
TRIBUS: An end-to-end automatic speech recognition system for European
Portuguese

Carlos Carvalho1
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Abstract
1 End-to-end automatic speech recognition (ASR) approaches

have emerged as a competitive alternative to traditional HMM-
based ASR systems. Unfortunately, most end-to-end ASR sys-
tems are not easily reproduced since they require vast amounts
of data and computational resources that are only available for
a reduced set of companies and labs worldwide. Consequently,
the performance of these systems is not very well known for
low resource languages to the best of our knowledge. Euro-
pean Portuguese is one of those languages. In this work, we
present a set of experiments to train and assess some of the
most current successful end-to-end ASR approaches for Eu-
ropean Portuguese. The proposed system, named TRIBUS, is
a hybrid CTC-attention end-to-end ASR combining data from
three different domains: read speech, broadcast news and tele-
phone speech. For comparison purposes, we also train a state-
of-the-art HMM-based baseline on the same data. Experimen-
tal results show that TRIBUS achieves 8.40% character error
rate (CER) on the broadcast news test set without the need of a
language model, which is comparable to the strong baseline re-
sult, 4.33% CER, on the same set using an in-domain language
model. We consider this result quite promising, especially for
highly unpredictable vocabulary ASR applications. Finally, and
more notably, a novel way of training CTC-based models using
a memory-based approach, that performs better than only using
CTC alone, was developed.
Index Terms: automatic speech recognition, end-to-end, hy-
brid CTC-attention, low resources, memory-based approaches

1. Introduction
Speech recognition technology is submerged in our society
more than ever. Products like Siri, Cortana, Google Now and
Amazon Echo Alexa which belong to big companies, like Ap-
ple, Microsoft, Google and Amazon, respectively, are part of
our every day lives. This high tech translates into a significant
number of applications (e.g., healthcare and autonomous vehi-
cles) which have contributed to increase the quality of live in
our society.

Traditionally, large vocabulary continuous speech recogni-
tion (LVCSR) systems rely on sophisticated modules including
acoustic, phonetic and language models, which are manually
created by specialized computational linguists and engineers.
Since all these modules do not optimize the same goal, the ASR
system final objective will have more difficulties in achieving
the global optimum. Furthermore, the Hidden Markov models
(HMMs) systems and n-gram language models used make con-
ditional independence assumptions, whereas real speech does
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not follow those strict assumptions. To overcome these limita-
tions, by replacing an HMM-based system with a deep neural
network, one gets a new model that trains with a global op-
timization procedure. Also, by removing the engineering re-
quired for the usual alignment, bootstrapping, clustering and
decoding with finite-state transducers (FSTs), characteristic of
the HMM-based models, the training and decoding process be-
comes more straightforward. This new technology, named end-
to-end, directly maps an input sequence of acoustic features
to an output sequence of tokens, i.e., characters, sub-words or
words.

Some widely used contemporary end-to-end approaches
are: connectionist temporal classification (CTC) [1, 2], atten-
tion encoder-decoder (AED) [3, 4] and RNN Transducer (RNN-
T) [5]. CTC main problem is that it is not capable of modelling
language [6] because it considers each label in the output se-
quence to be independent of each other. To solve CTC-based
models independence assumption, Alex Graves developed the
RNN-T system. As opposite to CTC, RNN-T does not make as-
sumptions about label independence when enumerating the hard
alignments. However, the main disadvantage of CTC-based and
RNN-T systems is that, since they first enumerate all hard align-
ments and then aggregate them, there could be many illogi-
cal paths. Attention-based models solve this problem by cre-
ating a direct soft alignment between input and output, with
the support of an attention mechanism. One of the main issues
of attention-based models is the monotonic alignment problem.
As a result, the attention mechanism can allow extremely non-
sequential alignments between input frames and output tokens
[7]. To solve this, hybrid CTC-attention models were proposed
in [8]. These models use the advantages of both CTC-based and
attention-based architectures in training and decoding.

The main drawback of these end-to-end systems, men-
tioned above, is that they require a considerable number of train-
ing hours to achieve state-of-the-art performance results when
compared to traditional HMM-based systems [9]. For English
ASR, corpora such as TED-LIUM [10], and Librispeech [11]
offer great possibilities for researchers to experiment and com-
pare large end-to-end ASR systems. However, this is not the
case for European Portuguese, mainly due to the lack of large
scale speech data resources publicly available, either paid or for
free. As a result, all corpora used for the experiments of this
work is from INESC-ID.

