Having defined the dynamics nominal system, the functions used for the propagation of the estimates

can be easily written by taking the expected value of (4.23). The resulting model is given in (4.27), with

Ψ∗(x̂k−1|k−1) defined in (4.28).

x̂k|k−1 =


q̂k|k−1

b̂k|k−1

n̂k|k−1

 =


Ψ∗(x̂k−1|k−1)q̂k−1|k−1

b̂k−1|k−1

n̂k−1|k−1

 = f(x̂k−1|k−1) (4.27)

Ψ∗(x̂k−1|k−1) = cos
‖δϑ∗k,k−1‖

2
I +

2

‖δϑ∗k,k−1‖
sin
‖δϑ∗k,k−1‖

2
Θ∗k,k−1,

Θ∗k,k−1 =
1

2

 0 −[δϑ∗k,k−1] >

δϑ∗k,k−1 −[δϑ∗k,k−1×]

 , δϑ∗k,k−1 =
∆t

2

(
ωmk

+ ωmk−1

)
−∆tb̂k−1|k−1

(4.28)

It is plain to see that the state dynamics are not linear in relation to the state variables, since Ψ̄k+1,k

has a nonlinear dependence on the gyro bias bk. The nonlinear model as is can be used to compute

the predicted state estimate but not the covariance matrix P k|k−1. As such, f̄(qk, bk,wvk+1
) must be

linearized.

Since the EKF tracks the expected value of the random variables composing the state vector, the

white noise random processes wvk+1
and wuk+1

can be omitted from the equations of the nonlinear

model. Making this assumption, the derivatives of the nonlinear function in relation to qk and bk are
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given in (4.29), with matrix L(qk, bk) written in (4.30).

∂f̄(qk, bk,wvk+1
)

∂qk
= Ψ̄k+1,k(bk),

∂f̄(qk, bk,wvk+1
)

∂bk
= L(qk, bk) (4.29)

L(qk, bk) =
∆t sin

‖δϑ̄k+1,k‖
2

2‖δϑ̄k+1,k‖
[
qkδϑ̄

>
k+1,k − 2Γ(qk)

]
−

∆t

2‖δϑ̄k+1,k‖2

[
cos
‖δϑ̄k+1,k‖

2
− 2

‖δϑ̄k+1,k‖
sin
‖δϑ̄k+1,k‖

2

]
Γ(qk)δϑ̄k+1,kδϑ̄

>
k+1,k,

(4.30)

The Jacobian matrix of the state vector dynamics (4.23) is then written as (4.31).

∂f

∂xk
=


Ψ̄k+1,k(bk) L(qk, bk) 0

0 I 0

0 0 I

 (4.31)

Then, F k is simply the Jacobian of the state vector evaluated at the most recent state estimate, as in

(4.32). Since the noise processes were omitted, having zero mean, Ψ̄ is replaced by Ψ∗ as per their

respective definitions.

F k =


Ψ∗(xk) L(xk) 0

0 I 0

0 0 I


∣∣∣∣∣∣∣∣∣
xk=x̂k−1|k−1

(4.32)

Due to the quaternion kinematics, It is not simple to rewrite the state vector dynamics (4.23) in the

form of additive noise in order to extract Qk, and so an approximate method will be used. According to

the continuous-time quaternion kinematics (3.4) and gyroscope model (3.3), the continuous-time state

dynamics are given by (4.33).

ẋ(t) =


q̇(t)

ḃ(t)

ṅ(t)

 =


1
2Ω(wm(t)− b(t)) 0 0

0 0 0

0 0 0



q(t)

b(t)

n(t)

+G(t)η(t),

G(t) =


− 1

2Γ(q(t)) 0

0 I

0 0

 , η(t) =

ηv(t)
ηw(t)


(4.33)

Then, in order to compute Qk, it is assumed that the sampling interval ∆t is small enough so that

the approximation in (4.34) gives valid results [34], where Q is the covariance matrix relative to the

continuous-time noise vector η(t).

Qk = GkQG
>
k ∆t (4.34)

4.4.2 Update Step

The expressions in (4.35) are used to compute the a posteriori estimates of the state vector x̂k|k and

the estimation error covariance matrix P k|k.

29



Kk = H>k
(
HkP k|k−1H

>
k +Rk

)−1

x̂k|k = x̂k|k−1 +Kk

(
zk − h(x̂k|k−1)

)
P k|k = (I −KkHk)P k|k−1 (I −KkHk)

>
+KkRkK

>
k

(4.35)

The predicted measurements, h(x̂k|k−1), are computed using the measurement model (4.24) of the

nominal system equations. Replacing with the estimated state vector, we obtain

h(x̂k|k−1) = ẑk = Sn̂k|k−1 + g(q̂k|k−1),

S =

 0mn

λImn

 , g(q̂k|k−1) =

12 ⊗


Υ q̂k|k−1 ◦ li1 ◦ q̂∗k|k−1

...

Υ q̂k|k−1 ◦ lin ◦ q̂∗k|k−1


 (4.36)

The output equation is nonlinear in qk due to the quaternion product. In order to write the sensitivity

matrixHk, this equation must be linearized. The derivative of the nonlinear term is written in (4.37) [20].

d

dq
g(q) =

12 ⊗


ΥJq(q, li1)

...

ΥJq(q, lin)


 = G′(q),

Jq(q, l) = 2
[
qwl− [l×]qv,−qw[l×] + q>v lI + qvl

> − lq>v
]
, Jq(q, l) ∈ R3×4

(4.37)

Matrix Hk is defined as the Jacobian of the measurements equation (4.24) evaluated at the most

recent state estimate. From the expression of h(xk) and replacing the computed derivative, Hk is given

as (4.38).

Hk =
[
G′(xk) 0 S

]∣∣∣
xk=x̂k|k−1

(4.38)

Lastly, the measurements noise covariance matrix Rk is equivalent to the QY Y matrix defined in

(3.13).

The EKF is not optimal and gives reasonable results only if the estimated state around which the

model is linearized is near to the true state. How small this difference needs to be depends on the

non-linearity of the underlying system [35].

In the next Section, the observability of an approximate perturbation model of the nonlinear system

is analyzed.

4.4.3 Observability Analysis for Single vs Multiple Baseline

In this work, the experiments done with the objective of acquiring data to validate the developed algorithm

were performed using only two GNSS antennas. If the attitude is estimated using the typical epoch-by-

epoch approach detailed in Section 4.1, it is well known that a single baseline is not enough to determine
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the full attitude of the body. However, the present work proposes an EKF approach that fuses gyroscope

data with the GNSS observations. The goal of the following is then to gain a better understanding of the

observability of the nonlinear system in the case of using a single baseline model, as well as multiple

baselines.

Regarding observability, two separate concepts must be distinguished. First, the observability of a

nonlinear system, which is closely related to the indistinguishability of points belonging to the space of

possible states. Two points x0 and x1 are said to be indistinguishable if they realize the same input-

output map. That is, if for every possible system input, the system with initial conditions x0 or x1

produces the same output. For more on this, refer to e.g. [36]. Then, one can also study the observability

of the EKF based on the nonlinear system. The relation between observability of the nonlinear system

and uniform boundedness of the error covariances of the EKF, as well as the convergence of the error

are thoroughly explained in [35].

The observability of a nonlinear system is typically analysed using the observability rank condition

[36]. It envolves computing the rank of the matrix of Lie derivatives Lkfj
hi [37], where f j are the drift and

input vectorfields in the dynamics equation of the system, and hi are the functions of the output map.

For the nonlinear system at hand, determining the rank of the corresponding observability matrix

analytically is a complex problem. As such, we will resort to a linearized model of the original system.

Assuming that the linearization is done around a point near the true state of the system, the observability

of the linearized model can provide some insight on the characteristics of the nonlinear system. In

the following, the linearized model will be assumed deterministic and Linear Time-Invariant (LTI), and

therefore relative to a local perturbation.

Let x̃k =
[
q̃>k , b̃

>
k , ñ

>
k

]>
be the state vector corresponding to an operation point of the considered

system. Then, the trajectory of the system along this operation point obeys the state vector dynamics

written in (4.23). A deviation from the operation point, ∆xk+1 = xk+1−x̃k+1, can be locally approximated

by

∆xk+1 ≈


Ψ∗(xk) L(xk) 0

0 I 0

0 0 I


∣∣∣∣∣∣∣∣∣
xk=x̃k

∆xk = Φ∆xk. (4.39)

The perturbation of the measurements can be written in a similar way, which leads to the linearized

model (4.40). As before, no noise is considered in the equations.

∆zk =
[
G′(xk) 0 S

]∣∣∣
xk=x̃k

∆xk = H∆xk (4.40)

A simple criteria for analyzing the observability of an LTI system is given in [34] and consists of
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computing the rank of the observability matrix O defined as

O =


H

HΦ
...

HΦn−1

 , (4.41)

where n is the dimension of the system’s state vector. If O is full rank, that is, rank O = n, then the

linear system is observable.

First note that simplifying the notation Ψ ≡ Ψ(xk), L ≡ L(xk) and given the structure of Φ in (4.39),

the matrix power Φk can be written as

Φk =


(Ψ∗)k

(
(Ψ∗)k−1 + (Ψ∗)k−2 + ...+ I

)
L 0

0 I 0

0 0 0

 . (4.42)

Therefore the product HΦk, using the definition in (4.40), is given by

HΦk =
[
G′(Ψ∗)k G′

(
(Ψ∗)k−1 + (Ψ∗)k−2 + ...+ I

)
L 0

]
, ∀k > 0 (4.43)

and the observability matrix is written as

O =



G′ 0 S

G′Ψ∗ G′L 0

G′(Ψ∗)2 G′(Ψ∗ + I)L 0
...

...
...

G′(Ψ∗)n−1 G′
(
(Ψ∗)n−2 + ...+ I

)
L 0


. (4.44)

Defining the function f(x) = Ox, it is known that f(x) is injective iif O has full column rank. For the

function to be injective, the kernel of O must have dimension 0. That is, it must be composed of only the

null vector. Then, writing the system of equations (4.45), if the only solution is x =
[
x>1 , x

>
2 , x

>
3

]>
= 0,

then O has full column rank.

Ox =



G′ 0 S

G′Ψ∗ G′L 0

G′(Ψ∗)2 G′(Ψ∗ + I)L 0
...

...
...

G′(Ψ∗)n−1 G′
(
(Ψ∗)n−2 + ...+ I

)
L 0




x1

x2

x3

 =


0

0

0

 (4.45)

From this point on, the single and multiple baseline cases can be discriminated.

32



Single Baseline

Having only one baseline l12 tracking m+ 1 satellites, G′ is written as

G′ =
[
12 ⊗

[
ΥJq(qk, l12)

]]∣∣∣
xk=x̃k

, G′ ∈ R2m×4. (4.46)

Replacing the expressions for G′ and S, the first line of equations from the system (4.45) reads

G′x1 + Sx3 =

 ΥJq(q̃k, l12)x1 + 0mx3

ΥJq(q̃k, l12)x1 + λImx3

 =

0

0

 . (4.47)

Naturally, this system corresponds to solving the observations equation of the linearized system (4.40)

equal to 0. Defining x1 ≡ ∆qk and x3 ≡ ∆nk for convenience, (4.47) can be rewritten as

∆zk =

 ΥJq(q̃k, l12)∆qk + 0m∆nk

ΥJq(q̃k, l12)∆qk + λIm∆nk

 =

0

0

 . (4.48)

As defined before for ∆xk, also ∆qk = qk− q̃k and ∆zk = zk− z̃k. Concerning x3, it is clear from (4.47)

that the only solution is x3 = 0 since λ 6= 0. The goal is then to find the admissible perturbations from

the operation point ∆qk that make the measurements variation null. First, consider the scenario where

there is a clear line of sight to at least four non-planar satellites, so that Υ is full rank . Also note that in

a local sense, the LOS vectors vary very slowly and can be considered approximately constant. Then,

taking into account the physical meaning of the observations, it is simple to realize that if the variation

in attitude from q̃k to qk (∆qk) corresponds to a rotation around an axis collinear to the baseline l12, the

coordinates of the baseline do not change, which implies ∆zk = 0. We can then write the solution of

(4.47) as x1 = ∆qk = q̃k ◦ q{αl12} − q̃k, ∀α ∈ R

x3 = ∆nk = 0

, (4.49)

where q{αl12} denotes the unit quaternion that represents a rotation around the axis defined by l12 of

magnitude α‖l12‖, according to (2.4). An analytical verification of this solution can be found in Appendix

A.

To verify if this is a solution of the whole system, the second line of equations in (4.45) must be

evaluated. It reads

G′Ψ∗x1 +G′Lx2 = 0. (4.50)

We can once again for convenience define x1 ≡ ∆qk, corresponding to the solution in (4.49). Then, the

product

Ψ∗x1 = Ψ∗∆qk = Ψ∗ (q̃k ◦ q{αl12} − q̃k) (4.51)

can be recognized as the quaternion kinematics equation applied to both q̃k ◦ q{αl12} and q̃k. That

is, the attitude given by these quaternions is changed according to the angular velocity of the body

used to compute Ψ∗. Matrix Ψ∗ depends on the operation point of the linearization. If we consider
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that the linearization is done around a trajectory where the body is rotating around l12, or is static,

then ∆q′ = Ψ∗∆qk gives a quaternion difference ∆q′ that still corresponds to a difference in rotation

around l12. In this case, G′Ψ∗x1 = 0. The same reasoning can be applied to the remaining lines of

the system, since (Ψ∗)kx1, under these assumptions, are simply sucessive rotations of x1 around the

same axis. Then, a solution of (4.50) can be found by simply setting x2 = 0, giving the conclusion of

non-observability for the attitude.

