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Abstract
First-order methods for stochastic optimization gained undeniable relevance, in particular due to their

pivotal role in machine learning. These methods blindly accept noisy gradients provided by an oracle,

which may be inconsistent with structural properties of the underlying objective function. We exploit gra-

dient co-coercivity of L-smooth convex objective functions to obtain more accurate gradient estimates.

The method introduced in this thesis is then coined as the co-coercivity (COCO) denoiser.

Our denoiser is a joint Maximum Likelihood (ML) estimator for the gradients, constrained by pairwise

co-coercivity conditions. Although ML leads to a Quadratically Constrained Quadratic Problem, we

introduce an efficient first-order algorithm for COCO, which is based on the Fast Dual Proximal Gradient

method. For the denoiser that deals with a single pair of gradients, we derive the closed-form solution for

the ML problem, which is relevant in practice, since our experiments have shown that even this simple

scenario leads to variance reduction gains in stochastic optimization.

We carry out a theoretical analysis that provides insight into parameter tuning and estimator results,

showing in particular why COCO necessarily improves with respect to the noisy oracle. The experimental

analysis corroborates these results and shows that the COCO estimator, although not unbiased, leads

to a reduction of the mean squared error of the function gradients. To illustrate the impact in stochastic

optimization, we use both synthetic data and a real online learning task. Our experiments show that

COCO leads to improvements in variance reduction with respect to baseline algorithms.

Keywords
Stochastic Optimization; First-Order Algorithms; Convex Optimization; Co-coercivity; COCO Denoiser;

Variance Reduction; Quadratically Constrained Quadratic Problem; Machine Learning.
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Resumo
Os algoritmos de primeira-ordem para optimização estocástica têm ganho inegável relevância, em par-

ticular pelo papel preponderante que desempenham em Aprendizagem Automática. Estes algoritmos

aceitam cegamente gradientes ruidosos facultados por um oráculo, que podem ser inconsistentes com

propriedades estruturais da função de custo em questão. Nós exploramos a co-coercividade do gradi-

ente de funções convexas L-suaves para obter estimativas mais precisas desses gradientes. O método

apresentado nesta tese é então designado por filtro de Co-coercividade (COCO).

O nosso filtro é um estimador conjunto de máxima verosimilhança (MV) para os gradientes, re-

stringidos dois a dois por condições de co-coercividade. Embora a MV nos leve a um Problema

Quadrático Quadraticamente Restringido, propomos um algoritmo de primeira-ordem eficiente para o

COCO, baseado no método Fast Dual Proximal Gradient. Para o Filtro que apenas considera um único

par de gradientes, derivamos a solução para o problema de MV em forma fechada , resultado rele-

vante na prática, dado que as nossas experiências demonstram haver ganhos em termos de redução

de variância em optimização estocástica mesmo para este cenário simples.

Realizamos uma análise teórica que fornece intuição acerca do ajuste de parâmetros e dos resulta-

dos dados pelo estimador, demonstrando, em particular, porque é que o COCO necessariamente leva

a melhorias em relação ao oráculo com ruı́do. A nossa análise experimental corrobora estes resultados

e mostra que o COCO, apesar de ser um estimador enviesado, leva à diminuição do erro quadrático

médio dos gradientes da função de custo. Para ilustrar o seu impacto em optimização estocástica,

testamo-lo usando quer dados sintéticos, quer uma tarefa real de aprendizagem online. Estes testes

demonstram que o COCO leva a melhorias na redução de variância em relação a algoritmos correntes.

Palavras Chave
Optimização Estocástica; Algoritmos de Primeira Ordem; Optimização Convexa; Co-coercividade; Fil-

tro COCO; Redução de Variância; Problema Quadrático Quadraticamente Restringido; Aprendizagem

Automática.
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We start by motivating the problem addressed in the thesis and summarizing existing approaches. Then,

we describe our methods, emphasizing their novelty. Finally, we outline the organization of the thesis.

1.1 Problem and Motivation

Optimization is an intrinsic part of Nature. In Physics, systems tend to states of minimum energy and

photons follow paths that take them from one point to another in the least time possible. In Biology,

evolution theory shows how the fittest individuals to the environment survive, leading to the continuous

improvement of population genetics along time. Besides the usefulness of optimization to describe the

universe around us, it has also more practical applications: mathematical optimization is a pivotal tool

when rationalizing the process of decision making. In Economics and Industry, its relevance comes

from, for example, the aim of maximizing profits, utilities, or efficiencies, under constraints of avoiding

excessive risk, having access to finite resources or limited ranges for some parameters in engineering

designs. Moreover, as a consequence of the extraordinarily fast increase in computational power in the

last few decades, its importance has only been rising.

Formally, a mathematical optimization problem can be written as [3]

minimize
x

f(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p ,

(1.1)

where the optimization variable is the d-dimensional vector x1, the objective function is f : Rd → R, and

the constraints are coded via equality constraint functions h1, . . . , hp : Rd → R and inequality constraint

functions f1, . . . , fm : Rd → R. The vectors that satisfy the constraints constitute the feasible set,

interchangeably referred to by domain2; an optimal vector, usually denoted by x∗, leads to the smallest

possible value for the objective function in the feasible set.

The flexibility of the framework in Equation (1.1) enables expressing many problems of our daily life;

this formalization is usually referred to as modelling. However, finding an algorithm that computes an

optimal x∗, within a given accuracy, for a generic instance of Equation (1.1) is very hard (in fact, there

is not an universal solution method for the general mathematical optimization problem in a reasonable

time [4]). In spite of this, particular classes of the general problem are tractable and the appropriate

modelling of a real life problem as an efficiently solvable mathematical optimization problem is generally

accepted as a key step. This thesis focuses on one of such classes, the convex optimization problems,

which nowadays underlie methods that tackle several practical applications, such as in machine learning,

1We consider d-dimensional variables to live in an Euclidean space and denote by ‖ · ‖ the Euclidean norm.
2Rigorously, the domain of the problem is the intersection between the feasible set and the domain of the objective function.

3



signal processing, portfolio optimization, or device sizing [3,5].

We start by recalling the definitions of convex set and convex function [6].

Definition 1.1.1 (Convex Set). A set X ⊂ Rd is said to be convex if it contains all segments whose

extremes are in X , i.e., if

∀x, y ∈ X , γ ∈ [0, 1] : (1− γ)x+ γy ∈ X .

Definition 1.1.2 (Convex Function). A function f : X → R is said to be convex if it lies below all its

chords, i.e., if

∀x, y ∈ X , γ ∈ [0, 1] : f (γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y) .

The general optimization problem of Equation (1.1) corresponds to a convex optimization problem when:

1. The objective function f is convex;

2. The inequality constraint functions f1, . . . , fm are convex;

3. The equality constraint functions are affine, i.e., hi(x) = bTi x+ ci, where bi and ci are constants.

The domain of this class of problems is convex (it results from the intersection of convex sets), thus, in

convex optimization, one basically seeks to minimize a convex objective function over a convex set [3].

A key aspect of this class of optimization problems is that convex functions exhibit a local to global

phenomenon: their gradients, ∇f(x), which in general only contain local information about the function,

provide global information in the convex case, through a global linear lower bound [6]. Moreover, their

local minima are, in fact, global minima. In these points, the gradient vanishes, i.e., ∇f(x∗) = 0. These

properties lay the foundation of strong theoretical guarantees for convex optimization algorithms, which

along with their wide range of applications [3], motivate the focus of this thesis.

Since the beginning of the development of mathematical optimization, a variety of algorithms has

been developed for many different instances of the general optimization problem in Equation (1.1).

Therefore, it is with no surprise that the same applies in the scope of convex optimization. The vast

majority of these algorithms are iterative and usually classified into two main families [4]:

1. First-order algorithms - use only first-order derivatives (in the multivariate case, gradients), re-

quiring then that the objective function must be differentiable.

2. Second-order algorithms - use second-order derivatives (in the multivariate case, Hessian ma-

trices), requiring then that the objective function must be twice-differentiable.

First-order algorithms are usually characterized by exhibiting slower convergence rate to the optimal

solution but much cheaper cost per iteration, when compared to second-order ones. In fact, the tragic
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way the computational cost of second-order iterations scales with the dimension of the problem often

makes them prohibitive for problems of high dimensionality, which are precisely the ones relevant for

many applications, such as machine learning and signal/image processing. Besides, in many of these

applications, the objective function is just a proxy to the real-life problem, so that cheap approximate

solutions are vastly more important than expensive accurate ones [4]. For example, in machine learning,

not only the dataset may contain errors but also overfitting to the minimum of the empirical risk is not

desirable, since it often leads to a worse performance outside the used training set corresponding to a

loss of generalization power [7]. For these reasons, first-order algorithms are nowadays prominent.

The most popular first-order algorithm is the Gradient Descent (GD), which performs greedy local

steps: starting from an initial guess x0, GD computes each subsequent iterate by taking a step in the

opposite direction of the one pointed by the gradient of the objective function f . Naturally, if the step

is of appropriate length, the iterate xi+1 will be closer to the optimal solution than xi. It can be shown

that if the steps are simply proportional to the magnitude of the gradient, GD converges asymptotically

to the optimal solution3. The simplicity of GD comes from just requiring access to the gradient of the

objective function at each iterate, ∇f(xi). An interesting question emerges: what if, instead of being

able to compute the exact gradient ∇f(xi), we can only have access to an oracle that provides a noisy

version of ∇f(xi)? This is the specific problem we address in the thesis.

In fact, there are cases in which the exact gradient can not be easily computed, for example due

to the computational cost involved. This is a real scenario often found in high-dimensional optimization

problems. Maybe the more glaring examples come from machine learning applications, where algo-

rithms like the Stochastic Gradient Descent (SGD), which can be seen as greedy methods that use

noisy versions of the true gradient, are a requirement in order to achieve timely solutions [7].

1.2 Overview of Current Approaches

The problem we motivated in the previous section lives in the field of stochastic optimization. Although

the machine learning frenzy of the last few years has strongly contributed to the development and en-

hancement of algorithms like SGD, the first approaches to stochastic optimization date back to the fifties

of the last century, as detailed in the following chapter. Here, we single out results that inspire the meth-

ods proposed in the thesis. The scenario is simply described: the objective function f is unknown but

can be accessed through queries to a first-order oracle, i.e., an unit that takes as input a vector x and

outputs the gradient ∇f(x) [6]. While GD uses an exact oracle, SGD has to deal with an inexact one.

Unlike with GD, a fixed step size for SGD does not make it converge to the optimal solution, even

3While we described GD disregarding the constraints in Equation (1.1), i.e., considering domain Rd, the equivalent algorithm
for other convex domains, usually referred to as Projected GD, just includes the extra step of projecting onto the domain at each
iteration. For the sake of simplicity, without loss of generality, we will consider domain Rn except otherwise stated.
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in the convex setting. In fact, the convergence of SGD can be analyzed considering two terms: (i) the

bias, which represents the dependence of the convergence on the initial distance to the optimum (e.g.,

‖f(x0) − f(x∗)‖); and (ii) the variance, which represents the dependence of the convergence on the

noise of the oracle itself. Although the bias vanishes under a convenient selection of a fixed step size,

that does not happen to the variance. For this reason, the algorithm gets stuck when the bias term has

vanished, originating random iterates within a certain ”ball of uncertainty” (see Chapter 2 for details).

This problem in the stochastic setting can be solved by using a diminishing step size, i.e,, by selecting

at iteration i a step size γi = C/i, where C is constant. Basically, this strategy progressively reduces the

referred ball of uncertainty, enabling convergence. It can be shown that the convergence rates obtained

using this approach are asymptotically optimal when the expected value of the oracle equals the true

gradient (e.g., whenever the noise affecting the gradients is additive and zero mean) [8,9]. In spite of this,

further significant improvements were achieved through online averaging (the so-called Polyak-Ruppert

averaging [10]) and adaptive step size techniques, e.g., Adam [11]. Naturally, these improvements in

constants on the convergence rate are of utmost importance in practice, where one necessarily deals

with a finite horizon in terms of number of iterations.

In the last decade, a new direction has driven the research community to a paradigm that enhances

the aforementioned asymptotic bounds. For objectives that can be decomposed as a finite sum of

functions, which is precisely the case of many machine learning problems, the so-called Variance Re-

duction (VR) techniques significantly improve the performance of the optimization algorithms. In fact,

the rise of algorithms such as the Stochastic Average Gradient (SAG) [12] made it possible to close the

gap that existed between the asymptotic convergence rate gap of the deterministic GD and the ones of

all the stochastic oracle counterparts.

Nevertheless, in the deterministic scenario, it is also known that GD is sub-optimal among the meth-

ods that perform each step still using only gradient information but obtained at more than one point [13].

Considering the class of algorithms that generate each iterate using a linear combination of the gradi-

ents of all previously visited locations, i.e., such that xi ∈ x0 + span{∇f(x0), . . . ,∇f(xi−1)}, the work

developed by Polyak, with its heavy-ball method [14], then refined by Nesterov [15], lead to the so-

called Nesterov Accelerated Gradient (NAG) descent algorithm, which achieves the optimal rate. In the

stochastic scenario, the optimal rates were naturally shown to be worse [16, 17] and are attained by a

family of stochastic accelerated algorithms, first introduced by the reference [18].

Our goal in this thesis is to evaluate the possibility of further improving the performance of the

state-of-the-art stochastic optimization algorithms referred above by providing them cleaner gradient

estimates. These gradient estimates will be obtained by exploiting properties of convex functions that,

although widely used for convex optimization algorithm analysis, have been left out of algorithm design.
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1.3 Proposed Methods

Two structural properties of many convex functions are the following:

Definition 1.3.1 (L-Smooth Function). A continuously differentiable function, f : Rd → R, is said to be

L-smooth (or to have Lipschitz-continuous gradients with constant L ∈ R+) if

∀x, y ∈ Rd : ‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖ .

Definition 1.3.2 (µ-Strongly Convex Function). A continuously differentiable function, f : Rd → R, is

said to be µ-strongly convex (or to be strongly convex with modulus µ ∈ R+) if

∀x, y ∈ Rd : f(x) ≥ f(y) +∇f(y)T (x− y) +
µ

2
‖x− y‖2 . (1.2)

Strong convexity immediately provides a quadratic lower bound for the function, as stated by Equa-

tion (1.2). In turn, it can be shown that L-smoothness imposes a quadratic upper bound [19], ex-

pressed by

f(x) ≤ f(y) +∇f(y)T (x− y) +
L

2
‖x− y‖2 .

Furthermore, it can also be shown that, if a function f is twice differentiable, µ strong-convexity imposes

µI � ∇2f and L-smoothness imposes ∇2f � LI, where ∇2 represents the Hessian operator and �

is the standard notation for matrix inequalities based on positive semi-definiteness [6]. Thus, we nec-

essarily have µ ≤ L. In fact, constants L and µ characterize, respectively, the maximum and minimum

curvature of function f and the ratio between them is known by the condition number of the convex

function f , k = L/µ ≥ 1.

The relevance of strong convexity and L-smoothness is clear: while strong convexity imposes that

at every point there is at least some curvature of the function, L-smoothness grants that such curvature

can not be arbitrarily high. These properties have shown to be very useful for the analysis of convex op-

timization algorithms without excessively restricting the convex settings in which they can be verified, as

they are still very general [13]. However, to the best of our knowledge, existing algorithms for stochastic

convex optimization do not make explicit use of this kind of restrictions to the function curvature, naively

accepting the noisy gradients provided by the oracle. This motivated us to exploit L-smoothness (usually

considered an even weaker assumption than strong convexity [20]) and mere convexity (which can be

seen as a relaxation of strong-convexity to µ = 0) to constrain function gradients. It has been shown

that L-smoothness and convexity can be merged into one single condition, usually referred to as gradi-

ent co-coercivity [19], which suggested coining our method as the Co-coercivity (COCO) denoiser. We

formulate the denoising problem as the joint Maximum Likelihood (ML) estimation of a set of function

gradients, constrained by the co-coercivity conditions, from their noisy observations provided by the or-
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acle, where, as often done, the noise is assumed to be zero mean white Gaussian. Our workflow for

stochastic optimization, schematically represented in Figure 1.1, consists in using COCO as a “plug-in”

denoiser, i.e., in feeding the denoised gradients to a baseline algorithm (such as the ones outlined in the

previous section) rather that letting it consult directly the oracle.

Figure 1.1: Our workflow for stochastic optimization with first-order algorithms. The approach can be interpreted
as using a “new oracle”, composed by the original one coupled with the proposed COCO denoiser.

The ML estimation in the COCO denoiser leads to a particular convex optimization problem known as

Quadratically Constrained Quadratic Problem (QCQP). This problem can be solved by using available

convex optimization packages, such as the popular CVX [21], but its complexity may turn out prohibitive.

For this reason, we exploit the particular structure of the ML estimation problem to derive an original

first-order algorithm, based on the so-called Fast Dual Proximal Gradient (FDPG) method [22], which

succeeds in providing an approximate solution in reasonable time.

