
An Automated Debugging Plug-in for Visual Studio Code

Steven Carlos Lopes Brito

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor: Prof. Rui Filipe Lima Maranhão de Abreu

Examination Committee

Chairperson: Prof. José Luís Brinquete Borbinha
Supervisor: Prof. Rui Filipe Lima Maranhão de Abreu

Member of the Committee: Prof. João Carlos Serrenho Dias Pereira

October 2020

ii

Resumo

Uma das fases mais complicadas durante o desenvolvimento de software é a realização de testes

e depuração. Pode facilmente se tornar numa tarefa muito cansativa e cara, sem mencionar a alta

probabilidade de erros. Como tal, vários métodos foram desenvolvidos para melhorar essa tarefa,

automatizando este processo o máximo possı́vel, melhorando assim a qualidade do produto final. O

GZoltar é uma framework para automatização de testes e localização de falhas para projetos Java,

integrando-se perfeitamente com testes JUnit. Além disso, a framework fornece feedback intuitivo sobre

falhas de código utilizando diferentes técnicas de visualização que mostram a distribuição de erros ao

longo do código. Atualmente, está disponı́vel como uma interface de linha de comandos, ant task,

plug-in para o Maven e, finalmente, como um plug-in para o Eclipse. Nos últimos anos, a popularidade

do Eclipse tem vindo a diminuir em comparação com outros IDEs e editores de código (por exemplo,

IntelliJ IDEA e Visual Studio Code). O Visual Studio Code é um editor de código desenvolvido pela

Microsoft para Windows, Linux e macOS. Inclui suporte para depuração, controle de Git e GitHub,

realce de sintaxe, acabamento inteligente de código, snippets e refatorização de código. Ultimamente

tem crescido em popularidade, visto que é considerado leve e flexı́vel em várias linguagens. O objetivo

principal desta tese é desenvolver uma extensão que ofereça as funcionalidades do GZoltar para o

Visual Studio Code, visando apaziguar os desenvolvedores que desejam usar a framework, mas que já

não têm tanto o interesse pelo Eclipse como antes, ou nunca tiveram nenhuma interação prévia com o

IDE.

Palavras-chave: Localização de falhas, Debugger Gráfico, Testes Automáticos, Debugging

Automático.

iii

iv

Abstract

One of the most cumbersome phases of software development is testing and debugging. It can easily

become a very tiring and expensive task, not to mention extremely prone to errors. As such, several

methods have been developed to improve this task by automating the whole process as much as pos-

sible, thus improving the overall quality of the end product. GZoltar is a framework for automatic testing

and fault localization for Java projects, integrating seamlessly with JUnit tests. Additionally, the frame-

work provides intuitive feedback about code faults by using different visualization techniques, which

showcase the error distribution along the code base. Currently, it is available as a command line inter-

face, ant task, maven plug-in, and finally as an Eclipse plug-in. In the last couple of years, Eclipse’s

popularity has been decaying in comparison to other IDEs and code editors (e.g., IntelliJ IDEA and Vi-

sual Studio Code). Visual Studio Code is a source-code editor developed by Microsoft for Windows,

Linux and macOS. It includes support for debugging, Git control and GitHub, syntax highlighting, in-

telligent code completion, snippets, and code refactoring. Lately it has been rising in popularity, as it

is considered lightweight and flexible across several languages. The main objective of this thesis is to

develop an extension offering the GZoltar functionalities in Visual Studio Code, which aims to appease

developers who want to use the framework but are not as fond of using Eclipse as before, or have never

had any previous interaction with the IDE.

Keywords: Fault Localization, Graphical Debugger, Automatic Testing, Automatic Debugging.

v

vi

Acknowledgments

In first place, I would like to thank my family for giving me the opportunity and support needed to carry

out this thesis and accomplish it adequately. Without them, this would have been difficult.

I would like to express my gratitude to my supervisor Prof. Dr. Rui Maranhão for all his support and

guidance throughout this new experience which made me very scared initially, but progressed smoothly

as it went on.

Furthermore, I would also like to thank Prof. Dr. José Campos for helping me understand how to

effectively use GZoltar. Despite not being my advisor, he helped as much as he could and was always

available when I needed.

Finally, I would like to thank my friends for also helping me with the project, encouragement and support.

vii

viii

Contents

Resumo . iii

Abstract . v

Acknowledgments . vii

List of Figures . xi

Nomenclature . 1

Glossary . 1

1 Introduction 1

1.1 Motivation . 1

1.1.1 About Debugging . 2

1.1.2 About Automated Techniques . 2

1.2 Topic Overview . 3

1.3 Objectives . 3

1.4 Contribution . 4

1.5 Thesis Outline . 7

2 State of the Art 9

2.1 Spectrum-Based Techniques . 9

2.1.1 Tarantula . 12

2.1.2 Jaguar . 13

2.1.3 Interactive Fault Localization . 14

2.1.4 VIDA . 14

2.2 Slice-Based Techniques . 15

2.2.1 JIVE . 16

2.2.2 χSlice . 17

2.2.3 eXVantage . 18

2.3 Model-Based Techniques . 18

2.3.1 Jade . 19

2.4 Miscellaneous Techniques . 20

2.4.1 EzUnit . 20

2.4.2 Whyline . 22

ix

2.5 Tools Overview . 23

3 Implementation 25

3.1 Building Extensions . 26

3.1.1 Extension Manifest . 27

3.1.2 Entry File . 28

3.1.3 Tree View Container . 29

3.1.4 Status Bar Item . 31

3.1.5 Webview . 31

3.2 Back End . 32

3.2.1 Manifest File . 32

3.2.2 Entry File . 35

3.2.3 GZoltar Commander . 36

3.2.4 Command Builder . 36

3.2.5 Workspace . 36

3.2.6 Report Panel . 37

3.2.7 Decorator . 37

3.3 Publishing the Extension . 38

3.3.1 Publisher ID . 38

4 Results and Evaluation 41

4.1 Extension Showcase . 41

4.1.1 Installing . 41

4.1.2 Using the Extension . 41

4.2 User Study . 45

4.2.1 Users Description . 45

4.2.2 Experiment Conditions . 45

4.2.3 Feedback . 46

5 Conclusions 53

5.1 Work Summary . 53

5.2 Future Work . 54

5.2.1 Differently Color Coded Graphics . 54

5.2.2 More Build Tools . 54

5.2.3 Windows Integration . 54

Bibliography 55

A Survey 59

x

List of Figures

1.1 GZoltar’s Hierarchical View. It is possible to view the project in its entirety and navigate

to specific sections. 5

1.2 Sunburst chart. 6

1.3 Treemap chart. 6

1.4 Bubble hierarchy chart. 7

2.1 Spectrum-based fault localization vectors. 10

2.2 Faulty code for sorting rational numbers. 11

2.3 SBFL applied to six runs of the RationalSort program. 11

2.4 Tarantula. 12

2.5 Jaguar tool with a method list. 13

2.6 iFL with a suspicious items list. 14

2.7 VIDA’s program outline. 15

2.8 JIVE visualizations. 16

2.9 eXVantage tool displaying test cases. 17

2.10 eXVantage tool displaying source code. 18

2.11 eXVantage tool displaying source code. 19

2.12 Jade user interface. 20

2.13 EzUnit list. 21

2.14 EzUnit graph view. 21

2.15 EzUnit integration with the code editor. 22

2.16 Whyline interface showing questions about an object’s properties. 22

2.17 Source code highlighting. 22

3.1 Architecture. 25

3.2 VS Code UI. 26

3.3 Yeoman. 27

3.4 Extension folder structure. 27

3.5 Extension manifest example. 28

3.6 Treeview container example. 29

3.7 Back end class diagram. 33

xi

3.8 Activation events for the extension. 33

3.9 GZoltar’s activity bar. 34

3.10 Activity bar’s declaration. 34

3.11 Commands’ declaration. 35

3.12 Suspiciousness icons. 37

3.13 Packaging and publishing an extension with vsce. 38

3.14 Creating a Personal Access Token in Azure DevOps. 39

3.15 Creating a Publisher using vsce. 39

3.16 Creating a Publisher using Visual Studio Marketplace. 40

3.17 Uploading an extension to the Visual Studio Marketplace. 40

4.1 GZoltar in the VS Marketplace. 42

4.2 GZoltar in VS Code. 42

4.3 GZoltar Commands. 43

4.4 GZoltar Status Bar Update. 43

4.5 GZoltar Result. 43

4.6 GZoltar Visualizations. 44

4.7 Open file showing suspicion levels. 44

4.8 First set of survey questions. 48

4.9 Second set of questions about the extension’s interface. 49

4.10 Third set of questions about the extension’s capabilities. 50

4.11 Final set of questions about automatic and visual debugging. 51

A.1 Introduction. 59

A.2 User Profile. 60

A.3 GZoltar Interface. 61

A.4 GZoltar Capabilities. 62

A.5 Automatic Debugging Concepts. 63

xii

Chapter 1

Introduction

GZoltar [1] is a framework for automatic testing and fault localization for Java projects. It integrates

seamlessly with JUnit tests, and provides intuitive feedback about code faults by using different visual-

ization techniques. Its toolset implements the spectrum-based fault localization (SBFL) technique using

the Ochiai algorithm [2], which is known to be among the best for fault localization. Currently, it is avail-

able as a command line interface, ant task, maven plug-in, and finally as an Eclipse plug-in. GZoltar is

already widely used in many systems such as ssFix [3], Astor [4], ACS [5], CapGen [6], among others.

However, in the last couple of years, other IDEs have surpassed Eclipse in terms of popularity, for in-

stance, IntelliJ IDEA and VS Code. As such, the framework will not have as much exposure as before,

due to the declining use of the IDE. For such a reason, we propose adapting the framework as a plugin

in a new code editor in hopes of catering to a wider public.

VS Code is a relatively recent lightweight, cross-platform code editor developed by Microsoft for

Windows, Linux and macOS. It contains a plethora of useful features right out of the box: IntelliSense,

which provides code completion, variable/parameter info, imported modules, etc.; built-in debugger;

built-in Git commands, allowing the developer to review file differences, stage, commit, push and pull

from the editor; highly customizable, meaning it is possible to create/install extensions to add languages,

themes, debuggers or other types of features. Overall, the combination of these features makes a

powerful tool for developers.

Considering this, we deemed necessary to provide GZoltar’s features as a plugin in VS Code (called

extension in this environment).