Solving for a non-trivial solution x2 is more problematic due to the complex structure of matrix L.

The particular case where the body is static simplifies the problem and is now discussed. It has been

shown that if the body is static, then G′Ψ∗x1 = 0. Replacing in (4.50) and noting the expression for G′

considering one baseline, the equation to solve becomes

ΥJq(q̃k, l12)Lx2 = 0. (4.52)

The static assumption can be used to simplify the expression for L. Given its definition in (4.30), the

result is

lim
‖δϑ̄k+1,k‖→0

L(q̃k, b̃k) = −∆t

2
Γ(q̃k), (4.53)

with matrix Γ defined in (3.4). The equation to solve becomes

− ∆t

2
ΥJq(q̃k, l12)Γ(q̃k)x2 = 0. (4.54)

With further manipulation of this expression, (4.54) simplifies to

ΥR (q̃k) [l12×]x2 = 0, (4.55)

where R (q̃k) denotes the rotation matrix parameterized by the quaternion q̃k as in (2.5). Since Υ is full

rank granted that there are at least four non-planar satellites in sight, the only solution to Υr = 0, for

r ∈ R3, is r = 0. As such, we have

R (q̃k) [l12×]x2 = 0, (4.56)

from which trivially follows the solution

x2 = c1l12, ∀c1 ∈ R. (4.57)

It is then concluded from the linearized model that, in a single baseline scenario, if the body is

rotating around the axis defined by the baseline or is static, the attitude is not observable. Furthermore,

the corresponding kernel has one degree of freedom defined by the direction of the baseline. For the

particular case where the body is static, the bias is also not observable and the corresponding kernel is

of dimension 1.

For the case where the linearization is done around a trajectory where the rotation axis does not

coincide with the baseline, the complete equation in (4.50) would need to be solved analytically, which
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will be left for a future work.

Multiple Baseline

If there are three or more non-collinear antennas placed on the body, the analysis of the linearized

model is simpler. While in the following the case of two baselines is described, note that it could easily

be expanded to three or more baselines.

For two baselines, l12 and l13 tracking m+ 1 satellites, the expression for G′ is

G′ =

12 ⊗

ΥJq(qk, l12)

ΥJq(qk, l13)

∣∣∣∣∣∣
xk=x̃k

, G′ ∈ R4m×4. (4.58)

The first line of equations of system (4.45) now reads

G′x1 + Sx3 =


ΥJq(q̃k, l12)x1

ΥJq(q̃k, l13)x1

ΥJq(q̃k, l12)x1

ΥJq(q̃k, l13)x1

+

 02mx3

λI2mx3

 =


0

0

0

0

 . (4.59)

This system can once again be likened to the observations equation, as done in (4.48), but using two

baselines. Rearraging the equations, (4.59) can be written as

∆z12
k

∆z13
k

 =


ΥJq(q̃k, l12)∆qk + 0m∆nk

ΥJq(q̃k, l12)∆qk + λIm∆nk

ΥJq(q̃k, l13)∆qk + 0m∆nk

ΥJq(q̃k, l13)∆qk + λIm∆nk

 =


0

0

0

0

 , (4.60)

where ∆z12
k is the variation in observations referring to baseline l12 and ∆z13

k is relative to l13. As before,

it follows that ∆nk = x3 = 0. Now, the same rationale can be applied regarding ∆qk. If this difference in

attitudes corresponds to a rotation around l12, then ∆z12
k = 0. However, if l12 and l13 are not collinear,

then the same ∆qk will entail ∆z13
k 6= 0, since the coordinates of the baseline l13 in the reference frame

will change. The analysis is similar if ∆qk is instead defined as a rotation around l13. Therefore, for non-

collinear baselines, the only solution is ∆qk = x1 = 0. It can be immediately concluded that, without

imposing any restrictions on the trajectory of the linearization, the attitude is observable.

To solve for x2, the second line of equations of (4.45) is analysed. Since x1 = 0, it reduces toΥJq(q̃k, l12)Lx2

ΥJq(q̃k, l13)Lx2

 =

0

0

 . (4.61)

The analysis will again be simplified to the particular case where the body is static. Replacing the
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expression for L in (4.53) and making the same simplifications as before, the system to solve becomesΥR (q̃k) [l12×]x2 = 0

ΥR (q̃k) [l13×]x2 = 0

 =

0

0

 . (4.62)

Assuming that Υ is full rank, the solution consists of finding x2 such that, simultaneously, [l12×]x2 = 0

and [l13×]x2 = 0. If l12 and l13 are not collinear, the only solution is naturally x2 = 0.

The conclusions from analysing the observability of the linearized system in a multiple baseline

scenario are that the attitude is always observable. Furthermore, in the particular case where the body

is static, it is seen that the bias is also observable. While the general case is not solved analytically,

intuitively it is to be expected that since the bias is observable when static, it will also be observable in a

dynamic scenario as the measurements of the system provide more information.

4.5 Integer Ambiguity Determination

The goal of the integer ambiguity determination algorithm is to solve problem (4.10). By finding the exact

integer ambiguities, the accuracy of the attitude solution is greatly enhanced, as shown in [8], where the

least-squares approach is used for determining the float solution. The EKF used in the present work is

expected to be more precise compared to the float solution computed with the least-squares approach,

since it uses the gyroscope measurements and is a recursive method. However, determining the exact

set of ambiguities still enhances the accuracy of the solution, as will be shown later on.

The method used to solve (4.10) is called the MC-LAMBDA method. It is built upon the simpler

LAMBDA method [12] and so this method is briefly introduced first.

4.5.1 LAMBDA

The Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method is used to solve the mini-

mization problem defined in (4.63) in an efficient way, where N̂ is the float solution of DD ambiguities.

ŇU = arg min
N∈Zm×n

‖vec(N̂ −N)‖2QN̂N̂
(4.63)

This is equivalent to solving the more complex problem (4.10) without the orthonormality constraint on

R. Being an ILS problem, an ambiguity search space can be defined as

ΩU (χ2) = {N ∈ Zm×n | ‖vec(N̂ −N)‖2QN̂N̂
≤ χ2}. (4.64)

Solving (4.63) consists of finding the minimizer of the cost function in the ambiguity search space. As

such, the choice of χ2 is critical since it sets the size of the search space. Too many candidates N

hinder the search, while it must be guaranteed that the search space contains at least one matrix of

integer ambiguities. Is has been shown that computing χ2 by rounding the nearest solution is a valid
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option [12]. That is, χ2 = ‖vec(N̂ − [N̂ ])‖2QN̂N̂
, where the notation [(·)] denotes the rounding of each

entry to its nearest integer.

The shape of the search space is governed by the covariance matrix QN̂N̂ . Since the float ambi-

guities are typically heavily correlated [28], the search space, geometrically an hyperellipsoid, is highly

elongated. This fact causes halting during the search process described later on, which decreases its

efficiency. Therefore, the first step of the LAMBDA method consists of the decorrelation of the search

space. A transformation T is applied to the ambiguities with the goal of decorrelating matrix QN̂N̂ .

Since the transformation should keep the integerness of the ambiguities, the decorrelation is not perfect

as both T and T−1 must have integer entries. The transformed ambiguities are defined as

Z = TN , Ẑ = TN̂ , QẐẐ = TQN̂N̂ . (4.65)

Computing the integer transformation T is done using iterative transformations T i until the covariance

matrix cannot be further decorrelated. The process is described in [28], and the overall transformation

is then calculated as T =
∏
i T i. A representation of the search spaces in a 2D case during the iterative

process can be seen in Figure 4.2. As shown, the search space becomes rounder as the covariance

matrix is decorrelated.

Figure 4.2: Representation of example initial, intermediate and decorrelated search space defined by
the covariance matrix of the DD ambiguities.[8]

If the covariance matrix were diagonal, the search process would be very simple as the solution of

the minimization in (4.63) would be obtained by simply rounding each entry of the float solution to its

nearest integer. This entails that some kind of diagonalization can be done to improve the efficiency of

the search. Using a LDL> diagonalization of QẐẐ , the quadratic form in (4.63) using the transformed

ambiguities can be written as the sum of squares:

‖vec(Ẑ −Z)‖2QN̂N̂
= ‖vec(Ẑ −Z)‖2LDL> =

mn∑
i=1

(
ẑi|I − zi

)2
σ2
ẑi|I

≤ χ2, (4.66)

where the scalars ẑi|I , i = 1, ..,mn are the conditional least-squares float ambiguities [28]. These

correspond to the least-squares estimates of ambiguity zi, given the fixing of the previous ambiguities

up until i− 1. As such, the notation ẑi|I stands for ẑi|1,...,(i−1). Their corresponding conditional variances
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σ2
ẑi|I

coincide with the diagonal elements of matrix D of the diagonalization.

The sum of squares structure in (4.66) allows writing nm bounds for the individual ambiguities zi

(4.67), so that they can be determined (searched for) in a sequential way. The consequence of the

decorrelation step in (4.65) is that this depth-first search is halted as few times as possible. For details

on the implementation of the decorrelation, diagonalization and search, see e.g. [28, 38].



(ẑ1 − z1)
2 ≤ σ2

ẑ1
χ2(

ẑ2|1 − z2

)2 ≤ σ2
ẑ2|1

[
χ2 − (ẑ1 − z1)

2
/σ2

ẑ1

]
...(

ẑmn|MN − zmn
)2 ≤ σ2

ẑmn|MN

[
χ2 −

∑mn−1
j=1

(
ẑj|J − zj

)2
/σ2

ẑj|J

]
(4.67)

The search process was primarily developed to find the minimizer of the search space, ŇU , in an

efficient way. However, it can also obviously be used to enumerate all the integer matrices belonging

to ΩU . Lastly, the solution in terms of transformed ambiguities Z is brought back to the original space

using the inverse transformation N = T−1Z.

4.5.2 MC-LAMBDA

In this case, the minimization problem to be solved is the one described in (4.10). The corresponding

cost function C(N) is defined as

C(N) = ‖vec(N̂ −N)‖2QN̂N̂
+ ‖vec(R̂(N)− R̆(N))‖2QR̂(N)R̂(N)

, (4.68)

with R̆(N) the solution of the nonlinear minimization problem in (4.11). Being a minimization problem

with integer constraints, the solution must again be found by performing a search on the ambiguities’

search space defined in (4.69).

ΩC(χ2) = {N ∈ Zm×n | C(N) ≤ χ2} (4.69)

The volume of this search space is more sensible to the choice of χ2 when compared to ΩU , the

search space of the LAMBDA problem, since QR̂(N)R̂(N) is characterized by entries smaller in magni-

tude than those of QN̂N̂ . For the same candidate N , the cost function of the MC-LAMBDA problem

takes larger values. Therefore, choosing a χ2 which guarantees that ΩC is not empty is not simple,

and might produce a large number of candidates to evaluate. This presents a problem, computation-

ally speaking, since evaluating the cost function C(N) a large number of times makes the algorithm

unsuitable for real-time applications, mostly due to the computation of R̆(N) which, as shown later, is

done iteratively. A solution to this problem is given in [8] and consists of introducing simpler bounding

functions:

C1(N) ≤ C(N) ≤ C2(N) (4.70)
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These functions should present a compromise between being as tight as possible to C(N), while

proving to be easier to evaluate so as to decrease the computational cost. Several options for these

bounds are presented in the literature, and the one used in this work is based on the eigenvalues of

Q−1

R̂(N)R̂(N)
. This bound makes use of the relations λm‖(·)‖2I ≤ ‖(·)‖2Q ≤ λM‖(·)‖2I , with λm and λM

being the smallest and largest eigenvalues of Q−1, respectively. After some manipulation, the first

inequality can be used to write bound C1(N) as

C1(N) = ‖vec(N̂ −N)‖2QN̂N̂
+ λm

3∑
i=1

(‖r̂i(N)‖ − 1)2, (4.71)

where r̂i(N) are the column vectors of R̂(N). Along with this bound, the respective search space Ω1 is

defined in (4.72), similarly to ΩC .

Ω1(χ2) = {N ∈ Zm×n | C1(N ≤ χ2} (4.72)

Note the relation between the ambiguities search spaces defined so far. It is easy to conclude that, for

a given χ2, Ω1(χ2) is contained in Ω(U (χ2), that is, ΩU (χ2) ⊇ Ω1(χ2). In turn, due to the inequalities in

(4.70), the search space ΩC(χ2) is contained in Ω1(χ2).

Two efficient search schemes are proposed [8] , taking advantage of the bounding functions: the

Expansion approach, using the lower bound C1(N), and the Search and Shrink approach making use

of C2(N). In this work, the Expansion approach is used.

First, the cost χ2 is set, as in the LAMBDA case, for example by rounding the float solution and

computing χ2 = ‖vec(N̂ − [N̂ ])‖2QN̂N̂
. Then, all integer matrices in Ω1(χ2) are enumerated. Since

Ω1(χ2) is contained in ΩU (χ2), this is done by first enumerating allN in ΩU (χ2) and then, for each matrix,

evaluating C1(N). If Ω1(χ2) turns out to be non-empty, then C(N) is evaluated for each candidate in

Ω1(χ2) in order to enumerate ΩC(χ2). If this search space is non-empty, then Ň is immediately found

as the minimizer of C(N) for the candidates in ΩC(χ2). However, if initially it is found that Ω1(χ2) is

empty, or if after enumerating the N in Ω1(χ2) and evaluating C(N), ΩC(χ2) turns out empty, χ2 is

increased and the whole process is repeated iteratively until Ň is found. The increase in χ2 is critical:

a small increment might imply many iterations before a non-empty set is found, while large increments

might lead to unnecessarily big search spaces that take too long to evaluate. Experimental trials using

different increments suggest that doubling χ2 in each iteration is a good option [29], and so this is the

increment strategy chosen in this work.