The main contribution of this work is the creation of the first
known end-to-end ASR system for European Portuguese, by us-
ing one of the most successful end-to-end ASR approaches, for
a low resource scenario. We also aim to investigate and pro-
pose novel ways for either creating improved speaker-invariant
representations or incorporating memory modules into current
architectures that can improve the current state-of-the-art.

The remainder of this document is organized as follows. We



start by presenting some related work in Section 2. Next, we de-
scribe the main corpus used to train the end-to-end system and
the strong HMM-based baseline in Section 3. Section 4 gives
a brief description of the acoustic feature extraction and de-
scribes the main architecture used to train the end-to-end ASR
TRIBUS system, a starting point for all further mentioned ex-
periments. In Section 5 we will mention the creation and setup
for the speaker invariant systems. Section 6 will describe the
novel system that uses a memory-based system with CTC for
ASR. Section 7 will detail some experimental setup, including
the results for each experiment of this work. At last, a conclud-
ing summary and future work are presented in Section 8 and
Section 9, respectively, and in Section 10 we mention acknowl-
edgements.

2. Related work
Since 1980, traditional speech recognition systems were com-
posed by HMMs, which model the probability of going from
one acoustic state (generally a triphone) to another, and Gaus-
sian mixture models (GMMs) that model the probability of oc-
currence of that particular acoustic state.

The combination of the HMMs and GMMs constitute what
is commonly known as the acoustic model of the speech recog-
nition system, which is eventually combined with a language
model and a pronunciation dictionary to then generate the text
transcriptions, through a decoding process. The creation of
these modules for HMM-GMM systems is favourable when few
data is available to train since they already contain some speech
and language knowledge. Nonetheless, the creation of these in-
dividual and complex systems can limit the potential perfor-
mance of speech recognition, mainly because they can be poor
approximation models of reality, e.g., forcing an algorithm to
use a phonetic representation can limit the speech system’s per-
formance [12].

In 2006, artificial neural networks (ANNs) resurged with
a new name: deep learning. This occurred mainly because it
started to be possible to train networks with more layers, using a
new greedy layer-wise unsupervised pretraining technique [13].
Today, we know that unsupervised pretraining is not required
to train deep neural networks as a result of new, among many,
initialization strategies, activation functions (e.g., ReLu [14])
and adaptive optimization algorithms (e.g., Adam [15]). In the
beginning, state-of-the-art was achieved in ASR by just replac-
ing the GMMs with deep feedforward neural networks (DNNs),
since the latter is better in modelling data that lie on or near a
non-linear manifold, as opposed to the former [16].

These conventional ASR architectures, mentioned above,
have limitations, mainly because they are based on HMMs
and contain various sub-models that deal with separate acous-
tic, pronunciation and language models. First, the creation of
all different models require expert knowledge and are time-
consuming. They are also trained with different goals from the
final evaluation metric, e.g., word error rate (WER). To cre-
ate a state-of-the-art HMM-DNN system, it is first required
to train an HMM-GMM system to obtain phonetic alignments.
Moreover, since the decoding stage is performed by integrating
all modules with finite-state transducers (FSTs), creating and
implementing these well-optimized transducers is very com-
plex. Finally, the HMM systems and n-gram language mod-
els make conditional independence assumptions, whereas real
speech does not follow those strict assumptions.

A demanding task that is still ongoing is to fully replace
this module-based architecture and replace the entire traditional

pipeline with a fully differentiable DNN architecture to elim-
inate the above-outlined issues. This is possible, since deep
learning technology enables the machine to create more ab-
stract concepts out of simpler ones, as mentioned in [17]. To-
day, the main drawback of this technology, named end-to-end,
is that it requires much more data (usually more than a thou-
sand hours) and more computational power [2, 18], when com-
pared to HMM-based systems. Notwithstanding, in the pres-
ence of big data, these systems achieve state-of-the-art results
compared to HMM-based systems. Consequently, most modern
ASR products provided by big companies like Amazon, Google
and Apple, are based on end-to-end.

