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Resumo

Na primeira parte desta tese, apresentamos uma breve introdução à geometria quântica da informação.

Começamos com uma discussão sobre a geometria clássica da informação e derivamos a métrica de Fischer-

Rao. Em seguida, procedemos à generalização da teoria ao contexto quântico e derivamos a métrica de

Fubini-Study. Mostramos como os estados quânticos normalizados ganham um significado geométrico

mais profundo através da sua ambiguidade de gauge e como esta propriedade conduz a uma fase con-

hecida como a fase de Berry, induzida pela conexão de Berry. Finalmente, generalizamos estes resultados

para o caso do estado misto, derivando a métrica do estado misto, conhecida como métrica de Bures.

Na segunda parte desta tese, apresentamos uma generalização natural de uma estrutura Riemanniana,

ou seja, uma métrica, recentemente introduzida por Sjoqvist para o espaço de matrizes de densidade não

degenerada, para o caso degenerado, ou seja, em que os espaços próprios têm dimensão maior ou igual a

um. Apresentamos uma interpretação f́ısica da métrica em termos de um resultado de uma experiência

de interferometria. Aplicamos esta métrica, fisicamente interpretada como uma susceptibilidade inter-

ferométrica, ao estudo de transições de fase topológica a temperaturas finitas para isoladores de banda.

Comparamos os comportamentos desta susceptibilidade e os que provêm da conhecida métrica de Bures,

mostrando que são dramaticamente diferentes. Enquanto ambas inferem transições de fase a temperatura

zero, apenas a primeira prevê transições de fase a temperaturas finitas também.

Palavras-chave: geometria da informação; fases geométricas; transições de fase; susceptibil-

idade; métrica interferométrica.
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Abstract

In the first part of this thesis, we present a brief introduction to quantum information geometry. We

start with a discussion of classical information geometry and derive the Fisher-Rao metric. We then

proceed to generalize the theory to the quantum setting and derive the Fubini-Study metric. We show

how normalized quantum states gain a deeper geometrical meaning through their gauge ambiguity and

how this property leads to a phase known as the Berry phase, induced by the Berry connection. Finally,

we generalize these results to the mixed state case, deriving the mixed state metric – the Bures metric. In

the second part of this thesis, we provide a natural generalization of a Riemannian structure, i.e., a metric,

recently introduced by Sjoqvist for the space of non degenerate density matrices, to the degenerate case,

i.e., in which the eigenspaces have dimension greater or equal to one. We present a physical interpretation

of the metric in terms of an interferometric measurement. We apply this metric, physically interpreted

as an interferometric susceptibility, to the study of topological phase transitions at finite temperatures

for band insulators. We compare the behaviors of this susceptibility and the one coming from the well-

known Bures metric, showing them to be dramatically different. While both infer zero temperature phase

transitions, only the former predicts finite temperature phase transitions as well.

Keywords: information geometry; geometric phases; phase transitions; susceptibility; interfer-

ometric metric.
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Chapter 1

Introduction

Geometry and physics go hand in hand and quantum mechanics is no exception. In the beginning of

the 20th century, information geometry was originally motivated by providing a structure to statistical

models in order to use geometrical tools and arguments to study and geometrize mathematical statistics.

Harold Hotelling [1] was the first to relate the Fisher Information Matrix to a Riemannian metric tensor

g and interpreted the parameter space of the probability distribution as a Riemannian manifold (M, g).

Nowadays, the induced Riemannian metric in the space of parametrized probability distributions is

called the Fisher-Rao metric. Now, quantum mechanics is an intrinsically probabilistic theory, hence

one can ask if the same treatment can be applied for the case of quantum states. This has been in fact

demonstrated: quantum states may be described by genuine probability distributions [2]. The methods

used in classical statistical theory can then be translated into the quantum language when dealing with

quantum states. This geometrical picture of quantum mechanics is called quantum information geometry.

Recent advances in the area have provided new methods for studying quantum matter and describing

macroscopic critical phenomena based on quantum effects. Topological phases of matter are described in

terms of global topological invariants that are robust against continuous perturbations of the system. An

example of these invariants is the Thouless-Kohmoto-Nightingale-den Nihjs (TKNN) invariant, mathe-

matically a Chern number associated to the vector bundle of occupied Bloch states over the Brillouin

zone. This invariant captures topological phases of matter that could not be understood previously,

such as the case of the anomalous Hall insulator [3], which falls into the class of Chern insulators. The

classification of topological phases of gapped free fermions is encoded in the so-called periodic table of

topological insulators and superconductors [4]. However, by now we know that these phases of matter

were just the tip of the iceberg, see [5–8]. The theory underlying topological phases constitutes a change

of paradigm with respect to the Landau theory of phase transitions [9]. The latter is described by means

of a local order parameter, within the framework of the symmetry-breaking mechanism.

One can study phases of matter and the associated phase transitions (in particular topological ones)

through a Riemannian metric on the space of quantum states. One such commonly used structure is based

on the notion of fidelity, which is an information theoretical quantity that measures the distinguishability

between quantum states. It has been widely used in the study of phase transitions [10–20], since its
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non-analytic behaviour signals phase transitions.

Note that the mentioned topological invariants, being functions of the Hamiltonian only and not of the

temperature, characterize topological features at zero temperature. Therefore, it is crucial to understand

the effect of temperature on topological phase transitions, specially with regard to applications to quantum

computers, such as those involving Majorana modes in topological superconductors [21]. To approach

this problem, the fidelity and the associated Bures metric and, in addition, the Uhlmann connection, the

generalization of the Berry connection to the case of mixed states, have been probed for systems that

exhibit zero temperature symmetry protected topological phases [22–26].

Within the context of dynamical phase transitions, occurring when one performs a quench on a system,

the information geometric methods based on state distinguishability were applied [27]. In particular, for

finite temperature studies, besides the standard notion of fidelity induced Loschmidt echo, a notion of

interferometric Loschmidt echo based on the interferometric phase introduced by Sjöqvist et al. in [28],

was also considered. With regard to the associated infinitesimal counterparts, i.e., Riemannian metrics,

their behaviour is significantly different.

For two-band Chern insulators the fidelity susceptibility, one of the components of the Bures metric,

was considered in detail in Ref. [24]. In particular, it was rigorously proven that the thermodynamic and

zero temperature limits do not commute — the Bures metric is regular in the thermodynamic limit as

one approaches the zero temperature limit.

We start this work with an overview of quantum geometry: we first present the classical statistical

theory of information geometry and derive the Fisher-Rao metric, as well as the information geometric

tensor. Next, we transport these results to the quantum realm and discuss how geometric phases arise in

quantum mechanics. We derive the Fisher-Rao metric quantum counterpart, the Fubini-Study distance

and we also derive the quantum geometric tensor. We show how the quantum geometric tensor captures

both the metric and the Berry curvature together. We present a simple application of these concepts by

considering a two level system. Finally, we turn to mixed systems and derive the respective metric in this

space and show that it reduces to the Fubini-Study metric for a pure quantum state when considering

one state only.

In the second part of this thesis, we provide, through what is called the Ehresmann connection, a

natural generalization of a Riemannian structure over the space of non degenerate density matrices,

introduced by Sjöqvist in Ref. [29], to the degenerate case. Our natural construction reveals a symmetry

breaking mechanism by reducing the gauge group of the Uhlmann principal bundle [30], to a smaller

subgroup preserving the type, i.e., the ranks of the spectral projectors of the density matrix (see Sec. 3.1 for

details). This symmetry breaking mechanism explains the natural enhanced distinguishability provided by

the interferometric Riemannian metric. Introducing the notion of a generalized purification, we naturally

generalize Sjöqvist’s result to the case of degenerate density matrices, see Sec. 3.3. In Sec. 3.5, we discuss

an interferometric measurement probing the Riemannian metric derived. In Sec. 3.6, we apply the derived

metric to study finite temperature phase transitions in the context of band insulators. We present results

for this metric in the case of the massive Dirac model, a Chern insulator, in two spatial dimensions, and

compare them with those obtained using the Bures metric. Our analysis of equilibrium phase transitions

2



showed to be consistent with the previous study of dynamical phase transitions – the interferometric

metric is more sensitive to the change of the parameters than the Bures one. Finally, we present the

conclusions in Sec. 4.

The results presented in this thesis are submitted for publication in the Journal of American Society

Physical Review B. They are also available in preprint format in Ref. [31] .

3



4



Chapter 2

Introduction to Quantum

Information Geometry

2.1 Distinguishability in classical and quantum systems

Understanding quantum physics means having a deep understanding of statistical systems. A statistical

ensemble is a collection of identical physical systems, with each system being fully characterized by its

intrinsic properties (such as position, velocity, charge, (rest) mass etc.), allowing us to differentiate one

system from another. Given that we can distinguish a given system A from another system B, we can

then try to estimate the number of systems that are in a particular configuration (of a system)1 and,

in this way, define the proportion of systems that are in a given configuration, to which we associate a

probability distribution

pi =
# of systems that are in a particular configuration

Total # of systems
. (2.1)

We can perform this association for every configuration possible in the ensemble and create a probability

distribution. In this way, we can fully describe the ensemble through its probability distribution.

We can mix different ensembles by adding the individual systems in a larger, all encompassing ensem-

ble. By doing this we lose (forget) the correspondence of the systems to the sub-ensembles. At this point,

one can define two types of ensembles: homogeneous that correspond to ensembles that are not a mixture

of different ensembles and mixed that are. In classical physics, physical states2 are assigned to individual

systems. In quantum mechanics, however, we attribute pure physical states to homogeneous ensembles,

as it is intrinsically a statistical theory. In this sense, pure states are physical states of homogeneous

ensembles and mixed states are physical states of mixed ensembles.

1The configuration of a system is the set of properties that characterize a system.
2Note that, as it is used in quantum mechanics, the word “state” is used as a synonym for ensemble.
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2.2 Classical information geometry

Now that we have made the connection between physical states and statistical ensembles, we can begin

to figure out how we can distinguish different states.

Pure states are assigned to homogeneous ensembles. The probability distributions of pure classical

states are always trivial (1 for one value, 0 for all others), as a consequence of the fact that classical systems

in pure states have all their properties well-defined. This makes it possible to completely distinguish

any pure state from other pure states. This, however, is not true for mixed classical states, and more

importantly for our study, both pure and mixed quantum states.

Let
√
p = (

√
p1,
√
p2, ...,

√
pn) and

√
q = (

√
q1,
√
q2, ...,

√
qn) be two vectors representing two prob-

ability distributions, such that ‖√p‖ = ‖√q‖ = 1, where the norm is induced by the standard scalar

product in Rn, with n ∈ N. Fidelity is an information theoretical quantity that measures the degree

of similarity between probability distributions, given by the scalar product between the two probability

distribution vectors, i.e.,

F (p, q) =
√
p ·√q =

∑
i

√
piqi . (2.2)

It is easy to see that if two states are the same (in other words, indistinguishable), their scalar product is

1 due to the normalization of probability distributions, hence fidelity is 1. If two states are orthogonal,

the scalar product gives us, by definition, 0 fidelity. More explicitly, when taking the scalar product of

two orthogonal probability vectors we have

F (p, q) = 0⇔√
p ·√q =

∑
i

√
piqi = 0, (2.3)

when
√
p ⊥ √

q. This means that for each i either pi and/or qi must be zero, hence for each system

i one can completely distinguish from where it originated. In this sense, orthogonality means that the

ensembles are fully distinguishable.

Through the mapping: (p1, ..., pn) 7→ (
√
p1, ...,

√
pn), the constraint

∑n
i pi = 1 defines a portion of

the (n− 1)− sphere , {(p1, p2, ..., pn) ∈ Rn |
∑
i(
√
pi)

2 = 1 and pi ≥ 0}. This means that we can use the

induced Fisher-Rao distance, which reads:

dFisher-Rao = ‖√p−√q‖ =
√

2(1− F (p, q)). (2.4)

The respective infinitesimal version is

ds2
Fisher-Rao =

n∑
i=1

dxi dxi =

n∑
i=1

d(
√
pi) d(

√
pi) =

1

4

n∑
i=1

dpi√
pi

dpi√
pi

=
1

4

n∑
i=1

dp2
i

pi
. (2.5)

We can already begin to see from this definition the geometric nature of statistics, which will be much

of the ground-work of our thesis. Let us suppose our probability distribution depends on some vector

of parameters θ = (θ1, θ2, ..., θd) ∈ U ⊂ Rd, such that our probability distribution is a function of these

parameters, i.e., pi = pi(θ). Then, the above metric can be expressed as
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ds2
Fisher-Rao =

1

4

n∑
i=1

dp2
i

pi
=

1

4

n∑
i=1

pi(θ)(d(log pi(θ)))2 =
1

4

n∑
i=1

pi(θ)
∂(log pi(θ))

∂θµ
∂(log pi(θ))

∂θν
dθµdθν ,

(2.6)

where we have used the Einstein summation convention.

