TECNICO
LISBOA

Traffic Light Control using
Deep Reinforcement Learning

Pedro Pinto Santos

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Francisco Antonio Chaves Saraiva de Melo
Prof. José Alberto Rodrigues Pereira Sardinha

Examination Committee

Chairperson: Prof. Paolo Romano
Supervisor: Prof. Francisco Antonio Chaves Saraiva de Melo
Member of the Committee: Prof. Rui Miguel Carrasqueiro Henriques

January 2021

Acknowledgments

Throughout my academic journey, | received a great deal of support and assistance. To everyone
that accompanied me through these moments, | express my acknowledgments.

| would like to express my profound gratitude to my supervisors, Prof. Francisco Melo and Prof. Al-
berto Sardinha, for all the feedback, wisdom, and guidance. | thank them for believing in my capabilities
and providing me the opportunity to receive a research grant while working on this dissertation. This
work was partially supported by national funds through the Portuguese Fundacéo para a Ciéncia e a
Tecnologia under project ILU, with reference DSAIPA/DS/0111/2018.

| deeply thank Guilherme Varela, without whom this work would never be possible. The contents that
led to the writing of this thesis came to life from a fruitful and close collaboration with Guilherme. Thank
you for all the work, dedication, availability and company.

| also acknowledge the lab managers at GAIPS for providing all the needed hardware-related sup-
port.

| would like to thank my family for their love, support, and making me who | am today. For compre-
hending all the time | spent away while working on this dissertation. | especially thank my parents for
their unconditional caring, and my sister for the friendship and company, as well as insightful discussions
related to this dissertation. | also thank my parents for providing me all the funding that allowed me to
pursue this degree, as well as study abroad during one year.

Last, but not least, a special thanks to my friends and colleagues for making my academic jour-
ney much more enjoyable. | especially thank Sara, Margarida, Francisco Catarrinho, Francisco Neves,
Mariana, Jodo and Pilar.

| thank each and every one of you.

Abstract

This work addresses the development of intelligent Traffic Signal Controllers (TSCs) using Reinforce-
ment Learning (RL) techniques, assessing how the different dimensions of the control problem affect
the efficiency of the resulting controllers under a variety of simulation scenarios. Firstly, we provide a
novel methodology for the development of intelligent TSCs. Such methodology contributes one step fur-
ther towards a wider application of RL in traffic light control, by ensuring some level of standardization at
the different stages of the experimental process: simulation setup, TSC design — problem formulation
and selection of the RL method — as well as performance estimation and comparison. Secondly, while
following the proposed methodology, we provide a thorough study of different state spaces and reward
functions, as well as of three different RL algorithms (Q-learning, Deep Q-network, and Deep Deter-
ministic Policy Gradient). A fully decentralized approach to traffic light control featuring a constrained
action space definition is considered. The performance of the developed TSCs is assessed with re-
spect to different traffic demands, under three traffic networks extracted from the city of Lisbon: a single

intersection, an arterial network, and a grid network.

Keywords

Traffic light control; Reinforcement learning; Intelligent transportation systems; Urban mobility; Machine

learning.

Resumo

Este trabalho aborda o desenvolvimento de controladores semaforicos inteligentes (TSCs) usando
técnicas de aprendizagem por reforgo (RL), avaliando de que forma as diferentes dimensées do prob-
lema de decisao afetam a eficiéncia dos controladores resultantes. Em primeiro lugar, apresenta-
mos uma nova metodologia para o desenvolvimento de TSCs. Esta metodologia contribui no sentido
de uma aplicacdo mais ampla de RL no problema de controlo semaférico, por garantir um nivel de
standardizacao nas varias fases do processo experimental: configuragdo da simulagao, design do TSC
— formulagao do problema e selegdo do método de RL — bem como estimagado da performance e
comparacao. Seguindo a metodologia proposta, fazemos um estudo de diferentes espacos de estados
e funcdes de recompensa, assim como trés algoritmos de RL (Q-learning, Deep Q-network, e Deep De-
terministic Policy Gradient). Consideramos uma abordagem totalmente descentralizada do problema e
um espago de acao restrito. O desempenho dos controladores semaféricos desenvolvidos € avaliado
usando diferentes cendrios extraidos da cidade de Lisboa: uma intersegéo isolada, uma via arterial e

um conjunto de ruas do centro da cidade.

Palavras Chave

Controlo semaférico; Aprendizagem por reforgo; Sistemas inteligentes de transporte; Mobilidade ur-

bana; Aprendizagem automatica.

Contents

1 Introduction
1.1 Contributions e e e e e e e

1.2 Organizationof thedocument

2 Background
2.1 Deeplearning o e e e e e e e e
2.1.1 Artificial neuralnetworks
2.1.2 Convolutional neural networks
2.2 Reinforcementlearning e e
2.2.1 Temporal difference learning L L
2.2.2 Value function approximationo e
2.2.3 Deterministic actor-critic methods o o Lo
2.3 Trafficlightcontrolbasics e
2.3.1 Traffic light control terminology
2.3.2 Traffic light control objective L

3 Related work
3.1 Methods in transportation engineering
3.2 Generalized optimization approacheso
3.3 Reinforcement learning-based traffic lightcontrol
3.3.1 Markov decision process formulation
3.3.2 Methods e

3.3.3 DiscusSioN e e e e e e

4 Methodology

4.1 Simulationsetup e e
41.1 Trafficsimulation
4.1.2 Roadnetworkstopology e
41.3 Trafficdemandsandroutes

4.2 Traffic signal controllerdesign e e e

Vii

4.2.1 Markov decision process formulation o oo oo 34
4.2.2 Reinforcementlearningmethods 35
4.3 Training o e e e e e e e e e e e e e e e 36
4.4 Evaluation L e e e e 37
4.41 Performance estimation e 37
4.4.2 Performance analysis & comparison e 38
443 Policyanalysis e 40
Implementation 42
5.1 Simulationsetup e e 43
5.2 Markov decision process formulations o Lo o 45
5.2.1 Preliminaries e 46
5.2.2 Speed-based formulations. L 47
5.2.3 Waiting time-based formulations oL o o oo 48
5.2.4 Queue-based formulations L 48
5.2.5 Pressure-based formulations oo o o 49
5.3 Reinforcement learning methods L 49
5831 Q-learning e e e 49
5.3.2 Deep Q-network e e e e 50
5.3.3 Deep deterministic policy gradient o oo 50
5.4 Baselinecontrollers e e 51
5.5 Software implementation 51
Experimental results 52
6.1 Intersectionnetwork e 53
6.1.1 Constantdemands e 53
6.1.2 Variabledemand 60
6.1.3 Cyclicaldemand e 62
6.1.4 Takeaways e 65
6.2 Arterial network e e 66
6.2.1 Constantdemand e 66
6.2.2 Takeaways i e e e e e e 68
6.3 Gridnetwork L L e e 69
6.3.1 Constantdemand e 69
6.3.2 Variabledemand e 72
6.3.3 Cyclicaldemand e 74
6.3.4 Takeaways e e e e 75

7 Conclusion
7.1 Future Work e e e e e e

A Algorithms hyperparameters

B Complete experimental results

List of Figures

2.1
2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6

6.1

6.2

6.3

6.4

The agent-environment interaction loop (adapted from [1]). 11
Intersection with four incoming approaches, each composed of three lanes. 14
lllustration of the relative flexibility of the different action space definitions (not to scale). . 20
Diagram illustrating the proposed methodology. 31
Intersection network. oL L e e 33
Observed curves during the learning procedure (averaged over 30 training runs). 37
Kernel density estimation of the travel timemeans. 39

Kernel density estimation of the travel time and speed metrics, aggregated per vehicle trip. 40

lllustration of three policies that resulted from the training procedure. 41
SUMO screenshot of the arterial network, composed of four streets. 43
Grid network. e e e e e e 44
Grid network intersections (close-up screenshots). 45
Rescaling factor used in the variable demandtype. 45
Rescaling factor used in the cyclical demand. 46
DDPG actor network illustration. 51

(Intersection network) Performance metrics for static signal plans with different phase 1
allocations. oL e 54
(Intersection network, high constant demand) Q-learning e exploration parameter through-
out training. The curves are plotted for five randomly sampled trainruns. 56
(Intersection network, high constant demand) Training curves observed for the Q-learning
agent with the min. speed deltaMDP. 56

(Intersection network, high constant demand) Kernel density estimation of the travel time

means distribution. e e e e e e e 57

Xi

6.5 (Intersection network, high constant demand) Training curves observed for the DQN agent
with the min. speed deltaMDP. e 58
6.6 (Intersection network, high constant demand) lllustration of three sampled policies that
resulted from the training procedure for each of the RL algorithms. 59
6.7 (Intersection network, variable demand) Cumulative reward for different MDPs with and
without including the additional time variable in the agent’sstate. 61
6.8 (Intersection network, cyclical demand) Curves showing the adaptability of the DDPG

agent (which achieved an average travel time of 24.0 seconds), and other baseline meth-

ods, to the cyclical demand. 64
6.9 (Arterial network, constant demand) Controllers average speed metric plots. 68
6.10 (Grid network, constant demand) Cumulative reward obtained by the DQN and DDPG

algorithms forthree MDPs. 70

6.11 (Grid network, constant demand) Curves for the DQN agents with the minimize delay MDP. 71
6.12 (Grid network, variable demand) Kernel density estimation of the distributions of travel

time means for different controllers with the time-variable demand. 73
6.13 (Grid network, variable demand) Average travel time of the top-k policies sets that achieved

the lowest average travel time, for differentvaluesof k. 73

Xii

List of Tables

4.1 Signal plans that define the discrete actionspace.
4.2 Observed performance metrics for different controllers, per vehicle’strip.

4.3 Posthoc Tukey’srangetestresults. e

6.1
6.2
6.3

Intersection network, high constant demand) Baselines performance metrics.
Intersection network, low constant demand) Baselines performance metrics.

Intersection network, high constant demand) RL controllers performance metrics.

6.5
6.6

(
(
(

6.4 (Intersection network, low constant demand) RL controllers performance metrics.
(Intersection network) RL algorithms performance comparison (averaged for all MDPs).
(Intersection network) Average travel time for two disjoint sets of MDPs, calculated using

the performances obtained by the DQN and DDPG algorithms.

6.7 (Intersection network, variable demand) Baselines performance metrics.

6.8 (Intersection network, variable demand) DQN controller performance metrics (with the
additional time variable). e e e e e

6.9 (Intersection network, variable demand) RL algorithms performance comparison.

.10 (Intersection network, cyclical demand) Baselines performance metrics.

11 (Intersection network, cyclical demand) DQN controller performance metrics.

6.12 (Arterial network, constant demand) Baselines performance metrics.

6.13 (Arterial network, constant demand) DQN controller performance metrics.

6.14 (Arterial network, constant demand) DDPG controller performance metrics.

6.15 (Arterial network, constant demand) Controllers average speed metric, calculated, for
each trip, as an average of the instantaneous velocity of the vehicle at each simulation
SECONA. . . v o i e e e e e

6.16 (Grid network, constant demand) Baselines performance metrics.

6.17 (Grid network, constant demand) DQN controller performance metrics.

6.18 (Grid network, constant demand) DDPG controller performance metrics.
(

6.19 (Grid network, variable demand) Baselines performance metrics.

Xiii

6.20 (Grid network, cyclical demand) Baselines performance metrics. 74

6.21 (Grid network, cyclical demand) DQN controller performance metrics. 74
6.22 (Grid network, cyclical demand) DDPG controller performance metrics. 74
A.1 Complete list of the hyperparameters used with the DQN algorithm. 90
A.2 Complete list of the hyperparameters used with the Q-learning algorithm. 90
A.3 Complete list of the hyperparameters used with the DDPG algorithm 90

B.1 Complete set of performance metrics for the intersection network under the high constant

demand. L e e e e 92
B.2 Complete set of performance metrics for the intersection network under the low constant

demand. L e e e e e 93
B.3 Complete set of performance metrics for the intersection network under the variable de-

MaNA. . . o e e e e e e e e e e e e e e e e e 94

B.4 Complete set of performance metrics for the intersection network under the cyclical demand. 95
B.5 Complete set of performance metrics for the arterial network under the constant demand. 96
B.6 Complete set of performance metrics for the arterial network under the variable demand. 96

B.7 Complete set of performance metrics for the arterial network under the cyclical demand. 97

B.8 Complete set of performance metrics for the grid network under the constant demand. . . 97
B.9 Complete set of performance metrics for the grid network under the variable demand. . . 98
B.10 Complete set of performance metrics for the grid network under the cyclical demand. . . 98

Xiv

Acronyms

Al
ANN
ANOVA
CNN
DDPG
DQN
GD
ITS
LSTM
ML
MDP
RelLU
RL
TD
TLC
TSC

Artificial Intelligence

Artificial Neural Network
Analysis of Variance
Convolutional Neural Network
Deep Deterministic Policy Gradient
Deep Q-Network

Gradient Descent

Intelligent Transportation System
Long Short Term Memory
Machine Learning

Markov Decision Process
Rectified Linear Unit
Reinforcement Learning
Temporal Difference

Traffic Light Control

Traffic Signal Controller

XV

XVi

Introduction

Contents
1.1 Contributions e e e e e 5
1.2 Organizationofthedocument 6

Transportation systems play a crucial role in modern societies. Ensuring that the movement of in-
dividuals and goods operates smoothly and efficiently is a priority. The continuous population increase
and growth in social and economic activities in urban areas lead to the rise in demand for transporta-
tion. Nowadays, traffic infrastructures are frequently pushed beyond their capacity, resulting in increased

congestion, travel delays, and aggravated environmental impacts.

In order to improve urban mobility, one solution is to expand the capacity of current transportation
systems with the development and construction of additional infrastructures. This process is usually
expensive and protracted, which can worsen the problem in the short term. Other solution is to im-
prove the efficiency of current infrastructures. One way to accomplish this is with the development of
Intelligent Transportation Systems (ITSs), which provide flexible approaches to manage and control traf-
fic, improving the efficiency of transports in a number of situations by taking advantage of the growing
sensory data gathered by devices such as ground sensors, video cameras and radars [2—4]. Moreover,
ITSs allow increasing the capacity of existing infrastructures while avoiding high construction costs and
short-term disadvantages [5]. This work addresses the development of intelligent Traffic Signal Con-
trollers (TSCs) based on recent advancements from the domain of Atrtificial Intelligence (Al), specifically

using Reinforcement Learning (RL) techniques.

In recent years, significant progress has been made in solving challenging problems across various
domains using RL. The field has experienced dramatic growth in attention after promising results in
tasks such as game-play [6, 7] and robotics [8]. Reinforcement learning is a Machine Learning (ML)
paradigm where an agent learns what to do, i.e., how to map situations to actions, so as to maximize a
numerical reward signal. The agent is not told beforehand which actions are better for a given situation,

but instead must discover which ones yield the most reward through trial and error.

Several lines of research proposed reinforcement learning methods for traffic light control [4], as the
problem can be easily cast into the RL framework: the agent represents the traffic signal controller, the
environment is the state of the traffic, and the actions are the traffic signal phases. This new direction
of research came to life supported by the increasing amount of traffic-related data and computational
power [2]. The core idea of RL methods, learning from trial and error without requiring an environment’s
model, is actually what makes them so appealing to the development of TSCs, and different from the
currently used transportation engineering methods. Nowadays, traffic signal controllers still heavily rely
on oversimplified traffic models and rule-based methods. Reinforcement learning methods, on the other
hand, attempt to learn good Traffic Light Control (TLC) strategies through repeated interaction with the
environment, without imposing assumptions about the traffic behaviour. The application of RL methods
is, therefore, a promising research direction that may achieve improved adaptability, thus delivering state
of the art controllers for TLC [9].

While the application of reinforcement learning techniques to TLC may seem straightforward, there
are downsides one should be aware of. The following list identifies the main challenges in the develop-

ment of RL-based traffic signal controllers:

1. The need for simulation: due to the intrinsic exploratory nature of RL algorithms we cannot allow
an agent to learn optimal behaviour by direct interaction with the real environment. Agents usually
start their learning process by trying out actions completely at random, something that is com-
pletely inappropriate in the context of this work. Due to this, RL agents are usually trained using

simulators.

2. The quality of the simulations: while the use of a controlled environment may have some advan-
tages, it is important to notice that the final agent performance is limited by the quality of the sim-
ulations and how well they mimic real-world behaviour. If the simulator is not correctly configured

to the real traffic scenario, the learnt behaviour may perform poorly in the real environment.

3. The quality of the traffic signal controllers: this point resides on the quality of the RL methods them-
selves, and how their performance is evaluated. Several RL-based controllers should be studied
and their performance and robustness thoroughly assessed under different scenarios. Moreover,
the controller must be designed in such a way that safety standards are met. Classical transporta-
tion methods should also be included in this comparison. Meaningful and significant performance

measures must be used.

4. The need for continuous adaptability: it might be important that the agent continues to adjust
its behaviour while deployed to the real world due to the highly variable and complex traffic pat-
terns. However, it is for real-world embedded agents that most warnings about potential dangers
of artificial intelligence are heeded. Thus, carefully designed safety features must be taken into

consideration.

This work is mainly focused on the third point above mentioned, although bearing in mind the first
three challenges. Concretely, the present study develops different RL-based TSCs and assesses their
performance under diverse simulation scenarios, therefore offering a comprehensive and consistent
comparison between different key TSC design elements. Such study is important given the fact that,
while numerous studies propose different RL-based approaches to TLC, it is challenging and most of the
time meaningless to compare the different works, due to the highly heterogeneous simulation scenarios
and performance metrics. Despite the vast literature published on TLC, only a small minority of the
works focuses their attention on the comparison of different RL methods for TLC [10—-12]. Therefore, it is
hard to infer from the literature what are the pros and cons of the different approaches. This study aims
to continue this underexplored line of research, providing insightful contributions regarding the design of
RL-based TSCs.

In contrast to the majority of the published works, the present thesis adopts a rather constrained
action space definition. Such choice allows for the improved interpretability of the learned behavior, as
well as the creation of TLC strategies that more closely adhere to the standards used by governmental
transportation departments throughout the world [13]. In line with the most recent research in the field,
a special emphasis is given to the use of deep learning techniques.

Additionally, in an attempt to unify the development of RL-based TSCs, this work also provides
guidelines regarding the steps required for the creation of such controllers, from simulation setup, to
performance assessment and comparison. The creation of such methodology allows for the fair and

consistent comparison between the different studied approaches.

1.1 Contributions

The major contributions of this thesis are related to the experimental comparison between different RL-
based approaches to TLC (experimental survey), providing worthy insights into how the choice of the
key TSC design elements affects the observed performance. In summary, the following list enumerates

the three main contributions:

» Propose a methodology for the development of intelligent TSCs that allows a fair and meaningful
comparison between different approaches, from scenario extraction to performance estimation
and comparison. The methodology contributes to the standardization of all the steps required to
train and evaluate RL-based TSCs, providing new tools that allow for a more comprehensive and

interpretable comparison of the performance of different methods.

+ Validate the idea that RL methods exhibit useful behaviour in the context of TLC, providing quan-
titative and qualitative measures that support this finding. More specifically, show that, despite the
fact that the present study makes use of a more constrained action space definition, RL controllers
are still able to learn efficient strategies for TLC, comparing their performance with well-established

transportation engineering methods.

+ Study different RL-based approaches to TLC, namely investigating, both quantitatively and qual-
itatively, the effect of different TSC design parameters under a diverse set of scenarios extracted
from real-world locations. It is provided a thorough comparison of several state and reward func-
tion definitions, as well as three RL algorithms: Q-learning, Deep Q-Network (DQN) and Deep
Deterministic Policy Gradient (DDPG).

A research article, covering the proposed methodology, was accepted for full presentation at the
Al for Urban Mobility workshop of the Thirty-Fifth AAAI Conference on Artificial Intelligence. A journal

article has been submitted to the Proceedings of the IEEE.

1.2 Organization of the document

The following chapter (Chapter 2) provides some additional background information required to under-
stand the rest of the document. Chapter 3 presents and discusses the different approaches that con-
tribute to increasingly efficient TSCs, from transportation engineering to RL-based methods. Chapter
4 presents the proposed methodology for the development of intelligent TSCs, from scenario setup to
performance assessment, which is further concretized in the following chapter (Chapter 5) with the im-
plementation of a set of scenarios and RL-based TSCs. The implemented controllers are then evaluated
under different simulation scenarios, and the obtained results are presented and discussed in Chapter

6. Finally, Chapter 7 summarizes the findings and points out some possible future research directions.

Background

Contents
21 Deeplearning v i i i i i i i e e e e e e e e s 9
2.2 Reinforcementlearning i oo e e e e e e e 10
2.3 Trafficlightcontrolbasics it i e 14

In this chapter, the two main topics on top of which deep reinforcement learning methods arise
from, deep learning and reinforcement learning, are briefly described. The first two sections concisely
describe, respectively, the deep learning and reinforcement learning fields. Finally, the last section

provides a brief overview of some core concepts regarding traffic light control.

2.1 Deep learning

Deep learning [14, 15] is an area within machine learning that studies the application of Artificial Neu-
ral Networks (ANNs) under supervised, semi-supervised and unsupervised learning tasks. Recently,
several RL-based approaches to TLC propose the usage of ANNs as universal function approximators,
allowing to learn useful TLC strategies from high dimensional input data. A commonly used type of
neural networks are the Convolutional Neural Networks (CNNSs), which are specialized in the processing

of data with a grid-like topology.

2.1.1 Artificial neural networks

A neural network is a model that maps an input vector x into an output vector g, through a series
of chained non-linear transformations. The network defines a mapping y = f(x;0), where 0 are the
parameters of the model. Moreover, the function f is represented by a composition of K different

functions, i.e.,

fl@)=(fF o fEDo...0f@o fM(a), (2.1)

where each function f*), k € {1, ..., K'} represents a layer of the model and is parametrized by a different
set of parameters 6. For feedforward, fully connected neural networks, each layer computes the input
of the next layer, hy, by applying a linear mapping between the output of the previous layer, hy_1, and a

set of weights W, € 6y, adding a bias term b, € 6;,, and applying a non-linear activation function a,

k=0,

i
h, = ’ 2.2
¥ {ak(thk_l—Fbk), ke {1,...,K}. (2.2)

At present, the most popular activation function is the Rectified Linear Unit (ReLU) [16], defined as
a(z) = max(z,0). Commonly used last layer activation functions, ax, include the identity function for
regression tasks and the sigmoid or softmax functions for classification tasks.

Artificial neural networks are trained to minimize a loss function L(x, y;) using Gradient Descent
(GD), given a dataset D. Loss functions quantify the error between the model’s output g and the true
value y, for each point (z,y) € D. Common loss functions include the mean absolute error or mean

squared error for regression tasks and the cross-entropy loss or hinge loss for classification tasks. In

gradient descent optimization, the loss function — and thus the error — is minimized by iteratively
updating the parameters of the model in the direction of the negative gradient of £. For each parameter
0, < 0, the batch GD update is

oL(x,y;0)
(t+1) _ p(®) Y
oty — g o Y ETES) (2.3)

®
@yep 99;

where « denotes the learning rate. It turns out that, due to the functional decomposition of the model (Eg.
2.1), and through the chain rule of calculus, the partial derivatives 9£/06; can be efficiently computed
for all 8, € 6 using the back-propagation algorithm [17]. Further variations of the batch GD update rule
have been proposed, increasing the speed and stability of the learning process. Among these methods

is the commonly used ADAM optimizer [18].

2.1.2 Convolutional neural networks

Convolutional Neural Networks [19] are a particular class of ANNs specialized in the processing of data
that has a known grid-like topology, such as image data. A convolutional layer, the core building block of
a CNN, consists of a set of learnabile filters that are convolved across the width and height of the input.
Using the backpropagation algorithm, the model learns filters that detect useful features in the input. A

convolutional neural network is an ANN that includes at least one convolutional layer.

2.2 Reinforcement learning

Reinforcement learning [1] addresses problems that can be modeled as Markov Decision Processes
(MDPs). An MDP is a discrete time, stochastic control process that provides a mathematical framework
to model sequential decision making under uncertainty. The decision maker, called the agent, continu-
ally interacts with a stochastic environment by selecting actions. The environment responds to the agent
by presenting new situations (states) and giving a numerical value, the reward, which the agent seeks
to maximize over time through its choice of actions. Moreover, an MDP verifies the Markov property,
which states that the conditional probability distribution of future states depends only upon the present
state and action, not on the sequence of events that preceded it. In the context of the present work,
this assumption seems more or less reasonable depending on the exact state definition. Neverthe-
less, previous works showed that, even in non-fully Markovian conditions, RL methods can attain useful
behavior [6].

Formally, a Markov Decision Process is defined as a tuple (S, 4, p,r,~), where S is a set of states,
Ais a set of actions, p : S x A — P(S) is the transition dynamics distribution, where P(S5) is the set

of probability measures on S, and r : S x A — R is the reward function. At each time step, the agent

10

Agent]7
[Environment]47

Figure 2.1: The agent-environment interaction loop (adapted from [1]).

St at

observes the environment’s state s; € S and selects an action a; € A. As a consequence of the chosen
action, at the next time step, the agent receives a numerical reward r;,; with an expected value of
r(s¢, a;) and the environment evolves to a new state s;.1 € S with probability p(s;+1]s¢, a;). Figure 2.1
illustrates this interaction.

A policy w(a|s), m : S — P(A), is a mapping from states to probability distributions over actions.
The agent’s goal is to obtain a policy which maximizes the expected discounted cumulative reward. An

optimal policy 7* is thus defined as

Z ’yt/r(sh at)

t=0

7 = argmax E, So = s] , forall s € S, (2.4)
where the parameter v € [0,1) is the discount factor. Reinforcement learning algorithms usually in-
volve the estimation of value functions, which capture the expected discounted cumulative reward while

following policy =, such as

V7(s) =E, nytr(st,at) S0 = S‘| , foralls e S, (2.5)
t=0
Q7 (s,a) =E, Z’ytr(st,at) S0 = S,a9 = a‘| , foralls € Sanda € A. (2.6)
t=0

Given a complete description of the environment’s dynamics, both optimal value functions V* and Q*

can be computed using dynamic programming (model-based RL).

2.2.1 Temporal difference learning

Temporal Difference (TD) methods allow an agent to learn directly from raw experience in an online,
incremental fashion, by estimating Q-values from observed trajectories (sampled sequences of states,
actions and rewards). This class of methods is capable of attaining optimal behavior without requiring
a complete model of the environment’s dynamics (model-free RL). Temporal difference methods are
divided into two main classes: on-policy methods attempt to evaluate the policy that is used to generate

trajectories, whereas off-policy methods evaluate a different policy than the one that is used to generate

11

the data. In the off-policy setting, the policy used to sample trajectories is usually known as the behavior
policy, while the policy being evaluated is referred to as the farget policy.
Q-learning [20] is an off-policy TD method that directly approximates Q*(s,a), for all states s and

actions a, using the following update rule

Q (s¢,at) < Q (s¢,a) + o |regr + ’Ygleain (st41,a) — Q (s¢,a¢) | (2.7)

where o denotes the learning rate. Convergence to the optimal policy is guaranteed if all state-action
pairs are infinitely visited by the behavior policy. Usually, this is guaranteed with the use of an e-greedy
policy. An e-greedy policy chooses, most of the time, an action that has maximal action value for the

current state, but with probability e selects a random action instead.