1.1 Motivation

This section contains the project motivation. It discusses the relevance of the debugging process in the

software development life cycle, along with the difficulties that accompany it. It also presents the main

problem of debugging tools: the lack of a powerful graphical debugger. There are already many tools

based on different techniques and concepts, which aim to alleviate this process. However, very few

possess the capabilities of a graphical debugger tool.

1

1.1.1 About Debugging

Debugging, defined as the process of finding and resolving problems within a computer program, is an

intricate process which comprises multiple tactics to try and solve these problems. This set of tactics,

which can usually be found in debuggers, includes interactive debugging (a.k.a., step-by-step), unit

testing, code coverage, integration testing, among many others. It is a crucial phase during the life cycle

of any software development process, allowing the developers to be aware of existing problems in their

code, as well as to give them the chance to hone the product as much as possible. However, the process

itself can easily become a very tiresome task.

One of the many difficulties present in debugging lies in the ability to reproduce the error, or even

knowing where it originated. This is a non-trivial task, since several factors can make it difficult to

reproduce the problem, as well as doing it in a time efficient manner. For this purpose, many of the

techniques created offer a solution to this by automating the process as much as possible (automated

testing), and by trying to pinpoint the fault’s origin (fault localization).

Besides being extremely costly in large systems, debugging is also very much needed in software

dependant systems where a malfunction or fault can cause deaths, injuries or even environmental harm

[7]. These are called safety-critical systems, and are heavily computer-based. Naturally, a failure that

has happened in a personal computer may result in a loss of files and/or progress in a project, but a

failure in a safety-critical system such as nuclear power plants or airplanes can cause injuries to lots of

people, so clearly there is a need to ensure not only mechanisms to tolerate errors in those systems,

but also to guarantee the quality of the software being used in them.

1.1.2 About Automated Techniques

Automated testing can ease this problem by automating some repetitive but necessary tasks in a testing

environment. This is beneficial for large projects that either require testing the same areas repeatedly, or

simply have a large amount of test cases, such that it would be too arduous for someone to do manually.

Fault localization techniques identify the reason for the fault that can explain the bug or error encoun-

tered. Debugging is a strenuous task to execute single-handedly, meaning that automated techniques

are clearly preferred over manual ones. These techniques are usually classified by the approaches they

are based on, categorized in [8] as the following: SBFL [9], slice-based [10, 11], statistics-based [12],

program-state based [13], model-based [14], machine learning-based [15], data mining-based [16, 17]

and other miscellaneous techniques.

Although there are several tools which integrate these features [18–20], many of them lack a visu-

alization tool to provide intuitive feedback. As previously stated, large projects are difficult to maintain

and test as they grow larger in size. A visual report of the faults and defects found in the code base can

easily extenuate this task, given that it is a more straightforward approach than simply looking at plain

text indicating the several errors found.

2

1.2 Topic Overview

The debugging process is clearly an important phase in software development. Not only does it allow

us to detect problems we might not have even known otherwise, but it can also give insight on how to

better improve the end product. The many techniques and tools created for debugging proves it is still

as relevant nowadays. When we consider that a system’s fault could potentially cause harm to people,

it further cements the necessity of better tools. However, because of the ever growing code base in

software projects, and with projects becoming more and more complex each time, it is empirical for the

tools that we use to also adapt to this change, but still work in the same way. This is something being

achieved by automated techniques.

Automated testing and fault localization techniques improve this process, but both come with their

own set of drawbacks. Given the repetitive nature of debugging, automating parts of it can potentially

save lots of time. Fault localization on the other hand, despite the many techniques available, some

tools only present the results/fault cause in clear text or some sort of hierarchy with lines of code.

The problem with this becomes increasingly more apparent in larger projects, as it is much harder to

analyze hundreds of lines of code that might be suspicious instead of a certain type of visualization that

condenses this information and presents it to the user in a manner that is easier to comprehend. This

encompasses the problem with most debuggers, the lack of a visual tool to grasp the entirety of the

project, and immediately spot the areas where there are faults and/or are linked to faulty segments of

the code. This brings about the topic of graphical debuggers.

Graphical debuggers, i.e., visualization tools that provide visual aide do in fact exist, albeit in short

numbers, but are still present nonetheless. Yet, the currently available ones do not provide an integrated

environment that allows the developer to localize and correct software faults at the same place. This

forces the programmer to constantly switch between applications, which will most certainly lead to a

loss of productivity. Most tools that are integrated in IDEs do not offer powerful visualizations, and even

external tools can become quite a hassle to work with. They must provide as much information to the

user as possible, with the least amount of trouble required to understand it. There is a need for a solution

that will work in the same environment the developer is working in, and without much trouble installing.

1.3 Objectives

Taking into account the several aforementioned techniques, it is clear that a tool providing those features

would certainly be useful to greatly improve and reduce the time spent while debugging/testing software

[21]. Therefore, this project aims to port GZoltar’s features to a plug-in (extension) in VS Code as a

means of making it more accessible to new users. GZoltar’s main features, which are its views that

indicate fault localization, are readily available as out-of-the-box extension that can be found in VS

Code’s marketplace. This marketplace (also integrated in the editor) contains every published extension,

from which it is fairly simple to access and install. The goal is to make the extension as easy to use as

possible.

3

The extension itself will be responsible for identifying open projects/folders as Java projects, and

then present GZoltar’s functionalities to the user. The interface should indicate clearly how many of

the open folders are Java projects (since it is possible to work with several projects simultaneously in

VS Code) and allow the user to call upon its features only on the acceptable projects. When those

requirements are met, it is possible to request an analysis for the selected Java project. Shortly after

this, the visualizations are presented to the user. These consist of hierarchical localization views, where

a component is connected to its child components or its parent ones. It is possible to zoom in inside a

component (assuming there are small components inside), and also to zoom out to get a wider view of

the project. The deepest level from which we are able to zoom in can be a single line of code, while the

broadest level is the root of the project. This allows the developer to have a clear perception about the

components at any level, be it a smaller and more specific section or a broader one. Figure 1.1 shows a

graphical representation of this concept.

The views provided by GZoltar consist of 3 hierarchical visualizations, namely sunburst, bubble hier-

archy and treemap partition. A sunburst chart consists of an inner circle surrounded by rings of deeper

hierarchy levels. The angle of each segment is either proportional to a value or divided equally under

its parent node, and each segment may be colored according to which category or hierarchy level they

belong to. A treemap chart shows the visualization of hierarchical data in the form of nested rectangles.

Each level of a tree structure is depicted as a colored rectangle which contains other rectangles, where

the area is proportional to its value. A bubble hierarchy chart consists of a hierarchical data visualization

through bubble nesting. Each bubble represents a category, and inside are many specific sub-parts of

that same category. An example of each chart can be seen in Figures 1.2, 1.3 and 1.4 respectively.

1.4 Contribution

In this dissertation, we show that the key to effective debugging is the use of a fault localization tool with

powerful visualizations, which allow the user to navigate through every section of the project, with code

segments containing colored labels ranging from red (indicating high suspicion, likely cause of the fault)

to green (having no suspicion at all). With this set of views, we can easily find the faults faster, or at least

predict where the actual fault might be. The main contributions of this thesis are:

• We introduce the adaptation of a fault localization tool as a plug-in in Visual Studio Code. The plug-

in is built to be as easy to use as possible, with hopes of ensuring the best debugging experience

possible.

• The plug-in is published in Visual Studio Marketplace, the aggregator for all plug-ins related to

Visual Studio, Visual Studio Code, and Azure DevOps. Being easily accessible in a public place

allows it to be discovered by more users.

• We have conducted a user study to obtain feedback from users who have never interacted with

GZoltar before. This experiment serves to prove the effectiveness of the plug-in, and also to know

about ways to further improve and develop it.

4

root

Module 2

Module 2

Module 3 Module 4

Module 5 Module 6

Module 7

Module 8 Module 9

Module 3 Module 4

Module 5 Module 6

Figure 1.1: GZoltar’s Hierarchical View. It is possible to view the project in its entirety and navigate to
specific sections.

5

Figure 1.2: Sunburst chart.

Figure 1.3: Treemap chart.

6

Figure 1.4: Bubble hierarchy chart.

1.5 Thesis Outline

This section presents the document structure. Apart from Introduction, the remainder of this document

has four more chapters organized in the following way:

Chapter 2 - Related work and state-of-the-art technologies. This chapter analyzes tools and tech-

nologies that solve some of the problems previously mentioned, along with the advantages and disad-

vantages of each one, and why there is still need for further improvement.

Chapter 3 - Details of the implementation. This chapter details the development process of a VS

Code extension, the implementation of our solution and how to make the extension public by publishing

it to the Visual Studio Marketplace.

Chapter 4 - Results and evaluation. This chapter presents the results obtained throughout this

project. It shows the extension in practice, how it can be installed, and also a user study that was carried

out to obtain feedback about the extension’s usability.

Chapter 5 - Conclusions. This chapter summarizes everything that was done in this project, the

accomplishments, and also some ideas for future work.

7

8

Chapter 2

State of the Art

This chapter describes the many tools and technologies we have found that pose, in one way or another,

a solution to the problems previously mentioned. There are many different techniques used in their

implementation, each with a varying degree of complexity to it. Some of them may not have been

recently developed, but are still held in high regards in the context of fault localization.

As previously stated, nowadays there are several debugging techniques available to aid developers.

Each technique has its own set of difficulty associated, with different types of effectiveness. The most

typical ones, manual debugging tools, consist of step-by-step executions of test cases to try to localize

the fault. This problem will be aggravated by the project’s dimension (among other factors) as it becomes

extremely difficult to manually search for the bug in a large-scale project. Furthermore, this depends on

the developer’s own experience to identify or at least prioritize which section of the code is likely to

be faulty. Our main focus will be on automated fault localization tools with visualizations that rely on

information about test case executions and their results, to speculate about where the fault might be.

Several studies have been made to ascertain their credibility [8, 22, 23], which prove their usefulness

in this situation. We will briefly explore some of these fault localization techniques, and then analyze

examples of graphical tools which use these techniques since many of them solve some aspects of

the problem in question, but still lack certain features we deem useful. At the end of this chapter, we

will be comparing each of these tools’ graphical capabilities, summarizing both their advantages and

disadvantages, indicating what they are lacking in order to be considered a better visual aide.

2.1 Spectrum-Based Techniques

Spectrum-based techniques [9], use information obtained from a program spectrum. A program spec-

trum is an agglomerate of several types of data that provides a specific view on a software’s dynamic

behavior. Naturally, these types of data are collected at run-time and typically consist of a number of

flags or counters for the different parts of a program. As a result, collecting data for a program spectrum

is a light-weight analysis [24], thus contributing to SBFL techniques’ reliability.