In 2006, it was proposed CTC, the first technique that was
closer to an end-to-end system. CTC allows training end-to-end
systems without requiring alignments between input features
and output labels. It is still not an end-to-end system because
CTC does not model the interdependencies between the outputs,
which then requires a language model. To solve this CTC as-
sumption problem, recurrent neural network (RNN)-transducer,
or RNN-T, was proposed in 2012, where the CTC is jointly
trained with an RNN that learns linguistic information. The
other main technique for training end-to-end ASR is the atten-
tion end-to-end encoder-decoder system. This system is divided
into an encoder, which acts as the acoustic model, an attention
layer that learns the alignments between input and output. At
last, the decoder acts as the language model. Usually, the out-
puts of these systems are characters or subwords. Beyond these
main architectures for end-to-end ASR systems, there are many
ways to create variants of it, by using adversarial training [19]
and memory-based approaches [20, 21].

3. European Portuguese corpus
TRIBUS corpus training set is a collection of three training sets
from three datasets: a read speech corpus, a broadcast news
corpus and a telephone speech corpus, from INESC-ID. The
validation and test sets of the TRIBUS corpus are the original
ones from each corpus, except for SPEECHDAT [22], where
the design process will be detailed below.

The read speech corpus used is BD-PÚBLICO [23]. Sim-
ilar to Wall Street Journal corpus [24], BD-PÚBLICO was
created from the Portuguese newspaper Público. Following,
ALERT [25] is the European Portuguese broadcast news (BN)
corpus, which contains spontaneous speech. ALERT, was cre-
ated in cooperation with RTP, a public service broadcasting or-
ganization from Portugal. At last, there is SPEECHDAT corpus,
a collection of speech read from telephone calls, collected by
Portugal Telecom, a Portuguese telecommunications operator
named Altice Portugal. Later, this collected data was designed
and post-processed by INESC-ID. SPEECHDAT contains two
main recording phases: SPEECHDAT 0 with 1000 speakers in-
volved and the second, SPEECHDAT 1, with 4000 speakers in-
volved. Each telephone call included in the database contains
33 red items and 7 spontaneous answers, where some contain
demographic information. Only 9 phonetically rich sentences,
from the set of 33 items, were used to create SPEECHDAT cor-
pus for the ASR task.

As opposite to ALERT and BD-PÚBLICO, an experimen-
tal setup for SPEECHDAT was created. When working with
SPEECHDAT, we noticed that from all the 36243 utterances
from SPEECHDAT 1 only 3622 are unique, and from the to-
tal 9000 utterances from SPEECHDAT 0 only 904 are unique.
Furthermore, SPEECHDAT 0 and SPEECHDAT 1 are two dis-
joint sets. For this reason, SPEECHDAT 1 was chosen for the



training set, and we divided SPEECHDAT 0 into two parts: the
validation set and the test set. This data splitting process was
made such that the number of female and male speakers was
approximately the same for each set.

Table 1: Summary of the corpora used to create the training set
of the TRIBUS corpus.

Corpus Speech type Hours

ALERT broadcast news 60
BD-PÚBLICO read 23
SPEECHDAT telephone 63

Total 146

The TRIBUS corpus, depicted in Table 1, contains 146
hours and a total of 92184 labelled utterances for the training
set. The validation and test sets for the TRIBUS corpus are pre-
sented in Table 2 and Table 3, respectively.

Table 2: Summary of the TRIBUS corpus validation sets.

Corpus Hours

ALERT 8
BD-PÚBLICO 2
SPEECHDAT 9

Table 3: Summary of the TRIBUS corpus test sets.

Corpus Hours

ALERT 6
BD-PÚBLICO 2
SPEECHDAT 9

The language model (LM) used for each set, when creating
the HMM-based baseline, is the one that comes with each cor-
pus, except for SPEECHDAT. To create the language model for
SPEECHDAT, we first estimated a backoff 3-gram model with
Kneser-Ney smoothing combined with Good-Turing smooth-
ing. Since this LM is a flawed model to use for HMM-based
ASR, due to the small linguistic variability in the training set,
mentioned above, we interpolated this 3-gram LM model with
BD-PÚBLICO LM [23]. The best combination of weights was
0.2 to the LM of SPEECHDAT and 0.8 to the LM of BD-
PÚBLICO. An additional step was performed to normalize the
notation of all the noise (e.g., nsnoise ) and disfluencies (e.g.,
ehm hmm ) across the three datasets. Finally, for the TRIBUS

corpus, we collected a lexicon of 108358 pronunciations, ob-
tained from publicly available resources and all data was down-
sampled to 8kHz.