2.2.2 Value function approximation

Previously described methods have well-defined conditions that assure convergence to optimal behavior.
Unfortunately, they do not scale with the size of the problem because it becomes impossible to estimate
Q-values for each state-action pair individually. Instead, the agent must be able to generalize from
previous experience.

In function approximation methods, the action-values Q(s,a) are approximated by a differentiable

function Q(s, a;). A common goal is to use GD methods to find the model’s parameters 6 that minimize

J(0) = E(sayes [(T —O(s, a; 9))2] , 2.8)

where § is the stationary (s, a) distribution under the behavior policy and T is the target: an estimate
of Q(s,a). The semi-gradient update, which ignores the fact that the target may also depend on the
parameters 0, is given by

20 = o (T = Q(st,04;0)) VoQs,), (2.9)

where a denotes the learning rate. The Q-learning algorithm using function approximation is obtained
by setting
T =ri +7H1€aj(Q(5t+1,a;9)7 (2.10)

Deep Q-Network [6] is a well-known deep-RL method that uses a neural network as function approxi-
mator. It is a variation of the previously described Q-learning algorithm with function approximation that
features two major modifications: (a) GD is performed with batches of experiences (s;, as, r1y1, s¢+1) that
are randomly sampled from a buffer memory, known as the replay buffer; and (b) the target network pa-
rameters, i.e., the parameters of the neural network used to compute the target (Eq. 2.10), remain fixed

(not updated) for a fixed number of successive steps. Further improvements to the standard DQN al-

12

gorithm include techniques such as double Q-learning [21], prioritized replay [22], dueling networks [23]

and multi-step targets [24].

2.2.3 Deterministic actor-critic methods

All methods until now involve the estimation of state/action-value functions and then selection of ac-
tions based on those estimates, i.e., the policy is implicitly represented by state/action-value functions.
However, we can also consider methods that instead learn a direct mapping from states to actions.
Policy gradient methods explicitly represent the policy with a parameterized function, differentiable
with respect to its parameters. Consider a deterministic policy u4 : S — A and a stochastic behavior
policy S. In the context of this work, the goal is to use GD methods in order to find the parameters ¢ that

maximize the performance objective
(ko) =Y pa(s)Q" (s, 114(5)), (2.11)

where pg(s) = >, po(s’) 22y 7' Pj(s]s") denotes the discounted state distribution under 3, po is the
distribution of the initial state, and Pj(s|s") denotes the density at state s after ¢ steps (under 3 and

starting at s’). The deterministic policy gradient theorem [25] establishes that

th‘]ﬁ (,lt¢) =]ESN;);; [V¢M¢(S)VGQ“¢ (57 a)|a:u¢(s)} (21 2)

A critic estimates Q(s, a; 0) =~ Q"¢ (s, a), off-policy, from trajectories generated by the behavior policy g,

constructed by adding noise sampled from a noise process N to the actor policy,

Bls) = po(s) + . (2.13)

The Deep Deterministic Policy Gradient [8] algorithm is a well-known RL method, in which the critic
and the actor are parameterized by two neural networks. Similarly to the DQN algorithm, it uses a
replay buffer where the tuples (s:, at, r++1, st+1), generated by the behavior policy, are stored. Batches
of experiences are sampled from the replay buffer and used to update both the actor and critic networks
using batch GD. The actor is updated accordingly to Eq. 2.12, whereas the critic is updated in a similar

way to Section 2.2.2 (Eq. 2.9), using the target

T =711 +7Q(5¢41, e (5:41): 0", (2.14)
where ¢’ and ¢’ are the parameters of the target networks, a periodic copy of the ¢ and 6 parameters.

13

1o 1 Right-turn/
: through
Incoming 1 11 movement
approach — 1 7% (|
- - - - - Left-turn
o —_ movement
W === =
[[
Outgoing 11 1
approach |O | 1o
1 1 1 1

Figure 2.2: Intersection with four incoming approaches, each composed of three lanes.

2.3 Traffic light control basics

This section gives a brief overview of some important concepts regarding traffic light control, specifically

the used terminology’ and the main objectives in TLC.

2.3.1 Traffic light control terminology

A traffic infrastructure can be roughly represented as a network where roads and junctions are, respec-
tively, the edges and nodes of a graph. A road connects two nodes of the network and has a given
number of /lanes, a maximum speed and a length. Traffic light controllers are typically installed at inter-
sections, a common type of road junctions. Figure 2.2 illustrates a typical signalized intersection with
four incoming and four outgoing approaches, each approach composed of three lanes.

A signal movement refers to the transit of vehicles from an incoming approach to an outgoing ap-
proach. It is generally categorized into the left-turn, through and right-turn movements. For example,
East-South (equiv. to East left-turn) and East-West (equiv. to East through), are examples of signal
movements accordingly to the intersection illustrated on Figure 2.2. A green signal indicates that the re-
spective movement is allowed, whereas a red signal indicates that the movement is prohibited. A yellow
signal is usually set as a transition from a green to a red signal.

A signal phase is a combination of non-conflicting signal movements, i.e., the signal movements that
can be set to green at the same time. For example, (North through, South through and South right-
turn) is a valid signal phase, however (North through, South left-turn) is not. A signal plan, for a single
intersection, is a sequence of signal phases and their respective durations. Usually the time to cycle
through all phases, known as cycle length, is fixed. Therefore, the phase splits - the portion of time

allocated for each signal phase - are normally defined as a ratio of the cycle length.

1The presented terminology is adapted from Wei et al [4].

14

A traffic demand refers to the number of vehicles that are inserted to the network during a given time
interval, whereas a route refers to a sequence of edges (path) that each of the vehicles traverses in
order to reach its desired destination. A trip is a route that a given vehicle performs during a certain time

interval.

2.3.2 Traffic light control objective

The major objective of traffic light control is to increase the efficiency of traffic infrastructures without
compromising safety. But what exactly does it mean to increase the efficiency of a traffic infrastructure?
While there is not a single answer to this question, different measures have been proposed to quantify

the efficiency of traffic infrastructures:

+ Travel time [26]: the average travel time for all vehicles in the network. For each vehicle it is defined

as the elapsed time since the vehicle enters the system until it leaves the system.

 Travel delay [27]: the average travel delay for all vehicles in the network. The delay of a vehicle is

defined as the time a vehicle has traveled within the environment minus the expected travel time.
» Waiting time [27]: the average stopped time for all vehicles in the network.
» Number of stops [28]: the total number of stops for all vehicles in the network.
* Queue length [27]: the total number of queued vehicles in the road network.

» Throughput [27]: the number of vehicles that completed their trip or crossed a given traffic infras-

tructure during a certain time interval.

The minimization/maximization of one or more of the aforementioned measures is, therefore, the main
goal of traffic light controllers, being the minimization of the average travel time the most commonly used
objective. The travel time metric is sometimes complemented or replaced by proxy metrics such as the
waiting time, queue length, number of stops or throughput, being the later fundamentally different from
the previous since it is capable of encoding information related with the vehicles’ speed. Among these
proxy metrics, the waiting time metric provides additional information in comparison to the queue length
and number of stops metrics since it takes into account how long each vehicle has been waiting in queue
and not just whether the vehicle is waiting or not. Eom et. al. [29] provide a thorough list of the several
measures that have been proposed to quantify the efficiency of traffic infrastructures.

In the context of the present study and as commonly used in the traffic engineering field, we select the
minimization of the average travel time as the main objective of RL-based TSCs. However, alongside the
travel time metric, we also report secondary metrics such as the average waiting time and the average

number of stops, the two being fundamentally different from each other.

15

Related work

Contents
3.1 Methods in transportationengineering i it i i 17
3.2 Generalized optimizationapproaches 18
3.3 Reinforcement learning-based traffic lightcontrol 18

16

Throughout the years, several methods have been used to develop increasingly efficient traffic signal

controllers. This section gives an overview of the main approaches to traffic light control.

3.1 Methods in transportation engineering

Several traffic light control systems have been developed throughout the years by transportation re-
search institutes and enterprises worldwide. The first automated TSCs were introduced during the
1950s, giving rise to a sequence of increasingly efficient generations of traffic control technologies.
Along this evolution, TLC methods became progressively more robust and adaptable to changing traf-
fic conditions. Developed approaches transitioned from offline to online control, from intersection to
network level control, and from fixed-time to actuated/adaptive systems.

The first generation of TSCs comprises fixed-time methods and optimization techniques for offset cal-
culation between neighboring intersections. Fixed-time control systems deterministically cycle through
each of the light phases at constant time intervals. Usually, these methods take into account daily de-
mand variability by dividing the traffic flow within a day into multiple periods and optimizing the traffic
light controller settings for each interval independently. Among the first generation of controllers is the
well-known Webster method [30], used to calculate the cycle length and phase splits for a single (iso-
lated) intersection. While assuming that the traffic is uniform for a given time period, the Webster method
derives closed-form equations to calculate the optimal phase splits and cycle length. It can be shown
that the Webster method optimizes the total travel time for vehicles crossing the intersection. Other first
generation controllers include, for example, the Maxband [31] and Greenwave methods. While these
systems are simple and commonly used nowadays, they are usually not able to adjust to the changing
traffic conditions and lack adaptability.

The following generations of traffic controllers comprise actuated/adaptive systems, which use input
from sensors to dynamically adjust the signal plan scheme (cycle length and phase splits) or change
the current signal phase. Therefore, actuated/adaptive control systems are more flexible than fixed-
time systems because they are responsive, up to a certain extent, to changing traffic conditions. While
some systems just use a set of rules to determine when to switch to the next signal phase, others
use internal models to evaluate which traffic plans fit better the observed traffic conditions. The max-
pressure [32] is an example of an adaptive controller that aims to improve the flow of vehicles between
adjacent intersections. The pressure for a certain signal movement is defined as the difference between
the number of vehicles on the incoming lanes and the number of vehicles on the outgoing lanes. The
method aims to minimize the overall pressure for an intersection by picking, at each timestep, the phase
with the maximum pressure. It can be shown that max-pressure control maximizes the throughput of the

whole road network.

17

Several other actuated/adaptive systems, such as SCATS [33], SCOOQOT [34] and RHODES [35],
were developed throughout the years. A comprehensive review of classical transportation engineering
methods for TLC can be found in one of the published surveys/manuals [3, 36, 37].

While the previously described transportation engineering methods greatly contribute to increase the
efficiency of traffic infrastructures all around the world nowadays, they feature some shortcomings. Most
of the methods cast the TLC scenario into an optimization problem; however, they usually simplify the
problem using unrealistic assumptions about the traffic flow. For most of the actuated/adaptive systems,
the data gathered by ground sensors is often low quality (noisy and low-frequency), thus not providing
enough information about the traffic state to the TLC system. In addition, the used traffic models are
usually oversimplified. As a result, the majority of used TLC systems still rely a lot on manually designed
traffic signal plans and are not truly able to adapt to real-time traffic patterns [4, 5].

While classical transportation engineering methods are commonly used in practice nowadays, the
study of RL approaches to TLC has increasingly become more popular. Reinforcement learning methods
provide a completely new approach to tackle the traffic light control problem. This new direction of
research is, in fact, barely inspired by the previously described methods. Therefore, this work uses

classical methods mostly as baselines for comparison with the proposed approaches.

3.2 Generalized optimization approaches

Besides the application of RL-based methods to TLC, other Al-related techniques such as fuzzy logic
[38—42], genetic algorithms [43—47], swarm intelligence [48, 49], neural networks [50,51], and dynamic
programming [52] have been applied to the development of intelligent TSCs. Jacome, et al. [53] provide

a concise review of the different Al-related techniques used in the development of intelligent TSCs.

3.3 Reinforcement learning-based traffic light control

In recent years, the study of reinforcement learning approaches to traffic light control has progressively
become more popular, supported by the increasing amount of traffic-related data and computational
power [2]. The use of reinforcement learning methods features one key advantage over transportation
engineering methods: RL methods are capable of learning good control strategies without requiring a
model of the system [9], therefore making them appealing to be used in the context of TLC.

The reinforcement learning framework straightforwardly accommodates the traffic light control prob-
lem: the agent represents the traffic light controller, the environment is the state of the traffic, and the
actions are the traffic signal phases. However, proposed solutions vary on the exact MDP formulation

and several different learning approaches are used, from model-based to model-free methods, from tab-

18

ular to function approximation methods, and from value-based to policy-based/actor critic methods. For
multi-intersection scenarios, some works propose the use of multi-agent RL, while others decompose
the problem into multiple independent sub-problems that are solved using single-agent techniques.
This section gives an overview of the RL literature for TLC. For convenience, the analysis of the dif-
ferent approaches is broken down into two main parts: Section 3.3.1 explores how the TLC problem can
be modeled into the MDP framework, detailing and discussing the most used state, action and reward
definitions among the research community; Section 3.3.2 provides a review of the broad and diverse
RL-based methods proposed to address the TLC problem. The first section is, therefore, more focused
on the description of the MDP formulation, whereas the second is mostly focused on providing an al-
gorithmic overview of the used RL methods, as well as describing and discussing the most important

works. Further details can be found in one of the published surveys addressing this topic [4,54].

3.3.1 Markov decision process formulation

A very important step towards the development of RL-based traffic signal controllers is to formulate the
TLC problem under the MDP framework. In the context of this domain, it is usually impossible to fully
describe the underlying MDP, especially because the transition probability function is unknown or too
complex to be modeled. Hence, in the majority of the works three main components are modeled: the

action space, the state space, and the reward function.

Action space definition

Defining the action space is one of the most important steps in the development of RL-based TSCs
since it determines the flexibility of the agent, i.e., how it is able to affect the environment’s state through
the selection of its actions. Therefore, this choice may greatly limit performance and restrict the state
space and reward function definitions, as well as the used RL method. Thus, this design choice should
be carefully considered at an early stage of development.

The literature proposes four different categories of action space definitions:

» Set phase split [55]: the cycle length has a fixed duration, and the action consists of setting the
phase splits for the next cycle. Usually, the splits are picked from a pre-defined set of candidate

time ratios.

» Set phase duration [28]: the action consists of setting the duration of the current signal phase.

Usually, the phase duration is picked from a pre-defined set of candidate time periods.

» Keep or change phase [56]: the TSC decides, at each time-step, whether it changes to the next

phase or keeps the current phase for one more time-step.

19

Set Set Keep or Choose
phase phase change next
split duration phase phase

i i i —>

Flexibility, adaptability, reactiveness

Figure 3.1: lllustration of the relative flexibility of the different action space definitions (not to scale).

» Choose next phase [26]: at each time-step, the action consists of picking the next phase to be
executed. If the selected action corresponds to the current active phase then the green time for

that phase is extended.

It is important to understand that the four definitions exhibit different degrees of flexibility and reac-
tiveness. Figure 3.1 displays the overall flexibility trend for the different definitions. The set phase split
is clearly the less flexible, since the cycle time and phase order is kept fixed. Furthermore, the agent
is only able to interact with the environment at the beginning of each new cycle. Therefore, its reac-
tiveness is lower in comparison with the other definitions. The set phase duration and keep or change
phase definitions, on the other hand, do not have a fixed cycle time (they are acyclic) and, depending
on the exact implementation, may be able to skip phases, therefore being more flexible. The latter, keep
or change phase definition, exhibits a higher degree of reactiveness in comparison to the former, set
phase duration, since its frequency of interaction with the environment is higher. Finally, the choose next
phase exhibits the highest degree of flexibility as it is acyclic, and able to jump to an arbitrary phase (it
does not need to go through the phases sequentially). It is also highly reactive since it interacts with the
environment at each time-step. These different levels of flexibility and reactiveness play a key role in the
time-scale adaptability of the agent. While for the more reactive definitions the agent is able to proac-
tively adjust to traffic patterns that emerge within seconds, for the less reactive definitions the time-scale
is rather coarser (minutes instead of seconds).

The majority of the works use the choose next phase action definition, arguing that it allows a higher
degree of flexibility. However, a similar behaviour can be achieved with the set phase duration or keep
or change phase approaches by allowing a signal phase time of zero, as suggested by Aslani et al. [28].
On the other hand, the fact that the set phase split definition uses a constant cycle length, in contrast
to the other definitions, is advantageous as it may allow an easier synchronization between TSCs at
adjacent intersections.

While highly flexible action definitions are the norm among the research community, the race to-
wards more reactive TSCs unveils some important shortcomings. As the flexibility of the action space
increases, it becomes easier for the agent to exploit the traffic simulator and learn strategies that yield
a good performance in simulation but may be useless in practice, and which may even violate safety

standards. As an example, the majority of the works allow the agent to arbitrarily skip phases. While this

20

may look appealing due to the fact that the agent is able to skip phases whenever they are empty, it also
opens up the possibility for the agent to completely neglect phases that have a very low traffic demand
(e.g. only give green time to certain phases every 5 minutes). This is clearly unfair and, furthermore,
can be undesirable as there may be pedestrians waiting to cross the street. Thus, it is important to keep
in mind that the agent should guarantee a minimum green time for all phases, something that can be
easily ensured with the less flexible set phase split action definition.

From the previous discussion, it appears that there is not a closed answer to which action definition
is the best. However, it is certain that a successful application of RL methods for TLC needs to appropri-
ately balance a tradeoff between the flexibility and the fairness/safety of the action space definition. The
duality between efficiency and safety is however, common across the traffic engineering field, as “safety
may be seen as an element needed to be sacrificed in order to achieve improvements in efficiency and
meet ever-increasing demands. The reality is that traffic signals can, and in fact must, serve both opera-
tional efficiency and safety based on the conditions.” - U.S. Department of Transportation, Traffic Signal

Timing Manual, p. 1-2 [5].

State space definition

Various definitions of state space have been proposed, and the literature is very diverse with respect
to this matter. State space definitions vary from simple representations such as the number of vehicles
waiting (queue lengths) [57], to more complex representations that take into account the position and
velocity of the vehicles approaching an intersection [26]. The following elements/features’ have been

proposed to describe the environment’s state in the context of TLC:

Queue length [27,57]: the total number of waiting vehicles (stopped or travelling with a speed that
is below a certain threshold) at each phase. One common state definition is to use the maximum

queue length associated with each signal phase.

» Waiting time (delay-based) [11]: the total time vehicles spent in queue (stopped or travelling with

a speed below a certain threshold) for each of the signal phases.

» Volume [28]: the total number of waiting and approaching vehicles for each phase of the intersec-

tion.

* Position of vehicles [26]: the position of the vehicles is usually represented with a boolean matrix
that discretizes the approaches of the intersection into segments, where a value of one indicates
the presence of a vehicle on that location, and a value of zero represents the absence of a vehicle

on that location.

1The terminology regarding the state space and reward definition is not consensual in the research community, therefore, a
mismatch between the names presented in this document and the ones that appear in the cited articles may occur.

21

» Speed of vehicles [26]: the speed of the vehicles for a given phase, usually normalized by the
speed limit of the respective lane. The velocity of the vehicles can be either aggregated into a

scalar by averaging, or encoded in a real-valued matrix, in a similar way to the previous feature.

Most works combine one or more of the aforementioned elements in the construction of a state space
representation. Depending on the action space definition, the current signal phase and/or the elapsed
time since the last phase switch, may also be added to the state.

Recently, the use of more complex state definitions is increasingly becoming more popular. These
high dimensional representations are used in the hope to gain better insights about the traffic state.
However, they make RL agents less sample efficient and may not necessarily boost performance [58].
Genders et al. [58] model and compare three state definitions with different resolutions, from occupancy
and average speed to individual vehicle position and speed. Reported results show that low-resolution
state representations perform almost identically to high resolution state definitions.

One important aspect resides in the fact that each state representation satisfies the Markov property
to a different extent. More descriptive state definitions, such as the ones that take into account the
position and velocity of the vehicles are more “Markovian” in comparison to simpler, less descriptive
definitions. Therefore, given the assumptions stated in Section 2.2, more descriptive definitions may be
more suitable to be used in the context of RL.

Additionally, it is important to keep in mind that, for real-world deployment, the TSC must be able to
infer the current environment’s state using the available technologies (sensors, cameras, etc.). There-
fore, while some state space definitions may look appealing in the simulated environment, they may
not be suitable for real-world deployment as it may be difficult, or even impossible, to infer the state
due to technological constraints. This concern is mainly directed to more descriptive and complex state

representations, such as the state definitions that use the exact position and velocity of the vehicles.

Reward function definition

Finally, various reward functions have been proposed to address TLC. It turns out that, while the mini-
mization of the average travel time is a commonly used objective in the development of TSCs, it is not
well suited to be used as a reward function in the context of RL-based methods, due to the fact that the
total travel time for each vehicle is unavailable at decision time [59]. Moreover, the reward should be
computable from the state and action alone, thus observability issues with the state also influence the
choice of reward.

In the literature, the reward function is usually defined as a weighted sum composed of one or more

of the following elements:

* Queue vehicles [27,57]: similar to the definition of the queue length state space, this reward

formulation aims to minimize the queue lengths for all phases of the intersection. As an example,

22

Oliveira et al, 2006 [60] define the reward as the difference of the sum of squared maximum queue

lengths between decision steps.

» Waiting time (delay-based) [11,26]: aims to minimize the time spent in queue by the vehicles. For
example, Nishi et al, 2018 [59] define the reward as the negative sum of the waiting times of all

vehicles at the intersection.
» Volume [28]: minimize the volume of the intersection’s incoming approaches.

» Throughput [27,56]: maximize the number of vehicles that cross the intersection in a given time

period.

* Number of stops [11]: minimize the number of stops for all the vehicles. Intuitively, the less the

number of stops, the smoother the traffic flows.

+ Speed [55]: maximize the speed of the vehicles. Intuitively, the higher the average speed, the

sooner the vehicles will reach, on average, their desired destinations.

* Pressure [61]: minimize the pressure of the intersection, i.e., the difference in volume between the

incoming and outgoing approaches.

All previous reward definitions can be implemented in two different ways: (a) as an absolute value
at a given decision point; or (b) as a difference between two consecutive decision points. However, it is
still not well understood which implementation is the best and it is quite likely that the best formulation
depends on the action space definition.

In an attempt to study how the choice of reward function impacts the performance of RL-based TSCs,
Touhbi et al. [27] explore several reward definitions in a single real-world intersection from downtown
Toronto. The developed TSC is based on a tabular Q-learning algorithm which uses a variation of the
quevue length state space representation to decide when and to which signal phase the system should
change. The results show that the performance of the proposed method is highly influenced by the
reward definition and traffic volumes at the intersection. Among the tested reward definitions (queue
length, delay-based and throughput), for high traffic volume, the delay-based reward showed improved
performance, achieving reduced queue lengths and average vehicles’ delays. In contrary to the other

definitions, the throughput reward revealed to be more unstable, producing heterogeneous results.

3.3.2 Methods

The reinforcement learning literature for traffic light control is very rich with respect to the variety of
proposed methods. The present section provides an overview of those approaches by segmenting the

works according to their RL taxonomy (model-based or model-free, value-based or policy-based, etc.).

23

In order to keep the review short and concise, the exact problem formulation is omitted for the majority
of the works. However, we note that the choice of the learning method is not independent from the MDP
formulation.

The first major difference characterizing the proposed works depends on whether the used method
relies on a detailed transition probability function or not, i.e., if it is model-based or model-free. While the
large majority of the methods are model-free, some works propose the use of model-based approaches
[62-65] that primarily rely on planning using dynamic programming techniques. For example, Wiering et
al. [63] use a discrete model-based algorithm that aims to minimize the overall vehicles’ waiting time by
estimating road-user-based value functions [62].

In the context of this work, model-based approaches to TLC are not considered due to the limitations
associated with this class of methods. While model-based methods are appealing due to improved
sample efficiency, in the context of TLC it is usually impossible to provide a complete description of
the environment’s dynamics given the highly unpredictable traffic behaviour. Therefore, we follow the

research community and focus on model-free methods to TLC.

Tabular methods

The first model-free methods used in the development of TSCs consisted of the application of tabular
Q-learning [27,66] or SARSA [67,68] algorithms. As an example, Abdulhai et al. [66] propose the use
of tabular Q-learning to control an isolated two-phase intersection. The developed TSC measures the
queue length for each of the incoming approaches of the intersection and decides whether to extend or
change the current signal phase in such a way that the average number of waiting vehicles is minimized.
Presented results show that the developed controller is able to reduce up to 44% of the delays, in
comparison to a pre-timed controller.

El-Tantawy et al. [11] provide a comparison between Q-learning and SARSA based on three state
definitions and four reward functions, in a real-world traffic network of downtown Toronto. Despite the
fact that both algorithms generally outperformed fixed-time and actuated controllers, experimental results

showed no significant performance difference between the Q-learning and SARSA algorithms.

Even though tabular methods offer theoretical convergence guarantees to optimal behaviour, they are
not suitable to handle large or continuous state spaces. Therefore, the previously presented approaches
were restricted to the use of simpler state representations such as queue lengths, volumes or cumulative
delays. Furthermore, the large majority of the state spaces are inherently continuous. As such, a
carefully tuned discretization procedure needs to be carried in order to be able to use this class of RL
methods. Nevertheless, the results presented in the aforementioned works are promising [11]. As such,

it is important for tabular methods to be included in our study.

24

Function approximation methods

The use of function approximation methods, namely deep learning techniques, is undoubtedly at the
core of current RL-based TLC research. Although some works propose the use linear approximators
consisting of radial basis functions [28,69], triangular-shaped functions [69] or tile-coding [28,69,70], the
majority use ANNs and consist of variations of the well-known DQN algorithm [26, 56,59, 71-73]. High
dimensional state space representations that take into account the position and velocity of the vehicles

are the norm, while varied action and reward definitions are used.

Genders, et al. [26] use a convolutional neural network with DQN to estimate action-values. The
input of the neural network consists of a matrix that encodes both vehicles’ positions and velocities,
as well as the current signal phase. Authors argue that this raw state space representation is able to
provide a superior insight about the traffic conditions in comparison to more abstract representations
such as the number of queued vehicles or the vehicles’ flow. The TSC decides, at each decision step,
which is the most adequate signal phase from a set of pre-defined actions. The reward is defined as the
change in vehicle delay between decision steps. Experiments with a one-intersection topology showed
improved results in comparison to a shallow network that used only the number of queued vehicles and

the current signal phase as state space.