In spite of the efficiency of the proposed algorithm, the number of co-coercivity constraints grows

quadratically with the number of points simultaneously processed by COCO. Thus, although cleaner

gradient estimates are obtained by processing simultaneously the ever growing number of points visited,

i.e., points x0, . . . , xi, in Figure 1.1, we also considered performing the denoising using just a fixed

number K of last visited points, i.e., xi−K+1, . . . , xi. For shortness of reference, we call this denoiser

COCOK (naturally, the globally optimal denoiser is then COCOi+1). This point deserves particular

attention because our experiments have shown that convergence gains in stochastic optimization are

obtained with values of K as small as 2 and we were able to find the closed-form solution for COCO2.

By theoretically analysing COCO, we were able to provide insight regarding the estimator results,

showing in particular why COCO necessarily improves with respect to the noisy oracle. We also evaluate

the probability of the co-coercive constraints being “active”, which enables interpreting the impact of the
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chosen Lipschitz constant L in our approach. Our experimental analysis corroborates these results

and show that the COCO estimator, although not unbiased, leads to a reduction of the Mean Squared

Error (MSE) of the function gradients, as desired.

In the context of stochastic optimization, to evaluate the impact of using the proposed COCO de-

noiser, we consider two scenarios. Firstly, using synthetic data that follow the assumptions underlying

the design of the denoiser. Secondly, using an online learning task (logistic regression [20]), in which the

noise affecting the gradients falls out of those assumptions. Our experiments have shown that COCO

leads to improvements in variance reduction with respect to baseline algorithms such as SGD and Adam.

1.4 Summary of Contributions

We emphasize the following aspects as original contributions of the work in the thesis:

• Exploration of L-smoothness and convexity (i.e., co-coercivity) in the context of the Maximum

Likelihood estimation of function gradients from noisy observations, leading to the COCO denoiser;

• Efficient first-order solution method for COCO (FDPG);

• Closed-form solution for COCO2;

• Analytic study of COCO, providing insights into parameter tuning and expected error reduction;

• Experimental analysis of COCO, regarding estimator bias and mean squared error;

• Framework for stochastic optimization using first-order algorithms with the COCO denoiser;

• Experiments illustrating variance reduction in convex stochastic optimization using COCO.

The bibliographic review presented in the following chapter also deserves mention, in particular due to

the summary of asymptotically optimal convergence rates, which is not conveyed in such condensed

form even in recent surveys. The main original results of this work will also appear in [23,24].

1.5 Thesis Organization

The remaining of this document is organized as follows. Chapter 2 contains an extensive review of

first-order methods in stochastic convex optimization. Chapter 3 details the proposed approach for

the exploitation of co-coercivity to filter noisy gradients. We formalize the problem, derive methods

to address it, and study properties of the proposed solutions. In Chapter 4 we describe experiments

that demonstrate the effectiveness of the proposed denoiser and its usefulness for stochastic convex

optimization, using both synthetic and real datasets. Chapter 5 concludes the thesis by summarizing the

work and pointing out directions for future research.
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In this chapter, we provide an extensive review on the main developments of first-order stochastic convex

optimization algorithms. We start from the deterministic setting, by further detailing the original Gradient

Descent (GD) algorithm, in order to naturally introduce Stochastic Gradient Descent (SGD). We describe

its vanilla version, followed by the Polyak-Ruppert averaging and adaptive step size techniques. Then,

we proceed to the recent stochastic Variance Reduction (VR) methods. Finally, we briefly describe

the Nesterov Accelerated Gradient (NAG) algorithm in order to motivate the Stochastic Accelerated

schemes (ACC).

Table 2.1 summarizes the different asymptotically optimal convergence rates for each family of algo-

rithms mentioned in the following sections.

Table 2.1: Asymptotically optimal convergence rates (E[f(xi) − f(x∗)]) for algorithms GD, NAG, SGD (which in-
cludes averaging and adaptive methods), VR (only for finite sums) and ACC (only for finite sums), under
different assumptions on the objective function, f . See text for the meaning of constants k, kmax, and n.

Deterministic Stochastic

Assumption(s) GD NAG SGD VR ACC

Convexity O
(

1√
i

)
O
(

1√
i

)
O
(

1√
i

)
O
(

1√
i

)
O
(

1√
i

)
+ L-Smoothness O

(
1
i

)
O
(

1
i2

)
O
(

1√
i

)
O
(

1
i

)
O
(

1
i2

)
+ Strong Convexity O

(
e−

i
k

)
O
(
e
− i√

k

)
O
(

1
i

)
O
(
e−

i
kmax+n

)
O

(
e
− i√

nkmax+n

)

2.1 Gradient Descent

The Gradient Descent (GD) algorithm (Algorithm 2.1) belongs to the family of first-order algorithms. His-

torically, its discovery is assigned to Cauchy, who suggested it in 1847 [25], even though its convergence

properties for non-linear optimization problems were only later analysed by Haskel Curry, in 1944 [26].

Algorithm 2.1: Gradient Descent (GD)
Input: Initial point: x0; Number of steps: T ; Step size: γ.
for i = 1, . . . , T do

xi = xi−1 − γ ∇f(xi−1)
Output: Final point, xT .

Intuitively, the reasoning behind this approach is quite straightforward: since the direction of maxi-

mum growth of the objective function at a given point xi is given by its gradient, ∇f(xi), and we want to

find the minimum of the function, we must move in the opposite direction of the gradient since it will be

the one of maximum decrease. Therefore, the idea of the algorithm is to apply these steps iteratively.
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Regarding the step size, it can be chosen in many ways - it even might change from one iterate to

another - and, actually, it plays a key role in the algorithm convergence to the minimum of the objective

function. Moreover, for a well defined range of step sizes, this algorithm is guaranteed to converge

to the optimal value x∗ [13]. Note, nevertheless, that this range of appropriate step sizes depends on

characteristics of the objective function.

2.2 Stochastic Gradient Descent

2.2.1 Vanilla SGD

The original GD algorithm has been around for almost two centuries but we are particularly interested

in an alternative but similar method: the Stochastic Gradient Descent (SGD) algorithm, where the gradi-

ent ∇f(xi−1) in the update rule of GD is replaced by a noisy version of that gradient at the same point,

g(xi−1), which for the sake of simplicity we denote by gi−1, as represented in Algorithm 2.2. It is clear

that both these algorithms resort to a first-order oracle, i.e., require access to the gradient of the objec-

tive function. However, while in the GD case the oracle is exact, in the SGD case the oracle is inexact.

Consequently, while GD is classified as a solution method considered in convex optimization problems,

the SGD algorithm belongs to the stochastic optimization framework. This framework is generically de-

scribed as the class of optimization problems which involve random variables whether they appear in

the formulation of the problem itself (more specifically, in the objective function or constraint functions)

or even in the form of random iterates of the solution method [27].

Algorithm 2.2: Stochastic Gradient Descent (SGD)
Input: Initial point: x0; Number of steps: T ; Step size: γi.
for i = 1, . . . , T do

xi = xi−1 − γi gi−1

Output: Final point: xT .

But why should we care about using an inexact oracle? In fact, it is reasonable to argue that a first-

order algorithm resorting to a noisy version of the gradient will always be outperformed by one resorting

to an exact one. There are cases, however, in which it might be preferable to consult the stochastic

version because the computational cost of consulting the exact gradient is much higher than consulting

its noisy version. This reduction of the computational burden traded for a lower precision of the gradient

version allows the algorithm to iterate faster. As a consequence, despite the slower convergence rate,

overall it might be advantageous in terms of the time required to achieve a sufficiently good approximate

solution of the problem.

This is the case for many machine learning problems where the objective function can be defined

as a finite sum of terms, each of these concerning a different example from the dataset. In this case, it
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turns out that an inexact oracle is obtainable from the evaluation of a single data point, while its exact

version requires a full pass through the whole dataset. Thus, in datasets where the number of points is

very large, an inexact oracle becomes a requirement [7]. This case is further explored in section 2.3.

Historically, the main ideas behind SGD can be traced back to an older but closely related method

of the stochastic optimization field, which is known as Stochastic Approximation (SA). That method, first

proposed by Robbins and Monro in 1951 [28], solves the following problem: given a function M and a

constant α, such that M(x) = α has a unique root , find that root x∗, without directly accessing M , rather

only sampling a random variable N(x; ξ), where ξ is a random vector and Eξ[N(x; ξ)] = M(x).

The Robbins-Monro algorithm approaches this problem by generating iterates of the following form:

xi+1 = xi − γi(N(xi; ξ)− α) .

This sequence of iterates is guaranteed to converge to the optimal value x∗ with probability one under

the following assumptions [29]:

Assumption 2.2.1. N(x; ξ) has finite variance: E
[
(N(x; ξ)−M(x))2

]
<∞ for all x.

Assumption 2.2.2. M is a nondecreasing Lebesgue-measurable function.

Assumption 2.2.3. M ′(x∗) exists and is positive.

Assumption 2.2.4. γi > 0,
∑∞
i=0 γi = ∞, and

∑∞
i=0 γ

2
i < ∞ (e.g., γi = a/i, a > 0, as suggested in

reference [28]).

Extrapolating this framework for the gradient descent scheme in a convex problem paradigm, we

observe the following correspondences: M(xi) = ∇f(xi), N(xi; ξ) = gi, α = 0 and γi corresponds to

the step size. Note that Assumption 2.2.3 is clearly related to the positive definite Hessian matrix of a

strictly convex function at least in a neighbourhood of the optimal point, x∗. In fact, a broader definition

of convex function only implies a positive semi-definite Hessian matrix, but, in that case, we might fall

into a situation of multiple minima. Nevertheless, in that case, the method is still guaranteed to converge

to one of those points.

To have a better insight of the SGD behavior, it is quite illustrative to carefully examine the results

provided in its convergence analysis, which are presented under the following assumptions:

Assumption 2.2.5. The objective function is L-smooth and µ-strongly convex.

Assumption 2.2.6. E[ g(xi; ξi)| ξ1, . . . , ξi−1 ] = ∇f(xi), i.e., g(xi; ξi) is an unbiased estimate of∇f(xi)

given {ξ1, ..., ξi−1}.

Assumption 2.2.7. The (uncentered) variance of g(x; ξ) is uniformly bounded, i.e., E
[
‖g(x; ξ)‖2

]
≤ σ2.

We start by proving Lemma 2.2.1, which will be further required:
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Lemma 2.2.1. Under Assumption 2.2.5, Assumption 2.2.6, and Assumption 2.2.7, we have:

E
[
(xi − x∗)T g(xi; ξi)

]
≥ µ E

[
‖xi − x∗‖2

]
Proof. Taking into account Assumption 2.2.6:

E
[
(xi − x∗)T g(xi; ξi)

]
= E

[
E
[
(xi − x∗)T g(xi; ξi) | ξ1, ..., ξi−1

] ]
(2.1)

= E
[

(xi − x∗)T E [ g(xi; ξi) | ξ1, ..., ξi−1 ]
]

(2.2)

= E
[

(xi − x∗)T ∇f(xi)
]
, (2.3)

where in Equation (2.1) the law of total expectation is applied to the initial expression; in Equation (2.2),

the term (xi − x∗)T is constant and Equation (2.3) comes directly from Assumption 2.2.6.

On the other hand, note that:

(xi − x∗)T ∇f(xi) = (xi − x∗)T (∇f(xi)−∇f(x∗)) (2.4)

≥ µ ‖xi − x∗‖2, (2.5)

where Equation (2.4) is a result of the fact that ∇f(x∗) = 0 and Equation (2.5) comes from the strong

convexity of f(x) (Assumption 2.2.5).

Consequently, analysing Equation (2.5) in expectation, we obtain the intended result

Now we can prove the convergence of SGD; first, for a fixed step size (Theorem 2.2.2); then, for a

variable (diminishing) step size (Theorem 2.2.3).

Theorem 2.2.2. Under Assumption 2.2.5, Assumption 2.2.6, and Assumption 2.2.7, if 0 < γ < 1/µ, the

iterates xi generated by SGD satisfy:

E[‖xi − x∗‖2] ≤ (1− 2µγ)i+1 ‖x0 − x∗‖2 +

[
γ

1− (1− 2µγ)i+1

2µ

]
σ2 .

Proof. We begin by expanding the expression for ‖xi+1 − x∗‖2 by sequentially considering the simple

Euclidean norm property ‖v‖2 = vT v:

‖xi+1 − x∗‖2 = ‖xi − γi g(xi; ξi)− x∗‖2

= ‖xi − x∗‖2 − 2γi (xi − x∗)T g(xi; ξi) + γ2
n ‖g(xi; ξi)‖2 .
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Analyzing the same expression in expectation, we obtain:

E
[
‖xi+1 − x∗‖2

]
= E

[
‖xi − x∗‖2

]
− 2γi E

[
(xi − x∗)T g(xi; ξi)

]
+ γ2

i E
[
‖g(xi; ξi)‖2

]
(2.6)

≤ (1− 2µγi) E
[
‖xi − x∗‖2

]
+ γ2

i σ
2 (2.7)

≤ (1− 2µγi)(1− 2µγi−1) E
[
‖xi−1 − x∗‖2

]
+
(
γ2
i + γ2

i−1(1− 2µγi)
)
σ2 (2.8)

≤ . . . (2.9)

≤ E
[
‖x0 − x∗‖2

] i∏
k=0

(1− 2µγk) + σ2
i∑

k=0

 γ2
k

i∏
j=k+1

(1− 2µγj)

 (2.10)

≤ ‖x0 − x∗‖2
i∏

k=0

(1− 2µγk) + σ2
i∑

k=0

 γ2
k

i∏
j=k+1

(1− 2µγj)

 , (2.11)

where Equation (2.6) comes from applying the linearity of the expectation operator; Equation (2.7) comes

from applying Lemma 2.2.1; from Equation (2.8) to Equation (2.10) we apply the previous inequality

(E
[
‖xi+1 − x∗‖2

]
≤ (1 − 2µγi)E

[
‖xi − x∗‖2

]
+ γ2

i σ
2) iteratively. Finally, Equation (2.11) results from

neither x0 nor x∗ being random variables (they are constants).

At this point, it should be noted that on the right-hand side of the inequality in Equation (2.11) we

have two independent terms: one depends on ‖x0−x∗‖2 and is called the bias term; the other depends

on σ2 and is known as the variance term. Now, assuming a constant step size, γi = γ:

E
[
‖xi+1 − x∗‖2

]
≤ (1− 2µγ)i+1‖x0 − x∗‖2 +

[
γ2

i∑
k=1

(1− 2µγ)k

]
σ2

= (1− 2µγ)i+1‖x0 − x∗‖2 +

[
γ2 1− (1− 2µγ)i+1

1− (1− 2µγ)

]
σ2, if 0 < γ <

1

µ
(2.12)

= (1− 2µγ)i+1‖x0 − x∗‖2 +

[
γ

1− (1− 2µγ)i+1

2µ

]
σ2, (2.13)

where Equation (2.12) is directly obtained from the sum of a geometric series. Its simplification yields

Equation (2.13).

In particular, we are interested in what happens when the number of iterations increases (i → ∞).

Therefore, it is clear that when 0 < γ < 1/µ:

E
[
‖xi+1 − x∗‖2

]
≤ (1− 2µγ)

i+1

(
‖x0 − x∗‖2 −

γ

2µ
σ2

)
+

γ

2µ
σ2 i→∞→ γ

2µ
σ2 . (2.14)

This result is extremely elucidative of the SGD behavior. It shows how, at first, it converges as both

the bias term and part of the variance term present linear convergence (i.e., E[‖xi+1−x∗‖2] decreases);

then, when those components become negligible, a non-convergent part from the variance term stands

out and the algorithm generates random iterates within a ball centered at x∗ with radius γσ2/(2µ). Nat-
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urally, when σ2 = 0, we recover the linear convergence of gradient descent under strong convexity [13],

as shown in Table 2.1.

As a consequence, in practical applications, it is common to implement the SGD algorithm with a

slight variation from its original version: whenever the convergence apparently stops, it halves the step

size [30], which halves the radius of the ball containing the random iterates. This idea of iteratively

reducing the radius of the ball in which the SGD may generate iterates naturally leads to the idea of

using a diminishing step size in a pre-defined schedule in order to ensure convergence. Theorem 2.2.3

explores exactly this point:

Theorem 2.2.3. Under Assumption 2.2.5, Assumption 2.2.6 and Assumption 2.2.7, if γi = θ/(i+ 1) with

θ > 1/(2µ), the iterates generated by SGD satisfy:

E
[
‖xi − x∗‖2

]
≤ cθ
i+ 1

,

where cθ = max
{

2θ2

2µθ−1σ
2, ‖x0 − x∗‖2

}
.

Proof. We use mathematical induction. The first step is to verify that the inequality holds for i = 0, i.e.,

E
[
‖x0 − x∗‖2

]
= ‖x0 − x∗‖2 (2.15)

≤ max

{
2θ2σ2

2µθ − 1
, ‖x0 − x∗‖

}
(2.16)

=
cθ
1
, (2.17)

where Equation (2.15) results from x0 and x∗ being constants; Equation (2.16) is trivially verified from

the max operator properties and Equation (2.17) recovers the intended result for i = 0.