4. End-to-end model for European
Portuguese ASR

Our end-to-end ASR system named TRIBUS, depicted in Fig-
ure 1, is a hybrid automatic speech recognizer that combines
CTC with an attention network, which learns to map acoustic
feature vectors to characters. The architecture is based on [26].

First, we will describe how the acoustic features are cre-
ated. Next, the main idea behind the attention architecture used

will be mentioned, with a detailed explanation for each module:
encoder, hybrid attention mechanism and decoder. Finally, the
end-to-end hybrid CTC-attention system will be described.

4.1. Acoustic features

The acoustic features consist in 80-dimensional Mel filterbank
energies with pitch features, extracted with Kaldi [27], making
the final size of the acoustic vector 83.

4.2. Attention-based architecture

The attention architecture contains three models: the encoder,
the hybrid attention mechanism and decoder.

The encoder network

henc
t = Encoder(x), (1)

converts the input featuresx into a framewise hidden vector
henc

t . Then, we have the hybrid attention weight computed as

αut = Hybrid attention(qu−1, {αu−1}Tt=1,h
enc
t ), (2)

where αut is the weight that says how much attention is
going to vector henc

t , in order to compute output yu, and qu−1

is the last hidden state of the long short-term memory (LSTM)
[28] present in the decoder network, mentioned with more detail
below. After computing all weights corresponding to all frame-
wise hidden vectors henc

t , we compute a weighted summation
of hidden vectors henc

t to form the hidden vector cu,

cu =

T∑
t=1

αuth
enc
t . (3)

At last, the decoder uses the weighted summation cu and
the last output yu−1 to compute the new output yu:

p(yu|y1...yu−1,x) = Decoder(cu, yu−1). (4)

We will explain each module in more detail below.

4.2.1. Encoder network

Equation 1 converts the acoustic input features into a framewise
vector henc

t . The encoder network used consists of two initial
blocks of the VGG layer [29], which yields better results most
of the times than the pyramidal bidirectional long short-term
memory (BLSTM) [26] architecture, proposed in [3]. With this,
the number of frames is reduced approximately by a factor of 4.
Following, there are 4 BLSTM layers with 1024 hidden and out-
put units. Each BLSTM layer is followed by a linear projection
layer, which receives 2048 features from the BLSTM layer and
outputs 1024 features so that they can go to the next BLSTM
layer. The final output is 1024 features for every reduced frame.

4.2.2. Hybrid attention mechanism

Hybrid attention mechanism, in equation 2, is decomposed as:

{ft}Tt=1 =K ∗αu−1, (5)

where each ft is a vector of size 10. ∗ denotes a 1D convolution
operation along axis t, with the convolution parameter K, to
produce the set of features {ft}Tt=1.



Figure 1: TRIBUS hybrid CTC-attention architecture.

Then, we can compute the energy value as:

eut = g
T tanh(LinearNN(qu−1)

+ LinearNNB(henc
t )

+ LinearNN(ft)),

(6)

where LinearNN is a linear layer with learnable matrix pa-
rameters and LinearNNB is a linear layer with learnable matrix
and bias vector parameters. The number of output features used
for the three linear networks is 320. Then, we are going to use
all eut values and apply a softmax function to get the attention
weight αut, so that we can compute the target output yu:

αut = Softmax({eut}Tt=1). (7)

4.2.3. Decoder network

The decoder network, equation 4, is another recurrent neural
network (RNN) that computes:

Decoder(.) = Softmax(LinearNNB(LSTMu)). (8)

The LSTMu is conditioned on three variables:

1. the previous hidden state qu−1;

2. the ground truth character, yu−1, which is extracted from
an embedding layer, trained while training the full end-
to-end network;

3. the attention vector cu, which is concatenated with the
previous character vector, giving a vector of size 2048 as
input to the LSTMu cell;