Further works proposed the use of alternative ANN architectures [59, 71,72, 74]. Choe et al. [72],
for example, also use a DQN-oriented approach but combine a multi-layer perceptron with a Long Short
Term Memory (LSTM) cell, allowing the agent to memorize some information across time steps. Re-
ported results show that the proposed architecture outperforms the standard ConvNet-based DQN, re-
ducing the overall waiting time of the vehicles. Zheng et al. [73] propose a neural network architecture
specifically designed to tackle the TLC problem. The developed network is phase-invariant and prior-
itizes signal phases with a higher demand. According to the presented results, the proposed method
achieves improved sample efficiency and outperforms fixed-time methods, actuated systems, as well as
standard DQN methods such as [56, 75].

Even though it is not straightforward to understand from the previous works whether the use of func-
tion approximation methods actually improves performance over the simpler tabular methods, Shabestary
et al. [76] suggest that, indeed, function approximation methods can outperform discrete methods. The
work develops a TSC based on a deep Q-network and compares its performance with a tabular Q-
learning version that uses queue lengths as state and is trained to minimize the average cumulative
delay. Experimental results using a single isolated intersection show that the DQN-based method out-
performs the discrete Q-learning algorithm for all evaluation metrics. However, it is important to notice
that the evaluation scenario consists of an oversimplified traffic topology with just one intersection. As

such, the presented results may not generalize to other settings.

25

Actor-critic methods

Finally, actor-critic methods were also proposed for the development of TSCs [28,55,77,78]. One of the
major advantages of these methods is that they are able to directly handle continuous action spaces, as
opposed to the previously presented works.

Aslani et al. [28] propose and compare different actor-critic algorithms based on different types of
function approximation, such as tile coding and radial basis functions. The state space is composed of
two elements: the current active signal phase and the volume of the lanes leading to the intersection. At
the beginning of each signal phase, the TSC is able to pick the duration of the current green phase from
a set of discrete values. The reward is defined as the negative total volume for the intersection. The
results show that the proposed actor-critic architectures achieve improved performance in comparison
to fixed-time, actuated systems, and discrete state approaches.

Casas [55] controls the phase splits of a signal plan with a DDPG algorithm. In this work, the TSC is
provided with the average speed of the vehicles captured by ground sensors and is trained to maximize
the average speed for all vehicles in the network. In contrast to Aslani et al. [28], the proposed action

space is continuous.

3.3.3 Discussion

Given a multi-intersection traffic infrastructure, the problem of RL-based TLC can be seen as an inher-
ently cooperative game between different agents, each responsible for the control of the traffic lights at
a given set of intersections. In its simpler, fully decentralized form, as in most RL-based approaches
presented in the previous section, an RL controller is developed for each of the intersections, and no
explicit coordination mechanisms are considered between agents [28].

A fully decentralized approach presents some advantages, such as minimal communication over-
head. However, it is important to notice that the actions taken by one agent often influence the perfor-
mance of the neighboring agents, and poor coordination significantly impacts performance [79]. Conse-
quently, it may be important for each agent to be aware of the intentions of its neighbors and that they,
cooperatively, learn useful strategies that not only improve traffic conditions locally to each intersection,
but also improve the global road network performance.

Several different coordination strategies have been proposed to address RL-based TLC. Some works
are focused on the study of fully centralized approaches where a single controller jointly outputs the
actions for all TSCs in the network [55], while other approaches explicitly consider coordination mech-
anisms among adjacent agents using coordination graphs [75], or optimize a joint reward function [59].
Unfortunately, such approaches do not come without their own caveats, despite the fact that the advent

of deep learning greatly contributed to improve the scalability of the methods [15].

26

Another key aspect in the development of RL-based TSCs resides on the robustness of the resulting
policies. It is important for the TSC to reliably perform in highly dynamic urban environments, adapting
to unpredictable changes in traffic patterns, as well as traffic disruptions, accidents, sensor failures,
among others. Rodrigues et al. [57] assess the performance of several RL configurations under different
scenarios, namely under demand surges caused by special events, capacity reductions from incidents,
and sensor failures. Empirical results show that, in order for deep RL controllers to be robust to these
uncertainties, they need to experience these scenarios during training. Aslani et al. [28] developed
another work that considers a wide variety of traffic scenarios. The robustness of the different algorithms
is tested under scenarios comprising events such as traffic incidents and impatient pedestrians crossing,
as well as noisy sensor data.

In spite of the rich literature that explores the use of RL for TLC, it is hard to understand what is the
relative performance of each approach. This is due to the fact that the works are highly heterogeneous
with respect to the experiments’ setup: different evaluation metrics and simulation scenarios are used in
different works, making it difficult, often even impossible, to compare different approaches.

Due to this fact, it is not straightforward to understand from the previous discussion what are the
most suitable MDP formulations to tackle the TLC problem. Works such as El-Tantawy et al. [11] provide
some hints with respect to different MDP formulations that are worth to be implemented and compared,
however, there is still a lot left to understand. For example, with respect to the different proposed
action spaces, it is still not clear whether highly flexible definitions are required to attain state-of-the-art
performance. More restrictive action spaces should not be forgotten, as they are more aligned with
current transportation engineering policies [13].

Regarding the proposed RL algorithms, it is also hard to infer their relative performances as the
majority of the works are more focused on proposing new RL methods for TLC rather than compar-
ing different approaches. The work of Aslani et al. [12] is one of the few focused on comparing the
performance of different RL methods for TLC: the performance of Q-learning, SARSA, and actor-critic
algorithms for both discrete and continuous state spaces is assessed. Genders & Ravazi [10] provide a
comparison between two RL methods, DQN and DDPG, on a synthetic scenario comprising two inter-
sections. However, aside from a small minority of works, such as these two, it is hard to grasp the wider
picture, regarding the pros and cons of the different RL-based approaches to TLC.

Finally, it is worth to mention that, while the previously presented works seem to support the hypoth-
esis that, indeed, RL-based TSCs may attain state-of-the-art performance for TLC, the analyses of the
methods carried out in a number of studies feature some shortcomings. The following list summarizes
some of these flaws (related to the challenges introduced in Chapter 1), which should be carefully taken

into consideration in future research:

1. Incomplete evaluation: some works do not provide a complete evaluation of their proposals and/or

27

do not compare the obtained results with traditional TLC methods. Some provide comparisons with
fixed-time and simple actuated systems, however, modern adaptive systems are usually not taken
into account. Moreover, the majority of the works do not carefully study the resulting policy and do

not provide comparisons with traditional transportation engineering policies (challenge number 3).

2. Highly heterogeneous evaluation metrics and simulation scenarios: it is hard to compare different
approaches due to the various simulation scenarios and performance metrics used among works.

The TLC problem lacks benchmarking scenarios (challenge number 3).

3. Oversimplified traffic network topologies: a good number of works evaluate the performance of the
developed methods using oversimplified topologies that are not well-representative of real road

networks (challenge number 2).

4. Oversimplified and unrealistic traffic flows: the majority of the works use simulated traffic flows that
are not supported by real traffic data. Moreover, works seldom take into account the highly variable
traffic patterns that emerge in urban areas, and less common events such as traffic disruptions or

accidents (challenge number 2).

5. Not supported choice of design parameters: most works do not empirically justify the choice of the
design parameters, especially the choice of problem formulation: state space, action space and

reward function (challenge number 3).

The work in this thesis is specifically developed bearing all previous issues in mind. It provides a
consistent comparison between different classes of RL methods, using a complete and meaningful set
of metrics, for quasi-realistic traffic simulations. The work also comprises the study of different design
parameters. Thus, the present study continues the line of research introduced by Aslani et al. [69] and
Genders & Ravazi [10], studying a fully decentralized approach to TLC.

In contrast with most works addressing RL-based TLC, we adopt a constrained action space defini-
tion, where each agent is able to adjust the phase splits of a given intersection. Three factors support
this choice: (a) the agents’ behaviour is more inline with the expectations of transportation engineering
departments; (b) the restricted action space definition allows for improved interpretability of the resulting
policies; and (c) since the agents have a fixed cycle length, it is easier to coordinate adjacent con-
trollers - therefore a certain degree of synchronization can still be ensured even though no coordination
mechanisms are explicitly considered. The work assesses the performance of different RL methods
(Q-learning, DQN and DDPG), as well as different state space and reward function definitions, under
different simulation scenarios.

The following chapter proposes a methodology for the development of intelligent TSCs that allows
a fair and meaningful comparison between different approaches, further concretized, in Chapter 5, with

the implementation of a set of MDP formulations and RL controllers.

28

Methodology

Contents
41 Simulationsetup i i i i e e e e e e e e 31
4.2 Traffic signal controllerdesign 34
43 Training . . . o o c i i e e e e e e e e e e e e e e 36
4.4 Evaluation i e e e e e e e 37

29

30

&~ ~

Figure 4.1: Diagram illustrating the proposed methodology, composed of four stages. Solid arrows denote the main
development flow, whereas dashed arrows denote the iterative process of model tuning.

This chapter proposes a novel four-stage methodology for the development of RL-based TSCs that
aims to mitigate some of the shortcomings identified in the previous chapter, allowing to properly develop
and fairly assess the performance of different TSCs. Figure 4.1 illustrates the proposed methodology,
comprising four phases: simulation setup, TSC design, which consists of the MDP formulation and
selection of the RL method, training and evaluation. In order to make the exposition clearer, a running
example concretizes the methodology by implementing a DQN agent for a simplified traffic network. A

careful discussion of the obtained results is postponed to Chapter 6.

4.1 Simulation setup

The first stage of the proposed methodology is the simulation setup phase.! As previously discussed,
RL controllers must be trained by resorting to simulators that are able to provide a realistic response to
the agent’s actions during the learning process. The main objective of the simulation setup stage is to
prepare all the simulations needed to carry out such training. It includes gathering simulation-related
data, such as the topological data of the roads network and vehicles demand/routes data, as well as

setting up the traffic simulator.

4.1.1 Traffic simulation

Throughout the years, several traffic simulators have been developed, contributing to the improvement
of urban mobility in a number of ways. Among other purposes, simulators are used to prototype new in-
frastructures and evaluate changes to current traffic management policies. Nowadays, there are several
softwares available for urban mobility simulation, such as SUMO [80], AIMSUM [81] and Paramics [82].
Some programs focus on the behaviour of each individual vehicle (microscopic models), while others
only simulate the flow of the traffic (macroscopic models). Moreover, softwares not only differ on the

background calculations used for trajectory estimation, but also on aspects such as the customizability

1 Although a detailed discussion is outside the scope of the present study, it is important that the research community agrees on
a set of benchmark environments/traffic networks that may be used as a first test stage for the algorithms explored in the context of
TLC [10]. The existence of such benchmarks would enable a proper comparison of different models and algorithms in a common
set of environments, enabling a clearer assessment of the strengths and weaknesses of different alternatives.

31

of the simulation, visualization and scalability. For a thorough comparison of the main traffic simulators
we refer to [83, 84].

This work uses the SUMO micro-simulator. The fact that the software is open-source, widely used,
properly documented, and supported by the deep RL framework FLOW?, are the main factors that

support this choice.

4.1.2 Road networks topology

Open source services such as OPENSTREETMAP? allow to extract geospatial data from segments of
cities’ districts. During the simulation setup stage such information can be prepared and fed to the
simulator, thus opening up the possibility of simulating a rich set of networks relevant to real-world traffic
signal control.

The present study considers real-world topologies from Lisbon’s downtown. Proper setup of the
configuration files needed by the SUMO simulator involves: (a) extracting the region of interest from
OPENSTREETMAP and opening the resulting file with JOSM*, an extensible editor for OPENSTREETMAP
files, in order to fine-tune the network; (b) converting the (edited) OPENSTREETMAP file into the SUMO
network format using the netconvert® tool; and (c) opening the resulting SUMO network file with the
netedit® tool, a graphical network editor for SUMO, in order to ensure that all TSCs are properly setup,
namely check whether all traffic phases and links (connections between lanes) are correct.

The running example starts off by extracting a simple traffic network composed of a single two-
phased intersection. Figure 4.2 displays two screenshots of the intersection, extracted from Lisbon’s
metropolitan area, near Marqués de Pombal square. The previously presented steps were followed
in order to transform the OPENSTREETMAP file, displayed in Figure 4.2(a), into the final SUMO file,
displayed in Figure 4.2(b). As it can be seen, the network has been rotated using the JOSM editor for

aesthetic reasons.

4.1.3 Traffic demands and routes

Traffic demands and routes can be either synthetic [56], or derived from real-world data using origin-
destination matrices [28] or induction loops counts [57]. While data-driven estimated demands and
routes open up the possibility of running a set of situations resembling real-world observations, the
simulation setup is considerably harder. This is due to the fact that additional steps need to be taken

in order to properly pre-process the data, namely requiring manual validation and, most of the times,

2FLOW [85] is an open-source Python framework that provides an accessible way to solve vehicle and traffic control problems,
enabling the fast prototyping and evaluation of RL-based TSCs.

Shttps://www.openstreetmap.org

4https://josm.openstreetmap.de/

Shttps://sumo.dlr.de/docs/netconvert.html

6https://sumo.dlr.de/docs/netedit.html

32

https://www.openstreetmap.org
https://josm.openstreetmap.de/
https://sumo.dlr.de/docs/netconvert.html
https://sumo.dlr.de/docs/netedit.html

&

(a) OPENSTREETMAP screen- (b) SUMO screenshot.
shot.

Figure 4.2: Intersection network composed of two streets: Rua Luciano Cordeiro (vertical) and Rua do Conde
de Redondo (horizontal). The network is composed by a single two-phased intersection. Phase 1
allows the movement of vehicles in the vertical direction, whereas phase 2 allows the movement in the
horizontal direction.

scenario simplifications [86]. Moreover, depending on the selected city area, the data may be very
low-frequency, noisy and erroneous, or even unavailable [87]. Although bearing in mind that the use
of real-world data for demands/routes estimation is important as it may help to close up the simulation-
reality gap, such topic is outside the scope of this work and, therefore, the present study considers
synthetic demands/routes. Nevertheless, additional efforts are taken in order to make the simulations

as realistic as possible.

We consider synthetic demands defined, for each network, as a mapping d : N — [0, 1], where
d(k) defines the probability of inserting new vehicles at each second of the simulation, for each k-laned
source edge of the network, i.e., d(1) defines the insertion probability of all one-laned source edges of
the network, d(2) defines the insertion probability of all two-laned source edges, and so on. For the
simplest demand type considered, named constant demand type, the mapping d is kept unchanged

throughout the simulation.

With respect to the routes generation procedure, the duarouter’ tool is firstly used in order to retrieve
the shortest routes for all source-sink edges pairs. Afterwards, the routes are weighted by a synthetic
procedure, but aligned with real-world traffic patterns: for each source edge, each of the possible short-
est routes r is assigned a weight given by w, = 1/(numberOfTurns(r) 4+ 1). For each source edge, the
calculated weights are then normalized using a softmax function with a temperature coefficient. This
helps to make the resulting distribution skewed. Accordingly to experimental testing, this criteria was

picked due to its simplicity and good results: it greatly decreased the number of gridlocks® while keeping

"https://sumo.dlr.de/docs/duarouter . html
8A gridlock occurs when a queue from one bottleneck creates a new bottleneck somewhere else, and so on in a vicious cycle
that completely stalls the circulation of vehicles [88].

33

https://sumo.dlr.de/docs/duarouter.html

the routes generation procedure stochastic. Furthermore, it is supported by the real-world evidence that

vehicles tend to follow a certain cardinal direction while traveling on a grid network.

In our running example, the simulation setup is completed at this point by defining the traffic demands
mapping, and weighting the possible routes using the described procedure. Specifically, the mapping
{d(1) = 0.1, d(2) = 0.22} is used: as it can be seen, the defined insertion probabilites are roughly

proportional to the number of lanes of the respective edge.

4.2 Traffic signal controller design

The second stage of the presented methodology consists of the description of the traffic light control
problem as a Markov decision problem (or a multiagent version thereof), as well as selection of the RL

method to be used as a learning component for the TSC.

4.2.1 Markov decision process formulation

As seen in Sections 2.2 and 3.3, an MDP comprises five elements: the state space, the action space,
the transition probabilities, the reward function, and the discount factor. Most works applying RL to the
TLC domain do not specify a transition dynamics distribution, therefore, three key components need
to be specified: the state space, i.e., the information upon which the agent will base its decisions, the
action space, i.e., how the agent is able to influence the environment through the choice of its actions,

and the reward function, which implicitly encodes the goal of the agent.

The first and perhaps most important component to define is the action space of the agent. As previ-
ously discussed, this choice reveals to be fundamental since it may greatly impact the final performance
of the controller. Afterwards, the definition of the state space and reward functions should follow. Fol-
lowing our discussion in Chapter 3, we implement a set of definitions and compare their performance.
Depending on the exact action space definition, it may be necessary to time-aggregate information in

order to calculate the observed states and rewards.

In our example scenario composed of a single intersection, the running example continues with the
definition of the underlying MDP. The action space is set to the set phase split definition since it allows
to easily ensure a fair and safe behaviour. Concretely, an arbitrarily sized set of signal plans, given a
priori to the system by a user, defines the action space. We consider seven signal plans, i.e., seven
actions. Table 4.1 shows the allocations for each of the actions. The cycle length is fixed to 60 seconds,

optimized via grid-search, and the yellow signal time to six seconds.

34

Table 4.1: Signal plans that define the discrete action space. The displayed values are percentages of the total cycle
length (60 seconds), thus each phase includes a six seconds yellow signal by default. As an example,
action (30,70) produces (assuming that the signals for all phases except the one that is currently active
are set to red): (i) 12 seconds of green signal to phase 1; followed by (ii) six seconds of yellow signal to
phase 1; followed by (iii) 36 seconds of green signal to phase 2; followed by (iv) six seconds of yellow
signal to phase 2.

[Action/Signal Plan | Phase 1 allocation | Phase 2 allocation |

(30,70) 30.0% 70.0%
(36,63) 36.6% 63.4%
(43,57) 433% 56.7%
(50,50) 50.0% 50.0%
(57,43) 56.7% 43.3%
(63,37) 63.4% 36.6%
(70,30) 70.0% 30.0%

With respect to the state space and reward definitions, we implement a waiting time-based formu-
lation [59]. The state consists of a two dimensional vector, (wP*, wP?), containing the observed waiting

times for each of the phases, p; and po, at a certain cycle c. Each component is defined as

K—-1
whi = % > > > stopped(v, k), (4.1)

k=0 l€Lyp; veVF

with

1 speed(v, k) < 0.1

. (4.2)
0 otherwise,

stopped(v, k) = {

where K is the cycle length, L,, denotes the set of lanes associated with phase p;, V}* denotes the set
of vehicles traveling on lane [at the timestep k, and speed(v, k) gives the normalized velocity of vehicle

v at timestep k. The action-independent reward is defined as
2
re=—3 ut. (4.3)
=1

The agent is thus penalized if the average waiting time of the vehicles is high. The discount factor v is
set to 0.98.

4.2.2 Reinforcement learning methods

The TLC domain is inherently continuous, i.e., the information used for state creation is usually real-
valued. Furthermore, the different features that compose the state space often exhibit different ranges
and scales, which vary from phase to phase and from intersection to intersection. Therefore, with respect
to tabular methods, an appropriate discretization procedure must be developed, for example with the

usage of tile-coding. On the other hand, for RL methods that rely on function approximation, such as

35

the DQN algorithm, the number of parameters of the model should be appropriately tuned. In some
cases, it may be necessary to normalize the inputs before feeding them into the function approximator.
If this pre-processing step is not carefully addressed, it will limit the final performance of the agent and,

in more extreme cases, make the learning procedure unstable.

In our running example, we complete the RL controller setup by implementing the well known DQN
algorithm. The neural network used to approximate the state-action values consists of a three-layer

feed-forward ANN, with an [8,16,8] architecture, and ReLU non-linearities.

4.3 Training

Reinforcement learning controllers might overfit to the training experience, showing good performance
during training but performing poorly at deployment time [89]. For example, even in the same domain,
different simulation environments may generate inconsistent results, and the hyperparameters setup
will depend on the specific environment [90]. Additionally, simply changing the random seeds used
to generate the simulations may influence, in a statistically significant manner, the outcome of the RL
algorithm [91]. As such, much as in supervised learning, results in RL should be reported under a
variety of conditions, ensuring that the reported performance holds for multiple training seeds and test
conditions [92]. Therefore, in the context of TLC, it is important to run multiple instances of the train-
ing process, using different seeds, in order to correctly assess the learning ability of the proposed RL
methods. During the training procedure, particular attention must be paid to ensure that the simulations
are properly running. Gridlocks should be avoided or properly processed, for example by restarting the

simulator, adjusting the vehicles’ arrivals, or teleporting vehicles.

The DQN-based agent from our running example is trained using sampled trajectories. In order to
properly balance between exploration and exploitation, we use an e-greedy policy, with e being linearly
decayed from 1.0 to 0.01 throughout the train duration. Thirty training runs are performed. Figure 4.3(a)
displays the mean actions taken during training. As it can be seen, the mean actions converge towards
lower-indexed signal plans, which can be justified by the intersection’s structure (Figure 4.2(b)): the
horizontal direction (phase 2) serves more vehicles in comparison to the vertical direction (phase 1),
as it has a higher number of lanes and the insertion probabilities are roughly constant for each lane.
Furthermore, the observed instantaneous reward increases as the training proceeds (Figure 4.3(b)), as

well as the throughput of the network (Figures 4.3(c) and 4.3(d)).

The outcome of the training process consists of 30 policies, each one resulting from a different train-
ing run, that need now to be properly evaluated. The next and final step of the proposed methodology

addresses how this can be accomplished.

36

70,30) -
() -0.04 -

(63,37) - —0.06 -

(57,43) - —0.08 -

=
_5 g —-0.10 -
O r————— £
5
<< © —0.12-
(43570 —-0.14 -
—— Mean
36,63) - —0.16 -
(! 0.16 —— Smoothing
- Std
(30,70) - —0.18 | I I I ! !
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Cycle Cycle
(a) Mean actions. (b) Instantaneous rewards.
20 - 8
18-
3 = 7-
S 16- w
g £
>
ua 14 ‘5 6 -
= [}
S12- o]
IS >
2 5
10- Moan —— Mean
8- —— Smoothing —— Smoothing
Std Std
' ' ' ' ' ' 4- ' 0 0 0 0 '
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Cycle Cycle
(c¢) Number of vehicles. (d) Vehicles’ velocity.

Figure 4.3: Observed curves during the learning procedure (averaged over 30 training runs).

4.4 Evaluation

In the context of traffic light control, as discussed in Section 2.3.2, different performance metrics have
been proposed. From all these metrics, the minimization of the average travel time is usually the main
goal in the development of traffic signal controllers, and arguably the most important metric to report.
Since most of the times algorithms are unable to directly optimize the travel time, it is useful to report
additional metrics that are more closely related with the formulated agent’s objective, such as the queue
length or waiting time. It is also important to run some baseline algorithms, such as those presented
in Section 3.1, under the same scenario. These runs are of extreme importance, since they allow
to compare the performance of the RL controller(s) against well-established, commonly used traffic

engineering methods.

4.4.1 Performance estimation

The performance of each TSC should be assessed using a set of accordingly seeded simulations in

order to rule out any influence of the simulation seeds in the results, as previously discussed.

37

Table 4.2: Observed performance metrics for different controllers, per vehicle’s trip, under the intersection network.
For tuple entries, the first and second positions correspond, respectively, to the mean and standard
deviation values, whereas non-tuple entries display the mean value. The static baseline corresponds to
the fixed signal plan that yielded the lowest average travel time, optimized via grid-search. The actuated
controller dynamically extends the current phase, up to a maximum value, if a continuous stream of
incoming vehicles is detected. For all baselines, a set of vehicles’ trips is gathered from 30 simulations
of 24 hours, from which the mean and standard deviation values for each of the metrics are calculated.
With respect to the RL controller, each of the 30 policies is evaluated by running 3 evaluation rollouts of
24 hours. Afterwards, the trips of all evaluation rollouts are concatenated, and the mean and standard
deviation values calculated for each of the metrics.

[Method | Number of stops [Waiting time (s) | Travel time (s) |
Static 0.47 (83,10.2) (25.0, 12.5)
Webster 0.49 (85,10.0) (25.4, 12.4)
Max-pressure 0.48 (6.0, 6.9) (23.4,9.0)
Actuated 0.47 (8.0,10.5) (24.9,12.8)
RL controller 0.47 (8.3, 10.3) (25.0, 12.6)

With respect to non-trainable algorithms such as the methods from transportation engineering, the
performance estimation is simpler since the main source of variability affecting the results arises from
the evaluation simulations themselves.

On the other hand, for trainable algorithms such as the RL controller(s), two main sources of variabil-
ity affect the reported results. In the first place, the training step produces a set of policies, which can
have different performances. Secondly, when evaluating a policy that resulted from a given training run,
the evaluation procedure itself induces another level of uncertainty. Therefore, we propose to evaluate

each policy with a set of evaluation rollouts and, if needed, aggregate the results per policy a posteriori.

4.4.2 Performance analysis & comparison

The simplest and most straightforward way to present and compare the performances of the different
methods is through point estimation, commonly used in the TLC domain. Table 4.2 displays the mean
and standard deviation point estimations for a set of performance metrics and TSCs, including the pre-
viously developed RL controller. An in-depth discussion of these results is postponed to Chapter 6,
however, we can note right away that the results exhibit high standard deviation values. In fact, most
of the times, there is an overlap in performance for different TSCs. Therefore, it might be important
to understand whether there is enough evidence to say that the observed difference in performance is
statistically significant or not.

A better insight into the performance of the methods can be achieved by plotting the distributions of
the travel time means for each of the TSCs, as seen in Figure 4.4. The same can be done for all the
other metrics. It is noticeable, again, an overlap in performance between the different distributions. In
order to understand whether the observed mean differences are statistically significant or not, statistical
hypothesis testing should be used.

In the context of this work, we are mostly interested in understanding whether two or more popula-

38

Max-pressure
=== Actuated
RL

m— Static
6- == \Webster

23.5 24.0 24.5 25.0 25.5
Travel time (s)

Figure 4.4: Kernel density estimation of the travel time means, computed using 30 samples for each method. For
all baselines, each sample corresponds to the mean travel time of each simulation. With respect to
the RL controller, each sample corresponds to the mean travel time for each of the policies (calculated
using 3 evaluation rollouts).

tion means (the performance metrics of the different TSCs) are equal. It is highly likely that the previous
hypothesis is rejected. As such, post hoc comparisons need to be performed in order to understand be-
tween which mean pairs exists a statistically significant difference. In order to perform such evaluation,
we can use a one-way Analysis of Variance (ANOVA) test, followed by the Tukey’s range test for post
hoc comparisons. Unfortunately, the previous tests make some assumptions related with the data distri-
butions that not always hold, especially regarding the observed performance in the case of RL agents.
Namely, they assume independence between the groups, that the data is normally distributed, and that
all groups share the same variance. Therefore, it is worth checking whether the assumptions are met,
especially the last two. This can be done, for example, with the Shapiro—Wilk test [93], and the Levene’s
test [94]. If the assumptions are violated, it is recommended to switch the aforementioned tests with

their respective non-parametric versions.