The efficiency of the Expansion approach depends on the tightness of the bounds, as mentioned

before. In this particular case, if the lowest eigenvalue ofQ−1

R̂(N)R̂(N)
is many orders of magnitude lower

than the other eigenvalues, then C1(N) is not close enough to C(N). This implies that for a value χ2

that makes ΩC(χ2) non-empty, the corresponding search space Ω1(χ2) will include a high number of

candidates. Since each candidate of Ω1(χ2) must be evaluated before arriving at ΩC(χ2), the search

becomes less efficient.

An overview of the implementation and reasoning behind the MC-LAMBDA algorithm has been given.
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However, some issues remain to be tackled. The expressions for the conditional solution R̂(N) and its

respective covariance matrixQR̂(N)R̂(N) were written in Section 4.1, where the float solution is obtained

using the least-squares estimates. However, in the present work, the float solutions are computed using

an EKF in which the attitude is parameterized using the quaternion. Therefore, new expressions for

R̂(N) andQR̂(N)R̂(N) must be derived in order to use the MC-LAMBDA algorithm. The second issue is

finding the solution R̆(N)) of the minimization problem written in (4.11). These problems are addressed

in the following.

Obtaining the conditional solution

The state vector estimated by the EKF previously described includes the attitude quaternion and the DD

ambiguities. Since no constraints are imposed on the normality of the quaternion or the integerness of

the DD ambiguities, these estimates correspond to float solutions. In other words, the EKF computes

the float solution q̂ and N̂ as part of its updated state vector. Also, from the EKF’s updated covariance

matrix, matrices Qq̂q̂, QN̂N̂ and Qq̂N̂ can be extracted.

There are several approximations that can be done in order to compute the conditional solution

R̂(N) in the present case, where the float solution is obtained using an EKF instead of a least-squares

solution.

Firstly, the expressions of the least-squares case (4.8) and (4.9) can be used by transforming the float

solution q̂ into R̂. Furthermore, using the nonlinear functions that define the entries of R(q) in (2.5),

the covariance matrices Qq̂q̂ and Qq̂N̂ can be used to write QR̂R̂ and QR̂N̂ . Unfortunately, in practice

it was seen that this would result in a covariance matrix QR̂(N)R̂(N) which is not positive definite. The

high precision of the EKF ambiguity estimates causes the productQR̂N̂Q
−1

N̂N̂
to have very large entries,

making this approach unfeasible.

Another option is to compute the conditional solution R̂(N) by solving its minimization problem (4.4)

using the usual WLS equations. The downside of this approach is that it only works when using two

or more non-collinear baselines, as only then it is possible to estimate the full attitude of the body in

an epoch-by-epoch basis. Using the EKF, it might be possible to estimate the full attitude under certain

conditions using a single baseline. To take advantage of this, the conditional solution must necessarily

be computed using the float solution, described in the following.

To describe how the EKF estimates lead to R̂(N) andQR̂(N)R̂(N), consider first the nonlinear least-

squares problem (4.73). For simplicity of notation, the definitions y ≡ vec(Y ) and n ≡ vec(N) will be

applied in this context.

〈n̂, q̂〉 = arg min
n∈Rmn,q∈R4

‖y − Sn− g(q)‖2QY Y
(4.73)

This equation corresponds to the minimization problem using the GNSS-based attitude model (4.1),

where the rotation of the baselines in the body frame is written using the quaternion product instead of

the rotation matrix, as in the nonlinear observation model (4.24). In other words, (4.73) defines a float

solution where the attitude is parameterized using the quaternion. Note that the shape of S has been

modified to fit with vector n.
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For a general nonlinear model defined as y = f(x,β), where x and y are input and output data,

respectively, and β ∈ Rp are unknowns to be estimated, the minimization problem

β̂ = arg min
β∈Rp

‖y − f(x,β)‖2Q (4.74)

can be solved using, for example, the Gauss-Newton method. The Gauss-Newton is a method used

to solve nonlinear least-squares problems that iteratively finds an estimate of the unknown parameters,

minimizes the squared norm error. After providing an initial estimate β0, each step is defined by

(
J>Q−1J

)
∆β = J>Q−1∆y, (4.75)

where ∆β = βs+1 − βs, J is the Jacobian matrix of f(x,β) in relation to β and ∆y = y − f(x,βs).

Concerning the nonlinear least-squares problem in (4.73), the unknown parameters are β =
[
q>,n>

]>.

As such, let Jqs,ns =
[
G′ S

]
denote the Jacobian matrix of the nonlinear observation model implicit in

(4.73), evaluated for the estimates at iteration s, qs and ns. Then, considering only the first iteration of

the Gauss-Newton method applied to this problem, using (4.75) we haveG′>
S>

Q−1
Y Y

[
G′ S

]∆q1

∆n1

 =

G′>
S>

Q−1
Y Y

(
y −

(
Sn0 − g(q0)

) )
, (4.76)

where ∆q1 = q1 − q0, with q0 being the initial guess for the quaternion. Vector ∆n1 is defined in similar

fashion. While this problem is not a linear least-squares, if the initial guess is considered deterministic

and close to the optimal solution such that the linearization is a good local approximation of the nonlinear

system, it will be assumed that one may define a “pseudo” covariance matrix relative to the estimates of

the first iteration.This matrix is defined in (4.77).

Q̃q1q1 Q̃q1n1

Q̃n1q1 Q̃n1n1

 =

G′>
S>

Q−1
Y Y

[
G′ S

]−1

(4.77)

In this way, the estimates q1 and n1 are considered the float solutions using a nonlinear least-squares

formulation, along with their respective “pseudo” covariance matrices which are assumed to be an ac-

ceptable approximation.

If the integer ambiguities n are known, then a conditional solution for the quaternion can be defined

similarly to the conditional rotation matrix R̂(N) in the least-squares approach detailed in Section 4.1.

The conditional quaternion q̂(n) is defined in (4.78).

q̂(n) = arg min
q∈R4

‖y − Sn− g(q)‖2QY Y
. (4.78)

Keeping in mind that the goal of this derivation is to compute the conditional solution using the float

solutions, the nonlinear least-squares problem (4.78) is solved like the previous least-squares, using the
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first iteration of the Gauss-Newton method, which in this case gives

G′>Q−1
Y YG

′∆q(n)1 = G′>Q−1
Y Y

(
y −

(
Sn− g(q(n)0

) )
, (4.79)

where as before ∆q(n)1 = q(n)1 − q(n)0, with q(n)0 being the initial guess of the conditional solution.

To link the float and conditional solutions of these nonlinear least-square problems, it is assumed

that the first guesses used to solve both problems, namely q0 and q(n)0, are the same. Thus, also

g(q0) = g(q(n)0). From the first iteration of the Gauss-Newton algorithm in (4.76), one can write

G′>Q−1
Y Y y = G′>Q−1

Y Y

[
G′ S

]∆q1

∆n1

+G′>Q−1
Y Y

(
Sn0 − g(q0)

)
. (4.80)

Replacing expression (4.80) in (4.79) and simplifying for q(n)1, this conditional quaternion is written as

in (4.81).

q(n)1 = q1 +G′S
(
n1 − n

)
(4.81)

As such, the result of the first iteration of the conditional quaternion problem is written as a function of

the float solution, where only the first iteration was considered as well.

Using the expressions for the inverse of a matrix partitioned into four blocks, as are the matrices in

(4.77), it is simple to arrive at the result G′S = −Q̃q1n1Q̃−1
n1n1 . If the float solution is computed instead

using an EKF formulation, as is the case in the present work, then the float solutions q1 and n1 can

be replaced by q̂ and vec(N̂), respectively, since the Kalman Filter is a least-squares estimator that

is updated recursively. Furthermore, the “pseudo” covariance matrices are replaced by the covariance

matrices of the EKF estimates. Then, rewriting n = vec(N), the expression used to compute the

conditional solution q(N) is given in (4.82). Its covariance matrix Qq(N)q(N) is calculated as in (4.83),

using the variance propagation law.

q(N) = q̂ −Qq̂N̂Q
−1

N̂N̂

(
vec(N̂ −N)

)
(4.82)

Qq(N)q(N) = Qq̂q̂ −Qq̂N̂Q
−1

N̂N̂
QN̂q̂ (4.83)

These expressions are obtained from gross approximations that were deemed necessary in order

to be able to link the float and conditional solutions. However, it was verified experimentally that good

results are achieved, as shown later. Then,R(N) and its respective covariance matrix is computed from

q(N) and Qq(N)q(N) using the quaternion parameterization of the rotation matrix (2.5). The derivation

of Qq(N)q(N) is included in Appendix B.1.

Solving the nonlinear least-squares

Evaluation of the cost function C(N) in (4.68) for a given candidate matrix of integer ambiguities N

requires computing R̆(N). The problem solved in order to find this orthonormal matrix is of the type

R̆ = arg min
R∈SO(3)

‖vec(R̂−R)‖2Q. (4.84)
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As mentioned before, it is often the case that the covariance matrix Q is not diagonal. Then, this

problem must be solved using nonlinear estimation techniques. Several different methods are presented

and compared in [29]. Different attitude parametrizations of the rotation matrix can be used, resulting

in higher or lower computational loads according to the parameters that need to be estimated. An

Euler angle parameterization implies that only three parameters need to be estimated, but it involves the

evaluation of trigonometric functions. Writing the rotation matrix as a function of the quaternion is shown

to be a good option and is the one used in this work.

The constrained minimization is then written as

q̆ = arg min
q∈R4, ‖q‖=1

‖vec(R̂−R(q))‖2Q, (4.85)

where the normality constraint on q guarantees that R(q) ∈ SO(3). Having a single constraint on the

parameters to determine, the estimation problem is solved using the Lagrangian function defined in

(4.86). 1

L(q, λ) =
(
vec(R̂−R(q))

)>
Q−1vec(R̂−R(q))− λ(q>q − 1) (4.86)

The goal is to find the minimizer q̆ of the function defined in (4.86), which is done by determining the

stationary points of L(q, λ). Computing the gradient of the Lagrangian function, the stationary points are

the solution of the nonlinear system (4.87).

−
1
2∇qL(q, λ) = J>R(q)Q

−1vec(R̂−R(q)) + λq = 0

−∇λL(q, λ) = q>q − 1 = 0

(4.87)

To solve this nonlinear system, both the Newton-Raphson method and the Levenberg–Marquardt

algorithm were implemented. Let the 5 nonlinear functions in (4.87) be lumped in vector g(γ), where γ

contains the quaternion and Lagrange multiplier, γ =
[
q>, λ

]>. After picking an initial estimate γ0, the

Newton-Raphson method consists of using the expressions in (4.88) to iteratively improve the estimate.

γs+1 = γs + δγs,

δγs = −J−1
g,γsg(γs)

(4.88)

Matrix Jg,γs is the Jacobian matrix of g(γ) evaluated at state γs and corresponds to the Hessian

matrix of the Lagrangian function L(q, λ). Its explicit derivation for the problem at hand is found in

Appendix B.2. If it is close to a singular matrix, the inverted Hessian may be numerically unstable,

causing the solution to diverge. This problem can be tackled by adding a positive definite matrix M s so

that Jg,γs + M s becomes positive definite. The Levenberg–Marquardt algorithm uses this correction,

where M s can be adjusted in each iteration as seen fit. However, picking the right correction M s is not

trivial. Furthermore, it was seen experimentally that, for this particular nonlinear problem, the Newton-

Raphson method gives acceptable results. Therefore, the Newton-Raphson algorithm was chosen to

solve this problem.
1In this context, λ denotes a Lagrange multiplier and not the wavelength of the GNSS carrier
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4.6 Solution Fixing

The integer ambiguity matrices N corresponding to the solution of the MC-LAMBDA algorithm in each

time step are initially saved during a certain period of time, as represented in the diagram of Section 4.2.

After enough solutions are gathered, taking into account potential changes in the observed satellites or

loss of lock, the fixed set of integer ambiguities is chosen as the most “popular” MC-LAMBDA solution.

Note that if the observed satellites or the reference satellite changes, the set of ambiguities must be

transformed accordingly. If loss of lock occurs for a certain satellite, the corresponding new DD ambiguity

can be estimated using the current estimated attitude and the carrier phase observations, according to

the expressions of the GNSS-based attitude model.

After this process, both the fixed ambiguity solution Ň and the accurate conditional quaternion q(Ň)

can be used to improve the float solutions of the next time steps. This is done, for example, by applying

a second correction step to the EKF where the fixed solutions will behave as measurements fed to the

filter. The usual expressions apply, where the new state estimate and error covariance matrix are build

upon the float solution EKF updated state and covariance x̂k|k and P k|k as

K′k = H ′>
(
H ′P k|kH

′> +R′
)−1

x̂′k|k = x̂k|k +K′k
(
z′k −H ′x̂k|k

)
P ′k|k = (I −K′kH ′)P k|k (I −K′kH ′)

>
+K′kR

′K′>k ,

(4.89)

where the residual z′k −H ′x̂k|k is written as

z′k −H ′x̂k|k =

q(Ň)

Ň

−
I4 0 0

0 0 Imn



q̂k|k

b̂k|k

n̂k|k

 (4.90)

and R′ is the covariance matrix of the measurements z′k. An expression for the covariance matrix of

the conditional solution, Qq(N)q(N) has been deduced in the previous Section. However, it is chosen

to tune R′ manually so as to obtain the best compromise between improving the accuracy of the float

solution, while still allowing the next step of the EKF to change the state estimates, if needed. This

updated solution defined by x̂′k|k and P ′k|k is then used in the EKF propagation step of the next time

step, closing the loop.