9

In [2] their focus is solely on block-hit spectra, but this approach can easily be generalized to other

types of program spectra, such as path-hit spectra, data-dependence-hit spectra, etc.) A block-hit spec-

trum contains a flag for every block of code in a program, indicating whether that block was executed in a

certain run or not. A block of code consists of a statement, where individual statements of a compound

statement are not distinguished, but the cases of a switch statement are.

Given M runs of a program, the hit spectra of these runs constitute a binary matrix, where the

columns correspond to N different parts of the program (blocks in this case). Another column vector, the

error vector, contains information about which runs contain an error. This vector is thought to represent

a hypothetical part of the program responsible for all the observed errors. SBFL consists in identifying

the part whose column vector resembles the error vector the most. Figure 2.1 shows the vectors used

in SBFL.

Figure 2.1: Spectrum-based fault localization vectors.

In the field of data clustering, to find resemblances between vectors of binary, nominally scaled data

such as the columns in program spectra matrices, similarity coefficients are used [25]. The calculated

similarity coefficients rank parts of the program with respect to their likelihood of containing the faults.

This is used under the assumption that if any part of the software’s vector is highly similar to the error

vector, then there is a high probability that that part caused the detected errors. The Ochiai coefficient

used in the molecular biology domain [26] serves as the underlying coefficient used in GZoltar:

so(j) =
a11(j)√

(a11(j) + a01(j)) ∗ (a11(j) + a10(j))

where apq(j) = |{i | xij = p ∧ ei = q}|, and p, q ∈ {0, 1}, with xij = p indicating whether the block j

was touched (p = 1) in the execution of run i or not (p = 0). Additionally, ei = q indicates whether a run i

was faulty (q = 1) or not (q = 0).

To illustrate these concepts, consider the C function in Figure 2.2. It uses the bubble sort algorithm to

sort a sequence of n rational numbers whose numerators and denominators are stored in the parameters

num and den respectively. There is a fault in the code within the body of the if statement: only the

numerators of the rational numbers are swapped while the denominators maintain their original order.

But still, some errors can go unnoticed and do not automatically lead to failures. For example, if the

sequence 〈 41 ,
2
2 ,

0
1 〉 is used, an error occurs after swapping the first two numerators. However, this error

is overshadowed by the later swapping actions, and the final sequence ends up being sorted correctly.

10

Figure 2.2: Faulty code for sorting rational numbers.

To put the similarity coefficients into action, suppose that we apply the RationalSort function to the

input sequences I1, ...I6 shown in Figure 2.3. The block hit spectra for these runs are shown in the

central part of the table (‘1’ denotes a hit), where block number five corresponds to the body of the

RationalGT function. I1, I2 and I6 are already sorted and lead to passed runs. I3 is not sorted, but no

error occurs since the denominators happen to be equal. I4 is the example previously mentioned, where

an error occurs during the execution but goes undetected. Lastly, for the sequence I5, the program fails,

since the calculated result is different from what is expected, which is a clear indication that an error

has occurred. For this sequence, the calculated similarity coefficients listed at the bottom of the image

correctly identify block 4 as the most likely location of the fault.

Figure 2.3: SBFL applied to six runs of the RationalSort program.

11

2.1.1 Tarantula

Tarantula [27] is fault localization tool for programs written in the C programming language. It is a

visualization tool which allows the user to inspect potentially faulty statements present in failed tests by

visually mapping each program’s statement in the outcome of an executed test suite. Tarantula provides

the developer a global view of the source code, making use of a color and brightness component to

showcase the different results, depending on the test results.

The color component depends on the percentage of passed/failed test cases. If a higher percentage

of passed test cases executes a statement, it will appear more green. However, if a higher percentage

of failed test cases executes that statement, it will appear more red. In the event that both percentages

are equal, the statement will appear yellow. The brightness component illustrates the percentage of

coverage by either passed or failed test cases, meaning that a statement will either be drawn at full

brightness if all test cases execute it, or completely dark otherwise. Figure 2.4 shows Tarantula’s overall

view.

Despite being a well-known automatic debugging tool, it does not work with unit testing framework

and does not integrate with any IDE. This proves to be a clear inconvenience for developers who wish

to use the tool without having to rely on extra software. Additionally, it lacks a hierarchical view, and its

interface looks dated when compared to modern debugger interfaces, which might decrease the appeal

to some developers.

Figure 2.4: Tarantula.

12

2.1.2 Jaguar

Jaguar [28] is a fault localization tool for Java programs, available as an Eclipse plug-in and a command

line tool. It uses SBFL techniques based on both data and control-flow spectra. Most SBFL techniques

use control-flow spectra (which take into account statements and branches) due to the low cost associ-

ated. Since data-flow spectrum subsumes control-flow, it can provide more information to better assist

during the fault location process. However, this implies a higher run-time overhead compared to using

control-flow only. Nevertheless, recent studies show that with large and long-running programs both

spectra can be used with acceptable overhead.

In terms of visual assessment, Jaguar provides visual information with Jaguar viewer. There are

four colors used to represent suspicious, with red (danger) being used on the most suspicious entities,

orange (warning) to those with high suspicion, yellow (caution) to moderate suspicion and finally green

(safety) to label the least suspicious ones. The viewer shows a list of all the suspicious statements

differently colored, with the possibility of choosing among seven types of views. Figure 2.5 shows the

Jaguar View’s list of methods within the Eclipse IDE.

Although Jaguar makes use of data-flow spectra, one of its limitations come from define-use associ-

ations. For example, it cannot collect data when the definition and use of a variable occur in the same

block, due to limitations of other tools used. Lastly, there was not a data-flow spectrum evaluation, given

that they used only control-flow spectrum in the study, which does not lead to conclusive results relating

to data-flow spectra usage.

Figure 2.5: Jaguar tool with a method list.

13

2.1.3 Interactive Fault Localization

iFL [29] is a fault localization tool for Java programs available as an Eclipse plug-in. Like any fault

localization tool, it shows a list of the potential faulty statements in the code. Then, the developer

interacts with the tool (by giving appropriate feedback) so that it can recalculate the ranking list, hoping

to reach the faulty statement sooner.

The process begins by calculating an initial ranking list using any SBFL approach. The developer

will then analyze the elements and give one of four possible answers: the fault is found; the element is

not faulty, neither its context; the element is not faulty but the fault is somewhere within the context; or

neither of the above. If the fault is found, the process will terminate. If the fault is not found, the tool

will readjust the ranking and show the newly formed list so the process can continue. Finally, if none of

the other options apply, the developer will continue looking at the next elements on the list. Figure 2.6

shows an example of a menu with all the options mentioned above.

Figure 2.6: iFL with a suspicious items list.

2.1.4 VIDA

VIDA [30] is an Eclipse plug-in for Java programs with JUnit test cases. It follows a testing-based fault-

localization approach which measures a statement’s suspiciousness based on execution information.

The program’s statements are then ranked according to their suspicions. The suspicion comes from

failed test cases, i.e., a statement’s involvement in failed test cases imply a higher suspicion. After

having a list with the highest-ranking suspicious statements, the developer has to set a breakpoint on

one of them. Then, based on whether the developer’s chosen breakpoint was faulty or not, VIDA will

re-examine the suspicions and provide a new list. This may impact the effectiveness of the tool, since it

relies on the developer’s estimation of suspicious statements.

Figure 2.7 shows an example of the program outline generated by VIDA. It uses long lines (in the

middle of the window) in different color to show statements with various suspicions. A black line indicates

a statement with large suspicion, whereas a light grey line denotes a statement with small suspicion. The

breakpoint candidates are addressed by blue lines. On the left boundary of the window, the short lines

denote the position of the existing breakpoints. The color of these short lines denote the programmer’s

previous estimation on these breakpoints. Specifically, VIDA uses a red line to denote that the variables’

values at the corresponding breakpoint have been estimated to be wrong by the programmer, a green

14

line denotes the variables’ values at the corresponding breakpoint have been estimated to be correct,

and a yellow line denotes that the programmer is not confident with their estimation at the breakpoint.

Figure 2.7: VIDA’s program outline.

2.2 Slice-Based Techniques

Program slicing [10, 11] is a technique based on the idea of reducing the program into a form that

contains only its relevant parts, i.e., by removing parts that do not affect the program in any way, the

resulting slice will still have the same behavior as the original program. Static slicing [10] proves to

be advantageous when searching for bugs, given that a smaller domain implies less places to search.

Dicing, introduced by Weiser and Lyle in [31], is defined as the difference between a variable’s static

slices. This was used to further reduce the search domain for possible locations of a fault. However, one

problem that arises from this technique comes from pointer variables. These variables can make data-

flow analysis inefficient because dereferencing pointer variables introduces large data sets that need to

be stored. Another problem is that the slice for a given variable contains all the executable statements

that could affect the variable, and as a result, it might generate a dice with statements that should not

be included. To solve this problem, dynamic slicing [32, 33] is necessary instead of static slicing.

Dynamic slicing differs from static slicing in the sense that it is entirely defined on the basis of a

computation. With it comes two main advantages, namely with dynamic data structures and arrays

which can be handled more precisely, thus reducing the size of a slice.

Alternatively, execution slicing [34] can be used to locate program bugs. It focuses on statements

executed by a specific input, as opposed to statements that could affect the variable based on any

inputs. Yet, despite having all these different techniques, there is also the possibility of the bug not even

being present in the dice. On the offchance that the bug is actually in the dice in question, there may

be too much code in the dice that needs to be examined, since slices are usually lengthy and hard to

understand.

15

2.2.1 JIVE

JIVE [35] is an interactive execution environment for Eclipse that provides visualizations of Java program

execution at different levels of granularity. It facilitates program understanding and interactive debug-

ging, featuring multiple, customizable views of object structure; representation of execution history via

sequence diagrams; interactive queries on runtime behavior; forward and reverse interactive execution.

It supports a declarative approach to debugging by providing an extensible set of queries over a

entire program’s execution history, not just over the stack of outstanding calls. Queries are formulated

using the source code or the diagrams, and the results are shown in a tabular format and also as diagram

annotations.

JIVE allows the programmer to step backwards during a program’s execution. This can save a great

deal of time and effort since the usual scenario would be to re-execute the program until the point of

error. The programmer can also jump directly back to any previous point in the execution history to

observe the object diagram at that point.