Regarding our running example, the ANOVA test yields a p-value < 10~3, thus the null hypothesis
(that all TSCs have the same mean performance) is rejected. Table 4.3 displays the results of the post
hoc analysis using the Tukey’s range test. As it can be seen, between the actuated, static and RL
controllers, the confidence interval on the means’ difference either includes zero, or its bounds are close
to it, hinting that there might be no significant difference in performance between the three methods.

Once again, a more detailed discussion of the results is postponed to Chapter 6.

As a complementary analysis, we plot in Figure 4.5 the kernel density estimation of the average travel
time and average speed distributions. As can be seen, for both metrics, the underlying distributions are
highly skewed.

The previously presented methods provide a robust way to assess and compare the performance of
different controllers for TLC. However, regarding the RL controller, they do not explain “how” the method
is able to attain such performance, and what are the key behavioural features that underlie the observed

performance, something of great interest and importance in the TLC domain. In the continuation, we

39

Table 4.3: Post hoc Tukey’s range test results. The mean diff column displays the difference between the means
of group 2 and group 1. The following two columns display the bounds of the confidence interval for the
difference in means.

[Group1 [Group2 [Mean diff [Cllower bound | Clupper bound |
Actuated Max-Pressure -1.49 -1.54 -1.44
Actuated RL 0.12 0.07 0.17
Actuated Static 0.17 0.12 0.22
Actuated Webster 0.56 0.51 0.60

Max-Pressure RL 1.61 1.56 1.66
Max-Pressure Static 1.66 1.61 1.71
Max-Pressure Webster 2.04 2.00 2.09
RL Static 0.05 -0.01 0.10

RL Webster 0.44 0.39 0.48
Static Webster 0.38 0.33 0.43

= Static

s Static
= \Webster

0.20 -

0.07 - = \Webster
Max-Pressure Max-Pressure
0.06 - = Actuated m—= Actuated
RL 0.15 - RL
0.05 -
z ‘ 2z
@ 0.04 - i @
S ‘ G 0.10
la}
0 0.03-
™ "\/\\V'
0.02- — \ 0.05 - :
001 \
—
0.00- = = — 0.00 - j —
0 10 20 30 40 50 60 70 80 00 25 50 75 100 125 150 17.5 20.0
Travel time (s) Average speed (m/s)
(a) Travel time metric. (b) Speed metric.

Figure 4.5: Kernel density estimation of the travel time and speed metrics, aggregated per vehicle trip.

provide an analysis of the policies obtained by the RL algorithms in our running example.

4.4.3 Policy analysis

Being able to explain the decisions taken by the agent, as well as predict its behaviour under different
situations is fundamental when developing a RL system in the context of TLC, a domain where the
control over real-world TSCs must only be conceded to agents that exhibit a responsible and trustable
behaviour. While a comprehensive study of this important topic is outside the scope of the present work,
some of the efforts taken in order to better understand the behaviour of the agents are presented below.

Due to the low dimensional state space definition, a simple yet effective way to understand the
behaviour of the agent is to directly plot its policy. Figure 4.6 displays three different policies that resulted
from the same training procedure, only differing on the simulation seeds. As it can be seen, despite the
fact that all three policies exhibit reasonable performance, they choose slightly different actions for a
comprehensive part of the state space. Nevertheless, all policies privilege phase 2, a sensible choice
given the intersection’s topology. As it can be seen, the qualitative analysis of the resulting policies

unveils additional findings with respect to the agent’s behaviour.

40

Action

N
&

Action

(70,30) (70,30)

~
S

(63,37) (63,37)

(57,43) (57,43)

~
Y
3
£
£15
o
£

(50,50) (50,50)

(43,57

(43,57)

~ ~
3 3
£ £
& &
o o
£ £
=) =
£ £
S F
= =

(36,63) (36,63)

(30,70) (30,70)

Action
(70,30)
(63,37)
(57,43)
(50,50)
(43,57)
(36,63)
(30,70)
0 2 4 6 8

Waiting time phase 1 Waiting time phase 1 Waiting time phase 1

(a) Policy 1 (Travel time: 25.04). (b) Policy 2 (Travel time: 24.88). (c) Policy 3 (Travel time: 24.82).

Figure 4.6: lllustration of three policies that resulted from the training procedure. The plot displays, color-encoded,
the action that yields the maximum Q-value for each possible point in the state space domain.

The present chapter introduced a methodology for the development of intelligent TSCs that provides
a standardization of all the steps required to train and evaluate RL-based TSCs, allowing a fair and
meaningful comparison between different approaches to TLC. The following chapter partly concretizes
the presented methodology by extracting a set of road networks and defining a set of demand types, as
well as implementing a set of MDP formulations and RL controllers.

41

Implementation

Contents
5.1 Simulationsetup. i i i e e e e e 43
5.2 Markov decision process formulations 00 45
5.3 Reinforcementlearningmethods i 49
5.4 Baselinecontrollers i it i i e e e e s 51
5.5 Softwareimplementation i e 51

42

Figure 5.1: SUMO screenshot of the arterial network, composed of four streets. On the horizontal direction (major
street): Rua do Conde de Redondo. On the vertical direction (from the left to the right): Rua Luciano
Cordeiro, Rua Bernardo Lima and Rua Ferreira Lapa. The network is composed of three two-phased
intersections. Phase 1 allows the movement of vehicles in the vertical direction, whereas phase 2 allows
the movement in the horizontal direction.

This chapter details the different implemented components that allow to compare different RL-based
approaches to TLC, namely the extracted network topologies, the types of demands considered, and
the set of MDP formulations and RL algorithms used. The extraction/implementation of the different

components closely followed the methodology described in the previous chapter.

5.1 Simulation setup

All considered road network topologies are extracted from the city of Lisbon following the steps de-
scribed in the previous chapter. Three networks, each representative of a different topology type are
considered: an isolated intersection, an arterial network, and a grid network. The first two networks
are extracted from an area near Marqués de Pombal square. The simplest network (intersection net-
work) was introduced in Chapter 4 (Fig. 4.2) and comprises a single isolated two-phased intersection.
Figure 5.1 displays the second considered network (arterial network) from the same downtown area,
comprising three two-phased intersections. The third network (grid network) is extracted from an area
between Saldanha square and Campo Pequeno square. It exhibits a modern, grid-like topology com-
monly observed in cities throughout the world. Figure 5.2 displays two screenshot of the network from
the aforementioned area. Figure 5.3 displays a set of screenshots of the intersections that compose the
grid traffic network.

With respect to the demand types, the simplest considered definition, named constant demand,
comprises a time-constant demand, i.e., the insertion probabilities mapping is kept constant throughout
the simulation. This type of demand was introduced in Section 4.1.3.

A more interesting type of demand, named variable demand, incorporates a variation of the insertion

43

=

(a) OSM screenshot. (b) SUMO screenshot.

Figure 5.2: Grid network, extracted from Lisbon’s metropolitan area near Saldanha square and Campo Pequeno
square. Noteworthy streets include Av. 5 de Outubro and Av. Miguel Bombarda. For all intersections,
phase 1 allows the movement of vehicles in the vertical direction, whereas phase 2 allows the movement
in the horizontal direction.

probabilities throughout the day, resembling real-world traffic patterns such as rush-hours and free-flow
periods. Depending on the hour of the day, the constant insertion probabilities mapping is, thus, further
rescaled by a scalar bounded between zero and one. Figure 5.4 displays the implemented rescaling

function.

The third considered demand, named cyclical demand, rescales the constant insertion probabilities
at unequal rates for two disjoint sets of source edges defined by the user. This allows to create rich
simulation scenarios where the main direction of traffic changes throughout the day. Formally, let £ be
the set of edges at the boundaries of the network which act as sources. Let &/ and V be a disjoint
partition of £. Then, the insertion probabilities associated to the edges in U, U(t), and the insertion

probabilities associated to the edges in V, V (¢), can be defined as

Ut) = A(t) {1 +0.5c0s @:t + ¢)} : (5.1)
V(t) = A(t) {1 +0.5sin <2T7rt + %ﬂ : (5.2)

where T, is the period parameter, in seconds, associated with the set of edges U, T, is the period param-
eter associated with the set of edges V, ¢, and ¢, are phase parameters, and A(t) represents the base
demand factor given by a constant demand mapping. Figure 5.5 displays the function parameterization

used for the cyclical demand.

44

(a) Intersection 1. (b) Intersection 2. (c) Intersection 3.

(d) Intersection 4. (e) Intersection 5. (f) Intersection 6.

Figure 5.3: Grid network intersections (close-up screenshots). The intersections’ numbering is displayed in Figure
5.2(a).

5.2 Markov decision process formulations

We consider a fully decentralised approach to TLC. Each agent is responsible for the control of the
traffic lights of a given intersection: it perceives the traffic state at the intersection level and, through the
choice of its actions, aims to optimize a local reward function. The action space definition is fixed to the
set phase split. For algorithms with a discrete action space support, the agents are able to pick, at the
end of each cycle, the signal plan to be executed throughout the next cycle. Seven signals plans, i.e.,

seven actions, are considered (Table 4.1). With respect to RL algorithms with continuous action space

1.0-
0.8-

0.6 -

Scale factor

0.4-
0.2-
0 2 4 6 8 10 12 14 16 18 20 22 24
Hour

Figure 5.4: Rescaling factor used in the variable demand type.

45

1.4-

Scale factor
- -
=} [N}

o
EY

0.6 - U

— Vv
0 20000 40000 60000 80000
Seconds

Figure 5.5: Rescaling factor used in the cyclical demand with parameters T,, = 21600, T, = 14400, ¢, = 0, and
¢» = 0. The effect of A(¢) is neglected. As it can be seen, the different periods of the trigonomet-
ric functions contribute to create rich simulations with periods of positive-positive, negative-negative,
positive-negative and negative-positive contributions. For the implementation, the function is further
discretized into intervals of fifteen minutes.

support, such as the DDPG algorithm, the agent is able to directly pick the percentage of the cycle length

allocated for each of the phases, however, a minimum green time is ensured for all phases.

We implement different MDP formulations so their performance can be fairly assessed and compared
under the different simulation scenarios presented in the previous section. The design of the different
formulations is greatly inspired by the works described in Section 3.3. However, the formulations are
usually adapted so that they can fit our action space definition. Below, we describe the different MDP

formulations used in our work, specifically the state space and reward function definitions.’

The cycle length is fixed to 60 seconds, optimized via grid-search, and the yellow time to six seconds.

The discount factor is set to 0.98.

5.2.1 Preliminaries

In the remainder of this chapter, K represents the cycle length, L,, denotes the set of lanes associated
with phase p;, V;* denotes the set of vehicles traveling on lane [at the timestep &, and speed(v, k) gives
the normalized velocity of vehicle v at timestep k. The number of vehicles associated with phase p;, at

timestep k&, can be calculated as follows

Nyo= > IV (5.3)

1€Ly,

"In order to keep the presentation concise, the described formulations consider two-phased intersections. However, they can
be easily adapted to accommodate an arbitrary number of phases.

46

Thus, the average volume v?¢, associated with phase p; during a certain cycle ¢, is given by

1 K—-1
ol = o > Ny (5.4)
k=0

5.2.2 Speed-based formulations

A speed-based formulation is focused on the optimization of the vehicles’ average velocity. It can be
either aiming at the direct maximization of vehicles’ velocity, or at the minimization of some sort of dis-
tance between the maximum allowed speed and the actual velocity of the vehicles. Intuitively, the higher
the average speed of the vehicles, the lower the average travel time. Our speed-based formulations,
below presented, are inspired by the works of Casas [55] and Wei et al. [56].

The minimize speed delta definition seeks to minimize a weighted average of the distances between
the maximum speed of the road and the actual velocity of the vehicles. The number of vehicles travelling
at each timestep is used as a weight factor. Thus, the agent is penalized if a high number of vehicles
is moving at low speeds. For a given intersection, at a certain cycle ¢, the state consists of a tuple
(vPr,vP2 sP1 sP2) containing the observed average volume and speed for each of the phases, p; and p,,

where

K-1
- L - S 3 Y (1-speed(v, b)), (5.5)

K—
k=0 “Ypi k=0 I€Ly, veViF

and the reward is defined as

2

re=—3 wlishi. (5.6)

i=1

The minimize delay formulation considers a cost function that penalizes vehicles that are moving at slow

speeds. For a given intersection, at a certain cycle ¢, the state consists of a tuple (d2', d?), where

K-1
dri = % SN delay(v, k), (5.7)

k=0 leLyp; veVF

delay(v, k) = exp{—5 - speed(v, k)}, (5.8)
and the reward is defined as
2
re=—>Y_ db. (5.9)
=1

47

Finally, the maximize delay reduction aims to maximize the delay reduction between two consecutive
cycles. The state space of the minimize delay definition is extended to accommodate the delay of the
vehicles for the present cycle, as well as the delay of the vehicles for the previous cycle, consisting of a

tuple (db*,db2,d?* |, d"? ;). The reward is thus defined, at cycle ¢, as

c »Pe—1

re =3 (4). (5.10)

i=1

5.2.3 Waiting time-based formulations

A waiting time-based formulation is focused on the minimization of the time vehicles spend in queue,
i.e., stopped or travelling at low speeds. The minimize waiting time definition, similar to Nishi et al. [59],
was already considered in the running example from Chapter 4. The state consists of a tuple (w?*, wt?)

containing the observed waiting times for each of the phases, p; and p-, at a certain cycle ¢, where

K-—1
) 1
whi = e Z Z Z stopped (v, k), (5.11)
k=0 IE€Ly, veV}
1 speed(v, k) < 0.1
t d(v, k) = , 5.12
stopped(v, k) {O otherwise, ()
and the reward is defined as
2
re=—%wr. (5.13)
i=1

5.2.4 Queue-based formulations

The minimize queue definition, similarly to Abdoos et al. [95], is focused on the minimization of the
average queue length for all incoming approaches. For a given intersection, at a certain cycle ¢, the

state consists of a tuple (¢**, ¢#?), where

¢ = max { max (Z stopped (v, k)) }, (5.14)

kek lieL,,
veVvp

and stopped(v, k) indicates whether vehicle v is stopped at timestep & (defined in Eq. 5.12). The reward

is defined as
2
re=—Y g (5.15)
i=1

48

The maximize queue reduction definition, similarly to El-Tantawy et al. [11], aims to maximize the re-
duction in queue length between consecutive cycles, for both phases. The state space of the minimize
queue definition is extended to accommodate the queue-related information for the present cycle, as
well as the queue-related information for the previous cycle, consisting of a tuple (¢?*, ¢?2, ¢ 1, 4%).

The reward is defined as
2 2 2
Te = Z (qfl_1> - Z (qfi) . (5.16)

5.2.5 Pressure-based formulations

The minimize pressure formulation, similarly to Wei et al. [61], seeks to minimize the intersection’s
pressure (the pressure concept was introduced in Section 3.1). For a given intersection, at a certain

cycle ¢, the state consists of a tuple (p?*, p£2), where

K—

=S (X - X), (5.17)

k=0 €L, 0E€O0,,

[

and O,,, denotes the set of all outgoing lanes of phase p;. The reward is defined as

2
Te = —ch’i. (5.18)
i=1

5.3 Reinforcement learning methods

We consider three different classes of RL algorithms: Q-learning, a tabular method with discrete action
support, deep Q-network, a function approximation method with discrete action support, and DDPG, a
deterministic actor-critic method with continuous action support. All considered algorithms are used in an
off-policy setting, a choice majorly justified by the need of improved efficiency due to the low frequency
of interaction with the environment. Below, we provide an overview of the main implementation choices

for the different algorithms, and refer to Appendix A for a complete list of hyperparameters used.

5.3.1 Q-learning

The Q-learning algorithm holds a table containing the estimated Q-value for each state-action pair. The
procedure used to discretize each of the state space features into a set of six categories/bins consists
of the following steps: (a) a set of trajectories is gathered by performing some simulations with Webster
TSCs; (b) the collected data is grouped by intersection and phase; (c) for each intersection and phase,

a distribution of the observed values for the given state feature is constructed; and (d) the values of the

49

bins used for discretization equal the [0.1,0.3,0.5,0.7,0.9] percentiles of the distributions. We empirically
observed that it is of extreme importance for the bins to be calculated independently for each feature,

intersection, and phase, otherwise it is likely that the bins will be misaligned, impacting performance.

In order to improve sample-efficiency, we store the observed trajectories in a replay buffer and, at
each iteration, perform multiple Q-learning updates using transitions sampled from the replay memory.
Finally, we use an e-greedy policy in order to ensure an adequate exploration-exploitation balance, with

e = 1/(1+ N¢(s)), where N,(s) denotes the number of times state s was visited up to timestep ¢.

5.3.2 Deep Q-network

The considered DQN algorithm consists of a fully connected neural network with three hidden layers,
that receives a state as input and outputs the Q-values for each corresponding action. Further improve-
ments over the standard DQN algorithm are considered, including double Q-learning, a dueling network
architecture, prioritized replay, and N-step transitions. In order to properly balance exploration and ex-
ploitation, we use an e-greedy policy, with e being linearly decayed from 1.0 to 0.01 throughout the train

duration.

5.3.3 Deep deterministic policy gradient

The DDPG algorithm is able to directly pick the portion of the cycle length allocated for each of the
phases. More precisely, the agent picks the allocation of 80% of the total green time of the cycle, while
the remainder 20% are equally split among all phases. By doing this, we ensure that all phases receive

a minimum green time.

The critic consists of a fully connected neural network (composed of three hidden layers), where the
final layer maps the hidden activations into a scalar representing the Q-value for the input state-action
pair. The actor consists of a fully connected neural network, composed of three hidden layers, where
the final layer is a softmax function mapping the hidden activations into the allocations for each of the
phases. In order to ensure adequate exploration, we introduce gaussian noise N’ ~ N(0,02) to the
behavior network, with o2 being linearly decayed throughout the train duration. Figure 5.6 displays an

illustration of the actor network architecture.

Finally, as pointed out by previous works [8], the DDPG algorithm is sensible to different scales in the
state input features. Therefore, all state variables are standardized before being inputted into the neural

networks. This revealed to be crucial to stabilize the learning procedure.

50

State ——> —> (1, P2)

uonouny
8SION UBISSNEL)
XBWwHoS

Figure 5.6: DDPG actor network illustration. The output contains the allocation for each of the phases. The output
layer size can be adjusted to an arbitrary number of phases.

5.4 Baseline controllers

We use as baselines the Webster and max-pressure methods introduced in Section 3.1, as well as an
actuated controller? that dynamically extends the current phase, up to a maximum value, if a continu-
ous stream of incoming vehicles is detected. We implement an additional controller, named “adaptive-
Webster”. It features a fixed cycle length, but dynamically allocates, every five minutes, the phase splits
proportionally to the counts of vehicles that arrived at each of the intersection’s phases. Therefore,
the adaptive-Webster controller is capable of adapting to time-changing demands as the timings are
dynamically adjusted throughout the simulation. The Webster, adaptive-Webster, and RL controllers
are periodic, since they feature a fixed cycle length; the two remainder controllers, max-pressure and

actuated, are non-periodic, because they allow for variable cycle lengths.

5.5 Software implementation

The software was developed in a Python environment, using two additional open-source frameworks:
FLOW [85], which is a computational framework for the development of RL-based TLC systems, and the
RL framework ACME [96, 97]. The traffic simulation backend is held by the SUMO simulator [80], and

the computational graphs’ computations by the Tensorflow framework [98].

2ht‘cps ://sumo.dlr.de/docs/Simulation/Traffic_Lights.html#based_on_time_gaps

51

https://sumo.dlr.de/docs/Simulation/Traffic_Lights.html#based_on_time_gaps

Experimental results

Contents
6.1 Intersectionnetwork i e 53
6.2 Arterial network e e e e e e e e e e 66
6.3 Gridnetwork e e e e e e e e 69

52

This chapter presents and discusses the experimental results obtained in different scenarios, starting
with the simpler intersection all the way to the grid network. Our analysis follows the methodology
discussed in Chapter 4. However, we present and discuss only a representative subset of all obtained
results. We refer to Appendix B for a complete listing of all gathered experimental data, comprising the

report of all selected performance metrics, as well as detailed demands’ definition.

6.1 Intersection network

The first studied traffic network is the intersection network, a single and isolated intersection. We assess
the performance of the different controllers under three different types of demands: a time-constant
demand, a time-variable demand, and a phase-uneven (cyclical) demand. Results for the RL controllers
are obtained from 30 independent training runs, each of which evaluated using three rollouts of 24 hours.

Non-trainable methods are evaluated with a set of 30 rollouts of 24 hours.

6.1.1 Constant demands
The simplest experimental setup comprises the study of two time-constant demands:

» High constant demand: the intersection is congested and, during some cycles, the maximum

queue length is achieved.
» Low constant demand: vehicles freely flow through the intersection and queues barely emerge.

We carried a grid-search to determine the best fixed phase allocations for the present experimental
setup. Figure 6.1 displays the obtained performance metrics for the two demand types. As it can be
seen, for the high constant demand, higher average waiting and travel times are observed in comparison
to the low constant demand, for every signal plan. Furthermore, it is noticeable that the difference
in performance between the static signal plans is higher for the high demand in comparison to the
low demand, i.e., changes in the phase allocations impact more performance for the high demand in
comparison to the low demand.

With respect to the average travel time (Fig. 6.1(b)), the optimal static signal plan for the high demand
allocates around 18 seconds for phase 1, whereas for the low demand the optimal value decreases to
around 15 seconds.

Regarding the baseline controllers, for both the high (Tab. 6.1) and low (Tab. 6.2) constant demands,
the static and Webster controllers are outperformed by the max-pressure controller. Despite the fact that
the actuated controller achieved a similar average travel time in comparison to the static controller for

the high constant demand, it was capable of outperforming the periodic baselines with respect to the low

53

—J— Low —— Low
14 - —— High —— High
30 -

28 -
26 -

IS

7" 2- : , ; ; i ; ; ;
12 14 16 18 20 22 24 26 28 12 14 16 18 20 22 24 26 28
Phase 1 allocation Phase 1 allocation

Waiting time (s)
Travel time (s)

(a) Waiting time metric. (b) Travel time metric.

Figure 6.1: (Intersection network) Performance metrics for static signal plans with different phase 1 allocations.
Displayed values are calculated by averaging over 30 simulations of 24 hours. Error bars represent the
95% bootstrapped mean confidence interval.

Table 6.1: (Intersection network, high constant demand) Baselines performance metrics. The static controller cor-
responds to the static signal plan that achieved the lowest average travel time, optimized via grid-search.

[Controller | Waiting time (s) | Travel time (s) [Top-3 travel time (s) |

Static 8.3 25.0 24.9
Webster 8.5 25.4 25.3
Max-pressure 6.0 23.4 23.3
Actuated 8.0 24.9 24.7

constant demand. For the two demand types, it is important to notice that the non-periodic controllers
achieve a lower average waiting time in comparison to the periodic controllers.

Since non-periodic controllers do not have a fixed cycle length, they are able to cycle through the
phases faster, thus minimizing the time each vehicle needs to wait before crossing the intersection.
Given the fact that the present network topology consists of an isolated intersection, this explains why
non-periodic controllers usually achieve improved average travel times: the delay vehicles experience
in their trip is caused by the time they wait to cross the intersection, thus, a method that is successful
in reducing the waiting time of the vehicles will directly contribute to the reduction of the travel time (a
strong correlation is visible between the two plots displayed in Fig. 6.1). However, the performance gain
of the non-periodic baselines over the periodic baselines is higher for the low demand type (Tab. 6.2) in
comparison to the high demand type (Tab. 6.1). This shows that for congested/saturated conditions, no
big improvement over static timings is usually achieved with the use of adaptive, more reactive TSC sys-
tems, whereas for the less saturated regime, more adaptable systems, namely non-periodic controllers,
exhibit a higher performance gain.

Regarding the Q-learning controller, under the high constant demand (Tab. 6.3), obtained results
for all MDPs exhibit performances significantly better than the random policy, for all reported metrics;
as an example, the average travel time is at least ~2.6 seconds lower. However, the min. speed delta,

max. delay reduction, and max. queue reduction MDPs achieved worse results in comparison to the

54

Table 6.2: (Intersection network, low constant demand) Baselines performance metrics. The static controller cor-
responds to the static signal plan that yielded the lowest average travel time, optimized via grid-search.

[Controller | Waiting time (s) | Travel time (s) [Top-3 travel time (s) |

Static 7.2 224 22.2
Webster 7.7 23.2 23.1
Max-pressure 4.7 20.2 20.1
Actuated 5.1 20.8 20.7

Table 6.3: (/Intersection network, high constant demand) RL controllers performance metrics. Columns denoted
with WT, TT, and TT-3 correspond, respectively, to the average waiting time (s), the average travel time
(s), and the average travel time (s) of the top-3 policies.

Q-learning DQGN DDPG
WT [T [TT-3 wWT [TT [TT-3 WT [T [TT-3
Random 114 | 291 | 286 || 11.4 | 29.1 | 28.6 || 13.3 | 31.3 | 30.6
Min. speed delta 9.2 | 26.3 | 26.0 85 | 251 | 249 86 | 254 | 249
Min. delay 84 | 25.0 | 24.9 84 | 251 | 2438 83 | 25.1 | 248
Max. delay reduction 94 | 265 | 26.3 94 | 261 | 25.0 84 | 253 | 249
Min. waiting time 84 | 25.0 | 24.9 83 | 25.0 | 249 83 | 252 | 249
Min. queue 87 | 254 | 25.0 83 | 25.0 | 248 85 | 252 | 249
Max. queue reduction 94 | 263 | 26.0 85 | 2563 | 249 8.7 | 254 | 251
Min. pressure 84 | 251 | 249 8.6 | 252 | 248 83 | 251 | 248

remainder formulations, yielding an average travel time approximately one second higher in comparison
to the other MDPs. A similar trend is observed when comparing the performances of the three policies
that yielded the lowest average travel times for each of the MDPs.

With respect to the Q-learning controller, under the low constant demand (Tab. 6.4), the min. delay,
min. waiting time, and min. pressure MDPs achieve improved performance over the remainder formu-
lations. On the other hand, the min. speed delta, max. delay red., min. queue and max. queue red.
MDPs recorded the highest average waiting and travel times, sometimes only marginally outperforming
the random policy.

The fact that some MDPs, namely the min. speed delta, max. delay red., and max. queue red.
formulations, are outperformed by the remainder formulations with respect to the Q-learning algorithm

can be explained due to underlying convergence problems. Despite the fact that additional efforts were

Table 6.4: (Intersection network, low constant demand) RL controllers performance metrics. Columns denoted with
WT, TT, and TT-3 correspond, respectively, to the average waiting time (s), the average travel time (s),
and the average travel time (s) of the top-3 policies.