Hence, we have found the metric tensor over parameter space

gµν(θ) =
1

4

n∑
i=1

pi(θ)
∂(log pi(θ))

∂θµ
∂(log pi(θ))

∂θν
. (2.7)

The information or surprise of a certain event is given by the logarithm of the probability associated

to that event

ipi = − log pi . (2.8)

We can then rewrite equation (2.7) as

gµν(θ) =
1

4

n∑
i=1

pi(θ)
∂ipi
∂θµ

∂ipi
∂θν

=
1

4
Ep(θ)

[
∂ip
∂θµ

∂ip
∂θν

]
, (2.9)

where Ep(θ) [ · ] is the operation that takes the average value of some quantity, with respect to a given

probability distribution p(θ). If we consider a single parameter θ, Fisher information is a way of measuring

how much information about an unknown parameter θ we can get from a probability distribution and it

is formally defined by

I(θ) = Var

[
∂i(θ)

∂θ

]
= E

[(
∂i(θ)

∂θ

)2
]
− E

[(
∂i(θ)

∂θ

)]2

. (2.10)

The latter term can be shown to be zero and we are left with

I(θ) = E

[(
∂i(θ)

∂θ

)2
]
. (2.11)

This result can be generalized for the collection of parameters θ we defined above, so that we can relate

the statistical metric tensor with the Fisher information matrix, defined by

I = [Iµν ] = E
[
(∇i)(∇i)†

]
, (2.12)

hence,

Iµν(θ) = 4gµν(θ). (2.13)

By now it is quite clear that there can be established a connection between statistics and differential

geometry [32, 33]. The aim of our thesis is to make use of the tools of differential geometry to study

quantum physical systems.
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2.3 Pure state geometry

Next, we would like to generalize the notions and results from the past section to the quantum setting. The

probability vectors introduced in the previous section are replaced, in the context of quantum mechanics,

by quantum states: complex vectors that correspond to probability amplitudes. In this context, the

fidelity between pure quantum states in an n dimensional Hilbert space is given by

F (|ψ〉, |φ〉) = |〈ψ|φ〉|, (2.14)

where |ψ〉 and |φ〉 are normalized vectors in H = Cn. It is easy to check that if two states are the same,

fidelity is equal to one (if the states are normalized) and if they are orthogonal, fidelity is zero. Physically,

this means that if the fidelity between states is one, then it is impossible to dinstinguish between them,

while if their fidelity is zero one can tell them apart with no uncertainty. Suppose we are given a machine

that shoots out electrons that have up or down spin along the z axis. Indeed, if we are given an electron

in state |ψ〉 belonging to the set {|↑〉, |↓〉}, one can perform a measurement in this same basis (e.g. using

a Stern–Gerlach apparatus) which is able to identify the two states with no uncertainty. Hence, fidelity

quantifies how much a given measurement can distinguish two quantum states. Generally speaking,

F
(
|ψ〉, |φ〉

)
= |Pψ|φ〉|. (2.15)

The notion of a distance can be defined as

d2(|ψ〉, |φ〉) = 2 (1− |〈ψ|φ〉|) . (2.16)

This is known as the Fubini-Study distance between states |ψ〉 and |φ〉.

States in quantum mechanics are rays, that is, any state |ψ〉 represents the same physical state as

|φ〉 = λ|ψ〉, with λ ∈ C\{0}, which forms an equivalence class of states [|ψ〉] = {λ|ψ〉 : λ ∈ C}. Therefore,

the space of states of a given quantum system is the space of rays in H

P(H) = {[|ψ〉] : |ψ〉 ∈ H} (2.17)

known as the projective Hilbert space. Usually, one restricts themselves to normalized states, i.e., S(H) =

{|ψ〉 ∈ H : 〈ψ|ψ〉 = 1}. Under this restriction, the equivalence relation is simply multiplication by a

phase. Hence, from a physical standpoint, two states are equivalent if they differ by a phase λ = eiφ. In

other words, normalized states have a U(1)-gauge freedom and the projective Hilbert space is P(H) =

S(H)/U(1). When H = CN , the space is also known as the complex projective space CPn ∼= S2n+1/U(1),

where S2n+1 is the (2n+ 1)-sphere. We can then define a projection π : S(H) 7→ P(H) explicitly realized

as

π : |ψ〉 7−→ Pψ = |ψ〉〈ψ| = eiφ|ψ〉〈ψ| e−iφ. (2.18)

Note that, unlike the vector representatives of quantum states, the orthogonal projector is gauge invariant,

8



(a) (b)

Figure 2.1: (a) Representation of a fiber: There is an equivalence class of states separated by a phase
eiφ that all project onto the same projector Pψ. (b) Representation of a fiber bundle: there is a fiber for
each point in the space of projectors P(H). This construction, along with the projection π defines a fiber
bundle over the base space P(H)

i.e., there is no phase ambiguity in its definition. So there is, indeed, a one-to-one correspondence

[|ψ〉] ↔ Pψ = |ψ〉〈ψ|. This construction defines a principal bundle over P(H), which, for each projector

Pψ, has a collection of equivalent states that differ by a phase – the fiber. Now, let us define a smooth

curve t 7→ |ψ(t)〉, such that |ψ(0)〉 = |ψ〉, so that we can take derivatives of states. We know that our

states live in the sphere in H, hence the tangent space to this sphere is defined by

T|ψ〉S(H) = T|ψ〉S
2n+1 = {|v〉 ∈ H : 〈v|ψ〉+ 〈ψ|v〉 = 0}, (2.19)

which can be derived from the normalization condition for the states, i.e., d
dt (〈ψ|ψ〉) = 0. Due to the

unitary gauge ambiguity of states |ψ〉, when taking variation of a given state, two contributions will arise:

a component proportional to the unitary phase and a component proportional to the differential of the

physical state. These two components define the vertical and horizontal components, respectively. We

will see below that pure gauge transformations completely specify a subbundle of the tangent bundle,

i.e. a subspace of each tangent space, which we call the vertical subbundle. Pure gauge transformations

induce no change in the quantum states. Therefore, one would like to have a complement of the vertical

bundle, which we would then associate to variations of the states. For the case at hand, one natural choice

is provided by the inner product structure of the Hilbert space, namely, we can consider the orthogonal

complement so that:

9



T|ψ〉S
2n+1 = V|ψ〉 ⊕H|ψ〉. (2.20)

Quite intuitively so, the vertical space is defined as the collection of vectors that are tangent to the fiber.

This can be easily seen if we consider a smooth curve that only has time dependence in the phase (it

only moves within the fiber), i.e., t 7→ |ψ(t)〉 = |ψ〉eiφt. Taking the derivative of this curve we have

d|ψ(t)〉
dt = iφ |ψ(t)〉, hence

V|ψ〉 = {|ψ〉 · iφ : φ ∈ R} ⊂ T|ψ〉H. (2.21)

Meanwhile, the horizontal space is defined as the orthogonal of the vertical space

H|ψ〉 = {|v〉 ∈ T|ψ〉S2n+1 : 〈v|ψ〉 = 0}. (2.22)

Generally, when a state evolves, it moves both vertically and horizontally within the principal bundle. In

other words, its evolution will depend on both its phase and state itself. Hence, we will consider a curve

on a state that has time dependence on both of these terms

|ψ′(t)〉 = |ψ(t)〉 · eiφ(t). (2.23)

Now, we want to parallel transport this state, so it must follow the horizontality condition, that is

〈dψ
′

dt
|ψ′〉 = 0⇔ i

dφ

dt
= −〈ψ|dψ

dt
〉 ⇔ φ = i

∫
〈ψ| d

dt
|ψ〉dt (2.24)

This is the so-called Berry phase: as the state evolves it can move in two directions (vertically and

horizontally), by adding a geometrical phase, the state is forced to stay within the horizontal subspace.

This is the notion of parallel transport in the space of quantum states. The state then reads

|ψ′(t)〉 = |ψ(t)〉 · exp

(
−
∫
〈ψ| d

dt
|ψ〉dt

)
. (2.25)

Note that this is the same phase that appears in the quantum adiabatic theorem [34]. The term inside

the integral

A = 〈ψ| d |ψ〉, (2.26)

is the U(1) Berry connection. Using this result, one can derive another representation of tangent hori-

zontal vectors, by deriving the expression in Eq. (2.25) at t = 0, i.e.,

d|ψ′(t)〉
dt

∣∣∣
t=0

=
d|ψ(t)〉
dt

∣∣∣
t=0
− 〈ψ(t)|dψ

dt
〉
∣∣∣
t=0
|ψ(t)〉. (2.27)

In this sense, tangent horizontal vectors can also be described by

|ṽH〉 = |ṽ〉 − 〈ψ|ṽ〉|ψ〉, (2.28)

10



Figure 2.2: A curve in S(H) and its respective projection onto the base space, with their respective

tangent vectors. The tangent vector in S(H) can be split into |ṽ〉 = |ṽ〉H + |ṽ〉V . With this splitting one

can identify isomorphisms such that π(|ṽ〉) = |v〉H .

where |ṽ〉H is the horizontal component of a tangent vector |ṽ〉 = d|ψ(t)〉
dt

∣∣∣
t=0
∈ TψS

2n+1 . We now have

a complete notion of horizontal subspaces of the tangent spaces to H and we can identifify isomorphisms

Hψ
∼= TPψP(H) provided by the projection π, where TPψP(H) is the tangent space to the base space.

So far, we have seen how geometrical aspects naturally appear as a result of the gauge invariance of

quantum states. Now, we must find out the metric on the space of quantum pure states. To proceed

further, let us once again consider a curve in the space of quantum states and compute the distance

between two infinitesimally close points

d2(Pψ(t), Pψ(t+δt)) = 2
(

1− |〈ψ(t)|ψ(t+ δt)〉|
)
. (2.29)

Then, Taylor expand |ψ(t+ δt)〉 up to second order as

|ψ(t+ δt)〉 = |ψ(t)〉+
d|ψ(t)〉
dt

δt+
1

2

d2|ψ(t)〉
dt2

δt2 +O(δt3). (2.30)

The term |〈ψ(t)|ψ(t+ δ)〉|2 becomes

|〈ψ(t)|ψ(t+ δ)〉|2 =

(
1 + 〈ψ|ψ̇〉δt+

1

2
〈ψ|ψ̈〉δt2

)(
1 + 〈ψ̇|ψ〉δt+

1

2
〈ψ̈|ψ〉δt2

)
= 1 +

(
〈ψ|ψ̇〉+ 〈ψ̇|ψ〉

)
δt+

[
〈ψ̇|ψ〉〈ψ|ψ̇〉+

1

2

(
〈ψ|ψ̈〉+ 〈ψ̈|ψ〉

)]
δt2, (2.31)
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where |ψ̇〉 and |ψ̈〉 are the first and second order time derivatives of |ψ〉, respectively. By taking derivatives

of states, we are dealing with tangent vectors that follow condition (2.19), hence the second term in the

equation above is zero. Meanwhile, the third term can be simplified through the tangent vector condition

d
dt

[
〈ψ|ψ̇〉+ 〈ψ̇|ψ〉

]
= 0 ⇐⇒ 1

2

(
〈ψ̈|ψ〉+ 〈ψ|ψ̈〉

)
= −〈ψ̇|ψ̇〉. (2.32)

We then have

|〈ψ(t)|ψ(t+ δ)〉|2 = 1 +
(
〈ψ̇|ψ〉〈ψ|ψ̇〉 − 〈ψ̇|ψ̇〉

)
δt2

= 1− 〈ψ̇|
(
1− |ψ〉〈ψ|

)
|ψ̇〉δt2 (2.33)

We need to square root this equation giving

|〈ψ(t)|ψ(t+ δ)〉| =
√

1− 〈ψ̇|
(
1− |ψ〉〈ψ|

)
|ψ̇〉δt2

= 1− 1

2
〈ψ̇|
(
1− |ψ〉〈ψ|

)
|ψ̇〉δt2, (2.34)

where we have used the binomial approximation to first order, i.e., (1−x)α ∼ 1−αx for small x. Plugging

this onto Eq. (2.29) we have

d2(Pψ(t), Pψ(t+δt)) = ds2
FS = 〈ψ̇|

(
1− |ψ〉〈ψ|

)
|ψ̇〉δt2. (2.35)

which is the Fubini-Study metric. In terms of more general parameters θµ(t) we can write

ds2
FS = 〈∂µψ| (I − |ψ〉〈ψ|) |∂νψ〉dθµdθν , (2.36)

where Qµν = 〈∂µψ| (I − |ψ〉〈ψ|) |∂νψ〉 is the quantum geometric tensor. Note that this tensor is a Her-

mitian tensor.