For this architecture, two LSTM cells with 1024 units were
used. The new hidden state qu is computed as:

qu = LSTMu(qu−1, cu, yu−1). (9)

4.3. Hybrid CTC-attention network

After describing the attention-based architecture, we can detail
how the hybrid CTC-attention architecture works. The main
idea is that the CTC and attention decoder networks share the
same encoder, mentioned above. Also, when training, the CTC
and attention loss are combined, to achieve more robustness and
converge faster [8]:

LossTotal = λLossCTC + (1− λ)LossAttention, (10)

where λ ∈ [0, 1]. Next, all noise and disfluencies from the
TRIBUS corpus mentioned in Section 2 are mapped to a special
token named <noise>. Also, it is important to note that there
are special tokens for CTC and attention-based systems among
all other output characters that exist, respectively. CTC requires
a <blank> token [1], and the attention architectures requires
the start-of-sentence and end-of-sentence (<sos/eos>) token.
Therefore, the full hybrid CTC-attention system will have two
special tokens plus an unknown token, <unk>, to map out-of-
vocabulary (OOV) symbols. Finally, the total number of output
symbols for TRIBUS is 49.

5. End-to-end speaker invariant
In order to make the ASR end-to-end system more invariant to
the speaker, three experiments were performed. However, be-
fore proceeding, it is relevant to note that the first two exper-
iments were preliminary experiments with SPEECHDAT cor-
pus, and the last experiment was performed using ALERT cor-
pus. The baseline architecture for all experiments is the same as
mentioned in Section 3 for TRIBUS.

The first experience consisted of appending speaker iVec-
tors to each acoustic feature vector, for the training, valida-
tion and test set, with the auxiliary of Kaldi toolkit. The sec-
ond experience, similar to the first one, used iVectors extracted
for each utterance instead of speaker iVectors, and at last, for
the third experience, instead of depending on the extraction of
more embedding vectors, a variation of adversarial training was
applied. Gradient reversal, as proposed in [30], was used for
the adversarial training. The main goal was to create a new
network, detailed below, to classify the respective speaker ID.
When training, this new network that shares the encoder with
the hybrid CTC-attention decoder maximizes the probability of
the utterance corresponding to the ground truth speaker. For the
back-propagation, when arriving before the encoder, the gradi-
ent is reversed by a small factor, between 0 and 1. Thus, the
encoder will be trained to create representations more invariant
to the speaker ID. As a consequence, in principle, this helps the
end-to-end ASR model to generalize better for unseen speakers
on the test set.

The new classifier network architecture receives as input
the vector of dimension 1024, which is an average of all vec-
tors outputted by the encoder. A feedforward layer then trans-
forms the averaged vector to a dimension of size 512, followed
by a ReLU layer. Next, a second feedforward layer transforms
the 512-dimensional vector into the same dimension, followed
by another ReLU. At last, a feedforward layer transforms the
512-dimensional vector into a vector of dimension of size 1366,
which is the number of speakers that exist on the ALERT train-
ing set. The network is then trained to classify the respective
ground truth speaker. The factor, α, used for the reversal of the
gradient, mentioned above, was chosen to be computed as:

α =
2

1 + e−0.07∗epoch − 1, (11)

where epoch is the current epoch of the training stage. It is
important to remind that this network is removed when applying
the hybrid CTC-attention system to the validation and test sets.



Figure 2: Block diagram of the CTC ASR system with a memory-
based adaptation network.

6. CTC-based memory network

Neural Turing machines (NTM) [31] despite having been cre-
ated in 2014, were only applied to a small number of tasks un-
til nowadays, mainly because of their difficulty to train [32].
For end-to-end ASR only two known applications, from 2020,
use NTMs. The first one is from [20], where the NTM is used
to store iVectors and read from them to combine with the hid-
den vectors of the encoder. In this work, it is essential to note
that no write operation for the NTM exists, therefore this ap-
proach ignores the full potential of the NTMs. The other known
work is [21], where they combine the NTM with the decoder
network, in order to improve the LM of the end-to-end model.
Conversely to the first-mentioned approach that uses the NTM,
our experiences use the write head. Also, they do not include
any extracted iVectors. All experiences we created for the NTM
use ALERT corpus with the baseline architecture mentioned in
Section 3.