Q-learning DQGN DDPG
WT [T [TT-3 || WT [T [TT-3 || WT [T [TT-3
Random 86 | 244 | 242 || 86 | 244 | 242 94 | 25.2 | 249
Min. speed delta 8.1 | 23.7 | 235 72 | 224 | 223 73 | 224 | 223
Min. delay 74 | 226 | 224 72 | 224 | 223 73 | 226 | 224
Max. delay reduction 8.1 | 23.7 | 23.6 8.2 | 23.8 | 224 73 | 224 | 223
Min. waiting time 74 | 226 | 224 72 | 224 | 223 74 | 226 | 223
Min. queue 8.7 | 244 | 231 87 | 245 | 225 || 85 | 243 | 224
Max. queue reduction 8.3 | 240 | 23.7 8.7 | 244 | 224 9.3 | 253 | 23.2
Min. pressure 74 | 226 | 224 72 | 224 | 223 73 | 226 | 22.3

55

—— Train sample 0 1.0- —— Train sample 0
—— Train sample 1 —— Train sample 1

0.6- ~—— Train sample 2 0.6- —— Train sample 2
. —— Train sample 3 : —— Train sample 3
Train sample 4 Train sample 4

3 0.6- ~——— Train sample 5 3 0.6- —— Train sample 5
ﬂ)‘ ﬂ)‘
o o
3 0.4 S04

0.2 0.2

0.0 - 0.0 -

6 10600 20600 30600 40600 50600 6 10600 20600 30600 40600 50600
Learning cycle Learning cycle
(a) Minimize speed delta MDP. (b) Minimize delay MDP.

Figure 6.2: (Intersection network, high constant demand) Q-learning e exploration parameter throughout training.
The curves are plotted for five randomly sampled train runs.

(70,30) -
—0.06 -

(63,37) -
—0.08 -

(57,43) - -0.10 -
5 E
'% (50,50) - qu -0.12 -
< et v © _0.14-
(43,57) -
-0.16 -
(36,63) - —— Mean
—0.18 - —— Smoothing
Std
(30,70) - —0.20 -
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Cycle Cycle
(a) Average action. (b) Instantaneous rewards.

Figure 6.3: (Intersection network, high constant demand) Training curves observed for the Q-learning agent with
the min. speed delta MDP.

taken in order to speed up the learning process of the algorithm, such as the use of an additional replay
memory, the aforementioned MDPs would still require more steps in order for the training process to
fully converge since their state is composed of four components, whereas the state of all the remainder
MDPs is composed of only two components. Figure 6.2 displays the e exploration parameter throughout
training (as previously stated in Section 5.3.1, ¢ is decayed depending on the number of times each state
was visited). As it can be seen, for the min. speed delta MDP, new states are still being visited at the
end of the learning procedure. This comes as no surprise since the Q-table grows exponentially in the
number of state components. Therefore, as noticeable in Figure 6.3, the agent fails to steadily converge
to signal plans that prioritize phase 2 in 50 000 training cycles, approximately equivalent to one month

in simulation time.

With respect to the DQN controller, under the high constant demand (Tab. 6.3), all MDPs outper-

formed the random policy by a significant margin. However, the max. delay reduction MDP features a

56

me Min. speed delta 2.5- mes Min. speed delta

s Min. delay me=Min. delay
Max. delay red. Max. delay red.
=== Min. waiting time 2.0- ‘ me=Min. waiting time
Min. queue Min. queue

Max. queue red.
Min. pressure

Max. queue red.
Min. pressure 1.5-

} A

\N
/ﬂ I\ 05 \‘
A=A | Y/ \\\; S~

= 0 0.0 - v ' '
4.0 245 25.0 25.5 26.0 26.5 27.0 245 25.0 25.5 26.0 26.5 27.0 275

Travel time (s) Travel time (s)

Density
Density

8
7
6
5
4 -
3
2
1
0
2

(a) DQN agent. (b) DDPG agent.

Figure 6.4: (Intersection network, high constant demand) Kernel density estimation of the travel time means distri-
bution.

higher average travel time in comparison to the remainder formulations, despite the fact that the perfor-
mance of the top-3 policies is generally similar among all MDPs. Figure 6.4(a) displays the travel time
means distribution for the different MDPs. It is noticeable the fact that the distributions for the majority
of the MDPs are multi-modal, however, both the max. delay reduction and the max. queue reduction
MDPs distributions exhibit a higher degree of spread.

For the low constant demand (Tab. 6.4), the DQN controller outperforms the random policy for
all MDPs except the ones which state calculation depends on queue-related information, despite the
fact that all MDPs show improved performance over the random policy with respect to the top-3 travel
times. For the remainder, non queue-based MDPs, the max. delay reduction MDP performed the
worst, achieving an average travel time ~1.4 seconds higher, on average, comparing to the remainder
formulations.

With respect to the DDPG controller, under the high constant demand (Tab. 6.3), all MDPs performed
better than the random policy, for all performance metrics. As seen in Figure 6.4(b), the min. speed delta
and min. queue MDPs exhibit a slightly higher spread in terms of mean travel times.

Finally, regarding the DDPG controller, under the low constant demand (Tab. 6.4), the two queue-
based MDPs exhibit the highest travel times, while the remainder are roughly similar in terms of perfor-
mance. The top-3 travel times are similar for all formulations except for the max. queue reduction MDP,
which top-3 travel time is at least ~0.8 seconds higher in comparison to the other MDPs.

In contrary to the Q-learning algorithm, both the DQN and DDPG controllers are able to learn useful
behavior independently of the size of the state space. As an example, while the Q-learning agent is
unable to properly converge for the min. speed delta MDP, the DQN agent is able to properly generalize
from the gathered experience, steadily converging towards signal plans that prioritize phase 2 (Fig. 6.5).
Generally, both the DQN and DDPG agents achieved improved average travel times in comparison to

the Q-learning agent, as seen in Table 6.5. The biggest improvement in performance occurred for the

57

(70,30) -
(63,37) -

(57,43) - —0.100 -

c

e
o — -
2 (50,50) - g -0125
2 9]
& _0.150-
(43,57) -

(36,63) - —— Mean
—0.200 - —— Smoothing

td
(30,70) - s

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Cycle Cycle

(a) Average action. (b) Instantaneous rewards.

Figure 6.5: (Intersection network, high constant demand) Training curves observed for the DQN agent with the min.
speed delta MDP.

Table 6.5: (/ntersection network) RL algorithms performance comparison (averaged for all MDPs).

[| Travel time (high) | Travel time (Jow) |

Q-learning 25.65 23.37
DQN 25.26 23.18
DDPG 25.24 23.17

three MDPs that feature a larger state space, but the improvement was not just restricted to that class
of MDPs. However, the improvement in performance was not one-directional, with a minority of MDPs
showing no improvement, or even a decrement in performance.

The use of a continuous action space (DDPG) does not provide, according to the experimental
data, a substantial improvement in performance over a discrete action space (DQN). Such observation
can be justified by the fact that, for a considerable interval around the optimal phase allocation, no
significant difference in performance is noted. Figure 6.1 supports this argument. As it can be seen, the
optimal phase 1 allocation sits on a plateau, i.e., a coarse approximation of the optimal value achieves
a similar performance than the exact optimal allocation. Therefore, no great loss in performance occurs
by discretizing the action space into a set of signal plans, as it is the case with the DQN agent.

Figure 6.6 displays three policies, sampled among the best performing policies that resulted from the
training procedure, for each of the RL algorithms with the min. waiting time MDP. As it can be seen, all
three policies prioritize phase 2 by allocating a larger portion of the cycle length to this phase, a sensible
choice given the intersection’s topology. However, depending on the observed average waiting time
for each of the phases, RL agents exhibit fine-tuned behavior. As an example, whenever the average
waiting time of phase 2 is high and the average waiting time of phase 1 is low, RL agents allocate
almost the entirety of the cycle length to phase 2. However, as the average waiting time of phase 1
increases, a larger portion is allocated to this phase. In the limit, the cycle length is roughly equally
split for both phases. Despite the fact that all three policies achieve similar average travel times under

the current experimental setup, it can be seen that the DQN and DDPG algorithms display improved

58

25 Action 25 Action

(70,30) (70,30)
(63,37) (63,37)
(57,43)

(57.43)

(50,50) (50,50)

Waiting time phase 2
Waiting time phase 2
Waiting time phase 2

(43,57) (43,57)

(36,63) (36,63)

(30,70) (30,70)

0 1 2 3 4 5 6 7 8 9 0 2 4 6 8 2 4 6
Waiting time phase 1 Waiting time phase 1 Waiting time phase 1

(a) Q-learning policy (Travel (b) DQN policy (Travel time: (c) DDPG policy (Travel time:
time: 24.95). 24.82). 24.87).

Figure 6.6: (Intersection network, high constant demand) lllustration of three sampled policies that resulted from
the training procedure for each of the RL algorithms with the min. waiting time MDP.

Table 6.6: (Intersection network) Average travel time for two disjoint sets of MDPs, calculated using the perfor-
mances obtained by the DQN and DDPG algorithms.

[| Travel time (high) | Travel time (low) |

Max. delay red. and max. queue red. MDPs 25.53 23.98
Min. delay and min. queue MDPs 25.10 23.45

generalization in comparison to the Q-learning agent: the discretization procedure limits the adaptability
of the Q-learning agent for the parts of the state space where the bins are more sparse. On the other
hand, the DQN and DDPG algorithms display decision boundaries that smoothly extend to the entirety
of the state space, which can help the agents to perform more robustly under traffic demand changes.
Moreover, it appears that tile-coding may not be the most suitable discretization technique for the present
experimental setup given the fact that both the DQN and DDPG policies suggest decision boundaries
that are not parallel to the state features axis. We observe a similar trend among all policies.

Regarding the different MDPs, a noticeable difference in performance resides in the fact that the
formulations which reward consists in a difference/variation between adjacent decision steps appear to
perform worse in comparison to the remainder MDPs, which define the reward as a point value at a
given decision step, independently of the RL algorithm. As an example, for both the DQN and DDPG
agents, the max. delay reduction and max. queue reduction MDPs (variation/difference-based MDPs)
are, respectively, outperformed by their closest variants, the min. delay and min. queue MDPs, which
reward is defined as an absolute value in time. Table 6.6 summarizes the differences in performance
between the two categories of MDPs.

Secondly, queue-based MDPs appear to be inappropriate under mid/low traffic demands since the
state information is unable to capture the presence of vehicles at the intersection due to the lack of
queues. The results obtained by both the DQN and DDPG agents under the low constant demand
(Tab. 6.4) support this finding. As it can be seen, the queue-based MDPs, i.e., the min. queue and

max. queue red. formulations, achieved the highest average travel times, exhibiting inconsistent per-

59

Table 6.7: (Intersection network, variable demand) Baselines performance metrics.

[Controller [Travel time free-flow (s) [Travel time congested (s) | Travel time (s) [Top-3 travel time (s) |

Webster 221 25.1 23.7 23.5
Max-pressure 18.2 23.3 21.0 20.9
Actuated 19.8 24.8 22.0 21.9

formances. Despite the poor performance recorded under low congestion, the fact that the min. queue
definition achieves, with respect to the high constant demand (Tab. 6.3) and for both the DQN and
DDPG controllers, a similar average travel time than the best performing MDPs is a good indicator that,
indeed, queue information reveals to be less useful only under mid/low-congested situations.

In summary, the present experimental setup shows that: (i) the relative performance between the
different controllers is dependant on the demand intensity; (ii) the DQN and DDPG controllers generally
outperform the Q-learning controller, however, no significant difference is observed between continuous
and discrete control; and (iii) queue-based MDP formulations are not suitable for low-demand settings,
and the reward function is best formulated as an absolute value at a given the decision point. Finally,
given the time-constant demands that comprise this scenario, as well as the reactiveness and time-
scale adaptability of the chosen action space definition, it is not expected that the periodic RL controllers
outperform the non-periodic baselines. Nevertheless, as it can be seen, the performance of the RL
controllers is generally on par with that of the best known static timing, even equalling, in some cases,
the performance of the actuated controller for highly congested settings. Importantly, the majority of the
RL controllers outperformed the well-known Webster method for static timings calculation, showing that
RL can, indeed, learn useful strategies for TLC.

6.1.2 Variable demand

Similarly to the previous scenario, both the max-pressure and actuated controllers outperform the Web-
ster method, as seen in Table 6.7. This improvement in performance is most noticeable during the
free-flow regime, similarly the previous section.

Being the reward intrinsically dependent on the traffic volume at the intersection, we studied whether
it is useful to include additional information in the state, such as the hour of the day. This kind of con-
textualizing information, named time variable, helps the agent to decouple if a certain reward gain/loss
was due to the choices of its actions, or due to external changes in the traffic volume induced by the
simulator. Figure 6.7 displays a barchart with the obtained cumulative rewards for a subset of MDPs,
with and without additional contextualizing information in the state space. For both the min. speed delta
and min. waiting time MDPs, a clear improvement in the cumulative reward is noticeable. However, for
the max. queue red. MDP no significant difference is noted. Such observation seems reasonable since

the reward definition of the max. queue red. MDP is defined as a difference between decision steps,

60

Min. speed delta Min. waiting time M ue red.

ax. que
—0.030 -
—57-
—42.0- -0.035 -
—58- —0.040 -
o8 —42.5 -
—0.045 -
—59 - —43.0 - ~0.050 -

- ~0.055 -
60 435
~0.060 -
-44.0

-61 —0.065 -

DQN (Default) -
DDPG (Default) -
DQN (Default) -
DDPG (Default) -

DQN (Default) -
DQN (Time var.) -
DDPG (Default) -
DDPG (Time var.) -
DQN (Time var.) -
DDPG (Time var.) -
DQN (Time var.) -
DDPG (Time var.) -

Figure 6.7: (Intersection network, variable demand) Cumulative reward for different MDPs with and without includ-
ing the additional time variable in the agent’s state. Error bars represent the 95% bootstrapped mean
confidence interval.

Table 6.8: (Intersection network, variable demand) DQN controller performance metrics (with the additional time

variable).

[| Travel time free-flow (s) | Travel time congested (s) [Travel time (s) | Top-3 travel time (s) |
Random 234 28.9 25.8 255
Min. speed delta 215 25.6 234 23.1
Min. delay 21.7 25.4 23.5 23.1
Max. delay reduction 22.5 28.3 25.0 23.1
Min. waiting time 21.6 255 234 23.1
Min. queue 221 26.2 24.0 23.1
Max. queue reduction 22.6 29.6 26.0 23.1
Min. pressure 21.8 255 234 23.1

therefore already contributing to rule out the influence of the traffic volume variation throughout the day
on the reward. All formulations which reward is defined as an absolute value at a given decision point
steadily improved their cumulative reward with the inclusion of the time variable, thus revealing that such
additional contextualizing information is beneficial to learning under time-varying demands. With respect
to the Q-learning agent, the inclusion of additional information to the state revealed to be prohibitive due
to convergence problems.

Table 6.8 shows the performance metrics obtained for the DQN agent. The other RL algorithms,
Q-learning and DDPG, behave in a way that is qualitatively similar to that reported in the previous
section, and we omit their discussion for brevity. The corresponding results are included in Appendix
B. Regarding the DQN agent, all MDPs, except the max. queue reduction definition, outperformed the
random policy, achieving a lower average travel time for all demand regimes. Three MDPs, namely the
max. delay reduction, min. queue and max. queue reduction formulations are outperformed by the
remainder definitions, despite the fact that all formulations achieved the same performance with respect

to the top-3 travel time metric.

Similarly to Section 6.1.1, the relative performance between the different controllers is dependant

61

Table 6.9: (/Intersection network, variable demand) RL algorithms performance comparison excluding the max. de-
lay reduction, min. queue and max. queue reduction MDPs.

[| Travel time |
Q-learning (w/o time var.) 23.87
DQN (w/ time var) 23.42
DDPG (w/ time var.) 23.40

on the demand regime. As an example, the DQN agent with the min. speed delta MDP attains an
average travel time 0.3 seconds lower than the Webster controller, in spite of the fact that it exhibits a
higher average travel time during the congested regime, as seen in Tables 6.7 and 6.8. Therefore, while
time-variable demands contribute to richer simulations, it is generally more challenging to analyze and
compare the performances of the different controllers as, most of the time, the improvement/decline in
performance is not uni-directional for all traffic regimes.

With respect to the MDP definitions, as previously mentioned, three formulations, namely the max.
delay reduction, the min. queue and the max. queue reduction formulations, are generally outperformed
by the remainder definitions. Given the discussion in the previous section, this comes as no surprise: the
MDPs that achieve the worst performances are those which reward is defined as a difference between
consecutive timesteps, or reside on queues’ information for state/reward computation.

The Q-learning controller revealed to be more unstable in comparison to the other RL algorithms,
mostly due to convergence problems, while both the DQN and DDPG controllers achieved, on average,
similar performances as seen in Table 6.9.

Finally, the performance of the RL controllers is generally well aligned with that of the periodic base-
lines, despite the fact that under the congested regime higher average travel times are sometimes
recorded in comparison to the Webster method. Given the present topology, RL methods are gener-
ally outperformed by the non-periodic controllers for the reasons previously discussed.

In summary, the obtained results show that: (i) the relative performance of the controllers is demand-
dependant; (ii) the inclusion of a time variable in the agent’s state space is beneficial to the learning
procedure; (iii) the Q-learning controller is normally outperformed by the DQN and DDPG algorithms,
however, no significant difference is noticeable between discrete and continuous control; and (iv) queue-
based MDPs, and the formulations which reward is defined as a difference between adjacent decision

steps are outperformed by the remainder definitions.

6.1.3 Cyclical demand

The third experimental setup comprises a single intersection with time-varying traffic volumes that cycli-
cally put uneven pressure in the intersection’s phases. Table 6.10 shows the obtained results for the
baselines. As it can be seen, both periodic methods are outperformed by the non-periodic baselines.

Moreover, the adaptive-Webster controller is able to achieve improved adaptability to the time-changing

62

Table 6.10: (/ntersection network, cyclical demand) Baselines performance metrics.

[Controller | Waiting time (s) [Travel time (s) | Top-3 travel time (s) |
Webster 8.4 24.8 24.6
Adaptive-Webster 7.9 241 24.0
Max-pressure 55 21.9 21.8
Actuated 6.5 22.8 22.6

Table 6.11: (Intersection network, cyclical demand) DQN controller performance metrics.

[| Waiting time (s) [Travel time (s) | Top-3 travel time (s) |

Random 10.2 26.9 26.6

Min. speed delta 8.1 24.0 23.8
Min. delay 8.2 24.2 24.0
Max. delay reduction 9.6 26.1 24.3
Min. waiting time 8.2 24.3 23.9
Min. queue 8.9 25.2 24.2
Max. queue reduction 9.2 25.7 24.3

demands, exhibiting a lower average travel time, as well as average waiting time, in comparison to the
default Webster method.

Regarding the DQN controller, Table 6.11 displays the results for a set of formulations. All MDPs
outperformed the random policy with respect to all reported metrics. However, the max. delay reduction,
min. queue and max. queue reduction MDPs exhibit higher average travel times in comparison to the
remainder definitions. Similarly to the previous sections, the MDPs that define the reward function as
a difference between consecutive decision points, as well as the queue-based definitions, are outper-
formed by the other formulations. The min. speed delta formulation yielded the lowest travel time overall.
The other RL algorithms, Q-learning and DDPG, behave in a way that is qualitatively similar to that re-
ported in the previous sections, and we omit their discussion for brevity. The corresponding results are
included in Appendix B.

Given the demand considered in the present scenario, it is expected that methods that dynamically
adjust to the phase-uneven, time-changing demands, achieve improved performance over static timings.
This is indeed the case with the baselines, as the adaptive-Webster controller is capable of outperforming
the static timings calculated using the Webster method. Once again, as expected given the current
network topology, both non-periodic methods outperform the periodic baselines.

Obtained results for the RL-based controllers outperform the static Webster timings, showing that,
indeed, RL is able to learn useful behavior in the context of TLC. Moreover, some RL algorithm and
MDP combinations, such as the case with the DQN agent with the min. speed delta MDP, are also
able to slightly outperform the adaptive-Webster method with respect to the travel time metrics. Figure
6.8 displays a set of plots that allow to take a closer look into the adaptability of different controllers to
the time-changing demands. As it can be seen in Figures 6.8(c) and 6.8(d), both the RL controller and
the adaptive-Webster method are able to achieve reduced average travel times, as well as increased

average speeds, throughout the entire day in comparison to the default Webster method. The static

63

©

—— Phase 1
—— Phase 2

©
|

=

wu

o

~
)
I
IS
el

o
phase-1 allocation)
o
Y
S

Average number of vehicles
N w » w
))
Action (
o o
w W
o w

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Cycle Cycle

(a) Average number of vehicles per phase. (b) DDPG controller average action.

N
©

8.5-

—— Webster

—— Adaptive-Webster

~—— DDPG + Min. speed delta

N
~

©

o
(s
N
o

@ —
Q
£ €25
g 7.5- E
3 g 24-
©
$70- 523-
g Q
o g 22-
965 9 -
< < —— Webster
20 - —— Adaptive-Webster
6.0 - ;
~——— DDPG + Min. speed delta
! ! ! ! ! ! Y ! 19- | ! ! ! ! ! y !
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Cycle Cycle
(c) Average velocity. (d) Average travel time.

Figure 6.8: (Intersection network, cyclical demand) Curves showing the adaptability of the DDPG agent (which
achieved an average travel time of 24.0 seconds), and other baseline methods, to the cyclical demand.

timings calculated using the Webster method reveal to be inefficient at handling the time-changing de-
mands (Fig. 6.8(a)) during certain periods of the day. On the other hand, both the RL controller and the
adaptive-Webster method are able to dynamically adapt the phase splits depending on the perceived
state of traffic congestion, as seen in Figure 6.8(b). Such online calibration of the phase-splits allows the
adaptive methods to more consistently achieve reduced average travel times throughout the evaluation
rollouts (Fig. 6.8(d)). Finally, it is noticeable from the same set of plots that the RL controller achieves
a more consistent performance in comparison to the adaptive-Webster controller. As an example, the
adaptive-Webster method records the highest and lowest average speeds among all controllers during
the evaluation rollouts, while the RL controller performs in a more consistent manner (Fig. 6.8(c)).

In summary, the present experimental setup shows that: (i) queue-based MDP formulations, and
the MDPs which reward is defined as a difference between adjacent decision steps are outperformed
by the other definitions; (ii) the Q-learning controller is normally outperformed by the DQN and DDPG
algorithms, however, no significant difference is noticeable between discrete and continuous control;
and (iii) RL controllers are capable of clearly outperforming the static signal plans calculated with the

Webster method, achieving a similar performance with that of the adaptive-Webster controller.

64

6.1.4 Takeaways

Obtained experimental results show that, for the present network topology and independently of the
demand type, non-periodic methods, i.e., the max-pressure and actuated controllers, outperform the
periodic controllers, i.e., the RL-based, Webster and adaptive-Webster controllers. This observation
is, as previously discussed, majorly justified by the fact that the non-periodic controllers exhibit a higher
degree of flexibility and reactiveness in comparison to the periodic controllers. Non-periodic methods are
able to dynamically adjust the cycle length, allowing the controller to more timely and efficiently allocate
the green time based on current demands. As the obtained experimental results suggest, the improved
adaptability over periodic controllers is more evident in low/mid congested scenarios since the controller
is able to skip phases as soon as no cars are detected. Such trend comes as no surprise given the
fact that fully-actuated non-periodic controllers are recommended, among the traffic engineering field,
to be used for control of isolated intersections: “Research has shown that the best form of isolated
[intersection] operation occurs when fully-actuated controllers are used. Actuated controllers operate
most effectively when timed in a manner that permits them to respond rapidly to fluctuations in vehicle
demand.” - U.S. Department of Transportation, Traffic Signal Timing Manual, p. 5-17 [5].

Despite the fact that the present study considers a rather constrained action space definition, making
it harder for the RL-based controllers to outperform the non-periodic baselines for the current network
topology, RL revealed to learn useful strategies for TLC. As our results suggest, the performance ob-
tained by the RL-based controllers is well inline with that of the periodic baselines, for all tested types of
demands. Especially under the cyclical demand, RL methods displayed improved performance, being
able to opportunely adapt the executed signal plans in such a way that the average travel time is mini-
mized throughout the entire simulation, clearly outperforming the computed static timings. For different
experimental setups, RL-based controllers were capable of outperforming the commonly used Webster
method for static timings calculation.

Among the three tested RL methods, the Q-learning agent was, in general, outperformed by both
the DQN and the DDPG agents. The use of higher dimensional state spaces revealed to be prohibitive
due to the slow convergence of the algorithm. Furthermore, the discretization process revealed to be
cumbersome: the bins need to be independently calculated for each component of the state, and it is
generally hard to pick the right number of bins. No significant difference in performance is noticeable
between discrete and continuous control.

With respect to the different assessed MDP formulations, under all demand types, queue-based
MDPs and the formulations which reward is defined as a difference between adjacent decision steps
are outperformed by the other definitions. Given the fact that this observation is consistent for all exper-
imental setups up to this point, it is considered that, indeed, these formulations are the less suitable to

be used in the context of this study and, therefore, their results will be omitted from now on.

65

Table 6.12: (Arterial network, constant demand) Baselines performance metrics.

[Controller [Waiting time (s) | Travel time (s) [Top-3 travel time (s) |

Webster 10.8 34.4 34.3
Max-pressure 8.6 35.6 35.2
Actuated 10.0 37.9 37.7

Table 6.13: (Arterial network, constant demand) DQN controller performance metrics.

[| Waiting time (s) [Travel time (s) | Top-3 travel time (s) |

Random 15.4 40.8 40.5
Min. speed delta 10.7 34.3 34.2
Min. delay 10.7 34.3 34.1
Min. waiting time 10.7 34.3 34.1
Min. pressure 14.8 40.8 35.9

6.2 Arterial network

The present section assesses and discusses the performance of different TSCs using an arterial traffic
network under different demands. For the purposes of brevity, we include the results for the constant
demand only - the other demand types lead to similar conclusions and are provided in Appendix B.
Results for the RL controllers are obtained from 15 independent training runs, each of which evaluated
using three rollouts of 24 hours. Non-trainable methods are evaluated with a set of 15 rollouts of 24

hours.

6.2.1 Constant demand

Table 6.12 presents the obtained results for the different baselines. As it can be seen, the periodic con-
troller, i.e., the Webster method, is capable of achieving lower average travel times in comparison to the
non-periodic baselines, despite the fact that both the max-pressure and actuated controllers outperform
the Webster method with respect to the average waiting time metric.