Lastly, JIVE depicts both the runtime state and call history of a program in a visual manner, as

shown in Figure 2.8. The runtime state is visualized as an enhanced object diagram, showing object

structure as well as method activations in their proper object contexts. The call history is depicted as

an extended sequence diagram, with each execution thread shown in a different color, clarifying the

object interactions that occur at runtime. The diagrams are scalable and can be filtered to show only

information pertinent to the task at hand. JIVE also supports a state diagram view, which is useful for

programs that exhibit a repetitive behavior.

Figure 2.8: JIVE visualizations.

16

2.2.2 χSlice

χSuds tool suite [36] is a software understanding and diagnosis system, containing various techniques

that can be used for program understanding, debugging and testing for C and C++ programs. Similar to

other systems that monitor test coverage, χSuds first creates a representation of the program’s control

graph, laying out its structure. As the user runs various test cases, it stores an execution trace, which

records how many times each test has exercised a particular software component (function, block, de-

cision, or dataflow association). An effective use of χSuds requires only for the user to have a basic

understanding of the program’s features and be able to identify the features each test case exercises.

Among the several techniques present in the tool suite, χSlice is a debugging tool which uses a

program’s execution slice to help locate errors in the code. Assuming all previously available test cases

in a project are bug-free, when adding new test cases it will only analyze the code in the new slices, and

not the old. After running the test cases and the error is presumably detected, χSlice will highlight in red

the code section containing the bug. Like most tools, it does not give a clear overview of the project nor

an easy way to navigate through the errors found. Figure 2.9 and Figure 2.10 show χSlice’s interface.

Figure 2.9: eXVantage tool displaying test cases.

17

Figure 2.10: eXVantage tool displaying source code.

2.2.3 eXVantage

eXVantage [37] is a tool suite for code coverage testing, debugging, performance profiling for Java

programs. Their approach is based on the idea that code executed in successful test cases are less

likely to contain any fault, and code that is repeatedly executed in failed test cases is more likely to

contain the fault in question. Considering this, the starting point for locating the fault is the execution

slice from the failed tests, i.e., the execution dice obtained from subtracting the successful slice from the

failed slice. Figure 2.11 shows the tool displaying code in red, which indicates high priority, and also

code in white, indicating lower priority since it is not even in the failed execution slice.

2.3 Model-Based Techniques

Model-based diagnosis [14] consists of creating a model that can be used to represent the behavior

of a system, typically coming from its description. This model can be used as a point of reference

in what concerns the system’s correct behavior, that is, by observing the system’s actual behavior, any

discrepancies obtained from comparing it to the model’s behavior may indicate a potential fault. Still, this

comes from the assumption that the model is without errors, indicating a correct model of the system.

When talking about model-based software fault localization, the roles are reversed. The model reflects

the behavior of the incorrect program, while test cases defined by the developer/tester indicate the

desired results. The differences between them are used to extract model elements that presumably

behaved differently than intended, and thus contain the fault that explains the misbehavior.

18

Figure 2.11: eXVantage tool displaying source code.

2.3.1 Jade

Jade [38] is a model-based debugger for Java programs. It uses artificial intelligence to create models

derived from the source code of the program without any additional specifications, except for Java se-

mantics. Using the method previously described, the Java program in case is compiled to an internal

representation, and along with a set of model fragments (logical description of parts of a model) are

converted to logical models for diagnosis by a converter. After building it, the model is used in conjunc-

tion with test cases by the diagnosis engine to obtain the diagnoses indicating where the possible faults

are located, and even repair suggestions. The user interface presents the outcomes produced by the

diagnosis engine to guide the user through the debugging process. This may include stepping through

either blocks or bodies of functions, depending on the results obtained.

Debugging starts by loading a method into Jade and performing a diagnosis step. If it results in a

single diagnosis, it checks whether the statement is a loop or a conditional statement. If it matches any

of those cases, then the bug must be inside either the condition expression or the block it contains. If

the condition is correct, the debugger will load the block to proceed with the debugging. Otherwise, if

the condition or loop statement is wrong, then the debugging is finished as the error has been found.

When the result of the diagnosis is not a single diagnosis, the debugger will discriminate between the

candidates using measurement selection (selection of variables that should be examined at a specific

location within the program). This is achieved by asking the user for values of variables for given loca-

tions inside the program, and depending on those answers, diagnoses can be removed until only one

diagnosis remains. Figure 2.12 shows Jade’s user interface.

19

Figure 2.12: Jade user interface.

2.4 Miscellaneous Techniques

There are many tools which do not fit into any of the categories mentioned above, due to their focus

being on specific testing scenarios, or because it contains the combination of many of those techniques

in a single tool.

2.4.1 EzUnit

EzUnit is a tool which integrates with Eclipse and links JUnit test failures to locations in the source

code. It creates a list with several code blocks and their failure probability, where each line is highlighted

with a color that represents the severity of the probability (e.g., green for low probability or red for high

probability). This can be seen in Figure 2.13. This tool also provides a graph view of all the methods

calls in a test case, since possible fault locations are usually restricted to methods called by one or more

failed unit tests. Figure 2.14 exemplifies this graph. Finally, it can also mark each line with information

about the failure probability of that code block, as seen in Figure 2.15. Overall, EzUnit is one of the most

complete graphical debuggers out there, being completely integrated with the IDE, and providing many

options to help the developer.

20

Figure 2.13: EzUnit list.

Figure 2.14: EzUnit graph view.

21

Figure 2.15: EzUnit integration with the code editor.

2.4.2 Whyline

Whyline [39] is a standalone interactive tool for Java programs. Instead of speculating the whereabouts

of the problem, it allows the developer to select questions about the program, such as why did or why

didn’t something happen, to which the tool provides possible explanations. Whyline achieves this by

recording the program’s execution traces (e.g., class files executions, sequence of events occurred in

each thread, etc.), along with static analysis and call graphs to determine explanations for each problem

in the code. Figures 2.16 and 2.17 illustrate Whyline’s functionalities.

Figure 2.16: Whyline interface showing questions about an object’s properties.

Figure 2.17: Source code highlighting.

22

2.5 Tools Overview

To better understand each of the properties of the tools that were previously presented, a comparative

table can be seen in Table 2.1. Each individual debugging tool has its own set of advantages, but most

of them lack a capability that we deem necessary for the debugging process. Only GZoltar ticks all of

the marks, which is why we felt the need to further advance its integration with other IDEs/code editors.

Although each tool provides a unique feature relying on its visual aide, most of them lack a hierar-

chical visualization. This means that the user is unable to have an overview of the project being tested,

making it more difficult to clearly spot any faulty areas of the code or identifying any suspicious module.

Regardless, most tools provide some way of showing failure probability, which is to say, indicating to

the user whether a line or segment of the code is suspicious. Another useful feature is to indicate how

each component is related to one another. If it is known to the user that a certain module is faulty, then

visualizing its relations to other modules might certainly provide more insight. Navigating through these

modules in the visualizations is also convenient for the developer, as it is an easy way to quickly verify

each module for faults, yet only half the tools contains both these features. Lastly, the ideal place for the

developer to correct his faults would be in the same place where they find the fault. However, much like

the previous features, IDE integration is adopted only by half of them.

In conclusion, despite all of the tools providing graphical output, most of them lack the powerful

visualization that could help the developer deal with large projects, either by providing an easy way to

navigate through the large amount of information, or by showcasing the project in a clear way. Even the

tools with great visualizations already become a hassle to work with if they are not integrated in an IDE,

since it forces the developer to constantly switch between applications during the debugging process.

All of this will contribute to spending even more time with debugging, which is why we seek to adapt

GZoltar in a new code editor, to bridge the gap between functionality and IDE/editor.

Hierarchical View Fail Probability Components Relations Navigation IDE Integration
Tarantula - X - - -

Jaguar - X - - X
iFL - X - - X

VIDA - X - - X
JIVE - - X X X

xSlice - X - - -
eXVantage - X - X -

Jade - X - - -
EzUnit - X X X X

Whyline - - - - -
GZoltar X X X X X

Table 2.1: Current Graphical Tools Comparison

23

24

Chapter 3

Implementation

The extension’s architecture is presented in Figure 3.1. The solution comprises of three main com-

ponents: the GZoltar command-line interface, which executes the test cases’ analysis and returns the

coverage results; the back end, responsible for accepting user requests and interacting with GZoltar

to obtain the analysis results. These results are then used to build the webview; lastly, the webview,

a panel that can render HTML inside VS Code, presents the test cases’ results in the form of three

different hierarchical charts to the user. When the extension is activated, the user can begin using it by

requesting the back end for an analysis of the open Java project(s), granted that certain requirements

are met (more details about this can be found in 3.1.1). The back end will then send the request to the

GZoltar CLI to execute the analysis and obtain the results. Having those in hand, it will also instrument

all classes to obtain coverage results. Afterwards, these are sent to the back end so that they can be

processed to create a webview.

Back End GZoltar

Visual Studio Code Extension

User Webview

Figure 3.1: Architecture.

25

3.1 Building Extensions

VS Code is built using Electron [40], an open source framework developed by Github. It allows for the de-

velopment of desktop GUI applications using web technologies, specifically Node.js and the Chromium

rendering engine. This means that applications built with Electron are able to use HTML, CSS and

JavaScript. The extensions themselves may be built using either JavaScript or TypeScript, which is a

typed superset of the former. The API provided is quite extensible, with almost every part of VS Code

being highly customizable. Figure 3.2 shows the different parts of its interface that can be customized.

The tree view container allows for the addition of new icons, sitting along with the default view contain-

ers already added by VS Code. By clicking on the added icon, a tree view is opened with new views

integrated into the extension. For each view situated in the tree view, an action with a specific behavior

may be attributed. The status bar item can also be used to provide additional information regarding

the extension. Lastly, a component called webview allows the extension to open tabs containing HTML,

CSS and JavaScript code.

Figure 3.2: VS Code UI.

VS Code extensions are created using two tools available in the Node.js package manager, Yeoman and

the VS Code Extension Generator. Yeoman is an open source scaffolding tool for web applications. As

such, it can be used to generate project templates, manage package dependencies, among other tasks.

The VS Code Extension Generator is installed along with Yeoman, so that the generator can create a

base folder structure containing a rough implementation of an extension. To start a new project, run the

generator using Yeoman and it will prompt some questions regarding the extension, as seen in Figure

3.3.

26

Figure 3.3: Yeoman.