Note that since the fixed ambiguities are computed using the float solution provided by the EKF,

the two update steps are not independent. Therefore, the observations of this second update step of

the filter are not uncorrelated with the pseudorange and carrier phase observations used to compute

the float solution. Nonetheless, since this correlation is complex to quantify due to the nature of the

constrained ILS problem, the filter will be used as described.

After the integer ambiguities are fixed, in each time step, the solution of the MC-LAMBDA is fed to

this second update step of the EKF. It is expected that since the correct integer ambiguities have been

found, the solution of the integer ambiguity determination algorithm will not change.
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Chapter 5

Implementation and Data Acquisition

In order to verify and assess the performance of the attitude estimation solution proposed in the previous

chapter, a software system was designed and implemented.

The system is initially meant to post-process the GNSS and gyroscope data. This framework allows

for faster development of the software and easier debug, should a problem arise during the processing

of the data. The software is developed with real-time applications in mind and can easily be modified to

suit these requirements in the future. Further details about the data processing and system inputs and

outputs are given in section 5.1.

Due to hardware purchase restrictions, owning to the Covid-19 pandemic, experimental tests were

done using only two pairs of GNSS antennas and receivers, which is critical when trying to estimate the

full attitude of the body. As such, a simple simulation environment was developed, providing GNSS ob-

servations across any number of receivers that allows simulating different body kinematics, as explained

in section 5.2.

Finally, in section 5.3, the hardware used for the experimental testing of the software is described

and a representation of the test vehicle used for acquiring GNSS and IMU data during the test trials is

given.

5.1 Software Design and Overall Structure

The software development was done in the MATLAB® environment. This software is suitable for compu-

tational algorithms intensive on matrix operations, as is the present case. Note also that at this point of

development, the processing time and memory efficiency are not the main priority.

An overview of the main building blocks constituting the developed software is given in Figure 5.1.

Most of the individual steps represented in this flowchart have already been described as they pertain

to the proposed attitude estimation method. Apart from these, the pre-processing of the observations

collected by the GNSS receivers is highlighted.

The receivers are configured to provide the raw data in the Receiver INdependent Exchange Format

(RINEX) format, which is one of the standard formats for this type of application and is meant to provide
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Figure 5.1: Detailed flowchart of the algorithm used to process the GNSS and gyroscope data.

a common framework, independent of brand or cost of the GNSS receiver (as the name entails). This

format provides the required observables such as the pseudorange and carrier-phase measurements,

along with the navigation message containing the ephemeris data. For more on this standard, see [39].

The first block of the pre-processing layer shown illustrated on the right part of the flowchart deals

with selecting the observed satellites common to every receiver which provide valid data. Then, a simple

Single Point Positioning algorithm is used to compute the approximate position of the reference receiver.

The position is used to form the LOS vectors and choose the reference satellite, based on the elevation

angle. To improve the accuracy of this algorithm, a tropospheric delay model is implemented, based on

[27], and navigation data parameters are used to compute the satellite clock delay.

Having the list of observed satellites and reference satellite for the present epoch, these are com-

pared with the ones of the previous measurements, in the Check constellation changes block. The

algorithm is designed to use as much observation data as possible, and so if new satellites are in view,

the size of the vector of DD ambiguity estimates is increased accordingly. The new estimates are either
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initialized with no a priori knowledge, or a first guess is obtained using the carrier-phase observations

model and the attitude estimate. Furthermore, if the reference satellite changes, the DD ambiguities

in x̂k|k and respective terms in the error covariance matrix must be changed accordingly to guarantee

a smooth transition. All the expressions used to deal with changes in observed satellites or reference

satellite are included in Appendix C.

The experimental setup used does not allow for synchronization in real time between receivers.

While it is expected that the sampling of the GNSS signals is done at the same time due to the very

short baseline length, it is confirmed experimentally that the receivers are not synchronized, with the

difference between the two receiver clocks (corrected by the clock offsets) reaching 1ms in some cases.

This time difference introduces an error in the model of DD measurements, which is modelled in the next

pre-processing block, and corrected in the vector of DD observations that is fed to the correction step of

the EKF. The model and assumptions used for this correction are written in Appendix D.

The remaining part of the algorithm, relative to the attitude estimation and integer ambiguity resolu-

tion, mostly follows the steps described in the previous chapter.

Finally, note that due to the linearization implicit in the EKF, some caution when initializing the filter

must be taken into account. In this work, the initialization of the estimated attitude and DD ambiguities

at t0 is done using a gross approximation which may be far from the true state of the system. To solve

this issue, the covariance matrix Rk is tuned so that in the beginning, the filter has lower sensitivity

to the carrier-phase measurements. It was seen experimentally that this adjustment allows the filter to

converge to the correct solution even if the initial guess is far from optimal, although with lower accuracy.

After some time, Rk is adjusted according to the noise model of the measurements, increasing the

bandwidth of the filter relative to the carrier-phase measurements and therefore the accuracy of the

solution. This process of adjusting theRk matrix can be seen clearly in the results presented in the next

Chapter. It is also important to know that the integer ambiguities are determined from the float solution

only after it is considered that the filter has converged close to the true state. This is defined by the

manually tuned parameter tmc, as seen in the flowchart.

5.2 Simulation Setup

The implemented algorithm receives as input GNSS observations from the GNSS receivers connected

to the antennas and angular velocity measurements from a 3-axis rate gyroscope. The software is

designed so that it does not distinguish between simulation or experimental data. Consequently, the

developed simulation script must also generate sample RINEX files and angular velocity measurements.

First, the real attitude of the body in relation to the local ENU frame in each time instant is simulated.

The exact discrete time attitude kinematics in (4.15) are used, receiving as input the simulated exact

angular velocity. The simulation allows choosing a static configuration or a dynamic scenario where any

kind of rotation can be simulated. The discrete-time gyro model (4.18) is used to simulate the noisy

gyroscope measurements, where the parameters σv and σu can be tuned to increase or decrease the

angular random walk (ARW) and rate random walk (RRW).
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To arrive at the GNSS measurements, the stochastic models introduced in section 2.3 are used.

The expressions for the pseudorange and carrier phase measurements in (2.11) and (2.12) include

ionosphere and troposphere delay terms, as well as unmodelled error such as multipath. Instead of

considering each individual error source, the following model for the variance of the measurements is

used [6]: 
(
σkP,i

)2
= 1002

(
c21 +

(
c2

sin elk

)2
)

(
σkΨ,i

)2
= c21 +

(
c2

sin elk

)2
, (5.1)

where σkP,i is the standard deviation of the code observations relative to satellite k at receiver i and σkΨ,i
is relative to the carrier phase. The carrier phase variance is modelled as being four orders of magnitude

smaller than the corresponding pseudorange variance, and both are written in units of m2. According to

this model, the noise parameters depend only on the elevation angle elk of satellite k, which is assumed

the same for every receiver. Constants c1 and c2 are tuned according to the scenario one wishes to

simulate. It is suggested in [6] that using c1 = c2 = 2mm provides realistic noise levels.

To compute the elevation angle as well as the distance term in the observation models, ρki , the

satellite’s position is required. The positions are calculated using sample navigation data collected

during a real experiment. In this simplified simulation, both the satellites and the Earth’s surface are

considered static. Furthermore, the receiver and satellite clock offsets are not simulated. As such, the

only simulated source of error is the realization of a white-noise like process with the variances in (5.1),

which is added to the distance term.

Lastly, the integer ambiguities are generated using a pseudo random number generator and rounding

to the nearest integer. The range of possible integers is simulated such that the resulting DD ambiguities

are of a similar order of magnitude to those determined experimentally.

5.3 Experimental Setup

The equipment used to collect data throughout the static and dynamic experiments is enumerated in the

following. The configuration of baseline and gyroscope used to perform the actual experiments is also

depicted.

5.3.1 Hardware Overview

As mentioned before, the experimental testing of the algorithm is restricted by the available hardware.

Only two GPS antennas are used, as shown in Figure 5.2. Some relevant electrical specifications are

presented in Table 5.1 [40, 41]. The AT575-75 antenna is chosen as the reference antenna to perform

the double difference computations. Note that it would be optimal if the antennas were of the same brand

and model since the noise parameters relative to the measurements, in the algorithm, are assumed the

same for the two antennas. Also, since the measured and estimated coordinates of the baselines are

relative to the antenna phase centers, the phase center offset specified in the datasheet of the antennas,

given in Table 5.1, has to be taken into account.
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(a) AT575-75 antenna by
AeroAntenna Technology.

(b) 53G15A antenna by Antcom
Corporation.

(c) Reach Module by Emlid.

Figure 5.2: GNSS antennas and receiver hardware used in the experimental trials.

Table 5.1: Electrical specifications of the GPS antennas.

Antenna Part Number (P/N) AT575-75 53G15A

Frequency (MHz) 1575.42± 6 1575.42± 12

Impedance (Ohm) 50 50

Antenna Gain (dBic):
@ 90◦ (Zenith) 4.0 5.4

@ 30◦ −1.0 1.8

@ 20◦ −2.5 0.4

@ 10◦ −4.5 −1.3

Z Phase Center Offset (cm) 4.8 1.3

One of the two identical GNSS receivers used is shown on the right, in Figure 5.2c. These are

low-cost Reach Module receivers by Emlid, typically used for real-time kinematic (RTK) positioning ap-

plications. However, they can be configured to provide raw data measurements in the RINEX format

using the Reach interface. Its general specifications are available in [42]. While the number of channels

is not specified, it is seen experimentally that it can track every satellite constellation simultaneously,

including of course the GPS satellites.

As for the gyroscope, the only available solution was using a smartphone’s IMU, which is equipped

with a multitude of sensors, such as a 3-axis accelerometer, gyroscope and magnetometer. The raw

angular velocity data was recorded and downloaded using the Sensor Lab application [43]. While smart-

phones’ sensors naturally are not suitable for precise applications, the main maneuvers done in the dy-

namic tests are clearly seen in the angular velocity data, as shown in the next chapter. However, using a

dedicated, more precise rate gyroscope would obviously enhance the prediction of the body orientation.

5.3.2 Testing Platform

Prior to setting up the antennas and gyro configuration for either the static or dynamic tests, ground

planes are placed under the antennas, as recommended in standard antenna placement guidelines.

The thin metal pieces shown in Figure 5.3 reduce multipath effects, therefore providing shielding and

improving signal reception.

In every experiment, the antennas are connected to the GNSS receivers using coaxial cables. The

power is supplied by a laptop which is connected to the Micro-USB port of the receiver. Lastly, the

smartphone used as a gyroscope is fixed to the support connecting the two antennas, rotating with the
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Figure 5.3: GPS antennas mounted with ground planes.

baseline and therefore the body frame.

The setup used in the static trails is shown on the left in Figure 5.4a. The thin beam connecting the

antennas is set on a tripod, used to further reduce multipath effects, while also enabling a clearer view

above the horizon. The electronic devices, namely the receivers and the laptop, are placed as far as

possible from the antennas to lessen interference due to any radio frequency (RF) noise generated from

these devices.

The dynamic trials were done by placing the antennas, along with the smartphone, on the roof of a

car, as shown in Figure 5.4b. This very simple setup allows placing the antennas a certain height above

the ground, while the ground plates minimize the multipath interferences reflected on the car’s surface.

One downside of this setup is the low range of motion in the pitch and roll axes during the experiments,

since this depends on the shape of the terrain. A workaround to this issue is manually rotating the

baseline during the experiment, as described in the test trials.

(a) Antenna configuration used in the static trials. (b) Antenna configuration used in the dynamic trials.

(c) Gyroscope (smartphone) configuration in
respect to the baseline.

Figure 5.4: Setup of the equipment required to obtain the GPS and IMU observables.
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Chapter 6

Trials Description and Results

In this Chapter, the proposed solution for solving the problem of attitude estimation using GNSS obser-

vations as well as IMU measurements is validated by performing several trials.

As mentioned in the previous Chapter, due to a shortage of available equipment, experimental data is

acquired using only two GNSS receivers. Furthermore, evaluating the estimation error of the proposed

solution is only possible when there is a trustworthy reference of the body’s attitude, which would imply

using specialized equipment or a different, very accurate attitude estimation technique. Using the de-

veloped simulation environment, these issues are somewhat avoided since the true attitude of the body

is known and any dynamic scenario, as well as number of baselines, can be generated. The results

obtained using simulated data are presented in Section 6.1.

The end goal of the development of any algorithm used for navigation is its implementation and test-

ing in a real-life scenario. Furthermore, GNSS applications have long been developed, implemented and

tested in realistic scenarios. As such, it is deemed fit that the algorithm be validated using experimental

data, even if the range of different trials that can be performed is limited. The results of the performed

experiments, using the setup described in the previous Chapter, are given in Section 6.2.

6.1 Simulation Results

In order to evaluate the performance of the developed algorithm under different scenarios, several trials

are simulated and analyzed in the following.