Regarding both the DQN and DDPG controllers (Tabs 6.13 and 6.14), all MDPs except the min. pres-
sure formulation outperformed the random policy. Table 6.13 displays the obtained experimental results
for the DQN controller under a subset of formulations. All definitions, expect the minimize pressure MDP,
exhibit a similar performance for all reported metrics. With respect to the DDPG agents (Tab. 6.14), a
similar trend is observed, however, the registered average travel times are higher, except for the min.
pressure definition, in comparison to the DQN agents.

In contrast to the results obtained for the intersection network, both non-periodic baselines are out-
performed by the Webster method in the context of the arterial network. Despite the fact that both
the max-pressure and actuated controllers are capable of reducing the average waiting time locally to
each intersection, as seen in Tab. 6.12, the miscoordination between the signal timings along the major

street leads to an overall increase in the average travel time of the vehicles. An additional evidence

66

Table 6.14: (Arterial network, constant demand) DDPG controller performance metrics.

[| Waiting time (s) [Travel time (s) | Top-3 travel time (s) |

Random 18.0 44.5 44 1
Min. speed delta 10.9 34.6 34.4
Min. delay 11.0 34.7 34.4
Min. waiting time 10.9 34.7 34.4
Min. pressure 11.8 36.3 34.3

Table 6.15: (Arterial network, constant demand) Controllers average speed metric, calculated, for each trip, as an
average of the instantaneous velocity of the vehicle at each simulation second.

[Controller | Speed (m/s) |
Webster 6.78
Max-pressure 6.49
Actuated 6.20
DQN + min. delay 6.82
DDPG + min. speed delta 6.79

that supports this claim can be seen in Table 6.15, which presents the average vehicles’ speed for a
set of methods. As shown in the table, both non-periodic baselines exhibit a lower average speed as to
the remainder controllers; on the other hand, the two RL methods and the Webster controller achieve
improved average speeds. The fact that the non-periodic methods do not have a fixed cycle length and
are highly reactive to the arrival of vehicles contributes to the desynchronization of the signal plans of
the intersections along the major street, not allowing the free-flow of vehicles. On the other hand, due
to the fact that the RL methods have a fixed cycle length and the cycles between adjacent intersections

are in sync, a green wave' occurs, allowing the vehicles to more freely travel across the major street.

Figure 6.9 provides complementary speed-related information, allowing to take a more in-depth look
with respect to this metric. It is clear from Figure 6.9(a) that both RL methods and the Webster con-
troller achieve an improved average speed in comparison to the remainder methods throughout all the
simulation (24 hours). Moreover, despite the fact that the DQN and DDPG controllers perform roughly
equivalent to the Webster method with respect to the scalar average speed metric (Tab. 6.15), it can be
seen that the RL methods exhibit, positively, a slightly more consistent average speed than the Webster
controller. The gap in performance between the non-periodic and periodic controllers is also visible in
the kernel density estimation of the trips’ average speed (Fig. 6.9(b)).

In summary, according to experimental observations: (i) periodic controllers achieve improved perfor-
mance over the non-periodic methods; (i) the min. pressure MDP is outperformed by the other studied
definitions; and (iii) the DQN algorithm achieved lower average travel times in comparison to the DDPG

algorithm.

A green wave occurs when a series of traffic lights are coordinated to allow continuous traffic flow over several intersections
in one main direction.

67

=== \Webster

1\4 I‘ l1 ’ Lﬂll.\ “ lvw |l| ||*l ‘ bl ” [‘ = Max-pressure

©
°

_ Actuated
0 0.20 -
E ‘. === DQN + Min. delay
- DDPG + Min. speed delta
©
§ 7.5 - 2 0.15 - \
) | 2 [/ \
Q)] |
> 'y | | 0 0.10-
7 i mhy
21>—) nlebster A\)
o ax-pressure =
4 | —
Actuated 0.05-
6.5 —— DQN + Min. delay
DDPG + Min. speed delta 0.00 - .
0 200 400 600 800 1000 1200 1400 25 50 75 100 125 150 175 200
Cycle Average speed (m/s)

(a) Average velocity of the vehicles during (b) Kernel density estimation of the average
the evaluation rollouts. speed distributions.

Figure 6.9: (Arterial network, constant demand) Controllers average speed metric plots.

6.2.2 Takeaways

Experimental results show that, if no explicit coordination mechanisms are considered in the context of
non-periodic methods, coordination problems arise, harming the efficiency of the traffic network. On
the other hand, periodic methods, which can be easily synchronized between adjacent intersections,

showed improved performance with respect to the average travel time metric.

In contrast to the results reported for the previous network, the more restrictive and less flexible action
space definition revealed to suit well the current arterial network. While in the context of the intersection
network, the use of a fixed cycle length limits the adaptability of the RL agents, for the current arterial
topology, it facilitates the coordination of adjacent intersections, a key feature to improved global network
performance: “For intersections located along arterial streets, isolated operation can often be improved
by considering coordination of the major street movements along the arterial. Common cycle lengths
are often employed to facilitate this coordination.” - U.S. Department of Transportation, Traffic Signal
Timing Manual, p. 3-2 [5]. Obtained experimental data supports the arguments given in Section 3.3.3
that justified the chosen action space definition, revealing it to be suitable to be used under a fully
decentralized approach to TLC, where no coordination mechanisms are explicitly considered among the

RL controllers that compose the multi-agent system.

Generally, the performance of the RL controllers is well inline with that of the best performing base-
lines, i.e., the Webster and adaptive-Webster controllers. Three MDPs, namely the min. speed delta,
min. delay and min. waiting time formulations, outperformed the min. pressure MDP for all performance
metrics and experimental setups. Finally, no significant improvement was registered with the use of
continuous control over discrete control; on the contrary, the DQN agent achieved the lowest registered

travel times.

68

Table 6.16: (Grid network, constant demand) Baselines performance metrics.

[Controller | Waiting time (s) | Travel time (s) [Top-1 travel time (s) |

Webster 22.2 65.9 65.7
Max-pressure 12.7 59.5 59.2
Actuated 13.9 61.0 60.7

Table 6.17: (Grid network, constant demand) DQN controller performance metrics.

[| Waiting time (s) | Travel time (s) | Top-1 travel time (s) |

Random 27.4 72.9 72.6
Min. speed delta 225 66.2 65.1
Min. delay 225 66.1 65.6
Min. waiting time 22.8 66.4 65.4
Min. pressure 27.2 72.2 71.8

6.3 Grid network

The present section assesses and discusses the performance of different TSCs using a grid traffic
network under different demands. Results for the RL controllers are obtained from six independent
training runs, each of which evaluated using three rollouts of 24 hours. Non-trainable methods are

evaluated with a set of six rollouts of 24 hours.

6.3.1 Constant demand

Table 6.16 presents the obtained results for the different baselines. As it can be seen, the Webster
method is outperformed by the non-periodic baselines with respect to all reported metrics. In turn, the
max-pressure method achieves lower average waiting and travel times in comparison to the actuated
controller.

Regarding the RL agents, Tables 6.17 and 6.18 present, respectively, the obtained results for the
DQN and DDPG controllers. It is clear from both tables that the min. pressure MDP is the less suitable
for the present experimental setup, exhibiting the highest recorded average travel and waiting times.
Furthermore, it can be seen that the DDPG controller achieves a lower average travel time in comparison
to the DQN controller for three out of the four MDPs, achieving the best overall average travel times with
the min. delay and min. waiting time formulations. Figure 6.10 complementarily compares the DQN
and DDPG algorithms with respect to the obtained cumulative reward during the evaluation rollouts. As
noticeable, the DDPG algorithm is able to achieve a significantly higher cumulative reward for the min.
delay and min. waiting time MDPs.

Given the fact that the presently considered demands are time-constant, it is expected that the differ-
ent agents, each responsible for the control of a single intersection, converge to a relatively stable strat-
egy. This is indeed the case, as seen in Figure 6.11(b): the agents, on average, exhibit a time-invariant

behavior. Nevertheless, the displayed behavior is fine-tuned depending on the assigned intersection.

69

Table 6.18: (Grid network, constant demand) DDPG controller performance metrics.

[| Waiting time (s) [Travel time (s) | Top-1 travel time (s) |

Random 31.8 78.4 78.0

Min. speed delta 22.7 66.5 66.2

Min. delay 214 64.7 63.1

Min. waiting time 21.0 64.1 63.4

Min. pressure 23.6 67.6 67.2
Min. speed delta Min. delay Min. waiting time

-280-
-260 -
—390- ~290 -
~300- -280-
-395 -
-310-
-300-
-400-
-320-

-330- -320
—405 -

-340-

-340-
DQN DDPG DQN DDPG DQN DDPG

Figure 6.10: (Grid network, constant demand) Cumulative reward obtained by the DQN and DDPG algorithms for
three MDPs. Error bars represent the 95% bootstrapped mean confidence interval.

As an example, the agents along Av. 5 de Outubro, assigned to intersections 2, 4 and 6, prioritize the
movement of vehicles along the avenue by allocating a larger fraction of the cycle length to phase 1,

associated with the movement of vehicles in the vertical direction.

As previously discussed, the problem of RL-based TLC can be seen as an inherently cooperative
game between different agents. In its simpler form, a RL controller is developed for each of the intersec-
tions and no explicit coordination mechanisms are considered between agents, as it is the case with the
present study. As noticeable in Figure 6.11(d), a clear improvement in the global instantaneous reward
(sum of the rewards of all agents) obtained throughout the training procedure occurs. However, Figure
6.11(c) unveils the fact that, despite the general improvement in performance of the global traffic network,
one of the agents actually obtains progressively lower instantaneous rewards as the training proceeds.
Such observation is usually associated with badly-convergent policies. One possible explanation to this
observation is related to the fact that intersection 5 (Figs. 5.2(b) and 5.3(e)) is the only intersection that
has a phase (phase 2, horizontal direction) where the traffic volume is entirely dependent on the behav-
ior of another agent (in this case, the agent assigned to intersection 6). For all the other intersections
(Fig. 5.3), each phase has at least one incoming approach which volume is not regulated by another
agent but it is instead dictated by the simulator (boundary incoming approaches, also known as source
edges). Therefore, as the training proceeds and the agent assigned with intersection 6 progressively
changes its behavior, it creates non-stationary conditions for agent 5 that hinder its learning process.
Whether the inclusion of explicit coordination mechanisms between adjacent agents contributes to the

stabilization of the learning process, and such improvement in turn promotes an increase in performance

70

(70,30) - (70,30) -

(63,37) - " (63,37) -
(57,43) - MM M (57,43) -
5 sk " k’rhmw i
S PP o) H 5]
= (50,50) - "‘ 5 (50,50) -
£ ok TR 2
Int. 1 — Int.1
(43,57) - — Int. 2 (43,57) - —— |nt. 2
— i3 —— Int. 3
(36,63)- — Int. 4 (36,63)- —— Int.4
Int. 5 Int. 5
Int. 6 —— Int. 6
(30,70) - (30,70) -
0 10000 20000 30000 40000 50000 0 200 400 600 800 1000 1200 1400
Cycle Cycle

(a) Smoothed average train actions per in- (b) Smoothed average rollout actions per in-
tersection. tersection.

—0.025 -

AN AV Ao etk ot
—0.030 -

-0.035 - l
-=0.2 -
hy,

—0.040 -

2 2
g —0.045- 2 03
9] &4 uaid I
& _0.050- — Int.1
—— Int. 2
~0.055 - — Int. 3 —0.4-
— Int.4 —— Mean
—0.060 - Int. 5 —— Smoothing
—0065- O intio ~0.5- Sto
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Cycle Cycle
(c) Smoothed average instantaneous re- (d) Global instantaneous rewards.

wards per intersection.

Figure 6.11: (Grid network, constant demand) Curves for the DQN agents with the minimize delay MDP.

of the global network is an open question of great interest. However, its study is outside the scope of the
present work.

Finally, it is interesting to notice that, despite the steady improvement in reward throughout the train-
ing process, the agent assigned to intersection 6, the intersection with the highest number of incoming

lanes (Fig. 5.3), is the most penalized with respect to the obtained rewards.

Despite the fact that we detected a minority of badly convergent policies, RL-based TSCs were
capable of learning efficient TLC strategies. RL policies, especially with respect to the DDPG algorithm,
were capable of outperforming the periodic baseline method. As an example, the DDPG controller with
the min. waiting time MDP achieved an average travel time ~1.8 seconds lower in comparison to the
Webster method.

In summary, according to experimental observations: (i) non-periodic controllers achieve improved
performance over the periodic methods; (ii) the min. pressure MDP is outperformed by the other studied
definitions; and (iii) the DDPG algorithm, with the min. speed delta and min. waiting time MDPs,

achieved the lowest recorded average travel times and average waiting times among the RL controllers.

71

Table 6.19: (Grid network, variable demand) Baselines performance metrics.

[Controller [Travel time free-flow (s) [Travel time congested (s) | Travel time (s) [Top-1 travel time (s) |

Webster 57.9 65.7 61.5 61.4
Max-pressure 46.0 61.8 55.6 55.3
Actuated 55.0 63.5 58.5 58.3

6.3.2 Variable demand

Similarly to the previous demand type, both the max-pressure and actuated controllers outperform the
Webster method, as seen in Table 6.19. This improvement in performance is most noticeable during the

free-flow regime.

Regarding the RL controllers, Figure 6.12 shows an estimation of the distributions of the travel time
means for a subset of MDPs. As noticeable in Figure 6.12(a), the DQN agents generally achieve lower
average travel times in comparison to the DDPG agents, especially with respect to to the min. speed
delta and min. waiting time MDPs. Figure 6.12(b) displays an estimation of the distributions of the travel
time means obtained by the baseline controllers. It can be seen that, on average, the majority of the RL
controllers attain a similar average travel time than the Webster controller. Unfortunately, RL controllers
exhibit more inconsistent results in comparison to the baseline controllers (Figs. 6.12(a) and 6.12(b)).
As an example, the difference between the highest and lowest average travel times for the Webster
controller is of ~0.2 seconds. On the other hand, for the DDPG algorithm with the min. delay MDP,
the difference between the highest and lowest average travel times for the different policies sets that
resulted from the training step is of ~4.3 seconds. In other words, while some training runs generate

sets of policies that clearly outperform the Webster method, this is not always the case.

The undesirable increased variability featured by the RL controllers should be carefully addressed,
especially in cases where limited data is available for learning. However, such high variance in the
obtained performances is common while applying RL methods in different domains [91], especially when
the use of complex non-linear function approximators is considered. Therefore, it is frequent among
the RL-related literature to only report results for the k best performing policies [91], as it is also the
case with several works in the TLC domain. Figure 6.13 displays the average travel time of the k best
performing policies for the DDPG controller with the minimize delay MDP, for different values of k. As it
can be seen, a gap of ~1.6 seconds exists between the best performing set of policies (top-1), and the
average of all sets of policies (top-12). One could be tempted to only report that the DDPG controller
achieves an average travel time ~1.8 seconds lower than the Webster method, closing the gap to the
actuated controller. While this is, indeed, the case for one of the policies set, this value may not be well

representative of the underlying quality of the RL method.

The increased variability observed for the current six-intersection topology should come as no sur-

prise given the fact that, even for the single agent setting (Section 6.1), RL controllers already exhibited

72

= Webster
= Max-pressure
Actuated

0.40 " . DDPG + Min. speed delta
_ === DDPG + Min. delay
DDPG + Min. waiting time
0.30 - = DQN + Min. speed delta
DQN + Min. delay
0.25 - DQN + Min. waiting time
S,

56 58 60 62 64 66 68

5‘6 5‘8 6‘0 (;2
Travel time (s) Travel time (s)
(a) RL controllers. (b) Baselines.

Figure 6.12: (Grid network, variable demand) Kernel density estimation of the distributions of travel time means for
different controllers with the time-variable demand.

)
o
B
o

60.5 -

60.0 -

59.5 -

Average travel time (s

59.0 - —— DDPG + Min. delay
—==- Webster (top-12)
----- Actuated (top-12) .

k=1 k=2 k=4 k=6 k=8 k=10 k=12
Top-k policies sets

Figure 6.13: (Grid network, variable demand) Average travel time of the top-k policies sets that achieved the lowest
average travel time, for different values of k (DDPG controller with the minimize delay MDP).

some degree of variability in the reported results, as seen in Figure 6.4: the variance in performance of
each of the independent learners contributes to an increased overall variance in the performance of the
network. Whether this problem is also being potentiated by the lack of explicit coordination mechanisms
between the agents is an important question, however, its study is outside the scope of the present the-
sis. Nevertheless, while such variance in the observed performances for the RL-based controllers should
be properly assessed and reported, it does not make RL agents less suitable for TLC in comparison to

the baselines, since at deployment-time, the best performing policy can be picked.

Despite the increased performance variance exhibited by the RL controllers in comparison to the
baselines, it can be seen that, only with time-variable demands, RL methods can achieve a reduction in
the average travel time of up to ~1.8 seconds in comparison to the Webster method.

In summary, according to experimental observations: (i) non-periodic controllers outperformed the
periodic methods; and (ii) the DQN algorithm achieved more consistent and generally lower average
travel times with respect to the studied MDPs. However, the best performing algorithm is dependent on
the MDP.

73

Table 6.20: (Grid network, cyclical demand) Baselines performance metrics.

[Controller | Waiting time (s) [Travel time (s) | Top-1 travel time (s) |
Webster 23.1 67.5 67.1
Adaptive-Webster 22.1 66.0 65.8
Max-pressure 13.1 60.7 60.5
Actuated 14.9 62.3 62.1

Table 6.21: (Grid network, cyclical demand) DQN controller performance metrics.

[| Waiting time (s) [Travel time (s) | Top-1 travel time (s) |

Random 30.3 77.3 76.9
Min. speed delta 23.1 67.2 66.4
Min. delay 221 66.0 65.1
Min. waiting time 22.7 66.8 66.3
Min. pressure 27.2 72.7 71.2

6.3.3 Cyclical demand

The last demand considered in the context of the grid network is the cyclical demand. The demand is set
up in such a way that the network’s roads along the horizontal and vertical axis are unevenly pressured
through time.

Table 6.20 presents the obtained results for the different baselines. As it can be seen, both the
Webster and adaptive-Webster methods are outperformed by the non-periodic baselines with respect
to all reported metrics. As expected given the cyclical demand, the adaptive-Webster tops the static
timings calculated using the Webster method with respect to the average travel time, as well as the
average waiting time.

Regarding the RL agents, Tables 6.21 and 6.22 present, respectively, the obtained results for the
DQN and DDPG controllers. 1t is clear from both tables, and similarly to the previous scenarios, that
the min. pressure formulation is the less suitable MDP, exhibiting the highest recorded average travel
and waiting times. Furthermore, for both RL algorithms, the min. delay and min. waiting time MDPs
outperformed the min. speed delta formulation with respect to all performance metrics. The lowest
average top-1 travel times are achieved by the DDPG controller for the min. delay and min. waiting time
MDPs.

As the previously presented experimental results suggest, RL methods are able to learn useful TLC
strategies that can cope with the time-variable demands. Both the min. pressure and min. speed delta

revealed to be the less suitable MDPs, with the later achieving a similar average travel time as the

Table 6.22: (Grid network, cyclical demand) DDPG controller performance metrics.

[| Waiting time (s) [Travel time (s) | Top-1 travel time (s) |

Random 36.3 85.0 83.9
Min. speed delta 23.3 67.6 66.6
Min. delay 22.4 66.4 64.6
Min. waiting time 221 66.1 64.9
Min. pressure 255 70.3 68.3

74

default Webster method. On the other hand, for the min. delay and min. waiting time MDPs, the two
RL algorithms were able to achieve an average travel time up to ~1.5 seconds lower in comparison to
the default Webster method, and a similar performance than the adaptive-Webster method. However,
a careful analysis of the performance with respect to the top-1 travel time metric unveils two important
findings: (i) similarly to what was observed in Section 6.3.2, RL controllers exhibit a higher variability in
performance in comparison to the baselines; and (ii) RL methods are capable of achieving the lowest
recorded average travel times among the periodic controllers. As an example, the DDPG controller with

the min. delay MDP outperforms the adaptive-Webster baseline by ~1.2 seconds.

6.3.4 Takeaways

Obtained experimental results show that, for the grid network and independently of the demand type,
non-periodic methods outperform the periodic controllers. This observation is majorly justified by the fact
the present network does not possess a major direction of traffic flow, as opposed to the arterial network.
Despite the fact that two streets feature a higher number of lanes and increased traffic (concretely,
Av. 5 de Outubro and Av. Miguel Bombarda), they are perpendicular between each other. Therefore,
as already thoroughly discussed in the previous sections, non-periodic controllers are able to achieve
reduced average travel times over the periodic methods because they are able to successfully minimize
the waiting time of the vehicles by efficiently allocating the green time based on current demands.

Despite the fact that the present study considers a rather constrained action space definition, making
it harder for the RL-based controllers to outperform the non-periodic baselines for the current network
topology, RL revealed to learn useful strategies for TLC. Each agent exhibited intersection-dependant
behavior, prioritizing the movement of vehicles along the major streets. As the reported results suggest,
the performance obtained by the RL-based controllers is well inline with that of the periodic baselines, for
all tested types of demands. Despite the noted increase in performance variability in comparison to the
baseline methods, for some experimental setups, RL methods were capable of outperforming the Web-
ster method for both the constant and variable demands. However, the most noticeable improvement
in performance occurred for the last studied demand type, i.e., the cyclical demand. For this demand
type, RL methods displayed improved performance, being able to opportunely adapt the executed signal
plans in such a way that the average travel time is minimized throughout the entire simulation, clearly
outperforming the computed static timings. For different experimental setups, RL-based controllers also
outperformed the adaptive-Webster method, achieving the lowest recorded average travel times among
the periodic baselines.

With respect to the different assessed MDP formulations, under all demand types, the min. pressure
definition achieved higher average travel times in comparison to the min. speed delta, min. delay and

min. waiting time MDPs. Among the speed-based formulations, no significant improvement was noted

75

with the use of the more complex min. speed delta MDP over the min. delay MDP; on the contrary, the
min. delay formulation achieved the most consistent, and generally lower, average waiting and travel
times for the three demands and two RL algorithms. The min. delay and min. waiting time MDPs
revealed to be the most suitable formulations to be used in the context of TLC, with no unidirectional
improvement being noticed with the use of one MDP over the other, despite the fact that the min. delay
definition achieved the lowest top-1 average travel times for the three demands.

Finally, the DDPG algorithm records the lowest top-1 average travel times for the three demands,

however, such improvement becomes less substantial with respect to the other reported metrics.

76

Conclusion

Contents

7 Future Workt o it it it et e e e e e e s e e s et e et e e 80

78

The present thesis provides a thorough study of different RL-based TSC design parameters under
different road network topologies and demand types. We consider a fully decentralized approach to TLC
with a rather constrained action space definition: each agent is responsible for adjusting the phase-splits
of a given intersection, and no explicit coordination mechanisms are considered among the agents. We
provide a comparison between several state and reward function definitions, as well as three different
classes of RL algorithms: Q-learning, a tabular method with discrete action support, DQN, a function
approximation method with discrete action support, and DDPG, a deterministic actor-critic method with

continuous action support.

Firstly, in order to consistently and fairly assess the performance impact of different RL-based TSC
design parameters, we provide a novel methodology for the development intelligent TSCs. Such method-
ology contributes one step further towards a wider application of RL in TLC, by ensuring some level of
standardization at the different stages of the experimental process: simulation setup, TSC design — MDP
formulation and selection of the RL method — as well as performance estimation and comparison. We
discuss good practices that contribute to a better interpretation of the experimental results and mitigate
reproducibility issues. In particular, we propose the use of statistical testing as a tool to infer robust

conclusions from experimental data.

Secondly, while following the proposed methodology, we assess the performance of different RL-
based TSCs under three traffic networks: a single intersection, an arterial network, and a grid network.
Experimental results reveal that the performance of the different TSCs is dependent on both the traffic
network, as well as the traffic demand. With respect to the studied state and reward definitions, obtained
results show that queue-related formulations are not suitable to be used under low traffic and, given the
chosen action space definition, the reward is best formulated as an absolute value at the decision step,
and not as a difference between consecutive decision steps. The speed-based and waiting time-based
formulations revealed to be the most suitable to be used under the TLC problem. As experimental results
suggest, the Q-learning algorithm is less suitable to handle the inherently continuous state spaces in
comparison to the DQN and DDPG algorithms, exhibiting, in general, higher average travel times than
the later algorithms. No significant and consistent improvement in performance is noted with the use of

continuous over discrete control, or vice versa.

Despite the fact that we adopted a rather constrained action space definition, making it harder for the
RL-based controllers to outperform the non-periodic baselines for the intersection and grid networks, the
use of such action space revealed to possess some advantageous features over the more commonly
used, highly flexible action space definitions. Due to its easiness of synchronization among adjacent
agents, RL controllers achieved the lowest recorded average travel times for the arterial network, out-
performing, for some experimental setups, all baseline controllers. Moreover, due to its simplicity, the

chosen action space definition allows for the improved interpretability of the learned policies, especially

79

important in the context of TLC, a domain where the control over real-world TSCs must only be conceded
to agents that exhibit a responsible and trustable behaviour.

We show that RL is able to find policies that are on par with classical controllers, which benefit from
both human supervision and from decades-old literature from the transportation engineering domain.
For all studied networks and demands, the performance obtained by the RL-based controllers is well
inline, on average, with that of the periodic baselines. For different experimental setups, RL-based
controllers outperformed the commonly used Webster method for static timings calculation. Specifically
under phase-uneven, time-varying traffic volumes, RL methods demonstrated to be able to timely react
to demand changes in such a way that the average travel time is minimized.

Finally, it is worth noticing that, while intelligent TSCs may greatly improve urban mobility, they are just
an important piece in the transition to an efficient, reliable and environmentally sustainable transporta-
tion system. On the extreme case scenario, the development of efficient TSCs may lead to increased
demand as more people start to commute using their private vehicles. Therefore, further development
and investment in the public transportation sector, as well as the prioritization of collective transportation
systems and carbon-free means of transport, are equally important for a successful transition into future

urban mobility.

7.1 Future Work

Future work could comprise a progressive flexibilization of the studied action space definition. Specifi-
cally, it is interesting to extend the current action space definition by giving the RL agent(s) the possibility
to, also, dynamically adjust the cycle length. Such additional degree of flexibility could allow RL methods
to learn even more efficient strategies to TLC, outperforming the non-periodic baselines, while still pre-
serving advantageous properties such as the improved interpretability of the resulting policies. However,
with such change, there is no longer a guarantee that a certain degree of synchronization exists among
the agents. Therefore, it might be important to include the study of explicit coordination mechanisms.
Similarly to the present work, it is hard to infer from the literature which coordination mechanisms are
the most suitable under the TLC problem, thus, a comparison between different approaches should be
carried on.

Another important future line of research is related to the performance assessment of the developed
RL-based TSCs under unexpected events that cause abrupt disruptions in the traffic flow, such as ac-
cidents or lanes shutdown, since it is important for TSCs to reliably perform in highly dynamic urban
environments, being able to adapt to unpredictable changes in traffic patterns. Furthermore, the robust-
ness of the different RL algorithms should be tested with respect to state-related partial observability

issues, such as noisy or missing sensory information.