There is more to this tensor than meets the eye: it actually contains the information of all geometrical

objects that we have been deriving so far. To see this let us first take the symmetric product dθµdθν =

1
2 (dθµdθν + dθνdθµ), such that we have

Qµνdθ
µdθν =

1

2
(Qµνdθ

µdθν +Qµνdθ
νdθµ) . (2.37)

We can exchange the indices in the second term since they are dummy indices

1

2
(Qµνdθ

µdθν +Qµνdθ
νdθµ) =

1

2
(Qµνdθ

µdθν +Qνµdθ
µdθν) . (2.38)

Now, simply note that

Qνµ = 〈∂νψ| (I − |ψ〉〈ψ|) |∂µψ〉 = 〈∂µψ| (I − |ψ〉〈ψ|) |∂νψ〉 = Qµν , (2.39)
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such that, in the end, we have

Qµνdθ
µdθν =

1

2

(
Qµν +Qµν

)
dθνdθµ

= ReQµν . (2.40)

We can now rewrite Eq. (2.36) as

ds2
FS = Re(Qµν)dθµdθν = gµνdθ

µdθν , (2.41)

where we have defined the metric as gµν = ReQµν .

Taking into account the gauge invariance of Qµν , one might ask, rightly so, what the imaginary part

of this part would give us. To see this, we will follow a similar reasoning as the preceeding one. Consider

now the 2-form

Qµνdθ
µ ∧ dθν . (2.42)

We can write the differential as dθµ ∧ dθν = 1
2 (dθµ ∧ dθν − dθν ∧ dθµ), which gives us

Qµνdθ
µ ∧ dθν =

1

2
(Qµνdθ

µ ∧ dθν −Qµνdθν ∧ dθµ) . (2.43)

Once again the indices can be interchanged giving

1

2
(Qµνdθ

µ ∧ dθν −Qµνdθν ∧ dθµ) =
1

2
(Qµν −Qνµ) dθµ ∧ dθν . (2.44)

Let us now compute explicitly the anti-symmetric quantity Qµν −Qνµ,

Qµν −Qνµ = 〈∂µψ| (I − |ψ〉〈ψ|) |∂νψ〉 − 〈∂νψ| (I − |ψ〉〈ψ|) |∂µψ〉

= 〈∂µψ|∂νψ〉 − 〈∂νψ|∂µψ〉 − 〈∂µψ|ψ〉〈ψ|∂νψ〉+ 〈∂νψ|ψ〉〈ψ|∂µψ〉. (2.45)

The last two terms cancel each other through the identity 〈ψ|∂µψ〉 = −〈∂µψ|ψ〉, so that

Qµν −Qνµ = 〈∂µψ|∂νψ〉 − 〈∂νψ|∂µψ〉. (2.46)

Substituting this on Eq. (2.44) gives

Qµνdθ
µ ∧ dθν =

1

2
(〈∂µψ|∂νψ〉 − 〈∂νψ|∂µψ〉) dθµ ∧ dθν

= dA

= F, (2.47)

where F = (〈∂µψ|∂νψ〉 − 〈∂νψ|∂µψ〉) dθµ ∧ dθν is a differential form known as the Berry curvature and
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Figure 2.3: Visualization of Stokes’ theorem and partition of P(H)

A = Aµdxµ is the Berry connection 1-form. On the other hand,

Qµνdθ
µ ∧ dθν =

1

2
(Qµν −Qνµ) dθµ ∧ dθν

=
1

2

(
Qµν −Qµν

)
dθµ ∧ dθν

= i ImQµνdθ
µ ∧ dθν

=
1

2
Fµνdθ

µ ∧ dθν , (2.48)

so that Fµν = 2i ImQµν . The quantum geometric tensor can then be separated into its real and imaginary

parts

Qµν = ReQµν + i ImQµν

= gµν +
1

2
Fµν , (2.49)

so that the real part corresponds to the metric tensor and the imaginary part corresponds to the Berry

curvature.

Now, let us look again at Eq. (2.25): one can compute the phase that a given state acquires in a

closed curve γ, given by xµ(t) when parametrized by a set of coordinates xµ ∈ U , where U is an open

neighborhood within our manifold P(H). Hence, a given state can be written as |ψ(t)〉 = |ψ (xµ(t))〉 and

we can compute the explicit formula for the Berry phase

exp

(
−
∫
γ

〈ψ| d
dt
|ψ〉dt

)
= exp

(
−
∫
γ

〈ψ|∂µ|ψ〉
dxµ

dt
dt

)
= exp

(
−
∫
γ

A

)
, (2.50)

If we consider that Σ ⊂ P(H) is a 2D compact connected surface, Stokes’ theorem tells us that the integral

of the Berry connection differential form A over the boundary of some orientable manifold ∂ω = γ is

equal to the integral of its exterior derivative dA = F over the whole of Ω (see Fig. 2.3), i.e.,

∫
γ

A =

∫
Ω

F. (2.51)

There is another equality that can be found by identifying the complement of Ω - Ω - such that Ω∪Ω = Σ.
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Figure 2.4: Parametrization of Bloch sphere using polar coordinates

We then have

∫
γ

A =

∫
Ω

F = −
∫

Ω

F. (2.52)

Then, the Berry phase that is acquired in a closed loop can also be written as

exp

(∫
γ

A

)
= exp

(∫
Ω

F

)
= exp

(
−
∫

Ω

F

)
, (2.53)

from where one can conclude that

exp

(∫
Ω∪Ω

F

)
= 1 ∴

∫
Σ

F = 2πin1, n ∈ N. (2.54)

From this relation, one can define the Chern number of a compact manifold as

C1 = i

∫
Σ

F

2π
. (2.55)

This quantity is a topological invariant, since one can deform these manifolds and their Chern number

will still remain invariant. These invariants form the basis for the theory of topological phases of matter.

This concludes our discussion of pure quantum state geometry. We have gone over concepts that will

not be used in our work direcly, but which are in any case important for the comprehension of the theory

overall. In the next section, we will apply these notions to a simple two level system - a qubit, as they

are known in quantum information.

Example: Single qubit state

Let us apply these notions to the single qubit state. Its respective Hilbert space is H = C2 and the

corresponding complex projective space is CP 1 ∼= S2 - a spherical shell in R3 (see Fig. 2.4). In this space,
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qubits are given by the superpostion of two orthogonal states |0〉 and |1〉, i.e.

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉, (2.56)

where (θ, φ) are the standard spherical angles that parametrize the spherical shell. Let us compute the

quantum geometric tensor for this system. For this purpose we will need to compute the derivatives of

|ψ〉 in spherical coordinates, i.e.,

|∂θψ〉 =
1

2

(
− sin

θ

2
|0〉+ eiφ cos

θ

2
|1〉
)

(2.57)

|∂φψ〉 = ieiφ sin
θ

2
|1〉. (2.58)

Using these results, in the first term of the tensor 〈∂µψ|∂νψ〉 we have

〈∂θψ|∂θψ〉 =
1

4

(
sin2 θ

2
+ cos2 θ

2

)
=

1

4
, (2.59)

〈∂θψ|∂φψ〉 =
i

2
cos

θ

2
sin

θ

2
=
i

4
sin θ, (2.60)

〈∂φψ|∂φψ〉 = sin2 θ

2
, (2.61)

where we have used the identity 1
2 sin θ = cos θ2 sin θ

2 . As for the second term 〈∂µψ|ψ〉〈ψ|∂νψ〉 we have

〈ψ|∂θψ〉 =
1

2

(
− sin

θ

2
cos

θ

2
+ sin

θ

2
cos

θ

2

)
= 0 (2.62)

〈ψ|∂φψ〉 = i sin2 θ

2
. (2.63)

We are now ready to compute all the components of the tensor

Qθθ = 〈∂θψ|∂θψ〉 − 〈∂θψ|ψ〉〈ψ|∂θψ〉 =
1

4
(2.64)

Qθφ = 〈∂θψ|∂φψ〉 − 〈∂θψ|ψ〉〈ψ|∂φψ〉 =
i

4
sin θ (2.65)

Qφθ = Q†θφ = − i
4

sin θ (2.66)

Qφφ = 〈∂φψ|∂φψ〉 − 〈∂φψ|ψ〉〈ψ|∂φψ〉 = sin2 θ

2

(
1− sin2 θ

2

)
=

1

4
sin2 θ. (2.67)

As we have seen in the previous section, gµν = ReQµν , hence our metric tensor reads

gθθ =
1

4
(2.68)

gθφ = gφθ = 0 (2.69)

gφφ =
1

4
sin2 θ. (2.70)
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This gives us the following infinitesimal line element

ds2
FS =

1

4

(
dθ2 + sin2 θdφ2

)
, (2.71)

which is the standard metric of a sphere of radius 1
2 . Meanwhile, the Berry curvature, given by Fµν =

2i ImQµν , is

Fθθ = Fφφ = 0 (2.72)

Fθφ =
i

2
sin θ (2.73)

Fφθ = − i
2

sin θ, (2.74)

which defines the following 2-form

F =
1

2
Fµνdx

µdxν =
1

2
(Fθφdθ ∧ dφ+ Fθφdφ ∧ dθ) = Fθφdθ ∧ dφ

=
i

4
sin θdθ ∧ dφ− i

4
sin θdφ ∧ dθ =

i

2
sin θdθ ∧ dφ, (2.75)

Differential forms provide us a way of integrating over manifolds. More specifically, we know that the

integral of this 2-form will give us the Chern number for the Bloch sphere. Let us perform this calculation.

In this case, Σ = P(H) = S2, therefore we have

C1 = i

∫
S2

F

2π

= − 1

4π

∫ π

0

∫ 2π

0

sin θdθdφ

= −1

2

∫ π

0

sin θdθ

=
1

2

∫ π

0

d cos θ

dθ
dθ

= −1. (2.76)

2.4 Mixed state geometry

Let us now turn our attention to mixed states. These systems are fully characterized by their density

matrix ρ which contains the full information about the ensemble. A mixed quantum state is a probabilistic

mixture of ` pure states |ϕj〉. Within the context of the discussion in section 2.1, these pure states are

homogeneous ensembles with a degree of “mixing” specified by the relative proportions qj > 0. With this

in mind, the operator that fully describes this mixture is the density operator ρ ∈ Cn×n defined by

ρ =
∑̀
j=1

qj |ϕj〉〈ϕj |. (2.77)
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Their degree of mixture is directly correlated with the entropy of the system, which, as formulated by

von Neumann, is given by

S = −Tr (ρ ln ρ) . (2.78)

Note that ρ is a trace 1, Hermitian operator, hence, it can be written as

ρ =

k∑
i=1

piPi, (2.79)

where pi > 0 with i = 1, ..., k ≤ ` satisfying
∑k
i=1 piri = 1, with the ri’s being the ranks of the orthogonal

projectors Pi’s. The total rank of ρ is then r =
∑k
i=1 ri.

Considering that the space of pure states is Cn, one can introduce matrices w called amplitudes of ρ,

with w ∈ Cn×r, such that we can restate the density matrix as

ρ = ww†. (2.80)

Essentially, w is a matrix whose columns are eigenvectors of ρ, that is, w = (|e1〉 |e2〉 ... |er〉), with

appropriate weights concerning the eigenvalues, i.e.,

ρ = ww† =
(
|e1〉 |e2〉 ... |ek〉

)

〈e1|

〈e2|

...

〈ek|

 =

r∑
α=1

|eα〉〈eα| =
r∑

α=1

pα|ψα〉〈ψα|, (2.81)

where |eα〉 =
√
pα|ψα〉 and, for each orthogonal projector Pi, the corresponding eigenvalue pi appears ri

times. Much like the standard quantum pure states, these amplitudes can be defined up to an unitary

matrix U ∈ U(r), since when replacing w → w · U expression (2.80) remains invariant

ww† → (w · U)
(
U† · w†

)
= ww† = ρ. (2.82)

Our objective is to find a metric for such a mixed quantum system and, for this purpose, we will follow

a similar reasoning to what was done in the previous secion for the pure case.