The next and final step is to show that if the inequality holds for iteration i, then it also holds for the
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next iteration, i+ 1:

E
[
‖xi+1 − x∗‖2

]
≤ (1− 2µγi) E

[
‖xi − x∗‖2

]
+ γ2

i σ
2 (2.18)

=

(
1− 2µ

θ

i+ 1

)
E
[
‖xi − x∗‖2

]
+

(
θ

i+ 1

)2

σ2 (2.19)

≤
(

1− 2µ
θ

i+ 1

)
cθ
i+ 1

+

(
θ

i+ 1

)2

σ2 (2.20)

=

(
1

i+ 1
− 2µθ

(i+ 1)2

)
cθ +

2µθ − 1

2(i+ 1)2

2θ2

2µθ − 1
σ2, if θ >

1

2µ
(2.21)

≤
(

1

i+ 1
− 2µθ

(i+ 1)2
+
µθ − 1

2

(i+ 1)2

)
cθ (2.22)

=

(
1

i+ 1
−
µθ + 1

2

(i+ 1)2

)
cθ (2.23)

≤
(

1

i+ 1
− 1

(i+ 1)2

)
cθ (2.24)

≤
(

1

i+ 2

)
cθ, (2.25)

where Equation (2.18) recovers the result obtained in Equation (2.7); Equation (2.19) results from

imposing γi = θ/(i + 1); Equation (2.20) is obtained from assuming the induction hypothesis for i:

E
[
‖xi − x∗‖2

]
≤ cθ/(i+ 1); in Equation (2.21) the second term is divided and multiplied by (2µθ − 1)/2;

Equation (2.22) is a direct result from the definition of cθ; Equation (2.23) is a mere simplification from

Equation (2.22); Equation (2.24) is obtained considering that θ > 1/(2µ) (from Equation (2.21)) and

Equation (2.25) is trivially verified from Equation (2.24).

Therefore, in the case of a diminishing step size, it is readily verified that when the number of itera-

tions increases (i→∞), the distance from the iterate to the optimum vanishes, i.e., when θ > 1/(2µ):

E
[
‖xi − x∗‖2

]
≤ cθ
i+ 1

i→∞→ 0 .

Moreover, note that the result provided by Theorem 2.2.3 recovers the optimal rate observed for SGD

in a convex, L-smooth and strongly convex function - O (1/i).

Both in Theorem 2.2.2 and Theorem 2.2.3, we assumed strong convexity of the objective function

for the sake of simplicity. Nevertheless, the analysis can also be performed by relaxing this assumption,

although that deteriorates the asymptotic optimal convergence rate (see Table 2.1).

Furthermore, the analysis here performed was made in the vector space (E
[
‖xi − x∗‖2

]
), even

though it can also be commonly found on the function value space (E
[
‖f(xi)− f(x∗)‖2

]
). Examples

of equivalent SGD convergence proofs to the ones presented here but in the function value space are

readily available at reference [30], both for the fixed and diminishing step sizes. Note that, in this ref-

erence, the assumption of finite uncentered variance (Assumption 2.2.7) is relaxed to E
[
‖g(x; ξ)‖2

]
≤
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σ2 + cg‖∇f(x)‖2 (the uncentered variance of the oracle output is no longer required to be uniformly

bounded, as it may grow quadratically with the groundtruth gradient). Despite this slight difference, their

SGD analysis can also be decomposed in bias and variance terms. Taking this into consideration, we

emphasize the importance of that decomposition.

2.2.2 Averaging Algorithms

Even though the idea of O (1/i) step sizes allowed for the mitigation of noise effect and, thus, the

convergence of SGD for convex functions, from a deterministic (noiseless) perspective, a step size that

follows that decay rate is excessively conservative. In fact, it is in the search of algorithms that allow for

larger step sizes without compromising their convergence that the averaging algorithms emerge: instead

of simply taking into account the convergence of the iterates xi, the following sequence is considered:

x̄i =
1

i+ 1

i∑
j=0

xj .

This online averaging technique is usually known as Polyak-Ruppert averaging [10] and by damping

the oscillations of the generated iterates, it ends up reducing their variance. This is the intuition which,

in this scheme, supports the possibility of using step sizes with slower decays (i.e., O (1/iα) , 0 < α < 1)

or, under some additional conditions, even fixed step sizes (α = 0).

In fact, as shown in Table 2.1, for the generic convex optimization, there is no cost for having a

stochastic oracle instead of an exact one as far as asymptotic rates are concerned (the rate of O
(
1/
√
i
)

can not be beaten). However, when we impose smoothness, it can be shown that while it does not bring

any benefit for the general stochastic case [31] (it is still O
(
1/
√
i
)
), in the deterministic setting it achieves

O (1/i). Nevertheless, while being true for the generic stochastic setting, it can also be shown that for

specific functions smoothness provides in fact some improvement. For example, it was shown that for a

least-squares regression problem, the rate of O (1/i) is attainable resorting to Polyak-Ruppert averaging

method with fixed step size [32].

Another important indication regarding the Polyak-Ruppert averaging was given by the reference [33],

where by plugging it to a typical accelerated algorithm for the deterministic setting, again in a least-

squares regression problem, it was possible to find the first algorithm achieving O
(
1/i2

)
on the bias

term (comparable to NAG - see Table 2.1), without compromising the optimal O (1/i) of the variance

term [31], which is what happens when one blindly applies deterministic acceleration into a stochastic

setting [34].

Finally, different averaging schemes have been proposed recently, which also lead to similar results

in accelerating schemes, in spite of their more tortuous analysis. One clear example is provided by the
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reference [35], which considers a “tail-averaged” sequence, i.e.,:

x̄t,i =
1

i− t

i∑
j=t+1

xj .

In this paradigm, there is an unaveraged/burn-in phase and only the i − t iterates are averaged. Note

that t can be a function of i (more precisely, in reference [35], results are provided for t =
⌊
i
2

⌋
1).

2.2.3 Adaptive Algorithms

Generally speaking, algorithms that are robust to initialization are usually preferable as they adjust to

the optimization problem instance by themselves and do not depend on the tuning of hyperparameters

(in the case of SGD, the step size). In fact, to tune a O (1/i) sequence of step sizes can be extremely

difficult for a given dataset, as it has to ensure that the algorithm does not stop too early, before reaching

the solution, or too late, wasting resources.

It is in this demand that the adaptive (step size) algorithms (e.g., AdaGrad [36], Adadelta [37], RM-

Sprop [38], Adam [11], AdaMax [11] and Nadam [39]) appear. These algorithms receive as input an

initial step size and then adjust it successively in each dimension according to the magnitude of the

progress in that same dimension, i.e., for dimensions of low curvature (thus, small gradients), the step

size is increased; for dimensions of high curvature (thus, large gradients), the step size is reduced.

Therefore, this approach drastically improves the performance over SGD, namely in problems with high

condition number, being particularly popular in training deep neural networks [40].

Among these algorithms, the one most often used is Adam (Algorithm 2.3), whose name is inspired

on “adaptive moment estimation”. We briefly describe it here, in order to illustrate this family of algo-

rithms. The Adam algorithm computes different adaptive learning rates for each dimension by storing in

memory an exponentially decaying average of past gradients mi and an exponentially decaying average

of past squared gradients, υi, similar to momentum:

mi = β1mi−1 + (1− β1)gi

υi = β2υi−1 + (1− β2)g2
i ,

where g2
i denotes the element-wise square of that vector.

Therefore, mi and υi are estimates of the first and second moment - the mean and the uncentered

variance, respectively - of the gradient, respectively. Furthermore, the authors of the algorithm still

1b·c denotes the floor function, i.e., bxc is the greatest integer not greater than x.
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propose bias-corrected estimates for those variables based on the expressions above:

m̂i =
mi

1− βi1
υ̂i =

υi
1− βi2

.

Finally, these values are used to compute the new iterate according to the Adam update rule:

xi+1 = xi − γ
m̂i√
υ̂i + ε

,

where γ is the step size and ε a smoothing term that avoids division by zero. Note that here the fraction

bar denotes the element-wise division between m̂i and
√
υ̂i + ε.

Algorithm 2.3: Adam

Input: Initial point: x0; Number of steps: T ; Step size: γ; Moment vectors (1st and 2nd,
respectively): m0, υ0 = 0; Exponential decay rates for the moment estimates:
β1, β2 ∈ [0, 1); Smoothing term: ε.

for i = 1, . . . , T do
mi = β1mi−1 + (1− β1)gi
υi = β2υi−1 + (1− β2)g2

i

m̂i = mi

1−βi
1

υ̂i = υi
1−βi

2

xi = xi−1 − γ m̂i√
υ̂i+ε

Output: Final point: xT .

From Algorithm 2.3, it is possible to observe that in this method, there are 3 hyperparameters: β1, β2

and ε. The original paper defines default values for them which were verified to usually lead to a good

performance of the algorithm: β1 = 0.9, β2 = 0.999 and ε = 10−8 [11].

Regarding the convergence of the adaptive algorithms, there are many cases to consider. For ex-

ample, AdaGrad, the first adaptive step size to emerge (in 2011), was proven to converge to the optimal

solution in its original paper [36]. In the case of Adam, its original paper provided a proof of conver-

gence [11], in which an error was later detected [41]. Moreover, reference [41] also shows how Adam

fails to surely find an optimum through a counter-example in a convex optimization setting. This fail-

ure occurs due to Adam’s exponential moving average procedure, putting at stake all the other known

adaptive algorithm which also employ that technique (e.g., Adadelta, RMSprop or Nadam). Since the

detection of the error in Adam’s analysis, newer proofs of convergence have been emerging (e.g., in ref-

erence [42]) but based on more restrictive assumptions. Furthermore, other Adam-like algorithms have

also been proposed, whose modifications allow for a proof of convergence and present enhanced em-

pirical performance in most cases, such as AMSGrad (provided as a solution for Adam in the mentioned

reference [41]) and Adam+ [43].
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2.3 Stochastic Variance Reduction Algorithms

Even though the results obtained for the general stochastic setting [8,9,31] have been well defined for a

while (see column SGD in Table 2.1), in the last few years the research community has been specially

focused on a specific stochastic setup: problems in which the objective function can be decomposed as

a finite sum of functions:

f(x) =
1

n

n∑
j=1

fj(x), (2.26)

with fj : Rd → R.

This decomposition of the objective function is ubiquitous in machine learning problems, in which the

loss function is usually the finite sum of the losses in each data point of the dataset (in this case, there

are n data points).

A classic technique for decreasing the variance is the mini-batching technique, which is specially

useful when it is possible to obtain multiple gradients in parallel. The update rule in this procedure is:

xi+1 = xi − γ
1

|Bi|
∑
j∈Bi

∇fj(xi), (2.27)

where Bi ⊂ {1, . . . , n} is a set of random indices, whose size is |Bi|. It can be shown that when Bi is

sampled uniformly with replacement, the variance of this gradient estimator, 1/|Bi|
∑
j∈Bi

∇fj(xi), is

inversely proportional to |Bi|, i.e., O (1/|Bi|). However, the cost of this iteration is proportional to |Bi|,

therefore, this variance reduction comes at an extra computational cost.

An alternative and better approach can be used in the finite sum setting [20]: instead of using one (or

more) ∇fj(xi) directly as an approximation of ∇f(xi), use them to update an estimate Gi ∈ Rn of the

gradient such that Gi ≈ ∇f(xi), but ensuring that E
[
‖Gi −∇f(xi)‖2

] i→∞→ 0. These ideas can be traced

back to 2007 [44] and allow for the application of techniques that lead to a drastic variance reduction of

the estimator of the gradient of the objective in a given point. These are called the VR methods and,

surprisingly, it turns out that by using them it is possible to dodge the asymptotic optimal rates of the

general stochastic case. These algorithms are able to recover the asymptotic results of the deterministic

GD (with worse constants, as expected), closing the gap which existed between that setting and the

stochastic general case (see column VR, Table 2.1). Furthermore, regarding the total runtime (given by

the product of the iteration complexity and the iteration cost) the VR methods are still advantageous in

the finite sum setting for large datasets (large n), as the cost of a GD iteration is O(n) (it has to scan the

whole dataset for each step), whereas the VR algorithms cost is O(1) (it only evaluates one instance of

the dataset to update Gi). Nevertheless, in turn, the VR methods usually require a significant memory

overhead.

In order to better illustrate the perspective often found in these approaches, we present Stochastic
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Average Gradient (SAG) [12], the method which actually introduced the VR scenario in the first-order

stochastic convex optimization. As synthesized in Algorithm 2.4, SAG maintains an estimate υji ≈

∇fj(xi) for each dataset example j, whose average constitutes the estimate of the full gradient. At each

iteration, SAG samples ki ∈ {1, . . . , n} and the mentioned estimates are iteratively updated:

υji+1 =

{
υji if j 6= ki

∇fki(xi) if j = ki .

Based on this, Gi can be efficiently updated:

Gi =
1

n

n∑
j=1

υji

=
1

n

n∑
j=1,j 6=ki

υji +
1

n
υkii

= Gi−1 −
1

n
υkii−1 +

1

n
∇fki(xi) .

Algorithm 2.4: Stochastic Average Gradient (SAG)
Input: Initial point: x0; Number of steps: T ; Step size: γ; Gradient estimates:

υj0 = 0 ∈ Rn, j = 1, . . . , n.
for i = 1, . . . , T do

Sample ki ∈ {1, . . . , n}
Gi = Gi−1 − 1

nυ
ki

υki = ∇fki(xi)
Gi = Gi + 1

nυ
ki

xi = xi−1 − γ Gi
Output: Final Point: xT .

Note that SAG needs to store the gradient estimates υji . Recalling that each each gradient estimate

is a d-dimensional vector, SAG requires an O(nd) memory overhead, which easily becomes infeasible

when n or d are large. A method which addresses this limitation is, for example, the Stochastic Variance-

Reduced Gradient (SVRG) [45], as it only requires a O(d) storage. Moreover, the proof of convergence

of SAG is extremely elaborated, even including some computer-aided steps. In turn, Stochastic Average

Gradient “amelioré” (SAGA) [46] curbs this by, contrarily to SAG, resorting to an unbiased estimate of the

gradient (Gi) based on control variates. In fact, many other alternatives and improvements on this topic

have been developed afterwards, e.g., Stochastic Dual Coordinate Ascent (SDCA) [47], Semi-Stochastic

Gradient Descent (S2GD) [48], Minimization by Incremental Surrogate Optimization (MISO) [49], and

Finito [50].
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A final note is left on the rate obtained for VR methods in Table 2.1. For the strongly-convex case,

kmax :=

max
j

Lj

µ
≥ k,

where Lj denotes the Lipschitz constant of the gradient of fj(x). This inequality implies that the iteration

complexity of GD is necessarily better than the one of VR methods (regarding the constants in Table 2.1,

n is always the total number of points in the dataset).

2.4 Accelerated Algorithms

The sub-optimality of GD in the deterministic setting motivates the concept of acceleration as a pos-

sible improvement to the asymptotic rates obtained for VR methods. Taking this into consideration,

first, we introduce the Nesterov Acceleration - a well-known technique which allowed the closing of the

sub-optimality gap for the first-order family of algorithms and one of the most astonishing results in

optimization; then, we describe the appropriate extrapolation of this result to the stochastic setting.

2.4.1 Nesterov Acceleration

Recalling the deterministic setting of convex optimization, it is well known that GD has some trouble in

minimizing objective functions that present “ravines”, i.e., regions where the difference between curva-

tures of different dimensions is significant, which in optimization are common near local optima of the

objective functions2. In those cases, while the convergence for the dimensions of higher curvature is

quickly achieved, on the ones of lower curvature, it progresses very slowly [51]. In the attempt of fas-

tening the convergence in lower curvature, it is natural to increase the step size. However, this leads to

oscillations on the higher curvature dimensions [52], as illustrated in the left image of Figure 2.1.

Figure 2.1: Differences between classical GD (a) and the Heavy-Ball method (b). Although the starting point and
the number of iterations is the same for both, the Heavy-Ball ends up much closer to the optimal point. 3

To prevent these oscillations, a reasonable strategy is to try to consult the gradients “history” in order

to predict that the just described behavior will arise. In fact, that is what Polyak’s Momentum algorithm
2Note that for the specific case of convex optimization, there is only one local optimum, which is also the global minimum.
3These images were produced using the website in reference [51].
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(also known as Heavy-Ball method) achieves. Its name is assigned to the clear inspiration of the physical

phenomenon of a ball rolling down a hill: the ball accumulates momentum along the descent as it moves

faster and faster. Then, the update rule for the Polyak’s momentum algorithm is [10]:

xi+1 = xi − γ∇f(xi) + η(xi − xi−1), η ∈ [0, 1], γ > 0 .

In the inertial term added, η can be intuitively seen as the mass of the rolling ball. In fact, η is

not limited to the interval referred above; that interval is only required to achieve a damping effect (e.g

in the example of a ball, the dissipative effects caused by air resistance, friction, etc.). This updating

rule can be decomposed into two different rules, one for the momentum itself and the other for the

next position, as in Algorithm 2.5, where the momentum term is explicitly computed. This momentum

vector, mi, is the term that aggregates the information related to the “history” of the gradient, since

mi ∈ span {∇f(x0), . . . ,∇f(xi)}.

Algorithm 2.5: Polyak’s Momentum/Heavy-Ball Algorithm
Input: Initial point: x0; Number of steps: n; Step size: γ; Momentum constant: η.
m0 = 0
for i = 1, . . . , n do

mi = γ ∇f(xi−1) + η mi−1

xi = xi−1 −mi

Output: Final point: xn.