80

Bibliography

[1] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 2nd ed. The MIT Press, 2018.

[2] Y. Wang, D. Zhang, Y. Liu, B. Dai, and L. Lee, “Enhancing transportation systems via deep learning:

A survey,” Transportation Research Part C: Emerging Technologies, vol. 99, pp. 144 — 163, 2019.

[3] Y. Wang, X. Yang, H. Liang, and Y. Liu, “A review of the self-adaptive traffic signal control system

based on future traffic environment,” Journal of Advanced Transportation, vol. 2018, pp. 1-12, 2018.

[4] H. Wei, G. Zheng, V. Gayah, and Z. Li, “A survey on traffic signal control methods,” CoRR, vol.
abs/1904.08117, 2019.

[5] P. Koonce, L. Rodegerdts, K. Lee, S. Quayle, S. Beaird, C. Braud, J. Bonneson, P. Tarnoff, and
T. Urbanik, “Traffic signal timing manual,” U.S. Department of Transportation, Tech. Rep. FHWA-
HOP-08-024, 2008.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, |. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing
atari with deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[7] D. Silver, J. Schrittwieser, K. Simonyan, |. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis, “Mastering the game of go without human knowledge,” Nature, vol. 550, no. 7676, pp.
354-359, 2017.

[8] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous
control with deep reinforcement learning,” CoRR, vol. abs/1509.02971, 2016.

[9] B. Abdulhai and L. Kattan, “Reinforcement learning: Introduction to theory and potential for trans-

port applications,” Canadian Journal of Civil Engineering, vol. 30, no. 6, pp. 981-991, 2003.

[10] W. Genders and S. Razavi, “An open-source framework for adaptive traffic signal control,” CoRR,
vol. abs/1909.00395, 2019.

81

[11] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Design of reinforcement learning parameters for
seamless application of adaptive traffic signal control,” Journal of Intelligent Transportation Sys-
tems, vol. 18, no. 3, pp. 227-245, 2014.

[12] M. Aslani, S. Seipel, M. Mesgari, and M. Wiering, “Traffic signal optimization through discrete and
continuous reinforcement learning with robustness analysis in downtown Tehran,” Advanced Engi-

neering Informatics, vol. 38, pp. 639 — 655, 2018.

[13] A. Stevanovic, “Adaptive traffic control systems: Domestic and foreign state of practice,” Trans-
portation Research Board and National Academies of Sciences, Engineering and Medicine, Tech.
Rep. 20-05/Topic 40-03, 2010.

[14] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436—44, 2015.
[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[16] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proc. 14th Interna-

tional Conference Atrtificial Intelligence and Statistics, vol. 15, 2011, pp. 315-323.

[17] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by back-propagating errors,”

in Neurocomputing: Foundations of Research. MIT Press, 1988, pp. 696—699.

[18] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol. abs/1412.6980,
2015.

[19] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel, “Backpropa-
gation applied to handwritten zip code recognition,” Neural Computation, vol. 1, no. 4, pp. 541-551,
1989.

[20] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3, pp. 279-292, 1992.

[21] H. Hasselt, “Double Q-learning,” in Advances in Neural Information Processing Systems, vol. 23,
2010, pp. 2613-2621.

[22] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” CoRR, vol.
abs/1511.05952, 2016.

[23] Z. Wang, N. de Freitas, and M. Lanctot, “Dueling network architectures for deep reinforcement
learning,” CoRR, vol. abs/1511.06581, 2015.

[24] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. Azar, and D. Silver, “Rainbow: Combining improvements in deep reinforcement learning,” CoRR,
vol. abs/1710.02298, 2017.

82

[25] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic policy gradient
algorithms,” in Proc. of Machine Learning Research, vol. 32, no. 1, 2014, pp. 387-395.

[26] W. Genders and S. N. Razavi, “Using a deep reinforcement learning agent for traffic signal control,”
CoRR, vol. abs/1611.01142, 2016.

[27] S. Touhbi, M. Babram, T. Nguyen-Huu, N. Marilleau, M. Hbid, C. Cambier, and S. Stinckwich,
“Adaptive traffic signal control : Exploring reward definition for reinforcement learning,” Procedia
Computer Science, vol. 109, pp. 513 — 520, 2017.

[28] M. Aslani, M. Mesgari, and M. Wiering, “Adaptive traffic signal control with actor-critic methods in
a real-world traffic network with different traffic disruption events,” Transportation Research Part C:

Emerging Technologies, vol. 85, pp. 732 — 752, 2017.

[29] M. Eom and B.-I. Kim, “The traffic signal control problem for intersections: a review,” European

Transport Research Review, vol. 12, no. 1, p. 50, 2020.
[30] F. Webster, “Traffic signal settings,” British road res. Lab., Tech. Rep. 39, 1958.

[31] J. Little, M. Kelson, and N. Gartner, “MAXBAND : A versatile program for setting signals on arteries

and triangular networks,” Massachusetts Institute of Technology, Tech. Rep. 1185-81., 1981.

[32] P. Varaiya, “The max-pressure controller for arbitrary networks of signalized intersections,” in Ad-
vances in Dynamic Network Modeling in Complex Transportation Systems. Springer, 2013, pp.
27-66.

[33] P. Lowrie, “Scats, sydney co-ordinated adaptive traffic system: A traffic responsive method of con-
trolling urban traffic,” Roads and Traffic Authority NSW, Darlinghurst, 1990.

[34] R. Bretherton, “Scoot urban traffic control system—philosophy and evaluation,” in IFAC Proc. Vol-
umes, vol. 23, no. 2, 1990, pp. 237 — 239.

[35] P. Mirchandani and L. Head, “A real-time traffic signal control system: Architecture, algorithms, and

analysis,” Transportation Research Part C: Emerging Technologies, vol. 9, pp. 415-432, 2001.

[36] F. Martinez, C. Toh, J.-C. Cano, C. Calafate, and P. Manzoni, “A survey and comparative study
of simulators for vehicular ad hoc networks,” Wireless Communications and Mobile Computing,
vol. 11, no. 7, pp. 813—-828, 2011.

[37] R. Roess, E. Prassas, and W. McShane, Traffic engineering, 4th ed. Prentice Hall, 2011.

[38] B. Gokulan and D. Srinivasan, “Distributed geometric fuzzy multiagent urban traffic signal control,”

IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 3, pp. 714727, 2010.

83

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Y. Bi, X. Lu, D. Srinivasan, Z. Sun, and Z. Sun, “Optimal type-2 fuzzy system for arterial traffic signal
control,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 9, pp. 3009-3027,
2018.

M. Shirvani and H. Maleki, “Maximum green time settings for traffic actuated signal control at iso-
lated intersections using fuzzy logic,” International Journal of Fuzzy Systems, vol. 19, no. 1, pp.
247-256, 2017.

W. Yang, L. Zhang, Z. He, and L. Zhuang, “Optimized two-stage fuzzy control for urban traffic
signals at isolated intersection and paramics simulation,” in 15th International IEEE Conference on
Intelligent Transportation Systems, 2012, pp. 391-396.

M. Khooban and A. Liaghat, “A time-varying strategy for urban traffic network control: A fuzzy logic
control based on an improved black hole algorithm,” International Journal of Bio-Inspired Computa-
tion, vol. 10, p. 33, 2017.

B. Park, C. Messer, and T. Il, “Traffic signal optimization program for oversaturated conditions:

genetic algorithm approach,” Transportation Research Record, vol. 1683, pp. 133—142, 1999.

K. Teo, W. Kow, and Y. Chin, “Optimization of traffic flow within an urban traffic light intersection
with genetic algorithm,” in 2nd Int. Conf. on Computational Intelligence, Modelling and Simulation,
2010, pp. 172-177.

Y. Zhang and Y. Zhou, “Distributed coordination control of traffic network flow using adaptive genetic
algorithm based on cloud computing,” Journal of Network and Computer Applications, vol. 119, pp.
110 - 120, 2018.

H. Asadi, R. Moghaddam, N. Pour, and E. Najafi, “A new nondominated sorting genetic algorithm
based to the regression line for fuzzy traffic signal optimization problem,” Scientia Iranica, vol. 25,
no. 3, pp. 1712-1723, 2018.

M. Simona, L. Dupont, and M. Camargo, “Multi-objective traffic signal optimization using 3d meso-
scopic simulation and evolutionary algorithms,” Simulation Modelling Practice and Theory, vol. 86,
pp. 120 — 138, 2018.

D. Teodorovic, “Swarm intelligence systems for transportation engineering: Principles and applica-

tions,” Transportation Research Part C: Emerging Technologies, vol. 16, pp. 651-667, 2008.

J. Garcia-Nieto, E. Alba, and A. Olivera, “Swarm intelligence for traffic light scheduling: Application
to real urban areas,” Engineering Applications of Artificial Intelligence, vol. 25, no. 2, pp. 274—283,
2012.

84

[50] K.-H. Chao, R.-H. Lee, and M.-H. Wang, “An intelligent traffic light control based on extension neural
network,” in Knowledge-Based Intelligent Information and Engineering Systems, 2008, pp. 17—-24.

[51] G. Shen and X. Kong, “Study on road network traffic coordination control technique with bus priority,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol. 39, pp. 343-351, 2009.

[52] L. Cao, B. Hu, X. Dong, G. Xiong, F. Zhu, Z. Shen, D. Shen, and Y. Liu, “Two intersections traffic
signal control method based on adhdp,” in /EEE International Conference on Vehicular Electronics
and Safety, 2016, pp. 1-5.

[563] L. Jacome, L. Benavides, D. Jara, G. Riofrio, F. Alvarado, and M. Pesantez, “A survey on intelligent

traffic lights,” in IEEE International Conference on Automation, 2018, pp. 1-6.

[54] K. Yau, J. Qadir, H. Khoo, M. Ling, and P. Komisarczuk, “A survey on reinforcement learning models
and algorithms for traffic signal control,” ACM Computing Surveys, vol. 50, pp. 34:1-34:38, 2017.

[55] N. Casas, “Deep deterministic policy gradient for urban traffic light control,” CoRR, vol.
abs/1703.09035, 2017.

[56] H. Wei, H. Yao, G. Zheng, and Z. Li, “Intellilight: A reinforcement learning approach for intelligent
traffic light control,” in Proc. of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2018, pp. 2496—2505.

[57] F. Rodrigues and C. L. Azevedo, “Towards robust deep reinforcement learning for traffic signal
control: Demand surges, incidents and sensor failures,” in /EEE Intelligent Transportation Systems
Conference, 2019, p. 3559-3566.

[58] W. Genders and S. Razavi, “Evaluating reinforcement learning state representations for adaptive

traffic signal control,” Procedia Computer Science, vol. 130, no. C, pp. 2633, 2018.

[59] T. Nishi, K. Otaki, K. Hayakawa, and T. Yoshimura, “Traffic signal control based on reinforcement
learning with graph convolutional neural nets,” in 21st International Conference on Intelligent Trans-

portation Systems, 2018, pp. 877-883.

[60] L. Nunes, D. de Oliveira, A. Bazzan, B. da Silva, E. Basso, R. Rossetti, E. Oliveira, R. da Silva, and
L. Lamb, “Reinforcement learning-based control of traffic lights in non-stationary environments: A
case study in a microscopic simulator,” in CEUR Workshop Proc., 2006, pp. 31-42.

[61] H. Wei, C. Chen, G. Zheng, K. Wu, V. Gayah, K. Xu, and Z. Li, “Presslight: Learning max pres-
sure control to coordinate traffic signals in arterial network,” in Proc. of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, 2019, p. 1290—-1298.

85

[62] M. Wiering, “Multi-agent reinforcement learning for traffic light control,” in Proc. of the 17th Interna-

tional Conference on Machine Learning, 2000, pp. 1151-1158.

[63] M. Wiering, J. van Veenen, J. Vreeken, and A. Koopman, “Intelligent traffic light control,” Dept. of

Information and Computing Sciences. Utrecht University, Tech. Rep., 2004.

[64] D. Houli, L. Zhiheng, and Z. Yi, “Multiobjective reinforcement learning for traffic signal control using
vehicular ad hoc network,” EURASIP Journal on Advances in Signal Processing, no. 1, p. 724035,
2010.

[65] L. Kuyer, S. Whiteson, B. Bakker, and N. Vlassis, “Multiagent reinforcement learning for urban traffic
control using coordination graphs,” in Machine Learning and Knowledge Discovery in Databases,
2008, pp. 656-671.

[66] B. Abdulhai, R. Pringle, and G. Karakoulas, “Reinforcement learning for true adaptive traffic signal

control,” Journal of Transportation Engineering, vol. 129, no. 3, pp. 278—-285, 2003.

[67] T. Thorpe and C. Anderson, “Traffic light control using SARSA with three state representations,”
IBM Corporation, Tech. Rep., 1996.

[68] X. Zhou, F. Zhu, Q. Liu, Y. Fu, and W. Huang, “A sarsa(\)-based control model for real-time traffic
light coordination,” The Scientific World Journal, vol. 2014, p. 759097, 2014.

[69] M. Aslani, S. Seipel, and M. Wiering, “Continuous residual reinforcement learning for traffic signal

control optimization,” Canadian Journal of Civil Engineering, vol. 45, no. 8, pp. 690-702, 2018.

[70] M. Abdoos, N. Mozayani, and A. Bazzan, “Hierarchical control of traffic signals using Q-learning

with tile coding,” Applied Intelligence, vol. 40, no. 2, pp. 201-213, 2014.

[71] L. Li, Y. Lv, and F. Wang, “Traffic signal timing via deep reinforcement learning,” IEEE/CAA Journal
of Automatica Sinica, vol. 3, no. 3, pp. 247-254, 2016.

[72] C. Choe, S. Baek, B. Woon, and S. Kong, “Deep Q learning with LSTM for traffic light control,” in

24th Asia-Pacific Conference on Communications, 2018, pp. 331-336.

[73] G. Zheng, Y. Xiong, X. Zang, J. Feng, H. Wei, H. Zhang, Y. Li, K. Xu, and Z. Li, “Learning phase
competition for traffic signal control,” CoRR, vol. abs/1905.04722, 2019.

[74] J. Zeng, J. Hu, and Y. Zhang, “Adaptive traffic signal control with deep recurrent Q-learning,” in
IEEE Intelligent Vehicles Symposium, 2018, pp. 1215-1220.

[75] E. van der Pol and F. Oliehoek, “Coordinated deep reinforcement learners for traffic light control,” in

NIPS Workshop on Learning, Inference and Control of Multi-Agent Systems, 2016.

86

[76] S. Shabestary and B. Abdulhai, “Deep learning vs. discrete reinforcement learning for adaptive
traffic signal control,” in 21st International Conference on Intelligent Transportation Systems, 2018,
pp. 286—293.

[77] L. Prashanth and S. Bhatnagar, “Reinforcement learning with average cost for adaptive control of
traffic lights at intersections,” in 14th International IEEE Conference on Intelligent Transportation
Systems, 2011, pp. 1640—1645.

[78] Y. Lin, X. Dai, L. Li, and F. Wang, “An efficient deep reinforcement learning model for urban traffic
control,” CoRR, vol. abs/1808.01876, 2018.

[79] J.-T. Girault, V. Gayah, S. Guler, and M. Menendez, “Exploratory analysis of signal coordination
impacts on macroscopic fundamental diagram,” Journal of the Transportation Research Board, vol.
2560, pp. 36—46, 2016.

[80] M. Behrisch, L. Bieker-Walz, J. Erdmann, and D. Krajzewicz, “Sumo — simulation of urban mobility:
An overview,” in Proc. of SIMUL, 2011.

[81] J. Casas, J. Ferrer, D. Garcia, J. Perarnau, and A. Torday, “Traffic simulation with aimsun,” in Fun-

damentals of Traffic Simulation. Springer, 2010, pp. 173-232.

[82] G. Cameron and G. Duncan, “Paramics—parallel microscopic simulation of road traffic,” The Jour-
nal of Supercomputing, vol. 10, no. 1, pp. 25-53, 1996.

[83] M. Saidallah, A. El Fergougui, and A. El Alaoui, “A comparative study of urban road traffic simula-
tors,” in MATEC Web of Conferences, vol. 81, 2016, p. 05002.

[84] N. Ghariani, S. Elkosantini, S. Darmoul, and L. Ben Said, “A survey of simulation platforms for the
assessment of public transport control systems,” in International Conference on Advanced Logistics
and Transport, 2014, pp. 85-90.

[85] C. Wu, A. Kreidieh, K. Parvate, E. Vinitsky, and A. Bayen, “Flow: Architecture and benchmarking
for reinforcement learning in traffic control,” CoRR, vol. abs/1710.05465, 2017.

[86] L. Codeca, R. Frank, S. Faye, and T. Engel, “Luxembourg sumo traffic scenario: Traffic demand

evaluation,” IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 2, pp. 52-63, 2017.

[87] X. Lu, “Deliver a set of tools for resolving bad inductive loops and correcting bad data,” California
PATH, ITS, University of California, Berkeley, Tech. Rep., 2012.

[88] C. Daganzo, “Urban gridlock: Macroscopic modeling and mitigation approaches,” Transportation
Research Part B: Methodological, vol. 41, no. 1, pp. 49-62, 2007.

87

[89] S. Whiteson, B. Tanner, M. E. Taylor, and P. Stone, “Protecting against evaluation overfitting in
empirical reinforcement learning,” in Proc. IEEE Symposium on Adaptive Dynamic Programming

and Reinforcement Learning, 2011, pp. 120-127.

[90] R. Islam, P. Henderson, M. Gomrokchi, and D. Precup, “Reproducibility of benchmarked deep rein-

forcement learning tasks for continuous control,” CoRR, vol. abs/1708.04133, 2017.

[91] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep reinforcement
learning that matters,” CoRR, vol. abs/1709.06560, 2019.

[92] C. Zhang, O. Vinyals, R. Munos, and S. Bengio, “A study on overfitting in deep reinforcement
learning,” CoRR, vol. abs/1804.06893, 2018.

[93] S. Shapiro and M. Wilk, “An analysis of variance test for normality,” Biometrika, vol. 52, no. 3-4, pp.
591-611, 1965.

[94] I. Olkin, Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. ~Stanford
University Press, 1960.

[95] M. Abdoos, N. Mozayani, and A. Bazzan, “Traffic light control in non-stationary environments based
on multi agent g-learning,” in 14th International IEEE Conference on Intelligent Transportation Sys-
tems, 2011, pp. 1580—-1585.

[96] M. Hoffman, B. Shabhriari, J. Aslanides, G. Barth-Maron, F. Behbahani, T. Norman, A. Abdolmaleki,
A. Cassirer, F. Yang, K. Baumli, S. Henderson, A. Novikov, S. G. Colmenarejo, S. Cabi, C. Gulcehre,
T. L. Paine, A. Cowie, Z. Wang, B. Piot, and N. de Freitas, “Acme: A research framework for

distributed reinforcement learning,” 2020.

[97] A. Cassirer, G. Barth-Maron, T. Sottiaux, M. Kroiss, and E. Brevdo, “Reverb: An efficient data

storage and transport system for ml research,” 2020.

[98] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, |. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine

learning on heterogeneous systems,” 2015.

88

Algorithms hyperparameters

89

Tables below display the hyperparameters used for each of the RL algorithms. Commonly to all RL

methods, the number of training steps is set to 50 000, the discount factor (v) to 0.98, and the reward

rescale coefficient to 0.01. Tables A.1, A.2, and A.3 display, respectively, the hyperparameters for the
DQN, Q-learning, and DDPG algorithms.

Table A.1: Complete list of the hyperparameters used

Table A.2: Complete list of the hyperparameters used

with the DQN algorithm, including double Q-
learning, prioritized replay and N-step transi-
tions. In order to properly balance exploration
and exploitation, an e-greedy policy is used.
The neural network consists of a three-layer
feed-forward ANN with an [8,16,8] duelling
network architecture (torso layers=[8, 16], du-
eling head layers=[8]).

[Hyperparameter [Value(s) |
Optimizer Adam
Learning rate 1e-3
N-step 5
Replay buffer min. size 5000
Replay buffer max. size 50 000
Replay buffer batch size 128
Target network update period 100
Prioritized replay (w) 0.9
Prioritized replay (3) 0.6
Exploration initial e 1.0
Exploration final ¢ 0.01
Exploration e schedule 45 000

with the Q-learning algorithm. The observed
trajectories are stored in a replay buffer and,
at each decision step, multiple Q-learning up-
dates are performed using transitions sampled
from the replay memory. An e-greedy policy is
used, with e, = 1/(14 N¢(s)), where N¢(s) de-
notes the number of times state s was visited
up to timestep ¢.

[Hyperparameter | Value(s) |
Learning rate («) 0.05
D|scret|z_at|on bins [0.1,0.3,0.5,0.7,0.9]
(percentiles)

Exploration strategy e-greedy
Rgplay buffer 2000
min. size

Replayl buffer 50 000
max. size

Replay buffer

batch size 128

Table A.3: Complete list of the hyperparameters used with the DDPG algorithm, including N-step transitions. The

critic consists of a fully connected neural network (with architecture [16,32,16]), which final layer maps
the hidden activations into a scalar representing the Q-value for the inputted (state, action) pair. The
actor consists of a fully connected neural network (with architecture [16,32,16]), which final layer is a
softmax function mapping the hidden activations into the allocations for each of the phases. In order
to ensure adequate exploration, gaussian noise N' ~ N (0, 0?) is introduced to the behaviour network.
Figure 5.6 displays an illustration of the actor network architecture.

Critic optimizer

Adam

Actor optimizer

Adam

Critic learning rate

1e-3

Actor learning rate

1e-4

Replay buffer min. size

5000

Replay buffer max. size

50 000

Replay buffer batch size

128

Target network update period

100

Exploration initial o2

0.2

Exploration final o2

0.01

Exploration o2 schedule

45000

Gradients clipping

True

90

Complete experimental results

91

Table B.1: Complete set of performance metrics for the intersection network under the high constant demand, defined with the mapping {d(1) = 0.10, d(2) =
0.22}. For trainable algorithms, reported performance metrics are calculated using 30 training runs, each evaluated with a set of three evaluation
rollouts of 24 hours; non-trainable methods are evaluated with a set of 30 evaluation rollouts of 24 hours. For tuple entries, the first and second
positions correspond, respectively, to the mean and standard deviation values; non-tuple entries display the mean value.

Cum. Number Waitin Travel Top-3
Controller MDP reward of stops time Ammw time (s) ﬂqmdm_ time (s)
Static N/A N/A 0.47 (8.3,10.2) (25.0, 12.5) 24.9
Webster N/A N/A 0.49 (8.5, 10.0) (25.4,12.4) 25.3
Max-pressure N/A N/A 0.48 (6.0, 6.8) (23.4,9.0) 23.3
Actuated N/A N/A 0.46 (8.0, 10.5) (24.9,12.8) 247
QL (Random) N/A N/A 0.56 (11.4,13.2) (29.1, 16.5) 28.6
QL Min. speed delta -148.97 0.50 (9.2, 11.1) (26.3, 13.7) 26.0
QL Min. delay -107.06 0.46 (8.4,10.6) (25.0,12.8) 249
QL Max. delay red. -0.08 0.50 (9.4,11.4) (26.5, 13.9) 26.3
QL Min. waiting time -99.25 0.46 (8.4,10.6) (25.0,12.8) 249
QL Min. queue -138.18 0.47 (8.7,11.1) (25.4,13.3) 25.0
QL Max. queue red. -0.50 0.49 (9.4, 11.8) (26.3,14.2) 26.0
QL Min. pressure -177.55 0.46 (8.4,10.9) (25.0, 13.0) 24.9
DQN (Random) N/A N/A 0.56 (11.4,13.2) (29.1, 16.5) 28.6
DQN Min. speed delta -138.34 0.46 (8.5,10.9) (25.1, 13.0) 24.9
DQN Min. delay -107.83 0.47 (8.4,10.7) (25.1,12.9) 24.8
DQN Max. delay red. -0.08 0.48 (9.4,12.7) (26.1, 14.9) 25.0
DQN Min. waiting time -98.70 0.47 (8.3,10.3) (25.0, 12.6) 24.9
DQN Min. queue -137.10 0.47 (8.3,10.3) (25.0, 12.6) 24.8
DQN Max. queue red. -0.49 0.48 (8.5,10.6) (25.3, 12.8) 24.9
DQN Min. pressure -178.81 0.46 (8.6, 11.1) (25.2,13.2) 24.8
DDPG (Random) N/A N/A 0.61 (13.3, 16.3) (31.3,20.2) 30.6
DDPG Min. speed delta -140.96 0.48 (8.6, 10.7) (25.4,13.0) 249
DDPG Min. delay -107.31 0.48 (8.3,10.1) (25.1,12.5) 248
DDPG Max. delay red. -0.07 0.48 (8.4,10.1) (25.3,12.5) 24.9
DDPG Min. waiting time -99.51 0.48 (8.3,10.1) (25.2,12.5) 24.9
DDPG Min. queue -137.33 0.47 (8.5, 10.8) (25.2,13.0) 24.9
DDPG Max. queue red. -0.50 0.47 (8.7,11.1) (25.4,13.2) 251
DDPG Min. pressure -177.72 0.47 (8.3,10.2) (25.1,12.5) 24.8

92

€22 (v21 ‘922) (Lot ‘el 2ro 88'2/- ainssa.id Uiy vdad
2'ee (¥ ‘ese) (911 ‘e6) 8¥°0 ¥1°0- ‘pas enenb xepy vddd
y'2e (9'el ‘e¥2) (6701 ‘'S'8) 9%°0 ¥.°G.- ananb “ulyy vdad
€ze (el ‘922) (1oL 'v2) 2r0 90°0%- aw buprem “uy vdad
gee (92t ‘v22) (ol ‘es) 170 €0°0- ‘pai Aejep xepy vdad
22 (v21 ‘9ge) (Lol ‘e2) 2ro 8.2 Aejop uipy vdad
€22 (921 ‘veze) (01 ‘e2) 10 ¥G°'€S- ejjep psads Uiy vdad
6'¥2 (251 ‘zse) (gL ‘ve) 8¥°0 V/N VIN (wopuey) Hdad
€22 (v21 ‘vee) (o122 170 2Lzl ainssaud “uyy NOQ
¥'22 (8clL ‘v¥e) (01128 L¥0 S1L'0- ‘pas enenb “xepy NOd
g'2e (Z€l‘s¥e) (601 °28) L¥0 69'G/- anenb “uiy NOQd
£2e (y21 ‘vee) (ol ‘2L 170 6268~ awiy buprem “uipy NOd
y'2e (el ‘'g'ez) (6°01 ‘2'8) S¥°0 €0°0- ‘pas Aejep xepy NOd
g2e (et ‘vee) (2ol ‘2l 170 S0°2h- Aejap “uipy NOd
€ze (et ‘vee) (20l ‘2l) 170 8Y €G- ejjep psads Uiy NOd
2ve (8t ‘v'¥e) (111 '9'8) 9¥°0 V/N V/N (wopuey) NOA
22 (£21 ‘92e) (01 ‘v2) 2ro 0L'es- ainssaud “uipy 10
L'€2 (gel ‘0ve) (801 ‘€8 9¥'0 SL'0- ‘pas enenb xepy 10
1'ee (0v1 ‘v¥e) (1128 9%'0 88'G/- anenb “uiy 10
¥'22 (921 ‘922) (€01 ‘v2) 2ro 16'68- awiy buprem “uipy 10
9'ee (eglLe2) (0118 S¥°0 €0°0- ‘pas Aejep “xew 10
¥'22 (921 ‘922) (oL ‘v2) 2r o 9.2y~ Aejep “uipy 10
G'ee (el ‘2e2) (901 °L'8) S¥°0 €/°8G- Bjjop psads “uiy 10
2ve (8'€t ‘v'¥e) (111 '9'8) 9¥°0 V/N V/IN (wopuey) 10
102 (26 ‘8°02) (99°19) 10 V/N V/N parenioy
1’02 (8'8 ‘202) (29°Lv) 6€°0 VN V/IN ainssaid-xepy
1'eg (g2l ‘zee) (26°22) S¥'°0 V/N V/N 181sgoM
2ee vzl ‘vee) (ol ‘22 10 V/N V/N onels
(s) awn [oneq} (s) sawn (s) sawn sdojs jo piemal
g-doj IELITR Buinem JaquinN ‘wn) dam 18l1043u09

‘anjeA ueaw ay) Ae|dsip saLius 9|dni-uou SanjeA UoIBIASP PJepURIS puk ueaw ay) 0] ‘Ajaaioadsal ‘puodsaliod suonisod
pu02as pue 1sli} By} ‘salud a|dn} 104 "SINOY {g JO SINOJ|04 UOIBN[BAS OF JO 18S B UM PBJENBAS 8JB SPOYlaW S|geulBl}-uou SInoy g J0 Sinojjol
uolen|eAs aalyl Jo 18S B YIM palenjead yoes ‘sunt Buiureli gg Buisn pale|nojed aJe souaw aouewlopad papodal ‘swyiloble siqeures) Jo4 {0170
= (g)p ‘c0’'0 = (1)p} Buiddew ayi yum paulep ‘puelwdp JUBISUOI MO BU} Japun MIOMIBU UO08sI8 Ul 8} 1o} Sollaw douewlopad Jo 18s alg|dwo) :g2'g alqel

93

Table B.3: Complete set of performance metrics for the intersection network under the variable demand (+ denotes the inclusion of the time variable). The base
demand is defined with the mapping {d(1) = 0.10, d(2) = 0.22}. For trainable algorithms, reported performance metrics are calculated using 30
training runs, each evaluated with a set of three evaluation rollouts of 24 hours; non-trainable methods are evaluated with a set of 30 evaluation rollouts
of 24 hours. For tuple entries, the first and second positions correspond, respectively, to the mean and standard deviation values; non-tuple entries
display the mean value. The free-flow period corresponds to the 22h00-23h00 interval, and the congested period to the 08h00-09h00 interval.