In order to define a distance, an Hermitian form can be defined by the formula

〈w, v〉 := Re Tr
(
w†v

)
, (2.83)

where v is the amplitude associated with density matrix σ, such that σ = vv†. We can define a notion of

distance between states ρ and σ as

d2
B (ρ, σ) = inf

{w,v}
||w − v||2

= inf
{w,v}

Tr
[
(w − v)†(w − v)

]
18



= 2− sup
{w,v}

Tr
[
w†v + v†w

]
, (2.84)

where || · || is the Hilbert Schmidt scalar product on the space Cn×r. Let us go a little further and see

that Tr
[
w†v + (w†v)†

]
is maximized if w†v is positive and Hermitian, i.e,

w†v = v†w > 0. (2.85)

This is the Uhlmann parallelity condition [30]: two amplitudes are said to be parallel if the above condition

holds. Choosing w =
√
ρU and v =

√
σ V , we have

d2
B (ρ, σ) = 2

(
1− Re Trw†v

)
= 2

(
1− Re Tr

√
ρ
√
σV U†

)
= 2

(
1− Re Tr |√ρ

√
σ|1/2 · |√ρ

√
σ|1/2 UV U†

)
C-S
≥ 2

(
1− Tr

√√
ρ σ
√
ρ

)
= 2 (1− F (ρ, σ)) . (2.86)

where we have defined a mixed state fidelity counterpart, given by

F (ρ, σ) = Tr
√√

ρ σ
√
ρ. (2.87)

and F (ρ, σ) = TrF(ρ, σ). Eq.(2.86) is the mixed state counterpart of the Fubini-Study distance in

Eq. (2.16). The definition of fidelity in Eq. (2.87) is the generalization of the fidelity that encompasses

both the classical and the pure quantum state fidelity, since, as we have discussed previously, mixed

states are simply the conjuction of a classical contribution, the statistical weights pi, and a quantum

contribution represented by pure states |ψi〉. Therefore, Eq. (2.87) should reduce to the classical and to

the pure quantum state fidelity, when considering specific states.

Let us check the first case: consider another state σ =
∑r
α=1 qα|ψα〉〈ψα| that commutes with ρ. In

this case, the fidelity between states ρ and σ is

F (ρ, σ) = Tr
√√

ρ σ
√
ρ

= Tr

√√√√√
√√√√ r∑
α=1

pα|ψα〉〈ψα|
4∑

β=1

qβ |ψβ〉〈ψβ |

√√√√ r∑
γ=1

pγ |ψγ〉〈ψγ |

= Tr

√ ∑
α,β,γ=1

√
pα|ψα〉〈ψα|qβ |ψβ〉〈ψβ |

√
pγ |ψγ〉〈ψγ |

= Tr

√√√√ r∑
α=1

pαqα|ψα〉〈ψα|

= Tr

(
r∑

α=1

√
pαqα|ψα〉〈ψα|

)
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=

n∑
i=α

√
pαqα

= Fcl(p, q),

where we have used the fact that the square root of a diagonal matrix with positive entries is just the

square root of each entry, i.e.,
√∑

i ai|i〉〈i| =
∑
i

√
ai|i〉〈i|. Physically, this result tells us that the fidelity

between two quantum systems comprised of the same pure states is really just the classical fidelity between

their relative distributions.

Next, we consider the fidelity between a pure state ρ = |ψ〉〈ψ| and a general mixed state σ. With this

in mind, the fidelity reads

F (|ψ〉, σ) = Tr

√√
|ψ〉〈ψ|σ

√
|ψ〉〈ψ|

= Tr
√
|ψ〉〈ψ|σ|ψ〉〈ψ|

=
√
〈ψ|σ|ψ〉. (2.88)

This case is quite useful since it comes up frequently in laboratory experiments: oftentimes in experiments

one sends pure states (electrons or photons) which interact with the environment, resulting in a mixed

state. The formula above reduces to the pure state fidelity when σ = |φ〉〈φ|, i.e., when σ is also a pure

state,

F
(
|ψ〉, σ = |φ〉〈φ|

)
=
√
〈ψ|σ|ψ〉 =

√
〈ψ|φ〉〈φ|ψ〉 = F (|ψ〉, |φ〉). (2.89)

Consider now the space B of rank r density matrices. Then, the corresponding amplitudes w belong to

Cn×r. We can define a projection from the space of amplitudes w to the space of density matrices ρ,

denoted PUhl, by

π : PUhl → B

w 7→ ρ = ww†.

(2.90)

We must remind ourselves that each amplitude has an U(r) gauge freedom, so that (π, PUhl, B, U(r))

define a principal U(r)-bundle. Once again, we will define horizontal tangent directions orthogonal to

the vertical, i.e., gauge transformation geometry directions and hence find a geometry for mixed states.

Consider now a curve of rank r amplitudes

γw : [0, 1] 3 t 7→ γw(t) ∈ PUhl (2.91)

subject to the initial conditions γw(0) = w and dγw
dt |t=0 = ẇ. The vertical subspace is then the collection

of tangent vectors such that when they are projected onto the base space they give zero, that is

d

dt
(π (γw(t)))|t=0 = 0↔ d

dt

(
γw(t)γw(t)†

)
|t=0 = ẇw† + wẇ† = 0, (2.92)
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hence the vertical space at w is defined as

Vw = {ẇ ∈ TwPUhl : ẇw† + wẇ† = 0}. (2.93)

We can think of this space similarly to what we did in the last section, by saying that the vertical curve

along the fiber can be written as t 7→ w(t) = w ·etX , where X ∈ u(r) is an anti-Hermitian matrix. Clearly,

the projection onto the base state is invariant under this transformation

w(t)w†(t) =wetX
(
wetX

)†
(2.94)

= wetXe−tXw† = ww†.

The vector tangent to the fiber can now be written as dw
dt |t=0 = ẇ = w ·X, which satisfies the condition

for vertical matrices

ẇw† + wẇ† = wXw† + wX†w† = wXw† − wXw† = 0 (2.95)

Hence, our vertical space can also be seen as

Vw = {ẇ ∈ TwPUhl : ẇ = w ·X, X† = −X}. (2.96)

We are now in condition to define the horizontal subspaces, which will simply be the collection of tangent

vectors ẇ that are orthogonal to Vw, that is

Hw = {ẇ ∈ TwPUhl : 〈ẇ, ẇ′〉 = 0, where ẇ′ ∈ Vw}. (2.97)

In this case, the connection is defined again by the horizontality condition, given by

〈ẇ, ẇ′〉 = 0, (2.98)

where ẇ is a tangent vector under consideration and ẇ′ is an arbitrary vertical tangent vector. Using the

definition for the Hermitian form, the condition is then given by

Re Tr
(
ẇ†w ·X

)
= 0, for every X ∈ u(r)

=⇒ ẇ†w − w†ẇ = 0, (2.99)

where the implication stems from the fact that X is anti-Hermitian, so that ẇ†w can only be Hermitian. 3

3To see this, observe that a complex matrix can be split into its Hermitian and anti-Hermitian components: Z =
ZH + ZAH , where ZH = 1

2
(Z + Z†) and ZAH = 1

2
(Z − Z†). This real-linear decomposition divides the full ma-

trix into two orthogonal components. Indeed, Re Tr
[(
ZAH
1

)†
ZH
2

]
=

1

2

{
Tr

[(
ZAH
1

)†
ZH
2

]
+ Tr

[(
ZH
2

)†
ZAH
1

]}
=

1

2

{
−Tr

[(
ZAH
1

)
ZH
2

]
+ Tr

[(
ZH
2

)
ZAH
1

]}
= 0. Moreover, since the real vector space of Hermitian matrices and anti-

Hermitian matrices both have dimension k×k, we conclude that if a complex matrix is (real-)orthogonal to an anti-Hermitian
matrix, then it must be Hermitian.
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We can then restate the horizontal space as

Hw = {ẇ ∈ TwPUhl : w†ẇ = ẇ†w}. (2.100)

Finally, now that we have a notion of horizontal subspaces of the tangent spaces to PUhl, we have

unique isomorphisms of Hw
∼= TρB provided by the projection π. This means that for each v ∈ TρB

there exists a unique ṽH ∈ Hw ⊂ TwPUhl, such that its projection is v, i.e., π(ṽH) = ṽHw† + wṽH† = v,

and the converse is also true. This lift is called the “horizontal lift” for obvious reasons. Any other

lift of v to TwPUhl, i.e., any tangent vector projecting to v, would differ from the horizontal by an

element of the kernel of the derivative of the projection, i.e., a vertical vector. As a consequence of

this isomorphism, the Riemannian metric in the base space is g(v1, v2) := 〈ṽH1 , ṽH2 〉 = Re Tr
[(
ṽH1
)†
ṽH2

]
,

where ṽH , are horizontal lifts of tangent vectors v1, v2 ∈ TPGrr(Cn). Moreover, the expression g(v1, v2)

does not depend on the point of the fiber over P , because the horizontal subspaces are U(r)-equivariant

and the metric is U(r)-invariant. Indeed, if ṽH ∈ Hw is an horizontal lift of v ∈ TρB, then ṽH · U is a

horizontal lift belonging to Hw·U , for every U ∈ U(r): w†ṽH = 0 ⇒ (w · U)†(ṽH · U) = U†w†ṽHU = 0.

Note that, in ṽH ·U , right multiplication should be understood as the tangent map of right multiplication

at wi. Finally, Re Tr
[(
ṽH1
)†
ṽH2

]
= Re Tr

[(
ṽH1 · U

)†
ṽH2 · U

]
, by the cyclic property of the trace, which

shows that this expression defines a metric in the base space.

Now every tangent vector ṽ ∈ TwPUhl is uniquely projected to a horizontal vector ṽH ∈ Hw, which

is mapped to a base space tangent vector v ∈ TρB. Given the decomposition TwPUhl = Vw ⊕ Hw, we

can always find unique projection operators onto the vertical and horizontal subspaces, that perform the

splitting

ṽ = ṽV + ṽH , where ṽV ∈ Vw, ṽH ∈ Hw. (2.101)

We claim that horizontal vectors can be written as transformation of the amplitudes w, i.e.,

ṽH = Gw,where G = G† (2.102)

and we can check that this is true, replacing it in Eq. (2.100), i.e.

(ṽw)† = w†ṽ =⇒ (Gw)†w = w†(Gw) =⇒ w†Gw = w†Gw. (2.103)

Now, we have the identity

g(v1, v2) = 〈ṽH1 , ṽH2 〉. (2.104)

which through the claim above, yields

g(v, v) = 〈ṽH , ṽH〉

= Re Tr
(
w†GGw

)
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= Tr
(
ww†GG

)
= Tr ρG2. (2.105)

We can rewrite this equation in a different way, noting that

v =
dρ

dt

∣∣∣
t=0

=
d

dt
(ww†) = ṽw† + wṽ† = Gρ+ ρG. (2.106)

If we multiply dρ by G and take its trace, we have

Tr dρG = Tr
(
GρG+ ρG2

)
= 2 Tr ρG2, (2.107)

which is just two times the Bures metric in Eq. (2.105), hence

ds2
Bures =

1

2
Tr dρG. (2.108)

Next, we would like to find out the matrix G, for this purpose, consider a given diagonalization of

ρ =
∑
i pi|i〉〈i|, such that using the formula above

dρ =
∑
ij

〈i|dρ|j〉|i〉〈j| (2.109)

=
∑
ij

〈i|(Gρ+ ρG)|j〉|i〉〈j|

=
∑
ij

〈i|(pi + pj)G|j〉|i〉〈j|.

This equation can be inverted for pi, pj 6= 0 yielding

G =
∑
ij

〈i|dρ|j〉
pi + pj

|i〉〈j|. (2.110)

Plugging this into Eq. (2.105)

gρ = Tr ρG2

=
∑
ij

pi〈j|G|i〉〈i|G|j〉

=
∑
ij

pi
(pi + pj)2

|〈i|dρ|j〉|2. (2.111)

Using d〈i|j〉 = 0, it can be shown that the differential of ρ is

dρ = 〈i|dρ|j〉+ 〈i|dj〉(pj − pi), (2.112)
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such that the explicit form of the Bures metric is

gρ =
1

4

∑
i

dp2
i

pi
+
∑
i 6=j

pi
(pi − pj)2

(pi + pj)2
|〈i|dj〉|2, (2.113)

since the cross terms of the square of Eq. (2.112) give zero. The first term on this equation is the classical

Fischer-Rao metric derived in Eq. (2.5), while the second term corresponds to variations of the state and

is the quantum contribution to the metric.

Now, it can be shown that this equation reduces to the Fubini-Study metric (2.36) when considering

a single pure state. Consider a collection of eigenstates {|i〉} such that there is one state |ψ〉 = |i = 1〉

that is populated, i.e., p1 = 1, pi = 0 for i 6= 1. The first term is zero since we have only one state with

constant probability, while in the second sum, the only term that survives is the one where i = 1 and

j 6= 1 for which pj = 0. We then have

gρ =
∑
j 6=1

|〈ψ|dj〉|2 =
∑
j 6=1

〈ψ|dj〉〈dj|ψ〉, (2.114)

which through the identity 〈ψ|dj〉 = −〈dψ|j〉 gives

gρ =
∑
j 6=1

〈dψ|j〉〈j|dψ〉. (2.115)

Finally notice that
∑
i |i〉〈i| = I which implies that

∑
j 6=1 |j〉〈j| = I − |ψ〉〈ψ|. Replacing this in the

equation above

gρ = 〈dψ| (I − |ψ〉〈ψ|) |ψ〉 (2.116)

we arrive at the Fubini-Study metric.