Whether in the implemented simulation environment or processing algorithm, there are some pa-

rameters that must be tuned. An overview of these parameters, as well as the values assigned to them

throughout the different trials, is given in Section 6.1.1.

Then, a parametric analysis of the performance of the implemented integer ambiguity determination

framework, based on the MC-LAMBDA method, is given in the next Section. It is shown how the method

performs under more and less trying scenarios, which is crucial when wishing to use the highly accurate

carrier-phase measurements.

In what remains, the actual attitude estimates are presented in different trials where the platform can
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be either static or dynamic. Each trial showcases both the performance and limitations of the algorithm

under different scenarios, where special attention is given to the single baseline observability results

presented as part of the dynamic trials.

6.1.1 Simulation and Processing Parameters

The implemented simulation environment provides sample GNSS observation and navigation files, as

well as angular velocity measurements. The values assigned to parameters common to every analyzed

simulated trial are first enumerated in the following.

The noise levels of the simulated gyroscope measurements depend on parameters σv and σu, ac-

cording to the discrete-time stochastic model in (4.18). These were tuned so that the noise power

spectral density (PSD) of the simulated measurements is similar to that of the experimental measure-

ments, obtained using a smartphone. Note that the variance of the simulated white noise affecting the

bias evolution in time, the RRW, is slightly increased in order to better show the evolution of the gyro bias

estimate. The values of σv used throughout all simulations, for each axis, are 0.1921× 10−3 rad · s− 1
2 ,

0.2200× 10−3 rad · s− 1
2 and 0.1975× 10−3 rad · s− 1

2 . The corresponding values for σu, determining the

RRW, are 0.0696× 10−3 rad · s− 3
2 , 0.0556× 10−3 rad · s− 3

2 and 0.0353× 10−3 rad · s− 3
2 .

Concerning the GNSS observations, there are several parameters that must be fixed according to

the procedure and models used to simulate the observables, which was detailed in Section 5.2. The

variance of the code and carrier-phase measurements is seen to depend on the parameters c1 and c2,

apart from the elevation angle of the satellites. In the simulated static and dynamic trials detailed in the

following, the values used are c1 = c2 = 3mm, which corresponds to a more trying scenario than the

value of 2mm suggested in the literature. The position of the reference antennas is set to the geodetic

coordinates of Sátão, a town in Viseu, Portugal, given by the latitude, longitude and height above mean

sea level φ = 40.753 031°, λ = −7.715 333° and h1 = 652m. Lastly, the satellite positions are computed

using the navigation files collected at UTC time 18 : 30 : 00 on 2020/09/16, where 7 GPS satellites are

observed.

The position of the remaining antenna are simulated along the direction of axis X and Y of the body

frame, up to a maximum of two baselines. That is, in the single baseline case, the coordinates of the

baseline in the body frame are li1 = ‖lik‖ [1, 0, 0]
>, and having multiple baselines, a second baseline

li2 = ‖lik‖ [0, 1, 0]
> is added. All baselines are equal in length, ‖lik‖, which is fixed at ‖lik‖ = 1.3m in

the static and dynamic trials.

To compute the baseline coordinates in the local frame along time, the initial attitude is set at the

arbitrary Euler angles ϕ = 10°, θ = −25° and ψ = 40°. Lastly, the sampling frequencies of the simulated

gyroscope measurements and GNSS observations are chosen as 20Hz and 5Hz, respectively, matching

those of the experimental data.

The remaining parameters are relative to the processing of the measurements. Concerning the EKF,

the state and respective covariance matrix must be initialized. The attitude is initialized by considering

that the body frame is aligned with the reference frame, while the bias and DD ambiguities estimates
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are also initialized at 0. The initial estimation error covariance matrix is defined as a diagonal matrix.

The quaternion estimate’s error covariance matrix is set equal to the identity matrix, while the variance

of each gyro bias estimate has a value of 2 rad2/s2. The initial variance of each DD ambiguity estimate

is set to 1× 104, since its magnitude is initially unknown.

The continuous-time process noise matrix Q, relative to the gyroscope measurements, is defined

according to the σv and σu noise parameters written above, the only difference being that the RRW

is set two orders of magnitude lower. Matrix Rk, as mentioned in Section 5.1, is defined differently

according to the processing time. The used expressions for the observations’ variance are written in

(6.1), where tRchg
is the time at which the filter bandwidth relative to the carrier phase measurements is

narrowed, increasing the accuracy of the estimation. Then, Rk follows according to (3.13).
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(6.1)

In every trial, the transition time used is manually adjusted to tRchg
= 50 s. This concludes the setup of

the EKF float solution, from which follows the part of the algorithm dealing with the integer ambiguities.

As shown in the flowchart of the overall algorithm in Section 5.1, the integer ambiguity determination

method and fixing of the respective ambiguities occur only after reaching the processing times tmc and

tfix, respectively. Through trial and error, it was considered that at tmc = 100 s, the EKF estimates can

be assumed to have converged near to the true values. Then, the integer ambiguities storing period

before fixing is set to last 50 s, which leads to tfix = 150 s.

Lastly, the covariance matrix R′ used in the 2nd update step of the EKF, during the Solution Fixing

step, was manually tuned to the identity matrix of appropriate size multiplied by 1×10−6. In the following,

the simulation results obtained using these parameters are presented and discussed.

6.1.2 Integer Ambiguity Determination Success Rate

First off, the success rate of the implemented MC-LAMBDA method, when integrated with the EKF float

solution, is evaluated by performing Monte Carlo simulations under different scenarios. The simulated

scenarios are initially detailed, followed by the success rate results.

Trial Description

Since this trial is concerned only with the performance of the integer ambiguity determination algorithm,

during the processing runs the fixing of the ambiguities is not performed. That is, the time at which

fixing occurs, tfix, is set greater than the total time of the simulated data. As such, the sets of integer

ambiguities evaluated correspond to the stored integer ambiguities represented in the flowchart of Figure
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5.1, which are computed starting at tmc, until the end of the processing. If the ambiguities were fixed, the

output of the MC-LAMBDA from that point on would very likely be equal to the set of fixed ambiguities,

providing no further information about the success rate of the MC-LAMBDA method.

The success rate is defined as the percentage of epochs satisfying t > tmc in which the output of the

MC-LAMBDA method is equal to the correct set of integer ambiguities. It is expected that the success

rate varies according to how noisy the observations are or how many satellites are being tracked, for

example. With this in mind, different baseline lengths, observation noises and number of observed

satellites are simulated in order to see how these affect the success rate of the chosen method. For

each combination of the parameters, several Monte Carlo simulations are done, from which the success

rates are computed. In every simulation, a single baseline is used.

Success Rates

The simulated scenarios in terms of baseline length, pseudorange noise and number of satellites used

are represented in Table 6.1. For each combination, the resulting success rate is presented. Note that

as the pseudorange noise varies, so does the carrier phase noise, since the parameters that are directly

changed are c1 and c2 of model (5.1). Furthermore, the indicated code measurements noise corre-

sponds to that of the observations of the satellite with highest elevation angle. Therefore, it represents

the minimum value of the code measurements noise of all satellites, as the noise increases for lower

elevation angles. Also, for simulations with less than 7 satellites, the discarded satellites are those with

higher elevation angle, which further increases the overall noise of the measurements.

Table 6.1: Integer Ambiguity Determination success rates of the EKF+MC-LAMBDA integration under
different scenarios.

Baseline length [m] 1 5 10

Code noise σkP,i [cm] 50 40 30 50 40 30 50 40 30

# Satellites Success rates (%):
5 83.96 94.75 97.30 96.85 97.23 96.81 95.41 98.37 98.29

6 93.08 98.92 98.56 98.31 98.15 97.97 98.40 97.87 99.06

7 95.05 97.34 98.77 98.18 98.97 98.55 98.42 98.53 97.67

There is a clear increase in the success rates of the ambiguity determination as the measurements

noise decreases or the number of tracked satellites is higher, which can be seen in the simulation results

corresponding to a unitary baseline length. It is natural that having less noisy observations leads to a

more accurate float solution, which is the starting point of the search process done in the MC-LAMBDA

algorithm, increasing its success rate. Note that a code noise of 50 cm is quite high when compared to a

baseline length of 1m, and even in this case a high success rate of 83.96% is achieved.

As more satellites are available, more information is fed to the filter, improving the attitude estimates

along with the accuracy of the integer ambiguity candidates.

As for the baseline length, it is expected that shorter baselines hinder correct integer ambiguity

determination. This effect is not only due to having less precise attitude estimates, but also since the
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observation model used in the EKF is highly nonlinear for very short baselines. As seen in Table 6.1,

the correct set of ambiguities is determined more often when simulating a baseline of 5m, compared to

1m.

Overall, since the float solution is obtained using a recursive filter, the estimated float DD ambiguities

are already very accurate, although not exact, improving the results of the MC-LAMBDA method. If more

baselines were used, it is expected that the success rate increases since the method uses the knowledge

of the relative geometry of the baselines, implicit in the orthogonality of the conditional rotation matrix.

This being said, even in a single baseline scenario the results are likely to be better than those obtained

using, for example, the simpler LAMDBA method, since the MC-LAMBDA also takes the known baseline

length into account. Also, note that the simulated code and carrier-phase noises are considerably high,

since a code noise of 30 cm reasonably approximates a real-life scenario, which also confirms the good

performance of the integer ambiguity determination algorithm. Given these results, it is very likely that

the integer ambiguity set chosen for the fixing is the correct one, since it only needs to occur at least

50% of the time during the ambiguity storing period.

6.1.3 Static Trial

In the following, the attitude estimate solution as well as the relevant intermediate solutions of the de-

veloped algorithm are presented and analyzed. First, an overview of the simulated static trial used to

generate the required data is given.

Trial Description

Since in this trial the body is considered static, the simulated measured angular velocity consists only

of noise. The 3-axis angular velocity measurements and simulated gyroscope bias are represented in

Figure 6.1. The parameters related to the evolution of the bias were clearly exaggerated in order to

better assess the performance of the filter, as mentioned previously.
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Figure 6.1: Simulated angular velocity measurements for the static trial.
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It is expected that in a static scenario, a single baseline is not enough to estimate the full attitude of

the body, nor the gyroscope bias. Therefore, two baselines are simulated, as seen in the results that

follow. Note that all parameters not mentioned here are set to the values defined in Section 6.1.1.

Multiple Baseline Scenario Results

In order to better show and evaluate the characteristics of each intermediate and final attitude solution,

two different processing approaches are used. The first, hereby called EKF+MC-LAMBDA (w/o Fix),

corresponds to the results of the MC-LAMBDA solution without fixing the integer ambiguities, as done in

the previous section. As such, the attitude estimates shown are the conditional solutions at each epoch

for t > tmc = 100 s. The other solution, EKF+MC-LAMBDA Fixed is the more accurate fixed solution,

where a starting time of tfix = 150 s is used. In this case, the shown solutions are part of the updated

state of the EKF after the 2nd Update Step corresponding to the Solution Fixing. Using the simulated

data from the static trial having two baselines, the results in Figure 6.2 are obtained.

Figure 6.2: Static trial attitude estimates, including intermediate solutions.

The EKF Standalone solution corresponds to the EKF float solution without fixing the ambiguities. It

is included in the plots in order to compare the accuracy of this intermediate solution with the conditional

and fixed solutions. The estimation error mean value and standard deviation relative to each of the
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Table 6.2: Performance metrics of the estimated attitude solutions for the static trial, evaluated for t >
tfix.

Euler Angle Solution Error Mean [deg] Error Std. [deg]

Roll ϕ
EKF Standalone 0.673 0.756

EKF+MC-LAMBDA w/o Fix 0.003 0.181

EKF+MC-LAMBDA Fixed −0.009 0.147

Pitch θ
EKF Standalone 0.435 0.502

EKF+MC-LAMBDA w/o Fix 0.038 0.156

EKF+MC-LAMBDA Fixed 0.021 0.111

Yaw ψ

EKF Standalone −0.275 0.396

EKF+MC-LAMBDA w/o Fix −0.016 0.115

EKF+MC-LAMBDA Fixed −0.001 0.072

shown attitude solutions are summarized in Table 6.2.

The plots on the left of Figure 6.2 clearly show that the float solution, after around 50 s, converges to

the true attitude, even though the filter’s initial estimated Euler angles are off by 10 to 40 degrees. It is

also seen that at t = 50 s, the EKF solution becomes more accurate due to the tuning of matrix Rk, as

previously described. From the close up of the estimates on the right of Figure 6.2, it is noted that both

the conditional solution without fixing and the fixed solution are more accurate than the float solution. Of

the two, the fixed solution is overall closer to the true value, as seen in Table 6.2. Since, in this case,

the correct set of integer ambiguities is fixed at t = tfix = 150 s, in the following epochs the accuracy

is improved. This result validates the chosen approach of fixing the integer ambiguities in a 2nd EKF

Update Step, since the accuracy of the attitude estimation is improved.

It is also important to note the high accuracy of the float solution, which is characterized by sub

degree standard deviation. This is possible due to using a recursive filter, where the estimates are

improved over time as new measurements are received. The accuracy of the float solution using the

typical LS approach would be lower since it is an epoch-by-epoch method. Furthermore, the used

approach successfully integrates the gyroscope measurements, further improving the accuracy of the

estimate.

The quantities that remain to be discussed are the 3-axis gyroscope bias. On the left of Figure 6.3,

the EKF Standalone and fixed solutions are presented, alongside the simulated true values. On the

right, a close up view of the estimates is shown. Once again, Table 6.3 summarizes the error metrics of

the considered solutions.