In the beginning, we started by combining the NTM with
the hybrid CTC-attention architecture. It was shortly discovered
that the improvements were small when tuning the NTM hyper-
parameters, but when giving more weight to the CTC module,
the improvements started to increase gradually. Consequently,
all future experiments that were performed only use the CTC
module, i.e., the λ parameter from equation 10 is set to 1.
Now, we will look at how the NTM was combined with the
CTC-based network. Before proceeding to the description of
the memory-based architecture, it is crucial to notice that all
algorithmic details about the NTM are from [32].

The architecture for the CTC ASR memory-based system
is depicted in Figure 2. For each hidden vector, ht, emitted by
the encoder, the Addressing block from Figure 2 will follow all
required steps, detailed in [32], to create the weights wt. At
the same time, the erase vector, et, and add vector, at, are also
extracted from ht. From this point, the memory starts to read
from and write to, following the detailed processes mentioned
in [31]. After the read and write updates, the read vector, rt,
is concatenated with the hidden vector, ht. Next, this concate-
nated vector goes trough a fully connected (FC) layer, which re-
duces the vector dimension to the original size, i.e., 1024. This
procedure is sequential for all vectors, ht, created by the en-
coder. Therefore, there is no significant increase of delay for
the CTC-based system, as opposed to the delay created when
the attention module waits for the encoder to finish all compu-
tations.

7. Experiments
For all end-to-end experiments, we used the second version of
ESPnet toolkit [26] to implement and investigate our proposed
methods, which is still under development by the time we write
this document. First, to evaluate our end-to-end ASR TRIBUS
system performance, we compare it to a robust HMM-DNN
baseline using the same corpus. Finally, in this section, we also
present the experiments for the speaker invariant and CTC ASR
memory-based approach.

7.1. End-to-end experiments

For the end-to-end training, it was used a single GeForce GTX
1080 Ti. It was also used a learning rate of 1.0, and the
model was trained for 30 epochs, with early stopping (patience
of 4 epochs). Adadelta [33], an adaptive learning rate back-
propagation algorithm, was the optimizer chosen, with a batch
size of 30 and gradient clipping of 5. All weights were initial-
ized using Xavier initialization [34]. It was also used a sched-
uler for the learning rate, where the scale factor was 0.5 and the
patience 1 epoch. For data augmentation, we used speed per-
turbed factors of 0.9, 1.0 and 1.1, and SpecAugment [35]. The
decoding process of the hybrid CTC-attention model follows
the setup in [26]. It is relevant to note that no language model
was used to train the end-to-end ASR system.

The WER results for the end-to-end TRIBUS ASR sys-
tem, are presented in Table 4. From the results, we can see that
BD-PÚBLICO has the lowest WER, mainly because it is read
speech.

Table 4: WERs [%] on the end-to-end ASR validation (valid)
and test sets of the TRIBUS corpus.

valid test

ALERT 18.80 19.40
BD-PÚBLICO 8.60 9.10
SPEECHDAT 21.20 20.00

7.2. HMM-based experiments

To create a robust HMM-based baseline for the TRIBUS corpus,
we designed a similar procedure to the ’s5’ recipe of WSJ cor-
pus, from Kaldi. First, to create the alignments for the HMM-
DNN system, we trained an HMM-GMM system using the
TRIBUS corpus, mentioned in Section 2. The training stages
that created the HMM-GMM system are the following: (1)
monophone stage, (2) triphones + delta + delta-delta stage, (3)
triphones + LDA + MLLT stage and finally, (4) the triphones +
SAT stage. For the first training stage (1), only the 2000 short-
est utterances from the training set were used. For the second
(2), a subset of 30000 utterances from the total of 92184, men-
tioned in Section 3, were used. Finally, for the last two training
stages, (3) and (4), all utterances were used. After creating the
HMM-GMM system, the HMM-DNN system was trained fol-
lowing the Chain recipe from WSJ (”run tdnn 1i.sh”), in Kaldi.
The main difference is that only 12 layers were used to train the
model, instead of 13 layers.