Now that we have gone through a comprehensive introduction of the main concepts, we are ready to

explore the new ideas we produced during this thesis.
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Chapter 3

Interferometric geometry from

symmetry-broken Uhlmann gauge

group and applications to topological

phase transitions

3.1 The geometry of the Sjöqvist metric

We begin by briefly recapitulating the work of Erik Sjöqvist in Ref. [29]. In this paper, Sjövist considers

a smooth path t 7→ ρ(t) of non-degenerate density operators with a fixed rank N and respective elements

of the principal bundle given by

{
√
pj(t)e

ifj(t)|nj(t)〉}Nj=1, (3.1)

that project to the density matrix through π, i.e.,

π

(√
pj(t)e

ifj(t)|nj(t)〉
)

=

N∑
j=1

√
pj(t)

√
pj(t)e

ifj(t)|nj(t)〉〈nj(t)|e−ifj(t) =

N∑
j=1

pj |nj(t)〉〈nj(t)|. (3.2)

Computing the minimum of the distance between two infinitesimally close elements of the principal bundle

yields the Sjöqvist metric for a non-degenerate density matrix

ds2 =
1

4

∑
k

dp2
k

pk
+
∑
k

pk〈dnk| (1− |nk〉〈nk|) |dnk〉. (3.3)

This metric has a special property, not featured in the Bures case. From Eq. (3.3) we see that the Sjöqvist

metric can be separated into the classical Fisher-Rao metric of Eq. (2.5) and a quantum contribution.

This quantum part paints quite the intuitive picture different from the Bures metric case: it is itself

segmented into Fubini-Study metrics for each state |nk〉 of the non-degenerate density matrix ρ, such
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that the mixed system contribution is really the sum of the metrics of pure quantum states weighed by

their respective probabilities pk.

The aim of this thesis is to generalize this result to accomodate degenerate density matrices into the

theory.

3.2 Natural generalisations to degenerate cases

Consider a quantum system with the corresponding n-dimensional Hilbert space H. Its general mixed

state (density matrix) ρ can be, using the spectral decomposition, written as

ρ =

k∑
i=0

piPi, (3.4)

where the real eigenvalues satisfy p0 = 0 and (i 6= j ⇒ pi 6= pj), while the orthogonal projectors satisfy

(i > 0 ⇒ TrPi ≡ ri > 0), and
∑k
i=1 ri = r. We call r ∈ {1, . . . , n} the rank of the state. Note that we

do not require for the kernel of ρ to be nontrivial (i.e., r0 ≡ TrP0 ≥ 0), while all other eigenspaces, Hi,

are at least one-dimensional (such that H = ⊕ki=0Hi). We call the k-tuple τ ≡ (r1, r2, . . . rk) ∈ T , with

k ∈ {1, . . . , n} and (1 ≤ r1 ≤ r2 ≤ · · · ≤ rk), the type of the state ρ, where T is the set of all possible types.

Note that as a consequence of the normalization of density matrices we have the additional constraint

k∑
i=1

ripi = 1. (3.5)

Consider the set of all density operators of type τ , denoted by Bτ . The union, over the types τ ∈ T ,

of all sets Bτ forms the set of all possible states of a given system,

B =
⋃
τ∈T

Bτ = {ρ ∈ H ⊗H∗ : ρ† = ρ and ρ ≥ 0 and Tr ρ = 1}. (3.6)

We would like to analyse the geometry of the Bτ ’s, and see whether it is possible to induce a Rie-

mannian metric on them along the lines of the metric introduced by Sjöqvist [29], for the case of type

τ = (1, 1, ..., 1), for some r = k. We will do so by introducing gauge invariant Riemannian metrics

and associated Ehresmann connections in suitably chosen principal bundles Pτ with corresponding base

spaces Bτ . Observe that every state ρ is completely specified in terms of its “classical part”, the vector of

probabilities
√
p = (

√
p1,
√
p2, . . . ,

√
pk) satisfying the normalization constraint (3.5), and its “quantum

part”, the mutually orthogonal projectors P1, P2, . . . , Pk (note that P0 is then determined unambiguously,

P0 = I −
∑k
i=1 Pi), which we compactly denote by P = (P1, P2, . . . , Pk). We will explore a particular

gauge degree of freedom in describing the quantum part in our construction. Namely, each eigenspace

projector Pi is uniquely specified by an orthonormal basis βi = {|ei,j〉 : j = 1, . . . ri}. However, the basis

βi itself is not uniquely determined by Pi. Indeed, every basis Uβi = {U |ei,j〉 : j = 1, ..., ri} with U a

unitary that acts non-trivially only on the image of Pi, the subspace Hi, defines the same projector Pi.

We then define (the total space of) a principal bundle Pτ as the set of all k-tuples of pairs pτ =
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(
(pi, βi)

)k
i=1

, such that (
√
p,P) give rise to well-defined type τ density operators (observe that pi 6= pj

for all i 6= j). This space comes equipped with an obvious projection to the base space Bτ that is given

by

πτ (pτ ) ≡
k∑
i=1

piPi = ρ, (3.7)

with the fibers being isomorphic to the product of the corresponding unitary groups in the type τ ,

Gτ ≡
k∏
i=1

U(ri). (3.8)

The group Gτ acts on the right in the obvious way, for Ui ∈ U(ri), we write Ui = [(Ui)
j′

j ]1≤j,j′≤ri ∈ U(ri)

and then βi · Ui is given by

|ei,j〉 7→
ri∑
j′=1

|ei,j′〉(Ui)j
′

j , j = 1, ..., ri. (3.9)

By introducing generalized amplitudes wi ∈ Cn×ri as matrices whose columns are vectors |ei,j〉 ∈ Cn,

j = 1, ..., ri, i.e., wi ≡
(
|ei,1〉 |ei,2〉 . . . |ei,ri〉

)
, i = 1, ..., k, we can see Pτ as

Pτ ={
(
(pi, wi)

)k
i=1

:

k∑
i=1

pi wiw
†
i ∈ Bτ and w†iwi = Iri , for all i = 1, ..., k, and pi 6= pj , for all i 6= j},

(3.10)

and the right action of the gauge group is given by wi 7→ wi ·Ui, with Ui ∈ U(ri). With this notation, we

finally introduce a suitable “Hermitian form” (note that it is not a scalar product, as Pτ is not a linear

space), that will define Horizontal subspaces, by the formula

〈pτ , p′τ 〉τ ≡
k∑
i=1

√
pip′i Tr(w†iw

′
i)

=

k∑
i=1

Tr[(
√
piw
†
i )(
√
p′iw
′
i)]. (3.11)

Observe that it is clear that this pairing arises from the restriction of the usual Hermitian inner product

in
⊕k

i=1 Cn×ri ∼= Cn×r.

Additionally, this allows for a convenient comparison with the Uhlmann principal bundle

PUhl ={w ∈ Cn×r : π(w) ≡ ww† = ρ ∈ B, with rank(ρ) = r}, (3.12)

where the typical fibre is U(r) ⊂ Cr×r, whose elements act from the right (w 7→ w ·U), and the Hermitian

form, induced by the Hilbert-Schmidt scalar product on the space of linear operators from Cr×r, is

〈w,w′〉 = Tr(w†w′). (3.13)
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Note that the base space for the Uhlmann bundle is the set of density matrices with rank r, which is the

union of all Bτ sharing the same rank. Observe that for one such τ , Pτ can be identified as a subset of

PUhl. This follows from the map

Pτ 3 ((pi, wi))
k
i=1 7→ (

√
p1w1, ....,

√
pkwk) ∈

k⊕
i=1

Cn×ri , (3.14)

being an embedding of Pτ . Moreover, once we identify
⊕k

i=1 Cn×ri ∼= Cn×r, the image sits precisely in

PUhl. In other words Pτ ⊂ PUhl and also πτ equals the restriction of the projection of the Uhlmann bundle

to Pτ (pi 6= pj , for all i 6= j, guarantees this), the image being precisely Bτ . We remark that the gauge

group of the Uhlmann bundle is far larger than the one for the principal bundle Pτ → Bτ . By passing to

a preferred type, we performed a symmetry breaking operation from U(r) to Gτ =
∏k
i=1 U(ri) ⊂ U(r).

This is another way to see why interferometric-like quantities, like the interferometric Loschmidt echo,

in certain applications develop non-analyticities, while the ones based on the fidelity do not (see for

example [35] and the references therein): the former have smaller space to “go through”, while the latter

can, following the “broader” Uhlmann connection, instead of the interferometric ones, avoid possible

sources of non-analyticities.

3.3 Distance measures and Riemannian metrics

Consider now two points, pτ = ((pi, wi))
k
i=1 and qτ = ((qi, vi))

k
i=1 ∈ Pτ . By making use of Eq. (3.11) one

can define a distance between elements pτ and qτ in the total space of the principal bundle given by

d2
τ (pτ , qτ ) = 2

(
1− Re (〈pτ , qτ 〉τ )

)
= 2

(
1−

k∑
i=1

√
piqi Re

(
Tr(w†i vi)

))
. (3.15)

The fact that dτ is a distance follows from the fact that it is the restriction of the usual distance in

⊕ki=1Cn×ri , where we see Pτ as a subset of this space through the map of Eq. (3.14). One can use this

distance to define a distance on Bτ , through the formula:

d2
I(ρ, σ) = inf{d2

τ (pτ , qτ ) : π(pτ ) = ρ and π(qτ ) = σ, for pτ , qτ ∈ Pτ}. (3.16)

The associated infinitesimal counterparts of the distances defined above are Riemannian metrics on Pτ

and Bτ , respectively. The Riemannian metric on Pτ , which is gauge invariant, allows for the definition

of what is called an Ehresmann connection over Pτ and this, in turn, defines a metric downstairs over

the base space Bτ .

Another way to see that d2
τ (pτ , qτ ) is indeed a metric is through what we call “generalised purifica-

tions”. Let us introduce “ancilla” amplitudes wi ∈ Ck×1, with i = 1, 2, . . . k, such that wiw
†
i = Pi ∈ Cn×n

are fixed orthogonal projectors of rank 1 (i.,e., Pi do not depend on the choice of the state), satisfying
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PiPj = δijIk and
∑k
i=1 Pi = Ik. Define a generalised purification of state ρ, associated to the corre-

sponding pτ , as

|pτ 〉 =

k∑
i=1

√
piwi ⊗ wi. (3.17)

Then, we have that the scalar product between |pτ 〉 and |qτ 〉, induced by the Hilbert-Schmidt scalar

product in the corresponding factor spaces, is

〈pτ , qτ 〉 =

k∑
i,j=1

√
piqj〈wi, vj〉〈wi,wj〉

=

k∑
i=1

√
piqi〈wi, vi〉

=

k∑
i=1

√
piqi Tr(w†i vi)

= 〈pτ , qτ 〉τ ,

(3.18)

where the second equality is because wi and wj are orthogonal for i 6= j. Thus, the distance dτ (pτ , qτ ) is

nothing but the standard Hilbert-Schmidt distance between the generalised purifications |pτ 〉 and |qτ 〉.

As in Eq. (3.10), if we take the wi’s as (row) vectors |wi〉 =

[
|ei,1〉 |ei,2〉 . . . |ei,ri〉

]
whose entries

are (column) vectors |ei,j〉, one can by analogy generalise the quantum part of the metric for the non-

degenerate case, the so-called “interferometric metric”, which has ri = 1, i = 1, ..., k,

gQ
I =

k∑
i=1

pi〈dwi|(In − wiw†i )|dwi〉

=

k∑
i=1

pi〈dei,1|(In − |ei,1〉〈ei,1|)|dei,1〉, (3.19)

to the degenerate case, in which U(1) degree of freedom of each wi = |ei〉 is replaced by the U(ri) degree

of freedom of each wi =

[
|ei,1〉 |ei,2〉 . . . |ei1,ri〉

]
,

gQ
I =

k∑
i=1

pi〈dwi|
(
In − wiw†i

)
|dwi〉

=

k∑
i=1

pi〈dwi|
[
In −

( ri∑
j=1

|ei,j〉〈ei,j |
)]
|dei〉

=

k∑
i=1

pi〈dwi|
(
In − Pi

)
|dwi〉,

(3.20)

with |dwi〉 =

[
|dei,1〉 |dei,2〉 . . . |dei,ri〉

]
, i = 1, ..., k. Indeed, in the next chapter we prove that this

intuitive generalization is the correct result describing the infinitesimal counterpart of the distance in

Eq. (3.16).
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3.4 Induced Riemannian metrics

Let us look again at the principal bundle Pτ , for a fixed type τ = (r1, ..., rk). In this case, a point in Pτ

is given by pτ =
(
(pi, wi)

)k
i=1

and can be equivalently represented as pτ =
(
(pi)

k
i=1, (wi)

k
i=1

)
. With this

identification, we can separate pτ into its “classical” and “quantum” parts:

(i) A classical probability amplitude vector
√
p = (

√
p1, ...,

√
pk), with

∑k
i=1 pi = 1 and, for each

i ∈ {1, ..., k}, pi > 0. Note that the set of all classical probability amplitudes is in fact contained

in the k − 1-dimensional sphere and the associated classical Fisher metric is, up to a factor of 1/4,

the usual round metric in the sphere Sk−1.