Having two baselines, the bias estimates converge to the simulated values, as seen in the plots.

Being able to estimate the gyroscope bias in this scenario is a result which had already been hinted

at in the observability analysis done before. Having a good estimate of the gyro bias, the true angular

velocity’s mean value is estimated accurately, improving the predicted state estimate of the filter.

The bias estimate when fixing the ambiguities is slighty more accurate, as seen in Table 6.3. In

the model of the nominal system, there is no direct relation between the gyro bias and the integer

ambiguities. However, the MC-LAMBDA method improves the quality of the attitude estimates. Since
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Figure 6.3: EKF without fixing and fixed solutions’ bias estimates during the simulated static trial.

Table 6.3: Performance metrics of the estimated gyro bias for the static trial, evaluated for t > tfix.

Gyro bias Solution Error Mean [rad/s] Error Std. [rad/s]

X-axis βx
EKF Standalone −0.0032 0.0146

EKF+MC-LAMBDA Fixed −0.0031 0.0139

Y-axis βy
EKF Standalone −0.0048 0.0117

EKF+MC-LAMBDA Fixed −0.0044 0.0119

Z-axis βz
EKF Standalone 0.0007 0.0094

EKF+MC-LAMBDA Fixed 0.0006 0.0089

the predicted state at a given epoch depends of the fixed attitude solution of the previous epoch, the

structure of the filter makes it so that the bias estimate becomes more precise.

6.1.4 Dynamic Trials

Scenarios in which the body frame is rotating with respect to the local frame were also simulated. In the

following, the simulated trials are briefly described and then the corresponding results are presented.
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Trials Description

Several different dynamic trials can be simulated since both the number of baselines and their coordi-

nates, as well as the angular velocity of the body can be varied freely. In this work, two different scenarios

are simulated, one using two baselines and other where a single baseline configuration is simulated.

A dynamic trial using two baselines allows comparing the performance of the developed algorithm

in a dynamic scenario as opposed to the static trial previously presented. The simulated baseline co-

ordinates in this case, as well as all other simulation parameters were described in Section 6.1.1. The

measured angular velocity, from which the simulated dynamics are fully described, is given in Figure

6.4. The resulting pseudorange and carrier-phase observations are used to estimate the attitude of the

body, shown in the next Section.
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Figure 6.4: Simulated angular velocity measurements for the dynamic trials.

A single baseline case is simulated in order to experimentally check the observability of the filter in

these conditions. It was deduced, using a linearized model, that if the body is static, a single baseline

is not enough in order to estimate the full attitude and gyro bias. Since the dynamic case could not

be studied analytically, it will be seen experimentally if the state can be estimated. The simulated body

motion in this trial is exactly the same as the dynamic multiple baseline scenario, represented in Figure

6.4.

Multiple Baseline Scenario

Similarly to the simulated static trial results, the estimated attitude and corresponding error metrics are

given in Figure 6.5 and Table 6.4.

First off, it is noted from the left plots of Figure 6.5 that, when compared to the previous static trial,

the EKF Standalone solution converges more quickly to the true estimate. Naturally, since there is a

greater diversity in the measurements fed to the filter due to the body motion, it has more information in

order to estimate the state.

The increased excitation of the filter also results in a more accurate float estimate when compared
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Figure 6.5: Dynamic trial, multiple baseline attitude estimates, including intermediate solutions.

Table 6.4: Performance metrics of the estimated attitude solutions for the multiple baseline dynamic trial,
evaluated for t > tfix.

Euler Angle Solution Error Mean [deg] Error Std. [deg]

Roll ϕ
EKF Standalone −0.149 0.193

EKF+MC-LAMBDA w/o Fix 0.013 0.162

EKF+MC-LAMBDA Fixed 0.010 0.104

Pitch θ
EKF Standalone −0.422 0.201

EKF+MC-LAMBDA w/o Fix −0.016 0.160

EKF+MC-LAMBDA Fixed −0.018 0.094

Yaw ψ

EKF Standalone −0.023 0.186

EKF+MC-LAMBDA w/o Fix −0.005 0.108

EKF+MC-LAMBDA Fixed −0.006 0.071

to the static case, as expected. In this case, the standard deviation of each of the Euler angles corre-

sponding to the output of the EKF, without fixing the ambiguities, is of around 0.2°. As in the static case,

the fixed solution is the more accurate out of the three solutions, which can be concluded from Table 6.4

and the close up of the Euler angles’ estimation error on the right of Figure 6.5. The improvement of

the attitude estimate when fixing the integer ambiguities, as opposed to simply taking the output of the
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MC-LAMBDA method, is again apparent.

The estimation results of the gyroscope bias are shown in Figure 6.6. Even when subject to angular

velocities of up to 15 deg/s, the high accuracy of the attitude solution allows the correct estimation of

the bias. This said, the oscillatory pattern that is most noticeable on the X-axis gyro bias estimate of

the EKF Standalone solution, in the zoomed plot, is clearly due to the triangular shape of the simulated

angular velocity. It is therefore concluded that high angular velocities can worsen the accuracy of the

gyroscope bias estimate. Overall, both the float and fixed estimates represented in the plots follow the

true simulated gyro bias.

Figure 6.6: Dynamic trial, multiple baseline EKF without fixing and fixed solutions’ bias estimates.

Single Baseline Observability

The results shown and analyzed in this Section correspond to the state estimates obtained using a single

baseline. The experimental trials discussed later were also performed using only two GPS antennas,

and so these simulation results are expected to provide useful insights about what to expect of the

experimental results. The resulting attitude estimates and related metrics are presented in Figure 6.7

and Table 6.5.

The most important result to remark is the successful estimation of the full attitude using a single

baseline, as seen in the Figure’s plots. Even if the convergence of the EKF Standalone solution is slower
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Figure 6.7: Dynamic trial, single baseline attitude estimates, including intermediate solutions.

Table 6.5: Performance metrics of the estimated attitude solutions for the single baseline dynamic trial,
evaluated for t > tfix.

Euler Angle Solution Error Mean [deg] Error Std. [deg]

Roll ϕ
EKF Standalone 0.141 0.447

EKF+MC-LAMBDA w/o Fix −0.023 0.289

EKF+MC-LAMBDA Fixed −0.220 0.404

Pitch θ
EKF Standalone 0.309 0.254

EKF+MC-LAMBDA w/o Fix −0.016 0.195

EKF+MC-LAMBDA Fixed −0.015 0.336

Yaw ψ

EKF Standalone 0.007 0.193

EKF+MC-LAMBDA w/o Fix −0.010 0.141

EKF+MC-LAMBDA Fixed −0.044 0.095

when compared to the multiple baseline case since less information is available, after convergence the

filter is able to reach sub degree accuracy.

These results further validate the developed quaternion conditional solution, derived in Section 4.5.2.

Recall that the EKF+MC-LAMBDA (w/o Fix) attitude solution corresponds to this conditional solution,
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and that it is also used to compute the fixed solution. The original conditional solution based on the LS

approach, described in section 4.1, requires having at least three baselines to fully determine the atti-

tude. However, the deduced expressions allow the approximate computation of the attitude conditional

solution using the EKF float solution and for any number of baselines, therefore taking advantage of

the characteristics of the recursive filter. This quaternion conditional solution is what allows using the

MC-LAMBDA method for integer ambiguity resolution in a single baseline case.

It is seen on the zoomed plots of the attitude estimation error on the right of Figure 6.7, as well as

in the corresponding Table, that the roll and pitch fixed solutions are the worse estimates. The opposite

was true in the multiple baseline results shown previously. The error in the fixed solution is explained by

analyzing the gyro bias estimates, shown in Figure 6.8. The fixing process lowers the covariance matrix

entries of the filter, since it consists of a 2nd Update Step. As such, the filter becomes less sensitive

to the angular velocity measurements. Since in a single baseline scenario the GNSS observations are

fewer in number, the gyro bias estimate are worsened, except for the bias relative to the Z-axis since it

is the axis around which the body rotates, exciting the filter. Due to the error of the gyro bias in the X

and Y axis, the output of the EKF propagation step is less accurate, therefore affecting the final updated

solution. As the body rotation becomes more diverse, it is expected that the fixed gyro bias estimates

improve.

Apart from the errors in the fixed solution, it is important to note that, in the EKF Standalone solution,

the gyro bias is correctly estimated, similarly to the body attitude. These simulation results suggest that

even using a single baseline, if the motion of the body is sufficiently varied, the full attitude and gyro

bias are observable. It is also seen by trial and error that as the body’s angular velocity is higher, the

estimates become more accurate.

6.2 Experimental Results

Using the hardware and experimental setup presented in the previous Chapter, static and dynamic trials

were performed.

The collected measurements are substantially different from the simulated data since simulating

more realistic observations would involve very complex models, which are outside of the scope of this

thesis. Due to this, the algorithm parameters to tune were assigned different values when processing

the experimental data, discussed in Section 6.2.1.

In the Section that follows, a static trial and the corresponding results are briefly presented and

discussed. A static trial using only two single-frequency receivers is the most demanding scenario

which can be tested. Considering also the type of gyroscope at hand, the resulting attitude estimates

are not optimal.

Lastly, the results of a dynamic trial are presented in Section 6.2.3. Using the collected data from

the experiment, the performance of the proposed solution in a real-life scenario is evaluated. Further-

more, this trial is meant to replicate the observability conditions shown in the dynamic, single baseline

simulated trial.
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Figure 6.8: Dynamic trial, single baseline EKF without fixing and fixed solutions’ bias estimates.

6.2.1 Algorithm Parameters

The tuning of the filter parameters and overall flow of the algorithm using experimental data resulted in

different values from those used in the processing of simulated data. The experimental data contains

errors not modelled directly in the simulation, meaning that the parameters used in one scenario might

not be optimal in the other.

First off, in both experimental trials, the used baseline has a baseline length of 1.95m. In the body

frame, the direction of the baseline is set along the positive X axis. This information is used in order to

define the initial attitude of the body in relation to the ENU frame, and to be able to interpret the attitude

estimate results. As shown previously in Figure 5.4c, the gyroscope is then set along the positive X axis

of the body frame, facing up.

Concerning the filter parameters, the Q and Rk matrices used are the same as the ones defined in

Section 6.1.1. The Rk is also set to change at t = tRchg
. However, in the experimental trials a value of

tRchg
= 100 s is used, allowing more time for the initial convergence of the filter.

The parameters defining the starting times of the MC-LAMBDA method and the Solution Fixing are

set differently for the static and dynamic trial. As there is lower filter excitation in the static trial, more

time is given for the converge of the float solution, as shown in the results that follow. In this case, it

is set tmc = 550 s and tfix = 600 s, corresponding to a 50 s interval of storing candidate sets of integer
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ambiguities.

In the processing of the dynamic trial, these times are set at tmc = 200 s and tfix = 240 s, where

the time window for storing ambiguities is smaller. These parameters are very different between static

and dynamic trial since, again, when only one baseline is used, the information given by the GNSS

observations in the static case is less varied. In any case, for real life applications, the times set for the

static trial would obviously also give good results in a dynamic scenario.

Finally, note that the Reach Module receivers were set to provide GNSS observables at a rate of

5Hz, while the angular velocity measurements are sampled at a frequency of 20Hz.

6.2.2 Static Trial

In the following, a brief description of the setup of the trial is given, and the corresponding estimated

attitude is presented and discussed.

Trial Description

The hardware and setup used for this trial was described in Section 5.3. The collected data corresponds

to the GPS observables and navigation message beginning at UTC time 18 : 52 : 00 of 2020/09/16. The

approximate location of the antennas is given by a latitude of φ = 40.7221° and longitude λ = −7.7264°.

Taking into account this epoch and location, note that only observations from satellites whose elevation

angle is higher than 15° are used in the processing.

Knowing the approximate attitude of the body is crucial in order to interpret the results. Referencing

the setup baseline orientation with a map of the site, it is seen that the yaw angle of the body is ap-

proximately equal to 30°. As seen in Figure 5.4a, both the roll and pitch angles should be very close to

0° since the ground surface is flat. Lastly, the measured angular velocity which characterizes the trial

is shown in Figure 6.9. While the measurements’ mean value is close to 0 deg/s, the low quality of the

Figure 6.9: Measured angular velocity during the experimental static trial.

smartphone’s sensors is evident by the magnitude of the noise.
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Results

The attitude estimation results obtained by processing the GPS observations and gyroscope measure-

ments collected during the static trial, using the parameters described previously, are given in Figure

6.10. Since the float, conditional and fixed solutions have already been compared in detail in the simu-

lation results, from here on only the fixed solution is shown. Note that as the fixing of the solution occurs

only at t = tfix = 600 s, the estimates shown before this epoch correspond to the EKF float solution, in

order to evaluate the evolution of the filter. The same is true for all results that follow.

Figure 6.10: Fixed solutions’ estimated Euler angles during the static experiment.

When comparing the evolution of the Euler angles in this Figure with the simulation results, it is

clear that the convergence rate of the filter is much slower, only stabilizing after around 500 s. At t =

tRchg
= 100 s, the solution becomes more stable as the filter’s bandwidth relative to the carrier-phase

measurements is increased. Overall, the pitch and yaw angles converge to the approximate reference

angles of 0° and 30°, respectively. The roll angle is not observable, since up to t = 600 s its estimate

diverges to around −60°, which is clearly incorrect. This result is expected, since it was shown using

a linearized model that in a static, single baseline scenario, the full attitude is not observable. The one

degree of freedom corresponds to a rotation around the baseline, which in this case coincides exactly
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with the roll angle, due to having defined the baseline in the body frame along the X axis.