Following that example, a folder called helloworld is created with the structure presented in Figure

3.4. The main files which are essential to understanding the extension are package.json (extension

manifest) and extension.ts (entry file).

Figure 3.4: Extension folder structure.

3.1.1 Extension Manifest

Each VS Code extension must have a package.json as its Extension Manifest. The package.json file

contains a mix of Node.js fields such as scripts and dependencies and VS Code specific fields such as

publisher, activationEvents and contributes. Some of the most important fields of the manifest are the

following:

• name and publisher, since VS Code uses <publisher.name> as the unique identifier for the exten-

sion.

• main indicates the extension’s entry point.

• engines.vscode specifies the minimum version of VS Code API that the extension depends on.

• activationEvents is a set of JSON declarations. The extension becomes activated when the activa-

tion event happens. Examples of activation events include: having a file of a certain programming

language present in the folder (e.g., ”onLanguage:python”); having a file that matches a pattern

(e.g., ”workspaceContains:**/pom.xml”); on start up, meaning that the extension will always be

activated regardless of the projects open.

27

• contributionPoints are a set of JSON declarations that are made in the contributes field of the

package.json Extension Manifest. The extension registers Contribution Points to extend various

functionalities within VS Code, such as: commands, contributing the UI for a command consisting

of a title and (optionally) an icon, category, and enabled state. It is also possible to specify when

the command should be enabled (e.g., when a file with a certain type is open on the editor);

language, contributing the definition of a language. This will introduce a new language or enrich

the knowledge VS Code has about a language. This allows the developer to define a language

identifier which could be used as an activation event, or even associate file name patterns.

To ensure a better user experience, it is best to be as specific as possible when creating activation

events, since the user may already have several extensions already installed on their device, and adding

another extension’s initialization may hinder VS Code’s start up. As such, the last activation event (on

start up) must only be used when no other activation events combination works. Figure 3.5 shows an

example of an extension manifest.

Figure 3.5: Extension manifest example.

3.1.2 Entry File

The extension entry file exports two functions, activate and deactivate. activate is executed when the

registered activation Events happen. This is the main entry point, and it is where any and all sorts of

preparation for the extension must happen. In this method, it is possible to register commands indicated

in the manifest by assigning behaviors to them. We can also create and update tree views, update the

status bar, and basically control any section of the extension. deactivate allows us to clean up before

the extension becomes deactivated. For many extensions, explicit cleanup may not be required, and the

deactivate method can be removed. However, if an extension needs to perform an operation when VS

Code is shutting down or the extension is disabled or uninstalled, this is the correct method to do so.

28

3.1.3 Tree View Container

VS Code’s Tree View API allows extensions to show content in the sidebar in Visual Studio Code. This

content is structured as a tree and conforms to the style of the built-in views of VS Code. In order to add

a treeview to the extension, the following steps are required: contribute the treeview in the package.json

file, create a TreeDataProvider, and register the TreeDataProvider.

package.json Contribution

As previously mentioned in 3.1.1, the contributionPoints allows us to register many functionalities in an

extension, with the treeview being one of them. To do that, the contributes.views Contribution Point

must be used. However, to create a treeview container, an entry to the contributes.viewsContainers is

also required. This is necessary because the treeview itself is essentially an agglomerate of elements

organized in a tree-like fashion, so they could be placed in any containers, including the default ones

already included in VS Code.

A treeview container entry is composed of an id, the title for the container and an icon, which will

appear on VS Code’s sidebar. The treeview entry requires the id of the container it will appear on, an

id for the treeview itself and a name too. Figure 3.6 shows an example of a container in the extension

manifest.

Figure 3.6: Treeview container example.

Tree Data Provider

VS Code needs data to display in the newly created view, so next we must provide data to the view that

was registered. Firstly, a TreeDataProvider must be implemented. Providers are always of a generic

type T, which needs to extend from the class TreeItem. A TreeItem represents a treeview item down to

29

its core elements, with the most relevant fields being the label, which is what is shown in the tree, and

the collapsible state, meaning that if this item has any children, it can be opened or closed to reveal

them. As such, a provider needs to be of a certain type of TreeItem to be fully implemented. There are

two methods in a TreeDataProvider that are required:

• getChildren(element?: T): ProviderResult<T[]> - this method returns the children for the given

element, or root if no element is passed. Basically, when a treeview is created it will be empty at

first, and as such, the given element will be nonexistent. A verification to this case must be made,

so that we can appropriately decide what children are to be returned. On the first scenario where

there are no elements, we return the ones which will populate the tree initially. Then, when there

are actual items, if the element requires children (in the context of the extension and its underlying

business logic), then we must return them. Depending on the case, some elements may or may

not have children, so we must always verify that we are assigning children to the correct elements.

• getTreeItem(element: T): TreeItem | Thenable<TreeItem> - this returns the UI representation of

the element that gets displayed in the view. If no changes are needed to be made regarding the

element, then this method simply returns the element received.

Registering the TreeDataProvider

The final step is to register the previously created data provider to the view. This can be achieved in the

following two ways:

• vscode.window.registerTreeDataProvider - registers the tree data provider by providing the data

provider and the view id registered in the manifest file.

• vscode.window.createTreeView - create the treeview by providing the registered view id and the

data provider. It is similar to the method described above, with the difference being that this will

give access to the treeview itself, which we can use for performing other view operations.

Updating Tree View Content

Once created, a treeview’s items will remain static unless we add the capability to update them. This

can be done by using the onDidChangeTreeData event in the provider.

• onDidChangeTreeData?: Event<T | undefined | null> - the type T must be the same one that the

provider uses. This is a function that represents an event to which you subscribe by calling it with

a listener function as argument. This has to be paired with an event emitter that can be fired to

signalize the event change.

• EventEmitter<T | undefined> - the type T must be the same one that the provider uses. An event

emitter can be used to create and manage an event for others to subscribe to. One emitter always

owns one event.

30

3.1.4 Status Bar Item

A status bar item is a status bar contribution that can show text and icons and run a command on click.

This can be used to provide additional information about the extension, such as lengthy background

work that is being executed to signify the users that the extension is still working, despite not being able

to show results right away. The status bar item can be created in the following way:

• vscode.window.createStatusBarItem - creates a status bar item by indicating its alignment (left or

right) and the priority. A higher value means the item should be shown more to the left.

3.1.5 Webview

The webview API allows extensions to create fully customizable views within VS Code. Webviews can

be used to build complex user interfaces beyond what VS Code’s native APIs support. A webview is

similar to an HTML iframe within VS Code that the extension controls. A webview can render almost

any HTML/CSS/JavaScript content in this frame, and it communicates with extensions using message

passing. Despite the possibilities that webviews provide, they should be used sparingly and only when

VS Code’s native API is inadequate. They are resource heavy and run in a separate context from normal

extensions, so if the functionality can only exist within VS Code and is important enough that the high

resource cost is disregarded, then webviews are the correct tools to use. A webview can be created in

the following two ways:

• vscode.window.createWebviewPanel - creates and shows a new webview panel by indicating: the

view type (a string that identifies the type of the webview panel); the title; the show options (where

to show the webview in the editor, e.g., on the active column, on a new column beside the active

one, etc.); and the panel options, which contain settings for the panel. Examples include keeping

the content even when the panel is no longer visible, enabling scripts, specify paths from which

the webview can load local resources, among many others.

• vscode.window.registerWebviewPanelSerializer - registers a webview panel serializer, i.e., a we-

bview that can automatically be restored when VS Code restarts. This is done by indicating the

view type and a WebviewPanelSerializer. This is explained in more detail further ahead.

Scripts and Message Passing

Webviews can also run scripts, but JavaScript is disabled by default for security reasons. This can

be easily re-enabled by passing in the enableScripts: true option in the panel options when creating

a webview. An extension can send data to its webviews using webview.postMessage(). This method

sends any JSON serializable data to the webview. The message is received inside the webview through

the standard message event window.addEventListener(’message’, listener). Webviews can also pass

messages back to their extension. This is accomplished using the postMessage function on a special VS

Code API object inside the webview. To access the VS Code API object, the method acquireVsCodeApi

31

must be called inside the webview. This function can only be invoked once per session. The instance

of the VS Code API returned by this method should be held onto, and hand it out to any other functions

that wish to use it. To send a message to the extension the method vscode.postMessage() can be used

to send JSON serializable data.

Persistence

Webviews that are created by the createWebviewPanel method are destroyed when the user closes

them or when the .dispose() method is called. The contents of webviews however are created when the

webview becomes visible and destroyed when the webview is moved into the background. Any state

inside the webview will be lost when the webview is moved to a background tab. Scripts running in-

side a webview can use the getState and setState methods to save off and restore a JSON serializable

state object. This state is persisted even if the webview content itself is destroyed when a webview

panel becomes hidden. The state is destroyed when the webview panel is destroyed. By implementing

a WebviewPanelSerializer, the webviews can be automatically restored when VS Code restarts. The

serialization builds on getState and setState, and can only be enabled if the extension registers a Web-

viewPanelSerializer for the webviews. To achieve this, the method registerWebviewPanelSerializer can

be called to register the serializer.

3.2 Back End

The back end section’s diagram can be seen in Figure 3.7. The main file from the extension (ex-

tension.ts) serves as the entry file, and its activate method will be called when the activationEvents

conditions defined in the manifest file are met. Then, it will create an instance of FolderContainer (a

representation of all the acceptable Java projects that are open in the workspace) and use it to create

the GZoltarCommander, which is responsible for having all of the commands that will be run in the ex-

tension. The commander holds the implementation for all of the features available to the user, and as

such, handles the creation of the webview that will present the main HTML containing the fault reports.

Additionally, it also serves as the representation of the tree view container, since that is where the main

features of the extension will reside.

3.2.1 Manifest File

As mentioned earlier in 3.1.1, the manifest file contains fields such as the activation events for the

extension and commands. This section will explain in detail the main fields of the GZoltar extension’s

package.json.