(ii) A quantum part which is a k-tuple, i.e., a sequence of matrices (w1, ..., wk), each of them identifying

a ri-unitary frame in Cn, i.e., wi ∈ Vri(Cn), where

Vri(Cn) = {wi ∈ Cn×ri : w†iwi = Ik} ⊂ Cn×ri ,

i = 1, ..., k, (3.21)

commonly known as the Stiefel manifold of ri-unitary frames in Cn.

Our aim is to compute the Riemannian metric in the base space Bτ for a given type τ = (r1, ..., rk).

For this purpose, we will first look at the tangent space at a point pτ , which is isomorphic to the direct

sum

TpτPτ
∼= T√pS

k−1 ⊕

(
k⊕
i=1

TwiVri(Cn)

)
. (3.22)

This isomorphism follows from the factorization into classical and quantum parts: for every curve in the

total space Pτ , there will be a tangent vector for each of the curves induced by projection in the different

factors of Pτ .

The classical components have no gauge ambiguity. The quantum components, however, have a

U(ri) gauge degree of freedom for each matrix wi, i = 1, ..., k. This gauge ambiguity corresponds to

variations along the fibres, as we will mention later on. From a physical standpoint, the exact point

in the fibre has no significance, since the matrices wi will be projected onto the base space, where the

projectors Pi are gauge invariant: namely, wi and wi · U , for U ∈ U(ri), give rise to the same projector

Pi = wiw
†
i = wiUU

†w†i , for all i = 1, ..., k. Hence, we need to define the horizontal subspaces of the

tangent spaces to Pτ , in order to uniquely represent the tangent spaces to the base space upstairs, i.e.,

in the tangent spaces to Pτ . Mathematically, this notion is referred to as an Ehresmann connection, see,

for example, Sec. 6.3 of Ref. [36].

Before we proceed, let us focus on one of the Stiefel manifolds, say for a fixed i ∈ {1, ..., k}, Vri(Cn).

For convenience, we define the projection onto the space of projectors of rank ri, identified with the

Grassmannian of ri-planes in Cn, i.e., the manifold of linear subspaces of dimension ri in Cn,

πi : Vri(Cn)→ Grri(Cn)

wi 7→ Pi = wiw
†
i .

(3.23)
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Consider a curve in the Stiefel manifold

γwi : [0, 1] 3 t 7→ γwi(t) ∈ Vri(Cn) (3.24)

subject to the initial conditions γwi(0) = wi and
dγwi
dt

∣∣∣
t=0

= ẇi ≡ ṽ. From the definition of Vri(Cn), the

tangent spaces are

TwiVri(Cn) = {ẇi ∈ Cn×ri : ẇ†iwi + w†i ẇi = 0}. (3.25)

The vertical space at wi ∈ Vri(Cn) is the set of tangent vectors in TwiVri(Cn), such that its infinitesimal

projection onto the base space is zero, that is

d

dt
(πi (γwi(t)))

∣∣∣
t=0

= 0

⇔ d

dt

(
γwi(t)γ

†
wi(t)

) ∣∣∣
t=0

= ẇiw
†
i + wiẇ

†
i = 0. (3.26)

The vertical space is then given by

Vwi = {ẇi ∈ TwiVri(Cn) : ẇiw
†
i + wiẇ

†
i = 0}. (3.27)

The projection πi has derivative, dπi = widw
†
i +dwiw

†
i , and the vertical tangent vectors are in the kernel

of this linear map. Given a fiber of πi and a choice of a wi in this fibre, then we can diffeomorphically

identify the fiber with U(ri) by right multiplication. Suppose we take X ∈ u(ri), identified as an anti-

Hermitian matrix in the usual way, and choose a curve t 7→ wi(t) = wi · etX . Clearly, the projection onto

the base is invariant under this transformation

wi(t)w
†
i (t) = wi e

tX
(
wi e

tX
)†

= wi e
tXe−tX w†i = wiw

†
i . (3.28)

The tangent vector to the fiber can now be written as
dwi
dt

∣∣∣
t=0

= ẇi = wi ·X, which satisfies the condition

for vertical matrices

ẇiw
†
i + wiẇ

†
i = wiXw

†
i + wiX

†wi = wiXw
†
i − wiXw

†
i = 0. (3.29)

Hence, by dimensionality, our vertical space can also be seen as

Vwi = {ẇi ∈ TwiVri(Cn) : ẇi = wi ·X,where X† = −X}. (3.30)

We are now in condition to define the horizontal subspaces, which will simply be the collection of tangent

vectors ẇi that are orthogonal to Vwi

Hwi = (Vwi)
⊥ (3.31)

= {ẇ ∈ TwiVri(Cn) : 〈ẇi, ẇ′i〉 = 0,where ẇ′i ∈ Vwi}.
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Note that the operation 〈·, ·〉 is not the Hermitian form defined in Eq. (3.11). It is instead the standard

inner product in the space of complex matrices seen as a real vector space 〈A,B〉 ≡ Re Tr(A†B). The

condition in (3.31) is then given by

Re Tr
(
ẇ†iwi ·X

)
= 0, for every X ∈ u(ri)

=⇒ ẇ†iwi − w
†
i ẇi = 0, (3.32)

where the implication stems from the fact that X is anti-Hermitian, so that ẇ†w can only be Hermitian. 1

We can go further by making use of the condition in Eq. (3.25), yielding ẇ†iwi = −w†i ẇi, and substituting

this in Eq. (3.32) we get

ẇ†iwi − w
†
i ẇi = −2w†i ẇi = 0 =⇒ w†i ẇi = 0. (3.33)

Finally, now that we have a notion of horizontal subspaces of the tangent spaces to Vri(Cn), we have

unique isomorphisms of Hwi
∼= TPiGrri(Cn) provided by the projection πi. This means that for each

v ∈ TPiGrri(Cn) there exists a unique ṽH ∈ Hwi ⊂ TwiVri(Cn), such that its projection is v, i.e., πi(ṽ
H) =

ṽHw†i+wiṽ
H† = v, and the converse is also true. This lift is called the “horizontal lift” for obvious reasons.

Any other lift of v to TwiVri(Cn), i.e., any tangent vector projecting to v, would differ from the horizontal

by an element of the kernel of the derivative of the projection, i.e., a vertical vector. As a consequence of

this isomorphism, the Riemannian metric in the base space is gi(v1, v2) := 〈ṽH1 , ṽH2 〉 = Re Tr
[(
ṽH1
)†
ṽH2

]
,

where ṽHi , are horizontal lifts of tangent vectors v1, v2 ∈ TPiGrri(Cn). Moreover, the expression gi(v1, v2)

does not depend on the point of the fiber over Pi, because the horizontal subspaces are U(ri)-equivariant

and the metric is U(ri)-invariant. Indeed, if ṽH ∈ Hwi is a horizontal lift of v ∈ TPiGrri(Cn), then ṽH ·U is

a horizontal lift belonging to Hwi·U , for every U ∈ U(ri): w
†
i ṽ
H = 0⇒ (wi ·U)†(ṽH ·U) = U†w†i ṽ

HU = 0.

Note that, in ṽH ·U , right multiplication should be understood as the tangent map of right multiplication

at wi. Finally, Re Tr
[(
ṽH1
)†
ṽH2

]
= Re Tr

[(
ṽH1 · U

)†
ṽH2 · U

]
, by the cyclic property of the trace, which

shows that this expression defines a metric in the base space.

Now every tangent vector ṽ ∈ TwiVri(Cn) is uniquely projected to a horizontal vector ṽH ∈ Hwi ,

which is mapped to a base space tangent vector v ∈ TPiGrri(Cn). Given the decomposition TwiVri(Cn) =

Vwi ⊕ Hwi , we can always find unique projection operators onto the vertical and horizontal subspaces,

that perform the splitting

ṽ = ṽV + ṽH , where ṽV ∈ Vwi , ṽH ∈ Hwi . (3.34)

1To see this, observe that a complex matrix can be split into its Hermitian and anti-Hermitian components: Z =
ZH + ZAH , where ZH = 1

2
(Z + Z†) and ZAH = 1

2
(Z − Z†). This real-linear decomposition divides the full ma-

trix into two orthogonal components. Indeed, Re Tr
[(
ZAH
1

)†
ZH
2

]
=

1

2

{
Tr

[(
ZAH
1

)†
ZH
2

]
+ Tr

[(
ZH
2

)†
ZAH
1

]}
=

1

2

{
−Tr

[(
ZAH
1

)
ZH
2

]
+ Tr

[(
ZH
2

)
ZAH
1

]}
= 0. Moreover, since the real vector space of Hermitian matrices and anti-

Hermitian matrices both have dimension k×k, we conclude that if a complex matrix is (real-)orthogonal to an anti-Hermitian
matrix, then it must be Hermitian.
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We have the identity

g(v1, v2) = 〈ṽH1 , ṽH2 〉. (3.35)

Additionally, due to the splitting of subspaces, we can write

ṽH = ṽ − ṽV , (3.36)

In the following, we determine the form of the projection onto the vertical subspaces, in order to

obtain a more compact form for the metric on the base space.

We claim that the vertical projection of a general tangent vector ṽ is given by

ṽV = Piṽ = wiw
†
i ṽ. (3.37)

Let us see why this is true. For this tangent vector to be vertical it must comply with Eq (3.27), i.e.,

(Piṽ)w†i + wi (Piṽ)
†

= wiw
†
i ṽw

†
i + wiṽ

†wiw
†
i = 0. (3.38)

However, we know that ṽ is a tangent vector, that is, we know that ṽ†wi = −w†i ṽ. Replacing this in the

expression above we have

wiw
†
i ṽw

†
i − wiw

†
i ṽw

†
i = 0. (3.39)

Hence, we have verified that Piṽ is a vertical tangent vector and the map ṽ 7→ wiw
†
i ṽ is a projection onto

the vertical space. The horizontal projection is then given by

ṽH = ṽ − (wiw
†
i )ṽ. (3.40)

Meanwhile, the metric in Grri(Cn) is, using the horizontal projections, given by the following compact

formula

gi = Re Tr
[(
dw†i − dw

†
iwiw

†
i

)(
dwi − wiw†i dwi

)]
= Re Tr

[
dw†i dwi − dw

†
iwiw

†
i dwi − dw

†
iwiw

†
i dwi + dw†i (wiw

†
i )

2dwi

]
. (3.41)

We know that wi(w
†
iwi)w

†
i = wiw

†
i , since w†iwi = Ik, so the last two terms cancel each other, giving

gi = Re Tr
[
dw†i dwi − dw

†
iwiw

†
i dwi

]
= Re Tr

[
dw†i (1− wiw

†
i )dwi

]
. (3.42)

Now, this expression is written in terms of the elements defined in the principal bundle so we want

to write it in terms of the elements in the base space — the projectors Pi. For this purpose, notice that

wi = (wiw
†
i )wi = Piwi which, by derivation gives dwi = dPiwi + Pidwi. The same can be done for the
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hermitian w†i = w†i (wiw
†
i ) = w†iPi that gives us dw†i = dw†iPi +w†i dPi. Replacing these in Eq. (3.42), we

get

gi = Re Tr
[
dw†i (1− wiw

†
i )dwi

]
= Re Tr

[(
dw†iPi + w†i dPi

)
(1− Pi) (dPiwi + Pidwi)

]
= Re Tr

[ (
dw†iPi + w†i dPi − dw

†
iPi − w

†
i dPiPi

)
(dPiwi + Pidwi)

]
= Re Tr

(
dw†iPidPiwi + w†i dPidPiwi − dw

†
iPidPiwi − w

†
i dPiPidPiwi

+ dw†iPidwi + w†i dPiPidwi − dw
†
iPidwi − w

†
i dPiPidwi

)
= Re Tr

(
w†i dPidPiwi − w

†
i dPiPidPiwi

)
= Re Tr

(
PidPidPi

)
− Re Tr

(
PidPiPidPi

)
. (3.43)

Moreover, since P 2
i = Pi, we have that dPi = d(P 2

i ) = PidPi + dPiPi. Multiplying this expression by Pi

on both sides we get PidPiPi = 2PidPiPi and we can conclude that PidPiPi = 0. The last term on the

last expression is then zero and we see that the metric is given by

gi = Re Tr (PidPidPi) = Re Tr (PidPidPiPi)

= Tr (PidPidPiPi) . (3.44)

Now we wish to determine the metric on the total space of the principal bundle, i.e., the metric that

encompasses both the classical and quantum parts. For this purpose, consider a curve in the principal

bundle space given by t 7→ pτ (t) =
(√

p(t),w(t)
)

and compute the distance between two infinitesimally

close points t and t+ δt. For the first case, we consider a static w(t) = w and compute the distance

d2
τ

(
pτ (t), pτ (t+ δt)

)
= 2
(

1−
k∑
i=1

√
pi(t)pi(t+ δt) Re Tr(w†iwi)

)
.