After fixing occurs, the small error in the pitch and yaw estimates is corrected and the estimates

become less noisy since the integer ambiguities are known. In fact, it is seen that, after fixing, the

pitch and yaw estimates standard deviations are of 0.65° and 0.36°, respectively. Although the mean

error can’t be known precisely, these estimates are clearly close to the true values and their standard

deviations rival those shown in the simulation results.

The slow convergence of the estimates is also related to the low number of observed satellites over

time, which is shown in the top plot of Figure 6.11. During the whole experiment, a maximum of 7

GPS satellites are used to compute the float solution. If signals from other constellations were also

processed, the convergence rate and accuracy of the solution would surely improve. The same would

happen if more baselines were available.

The bottom plot in Figure 6.11 represents the epochs in which there occurred a change in the refer-

ence satellite selected by the algorithm. As shown , at around t = 500 s, there is a change. Since there

isn’t any discontinuity in the Euler angles estimates at this epoch, the expressions used to deal with a

change in reference satellite, deduced in Appendix D, are correctly implemented.

Figure 6.11: Changes in the GPS satellites in view during the static experiment.

Lastly, the estimated gyroscope bias are plotted in Figure 6.12. Similarly to the attitude estimates,

the X-axis gyroscope bias appears not to be observable due to having a single baseline placed along

the X-axis of the body frame. Note that the sharp drop in the X-axis bias estimate after fixing occurs is

what makes the roll estimate in Figure 6.10 converge to a value close to 0°. This once again shows that

in this trial, the roll estimate is not directly influenced by the GNSS observations, due to the baseline

configuration.

In the next Section, the results obtained using the proposed solution to process data collected during

a dynamic real-life scenario are presented.
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Figure 6.12: Fixed solutions’ estimated gyroscope bias during the static experiment.

6.2.3 Dynamic Trial

The trajectory done during the dynamic experiment is described next, along with the body frame’s an-

gular motion. The maneuvers and sections of the experiment where the baseline’s attitude is manually

changed are highlighted. Lastly, the attitude estimates output by the algorithm are presented.

Trial Description

The dynamic trial was performed by placing the GPS antennas and gyroscope on top of a moving car,

as was shown in Figure 5.4b. The experiment takes place at the same date and location as the static

trial discussed previously. The baseline length is set at 1.95m and the initial yaw angle in this case is

approximately equal to −60°, derived from the starting position of the car seen in Figure 5.4b. Note that

the baseline, aligned with the body frame’s X axis, is placed perpendicular to the car.

In order to have a broad reference of what to expect from the processing results, the trajectory of

the platform during the experiment is represented in Figure 6.13. By driving the car along this trajectory,

only the yaw angle can be changed easily. Thus, to increase the excitation of the filter and introduce

more varied angular motion to the experiment, the baseline is manually rotated around its axis at some

epochs. These epochs are marked in the trajectory by a star close to the location where this happens.

The experiments’ start and finish points are highlighted using a red and yellow rectangle, respectively.

Lastly, the measured angular velocity matching this trajectory is shown in Figure 6.14. Note the

noisy measurements when the car is initially traveling in a straight line, due to its vibration and the rough

terrain. After around 520 s, the car is stopped and the engine is turned off, transitioning into a completely

static scenario.
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Figure 6.13: Trajectory and key points describing the experimental dynamic trial.

Figure 6.14: Measured angular velocity during the experimental dynamic trial.

Results

The proposed solution should be able to clearly show every turn and nudge of the baseline represented

in the trajectory of Figure 6.13. The Euler angles corresponding to the fixed solution are shown in Figure

6.15.

After t = tfix = 100 s, the filter’s estimate starts converging to the correct attitude, as the yaw

angle estimate approaches −60°. Note that the convergence rate in this case is much quicker when

compared to the static trial due to the angular motion. After convergence, each turn and roundabout

done during the trajectory of the vehicle is clearly seen in the 90° and 180° variations of the estimated

heading. Concerning the pitch estimate, it is close to 0°, as expected, since the terrain’s inclination is
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Figure 6.15: Fixed solutions’ estimated Euler angles during the dynamic experiment.

very low. The pitch oscillations marked by the horizontal dashed lines, between the epochs at around

200 s and 450 s, correspond exactly to the manual rotations of the baseline marked with star symbols in

the Figure of the trajectory. Overall, the pitch and yaw angles are estimated correctly, as expected, since

the baseline coincides with the X-axis of the body frame.

Looking at the roll angle estimate, it can be concluded that the additional angular motion of the body

causes the estimate not to diverge during the dynamic part of the experiment. Since the baseline is

rotated around both the Y and Z axis, the filter is able to keep the roll estimate close to 0°, although there

is some error. In fact, after the body is static, at around t = 520 s, the roll estimate starts to diverge, as

expected.

The gyroscope bias estimates in Figure 6.16 can be analyzed is a similar way. During the dynamic

part of the trial, the filter has some difficulty with precisely estimating the bias, as was the case during the

simulated dynamic trials. Even more so since, as seen in Figure 6.14, the angular velocities’s magnitude

during the experiment can reach around 30 deg/s. Once again, since a single baseline is used, the X-

axis bias estimate is not correct, being responsible for the deviation of the roll angle estimate when the

body is not rotating. This can be seen clearly after the vehicle comes to a full stop at the end of the

experiment. In this situation, the gyro bias is not observable and its integration during the propagation

step of the filter causes the divergence of the roll angle.

In a concluding note, it is seen that in a dynamic scenario the roll angle does not diverge as markedly

as in the static case. Also, the extra excitation of the filter causes the convergence of the estimates to

be quicker. Comparing the Euler angles pitch and yaw results to the vehicle trajectory, one can con-

clude that the proposed solution correctly estimates these angles. In order to assess the performance

quantitatively, a trustworthy attitude reference would be needed, which is left for a future work.
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Figure 6.16: Fixed solutions’ estimated gyroscope bias during the dynamic experiment.
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Chapter 7

Conclusions

Throughout this document, a novel solution for GNSS-based attitude estimation was detailed. In this

formulation, the float solution is obtained recursively using an EKF fed by angular velocity and carrier

phase measurements, which is then integrated with the effective MC-LAMBDA method. All steps needed

for reproduction of this solution were unambiguously described, as well as the reasoning behind it.

While the experimental validation of the proposed solution falls short of evaluating its performance

using multiple baselines, as well as presenting error metrics, the results clearly shown that the pitch and

yaw angles of the vehicle are estimated in a real-life scenario. Quantitative evaluation of the performance

of this solution was done using simulated data, which allowed drawing conclusions about the success

rate of the integer ambiguities determination and the attitude estimation accuracy.

In the following, the accomplishments of the this research are enumerated. While the proposed

solution provides some insight into new ways of exploring the GNSS observations and existing solutions

for attitude estimation, a complete study obviously could not have been done in this short time span.

Therefore, some aspects of this solution with room for improvement, as well as future work and analysis

to be done on this project are discussed next.

7.1 Contributions

Overall, the objectives that this thesis sets out to accomplish have been met. The integration of the

gyroscope measurements in the kinematics model underlying the EKF allowed a precise estimation of

the attitude. Namely, concerning the float solution, precisions of 0.76◦ , 0.50° and 0.40° for the roll, pitch

and yaw angles, respectively, were achieved in the most demanding static scenario.

Furthermore, preliminary conclusions about the observability of the filter concerning the attitude and

gyro bias estimation were achieved by analyzing the observability properties of a linearized system

model. It was concluded analytically that in a single baseline scenario, if the body is static, there is not

enough information to estimate the full attitude and 3-axis gyro bias. Doing the same analysis for the

case of multiple baselines, the state is found to be observable. Then, by simulating a dynamic scenario

using only two antennas, it was seen how it is likely possible for the system to be observable under
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certain excitation conditions. However, these must be found analytically in a future research.

Using the developed integer ambiguity determination framework, the overall solution made use of

the precise carrier phase measurements. To do so, a way of linking the filter’s attitude float solution to

the quaternion condicional solution given the correct set of integer ambiguities was derived. It was seen

how the use of these two methods implies success rates of at least 83.96%, even in a single baseline

scenario when only 5 GPS satellites are used and for a simulated code noise and baseline length of

50 cm and 1m, respectively.

The proposed solution was validated using both simulated and experimental data. Both types of

trials allowed to conclude that the proposed method of computing the fixed solution further increases the

accuracy of the float and conditional solutions. Using simulated data, it was shown how the precision

of the fixed solution can reach around 0.1° in a dynamic scenario, being slightly lower if the body is still.

Lastly, the very simple experimental setup used suggests that this navigation framework is suitable for a

multitude of real-life applications such as medium-sized UAVs or autonomous vehicles, usually already

equipped with GNSS receivers and an IMU.

7.2 Future Work

The attitude estimation solution that was presented still has large room for improvement and further val-

idation. Applications where a single baseline is used are of great interest, and require a more complete

study of the observability properties of the designed filter which is part of the solution.

Further experimental validation should be done, using more GNSS antennas and a better performing

gyroscope. Apart from testing the algorithm in post-processing, it is crucial that the algorithm may also

be used in real-time, since this is the case for the usual attitude estimation systems. To do so, in the

future the software must be slightly adapted to receive measurements over time. More importantly, its

time complexity needs to be lowered depending on the sampling frequency of the equipment. Specifi-

cally, making the software more time efficient might involve choosing a tighter bound C1 in (4.70) or an

alternative way of solving the nonlinear minimization problem in (4.84).

Prior to fixing the integer ambiguities, it was proposed that there be a time period where sets of

ambiguities are stored. Other integer ambiguity determination methods try to validate the set of integer

ambiguities determined at each epoch using statistical tests based on approximate probability density

functions. In a future study, the same approach could be done for the MC-LAMBDA method, providing

a measure of how likely it is that a set of integer ambiguities is correct. Furthermore, this work does not

go into detail on the mechanisms to detect and deal with disturbances such as cycle slips or loss of lock.

Research on these methods is crucial before using this solution in real-life applications.

Finally, the techniques applied to improve the precision of precise positioning can often be used

in this context as well. In the future, it could be studied how the integration of precise ephemeris,

clock corrections and others provided by fixed base stations affect the quality of the attitude estimates.

Expanding the solution to include observations from other constellations apart from the GPS would no

doubt also prove very interesting.
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Appendix A

Analytical validation of the system

solution in the observability analysis

In Section 4.4.3, the solution of system (A.1) was given based on the physical description of the mea-

surements.  ΥJq(q̃k, l12)∆qk + 0m∆nk

ΥJq(q̃k, l12)∆qk + λIm∆nk

 =

0

0

 (A.1)

In the following, it is confirmed analytically that a quaternion difference representing a rotation around

l12 is a solution of this system of equations, as written in (A.2).

∆qk = q̃k ◦ q{αl12} − q̃k, ∀α ∈ R

∆nk = 0

(A.2)

First, note that ∆nk = 0 is a trivial solution. Furthermore, if Υ is full rank, then the equation to solve

becomes simply

Jq(q̃k, l12)∆qk = 0. (A.3)

Then, we wish to prove that ∆qk = q̃k ◦ q{αl12} − q̃k, ∀α ∈ R is a solution of this equation. An

arbitrarily small rotation around the axis defined by l12 can be defined using (2.4) as

q{αl12} ≈

 1

1
2αl12

 , (A.4)

for a small α. Then, the product q̃k ◦ q{αl12} results in

q̃k ◦ q{αl12} ≈

 q̃w − 1
2αq̃

>
v l12

1
2αq̃wl12 + q̃v + 1

2αq̃v × l12.

 (A.5)
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The solution q̃k ◦ q{αl12} − q̃k is then simplified to

∆qk = q̃k ◦ q{αl12} − q̃k ≈
1

2
α

 −q̃>v l12

q̃wl12 + q̃v × l12

 . (A.6)

Then, the product Jq(q̃k, l12)∆qk is written as

Jq(q̃k, l12)∆qk ≈ α
[
q̃wl12 + q̃v × l12 q̃>v l12I3 − l12q̃

>
v + q̃vl

>
12 − q̃w[l12×]

] −q̃>v l12

q̃wl12 + q̃v × l12

 . (A.7)

Performing this matrix product and simplifying, one obtains

Jq(q̃k, l12)∆qk ≈ α
[
−q̃wl12q̃

>
v l12 + q̃wq̃vl

>
12l12 − q̃wl12 × (q̃v × l12)

]
. (A.8)

Finally, noting the cross-product property a×b×c = (a·c)b−(a·b)c, we trivially obtain Jq(q̃k, l12)∆qk =

0. Therefore, it has been confirmed analytically that (A.2) is a solution of the system of equations (A.1).
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Appendix B

Derivations

B.1 Quaternion to rotation matrix uncertainty propagation

This Section details the computation of the covariance matrix relative to the entries of the rotation matrix,

QR(N)R(N), having the covariance matrix of the quaternion Qq(N)q(N).

Since the entries of a rotation matrix R can be written as a function of the unit quaternion q, matrix

QRR is obtained from Qqq using the covariance propagation law. The relation between R and q is

written in (2.5). As it is nonlinear in q, a linearization is done. The following is based on [44].

Assuming that q is Gaussian distributed, with covariance matrix Qqq, a first order Taylor approxima-

tion of the nonlinear functions relative to the entries of R(q) implies writting QRR as

QRR = J ′QqqJ
′>, (B.1)

where J ′ is the Jacobian matrix of the entries of R(q) in relation to q. Since Qqq ∈ R4×4, the maximum

rank of QRR would be equal to 4, implying a positive semi-definite matrix, in this case.