The WER results for the HMM-DNN ASR system, with
respect to the TRIBUS corpus, are presented in Table 5. From
results, we can notice that BD-PÚBLICO achieves the lowest
WER. When comparing with the WERs from Table 4, we can
observe that there is still a significant difference between the



Table 5: WERs [%] on the HMM-based validation (val) and test
sets of the TRIBUS corpus.

valid test

ALERT 9.69 9.65
BD-PÚBLICO 2.56 3.04
SPEECHDAT 2.49 4.86

traditional HMM-DNN ASR systems and the end-to-end ASR
systems, for low resources.

Finally, it is essential to notice that our baseline system cre-
ated a new state-of-the-art result for ALERT compared to the
original work [25]. Using the same training set, test set and lan-
guage model, we were able to decrease the absolute WER from
23.50% to 9.65%.

7.3. HMM-based vs end-to-end European Portuguese sys-
tems

For a fair comparison between the end-to-end ASR model and
the HMM-DNN ASR model evaluation using CER was per-
formed in the HMM-DNN test sets. The CER results for the
end-to-end TRIBUS model and the HMM-DNN baseline sys-
tem, are depicted in Table 6.

Table 6: CERs [%] on the end-to-end ASR TRIBUS system and
HMM-DNN ASR system, on test sets.

TRIBUS HMM-DNN

ALERT 8.40 4.33
BD-PÚBLICO 2.70 0.95
SPEECHDAT 8.40 3.26

By observing the results from Table 6, we notice that the
CERs of the proposed ASR system, TRIBUS, are very close
to CERs of the HMM-DNN baseline system, as opposed to
the WERs. In particular, for BD-PÚBLICO, the CER from
TRIBUS system, 2.70%, is very close to the CER of the HMM-
DNN system, 0.95%, where the absolute difference between the
two is only 1.75%. Nevertheless, the HMM-based systems are
still better than the end-to-end systems, in low resource settings,
according to the CER metric.

7.4. Speaker invariant experiments

In the first part, we will present the experimental results that
used iVectors to create speaker invariant end-to-end ASR sys-
tems. In the second part, the experiments that used adversarial
training for the same purpose will be shown.

7.4.1. Speaker and utterance iVectors results

The WERs and CERs results for the speaker iVectors, utterance
iVectors and for the preliminary baseline of SPEECHDAT (an
hybrid CTC-attention system), are presented in Table 7 and Ta-
ble 8, respectively.

We can observe that neither speaker iVectors nor utterance
iVectors perform better than the original baseline from the WER
results. However, we can see for the CER test set performance
that the utterance iVectors achieves 4.90% while the baseline
only obtains 5.00% CER. Despite this result, appending speaker

Table 7: WERs [%] for SPEECHDAT validation and test sets -
iVectors.

valid test

Baseline 8.80 8.90
Baseline + speaker iVectors 9.60 9.70
Baseline + utterance iVectors 9.20 9.00

Table 8: CERs [%] for SPEECHDAT validation and test sets -
iVectors.

valid test

Baseline 5.00 5.00
Baseline + speaker iVectors 5.10 5.20
Baseline + utterance iVectors 5.00 4.90

or utterance iVectors to the initial acoustic vectors do not signif-
icantly improve hybrid CTC-attention systems performance.

7.4.2. Adversarial training results

The test set WERs and CERs results for the adversarial training
and baseline of ALERT (an hybrid CTC-attention system), are
presented in Table 9.

Table 9: WERs [%] and CERs [%] for ALERT test set corpus -
adversarial training.

valid test

Baseline 20.60 8.40
Baseline + adversarial training 23.20 9.70

From results, we can see that this kind of adversarial train-
ing does not improve when compared to the baseline hybrid
CTC-attention system. After training several times the adver-
sarial training system, to achieve the shown results, it was dis-
covered that ”deep models already learn speaker-invariant rep-
resentations” in the work of [19]. The mentioned work did a
similar experience for CTC-based models and found out that ad-
versarial training for speaker invariant did not improve the base-
line architecture. Finally, we can conclude that, with enough
layers, the encoder of the end-to-end ASR system learns already
invariant speaker representations.

7.5. CTC-based memory network experiments

All WERs and CERs results are presented in Table 10 and Ta-
ble 11, respectively. The NTM baseline architecture, which
is only denoted by NTM in both tables, contains only 1 head
for reading and writing, 1 of shift, 128 rows by 20 columns
(128x20) and all memory entries are initialized with zeros. The
information that appears between parentheses shows what is
changed over the NTM baseline, mentioned above.