We have Tr(w†iwi) = TrPi = ri, hence

d2
τ

(
pτ (t), pτ (t+ δt)

)
= 2

(
1−

k∑
i=1

ri
√
pi(t)pi(t+ δt)

)
. (3.45)

Let us look more closely at the expression
√
pi(t)pi(t+ δt). We can Taylor expand Pi(t + δt) to second

order in δt to obtain √
pi(t)pi(t+ δt) =

√
pi(t)

(
pi(t) + ṗiδt+

1

2
p̈iδt2

)
= pi(t)

√
1 +

ṗi
pi
δt+

1

2

p̈i
pi
δt2

(3.46)

We can then approximate the quantity inside the square root by
√

1 + x ≈ 1 + 1
2x−

1
8x

2, which, ignoring
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higher order terms, yields

√
pi(t)pi(t+ δt) ≈ pi

[
1 +

1

2

(
ṗi
pi
δt+

1

2

p̈i
pi
δt2
)
− 1

8

(
ṗi
pi
δt+

1

2

p̈i
pi
δt2
)2 ]

= pi

[
1 +

1

2

ṗi
pi
δt+

1

2

p̈i
pi
δt2 − 1

8

(
ṗi
pi

)2

δt2

]

= pi +
1

2
ṗiδt+

1

2
p̈iδt

2 − 1

8

ṗ2
i

pi
δt2. (3.47)

Replacing this in Eq. (3.45), we get

d2
τ (pτ (t), pτ (t+ δt)) = 2

[
1−

k∑
i=1

ri

(
pi +

1

2
ṗiδt+

1

2
p̈iδt

2 − 1

8

ṗ2
i

pi
δt2
)]

. (3.48)

Using the condition
∑k
i=1 ripi = 1 we can infer that

∑k
i=1 riṗi = 0 and

∑k
i=1 rip̈i = 0. Applying these

results in the expression above, we finally arrive at the Fisher-Rao metric

(
dsCl
P

)2
=

1

4

k∑
i=1

ri
ṗ2
i

pi
δt2 =

1

4

k∑
i=1

ri
dp2
i

pi
(3.49)

in terms of the probability distribution “coordinates”
√
p.

Next, consider the case of a static classical part p(t) = p. The distance is then

d2
τ (pτ (t), pτ (t+ δt)) = 2

(
1−

k∑
i=1

pi Re Tr(wi(t)
†wi(t+ δt))

)
. (3.50)

Expanding wi(t+ δt) to second order wi(t+ δt) ≈ wi(t) + ẇi(t)δt+ 1
2 ẅi(t)δt

2 we have

Re Tr(wi(t)
†wi(t+ δt)) = Re Tr(w†iwi) + Re Tr(w†i ẇi)δt+

1

2
Re Tr(w†i ẅi)δt

2 + ri

+
1

2
Tr(w†i ẇi + ẇ†iwi)δt+

1

4
Tr(w†i ẅi + ẅ†iwi)δt

2. (3.51)

From condition (3.25) for tangent vectors, the first order term is zero. From this same condition one

can infer that ẅ†iwi + w†i ẅi = −2ẇ†i ẇi and Eq. (3.51) becomes

Re Tr
(
wi(t)

†wi(t+ δt)
)

= ri −
1

2
Tr
(
ẇ†i ẇi

)
δt2. (3.52)

Using this expression in Eq. (3.50) we get

d2
τ

(
pτ (t), pτ (t+ δt)

)
= 2
(

1−
k∑
i=1

ripi +
1

2

k∑
i=1

pi Tr(ẇ†i ẇi)δt
2
)
.

Since
∑k
i=1 ripi = 1, we have

(
dsQ
Pτ

)2

=

k∑
i=1

pi Tr(ẇ†i ẇi)δt
2 =

k∑
i=1

pi Tr(dw†i dwi). (3.53)
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From the derivation of Eq. (3.44), it becomes clear that, restricting to the Horizontal subspaces, one

obtains the induced quantum part of the metric in the Base space

(
dsQ
Bτ

)2

=

k∑
i=1

pi Tr (PidPidPi) . (3.54)

So, the quantum part of the metric in the base space is the sum for i ∈ {1, ..., k} of the metric on the

Grassmannian given by Eq. (3.44) weighed by the relative proportions of the distribution pi.

Finally, we are left with the task of taking a general variation, where both
√
p(t) and w(t) are

non-constant, to make sure that we do not get cross terms. We have,

d2
τ

(
pτ (t), pτ (t+ δt)

)
= 2
(

1−
k∑
i=1

√
pi(t)pi(t+ δt) Re Tr(wi(t)

†wi(t+ δt))
)
.

We can Taylor expand, as before, to obtain

d2
τ

(
pτ (t), pτ (t+ δt)

)
= 2
[
1−

k∑
i=1

(
pi +

1

2
ṗiδt+

1

2
p̈iδt

2 − 1

8

ṗ2
i

pi
δt2
(
ri −

1

2
Tr(ẇ†i ẇi)δt

2
))]

.

Collecting the terms up to second order we get

d2
τ

(
pτ (t), pτ (t+ δt)

)
= 2
[
1−

k∑
i=1

(
pi Tr(ẇ†i ẇi)δt

2 +
1

2
riṗiδt+

1

2
rip̈iδt

2 − 1

8
ri
ṗ2
i

pi
δt2
)]
, (3.55)

which, using the same arguments as before, reduces to

ds2
Pτ =

k∑
i=1

(
1

4
ri
ṗ2
i

pi
δt2 + pi Tr(ẇ†i ẇi)δt

2

)

=

k∑
i=1

(
1

4
ri
dp2
i

pi
+ pi Tr(dw†i dwi)

)
. (3.56)

Hence, the metric in the principal bundle is just the sum of the respective classical and quantum metrics.

We want to arrive at the metric for the base space: the classical probability distributions
√
pi have no

gauge freedom so they have no vertical or horizontal components and their projection is trivial; meanwhile,

the horizontal projection in the quantum part described by the amplitudes wi proceeds as in the Stiefel

manifold case, for each i = 1, ..., k, so that our final interferometric metric gI is

gI = ds2
Bτ (3.57)

=
(
dsCl
Bτ

)2
+
(
dsQ
Bτ

)2

=
1

4

k∑
i=1

ri
dp2
i

pi
+

k∑
i=1

pi Tr (PidPidPi) .
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3.5 Interferometric measurement interpretation

Consider the following experiment depicted in FIG 3.1. A particle is entering the Mach-Zehnder interfer-

ometer from the input arm 0, given by the state |0〉, with its internal degree of freedom in a mixed state

ρ. Both the input and the output beam-splitters are balanced, described by the same unitary matrix,

say, the one given by |0〉 → (|0〉 + i|1〉)/
√

2. In arm 0 a unitary V =
∑k
i=0 PiV Pi is applied to the

internal degree of freedom, i.e., V is the most general unitary that commutes with ρ. In arm 1 a unitary

U = U(δt) ∈ U(n) is applied for a time period δt, changing the state of the internal degree of freedom

to ρ′ = UρU†. The particle is detected at detectors D0 and D1, with the corresponding probabilities pr0

and pr1. In our case, we have that pr1 ≤ pr0, and for U = V we have full constructive interference at the

output arm 0, giving pr0 = 1.

Figure 3.1: Interferometric measurement to probe the generalised metric gI .

The input state is |0〉〈0|⊗ρ. The first beam splitterBS1⊗I acts on this state giving 1
2 ((|0〉+ i|1〉) (〈0| − i〈1|)⊗ ρ.

The controlled unitary is |0〉〈0| ⊗ V + |1〉〈1| ⊗ U , which, when acting on the last state gives

1

2

(
|0〉〈0| ⊗ V ρV † − i|0〉〈1| ⊗ V ρU† + i|1〉〈0| ⊗ UρV † + |1〉〈1| ⊗ UρU†

)
. (3.58)

Upon passing through a second beam splitter and measuring the |1〉 state yields

1

4
|1〉〈1| ⊗

[
V ρV † + V ρU† + UρV † + UρU†

]
. (3.59)

Tracing out this quantity gives

1

4

[
TrUρU† + TrV ρV † + 2 Re TrUρV †

]
. (3.60)

We know that TrUρU† = TrV ρV † = 1, hence

1

2

[
1 + Re TrUρV †

]
. (3.61)
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Recall that V =
∑k
i=0 PiV Pi, and that, since we can write in terms of a choice of amplitudes wi,

i = 1, ..., k,

Pi = wiw
†
i , i = 1, ..., k, (3.62)

then,

V = P0V P0 +

k∑
i=1

wiViw
†
i , (3.63)

where Vi = w†iV wi is an ri × ri unitary matrix, for i = 1, ..., k. Observe that

Tr
[
V †Uρ

]
=

k∑
i,j=0

pi Tr
[
PjV

†PjUPi
]

=

k∑
i=0

pi Tr
[
V †PiUPi

]
, (3.64)

where in the last step we used the cyclic property of the trace and PiPj = δijPi, i, j = 0, ..., k. Finally,

introducing the expression for V of Eq. (3.63) we can write, using w†iwi = Iri , i = 1, .., ri, and p0 = 0,

k∑
i=1

pi Tr
[
V †PiUPi

]
=

k∑
i=1

pi Tr
[
(V †i w

†
iU)wi

]
=

k∑
i=1

pi Tr
[
(U†wiVi)

†wi
]

(3.65)

observe that if we write

pτ = ((pi, wi))
k
i=1 and qτ = ((pi, U

†wiVi))
k
i=1, (3.66)

then,

k∑
i=1

pi Tr
[
V †i w

†
iUwi

]
= 〈qτ , pτ 〉τ , (3.67)

where 〈qτ , pτ 〉 is the Hermitian form defined in Eq. (3.11). Hence,

pr1 =
1

2

(
1 + Re TrUρV †

)
(3.68)

= 1− 1

2

(
1−

k∑
i=1

pi Re Tr
[
PiV

†PiUPi
])

= 1− 1

2

(
1−

k∑
i=1

pi Re〈qτ , pτ 〉τ

)

= 1− 1

4
d2
τ (qτ , pτ ),
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where dτ is the distance over the total space of the principal bundle Pτ → Bτ . Maximizing over the the

gauge degree of freedom given by the collection of unitary ri × ri matrices, Vi, i = 1, ..., k (note that

P0V P0 is irrelevant), one gets the distance dI(ρ, U
†ρU). In general, we have that

prmax
1 = max

{Vi}
(pr1) = 1− 1

4
d2
I(ρ, ρ+ δρ), (3.69)

where d2
I(ρ, ρ+δρ) ≈ gI(ρ̇, ρ̇)δt2 is the “infinitesimal” distance between ρ and ρ′ = ρ+δρ, where δρ = ρ̇δt.

Note that in the case of the Hadamard matrix, given by |`〉 → (|0〉 + (−1)`|1〉)/
√

2, with ` ∈ {0, 1}, the

roles of arms 0 and 1 are exchanged.

3.6 Interferometric metric in the context of band insulators

Suppose we have a family of band insulators with two bands described by the Hamiltonian

H(M) =

∫
BZd

ddk

(2π)d
ψ†kd

µ(k;M)σµψk, (3.70)

parametrized by M (M can be some intrinsic parameter, such as the hopping), where σµ, µ = 1, 2, 3, are

the Pauli matrices, k is the crystalline momentum in a d-dimensional Brillouin zone BZd, with d = 1, 2, 3,

and Ψ†k is an array of 2 creation operators for fermions at momentum k. We assume that the system is

gapped for generic values of M , meaning that the vector d = (d1, d2, d3) is non-vanishing as a function

of k. For a certain value of Mc, we assume that the vector has isolated zeroes. This assumption is

generically correct for the d = 1, 2 momenta coordinates plus the mass M , as one needs to tune three

parameters for an Hermitian matrix to have two eigenvalues cross.