Therefore, a second order Taylor approximation is used, resulting in QRR computed as

QRR = J ′QqqJ
′> +

1

2
[tr (QqqJ

′′
iQqqJ

′′
j)]ij . (B.2)

In this expression, J ′′i denotes the derivative d
dq of the i-th line of J ′, while [m(i, j)]ij represents a

matrix, where the entry at position i, j is computed according to expression m(i, j). The notation tr(M)

corresponds to the trace of matrix M .
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Then, according to the expression for R(q) in (2.5), J ′ is written as in (B.3).

J ′ = 2



0 0 −2qy −2qz

qz qy qx qw

−qy qz −qw qx

−qz qy qx −qw
0 −2qx 0 −2qz

qx qw qz qy

qy qz qw qx

−qx −qw qz qy

0− 2qx −2qy 0



(B.3)

Then, as mentioned before, J ′′i is simply the Jacobian matrix of line i. As an example, J ′′1 and J ′′1

are computed as follows:

J ′′1 =


0 0 0 0

0 0 0 0

0 0 −4 0

0 0 0 −4

 , J ′′2 =


0 0 0 2

0 0 2 0

0 2 0 0

2 0 0 0

 , ... (B.4)

Using these expressions based on a second order Taylor expansion, QRR becomes full rank, and is

successfully computed from quaternion q and its covariance matrix Qqq.

B.2 Hessian matrix of the Lagrangian function for the nonlinear

least-squares

This Section presents the computation of the Hessian matrix Jg,γs , used in the Newton-Raphson method

presented in Section 4.5.2, in order to solve the nonlinear least-squares problem.

Apart from some constants, this Hessian matrix Jg,γs corresponds to the Jacobian matrix of the

function defined in (B.5), in relation to xn =
[
q>, λ

]>.

F (xn) =

J>R(q)Q
−1vec(R̂−R(q)) + λq

q>q − 1

 (B.5)

Then, matrix Jg,γs is subdivided in

Jg,γs =

J1
q J1

λ

J2
q J2

λ

 , (B.6)

where J1
q denotes the Jacobian matrix of the first line of F (xn) in order to q. The remaining blocks are

defined in a similar way. As such, the derived expressions for the blocks of the matrix are presented in
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the following.

J1
q =




d
dqw
J>R(q)

d
dqx
J>R(q)

d
dqy
J>R(q)

d
dqz
J>R(q)

Q
−1vec(R̂−R(q))



>

− J>R(q)Q
−1JR(q) + λI4,

J1
λ = q, J2

q = 2q>, J2
λ = 0

(B.7)

The expressions for JR(q) and its derivatives, such as d
dqw
JR(q), are trivial to obtain. In fact, JR(q)

coincides with matrix J ′ whose expression is written in (B.3) of Appendix B.1. Regarding the derivatives,

an example is given next for computing, for example, d
dqw
JR(q):

d

dqw
JR(q) =



0 0 0 0

0 0 0 2

0 0 −2 0

0 0 0 −2

0 0 0 0

0 2 0 0

0 0 2 0

0 −2 0 0

0 0 0 0



(B.8)

The remaining derivatives are computed in a similar way, therefore completely describing the method of

solving the nonlinear least-squares problem, which is part of the MC-LAMBDA method.
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Appendix C

DD correction model due to

non-synchronized receivers

The GNSS receivers used to perform the experiments are seen to not be perfectly synchronized. On any

given epoch, there is a difference in the sampling time of the GNSS signals between different receivers

which can have a magnitude of up to ≈ 1ms. As such, there is the need to know to what extent this

offset impacts the reliability of the considered observation model, in which the receivers are assumed to

be synchronized. The following analysis is based on [10].

First, consider the code measurements equation (C.1). The time instant t̄i is the time at which the

pseudorange observation is measured by receiver i. This measured time, t̄i, corrected by the receiver

clock offset dti, corresponds to ti.

P ki (t̄i) = ρki + c(dti(t̄i)− dtk(ti − τki )) + Iki + T ki + εkP,i, (C.1)

Remember that ρki is computed as ρki =
∥∥R3(ωeτ

k
i )rk(ti − τki )− ri(ti)

∥∥. Rewriting the range between

receiver i and satellite k, ρki , as a function of the LOS vector, uki , we have

uki =
R3(ωeτ

k
i )rk(ti − τki )− ri(ti)

ρki
. (C.2)

Replacing in (C.1), the pseudorange is written as

P ki (t̄i) = uki
T (
R3(ωeτ

k
i )rk(ti − τki )− ri(ti)

)
+ c(dti(t̄i)− dtk(ti − τki )) + Iki + T ki + εkP,i. (C.3)

For a different receiver j, the analogous pseudorange observation is written as (C.4).

P kj (t̄j) = ukj
T (
R3(ωeτ

k
j )rk(tj − τkj )− rj(tj)

)
+ c(dtj(t̄j)− dtk(tj − τkj )) + Ikj + T kj + εkP,j (C.4)

The receivers are considered to be non-synchronized when ti 6= tj . As said previously, using the

hardware at hand, it is seen experimentally that, in some cases, this difference reaches |ti − tj | = 1ms.
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To compute the single differences (SD) between measurements P ki and P kj , the usual simplifica-

tions for short baseline can be made. Firstly, the troposphere and ionosphere delays are considered

approximately the same between the two receivers. Furthermore, considering that the satellite clock

offset varies slowly in time, that is, dtk(ti − τki ) ≈ dtk(tj − τkj ), the satellite clock offset is also elimi-

nated when subtracting the measurements. As such, the expression for the non-synchronized SD code

measurements is

P kij = uki
T (
R3(ωeτ

k
i )rk(ti − τki )− ri(ti)

)
− ukj

T (
R3(ωeτ

k
j )rk(tj − τkj )− rj(tj)

)
+

+ c(dti(t̄i)− dtj(t̄j)) + εkP,ij .
(C.5)

To simplify this expression, some considerations can be made. The average velocity of a satellite

belonging to the GPS constellation is of ≈ 4 km/s, while the average altitude is of around 20 000 km.

For a time difference of 1ms, the variation of position is negligible when compared to the receiver to

satellite distance. Since τki ≈
ρki
c , it follows that τki ≈ τkj . Together with the fact that the baseline

is very short when compared to the receiver to satellite range, the LOS vectors can be considered

parallel, such that ukj ≈ uki = uk. The error incurred when doing this approximation is of the order

|(ukj
T − uki

T
)R3(ωeτ

k
j )rk(tj − τkj )|. For a time difference ∆t = |ti − tj | = 1ms and the average velocity

and altitude mentioned before, ‖ukj
T − uki

T ‖ ≈ 1× 10−7 m. Given the geometry, this vector is approxi-

mately perpendicular to the satellite position and therefore the approximation of parallel LOS vectors is

valid. Using this simplification, the SD code measurement are written as

P kij = uk
T [(

R3(ωeτ
k
i )rk(ti − τki )− ri(ti)

)
−
(
R3(ωeτ

k
j )rk(tj − τkj )− rj(tj)

)]
+

+ c(dti(t̄i)− dtj(t̄j)) + εkP,ij .
(C.6)

Finally, the term rj(tj) − ri(ti) must be extrapolated in order to relate the SD measurements to the

baseline bij at time ti. It will be assumed that the influence of the velocity of the antennas in the ENU

frame is neglectible, considering a small time difference between receivers and low linear and angular

velocities. Doing so, there is no need to correct the receiver positions, as rj(tj) ≈ rj(ti). Then, noting

that rj(ti)− ri(ti) = bij , (C.6) is written as

P kij = uk
T
bij(ti) + Ekij + c(dti(t̄i)− dtj(t̄j)) + εkP,ij , (C.7)

with Ekij corresponds to the extrapolation. or correction term, given by

Ekij = uk
T (
R3(ωeτ

k
i )rk(ti − τki )−R3(ωeτ

k
j )rk(tj − τkj )

)
. (C.8)

This term is shown to take values of up to ≈ 30 cm using experimental data taken from receivers

unsynchronized by 5× 10−4 s, which confirms that it is not neglegible, taking into account the very low

noise present in the carrier phase observations. The correction term is then subtracted to the DD code

and carrier phase measurements, in order to improve the accuracy of the attitude estimation solution.
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Appendix D

Managing changes in the observed

satellites and reference satellite

Both the number of satellites in view and the chosen reference satellite can vary freely during the pro-

cessing of the GNSS data. Dealing with these variations entails changing both the estimated EKF state

vector x̂k|k and its estimation error covariance matrix P k|k entries relative to the DD ambiguities.

The methods used to achieve this rest on two different assumptions relating two consecutive epochs.

If the reference satellite changes, the new reference satellite must have been in view during the previous

epoch. Furthermore, the old reference satellite must still be in view during the new epoch. These

assumptions are valid by definition – since the reference satellite is the one with highest elevation angle,

it is very likely that is had been observed in the previous epoch, and will be observed in the next one.

The two types of changes are treated separately. When both happen in the transition between two

consecutive epochs, the change in the observed satellites is addressed first, followed by the algorithm

which deals with changes in the reference satellite.

Lastly, it can also happen that due to obstacles, loss of lock or other interference, the number of

satellites observed at a certain epoch falls below the minimum allowed number. In this case, the GNSS

observations can not be used to estimate the attitude. Furthermore, once the minimum number of

satellites is recovered, some techniques can be used to improve the initial estimate of the new set of DD

ambiguities.

Change in the number of satellites in view

For any satellite, r, that is no longer in view, the DD ambiguity Npr
ij is simply eliminated. The same

happens to the line and column vectors in P k|k which are related to satellite g. If a satellite, s, is

observed for the first time, the DD ambiguity Nps
km and the related entries in P k|k are initalized as 0 and

1× 104, respectively..

At the end of this process, the DD ambiguities vector and the covariance matrix P k|k have a structure

that agrees with the new list of satellites in view, without loss of relevant information from the previous
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iterations.

Change in the reference satellite

Let p denote the reference satellite of the previous epoch, while g is the new reference satellite and q is

any other satellite which is in view during both epochs. Then, Npq
ij is the DD ambiguity in the previous

epoch, and Ngq
ij the corresponding new ambiguity that one must compute to recover from the change.

From the definition of the double differenced ambiguities, it is simple to realize that

Ngq
ij = Npq

ij −N
pg
ij . (D.1)

The DD ambiguity Ngp
ij is simply computed as Ngp

ij = −Npg
ij . Applying these transformations to the DD

ambiguity relative to each satellite, the N vector is reconstructed.

Several other expressions have been deduced in order to recover the covariance matrix P k|k. In the

proposed solution, the state of the EKF includes the rotation quaternion, the angular velocity bias and

the DD ambiguities. The new diagonal entries of P k|k, relative to the DD ambiguities, are now given by

(D.2), where the notation cov{a, b} represents the covariance between random variables a and b.

var{Ngq
ij } = var{Npq

ij }+ var{Nqg
ij } − 2cov{Npq

ij , N
pg
ij } (D.2)

As before, the new DD ambiguity Ngp
ij is a special case, such that var{Ngp

ij } = var{Npg
ij }. Using these

expressions, the diagonal of P k|k is recovered.

The new entries of P k|k which are covariances between two DD ambiguities are computed as (D.3),

for q and r being any observed satellites other than the previous and new reference satellites.

cov{Ngq
ij , N

gr
ij } =

1

2

(
var{Ngq

ij }+ var{Ngr
ij } − var{N

pq
ij } − var{N

pr
ij }+ 2cov{Npq

ij , N
pr
ij }
)

(D.3)

The special case of covariance between Ngp
ij and any other ambiguity relative to a satellite q is given by

cov{Ngp
ij , N

gq
ij } =

1

2

(
var{Npg

ij }+ var{Ngq
ij } − var{N

pq
ij }
)
. (D.4)

Finally, the entries of P k|k relative to covariances between any new DD ambiguity, other than Ngp
ij ,

and other variables of the state (denoted by xi), such as the quaternions and angular velocity biases, is

given in (D.5).

cov{xi, Ngq
ij } = cov{xi, Npq

ij } − cov{xi, N
qg
ij } (D.5)

As before, the expression is different for Ngp
ij , where cov{xi, Ngp

ij } = −cov{xi, Npg
ij }.

Recovery from epochs with insufficient GNSS data

During the execution of the filter, whenever there occurs an epoch where the collected data is not suffi-

cient to update the attitude estimate, the correction step of the EKF is not executed. As such, the attitude
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output will rely only on the integration of the gyroscope measurements.

Once there is a recovery on the number of observed satellites, the estimated DD ambiguities relative

to satellites that were momentarily lost must be reset, since loss of lock has occurred. However, by

assuming that the present attitude estimate is valid, the new set of DD ambiguities can be estimated by

resorting to the carrier phase observations. In fact, assuming that the attitude is known and using the

nominal system observation model (3.12), the ambiguities can be estimated as

nk ≈
1

λ

zk,Φ −


Υ qk ◦ li1 ◦ qk∗
...

Υ qk ◦ lin ◦ qk∗


 , (D.6)

where zk,Φ are the DD carrier phase measurements. This expression gives the a vector of DD ambigui-

ties relative to all the satellites in view. However, only the ones corresponding to new satellites are kept,

while the remaining are discarded since their previous estimates are valid. Due to the low noise present

in the carrier phase measurements, the accuracy of this initial estimate depends on the quality of the

attitude estimate qk, and should improve the recovery performance of the proposed algorithm.
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