We can see from Table 10 that the CTC baseline plus
the memory-based approach, using 128 rows and 40 columns,
achieves the best WER on the test set, 33.60%. More impor-
tantly, we notice that the WERs of the CTC memory-based ap-
proaches always improve over the CTC baseline. For exam-
ple, the CTC-based model that uses the NTM configured with
128 rows and 40 columns, decreases the WER from 35.30% to



Table 10: WERs [%] for ALERT corpus - NTM.

valid test

CTC baseline 35.00 35.30
CTC baseline + NTM 34.10 35.10
CTC baseline + NTM (225x20) 33.60 33.80
CTC baseline + NTM (128x40) 33.00 33.60
CTC baseline + NTM (225x40) 34.00 34.50
CTC baseline + NTM (2 heads) 33.10 33.70

Table 11: CERs [%] for ALERT corpus - NTM.

valid test

CTC baseline 11.70 11.80
CTC baseline + NTM 11.50 11.70
CTC baseline + NTM (225x20) 11.30 11.30
CTC baseline + NTM (128x40) 11.20 11.20
CTC baseline + NTM (225x40) 11.40 11.60
CTC baseline + NTM (2 heads) 11.20 11.20

33.60% on the test set. An absolute WER difference of 1.70%.
Additionally, when observing the table with the CERs, we see
that there are two models with the lowest CER. One of them is
the one that achieved the best WER, mentioned above, and the
other is a CTC with an NTM that uses 2 heads for reading and
writing, instead of only one. Nevertheless, the best model is the
CTC with an NTM that contains a memory of size 128x40.

Overall, in principle, CTC-based systems can improve the
WER and CER performance if combined with an NTM. In the
near future, more configurations will be tried out, and all exper-
iments presented in Table 10 and Table 11 will be replicated for
the WSJ and Librispeech corpora, since, up to the best of our
knowledge, there is no work done in this way.

8. Conclusions
In this document, we presented the first known work using
state-of-the-art end-to-end systems for low resource European
Portuguese. From the experimental results, we can see that the
TRIBUS end-to-end WER performance is not very close to the
HMM-based results, but is comparable according to the CERs.
The HMM-DNN models still have the advantage of having a
language model that comprises almost all linguistic variation
present in validation and test sets, and a pronunciation dictio-
nary as well. Nonetheless, it is already impressive that the end-
to-end hybrid CTC-attention systems can learn so much with-
out any language model or pronunciation dictionary. We also
observed that appending iVectors to the input acoustic features
or using adversarial training for speaker invariant, does not im-
prove the performance of the end-to-end system. If they do, the
improvements are not very significant. At last, and more no-
tably, we proposed a novel way of training CTC-based models
using a memory-based system inspired by the NTM model. The
improvements, when compared to a normal CTC-based system,
are quite remarkable.

9. Future work
At first, more configurations for the memory-based approach
applied to end-to-end CTC-based ASR will be tried out forth-
with. Simultaneously, due to the successful results for ALERT,

the memory-based experiments will be replicated for English
corpora and published for INTERSPEECH 2021, since, up to
the best of our knowledge, there is no work done in this way.

More importantly and at last, this work provides the
groundwork and suggests future work paths in end-to-end ASR
with low resource settings, e.g., European Portuguese. Many
important problems remain, but the main one is the problem of
low resources within deep learning. Deep neural networks are
known to require many labelled data in order to achieve state-of-
the-art performance results. Nevertheless, it is known that gath-
ering and labelling data is very time consuming and also very
expensive. One way to solve this problem would be to approach
the end-to-end ASR system with unsupervised learning. Unsu-
pervised learning algorithms try to find relevant ”structure” in
data, instead of learning to perform a specific classification or
regression task. Motivated by the fact that children learn how
the world works by observation and remarkably little interac-
tion, i.e., with little supervised feedback, unsupervised learn-
ing is a promising research path for end-to-end ASR with low
resources. When approaching unsupervised learning in deep
learning, one of the main problems that arise is how to find a
good representation that could, in principle, disentangle all rel-
evant factors for the ASR task. The problem of ”discovering
good representations” is approached with more detail in [36].
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