The momentum term increases for the dimensions whose gradients always point in the same di-

rections, showing a cumulative effect, while for dimensions whose gradients often change directions,

they end up cancelling each other, reducing its momentum component. Consequently, this inertial term

leads to a decrease in oscillations and, thus, a faster convergence, as the same rate of convergence is

achieved for all curvatures [53]. These effects can be observed in the right image of Figure 2.1.

Note that the Heavy-Ball method is not guaranteed to converge for all convex cases. In fact, it fails

for relatively simple examples of convex functions, under a given choice of hyperparameters [54]. In

response to this limitation, Nesterov took advantage of the ideas conveyed by the Heavy-Ball method in

order to create a slightly different algorithm: instead of computing the gradient at the point at which the

iterate is before applying the momentum, it is computed at the point that would result from adding the

momentum component. This method is usually known by Nesterov Accelerated Gradient (NAG) and is

illustrated in Figure 2.2 and detailed in Algorithm 2.6. This anticipatory update increases the ”respon-

siveness” of the iterates as we have a smarter version of the rolling ball: intuitively, it now has notion of

where it is going to and, so, manages to slow down before progressing in undesirable directions [55].

This algorithm was originally analysed by Nesterov under a proper initialization regarding the step

size and momentum constant. In particular, the step size is defined as a function of the Lipschitz
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Figure 2.2: Updates performed by the Heavy-Ball method (on the left) and NAG (on the right). Naturally, the gradient
(orange arrow) is always orthogonal to the level set. The main distinction is that Heavy-Ball computes
the gradient at x1, whereas NAG computes it at the point that results from applying momentum (red
arrow) to x1, i.e., at the red arrowhead. The blue arrow is the resulting step. (Illustration from [1]).

Algorithm 2.6: Nesterov Accelerated Gradient Descent (NAG)
Input: Initial point: x0; Number of steps: n; Step size: γ = 1

L .
λ0 = 0
m0 = 0
for i = 1, . . . , n do

λi =
1+
√

1+λ2
i−1

2

ηi = λi−1−1
λi

mi = γ ∇f(xi−1 − ηi mi−1) + ηi mi−1

xi = xi−1 −mi

Output: Final point: xn.

constant of an L-smooth function, making that definition of the hyperparamenters only applicable in

settings where that assumption is considered. Nevertheless, for the general convex case, NAG can

still be shown to converge for an appropriate fixed step size, thus overcoming the main limitation of the

Heavy-Ball method. The convergence of NAG for general convex case is O
(
1/
√
i
)

[13], matching the

asymptotically the optimal convergence rate for that setting [13]. It is worth mentioning that GD also

matches that rate for the general convex case.

Therefore, the great improvement of NAG comes from its analysis in L-smooth and strongly convex

functions. In fact, the reason behind the initialization of Algorithm 2.6 is its role in the analysis proposed

by Nesterov, in 1983, in which that method is shown to achieve a convergence rate of O
(
1/i2

)
for L-

smooth functions [15], matching the optimal rate achievable for convex optimization solution methods of

that class and in which the iterates verify xi ∈ x0 + span {∇f(x0), . . . ,∇f(xi−1)} [13]. Thus, noting that

GD only achieves a convergence rate O (1/i), NAG closes the gap generated by the sub-optimality of

the former. Moreover, when the strongly convex assumption is also considered, this method matches

the optimal rate of O
(

exp(−i/
√
k)
)

, reinforcing the sub-optimality of GD - O (exp(−i/k)) - also in this
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setting.

As a final note, it is also worth mentioning that the Heavy-Ball method matches the optimal rates

with guaranteed convergence but only for specific instances of the convex setting. For example, if

the objective function is twice continuously differentiable, strongly convex and L-smooth, the Heavy-

Ball method has even better convergence factors than NAG. However, that convergence becomes

compromised when the objective function is not twice differentiable [56], which is the setting that the

example from reference [54] considers. Therefore, the Heavy-Ball method and NAG, along with the

conjugate gradient descent method (not mentioned here, but which reaches the optimal rate at the same

contexts as the Heavy-Ball method) are usually called the fast gradient methods as a consequence of

the improvements provided over GD.

2.4.2 Stochastic Accelerated Algorithms

Given the improvements provided by NAG to the deterministic setting it is reasonable to think of those

approaches in order to leverage the algorithms in the stochastic setting. Even though some attempts

were performed by plugging it in the raw SGD, those revealed to lead to error accumulation and not to

yield accelerated methods [34].

Meanwhile, bounds for the convergence rate for finite sums in the stochastic setting were proven [16,

17], as indicated in the column ACC of Table 2.1. On the one hand, under the assumption of the L-

smoothness of the objective function, the NAG convergence rate is recovered. On the other hand, for

the strongly convex setting, the optimal rate found is worse than the one that classical acceleration

provided in the deterministic setting, but still not caught by the family of stochastic VR algorithms.

Nevertheless, this sub-optimality gap was readily closed by a new wave of algorithms that actually

had started appearing before the optimal bounds were proven. Essentially, this new family of algorithms

takes advantage of an inner-outer loop first proposed in an accelerated version of SDCA [18]. This

approach had developments in, for example, Approximate Proximal Point Algorithm (APPA) [57], Cat-

alyst [58] or Katyusha [34], achieving the desired stochastic accelerated convergence rates. Still, for

ill-conditioned settings, these accelerated variants have an evident relevance, as shown by the rates in

Table 2.1 for kmax � n.

28



3
COCO Denoiser

Contents

3.1 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Efficient Solutions for COCOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Properties of the Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

29



30



This chapter describes our approach. First, we formulate COCO as a Maximum Likelihood estimator

constrained by co-coercivity conditions; then, we propose efficient methods to compute its solution.

Finally, we study theoretical properties of the estimator.

3.1 Maximum Likelihood Estimation

In convex optimization, a global linear lower bound on the objective function can be easily built, by

definition, gathering only local information (the gradient of the function at one point), through the following

inequality:

f(x) ≥ f(y) +∇f(y)T (x− y) (3.1)

Recalling the definition of strong-convexity (Definition 1.3.2) and L-smoothness (Definition 1.3.1), by

adding a quadratic term to the right-hand side of Equation (3.1), both a stricter lower bound and an

upper bound can also be attained, respectively. These results are represented graphically in Figure 3.1.

Figure 3.1: Bounds for a convex function f(x): an upper bound via L-smoothness, a linear lower bound via con-
vexity and a stricter lower bound via strong-convexity.

In particular, a standard result in convex analysis is that the gradient of a L-smooth convex function

(note that Definition 1.3.1 does not assume convexity) is co-coercive [3], i.e.,:

∀x, y ∈ Rn, L ∈ R+ :
1

L
‖∇f(y)−∇f(x)‖2 ≤ 〈∇f(y)−∇f(x), y − x〉 . (3.2)

Note that Equation (3.2) is stronger than the inequality in L-smoothness definition (Definition 1.3.1),

since the inequality in Definition 1.3.1 follows from Equation (3.2). This fact can be easily observed by

applying the Cauchy-Schwartz inequality on the right-hand side of Equation (3.2).

In our approach, despite not knowing the objective function f , we assume the following:
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Assumption 3.1.1. We know a Lipschitz constant of its gradient, L.

This assumption is commonly adopted in stochastic optimization methods as a result of its usefulness

in the analysis of those algorithms, without narrowing excessively the universe of possible applications.

This imposition prevents the gradients from changing arbitrarily fast from one point to another. More-

over, L-smoothness is usually considered a weaker assumption than strong convexity [20]. In fact, as a

consequence of their high-dimensionality, typical machine learning problems have correlated variables,

yielding non-strongly convex objective functions (i.e., µ ≈ 0) [32]. By additionally considering that esti-

mating L is often easier than estimating µ, we emphasize the pertinence of this assumption.

Assumption 3.1.2. We have access to an oracle which, given an input x ∈ Rd, outputs a noisy version

of the gradient of f at x; specifically, we assume that the oracle outputs g(x;w) = ∇f(x) + w, where

w ∈ Rd is a sample of a Gaussian distribution with zero mean, i.e., w ∼ N (0, Σ), where the covariance

matrix Σ is assumed to be known. Moreover, we assume the noise samples are independent across the

oracle consultations.

The motivation for the noise model comes, naturally, from the simplicity that it provides to our method.

Moreover, the Central Limit Theorem states that the sum (or mean) of a given number of independent

and identically distributed random variables with finite variances will tend to a normal distribution as

the number of variables grows. Note that in machine learning, the mini-batch scheme is a common

procedure to obtain gradient estimates at a point and its gradient estimator is defined as a mean of

independent random variables (recall Equation (2.27)). This reasoning reinforces the relevance of this

assumption.

We assume that the oracle was consulted at the input points x1, . . . , xK , and returned the outputs

g1, . . . , gK . This is our available data, which we arrange in the vector

g =

 g1

...
gK

 ∈ RKd .

We address the problem of estimating the gradients ∇f(x1), . . . ,∇f(xK) from the available data.

Thus, the parameter we’re interested in estimating is

θ =

 θ1

...
θK

 ∈ RKd, (3.3)

where θk = ∇f(xk) ∈ Rd.
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From Assumption 3.1.2, the available data g is related to the parameter of interest θ by the observa-

tion model

g = θ + w, (3.4)

where

w =

w1

...
wK

 ∈ RKd

is distributed as w ∼ N (0, Σw). Note that Σw is a block-diagonal matrix, each block being Σ.

We also have the following information about the parameter θ, which comes from the co-coercivity

condition (Equation (3.2)):

θ ∈ Θ = {(θ1, . . . , θK) :
1

L
‖θm − θl‖2 ≤ 〈θm − θl, xm − xl〉, 1 ≤ m < l ≤ K} .

The Maximum Likelihood (ML) estimate of θ is

θ̂ = argmax
θ∈Θ

p(g|θ) ,

where, in accordance to our observation model in Equation (3.4),

p(g|θ) =
1√

(2π)n|Σ|
e−

1
2 (g−θ)T Σ−1

w (g−θ) .

Consequently, it is immediate that computing our solution θ̂ corresponds to solving the following

optimization problem:

minimize
θ1,...,θK

K∑
k=1

(gk − θk)TΣ−1(gk − θk)

subject to
1

L
‖θm − θl‖2 ≤ 〈θm − θl, xm − xl〉, 1 ≤ m < l ≤ K.

(3.5)

In fact, this instantiation of the convex optimization problem can be classified as a Quadratically

Constrained Quadratic Problem (QCQP) [3], since both the objective and the constraints are quadratic

functions. In this type of problem, the objective function (quadratic) is minimized over a feasible region

that results from the intersection of ellipsoids. Despite their ubiquity in many engineering and scientific

applications, solving a generic nonconvex QCQP problem is NP-hard [59]. Nevertheless, for convex

instances of those problems, it is possible to explore the structure of the problem and attain a tractable

solution method. This is the case of the problem considered and the methods proposed are discussed

in Section 3.2.

The main idea supporting our approach is the observation that all the methods mentioned in Chap-
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ter 2, even though often assuming the L-smoothness of the objective function for their analyses, do not

take advantage of it in their methodology. In fact, after taking this assumption into consideration, it is

unsatisfactory to blindly accept the gradients that the oracle is outputting. It is on the demand of making

those observations coherent with this assumption that our approach is based on. Since the co-coercivity

constraints play the pivotal role of merging two important conditions (convexity and L-smoothness of the

objective function) into only one expression, we call our method the Co-coercivity (COCO) denoiser.

The number of constraints in this approach scales quadratically with K, the number of consulted

points. More precisely, the number of constraints is given by K(K − 1)/2, as each constraint is imposed

between every two points from the ones considered. This drawback motivates a simplification of the

original COCO denoiser: instead of considering all the consulted points across all the i iterations, we

fix a given number of points, K (1 ≤ K ≤ i), and only consider the information belonging to the last K

points to denoise the consulted gradients. For example, if we fix K = 2, the denoise is performed only

considering xi, xi−1, gi and gi−1. To this denoiser using a fixed window of length K, we call COCOK .

3.2 Efficient Solutions for COCOK

In this section, a solution method is proposed for the QCQP raised by COCOK . We start by providing

closed-form solutions for K = 1 and K = 2 and then propose an efficient iterative algorithm which yields

an approximate solution for arbitrary K.

3.2.1 Closed-form Solution for COCO2

Given the initial convex minimization problem expressed in Equation (1.1), the Lagrangian for that prob-

lem is defined as:

L(x, µ, υ) = f(x) +

m∑
i=1

µifi(x) +

p∑
i=1

υihi(x), (3.6)

where µ = (µ1, . . . , µm) and υ = (υ1, . . . , υp). Consequently, the Lagrange dual function is defined as:

g(µ, υ) = inf
x
L(x, u, v)

and the Lagrange dual problem as:

maximize
µ,υ

g(µ, υ)

subject to µi ≥ 0, i = 1, . . . ,m .
(3.7)

Whilst x is known as the primal variable, as it is the variable over which we minimize in the primal

problem (Equation (1.1)), µ and υ are known as the dual variables as, in the Lagrange dual problem,
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these are the variables over which we maximize the objective function g(µ, υ).

The Karush-Kuhn-Tucker (KKT) conditions are a set of conditions on x, µ and υ which are known

to be sufficient to ensure the optimality of those variables, i.e., if we find x∗, µ∗ and υ∗ which verify the

KKT conditions, then those are primal and dual solutions, respectively [60]. The KKT conditions are

presented below:

1. Stationarity: 0 ∈ ∂(f(x∗) +
∑m
i=1 µifi(x

∗) +
∑p
i=1 υihi(x

∗));

2. Complementary Slackness: µi · fi(x∗) = 0, for i = 1, . . . ,m;

3. Primal Feasibility: fi(x∗) ≤ 0, hj(x
∗) = 0, for i = 1, . . . ,m and j = 1, . . . , p;

4. Dual Feasibility: µi ≥ 0, for i = 1, . . . ,m.

In Condition 1, ∂(·) denotes the subdifferential operator1.

Using the KKT conditions it is possible to find closed-form expressions for the denoised gradients

when K = 1 and K = 2. Those expressions can be found in Theorem 3.2.1 and Theorem 3.2.2.

Theorem 3.2.1. The solution to Equation (3.5) for K = 1 is given by:

θ̂1 = g1 . (3.8)

Proof. It is immediate, since, in this case, the optimization problem in Equation (3.5) becomes uncon-

strained. In fact, the KKT conditions may not even be considered and the problem is simply

minimize
θ1

(g1 − θ1)TΣ−1(g1 − θ1) ,

a quadratic function with a positive-definite matrix, whose minimum is trivially obtained: θ̂1 = g1.

Note that the result for Theorem 3.2.1 holds for a generic Σ, while for Theorem 3.2.2 the result is

specified under Assumption 3.2.1:

Assumption 3.2.1. The covariance matrix of the multivariate Gaussian distribution of noise is multiple

of the identity matrix, i.e., Σ = σ2I.

Theorem 3.2.2. Under Assumption 3.2.1, the solution to Equation (3.5) for K = 2 is given by:

If ‖g1 − g2‖2 ≤ L 〈g1 − g2, x1 − x2〉: θ̂1 = g1

θ̂2 = g2 .

1For a continuous function f : Rd → R, c ∈ Rd is a subgradient of f at x ∈ Rd if and only if f(y) − f(x) ≥ cT (y − x), with
y ∈ Rd. The set of all the subgradients of f at x is called the subdifferential of f at x, ∂(f(x)).
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If ‖g1 − g2‖2 > L 〈g1 − g2, x1 − x2〉:


θ̂1 =

g1+g2+ L
2 (x1−x2)

2 + ‖L4 (x1 − x2)‖ g1−g2−L
2 (x1−x2)

‖g1−g2−L
2 (x1−x2)‖

θ̂2 =
g1+g2−L

2 (x1−x2)

2 − ‖L4 (x1 − x2)‖ g1−g2−L
2 (x1−x2)

‖g1−g2−L
2 (x1−x2)‖ .

Proof. For K = 2, the problem can be formalized in the following way:

minimize
θ1,θ2

(g1 − θ1)TΣ−1(g1 − θ1) + (g2 − θ2)TΣ−1(g2 − θ2)

subject to ‖θ1 − θ2‖2 − L〈θ1 − θ2, x1 − x2〉 ≤ 0 .

In order to solve this problem, the KKT conditions will now be used. It can be observed that there are

no equality constraints, then no hi(x) or dual variables υi need to be considered. Moreover, we have:

f(θ1, θ2) = (g1 − θ1)TΣ−1(g1 − θ1) + (g2 − θ2)TΣ−1(g2 − θ2)

f1(θ1, θ2) = ‖θ1 − θ2‖2 − L〈θ1 − θ2, x1 − x2〉 .

Since both functions are differentiable and convex, we can use ∂(f(x)) = {∇f(x)}. This can be ap-

plied for simplification of the stationarity condition, through the linearity of the gradient operator. There-

fore, the KKT conditions yield the following system of equations:

2Σ−1(θ̂1 − g1) + µ1

[
2(θ̂1 − θ̂2)− L(x1 − x2)

]
= 0 [ i. Stationarity in order to θ̂1 ]

2Σ−1(θ̂2 − g2)− µ1

[
2(θ̂1 − θ̂2)− L(x1 − x2)

]
= 0 [ ii. Stationarity in order to θ̂2 ]

µ1

(
‖θ̂1 − θ̂2‖2 − L〈θ̂1 − θ̂2, x1 − x2〉

)
= 0 [ iii. Complementary Slackness ]

‖θ̂1 − θ̂2‖2 − L〈θ̂1 − θ̂2, x1 − x2〉 ≤ 0 [ iv. Primal Feasibility ]

µ1 ≥ 0 [ v. Dual Feasibility ] .