Cum. Number of Travel time Travel Top-3
Controller MDP reward stops congested (s) time (s) travel time (s)
Webster N/A N/A 0.45 (25.1, 12.4) (23.7,12.3) 23.5
Max-pressure N/A N/A 0.41 (23.3,9.0) (21.0, 8.9) 20.9
Actuated N/A N/A 0.43 (24.8,12.5) (22.0,10.2) 219
QL (Random) N/A N/A 0.49 (28.9, 16.4) (25.8,14.7) 25.5
QL Min. speed delta -63.10 0.46 (26.5,14.1) (24.6, 13.5) 24.3
QL Min. delay -46.34 0.43 (25.8, 14.4) (23.6, 13.2) 23.1
QL Max. delay red. -0.01 0.46 (25.7, 13.3) (24.2,13.3) 24.0
QL Min. waiting time -43.11 0.43 (25.8, 14.3) (23.5, 13.1) 23.2
QL Min. queue -74.19 0.45 (26.7, 15.5) (24.4,14.0) 23.5
QL Max. queue red. -0.04 0.46 (26.2, 14.0) (24.6, 13.6) 24.2
QL Min. pressure -78.83 0.44 (26.5, 15.7) (23.8, 13.7) 23.2
DQN (Random) N/A N/A 0.49 (28.9, 16.4) (25.8, 14.7) 25.5
DQN Min. speed delta -58.73 0.44 (25.4,13.5) (23.6, 12.9) 23.1
DQN Min. speed delta + -58.02 0.43 (25.6, 13.7) (23.4,12.8) 23.1
DQN Min. delay -46.73 0.44 (25.3,13.2) (23.7,12.9) 23.1
DQN Min. delay + -45.88 0.44 (25.4, 13.4) (23.5, 12.8) 23.1
DQN Max. delay red. -0.01 0.54 (34.0, 26.4) (28.5, 20.8) 23.2
DQN Max. delay red. + -0.01 0.46 (28.3, 18.0) (25.0, 15.0) 23.1
DQN Min. waiting time -43.33 0.44 (25.3, 13.1) (23.7,12.7) 23.2
DQN Min. waiting time + -42.42 0.43 (25.5, 13.5) (23.4,12.7) 23.1
DQN Min. queue -74.21 0.47 (27.6, 16.3) (24.9,14.2) 23.2
DQN Min. queue + -73.46 0.45 (26.2, 14.1) (24.0, 12.9) 23.1
DQN Max. queue red. -0.05 0.46 (27.3,16.2) (24.8, 14.3) 23.1
DQN Max. queue red. + -0.05 0.49 (29.6, 21.5) (26.0,17.7) 23.1
DQN Min. pressure + -77.05 0.43 (25.5,18.7) (23.4,12.8) 23.1
DDPG (Random) N/A N/A 0.52 (31.0, 20.2) (27.3,17.2) 26.8
DDPG Min. speed delta -59.94 0.44 (26.4, 14.8) (23.8, 13.3) 23.3
DDPG Min. speed delta + -58.39 0.42 (26.4, 15.3) (23.4,13.3) 23.2
DDPG Min. delay -46.52 0.44 (25.5, 13.3) (23.7,12.7) 23.2
DDPG Min. delay + -45.55 0.43 (25.5, 13.4) (23.4,12.7) 23.1
DDPG Max. delay red. + -0.01 0.45 (26.0, 14.2) (24.0, 13.3) 23.3
DDPG Min. waiting time -43.52 0.45 (25.5, 13.4) (23.7,12.7) 23.1
DDPG Min. waiting time + 4251 0.44 (25,5, 13.4) (23.4,12.7) 23.1
DDPG Min. queue -73.39 0.45 (26.2, 14.8) (24.1,13.3) 23.4
DDPG Max. queue red. -0.05 0.47 (26.7,14.7) (24.8, 13.8) 23.3
DDPG Max. queue red. + -0.05 0.45 (26.4, 14.8) (24.2, 13.6) 23.3
DDPG Min. pressure + -76.97 0.43 (25.5, 13.9) (23.4,12.8) 23.0

94

z¥e (8¢l ‘2se) (1188 8¥'0 6€°0- ‘paJ enanb “xepy vdada
8'€e (21 ‘1ve) (z01‘08) 90 G1°'89- awy) bunrem “uiy vdada
8'ee (21 ‘1ve) (€01 ‘08) 9¥'0 ¥2'€L- Aejep “un vdad
8'ee (0l ‘0ve) (0118 ¥¥°0 81°€6- Bjjop peads “uipy vddd
1’82 (81 ‘282) 671 “L1L) GG'0 V/N V/N (wopuey) ndaa
8'€e (9¢t ‘v've) (AT) S¥°0 6v°€2l- ainssaud “uiy NOd
£ve (v ‘2 S2) (VAL 670 0¥'0- ‘pas snanb “xepy NOd
2ve (gl ‘gse) ('L '68) L¥0 8¥° /01~ ananb “uiy NOd
6'€2 (672t ‘e¥e) (g0l ‘28 9%°0 66°89- awy) bunrem “uiyy NOd
€2 (671 ‘192) (221 ‘96) 6%°0 90°0- ‘pas Aejep “xepy NOa
0¥2 (621 ‘2¥e) (901 ‘28 S¥°0 ¥6'€.- Aejop uiy NOd
8'ee (Lel‘ove) (0118 S¥°0 10°€6- ejjep poads “uiy NOd
9'92 (5G1 ‘6°92) (21 ‘2ol 250 V/N V/N (wopuey) NOQ
02 (gL ‘vve) (€11 ‘v8) S¥°0 68'ezl- ainssaid Uiy 10
612 (6€l ‘2'52) (21168 870 6£°0- ‘pas snenb “xepy 10
612 (9v) ‘252) (811 ‘c6) 8¥'0 £¥'801- anenb uiy 10
24 (el ‘v've) (01 'e8) S¥°0 86°69- awy bupiem “uiy 10
1'Se (£'gl ‘'ese) (L'LE'6'8) 870 90°0- ‘pal Aejep xepy 10
2ve (el ‘s¥e) (LHE'p8) S¥°0 ¥S°G.- Aejep upy 10
1’62 (6l ‘e52) (21168 80 $€101- Bjjep poads “uiy 10
9'92 (gg1 ‘6'92) (21 ‘zol) 2s0 V/N V/N (wopuey) 1O
922 (211 ‘g2e) (£'8°59) 0 V/N V/N palenjoy
812 (1'6'6°12) (£'9°s9) 0 V/N V/N ainssaid-xep
0ve (821 ‘1'¥e) (101 ‘62) 9¥'0 V/N V/N 18)1sgeMm-anidepy
92 (921 ‘8¥2) (001 ‘v'8) 8¥'0 V/N V/N la1sgoMm
S) awi} |aAes) S) awi} S) awi} sdojs jo piemal
© _m-no._. A _W>m._._. M:_:Es JaquinN ‘wn) dan 1s|j043u09

"anjeA uesw ay) Aejdsip saljue 8|dn}-uou ‘SenjeA UOITBIASP PJepUE)S pue uesw ay) o} ‘AjeAnosdsal ‘puodse.liod suolisod puooss
pue 181} 8Y) ‘saujus 8jdny 104 'SINOY HZ O SINOJ|0J UOIEN[BAS OE 1O 18S B YIM PaJBN[BAS a1 SPOoylaW 8|geulBI]-UoU ‘SINoY 2 10 SINOJ|0J UONEN|BAS
981U 10 18S B YlIIM palenjeas yoee ‘suni Buiures) g Buisn parenojes aie souew souewlouad paliodas ‘swyliobie eiqeurel Jo4 {S1°0 = (2)P ‘8070
= (1)p} Buiddew sy} yim paulep SI puUBLISP SSEJ 8| PUBLIBP [B2J/0AD 8U} J8puN 3JOMIBU LUOI08SIajuUl BU) 1o} SOLldW dourwWIopMad Jo 1os ale|dwo) :p'g alqel

95

Table B.5: Complete set of performance metrics for the arterial network under the constant demand, defined with
the mapping {d(1) = 0.05, d(2) = 0.10}. For trainable algorithms, reported performance metrics are
calculated using 15 training runs, each evaluated with a set of three evaluation rollouts of 24 hours;
non-trainable methods are evaluated with a set of 15 evaluation rollouts of 24 hours. For tuple entries,
the first and second positions correspond, respectively, to the mean and standard deviation values;

non-tuple entries display the mean value.

. Top-3

Cum. Number Waiting Travel
Controller MDP R . travel

reward of stops time (s) time (s) time (s)
Webster N/A N/A 0.60 (10.8,11.2) (34.4,15.1) 34.3
Max-pressure N/A N/A 0.72 (8.6, 8.7) (35.6, 16.9) 35.2
Actuated N/A N/A 0.81 (10.0, 10.1) (37.9, 18.8) 37.7
DQN (Random) N/A N/A 0.73 (15.3,16.1) (40.8, 22.7) 40.5
DQN Min. speed delta -103.76 0.59 (10.7,11.7) (34.3,14.9) 34.1
DQN Min. delay -81.14 0.59 (10.7,11.7) (34.3, 15.0) 34.1
DQN Min. waiting time -76.11 0.59 (10.7,11.6) (34.3,15.1) 34.1
DQN Min. pressure 2255 0.79 (14.8,14.7) (40.8,20.4) 354
DDPG (Random) N/A N/A 0.82 (18.0, 19.3) (44.5, 26.9) 441
DDPG Min. speed delta -105.27 0.59 (10.9, 11.7) (34.6, 15.3) 34.4
DDPG Min. delay -82.70 0.60 (11.0, 11.5) (34.7,15.7) 34.4
DDPG Min. waiting time -77.54 0.60 (10.9, 11.5) (34.7,15.7) 34.4
DDPG Min. pressure -45.52 0.62 (11.8,12.5) (36.3,17.2) 34.3

Table B.6: Complete set of performance metrics for the arterial network under the variable demand (+ denotes
the inclusion of the time variable). The base demand is defined with the mapping {d(1) = 0.10, d(2) =
0.22}. For trainable algorithms, reported performance metrics are calculated using 15 training runs, each
evaluated with a set of three evaluation rollouts of 24 hours; non-trainable methods are evaluated with
a set of 15 evaluation rollouts of 24 hours. For tuple entries, the first and second positions correspond,
respectively, to the mean and standard deviation values; non-tuple entries display the mean value. The
free-flow period corresponds to the 22h00-23h00 interval, and the congested period to the 08h00-09h00

interval.

- . . Top-3

Controller MDP Cum. Number Waltlng Travel time Travel time 'I:ravel travel
reward of stops time (s) free-flow (s) congested (s) time (s) time (s)

Webster N/A N/A 0.62 (11.3,11.2) (33.2,15.1) (38.6, 14.8) (85.7,14.9) 35.5
Max-pressure N/A N/A 0.75 (9.3,9.1) (32.9,16.5) (42.4,18.7) (37.5,17.4) 37.1
Actuated N/A N/A 0.85 (11.3,11.2) (36.0,17.7) (44.8,21.5) (40.2,19.7) 39.9
DQN (Random) N/A N/A 0.84 (18.4,18.5) (37.8,20.9) (56.4, 33.3) (45.9,26.7) 451
DQN Min. speed delta + -114.08 0.63 (11.7,12.0) (33.6,15.5) (41.0,17.3) (36.4,15.8) 35.9
DQN Min. delay + -88.01 0.62 (11.6,11.8) (33.4,15.4) (40.2, 16.7) (36.2,15.7) 35.6
DQN Max. delay red. + -0.02 0.72 (15.3,16.7) (34.9,17.2) (51.4,31.1) (41.4,22.8) 36.0
DQN Min. waiting time + -83.31 0.63 (11.7,12.0) (33.5,15.5) (40.8, 17.6) (36.3,15.9) 35.8
DQN Max. queue red. + -0.10 0.77 (17.1,19.4) (35.9,19.0) (53.6, 37.3) (43.3,27.7) 36.5
DQN Min. pressure + -33.65 0.81 (16.1,17.1) (35.9,17.7) (48.4,24.3) (43.0,23.4) 37.0
DDPG (Random) N/A N/A 0.99 (22.6,23.8) (40.6,24.2) (65.8, 42.6) (51.6,33.6) 50.9
DDPG Min. speed delta + -114.84 0.62 (11.8,12.4) (33.5,15.5) (41.5,18.3) (36.6, 16.1) 36.0
DDPG Min. delay + -89.61 0.63 (11.8,12.1) (33.4,15.7) (42.2,20.2) (36.6, 16.6) 36.0
DDPG Min. waiting time + -82.69 0.62 (11.6,11.9) (33.4,15.6) (40.7,17.6) (36.4,16.1) 35.9
DDPG Min. pressure + -32.92 0.72 (14.2,14.1) (34.5,16.4) (46.2, 22.6) (40.6,20.0) 37.4

96

Table B.7: Complete set of performance metrics for the arterial network under the cyclical demand. The base
demand is defined with the mapping {d(1) = 0.05, d(2) = 0.10}. For trainable algorithms, reported
performance metrics are calculated using 15 training runs, each evaluated with a set of three evaluation
rollouts of 24 hours; non-trainable methods are evaluated with a set of 15 evaluation rollouts of 24 hours.
For tuple entries, the first and second positions correspond, respectively, to the mean and standard
deviation values; non-tuple entries display the mean value.

. Top-3

Controller MDP ::el\llv";r d :;lfu 2::;; :Iivrz::l?s% ;:‘ée(ls) travel
time (s)

Webster N/A N/A 0.66 (12.5,11.5) (37.4, 15.6) 37.3
Adaptive-Webster N/A N/A 0.64 (12.3, 12.5) (37.1,17.4) 36.9
Max-pressure N/A N/A 0.80 (10.3,9.6) (39.0, 17.7) 38.7
Actuated N/A N/A 0.84 (12.1,12.3) (41.0, 20.6) 40.7
DQN (Random) N/A N/A 0.92 (20.4, 20.0) (48.9, 29.0) 48.1
DQN Min. speed delta -190.32 0.65 (12.4,12.4) (37.6, 16.6) 37.0
DQN Min. delay 14812 0.66 (12.4,12.0) (37.6, 16.3) 37.2
DQN Min. waiting time -138.76 0.66 (12.4,12.1) (37.7,16.4) 37.1
DQN Min. pressure 4515 0.85 (17.4,17.6) (45.2, 25.0) 425
DDPG (Random) N/A N/A 0.86 (19.0, 20.1) (46.1, 28.2) 45.8
DDPG Min. speed delta -188.19 0.65 (12.3,11.9) (37.4,16.1) 36.9
DDPG Min. delay -149.86 0.66 (12.6, 12.2) (37.8, 16.9) 37.0
DDPG Min. waiting time -138.79 0.66 (12.5,12.0) (37.6,16.7) 37.2
DDPG Min. pressure -50.22 0.75 (15.5,15.1) (42.1, 22.0) 38.9

Table B.8: Complete set of performance metrics for the grid network under the constant demand, defined with
the mapping {d(1) = 0.05,d(2) = 0.15,d(3) = 0.20}. For trainable algorithms, reported performance
metrics are calculated using six training runs, each evaluated with a set of three evaluation rollouts of 24
hours; non-trainable methods are evaluated with a set of six evaluation rollouts of 24 hours. For tuple
entries, the first and second positions correspond, respectively, to the mean and standard deviation
values; non-tuple entries display the mean value.

o Top-1

Controller MDP :il;v'gr d Efu ;Tt‘::; :Iivni::l?s% ;I;'::‘ée(ls) travel
time (s)

Webster N/A N/A 1.08 (22.2,17.7) (65.9, 29.6) 65.7
Max-pressure N/A N/A 1.02 (12.7,11.3) (59.5, 24.1) 59.2
Actuated N/A N/A 1.07 (13.9, 12.4) (61.0, 24.7) 60.7
DQN (Random) N/A N/A 1.21 (27.4,21.1) (72.9, 32.7) 72.6
DQN Min. speed delta -396.56 1.09 (22.5,17.5) (66.2, 28.3) 65.1
DQN Min. delay -320.90 1.08 (22.5,17.6) (66.1, 28.4) 65.6
DQN Min. waiting time -307.22 1.08 (22.8,18.2) (66.4, 28.9) 65.4
DQN Min. pressure 162.09 122 (27.2,21.9) (72.2,31.9) 71.8
DDPG (Random) N/A N/A 1.32 (31.8, 25.8) (78.4, 37.8) 78.0
DDPG Min. speed delta -400.27 1.10 (22.7,16.7) (66.5, 26.9) 66.2
DDPG Min. delay -306.35 1.04 (21.4,16.8) (64.7, 27.9) 63.1
DDPG Min. waiting time -283.78 1.03 (21.0, 16.2) (64.1, 27.5) 63.4
DDPG Min. pressure 147.02 1.12 (23.6, 18.2) (67.6, 28.9) 67.2

97

Table B.9: Complete set of performance metrics for the grid network under the variable demand (+ denotes the
The base demand is defined with the mapping {d(1) = 0.05,d(2) =
0.20,d(3) = 0.30}. For trainable algorithms, reported performance metrics are calculated using six
training runs, each evaluated with a set of three evaluation rollouts of 24 hours; non-trainable methods
are evaluated with a set of six evaluation rollouts of 24 hours. For tuple entries, the first and second
positions correspond, respectively, to the mean and standard deviation values; non-tuple entries display
the mean value. The free-flow period corresponds to the 22h00-23h00 interval, and the congested
period to the 08h00-09h00 interval.

inclusion of the time variable).

- . . Top-1
Cum. Number Waitin Travel time Travel time Travel

Controller MDP reward of stops time (s% free-flow (s) congested (s) time (s) :;;"ee:s)
Webster N/A N/A 0.98 (19.8,17.9) (57.9,28.3) (65.7,30.2) (615,29.2) 614
Max-pressure N/A N/A 0.88 (10.9,10.6) (46.0,189) (61.8,23.8) (55.6, 22.8) 55.3
Actuated N/A N/A 1.04 (131,11.9) (55.0,22.9) (63.5, 26.3) (58.5,24.1) 58.3
DQN (R) N/A N/A 114 (25.9,20.8) (61.7,29.0) (79.1,355) (69.6, 32.0) 69.2
DQN Min. speed delta + -208.83 0.99 (19.9,17.3) (56.4,26.7) (66.6, 29.5) (61.6,27.8) 59.8
DQN Min. delay + -168.45 1.00 (19.8,17.2) (57.1,27.2) (65.9, 28.3) (61.5,27.5) 60.1
DQN Min. waiting time + -160.50 0.99 (20.0,17.2) (58.0,27.8) (66.7, 28.8) (61.7,27.7) 60.0
DQN Min. pressure + 88.83 1.18 (26.2,22.0) (65.1,31.2) (74.0,33.1) (69.6,31.6) 682
DDPG (R) N/A N/A 1.25 (30.1,25.5) (64.5,31.8) (88.3,44.3) (75.0,37.0) 73.8
DDPG Min. speed delta + -228.52 1.07 (22.1,182) (58.6,28.0) (69.7,29.2) (645,28.2) 63.7
DDPG Min. delay + 167.17 0.99 (19.7,16.3) (56.4,26.8) (66.0, 27.4) (61.3,26.8) 59.7
DDPG Min. waiting time + -161.49 1.01 (20.1,16.7) (56.0,26.6) (66.8,27.9) (61.9,27.1) 60.2
DDPG Min. pressure + 7868 1.09 (23.2,18.9) (60.0,29.8) (70.7,29.1) (65.7,29.0) 65.0
Table B.10: Complete set of performance metrics for the grid network under the cyclical demand. The base de-

mand is defined with the mapping {d(1) = 0.05,d(2) = 0.15,d(3) = 0.20}. For trainable algorithms,

reported performance metrics are calculated using six training runs, each evaluated with a set of three

evaluation rollouts of 24 hours; non-trainable methods are evaluated with a set of six evaluation rollouts

of 24 hours. For tuple entries, the first and second positions correspond, respectively, to the mean and

standard deviation values; non-tuple entries display the mean value.

- Top-1
Cum. Number Waitin Travel
Controller MbP reward of stops time (sg; time (s) t_ravel
time (s)

Webster N/A N/A 1.12 (23.1, 18.0) (67.5, 30.2) 67.1
Adaptive-Webster N/A N/A 1.08 (22.1,18.3) (66.0, 30.4) 65.8
Max-pressure N/A N/A 1.03 (13.1,11.7) (60.7, 24.7) 60.5
Actuated N/A N/A 1.09 (14.9,13.7) (62.3, 25.9) 62.1
DQN (Random) N/A N/A 1.31 (30.3,23.9) (77.3,36.8) 76.9
DQN Min. speed delta -407.61 1.10 (23.1, 18.6) (67.2, 30.0) 66.4
DQN Min. delay 317.13 1.08 (221,16.9) (66.0, 28.4) 65.1
DQN Min. waiting time -307.12 1.10 (22.7,17.7) (66.8, 29.4) 66.3
DQN Min. pressure 154.27 1.24 (27.2,21.2) (72.7,32.1) 71.2
DDPG (Random) N/A N/A 1.47 (36.3,31.2) (85.0, 45.0) 839
DDPG Min. speed delta 41152 112 (23.3,18.2) (67.6, 29.5) 66.6
DDPG Min. delay -321.03 1.08 (22.4,17.0) (66.4, 28.5) 64.6
DDPG Min. waiting time -300.45 1.09 (22.1,16.3) (66.1, 27.8) 64.9
DDPG Min. pressure 148.98 118 (25.5, 21.6) (70.3,33.0) 68.3

98

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Contributions
	1.2 Organization of the document

	2 Background
	2.1 Deep learning
	2.1.1 Artificial neural networks
	2.1.2 Convolutional neural networks

	2.2 Reinforcement learning
	2.2.1 Temporal difference learning
	2.2.2 Value function approximation
	2.2.3 Deterministic actor-critic methods

	2.3 Traffic light control basics
	2.3.1 Traffic light control terminology
	2.3.2 Traffic light control objective

	3 Related work
	3.1 Methods in transportation engineering
	3.2 Generalized optimization approaches
	3.3 Reinforcement learning-based traffic light control
	3.3.1 Markov decision process formulation
	3.3.2 Methods
	3.3.3 Discussion

	4 Methodology
	4.1 Simulation setup
	4.1.1 Traffic simulation
	4.1.2 Road networks topology
	4.1.3 Traffic demands and routes

	4.2 Traffic signal controller design
	4.2.1 Markov decision process formulation
	4.2.2 Reinforcement learning methods

	4.3 Training
	4.4 Evaluation
	4.4.1 Performance estimation
	4.4.2 Performance analysis & comparison
	4.4.3 Policy analysis

	5 Implementation
	5.1 Simulation setup
	5.2 Markov decision process formulations
	5.2.1 Preliminaries
	5.2.2 Speed-based formulations
	5.2.3 Waiting time-based formulations
	5.2.4 Queue-based formulations
	5.2.5 Pressure-based formulations

	5.3 Reinforcement learning methods
	5.3.1 Q-learning
	5.3.2 Deep Q-network
	5.3.3 Deep deterministic policy gradient

	5.4 Baseline controllers
	5.5 Software implementation

	6 Experimental results
	6.1 Intersection network
	6.1.1 Constant demands
	6.1.2 Variable demand
	6.1.3 Cyclical demand
	6.1.4 Takeaways

	6.2 Arterial network
	6.2.1 Constant demand
	6.2.2 Takeaways

	6.3 Grid network
	6.3.1 Constant demand
	6.3.2 Variable demand
	6.3.3 Cyclical demand
	6.3.4 Takeaways

	7 Conclusion
	7.1 Future Work

	Bibliography
	A Algorithms hyperparameters
	B Complete experimental results