Starting with activation events, the extension must only be activated when in the presence of at least

one Java project. In order to run GZoltar, many conditions must be satisfied before we can successfully

perform an analysis on a project. Specifically, we need the folders containing the source and test files,

and the project’s dependencies. As such, the extension will only be accepting projects with a build

32

Commander

- container: FolderContainer

Folder

- webview: ReportPanel

- decorator: Decorator

- buildTool: BuildTool

FolderContainer

- folders: Folder

BuildTool

+ getSrcFolder()

+ getTestFolder()

+ getDependencies()

+ runTests()

GradleMaven

1

1

*

1

1 1

Extension

CmdBuilder

+ listFunction()

+ runFunction()

+ reportFunction()

Decorator ReportPanel

1 1

1

1

Figure 3.7: Back end class diagram.

automation tool, which is capable of achieving every single one of those conditions. This is largely due

to the fact that GZoltar’s capabilities are meant to be used on projects considerably large in size, to

the point where debugging starts to become harder and more time consuming than it already is. A

project lacking a build tool is likely to have a small test case suit, and an automated fault localization

tool is not as necessary. Using a build tool means that a project’s folder structure will be the same in

most cases, so the folders containing the necessary files are in fixed folders following a specific naming

convention, facilitating the automating process of the extension. Our build tools of choice are Maven and

Gradle, since both remain the most used automation tools for Java projects [41]. To identify a project

with Maven or Gradle, a file named pom.xml or build.gradle need to be present at the root of the project,

respectively. Thus, the activation events for the extension need to be able to recognize at least one of

those files before activating the extension itself. Figure 3.8 shows the activation events.

Figure 3.8: Activation events for the extension.

Next on the manifest file, it is necessary to declare in the contributes field the activity bar for GZoltar.

33

This activity bar will present the user with every open and acceptable Java project, and allow them

the possibility to run an analysis over that it, as well as other miscellaneous commands. All of these

commands must also be declared in the contributes field. The activity bar’s presentation in the VS Code

user interface is presented in Figure 3.9 and its declaration in the manifest is in Figure 3.10.

Figure 3.9: GZoltar’s activity bar.

Figure 3.10: Activity bar’s declaration.

For the sake of simplicity, GZoltar’s extension will provide three commands to the user. These are meant

to be simple commands with a clear function, so as to not make the extension’s interface too complex.

This allows for an easier understandable interface, with the purpose of being more accessible to new

users. The commands’ declaration can be seen in Figure 3.11. They are the following:

34

• Run: performs an analysis on the selected Java project and presents the results in HTML to the

user. A new analysis is performed every single time this command is executed. Although it is

possible to be notified when a file is changed due to VS Code’s API (thus granting the possibility

to optimize this process, and only execute it again when files are changed), it is not possible to

detect file changes on disk, i.e., changes triggered by another application or even from VS Code’s

own API.

• Refresh: refreshes the interface to show if new projects have been added/removed. VS Code

allows users to create a workspace (a project that consists of one or more projects) giving them

the possibility to work on multiple projects at once. Whenever a project is added/removed, the

interface should be automatically updated to reflect this change. However, in the off-chance that it

is not, this command acts as a fail-safe measure.

• Reset: cleans the configuration folder for each project open with the extension. As we have

mentioned before, GZoltar needs several conditions to be able to execute an analysis correctly,

and even after that, it creates a multitude of files as a result. So, to organize this conglomerate

of files and folders, we create an invisible configuration folder for each acceptable Java project

that is open within the extension. This folder will have the necessary jars and dependencies to

run GZoltar, and the results of the executions. In case of a mishap in a configuration folder, this

command allows the user to start a new one with a clean slate.

Figure 3.11: Commands’ declaration.

3.2.2 Entry File

The main file is the entry way for the extension’s execution. The extension will be running when the

method activate is called. Initially, it asserts that in the currently open workspace, there is at least one

open acceptable Java project. Due to the activation event defined in the manifest file, it is technically

35

impossible for the extension to enter the activate method without there being a single open project. Still,

VS Code’s API demands that a verification be made before accessing any of the folders residing in the

workspace. These folders are then processed and stored in a newly created instance of FolderCon-

tainer (3.2.5), which represents all of the acceptable and currently open Java projects. This instance

is passed on to the GZoltarCommander (3.2.3), the holder of the commands’ implementation and the

tree view container. This method also contains a listener that will update the FolderContainer every time

a project is added/removed. Lastly, it registers every command available in the extension by using the

commander’s implementations.

3.2.3 GZoltar Commander

The commander is responsible for providing the elements in the tree data provider and also updating

its elements when a change occurs. The elements in question are the open Java projects. It also

contains the implementation of the three commands previously mentioned in 3.2.1. The run command

is the most intricate of the three, due to the many steps involved in executing GZoltar. Firstly, it ensures

the configuration folder for the selected project exists, and obtains the necessary dependencies. To

execute GZoltar, a command-line interface, it uses the CommandBuilder which contains methods that

simplify the creation of these commands, and returns them as formatted strings ready to use. With each

command ready, the commander notifies in the status-bar what the extension is doing at all times, to

keep the user updated in case a certain command is taking a long time to execute. In the end, it will

create a ReportPanel and present it to the user with the results obtained from the execution, and also a

Decorator, which indicates in the text editor the severity on each line of code.

3.2.4 Command Builder

In order to run GZoltar, there are three main methods that must be executed in succession. The first one

is the listTestMethods, which obtains the names of all the test methods in the test case suite. The next

one is runTestMethods that uses the previous results to execute the test cases and obtain the coverage.

The last one, faultLocalizationReport uses the data obtained from the previous method to generate the

reports that are used in the webview and decorator.

3.2.5 Workspace

The FolderContainer serves as a container for every open Java project while the extension is active.

Its only purpose is to add/remove project folders, and retrieve the specific folder when required. The

representation of a singular project folder is the Folder class. It is responsible for holding the webview,

decorator and build tool pertaining to this project. The build tool contains information such as the folder

names for the source and test classes, and also how to get the project’s dependencies.

36

3.2.6 Report Panel

The report panel contains the HTML visualizations that are presented to the user. Since the visualiza-

tions have levels organized in a hierarchy, it is possible to double click on each level to zoom in. Each

level represents a segment in the code, meaning that at the highest level, the whole chart represents

the root of the project, and at the deepest level, it represents a single line of code. It also displays the

path at the top of the chart, as we progress through it. We can click at the final level of the chart to open

the file referenced by that line of code.

3.2.7 Decorator

The decorator indicates in the text editor the severity on each line of code. After GZoltar runs an analysis

on the test suite and presents the webview to the user, it obtains information regarding the lines of code

and their suspiciousness levels. Then, depending on the highest level of suspiciousness, the rest is also

calculated. Meaning that if the highest level is 0.1, then that line of code is considered highly suspicious,

whereas in a project where the highest level is 0.9, a line of code with 0.1 is not as suspicious.

There are four levels of suspicion used to rank each statement, as seen in Figure 3.12. Red is

used for very high likelihood, orange for high likelihood, yellow for medium likelihood, and green for low

likelihood. These icons are color coded, but they also have an internal symbol. These symbols come

from the organization called ColorADD [42], whose aim is to help color-blind people determine which

color is which, by creating a set of icons that are used to represent all primary and secondary colors.

This way, even if the user has difficulties distinguishing between the initial colors, the internal symbols

identify the correct and intended meaning behind them.

After the webview is presented to the user, every time a file is open in the text editor, the decorator

is set to show the suspiciousness icons on the sidebar before each line of code. This will persist even

after the webview is closed. If a new analysis is made, then the decoration will also be updated to reflect

the changes made.

Figure 3.12: Suspiciousness icons.

37

3.3 Publishing the Extension

In order to make the extension readily available to other users so that they may find it, download and

use its features, we have to publish it to the VS Code Extension Marketplace. The marketplace is where

we can find all of the published extensions that we may wish to install on our computers.

Extensions are published using vsce, short for Visual Studio Code Extensions, which is a command-

line tool for packaging, publishing and managing VS Code extensions. It can also search, retrieve

metadata, and unpublish extensions. Figure 3.13 shows an example of vsce being used. When inside

an extension folder, it is possible to package it into a VSIX file, or publish it given the specified publisher

ID (explained in more detail further below). A VSIX package is a file that contains one or more Visual

Studio extensions, together with the metadata Visual Studio uses to classify and install the extensions.

That metadata is contained in the VSIX manifest and the [Content Types].xml file. A VSIX package may

also contain additional files to provide localized setup text, and may contain additional VSIX packages

to install dependencies.

Figure 3.13: Packaging and publishing an extension with vsce.

3.3.1 Publisher ID

As previously stated, we need a publisher ID to publish the extension. The published extension needs an

entity that is responsible for publishing it, i.e., an “owner” of sorts. This entity is responsible for managing

the extension’s versions, and how it will be presented to the public. To create the publisher ID, one of

the two ways explained below can be used.

Using vsce

vsce can only publish extensions using Personal Access Tokens. A personal access token (PAT) is used

as an alternate password to authenticate into Azure DevOps. Since VS Code is part of the tools in

Microsoft’s environment, it is possible to use a PAT obtained from the Azure DevOps services. First,

we have to make sure we have an Azure DevOps organization, which is used to connect groups of

related projects. After creating a group and a personal token associated with it (shown in Figure 3.14),

it is now possible to create a publisher. The extension also needs to include the publisher name in the

package.json file. With the PAT in hand, we can use vsce to create a publisher as shown in Figure 3.15.

vsce will remember the provided PAT for future references to this publisher. However, while this is still a

viable method to do so, it is considered deprecated and is soon to be removed, so it is not recommended

to create a publisher using vsce.

38

Figure 3.14: Creating a Personal Access Token in Azure DevOps.

Figure 3.15: Creating a Publisher using vsce.

Using the Marketplace

By logging in the Visual Studio Marketplace, it is possible to manage publishers and extensions associ-

ated with them. To create a publisher, we only need to input its name and ID as obligatory fields. The

rest, such as the company website or even source code repository are optional fields. With the publisher

created, we can now create extensions by uploading a VSIX file. A few moments after uploading it,

the extension will be live and ready to be downloaded by other people. Figures 3.16 and 3.17 show a

snippet of how to create a publisher and upload an extension.

39

Figure 3.16: Creating a Publisher using Visual Studio Marketplace.

Figure 3.17: Uploading an extension to the Visual Studio Marketplace.

40

Chapter 4

Results and Evaluation

This chapter presents the results obtained throughout this project. We will show how the extension can

be found and installed in the Visual Studio Marketplace, how its features can be accessed and what the

final product looks like. We will also present an evaluation of the results achieved by conducting a user

study. The goal of this evaluation is to measure the extension’s usability and efficiency with users that

have never had any previous interaction with GZoltar. They were given a project and a limited amount

of time to find a fault that was previously injected in the source code. In the end, the users filled a form

(present in Appendix A) providing feedback of their experience and also suggestions for future work.