From iii., two cases must be considered:

• µ1 = 0 : In this case, from complementary slackness (iii.), ‖θ̂1 − θ̂2‖2 < L〈θ̂1 − θ̂2, x1 − x2〉

In that case, from i. and ii., it is easy to conclude that θ̂1 = g1 and θ̂2 = g2. Therefore, we note that

this happen when ‖g1 − g2‖2 < L〈g1 − g2, x1 − x2〉

• µ1 > 0 : In that case, from complementary slackness (iii.), ‖θ̂1 − θ̂2‖2 = L〈θ̂1 − θ̂2, x1 − x2〉.

By summing i. and ii.:

θ̂1 + θ̂2 = g1 + g2 .

This equality is particularly interesting and further discussed in Section 3.3. By replacing it in i.
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and ii., we obtain:

θ̂1 = (Σ−1 + 2µ1I)−1[(Σ−1 + µ1I)g1 + µ1g2 + µ1
L

2
(x1 − x2)]

θ̂2 = (Σ−1 + 2µ1I)−1[µ1g1 + (Σ−1 + µ1I)g2 − µ1
L

2
(x1 − x2)] .

(3.9)

Then, by replacing those results in ‖θ̂1− θ̂2‖2 = L〈θ̂1− θ̂2, x1−x2〉, it yields the following expression:

Iµ2
1 + Σ−1µ1 − (Σ−1)2C = 0, (3.10)

with C = (‖g1 − g2‖2 − L〈g1 − g2, x1 − x2〉)/(L2‖x1 − x2‖2). Note that C ≥ 0, since, otherwise, we

would have ‖g1 − g2‖2 < L〈g1 − g2, x1 − x2〉 and we would be in the case of µ1 = 0. Imposing

Assumption 3.2.1 in the equation above, it yields for each diagonal entry:

µ2
1 +

1

σ2
µ1 − (

1

σ2
)2C = 0 . (3.11)

Note that the non-diagonal entries are not informative, as they are all zero. The only root from

Equation (3.11) that respects dual feasibility (v.) is:

µ1 =
1

σ2

(
−1 +

√
1 + 4C

2

)
.

Replacing this value of µ1 in Equation (3.9), we obtain the intended result.

The two cases in which we decompose the closed-form solution for COCO2 have an intuitive explana-

tion supporting them: when the two observed gradients are co-coercive (‖g1−g2‖2 ≤ L〈g1−g2, x1−x2〉),

they are on the feasible set of the problem, so, they are also the estimated gradients; when the two ob-

served gradients are not co-coercive (‖g1 − g2‖2 > L〈g1 − g2, x1 − x2〉), their difference is orthogonally

projected onto its feasible set (which is a ball, as shown in the following section). This projection is

achieved through the expression obtained for each of the estimated gradients in Theorem 3.2.2. This

interpretation is illustrated in Figure 3.2.

Our closed-form solution is of the utmost relevance, since the experiments described in the following

chapter show that COCO leads to significant improvements in stochastic optimization, even for the

simple case that considers only two gradients.

3.2.2 Fast Dual Proximal Gradient Method for Arbitrary K

Since the closed-form solution for COCOK for K ≥ 3 could not be found (even with the help of symbolic

manipulation packages of Matlab and Mathematica), a straightforward procedure to solve the QCQP in

Equation (3.5) is its implementation onto CVX [21]. This tool is designed in such a way that it can be
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Figure 3.2: Closed-form solution for COCO2. Left: the observed gradients are co-coercive (their difference is on
the feasible set), so the estimate coincides with the observation. Right: the observed gradients are not
co-coercive (their difference is outside the feasible set), and the estimated gradients are obtained by an
orthogonal projection.

used as black-box, in the sense that the user does not need to understand how the problem can be

solved, as far as that problem is presented in the format required by the software. As a consequence of

its generality, this tool resorts to higher order methods (e.g., second-order cone programming methods)

which ensure high precision but necessarily end up being slower than methods which are specifically

tailored for a given problem. This fact combined with the quadratic growth of the number of constraints

with the K motivates an alternative approach. Therefore, in this section, a first-order algorithm which

explores the particular structure of the problem in Equation (3.5) is presented.

Reformulation of the Problem

For Σ = σ2I, the QCQP in Equation (3.5) can be rewritten in the following way:

minimize
θ1,...,θK

1

2

K∑
k=1

‖gk − θk‖2

subject to ‖θm − θl −
L

2
(xm − xl)‖ ≤

L

2
‖xm − xl‖, 1 ≤ m < l ≤ K,

where the factor 1/2 replaces the original 1/σ2 for the sake of simplicity in the next steps and the new

form of the constraints is given by completing the square in the expression from the original formulation
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(Equation (3.5)):

1

L
‖θm − θl‖2 ≤ (θm − θl)T (xm − xl)

⇔ ‖θm − θl‖2 − L(θm − θl)T (xm − xl) +
L

4
‖xm − xl‖2 −

L

4
‖xm − xl‖2 ≤ 0 (3.12)

⇔ ‖θm − θl −
L

2
(xm − xl)‖2 ≤ ‖

L

2
(xm − xl)‖2

⇔ ‖θm − θl −
L

2
(xm − xl)‖ ≤ ‖

L

2
(xm − xl)‖,

where in Equation (3.12) we add and subtract L‖xm − xl‖2/4 and all the other steps are simple manip-

ulations. Note that, in this case, θm − θl ∈ B (L(xm − xl)/2, L ‖xm − xl‖/2)2.

Now, performing the change of variables αk = θk − gk, the problem becomes:

minimize
α1,...,αK

1

2

K∑
k=1

‖αk‖2

subject to ‖αm − αl + cml‖ ≤ rml, 1 ≤ m < l ≤ K,

where cml = (gm − (L/2) xm)− (gl − (L/2) xl) and rml = L‖xm − xl‖/2.

The indicator function can be defined as

1E(x) =

{
0 if x ∈ E
∞ if x /∈ E .

Using this definition, the primal problem can be finally formulated as

minimize
α

1

2
‖α‖2︸ ︷︷ ︸
p(α)

+ 1B(Aα+ c)︸ ︷︷ ︸
q(Aα)

,

where α = [α1, α2, . . . , αK ]T , Aα = [α1 − α2, α1 − α3, . . . , α1 − αK , α2 − α3, . . . , αK−1 − αK ]T ,

c = [c12, c13, . . . , c1K , c23, . . . , cK−1K ]T and B = B(0, r12)×B(0, r13)× . . .×B(0, r1K)×B(0, r23)×

. . .× B(0, rK−1K).

In this formulation, we want to minimize the sum of two convex functions, where the first is differ-

entiable and the second is non-differenttiable, but still closed3. This is the setup to which the Iterative

Shrinkage-Thresholding Algorithms (ISTA) [61] are designed for. In particular, when the non-differentiable

function is a simple indicator function, that method can be interpreted as Projected Gradient Descent.

However, in this formulation, that function is composed with a linear map A, case in which there is no

closed-form for the proximity operator.

2The notation B(c, r) denotes the set of points within a ball centered at c and of radius r, i.e., B(c, r) = {x ∈ Rn : ‖x−c‖ ≤ r}.
3A function f : Rd → R is said to be closed if for each α ∈ R, the sublevel set {x ∈ domf |f(x) ≤ a} is a closed set.
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Given this, a reformulation using Lagrange duality is used. First, the problem can be rewritten as:

minimize
α,β

p(α) + q(β)

subject to Aα = β .

It is possible to write the Lagrangian (recall its definition in Equation (3.6)) for the reformulated prob-

lem:
L(α, β, s) = p(α) + q(β) + sT (Aα− β)

= p(α) + sTAα+ q(β)− sTβ .

The Lagrange dual function can be computed:

L(s) = inf
α,β

L(α, β, s)

= inf
α

(
p(α) + sTAα

)
+ inf

β

(
q(β)− sTβ

)
.

Thus,
− L(s) = sup

α

(
(−AT s)Tα− p(α)

)
+ sup

β

(
sTβ − q(β)

)
.

By definition, for a generic function, its (Fenchel) conjugate is defined as f∗(s) = sup
x

(sTx − f(x)).

Therefore, it is possible to conclude that:

−L(s) = p∗(−AT s) + q∗(s) .

It remains to obtain the specific form of p∗(s) and q∗(s). Regarding the former:

p∗(s) = sup
α

(sTα− 1

2
‖α‖2)

=
1

2
‖s‖2,

where the second equality easily comes from differentiating sTα − 1/2 ‖α‖2 with respect to α and

equating to zero. Therefore, the value obtained for α is then replaced on the original expression.

Regarding q∗:
q∗(s) = sup

β

(
sTβ − 1B(β + c)

)
= sup

β

{
sTβ : β + c ∈ B

}
= sup

β

 ∑
1≤m<l≤K

sTmlβml : βml + cml ∈ B(0, rml)


=

∑
1≤m<l≤K

sup
β

{
sTmlβml : ‖βml + cml‖ ≤ rml

}
=

∑
1≤m<l≤K

rml‖sml‖ − sTmlcml .
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Therefore, the minimization problem can be rewritten in the following form:

minimize
s

1

2
‖ −AT s‖2︸ ︷︷ ︸
p∗(−AT s)

+
∑

1≤m<l≤K

rml‖sml‖ − sTmlcml︸ ︷︷ ︸
q∗(s)

.

Note that, at this point, the linear mapping A has been transferred to the differentiable term. This

change allows us now to find a closed-form expression for the proximity operator of q∗(s), as the gradient

of the first term can be computed even considering the composition with AT .

Proximity Operator Computation

By definition, the proximity operator of a generic closed, convex function f is:

proxf (x) = argmin
u

1

2
‖u− x‖2 + f(u) .

We are interested in obtaining proxµq∗(s), for any given µ > 0. Thus:

proxµq∗(s) = s− prox(µq∗)∗(s) (3.13)

= s− prox(q∗)∗·µ(s) (3.14)

= s− proxq·µ(s), (3.15)

where in Equation (3.13) it is applied the well-known Moreau identity proxf (x) = x − proxf∗(x); in

Equation (3.14), we used (µf)∗(x) = f∗ · µ (x) = µ f∗(x/µ) and, in Equation (3.15), the property

(f∗)∗ = f , which holds for any closed, convex function. Now, note that:

q · µ (s) = µ q

(
s

µ

)
= µ 1B

(
s

µ
+ c

)
= 1B

(
s

µ
+ c

)
, (3.16)

since, in Equation (3.16), µ can be dropped as 1B returns either 0 or∞.
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Therefore,

proxµq∗(s) = s− argmin
u

(
1

2
‖u− s‖2 + 1B

(
u

µ
+ c

))
= s− µ

(
argmin

v

(
1

2
‖µ(v − c)− s‖2 + 1B(v)

)
− c

)
(3.17)

= s− µ
(

argmin
v∈B

(
1

2
‖v − (c+

s

µ
)‖2

)
− c

)
= s− µ ( vproj − c ),

where the change of variable v = u
µ + c was used in Equation (3.17) and the orthogonal projection of

cml + sml/µ onto the ball B(0, rml), with 1 ≤ m < l ≤ K, is denoted by vml, whose stacking results in

vproj = argmin
v∈B

‖v − (c+ s/µ)‖2.

Fast Dual Proximal Gradient Method

Recalling Section 3.2.2, we now have a first term, p∗(−AT s), differentiable, for which the gradient has

a closed-form and a second term, q∗(s), non-differentiable but for which we can compute also a closed-

form and inexpensive proximity operator. These are the conditions for which the ISTA can be applied,

where the iterates are generated by alternating between following a gradient step of the differentiable

function and a proximal step.

The gradient for p∗(−AT s) can be easily computed: ∇s p∗(−AT s) = AAT s. Furthermore, from this

expression is straightforward to observe that the first term, p∗(−AT s), is necessarily L-smooth, with

L = λmax(A)2.4 Given this, not only the optimal step size for a gradient update is known (γ = 1/L), but

also, just as happened with first-order algorithms (for differentiable functions) in the deterministic convex

setting, it is possible to accelerate the ISTA resorting to a Nesterov Accelerated Gradient (NAG) similar

scheme, i.e., enabling momentum to contribute in the generated iterates. The accelerated version of

the ISTA are known as Fast Iterative Shrinkage-Thresholding Algorithms (FISTA) [61]. Moreover, this

perspective of applying the FISTA to the dual problem is a well studied technique, known as the Fast

Dual Proximal Gradient (FDPG) method [22]. This approach is presented for the specific case of the

COCO denoiser in Algorithm 3.1.

Through FDPG, it is possible to find an approximation of the optimal solution of the dual problem,

s∗. However, what we are interested in is in recovering the solution of the primal problem, α∗, which,

nevertheless, can be easily obtained through: α∗ = −AT s∗. Consequently, the recovery of the gradient

estimates is attained through: θ̂k = α∗k + gk.

We should state that strong duality, i.e., p(α∗) + q(Aα∗) = −
(
p∗(−AT s∗) + q(s∗)

)
, holds for this

convex optimization problem. For example, a Slater point can be easily obtained by considering θk =

4The notation λmax(A) denotes the maximum singular value of matrix A.
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Algorithm 3.1: FDPG (applied to COCO Denoiser)
Input: Initial Point: s0; Number of steps: T ; L-Smoothness Constant: L; Momentum Auxiliary

Iterate: y0 = s0; Initial Momentum Constant: t0 = 1
for i = 1, . . . , T do

si = prox 1
L q
∗( yi−1 − 1

L∇p
∗(−AT yi−1) )

ti =
1+
√

1+4t2i−1

2

yi = si + ti−1−1
ti

(si − si−1)

Output: Final Point: sT

L/2 xk, assuming the iterates to be different from each other (xi 6= xj if i 6= j). This is expectable if we

presume that these iterates are generated through a stochastic first-order method.

An important note has to be made regarding the convergence rate of this method: even though the

rate of convergence of the dual objective function sequence towards its optimal value is O
(
1/i2

)
(it is the

convergence rate of FISTA [61]), it can be proven that the primal rate of convergence is only O (1/i) [22].

From this result, it is immediate to verify that the iteration complexity5 from our method is O(1/ε), while

the iteration runtime is O(K2d), as this is the cost of computing the proximity operator. These results

yield a total algorithmic runtime6 of O(K2d/ε).

Taking this into account, in order to provide a COCO gradient estimation given noisy oracle consulta-

tions, two possible solutions are then available for the case in which Σ = σ2I: (i) a closed-form solution

for K ≤ 2 and (ii) an iterative first-order algorithm for arbitrary K. Noting that the closed-form COCO

gradient estimation has an iteration runtime of O(d) and achieves the solution in 1 iteration, this results

in a total runtime of O(d). This puts in perspective the obvious preference for the closed-form proce-

dure when it is available (K ≤ 2). This statement is reinforced by the memory requirements: while the

closed-form solution requires K points and respective gradients (both d-dimensional vectors) to be kept

in memory, therefore implying an O(Kd) memory overhead, the memory requirements for the iterative

method largely surpasses this value. For example, just to store the auxiliary structured matrix A, there

is a O(K2d2) memory overhead.

3.3 Properties of the Estimator

3.3.1 Relation between the Oracle and COCO Estimates

As anticipated in the proof of Theorem 3.2.2, there is an easily interpretable property that relates the sum

of the noisy gradients (COCO input) to the sum of the denoised ones (COCO output). It is expressed by

the following theorem.

5We define iteration complexity as the smallest i verifying the inequality E [f(xi)− f(x∗)] < ε.
6The total runtime of an algorithm is obtained by the product of the iteration complexity and the iteration runtime.
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Theorem 3.3.1. The gradients estimated by the COCOK denoiser, θ̂1, . . . , θ̂K , verify the following rela-

tion with its raw inputs, g1, . . . , gK :
K∑
i=1

θ̂i =

K∑
i=1

gi .

Proof. From the COCO denoiser formalization (Equation (3.5)), the KKT conditions yield K stationarity

equations. Its i-th equation is of the form:

2Σ−1(θ̂i − gi) +

K∑
j=1,j 6=i

µl[ 2(θ̂i − θ̂j)− L(xi − xj) ] = 0,

where the index l is arbitrary, i.e., it refers to the only constraint involving θ̂i and θ̂j .

Summing the K equations, all the constraint terms cancel out pairwisely, yielding:

K∑
i=1

2Σ−1(θ̂i − gi) = 0⇔ 2Σ−1
K∑
i=1

(θ̂i − gi) = 0⇔
K∑
i=1

θ̂i =

K∑
i=1

gi .

Note that this property holds for generic Σ and not only for Σ = σ2I, contrarily to the proof of

Theorem 3.2.2. Moreover, by multiplying both sides of the equality from Theorem 3.3.1 by 1/K, we

obtain:
1

K

K∑
i=1

θ̂i =
1

K

K∑
i=1

gi ,

showing that the centroid of the estimated and consulted gradients is the same, reinforcing the inter-

pretability of this relation.

3.3.2 Mean Squared Error

In this section, the notion of Mean Squared Error (MSE) is explored, as it can be used as a performance

metric for estimators (the smaller the better). For a given estimator Ŷ of an actual random vector Y , the

MSE is defined as:

MSE(Ŷ ) = E[‖Ŷ − Y ‖2] .

In particular, we are interested in comparing the MSE from the COCO estimator with the one of the

oracle itself. It is in this perspective that Theorem 3.3.2 arises:

Theorem 3.3.2. From Equation (3.5) and assuming Σ = σ2I, the following inequality holds:

MSE(θ̂) ≤ MSE(g), (3.18)
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where θ̂ denotes the stacked vector of the different θ̂k outputted from the COCOK denoiser and g de-

notes the stacked vector of the different gk outputted from the oracle.

Proof. The Orthogonal Projection operator on a set S is defined as

PS(x) : Rd → Rd

x 7→ argmin
y∈S

‖x− y‖ .

In the case in which S ⊂ Rd is closed and convex, the following property holds:

‖PS(a)− PS(b)‖ ≤ ‖a− b‖ .

Let us now define ∇f as the vector which results from stacking the different ∇f(xk). Note that

MSE(θ̂) = E[‖θ̂ −∇f‖2] and MSE(g) = E[‖g −∇f‖2]

Let also S be the feasible set of the problem in Equation (3.5). Note that, in that case, S is a

convex and closed set as it results from the intersection of ellipsoids, which are convex and closed sets

themselves. Moreover, from the definition of the problem, θ̂ = argmin
θ∈S

1/σ2 ‖θ − g‖2 = argmin
θ∈S

‖θ − g‖,

thus θ̂ = PS(g). Noting that ∇f = PS(∇f) since ∇f ∈ S, i.e., the true gradients of an L-smooth and

convex function are necessarily co-coercive7, it follows:

‖θ̂ −∇f‖ = ‖PS(g)− PS(∇f)‖ ≤ ‖g −∇f‖ . (3.19)

Squaring both sides of the inequality in Equation (3.19) and applying the Expectation operator, the

result intended is obtained.

3.3.3 Constraints Tightness

Every constraint included in the COCOK denoiser problem involves a pair of estimated gradients. Every

time that two gradient observations, gi and gj are not co-coercive between them (note that to conclude

that, it is required to also know xi and xj), the solution will have to output two estimated gradients, θ̂i and

θ̂j which respect that condition and, thus, necessarily different from gi and gj . Noting that gi and gj are

random variables, an important question to answer is: how often are the observed gradients incoherent

with the co-coercivity constraint?

To answer this question, we focus on the one-dimensional situation (d = 1), for simplicity. We have

access to two different points, x1 and x2. Without loss of generality, let us assume x1 > x2. The true

gradients on those points are ∇f(x1) and ∇f(x2), whose noisy versions are g1 and g2. Therefore,

7Note that this statement is only true for L ≥ Lreal, where Lreal denotes the minimal Lipschitz constant of ∇f .
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g1 ⊥⊥ g2
8 and Σ = σ2, which is as general as possible for the one-dimensional case. Note that gi ∼

N (∇f(xi), σ
2). Moreover, the co-coercivity constraint between g1 and g2 is inactive when:

‖g1 − g2‖2 < L 〈g1 − g2, x1 − x2〉 ⇔ (g1 − g2)2 − L(g1 − g2)(x1 − x2) < 0

⇔ (g1 − g2)(g1 − g2 − L(x1 − x2)) < 0

⇔ 0 < g1 − g2 < L(x1 − x2) .

Therefore, noticing that g1 − g2 ∼ N (∇f(x1)−∇f(x2), 2σ2) and defining ∆x = x1 − x2 and ∆∇f =

∇f(x1)−∇f(x2):

P (‖g1 − g2‖2 < L 〈g1 − g2, x1 − x2〉) = P (0 < g1 − g2 < L∆x)

= Φ

(
L∆x −∆∇f√

2σ

)
− Φ

(
−∆∇f√

2σ

)
= pinactive .

Consequently, pactive = P (‖g1−g2‖2 ≥ L 〈g1−g2, x1−x2〉) = 1−pinactive by event complementarity.

Moreover, note that ∆x > 0 (since x1 > x2) and, thus, by the definition of convexity (Definition 1.1.2),

∆∇f ≥ 0.

In order to have a better insight on the expressions above, a simple analysis for a quadratic function -

f(x) = (Lreal/2) x2 - is performed. The motivation of using a quadratic comes not only, as we are in the

one-dimensional case, from the second derivative of this function being, actually, Lreal in all the domain,

but also from the fact that every twice-differentiable convex function can be approximated, at least locally,

by a quadratic function. Moreover, this analysis is made considering that the Lipschitz constant used as

an input for the denoiser, L, may not correspond to Lreal. For the given quadratic objective function and

defining ∆L = L− Lreal, it is possible to obtain the following result:

∆∇f − L∆x = Lreal∆x − L∆x

= −∆L∆x .

Consequently:

pinactive = Φ

(
∆L∆x√

2σ

)
− Φ

(
−Lreal∆x√

2σ

)
. (3.20)

Taking into account that Φ(−∞) = 0, Φ(0) = 0.5 and Φ(+∞) = 1, some high level observations

8The notation ⊥⊥ denotes independence between random variables.
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about the behaviour of pinactive as a function of ∆x can be readily determined:
if L is overestimated: ∆L > 0 : pinactive

∆x→0→ 0; pinactive
∆x→+∞→ 1

if L is perfectly estimated: ∆L = 0 : pinactive
∆x→0→ 0; pinactive

∆x→+∞→ 0.5

if L is underestimated: ∆L < 0 : pinactive
∆x→0→ 0; pinactive

∆x→+∞→ 0 .

In order to further illustrate the analysis performed, in Figure 3.3, pactive is represented as a function

of ∆x:

Figure 3.3: Representation of the probability of two sampled noisy gradients, g1 at x1 and g2 at x2, not being co-
coercive as a function of the distance between x1 and x2 (pactive(∆x)) for different ∆L. We considered
Lreal = 1 and σ = 10.

These results can be intuitively explained. Those explanations are only given for pactive(∆x), as

they are the ones represented in Figure 3.3 and can be easily transferred to pinactive(∆x) due to their

complementarity:

• Independently of ∆L, pactive(0) = 1 as from the co-coercivity inequality (Equation (3.2)), the right-

hand side is zero, and therefore the constraint will always be violated with exception of the case

in which g1 = g2, a set of points which, nevertheless, has zero Lebesgue measure. Moreover,

as ∆x increases, the right-hand side of (Equation (3.2)) increases, allowing the increase of the

Lebesgue measure of the set of points which do not violate co-coercivity. Given this, obviously

pactive decreases for all ∆L. After this point, different ∆L lead to different behaviours.

• When the curvature is overestimated (∆L > 0), the true gradients, ∇f(x1) and ∇f(x2) are always

co-coercive, and if only those were considered, there wouldn’t be active constraints. Therefore,

the decrease in the tightness of the constraint (increase of the right-hand side of Equation (3.2)) is

directly related to the increasing relevance of the true gradients with the distance, explaining why

pactive tends to zero. Note that, naturally, the higher the ∆L, the faster pactive tends to zero.
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• When the curvature is precisely the one estimated, ∆L = 0, the true gradients always lead to a

case of equality in Equation (3.2)). Due to noise, when the perturbation leads the noisy gradients

to be further away than supposed, the constraint activates. By the same token, the constraint is

inactive when the perturbation decreases the difference between gradients. As the noise follows

a Gaussian distribution, it increases or decreases the difference between gradients with the same

probability, explaining why pactive tends for 0.5 for larger distances.

• When the curvature is underestimated, ∆L < 0, the variation of the true gradients is always inco-

herent with the Lestimated (true gradients change faster than allowed). Consequently, the constraint

tends to be active (pactive tends to 1) as the distance increases. Note that the lower the ∆L, the

more incoherent the true gradients are with the co-coercivity constraint and, therefore, the faster

the pactive tends to 1.

A careful observation of Equation (3.20) also exposes the dependence of pactive (or pinactive) on the

level of noise in the problem, expressed through σ. Therefore, it is expected that higher noise leads to

slower convergence of those probabilities to the aforementioned values as it attenuates the influence

from the true gradients. This intuition is confirmed in Figure 3.4.

Figure 3.4: Comparison of pactive for different levels of noise. The dashed lines are retrieved from the bottom plot
of Figure 3.3 (σ = 10), while the solid lines are obtained by doubling noise magnitude (σ = 20). The
real value of the parameter Lreal is the same: Lreal = 1.
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In this chapter, we present results of computational experiments with the COCO denoiser. First, we

illustrate the relevance of using co-coercivity as a filter. Then, we describe experiments targeted to char-

acterizing the estimator. Finally, we use the COCOK denoiser as a plug-in for stochastic optimization,

illustrating the gains both with synthetic data and with a learning application (logistic regression) that

uses real data.

4.1 Pertinence of Co-coercivity

In this section, we describe an illustrative experiment that shows the impositions obtained through co-

coercivity. As it was previously mentioned, this condition allows the fusion of two distinct properties of

the objective function - convexity and L-smoothness - into one expression.

In order to get some insight on the solutions provided by the Quadratically Constrained Quadratic

Problem (QCQP) of COCO denoiser (see Equation (3.5)), an experiment on a one-dimensional (d = 1)

convex function is carried out, with the aim of comparing the benefit brought by COCO not only in

relation to the raw oracle, but also to a similar QCQP but in which, instead of co-coercivity constraints,

L-smoothness conditions (recall the L-smoothness definition - Definition 1.3.1) were imposed, i.e.,:

minimize
θ1,...,θK

K∑
k=1

(gk − θk)TΣ−1(gk − θk)

subject to ‖θm − θl‖ ≤ L‖xm − xl‖, 1 ≤ m < l ≤ K .

(4.1)

In the case represented in Figure 4.1, the function chosen was f(x) = x2. 64 oracle consultations

from evenly spaced points between x = 1 and x = −1 were sampled. This oracle followed the noise

model assumed (Gaussian additive noise). All the gradients were considered (K = 64), with the constant

L used in the denoisers being equal to the real one: L = 2. Moreover, Σ = σ2 = 1.

From the results in Figure 4.1, it can be seen that both the COCO denoiser and the denoiser with L-

smooth constraints provide better gradient estimates than the oracle, as it can be observed, for example,

by the reconstruction of the original function. Nevertheless, the difference between the two denoising

schemes is subtle. From the bottom plot, where the reconstructions are represented, it is not clear

which denoiser better approximates the original function (for x ∈ [−1, 0) COCO seems to perform better,

while for x ∈ (0, 1] it is the other way around). However, from the top plot, it is possible to verify

that the estimates provided by COCO are in fact closer to true gradients, namely at the ends of the

x-axis. Since co-coercivity assumes convexity of the objective function, the gradients estimated are

necessarily monotonically non-decreasing (this is easily seen in the top plot of Figure 4.1), a property

that is not verified by the gradient estimates coming from the L-smoothness denoiser. More precisely,

while co-coercivity imposes 0 ≤ f ′′(x) ≤ L, L-smoothness only imposes −L ≤ f ′′(x) ≤ L, justifying the
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Figure 4.1: Top: Representation of the true gradients, oracle consultations, and gradient estimates by COCO and
by imposing only L-smoothness, for the convex function f(x) = x2.
Bottom: Functions generated by first-order approximations, f(xi) = f(xi−1)+f ′(xi−1)(xi−xi−1), with
f(−1) = 1, based on the gradients above.

differences observed.

To better clarify this point, we run the same experiment with a non-convex function, f(x) = sin(x).

For this function, L = 1, which was the value considered for both denoisers. The magnitude of noise

was the same (Σ = 1), as well as K, now with x ∈ [0, 2π]. The results are represented in Figure 4.2.

As expected, the COCO denoiser outputs gradients which reconstruct a convex function (COCO tries to

approximate the sinusoidal function by a convex one), which is not true for the L-smoothness denoiser

(which is therefore capable of following the concave part of the original function).

Even though the present analysis was performed for the one-dimensional case, its results provide

insights about the behaviours of the two denoisers for higher dimensions. In fact, while the COCO

denoiser assumes 0 � ∇2f(x) � LI, L-smoothness alone just imposes −LI � ∇2f(x) � LI (for twice-

differentiable functions). This justifies using the COCO denoiser over the L-smoothness one, in the

stochastic convex setting. Also, when not having access to the value of L, it might be overestimated (L >
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Figure 4.2: Top: representation of the true gradients, oracle consultations, and gradient estimates by COCO and
by imposing only L-smoothness, for the non-convex function f(x) = sin(x).
Bottom: functions generated by first-order approximations, f(xi) = f(xi−1) + f ′(xi−1)(xi − xi−1), with
with f(0) = 0, based on the gradients above.

Lreal), situation in which both denoisers allow faster variations of the gradient, thus the L-smoothness

denoiser ends up allowing more non-monotonic behaviours.

4.2 Properties of the Estimator

In this section, we describe computational experiments to study the properties of the COCO estimator.

4.2.1 Mean Squared Error

Theorem 3.3.2, in Chapter 3, stated that:

MSE(θ̂) =

K∑
k=1

E[‖θ̂k −∇f(xk)‖2] ≤ MSE(g) =

K∑
k=1

E[‖gk −∇f(xk)‖2] .
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Note, nevertheless, that this result only provides an upper bound ensuring that the gradient estima-

tion using COCO is preferable than raw oracle. Given this, an interesting problem is to study to what

extent the former outperforms the latter. In addition, from Section 3.3.3 it was possible to obtain, for the

one-dimensional case, an expression which relates the constraint tightness probability as a function of

the distance between the two sampled points. Therefore, noting that in the case in which the constraint

is not active, the COCO denoiser outputs the result provided by the oracle, and in the case in which the

constraint is active, the denoiser filters the output of the oracle, MSE(θ̂) is expected to be a function of

the constraint tightness and, as a consequence, implicitly a function of the distance between points.

Taking this reasoning into consideration, the experiment represented in Figure 4.3 recovers the theo-

retical results obtained in Section 3.3.3. Therefore, a one-dimensional quadratic function, f(x) = 1/2 x2

was used, with Lreal = 1, where two points were considered: one fixed at x1 = 0 and a variable point

at x2 = ∆x. The oracle consultations provided gradient estimates with additive Gaussian noise with

Σ = σ2 = 100. In these conditions, the probability of the constraint being active, pactive for each ∆x was

estimated through Monte Carlo simulations:

p̂active =
Nactive

N
,

where Nactive is the number of repetitions in which the oracle outputted non co-coercive gradient esti-

mates and N is the total number of repetitions.

The MSE(θ̂) was also estimated for each ∆x as

M̂SE(θ̂) =
1

N

N∑
i=1

(
2∑
k=1

‖θ̂ki −∇f(xk)‖2
)
,

whereN is, again, the total number of repetitions and θ̂ki is the gradient estimated by the COCO denoiser

for the point xk at repetition i.

Moreover, it is possible to obtain a closed-form result for the MSE(g) for a general number of points

considered, K, a general dimension d and Σ = σ2I:

MSE(g) = E[

K∑
k=1

‖gk −∇f(xk)‖2] =

K∑
k=1

E[‖wk‖2] =

K∑
k=1

dσ2 = Kdσ2,

where wk is a realization from W ∼ N (0, σ2I). Replacing it with the corresponding values from this

case, it yields MSE(g) = 200, which is also depicted for reference in Figure 4.3.

As expected, the results for pactive recover those obtained in Section 3.3.3.

Regarding the MSE(θ̂), it can be observed that:

• for ∆x = 0, all the curves have pactive = 1 and MSE(θ̂) = 100 = σ2/2. This recovers a well known
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Figure 4.3: Top: Experimental plot for pactive as a function of ∆x for different values of ∆L.
Bottom: Computed MSE(θ̂); the dashed line denotes the (theoretical) value for the oracle.
Number of Monte-Carlo simulations (for both plots): N = 10000.

result for the average of K random variables with Gaussian distributions: their MSE1 is σ2/K.

In fact, when ∆x = 0, COCOK denoiser outputs the average of the observed gradients (recall

closed-form solution for COCO2 - Theorem 3.2.2). Furthermore, COCO denoiser can therefore be

considered an extension for the variance reduction through averaging method, but which tolerates

samples from different points. This can be viewed as one of the main advantages of COCO;

• for the cases in which the L is underestimated (∆L < 0), the MSE(θ̂) is not guaranteed to be

lower than MSE(g). Nevertheless, note that there still is a range of ∆x where MSE(θ̂) ≤ MSE(g).

The more underestimated L is, the smaller this region becomes. This observation not only recalls

that the result from Theorem 3.3.2 only holds for ∆L ≥ 0, but also reinforces the importance of

ensuring that the L considered for COCO denoiser is an upper bound for Lreal;

• for the case in which the L is perfectly estimated (∆L = 0), just as the pactive tends to an intermediate
1The MSE corresponds to the variance of an unbiased estimator, which is the case of the average of random variables following

normal distributions.
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value, so it happens with MSE(θ̂). This is the ideal situation, as MSE(θ̂) is minimal for every ∆L.