4.1 Extension Showcase

This section will present the several ways to install the extension from the marketplace, and also how it

works. We will be running GZoltar on a small project just to illustrate how it is supposed to work, and

what should be presented to the user.

4.1.1 Installing

There are two ways the extension can be installed. The first one is by heading directly to the Visual

Studio Marketplace and searching for GZoltar. Then, it is possible to install it from there, as shown in

Figure 4.1. The other way is to install it from VS Code itself. By heading to the extensions tab and

searching GZoltar, the extension will also show up and be available for installation. This can be seen in

Figure 4.2.

4.1.2 Using the Extension

To access GZoltar’s functionalities, we click on GZoltar’s icon in the activity bar previously mentioned in

3.2.1. The menu that is open after that will show every single open and acceptable Java project in the

current workspace (shown in Figure 4.3. To run GZoltar on a specific project, we click on the icon right

next to the project’s name.

41

Figure 4.1: GZoltar in the VS Marketplace.

Figure 4.2: GZoltar in VS Code.

While GZoltar is running, it is possible to see on the lower right corner of the status bar what phase

it is currently on. This is to help the user by indicating that the extension is doing background work, on

the off chance that the analysis takes some time to complete. This can be seen in Figure 4.4.

After it is done running, a new tab will open on the right side of the editor. The newly opened tab

will show the results of the analysis in the form of a chart (Figure 4.5). The colors in the charts indicate

the likelihood of a certain code segment being suspicious. The color coordination is the same as the

one already shown in 3.2.7. It is possible to navigate through the chart by double clicking on each color

coded segment. Right clicking on the chart will reset it back to its original state. Clicking on an edge

segment (which corresponds to a single line of code) will open the file associated with that line of code.

We can also change the visualization that is currently being shown. On the activity bar menu, under

42

the project that was just used to perform an analysis, we can choose one of the three charts to change

the visualization that we want to see. This is shown in Figure 4.6.

Lastly, when a file is opened after performing an analysis, it will show an icon to indicate the level

of suspiciousness for each line of code (Figure 4.7). The icon’s colors are the same as the ones repre-

sented in the charts.

Figure 4.3: GZoltar Commands.

Figure 4.4: GZoltar Status Bar Update.

Figure 4.5: GZoltar Result.

43

Figure 4.6: GZoltar Visualizations.

Figure 4.7: Open file showing suspicion levels.

44

4.2 User Study

In order to validate the usefulness of the extension’s current version, nine users were selected to test

the efficiency of the interactive visualizations. We recorded the time that each user took to finish the

testing and debugging task. At the end of this process, each user filled a form with the feedback of their

experience and some suggestions for future work. This usability test was important to test the efficiency

of the extension and also to create guidelines to improve future developments of this tool, thus providing

some insight regarding future versions.

4.2.1 Users Description

The number of users picked to carry out the evaluation must be sufficiently enough, such that we are

able to get conclusive evidence of the extension’s usability and overall usefulness of its features. As

such, the number we choose is based on J. Nielsen’s work on usability and user tests [43]. According

to Nielsen et al., the number of users needed to test a small software project should be 9. That number

should be enough to identify any main usability issues.

The group is composed by MSc students in Computer Engineering from the Computer Science and

Engineering Department of the University of Lisbon, and the Computer Science Department of the

University of Porto. The users were picked randomly, aged less than 25 years old and from all genders.

An introductory survey was made to know the level of experience with programming languages, IDEs,

etc. The programming languages that the users were familiarized with the most were Java (100%), C#

(88.9%), JavaScript (55.6%), TypeScript (33.3%), C (22.2%), with Python and Assembly both at 11.1%.

The most used IDE was IntelliJ IDEA at 100%, with Eclipse at 44.4% and Visual Studio at 77.8%. The

most used software testing framework was JUnit at 100%. Most of the users have not used automatic

fault detection tools, with only one user having used one before. The most used debugging techniques

are both breakpoints and console output at 100%. A summary of these questions can be found in Figure

4.8.

4.2.2 Experiment Conditions

Each user tested the extension on their own computer. While most users with Linux/MacOS were able

to immediately use the extension, users with Windows systems had to install a Windows subsystem

for Linux and the extension Remote - WSL (which can be found in the VS Code marketplace). This

extension allows the user to open any folder in the subsystem for Linux. This is necessary due to a

limitation found within GZoltar, since it contains a fault which does not allow it to correctly execute its

functions when operating on a Windows computer. Furthermore, given that we are using GZoltar strictly

as a black box (using its services as an API and not interacting with its inner modules), this fault remains

untreated for now.

Each user was asked to debug a faulty version of a medium sized project containing a suite of

JUnit tests. A fault was injected randomly in the project, making some test cases fail. The users had

45

no previous contact with this project nor its tests, to better verify the extension’s usefulness. A short

explanation was given to each user to explain the process and how GZoltar works. Afterwards, they

each had 20 minutes to try and localize the fault. In the end, they had to fill a survey with questions

based on their experience with the tool.

4.2.3 Feedback

The time limit for this task was 20 minutes, with its main purpose being on obtaining feedback about the

extension’s usability and usefulness, since its effectiveness has been proven in previous studies [21].

Most of the users were able to find the fault (77%), while the rest that were not able to find it did manage

to pinpoint the fault’s most likely localization. Since all the users had previous experience with VS Code,

they were comfortable with the environment.

The survey had a section for the users to answer about their experience with the debugging session,

and also give their feedback. Many of the questions regarding the usability and interface of the extension

were made using a scale from 1 (very poor) to 5 (very good).

A majority of the users (55.5%) stated the extension to be very easy to understand at first. However,

when asked how hard it was to learn how to effectively use it, the responses were evenly split between

moderately easy and moderately hard.

Everyone agreed that the icons/buttons are moderately intuitive, claiming that while they are not bad,

there is definitely room for improvement. Regarding the information that was presented to the users,

when asked if it was being presented in a clear and understandable manner, the responses were mostly

on the positive side (55.6%). These questions’ responses are summed in Figure 4.9.

Following up on the extension’s performance, an overwhelming majority rated its responsiveness as

good (77.8%) or very good (22.2%), claiming that the interaction with the visualizations and the source

code went smoothly.

Once more, most of the users (66.7%) believed the extension to be helpful in finding the bug, while

others did not think it was as crucial. Additionally, most of them (88.9%) agree that the extension does

require a bit of user experience, meaning that the extension’s usefulness increases along with the user’s

experience. Overall, the users reported the session as a positive experience, as far as debugging

sessions go. The charts for these answers are in Figure 4.10.

When asked about the concepts related to GZoltar, all of the users agreed that automatic debug-

ging is very important. They also rated visual debuggers to be very necessary, as well as debuggers

integrated into an IDE.

The survey also had an open question for the users to indicate any issues found during the session,

or suggestions they might have. Some suggested that changing the zoom from double click to a single

click might improve the user experience. Others suggested different or more intuitive icons for the

interface. Regardless, none of them had any issues with the debugging task. The final summary of the

survey’s answers are in Figure 4.11.

Thus, this experiment validates the initial hypothesis that GZoltar’s interactive visualizations can help

46

developers to find faults in a short period of time.

47

Figure 4.8: First set of survey questions.

48

Figure 4.9: Second set of questions about the extension’s interface.

49

Figure 4.10: Third set of questions about the extension’s capabilities.

50

Figure 4.11: Final set of questions about automatic and visual debugging.

51

52

Chapter 5

Conclusions

At the beginning of this document, we explored the concept of debugging and its intricacies. That is,

the many techniques associated, its relevance in software development and the potential risks if not

handled correctly. Debugging is clearly very important for any type of software, especially in safety-

critical systems, so having more options to explore this field is beneficial to developers. Considering

this, automated and fault localization tools help automate this process, but most tools are incomplete.

Most debugging tools and techniques reported usually lack a powerful visualization tool, or on the off

chance that they have one, it is typically in the form of a list with potentially faulty statements. Even if that

is not the case, some of those tools themselves are dated, so the graphical capabilities look antiquated

and are probably harder to interpret. The effect that a graphical debugger can have in the process of

software development is clear and very much needed, as stated by several studies made on the subject.

Thus, there is an evident need for a tool with already established results and visualizations proven to be

effective, which is why we are aiming to provide GZoltar in a more recent development environment in

hopes of being more widely adopted by the community.

As such, we intended to port GZoltar (an automatic fault localization tool) to Visual Studio Code, a

code editor that has gained a lot of traction in the recent years. The extension provides an interface from

which the user can obtain a global view of the project and immediately spot the places where it is most

likely to contain the fault. The extension’s functionalities will be present to the user when it identifies

the open folder to be a Java project. From there, the user can request to construct the views from the

current set of test cases, and visualize them in HTML form in a webview panel. Finally, an evaluation

was carried out as a user study to determine whether the extension meets with users’ expectations, and

proves to be helpful in a debugging situation.

5.1 Work Summary

The GZoltar plug-in for Visual Studio Code (also called an extension) was written in TypeScript, and cre-

ated using the command-line version of GZoltar. The extension communicates with the CLI to generate

reports, and presents the results to the user in the editor in special tabs called webviews, which render

53

HTML. The user can also explore the files that were deemed suspicious by GZoltar, and they will be

marked with symbols in lines to indicate the level of suspiciousness. Lastly, the extension was published

to the Visual Studio Code Marketplace.

5.2 Future Work

The initial goals set for this project were achieved, however there are always new ideas to further improve

the extension. Since GZoltar is open-source, the extension itself is also open for change by anyone

willing to contribute.

5.2.1 Differently Color Coded Graphics

GZoltar relies heavily on colors to indicate the suspiciousness levels of the lines of code in the project. It

also makes use of symbols to assist colorblind people in distinguishing the colors. But still, the graphics

that are presented in the webviews do not have those symbols, and contain only four colors: green,

yellow, orange and red. An improvement to this would be to allow the user to select the color scheme

they desire, to better fit with either their personal preference, or to suit the colors they are able to perceive.

5.2.2 More Build Tools

The extension currently only accepts Java projects using Maven or Gradle. Although those are the most

popular build tools, it would attract more people if it also accepted more build tools.

5.2.3 Windows Integration

The current CLI of GZoltar only works immediately in UNIX based systems. Which means, to be able

to use GZoltar in a Windows operating system, it is necessary to use a UNIX-based CLI along with the

Remote-WSL VS Code extension to open folders in the Windows subsystem for Linux. This adds a

couple of extra steps for Windows users to use GZoltar in VS Code, so it would benefit them if this still

seemingly unknown problem were to be fixed to appease all users.