Moreover, note that when the pactive curve stabilizes, the MSE(θ̂) also stabilizes, reinforcing the

expected relation between those curves;

• for the cases in which the L is overestimated (∆L > 0), just as pactive tends to 0, the MSE(θ̂) also

tends to the MSE(g) reference curve. Moreover, it is possible to see that when pactive stabilizes

around 0, so it happens to MSE(θ̂) around the oracle’s curve. This is easily explained, again, by

the fact that when the constraints are loose, the COCO denoiser outputs the oracle results without

any “filtering”;

• Regarding the noise variance, σ2, it should be stated that, as previously seen in Section 3.3.3, its

increase would shift the stabilization of the curves from the ∆L > 0 cases towards higher ∆x.

The analysis above was performed for a metric that combines the information from every point con-

sidered. To have a better insight about what happens at each point, it is preferable to look at the

elementwise MSE, i.e., for xk, MSE(θ̂k) = E[‖θ̂k − ∇f(xk)‖2] and MSE(gk) = E[‖gk − ∇f(xk)‖2] =

σ2d = 100. These results are represented in Figure 4.4 and seem to suggest that MSE(θ̂) divides itself

equally by the two points. It also presents empirical evidence for the following result: if ∆L > 0, then

E[‖θ̂k − ∇f(xk)‖2] ≤ E[‖gk − ∇f(xk)‖2]. Note that this inequality is stronger than the one from Theo-

rem 3.3.2, as the former imposes each term on the left-hand side from the latter to be smaller or equal

than the respective term on its right-hand side.

In order to reinforce the empirical evidence of this result, we investigate the possibility of generalizing

the statement E[‖θ̂k−∇f(xk)‖2] ≤ E[‖gk−∇f(xk)‖2] for arbitrary dimension d, and number of points K.

It must be stated that whereas for the case in which there are only two points the geometry between

them is always a line and, thus, their distance is the only parameter to be considered, for a higher

number of points considered, this is not true. In fact, the different geometries that the considered points

assume play a role on how the constraints interact among them (which is, in fact, the reason why we

could not find a closed-form solution for COCOK with K > 2) and, consequently, a role on the estimator

properties.

Since exploring all those possibilities is not possible in practice, we consider illustrative random

configurations for the visited points. For each 8-point configuration in R3, each point is sampled from an

uniform distribution in a cube centered at the origin with edge length 2l, i.e., xk ∈ [−l, l]× [−l, l]× [−l, l].

This setting is repeated for different values of l. The eigenvalues of the Hessian were chosen to be

linearly spaced between 1 and 1/3 and σ = 10.

The estimator for MSE(θ̂k) is

M̂SE(θ̂k) =
1

N

N∑
i=1

‖θ̂ki −∇f(xk)‖2,
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Figure 4.4: Experimental plot for MSE(θ̂k) as a function of ∆x, for different ∆L; the dashed line denotes the (theo-
retical) value for the oracle. Number of Monte-Carlo simulations: N = 10000.

where N is the number of Monte-Carlo simulations and θ̂ki is the gradient estimated by the COCO

denoiser for the point xk at repetition i. Similarly, the estimator for MSE(gk) is

M̂SE(gk) =
1

N

N∑
i=1

‖gki −∇f(xk)‖2,

where gki is the gradient outputted by the oracle for the point xk at repetition i. The results of our

experiments are synthesized in Figure 4.5, Figure 4.6, Figure 4.7, for 6 different configurations and 3

values of l. Note that now MSE(gk) = σ2d = 300.

From this figure, three main conclusions can be drawn:

• As conjectured with only two points, the idea that closer iterates allow lower MSE is reinforced

for higher number of points and dimension. Moreover, when distance is sufficiently high, the

COCO denoiser approximates its behaviour from the oracle, as the COCO gradient estimates

progressively approximate themselves from the ones provided by the oracle with the increase of l;
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Figure 4.5: M̂SE(θ̂k) (COCO), M̂SE(gk) (Oracle (E)), and MSE(gk) (Oracle (T)), for points inside cubic boxes with
edge lengths 2l, centered at the origin, for each of 6 random configurations. Number of Monte-Carlo
simulations: N = 1000. In this case, l = 10.

Figure 4.6: Same as Figure 4.5, now with l = 100.
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Figure 4.7: Same as Figure 4.5, now with l = 1000.

Figure 4.8: Spatial configuration that yields the results in the plot of the 1st row, 3rd column of Figure 4.6 (to provide
some depth insight, marker size is proportional to the point x-coordinate).
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• It can be also observed that E[‖θ̂k−∇f(xk)‖2] ≤ E[‖gk−∇f(xk)‖2] for every point in every setting,

therefore reinforcing the empirical evidence on that sense.

• Contrarily to what was supposed for the case in which K = 2, it is possible to verify that the

MSE(θ̂) does not distribute evenly among the different points, as the MSE(θ̂k) varies from point to

point when K > 2. In fact, that is a consequence of the symmetry from the COCO2 closed-form

solution, property which does not hold for higher K. In particular, points which have other points

closer present lower MSE(θ̂k), whereas more isolated points show higher MSE(θ̂k). This can be

easily assessed by comparing the relative positions of the points represented in Figure 4.8 with

MSE(θ̂k) obtained for each of them.

A rigorous observation of Figure 4.5 suggests that, in this case, MSE(θ̂k) < MSE(gk)/2, while for

K = 2 it was verified that it was the best that we could achieve through COCO. Therefore, in order to

analyse how those MSE(θ̂k) vary with K a new experiment was carried out.

We now study the MSE(θ̂) for different numbers of points considered, K. In particular, in this case,

1 ≤ K ≤ 10 and the different iterates are generated randomly following an uniform distribution inside

a cube centered at the origin with edge length of 10 (xk ∈ [−5, 5] × [−5, 5] × [−5, 5]). Moreover, we

remain with d = 3, an anisotropic Hessian with eigenvalues linearly spaced between 1 and 1/3 and

N = 1000. Note that this choice for the size of the cube is not inadequate having in mind that the first-

order algorithms in which this scheme will be applied, as, for example, for GD, its optimal step size is

γ = 1/L = 1.

The results obtained are shown in Figure 4.9. We recovered the known result for the oracle: MSE(g) =

Kdσ2, which in this plot is represented by a line of intercept 0 and slope Kd. Surprisingly, the results for

COCOK suggested that those results could as well be approximated by a line, but still with 0 intercept

(when there is no noise, the noisy gradients correspond to the real ones, so no error is expected for both

estimators). In order to measure the adequacy of this linear approximation for COCOK , the coefficients

of determination, R2, obtained for the oracle and through COCOK were compared. These are repre-

sented in Table 4.1. It can be observed that those coefficients are comparable between the two cases

(in fact, the ones regarding the oracle are slightly higher, but the difference can be easily assigned to

precision errors in the solutions provided by COCOK). Taking into consideration that we know that for

the oracle the linear approximation is completely adequate, we assume that for COCOK it holds as well.

From Figure 4.5, it is possible to observe that for points inside a tight cube, i.e., points which are

sufficiently close to each other, the MSE(θ̂k) distributes almost uniformly across the iterates xk. Since

in this case we are in an even tighter cube and, in order to have an approximation of that MSE(θ̂k), each

MSE(θ̂) curve from Figure 4.9 is divided by the corresponding K. The result observed is in Figure 4.10.

Furthermore, using the information from this figure, the slope of each of the curves was depicted as a

function of K in Figure 4.11.
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Figure 4.9: M̂SE(g) (left) and M̂SE(θ̂) (right) as functions of the noise variance σ2, for several numbers K of points
considered. The dashed-dotted red lines result from linear regressions with intercept fixed at 0. Number
of Monte-Carlo simulations: N = 1000. For each simulation, a different set of points is randomly
generated from an uniform distribution in a cube centered at the origin with edge length 10.

Figure 4.11 suggests that the MSE(θ̂k) is O(1/K) for COCOK , while the MSE(gk) remains constant

independently of K. This result was, in fact, predictable from Figure 4.9. On the one hand, for the

raw oracle consultations, we have MSE(g) = Kdσ2 and therefore MSE(gk) = MSE(g)/K = dσ2, whose

slope is d = 3. On the other hand, it is also observable that for the case of COCOK the MSE(θ̂) remained

approximately constant, independently of the K considered. Given that COCO1 is equivalent to the raw

oracle, it is thus possible to conclude that MSE(θ̂) ≈ dσ2, which therefore implies that MSE(θ̂k) =

MSE(θ̂)/K = dσ2/K, whose slope is therefore 3/K, resulting in a decreasing MSE(θ̂k) with K.

This result is remarkable, as this is the usual result for the common averaging of normally distributed

variables. In this case, that averaging would require the sampling ofK gradient estimates of the oracle at

each iterate xk. With COCOK , it is possible to achieve the same MSE(θ̂K) without having to be stuck on

the same position. Therefore, this result reinforces the interpretation of COCOK as an extension to that

procedure in the sense that it allows to integrate more information for more precise gradient estimates

without having to stop the iterate progression.
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Table 4.1: R2 obtained for the linear regressions from Figure 4.9 for SGDK and COCOK for different K

SGD COCOK
K = 1 0.9980 0.9980
K = 2 0.9994 0.9989
K = 3 0.9991 0.9955
K = 4 0.9994 0.9991
K = 5 0.9998 9.9957
K = 6 0.9999 0.9990
K = 7 0.9998 0.9981
K = 8 0.9995 0.9979
K = 9 0.9997 0.9970
K = 10 0.9998 0.9988

Figure 4.10: Same as Figure 4.9, now for M̂SE(gk) (left) and M̂SE(θ̂k) (right).

4.2.2 Bias

The bias of the gradient estimators here analysed can be formulated as: for each point xk, Bias(θ̂k) =

E[θ̂k−∇f(xk)] = E[θ̂k]−∇f(xk) and Bias(gk) = E[gk−∇f(xk)] = E[gk]−∇f(xk). In fact, by definition,

E[gk] = ∇f(xk), which therefore implies Bias(gk) = 0. Therefore, the oracle whose noise follows the

additive and normally distributed model is an unbiased estimator of the gradient. We are interested

in also having some characterization of the behavior of θ̂k in this respect. In order to test the bias of

the COCO denoiser estimator, we estimated ‖Bias(θ̂k)‖ (note that if it is an unbiased estimator, then
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Figure 4.11: Slopes of the linear regressions in the Figure 4.10 as functions of the number of points considred, K.

‖Bias(θ̂k)‖ = 0) through the Monte-Carlo method,

̂‖Bias(θ̂K)‖ =

∥∥∥∥∥ 1

N

(
N∑
i=1

θ̂ki

)
−∇f(xk)

∥∥∥∥∥ ,
where N is the total number of repetitions and θ̂ki is the gradient estimated by the COCO denoiser for

the point xk at repetition i. Therefore, using this estimator in the same setup used to obtain Figure 4.3

and Figure 4.4, the results in Figure 4.12 were achieved.

The conclusions to take from Figure 4.12 are similar to the ones in the previous section:

• In all cases, for ∆x = 0, the COCO estimator is unbiased since it consists of the averaging estima-

tor;

• For ∆L < 0, the bias of this estimator seems to grow linearly with ∆x. The smaller the ∆L, the

higher the slope of that linear relation;

• For ∆L = 0, the estimator is biased as well. That bias grows until a stabilization, which happens

at the ∆x that it happened with pactive;

• For ∆L > 0, the estimator is also biased. As the COCO estimator outputs become more similar to

the ones of the oracle, its bias decreases. Moreover, the higher the ∆L, the lower the bias (as the

constraints are less restrictive).
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Figure 4.12: Bias as a function of the distance between the points considered,for the setup of Figure 4.3.
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These observations suggest that if the constraint between two gradient estimates is active, then it im-

poses bias on the COCO estimator. On the other hand, when the constraint is inactive, the COCO

estimator outputs the oracle consultations, which are known to be unbiased.

4.3 Stochastic Optimization with COCO

In this section, the COCOK denoiser is coupled to typical first-order algorithms and their performance

is evaluated in synthetic and real contexts. As introduced in Chapter 1, the denoisers are essentially

viewed as plug-ins to be coupled to the oracles to which the already existent algorithms in stochastic

optimization resort, i.e., instead of having direct access to the raw observation from the oracle, gi, they

are fed with the convex and L-smooth coherent observations of that same oracle, θ̂i. This scheme is

represented in Figure 4.13.

Figure 4.13: Typical approach to first-order stochastic optimization (a) and the proposed workflow (b). The COCO
denoiser is simply plugged-in to provide more accurate gradients to any baseline algorithm.

4.3.1 Trajectories of the Algorithms

In order to get some insight on the type of output provided by the COCO denoiser, some experiments

were carried out in a 2-dimensional (d = 2) quadratic function, as in that case it is possible to observe

the different trajectories that the algorithm performs. These are represented in Figure 4.14.

In the experiments from Figure 4.14, the parameters for the COCO denoiser are both perfectly esti-

mated (L and Σ match the ground truth). Therefore, even though in the case represented the increase

in K leads to a deterioration of the performance (the algorithms ends up further from the optimum), it

is not statistically representative. In fact, it is easily explainable by the fact that we are considering a

model of additive noise, whose variance is fixed. Thus, when we are further from the minimum, the

magnitude of the true gradients considered is significantly larger than the magnitude of the noise and,
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Figure 4.14: Results (20 steps) of 5 algorithms, for a quadratic function (1/2) xTAx, with A = diag(1, 0.2). On the
left, the trajectories of the algorithms; on the right, the distance to the optimum in the vector space (top)
and in the function space (bottom). Oracle parameters: Σ = 100I. SGD hyperparameters: γ = 0.25.
COCO hyperparameters: L = 1; Σ = 100I. When K ≥ i, COCOK uses the total number i of visited
points. The noise at each iteration is the same for all algorithms (the random seed is the same).

consequently, their sum corresponds essentially to the true gradient, leading to a situation where ap-

parently no denoise would be preferable. In situations where the magnitude of the gradients generated

becomes closer to the magnitude of the noise generated, the results are different. The major insight

to take from this experiment is that it is possible to observe that, with the increase in K, the COCOK

trajectory of the algorithm is smoothed, in contrast with the erratic trajectory of SGD.

4.3.2 Warm-Starting

By coupling a baseline algorithm with COCOK , note that, at iteration i, only the oldest gradient (gi−K) is

forgotten and a new one (gi) is kept in memory. Thus, it is reasonable to think of taking advantage from

the COCOK solution obtained for the previous iterate to obtain a new solution faster.

We introduce a warm-starting procedure for the COCOK solution method (FDPG) which enables this

utilization of past information. In particular, we achieve it by a careful initialization of the dual variable,

s. In fact, s is the vector that results from stacking the different sml, where each sml addresses the co-

coercivity constraint between the COCO estimates for gradient m, θ̂m, and for gradient l, θ̂l. Since we

expect the estimates for old gradients to only have small variations among them on the new iterate as

they have been “filtered” at least once, we initialize these sml to the values obtained for the correspondent

dual variables in the previous COCOK solution. For the different sml concerning the new gradient, we

do not have any information yet, thereby being initialized to the default value (zero).

In Figure 4.15, we expose the improvements provided by this approach. The warm-starting proce-

66



dure allows the iterative method to start with a much better guess of s∗, thereby achieving satisfactory

approximate solutions faster.

Figure 4.15: Dual objective function obtained for the different iterates of the COCOK solution method, using the
warm-starting procedure (WS) and without using it (No WS). DualFunction(s) is the dual objective
function p∗(−AT s) + q∗(s), si is the vector that results from stacking the different sml at iteration i,
and s∗ is the corresponding optimal vector.

4.3.3 Synthetic Data

In this section, the utility of COCOK is assessed in a scenario that perfectly matches the assumptions

under which the denoiser was proposed. In this case, the objective function is a 10-dimensional (d = 10)

quadratic function, f(x) = 1/2 xTAx, where matrix A is the Hessian of the objective function. In this

case we consider an anisotropic Hessian, with eigenvalues linearly separated between 1 and 1/10, with

the minimum at x∗ = (0, 0, . . . , 0)T . Moreover, the first-order oracle provides a gradient estimate whose

noise is additive and normally distributed, with Σ = 100 I. The initial iterate was kept the same through

all the simulations, x0 = (100, 100, . . . , 100)T .

Performance of COCO coupled to SGD and Adam

Considering the setup described above, the COCOK denoiser is coupled both to SGD and Adam, where

the latter is picked as a representative of its class of algorithms (adaptive step size algorithms). Note

67



that algorithms that address finite sum objectives are not tested here, as the setup considered falls out

of their scope. In both cases, the COCOK hyperparameters are correctly set: L = 1, Σ = 100 I. Given

that we are in a stochastic setting, the quantity that we are interested in following across iterations is

E[‖xi − x∗‖], which can be estimated via Monte-Carlo simulation through:

̂E[‖xi − x∗‖] =
1

N

N∑
j=1

‖xij − x∗‖,

where N is the total number of repetitions and xij is the point obtained from the algorithm in iteration i

at repetition j.

In Figure 4.16, the results obtained are shown with N = 100.

Figure 4.16: Results of stochastic optimization with the proposed COCO denoiser, when used with baselines SGD
(left) and Adam (right). The performance is measured in terms of ̂E[‖xi − x∗‖] (the performance of GD
is also depicted for reference; the lines for “Adam + COCO16” and “Adam + COCO” are superimposed).
Number of Monte-Carlo simulations: N = 100.