54

Bibliography

[1] J. Campos, A. Riboira, A. Perez, and R. Abreu. Gzoltar: an eclipse plug-in for testing and de-

bugging. In Proceedings of the 27th IEEE/ACM International Conference on Automated Software

Engineering, pages 378–381. ACM, 2012.

[2] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund. A practical evaluation of spectrum-

based fault localization. Journal of Systems and Software, 82(11):1780–1792, 2009.

[3] Q. Xin and S. P. Reiss. Leveraging syntax-related code for automated program repair. In Proceed-

ings of the 32nd IEEE/ACM International Conference on Automated Software Engineering, pages

660–670. IEEE Press, 2017.

[4] M. Martinez and M. Monperrus. Astor: A program repair library for java. In Proceedings of the 25th

International Symposium on Software Testing and Analysis, pages 441–444. ACM, 2016.

[5] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang. Precise condition synthesis

for program repair. In 2017 IEEE/ACM 39th International Conference on Software Engineering

(ICSE), pages 416–426. IEEE, 2017.

[6] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung. Context-aware patch generation for bet-

ter automated program repair. In Proceedings of the 40th International Conference on Software

Engineering, pages 1–11. ACM, 2018.

[7] J. C. Knight. Safety critical systems: challenges and directions. In Proceedings of the 24th interna-

tional conference on software engineering, pages 547–550, 2002.

[8] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on software fault localization. IEEE

Transactions on Software Engineering, 42(8):707–740, 2016.

[9] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. An empirical investigation of the re-

lationship between spectra differences and regression faults. Software Testing, Verification and

Reliability, 10(3):171–194, 2000.

[10] M. Weiser. Program slicing. In Proceedings of the 5th international conference on Software engi-

neering, pages 439–449. IEEE Press, 1981.

[11] F. Tip. A survey of program slicing techniques. Centrum voor Wiskunde en Informatica Amsterdam,

1994.

55

[12] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical bug isolation. In Acm

Sigplan Notices, volume 40, pages 15–26. ACM, 2005.

[13] S. M. Daniel S. Wilkerson. Delta tool, 2001. URL http://delta.tigris.org/. [Online; accessed

October 30, 2019].

[14] R. Reiter. A theory of diagnosis from first principles. Artificial intelligence, 32(1):57–95, 1987.

[15] W. E. Wong and Y. Qi. Bp neural network-based effective fault localization. International Journal of

Software Engineering and Knowledge Engineering, 19(04):573–597, 2009.

[16] S. Nessa, M. Abedin, W. E. Wong, L. Khan, and Y. Qi. Software fault localization using n-gram

analysis. In International Conference on Wireless Algorithms, Systems, and Applications, pages

548–559. Springer, 2008.

[17] T. Denmat, M. Ducassé, and O. Ridoux. Data mining and cross-checking of execution traces: a re-

interpretation of jones, harrold and stasko test information. In Proceedings of the 20th IEEE/ACM

international Conference on Automated software engineering, pages 396–399. ACM, 2005.

[18] W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. Thuraisingham. Effective software fault localization

using an rbf neural network. IEEE Transactions on Reliability, 61(1):149–169, 2011.

[19] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated predicate switching. In

Proceedings of the 28th international conference on Software engineering, pages 272–281. ACM,

2006.

[20] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff. Statistical debugging: A hypothesis testing-based

approach. IEEE Transactions on software engineering, 32(10):831–848, 2006.

[21] C. Gouveia, J. Campos, and R. Abreu. Using html5 visualizations in software fault localization.

In 2013 First IEEE Working Conference on Software Visualization (VISSOFT), pages 1–10. IEEE,

2013.

[22] H. A. de Souza, M. L. Chaim, and F. Kon. Spectrum-based software fault localization: A survey of

techniques, advances, and challenges. arXiv preprint arXiv:1607.04347, 2016.

[23] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. On the accuracy of spectrum-based fault lo-

calization. In Testing: Academic and Industrial Conference Practice and Research Techniques-

MUTATION (TAICPART-MUTATION 2007), pages 89–98. IEEE, 2007.

[24] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. Van Gemund. Diagnosis of embedded software using

program spectra. In 14th Annual IEEE International Conference and Workshops on the Engineering

of Computer-Based Systems (ECBS’07), pages 213–220. IEEE, 2007.

[25] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc., USA, 1988. ISBN

013022278X.

56

http://delta.tigris.org/

[26] A. d. S. Meyer, A. A. F. Garcia, A. P. d. Souza, and C. L. d. Souza Jr. Comparison of similarity

coefficients used for cluster analysis with dominant markers in maize (zea mays l). Genetics and

Molecular Biology, 27(1):83–91, 2004.

[27] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to assist fault localization.

In Proceedings of the 24th International Conference on Software Engineering. ICSE 2002, pages

467–477. IEEE, 2002.

[28] H. L. Ribeiro, H. A. de Souza, R. P. A. de Araujo, M. L. Chaim, and F. Kon. Jaguar: a spectrum-

based fault localization tool for real-world software. In 2018 IEEE 11th International Conference on

Software Testing, Verification and Validation (ICST), pages 404–409. IEEE, 2018.

[29] G. Balogh, F. Horváth, and Á. Beszédes. Poster: Aiding java developers with interactive fault

localization in eclipse ide. In 2019 12th IEEE Conference on Software Testing, Validation and

Verification (ICST), pages 371–374. IEEE, 2019.

[30] D. Hao, L. Zhang, L. Zhang, J. Sun, and H. Mei. Vida: Visual interactive debugging. In 2009 IEEE

31st International Conference on Software Engineering, pages 583–586. IEEE, 2009.

[31] M. Weiser and J. Lyle. Experiments on slicing-based debugging aids. In Papers Presented at

the First Workshop on Empirical Studies of Programmers on Empirical Studies of Programmers,

pages 187–197, Norwood, NJ, USA, 1986. Ablex Publishing Corp. ISBN 0-89391-388-X. URL

http://dl.acm.org/citation.cfm?id=21842.28894.

[32] H. Agrawal and J. R. Horgan. Dynamic program slicing. In ACM SIGPlan Notices, volume 25,

pages 246–256. ACM, 1990.

[33] B. Korel and J. Laski. Dynamic program slicing. Information processing letters, 29(3):155–163,

1988.

[34] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong. Fault localization using execution slices and

dataflow tests. In Proceedings of Sixth International Symposium on Software Reliability Engineer-

ing. ISSRE’95, pages 143–151. IEEE, 1995.

[35] P. V. Gestwicki and B. Jayaraman. Jive: Java interactive visualization environment. In Companion to

the 19th annual ACM SIGPLAN conference on Object-oriented programming systems, languages,

and applications, pages 226–228, 2004.

[36] H. Agrawal, J. L. Alberi, J. R. Horgan, J. J. Li, S. London, W. E. Wong, S. Ghosh, and N. Wilde.

Mining system tests to aid software maintenance. Computer, 31(7):64–73, 1998.

[37] W. E. Wong and J. Li. An integrated solution for testing and analyzing java applications in an

industrial setting. In 12th Asia-Pacific Software Engineering Conference (APSEC’05), pages 8–pp.

IEEE, 2005.

[38] C. Mateis, M. Stumptner, D. Wieland, and F. Wotawa. Jade-ai support for debugging java programs.

In ictai, page 62, 2000.

57

http://dl.acm.org/citation.cfm?id=21842.28894

[39] A. J. Ko and B. A. Myers. Designing the whyline: a debugging interface for asking questions

about program behavior. In Proceedings of the SIGCHI conference on Human factors in computing

systems, pages 151–158. ACM, 2004.

[40] Github. Electron, 2013. URL https://electronjs.org/. [Online; accessed October 30, 2019].

[41] Perforce. Coloradd, 2020. URL https://www.jrebel.com/blog/2020-java-technology-report#

build-tool. [Online; accessed October 22, 2020].

[42] M. Neiva. Coloradd, 2010. URL https://www.coloradd.net/. [Online; accessed October 21,

2020].

[43] J. Nielsen and T. K. Landauer. A mathematical model of the finding of usability problems. In

Proceedings of the INTERACT’93 and CHI’93 conference on Human factors in computing systems,

pages 206–213, 1993.

58

https://electronjs.org/
https://www.jrebel.com/blog/2020-java-technology-report#build-tool
https://www.jrebel.com/blog/2020-java-technology-report#build-tool
https://www.coloradd.net/

Appendix A

Survey

Figure A.1: Introduction.

59

Figure A.2: User Profile.

60

Figure A.3: GZoltar Interface.

61

Figure A.4: GZoltar Capabilities.

62

Figure A.5: Automatic Debugging Concepts.

63

	Resumo
	Abstract
	Acknowledgments
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Motivation
	1.1.1 About Debugging
	1.1.2 About Automated Techniques

	1.2 Topic Overview
	1.3 Objectives
	1.4 Contribution
	1.5 Thesis Outline

	2 State of the Art
	2.1 Spectrum-Based Techniques
	2.1.1 Tarantula
	2.1.2 Jaguar
	2.1.3 Interactive Fault Localization
	2.1.4 VIDA

	2.2 Slice-Based Techniques
	2.2.1 JIVE
	2.2.2 SSlice
	2.2.3 eXVantage

	2.3 Model-Based Techniques
	2.3.1 Jade

	2.4 Miscellaneous Techniques
	2.4.1 EzUnit
	2.4.2 Whyline

	2.5 Tools Overview

	3 Implementation
	3.1 Building Extensions
	3.1.1 Extension Manifest
	3.1.2 Entry File
	3.1.3 Tree View Container
	3.1.4 Status Bar Item
	3.1.5 Webview

	3.2 Back End
	3.2.1 Manifest File
	3.2.2 Entry File
	3.2.3 GZoltar Commander
	3.2.4 Command Builder
	3.2.5 Workspace
	3.2.6 Report Panel
	3.2.7 Decorator

	3.3 Publishing the Extension
	3.3.1 Publisher ID

	4 Results and Evaluation
	4.1 Extension Showcase
	4.1.1 Installing
	4.1.2 Using the Extension

	4.2 User Study
	4.2.1 Users Description
	4.2.2 Experiment Conditions
	4.2.3 Feedback

	5 Conclusions
	5.1 Work Summary
	5.2 Future Work
	5.2.1 Differently Color Coded Graphics
	5.2.2 More Build Tools
	5.2.3 Windows Integration

	Bibliography
	A Survey