From this figure, it is possible to recall the result shown in Equation (2.14): there is an initial bias

regime, where all the algorithms seem to converge linearly (see Table 2.1; we are in an L-smooth and

strongly convex setting, where GD is known to converge linearly and the stochastic algorithms are able

to keep up with it initially); across iterations that convergence is successively slowed down and eventually

leads to a stagnation to which we call variance regime. In fact, from Figure 4.16 we can observe how

a higher K in COCOK leads to improved performance at least in terms of the variance regime (without
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compromising the bias one). Moreover, still from Equation (2.14), it is possible to conclude that the “level”

at which the stochastic algorithm stops converging is directly dependent on the (uncentered) variance of

the oracle. This reinforces the variance reduction achieved by coupling COCOK to a baseline algorithm.

Gains in Variance

In this section, we further characterize to what extent the COCOK coupling is able to reduce the variance

of the provided gradient estimate. In fact, from Section 4.2.1, it was possible to empirically characterize

the COCOK estimator (MSE(θ̂k) ≈ d/Kσ2 for sufficiently close points K points). A well-known relation

between the MSE and the variance of an estimator Ŷ is:

MSE(Ŷ ) = Var(Ŷ ) + ‖Bias(Ŷ )‖2, (4.2)

where Var(Ŷ ) = E
[
‖Ŷ − E[Ŷ ]‖2

]
, the centered variance of the estimator Ŷ .

Considering this, it is clear that MSE(gk) = Var(gk). On the other hand, it is also possible to conclude

that Var(θ̂k) ≤ MSE(θ̂k). In Section 4.2, we found empirical evidence supporting MSE(θ̂k) ≤ MSE(gk),

from where we conclude Var(θ̂k) ≤ Var(gk), which ensures the variance reduction obtained via COCO

coupling.

However, again from Equation (2.14), it is possible to observe that the “level” in which SGD conver-

gence curve stabilizes is directly related to the uncentered variance of the gradient estimator. In turn,

the uncentered variance can be related to the MSE via

E
[
‖θ̂k‖2

]
= MSE(θ̂k) + ‖E[θ̂k]‖2 − ‖Bias(θ̂k)‖2,

which can be easily derived from Equation (4.2).

This expression does not yield an obvious result. But note that, when we couple COCOK to Stochas-

tic Gradient Descent (SGD), the update rule becomes xi = xi−1 +γ θ̂i−1, allowing us to get some insight

on the uncentered variance of the COCO estimator by the “level” at which both (SGD and its COCO cou-

pling) stagnate. In order to assess that, Figure 4.17 compares the performance of SGD coupled with

COCO2 with the original SGD in two different situations: one resorts to an oracle of the same variance

(σ2) and the other to an oracle whose variance is halved (σ2/2), as in that case the MSE is halved as

well.

From this figure, it is possible to observe that, by using the denoiser, unfortunately the oracle uncen-

tered variance does not decrease as much as MSE(θ̂k), fact which is assigned to the bias of the COCO

estimator.
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Figure 4.17: Performance gain with the proposed computationally simplest denoiser, COCO2.

The Effect of Using a Wrong Lipschitz Constant

When applying the COCOK denoiser to a baseline algorithm, three additional hyperparameters have to

be considered: Σ, K and L.

Regarding the choice of Σ, it has to follow the model to which we provide a solution method: Σ = σ2 I.

The different constants σ2 that the user might choose yield the same QCQP. Thus, the choice of σ2

does not put at stake the performance of the denoiser. In the case of K, it is a choice of the user in

the trade-off performance versus time of computation. However, the selection of L might imperil the

algorithm’s performance. Therefore, it is of the utmost importance to correctly pick this value, as well as

to understand the different outcomes that different choices might lead to.

In order to assess the effect of a wrong choice of L, the results from Figure 4.16 for SGD + COCO8

are recovered. Note that, in this case, we have L = Lreal = 1 and so we are interested in “recording” the

algorithm’s performance considering different values of L. These results are represented in fig. 4.18.

As expected, from this figure it is possible to verify that the better results are for the correctly esti-

mated L. Moreover, when we have L > Lreal, we can see that the algorithm seems to always achieve

better performance than SGD, even if only marginally. This is a direct consequence from the fact that,

when we overestimate excessively the L (∆L → ∞), the COCOK estimators tend to the ones provided

by the oracle. On the other hand, for underestimated L (L < Lreal), surprisingly some good results are
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Figure 4.18: Performance of COCO8 for several choices for the denoising parameter L, when Lreal = 1.

observed (L = 0.5 and L = 0.25) in terms of the variance regime. These results are assigned to the fact

that, in Figure 4.4, there are some values of ∆x for which the MSE(θ̂k) < MSE(gk). For L = 0.1, the

steps given by the algorithm might fall in a region where we already have MSE(θ̂k) > MSE(gk), leading

to a worse performance than SGD.

An interesting observation comes from the ripples generated in the case of underestimation of L,

which is a consequence of an excessive smoothening of the objective function. Moreover, it was also

verified that the smaller the L considered, the higher the computation time of the iterative solution method

to COCO, as the co-coercivity constraints are likely to be more severely violated by the gradient esti-

mates provided by the oracle, requiring more iterations from the FDPG method to find a solution. These

two considerations might play a pivotal role in settings where the user is not able to compute the true L

and, therefore, require the tuning of this hyperparameter.

Stabilization through COCO

In Section 4.2, we suggested that COCOK could be interpreted as an extension of an averaging strat-

egy of the gradients estimates provided by the oracle for variance reduction, but in which the oracle

consultations come from different points. In fact, even though this gradient averaging technique is dif-

ferent from the Polyak’s averaging scheme (see Chapter 2), where the averaging is performed on the

iterates, they both share an interesting property: the stabilization of the algorithm for larger step sizes.
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Our experimental exploration on COCOK proceeds to the analysis of this capacity. In order to illustrate

it, the step size of the baseline algorithm (in this case, SGD) was increased to a magnitude to which not

even GD converges: γ = 2/Lreal = 2. The results obtained are depicted in Figure 4.19.

Figure 4.19: Performance of COCOK for a larger step size. The line for GD is also depicted for reference.

From this figure, it is observable that for this choice of step size, both GD and SGD convergences

stagnate way further from the optimum when compared with SGD coupled with COCOK . In fact, the

coupling of the baseline algorithm with the denoiser, allowed it to bear larger step sizes, inclusively beat-

ing its deterministic version (GD). This result clearly reinforces the benefits of resorting to COCOK , as

besides improving the baseline algorithm performance, it also may play an important role in its stabiliza-

tion.

4.3.4 Real Online Learning Application

In this section, the coupling of COCOK denoiser to first-order algorithms is now tested in a real con-

text, i.e., are applied to readily available datasets. In particular, we analyse the performance of coupling

COCOK to SGD, Adam, and Stochastic Average Gradient (SAG) in regularized logistic regression prob-

lems based on the “fourclass” and “mushrooms” datasets [2]. Therefore, we first introduce the logistic

regression problem as a convex and finite sum objective function and then present the results for the

mentioned datasets.
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Note that, by applying COCOK to finite sum objectives, we fall out of the assumptions of its formu-

lation, as (i) the different gradients sampled are not completely independent samples (at least the ones

coming from the same example in the dataset) and (ii) the oracle’s noise does not follow an additive and

normally distributed model (even though, by resorting to mini-batches to compute the gradient estimate,

its distribution approximates itself from a Gaussian). Nevertheless, considering these limitations, we

assume these simulations as robustness tests to the proposed framework.

Logistic Regression

The datasets considered in this section are organized in the following form: there is one feature matrix,

A, where each example, ai, is displayed in each row, and a vector of labels, b, i.e.,:

A = [a1, . . . , an]T and b = [b1, . . . , bn]T ,

where A is a matrix with n rows and d columns, while b is a n-dimensional vector. Considering this

structure, the type of problems that we approach - logistic regression with Tikhonov regularization - are

a specific instance of convex finite sum objectives, which can be formulated as:

min
x

1

n

n∑
j=1

L(aTj x, bj) +
λ

2
‖x‖2,

where L(z, b) = log(1 + exp(−bz)).

Note that this formulation is equivalent to the one in Equation (2.26), with fj(x) = L(aTj x, bj) +

λ/2 ‖x‖2. Therefore, it is trivial to verify that

∇fj(x) = − bj
1 + exp(−bj aTj x)

aj + λx .

Moreover, denoting by L the Lipschitz constant of ∇f and by Lj the Lipschitz constant of ∇fj , it can

be shown that

L =
‖ATA‖2

4n
+ λ and Lj =

1

4
‖aj‖2 + λ,

where ‖ · ‖2 denotes the matrix spectral norm, which corresponds to the matrix maximal singular value.

“Fourclass” Dataset

From the information provided in the previous section, we are in conditions of applying stochastic first-

order algorithms to the presented convex problem. The feature matrix A and the vector of labels b used

belong to the “fourclass” dataset [2], with n = 862 and d = 2 (a small dataset). The stochastic first-order

algorithms to which the COCOK coupling is analysed are: (i) SGD as the basic algorithm; (ii) Adam as
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a representative of the adaptive step size methods; (iii) SAG as a representative of the recent Variance

Reduction (VR) techniques. To begin with, the three methods are plotted for reference in Figure 4.20.

Figure 4.20: Results obtained for SGD, Adam, and SAG, with the dataset “fourclass” [2]. Note the linear conver-
gence of SAG in comparison to the stagnation of SGD and Adam. We used a mini-batch size of 1 and
the following hyperparameters: for SGD, step size γ = 1/L; for Adam, step size γ = 0.008 and default
values for the other parameters (β1 = 0.9, β2 = 0.999, = 10−8); for SAG, step size γ = 1/(maxj Lj).

Taking these results into consideration, we now observe the benefits brought by coupling COCOK

to SGD and Adam, considering two different mini-batch sizes: 1 (which was also the one considered in

Figure 4.20) and 32. Those results are represented in Figure 4.21 and Figure 4.22. Note that, in these

plots, the results are obtained for a single run of the algorithm (with random seeds fixed), contrarily to

the plots obtained throughout Section 4.3.3.

From Figure 4.21, it is possible to conclude that the COCOK is effective when coupled to SGD

regardlessly of the mini-batch size. In fact, despite slowing down the convergence on the bias term,

it is possible to observe that the gains in the variance regime are recovered. This delay in the bias

regime can be assigned to the interpretation of COCOK as an extension of averaging techniques which

considers different iterates, given that this is a typical behavior on those methods. Furthermore, this

result is remarkable, given that for a mini-batch size of 1 the argument considering the tendency of

the noisy gradient’s distribution towards a Gaussian distribution (Central Limit Theorem) is completely

implausible. This fact strongly supports the robustness provided by COCOK .
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Figure 4.21: Results of SGD with the proposed denoiser COCOK , for the “fourclass” dataset [2], using a mini-batch
size of 1 (left) and 32 (right). Note the performance improvement with the increase of K.

Figure 4.22: Same as Figure 4.21, now for baseline algorithm Adam.
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In its turn, the results regarding the coupling of COCOK to Adam are less conclusive. While for a

mini-batch size of 1 there seems not to exist any benefit in using COCOK , for a mini-batch size of 32,

some advantage can be easily noticed stemming from it (for the COCO8 it is specially clear). Again, this

conclusion can be assigned to the noisy gradients’ distribution being different from the one considered

in the assumptions of COCOK for a mini-batch size of 1. It should be noted that, in this case, there is

no delay in the bias regime for the coupled COCOK cases, since Adam adapts the step size in each

dimension accordingly to the magnitude of the gradient provided.

Finally, regarding SAG, its coupling with COCOK is analysed in Figure 4.23. From this plot, it is

possible to conclude that the naive coupling between the former and the latter does not bring any ben-

efit. In particular, it halts the linear convergence which characterizes the SAG method. Therefore, this

example clearly defines the barrier beyond which COCOK should not be used. In fact, given that SAG

is specifically designed for finite sum objectives, setup which, as previously explained, falls out of the

assumptions of COCOK , this failure is understandable.

Figure 4.23: Same as Figure 4.21, now for baseline algorithm SAG. In this case, no improvements are observed
with the increase in K and the linear convergence of SAG is even compromised by COCO.

“Mushrooms” Dataset

Taking into account the tests performed for the small dataset in the previous section, we now extend

those results for a larger one. In this section, we consider the “Mushrooms” dataset [2], with dimensions

n = 8124 and d = 112 on which, again, the Tikhonov regularized logistic regression is solved. The

results for SGD and Adam are presented for a mini-batch size of 64 in Figure 4.24.

On the one hand, the results regarding SGD are according to what was expected: a higher K in the

COCOK used leads to a delay in the bias term, compensated by an improved performance in terms of

variance regime. On the other hand, the results obtained for Adam, show that the COCOK coupling
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Figure 4.24: Performance of SGD (left) and Adam (right) with COCOK , for the “Mushrooms” dataset [2]. We used
the mini-batch size of 64 (and, in this experiment, a step size of 0.004 for Adam).

brings advantages in the variance regime, even though this improvement is not monotonic in relation to

K. In fact, it is possible to observe that in this case, the runs with COCO4 and COCO8 are beaten by

the one with COCO2. Nevertheless, these results reinforce the benefit of using the COCOK denoiser.
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This chapter summarizes our work and suggests possible extensions and future research directions.

5.1 Summary

This thesis introduced the COCO denoiser, which exploits co-coercivity of convex and L-smooth ob-

jective functions to denoise gradient estimates provided by a stochastic oracle. Our denoiser is based

on the joint ML estimation of the gradients, constrained by the co-coercivity conditions. Our theoretical

analysis enables finding an interpretable relation between the observations and COCO estimates.

By assuming a noise model with covariance proportional to the identity, we proved that the estimates

provided by COCO are necessarily more accurate than the oracle, in what respects to MSE. For this

case, we introduced an efficient first-order solution to COCO, based on the FDPG method. By con-

sidering the simpler scenario of optimizing a function of a single variable, we conclude that the MSE

deteriorates with the distance between the points where the gradients are observed and with the model

mismatch in what regards to the Lipschitz constant L.

Our computational experiments corroborate the theoretical results above and have also shown that

the elementwise MSE decreases with the rate of O(1/K), where K is the number of gradients simulta-

neously estimated from sufficiently close points. This is the same rate obtained for a gradient averaging

estimator that had access to K observations of the gradient at the same point, which supports interpret-

ing the COCO denoiser as an extension that allows incorporating information from different points.

In stochastic optimization, our experiments with synthetic data have shown that current first-order

methods coupled with COCOK lead to variance reduction, an increase in performance that is noticed

even for the case in which only two points are considered. This is particularly relevant because we

derived the closed-form solution for COCO2.

To illustrate the usefulness of COCO in a real online learning task, we solve a logistic regression

problem. Although algorithms such as SAG, which exploits the finite sum decomposition of the objective

function, do not gain by using COCO estimates, our experiments show that more general baseline

algorithms, such as SGD or Adam, clearly exhibit variance reduction.

5.2 Future Work

A simple task that deserves attention in the immediate future is the experimental exploration of the limits

of COCO in what respects to dealing with situations that do not fully match the design assumptions.

For example, even for problems requiring the (local) minimization of a non-convex function (e.g., deep

learning), there is hope for improvement of baseline first-orders methods when coupled with COCO,

since the objective function is often locally convex.
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First-order algorithms for stochastic optimization can be considered to also estimate (in a non-explicit

way) the function gradient (SGD estimates it as the noisy observation itself, while others, e.g., Adam or

SAG, have their own operations on the noisy gradient). This observation motivates the possibility of

using COCO for stochastic optimization in a slightly different way that the one explored in the thesis:

instead of feeding baseline algorithms with the output of COCO, why not feed COCO with the gradient

estimates provided by the baseline algorithms? The standard gradient descent steps would then use

directly the output of COCO.

Naturally, our theoretical analysis of COCO can be extended. It would be interesting to demonstrate

the universality of the evidence provided by our experiments, namely in what respects to the estimator

bias and variance (at least for COCO2, for which there is closed-form solution) and the decrease with K

of the elementwise MSE of COCOK . Regarding the usage of COCO as a plug-in for stochastic opti-

mization, it would be important to study convergence guarantees (which, naturally, also depend on the

baseline algorithm) and to quantify the gains in variance reduction.

Aspects of computational efficiency can also motivate future work. For example, the extension of

the proposed FDPG efficient method for COCO to deal with more general noise covariance matrices.

This would certainly bring robustness to the denoiser, which, despite the predictable higher computa-

tional cost, could widen the range of application scenarios. Another interesting line of thought concerns

dealing with the quadratic scaling of the number of constraints with the number of points simultaneously

considered. In fact, our analysis showed that the larger gains in denoising come from close-by points,

which could motivate strategies to reduce (maybe to a linear dependence) the number of constraints

that could effectively be considered without compromising the results.

More exploratory lines of research would address the possibility of denoising gradients using different

assumptions on the underlying objective function. For example, strong convexity, which has lead to

better convergence rates for stochastic optimization algorithms, or the finite sum decomposition that is

omnipresent in machine learning applications. Even in the non-convex setting, it could be interesting

to consider the single assumption of L-smoothness, since, just as in the convex case, it would prevent

arbitrarily fast changes of the gradient, thereby promising denoising capabilities.

Finally, our insights relative to the influence of the location of the query points may motivate strategies

for active learning, i.e., for actively selecting those points, rather than passively using only the past

iterates.
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