The pullback of the interferometric metric that we have described in Sec. 3.3,

g =
1

4

∑
i

ri
dp2
i

pi
+
∑
i

pi Tr (PidPidPi) , (3.71)

with ρ =
∑
i piPi and TrPi = ri, by the map induced by the Gibbs state

M 7→ ρ(M) = Z−1 exp(−βH(M)), (3.72)

with H(M) given by Eq. (3.70) and where Z is the partition function. The first thing to notice is that if

ρ = ρ1 ⊗ ρ2, with ρα =
∑
iα
piαPiα , α = 1, 2 we have the decomposition

ρ =
∑
I

pIPI =
∑
i1,i2

pi1pi2Pi1 ⊗ Pi2 , (3.73)

where I = (i1, i2) is a multi-index describing the joint system labels. Note that,

∑
i1,i2

rI
dp2
I

pI
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=
∑
i1,i2

ri1ri2
pi1pi2

(
p2
i2dpi1dpi1 + 2pi1pi2dpi1dpi2 + p2

i1dp
2
i2

)
=
∑
i1

ri1
dp2
i1

pi1
+
∑
i2

ri2
dp2
i2

pi2
, (3.74)

and

∑
I

pI Tr (PIdPIdPI)

=
∑
i1,i2

pi1 Tr [Pi1 ⊗ Pi2d (Pi1 ⊗ Pi2) d (Pi1 ⊗ Pi2)]

=
∑
i1

pi1 Tr (Pi1dPi1dPi1) +
∑
i2

pi2 Tr (Pi2dPi2dPi2) , (3.75)

where we used PdPP = 0 for any projector P . As a consequence, the interferometric metric, much like

the Bures metric, converts tensor product states into orthogonal sum metrics.

Because the Hamiltonian is diagonal in momentum space, the density matrix factors over the momenta

– it follows that the metric becomes an integral over the momentum space of individual contributions of

each momentum sector. The pullback of the classical term, which also appears in the Bures metric,

1

4

∑
i

ri
dp2
i

pi
(3.76)

was computed in the Appendix of Ref. [24] and it yields

β2

4

∫
BZd

ddk

(2π)d
1

cosh(βE(k;M)) + 1

(
∂E(k;M)

∂M

)2

dM2, (3.77)

where E(k;M) = |d(k;M)| is the magnitude of d(k,M). With regards to the second term, one can use

the mathematical fact that the embedding of the space of k-dimensional subspaces of CN , Grk(CN ) on

the space of 1-dimensional subspaces of the Fock space PΛ∗CN , given by

span {|1〉, ..., |k〉} 7→ span
{
c†1...c

†
k|0〉

}
, (3.78)

is isometric. In the previous equation c†i stand for creation operators for |i〉, i.e., at the single particle

level, c†i |0〉 = |i〉, i = 1, ..., k. The embedding being isometric means, in this context, that if we write the

rank k single-particle projector

P̃ =

k∑
i=1

|i〉〈i| (3.79)

and the rank 1 many-body projector

P = c†1...c
†
k|0〉〈0|ck...c1, (3.80)
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we have

Tr
(
P̃ dP̃ dP̃

)
= Tr (PdPdP ) . (3.81)

In particular, this means that in the gapped case for each k ∈ BZd we will have four classes of orthogonal

eigenstates,

|0〉, c†1,k|0〉, c
†
2,k|0〉, c

†
1,kc

†
2,k|0〉, (3.82)

where c†i,k, i = 1, 2, are the Bogoliubov quasiparticle creation operators of H with energies E(k;M) and

−E(k;M), respectively. The energies of the classes of eigenstates are, respectively, 0, E(k;M), −E(k;M)

and 0. The associated single-particle 2 × 2 projectors are, respectively, the 0 projector, P1(k;M) =

c†1,k|0〉〈0|c1,k, P2(k;M) = c†2,k|0〉〈0|c2,k and the 2 × 2 identity matrix I2. Only P1(k) and P2(k) are

non-trivial and moreover, if we introduce the unit vector n = d/|d|, we can write,

P1(k;M) =
1

2
(I2 + nµ(k;M)σµ) and

P2(k;M) = I2 − P1(k;M). (3.83)

As a consequence, using the identity Tr (PdPdP ) = (1/2) Tr (dPdP ) and using the fact that the Pauli

matrices are traceless, we get,

Tr (P1dP1dP1) = Tr (P2dP2dP2)

=
1

4
δµν

∂nµ(k;M)

∂M

∂nν(k;M)

∂M
dM2. (3.84)

Finally, taking into account the partition function factor Zk = (2 + 2 cosh(βE(k;M))), we get that the

quantum contribution is

1

4

∫
BZd

ddk

(2π)d

(
cosh(βE(k;M))

1 + cosh(βE(k;M))

)
δµν

∂nµ(k;M)

∂M

∂nν(k;M)

∂M
dM2. (3.85)

Finally, we obtain,

g =
1

4

∫
BZd

ddk

(2π)d

[ 1

cosh(βE) + 1

(
β2

(
∂E

∂M

)2

+ cosh(βE)δµν
∂nµ

∂M

∂nν

∂M

)]
dM2, (3.86)

where we omitted the obvious dependence on k and M of the quantities E and nµ.

This result should be compared to the pullback of the Bures metric for d = 2, which yields (see

Ref. [24])

gBures =
1

4

∫
BZd

ddk

(2π)d

[ 1

cosh(βE) + 1
β2

(
∂E

∂M

)2

+
cosh(βE)− 1

cosh(βE)
δµν

∂nµ

∂M

∂nν

∂M

]
dM2. (3.87)

The two expressions have dramatically different behaviours, when it comes to taking the zero temperature
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limit. Naively, one would say that both yield the pullback of the Fubini-Study metric, which is the pure-

state metric,

g0 =
1

4

∫
BZd

ddk

(2π)d
δµν

∂nµ

∂M

∂nν

∂M
dM2. (3.88)

Note that for gapless points the vector n is not defined and the expression for g0 becomes (potentially)

singular. However, due to the gapless points, the integrands must be carefully analysed in the neighbour-

hoods of these points, as the singularities can be avoided in some cases. In fact, it was shown that if

the gapless points are isolated in momentum space, then an expansion near these points of the integrand

function yields a regular result [24]. Namely, because of the inequality

1

2

1

cosh(x)
<

1

cosh(x) + 1
<

1

cosh(x)
, for all x ∈ R, (3.89)

we can write,

1

cosh(βE) + 1
β2

(
∂E

∂M

)2

+
cosh(βE)− 1

cosh(βE)
δµν

∂nµ

∂M

∂nν

∂M
(3.90)

<
1

cosh(βE)

[
β2

(
∂E

∂M

)2

+ (cosh(βE)− 1)) δµν
∂nµ

∂M

∂nν

∂M

]
.

Expansion for small βE yields that up to O
(
(βE)4

)
the integrand is upper bounded by

β2

cosh(βE)
δµν

∂dµ

∂M

∂dν

∂M
, (3.91)

which is regular in the limit β → ∞. Hence, the potential singularities arising from the gapless region

are regularized by the Bures prescription. However, in the case of the interferometric metric, considering

the integrand

1

cosh(βE) + 1

(
β2

(
∂E

∂M

)2

+ cosh(βE)δµν
∂nµ

∂M

∂nν

∂M

)
, (3.92)

near E = 0 gives us

[1

2
− 1

8
(βE)2 + O

(
(βE)4

) ][
β2

(
∂E

∂M

)2

+ (1 +
1

2
β2E2)δµν

∂nµ

∂M

∂nν

∂M
+ O

(
(βE)4

) ]
. (3.93)

In this case, we cannot get rid of the singular factor

1

2
δµν

∂nµ

∂M

∂nν

∂M
, (3.94)

which appears once in the second term without the regularizing coefficient β2E2 which above allowed for

the identification of the regular quantity

β2

(
∂E

∂M

)2

+ β2E2δµν
∂nµ

∂M

∂nν

∂M
= β2δµν

∂dµ

∂M

∂dν

∂M
. (3.95)
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This implies that the limit β → ∞ yields singular behaviour for g, provided the same happens with

g0. But not the other way around, i.e., singular behaviour on the finite temperature metric does not

imply zero temperature singular behaviour. In other words, while in the case of the Bures metric the

thermodynamic and the zero temperature limits did not commute, in the interferometric case they do,

because the singular behaviour of the gapless points is recovered, as one considers a small neighbourhood

of these points and takes the zero temperature limit. In the following, we will consider the massive Dirac

model to illustrate the different behaviours of the two metrics.

3.6.1 Massive Dirac model

We consider the massive Dirac model, a band insulator in two spatial dimensions, described by Eq. (3.70),

with

d(k;M) = (sin(kx), sin(ky),M − cos(kx)− cos(ky)) , (3.96)

where k = (kx, ky) is the quasi-momentum in the two-dimensional Brillouin zone BZ2 and M is a real

parameter. The model exhibits topological phase transitions [37]. We will focus at the one occurring

at M = 0, where the Chern number goes from +1, for M → 0−, to −1, for M → 0+. The following

two figures describe the inteferometric metric (Fig. 3.2(a)) and the Bures metric (Fig. 3.2(b)) in the

thermodynamic limit.

(a) (b)

Figure 3.2: (a) Interferometric metric for the massive Dirac model — the topological phase transition is
captured for all temperatures. (b) Bures metric for the massive Dirac model — the topological phase
transition is captured only at zero temperature. The figures illustrate the different behaviour of the
metrics with temperature T and the parameter M driving the topological phase transition.

As argued above, the Bures metric is regular if one considers the thermodynamic limit and then the

zero temperature limit. The same does not hold for the interferometric metric. In fact, we can see

that the interferometric metric knows about the quantum phase transition taking place at T = 0 even

at finite temperatures. The reason is that in passing from one metric to the other the symmetry was

broken, namely U(r) →
∏k
i=1 U(ri), and, therefore, there is enhanced distinguishability. Indeed, in the

interferometric case, whenever the gap closes, we expect a phase transition, even at finite temperatures,
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because then there are states which according to a Boltzmann-Gibbs distribution become degenerate in

probability, hence the gap closing changes the type of the density matrix involved. Whether such singular

behavior of the interferometric metric is indeed observable for macroscopic many-body systems is an

open question. While the straightforward implementation of the interferometric experiment described

in Sec. 3.5 seems to be, at least technologically, infeasible, as it would require maintaining Schrödinger

cat-like macroscopic states, possible variations are argued to be able to reveal the singular behaviour of

the interferometric metric at finite temperatures (see Sec. V of Ref. [38]).
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Chapter 4

Conclusions

4.1 Conluding remarks

In this work, we have generalized Sjöqvist’s interferometric metric introduced in [29], to the degenerate

case. For this purpose, we have introduced generalized amplitudes and purifications. We have analyzed

an interpretation of the metric in terms of a suitably generalized interferometric measurement, accommo-

dating for the non-Abelian character of our gauge group, as opposed to the Abelian gauge group used in

the non degenerate case. We have applied the induced Riemannian structure, physically interpreted as a

susceptibility, to the study of topological phase transitions at finite temperatures for band insulators. To

the best of our knowledge, this is the first study of finite-temperature equilibrium phase transitions using

interferometric geometry. The inferred critical behavior is very different from that of the Bures metric.

The interferometric metric is more sensitive to the change of parameters than the Bures one, and unlike

the latter, in addition to zero temperature phase transitions, infers finite temperature phase transitions

as well. This sensitivity can be traced back to a symmetry breaking mechanism, much in the same spirit

of the Landau-Ginzburg theory. In our case, by fixing the type of the density matrix considered, a gauge

group is broken down to a subgroup.

4.2 Future work

It would be very interesting to analyse the inteferometric curvature, an analogue of the usual Berry

curvature, generalized to this mixed setting, associated with the Ehresmann connection presented in this

thesis. Since the curvature is intrinsically related to topological phenomena, this analysis might very well

unravel new symmetry protected topological phases in the mixed state case and potentially help refining

the classification of topological matter. It would be also interesting to compare the critical behaviour

of different many-body systems in terms of interferometric metrics corresponding to different types of

density matrices. Recent study of the fidelity susceptibility indicated that its singular behaviour around

regions of criticality has preferred directions on the parameter space [39]. Performing a similar analysis

for the interferometric critical geometry is another possible line of future research. Finally, probing
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experimentally the introduced interferometric metrics is a relevant topic of future investigation.
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[39] S. T. Amin, B. Mera, N. Paunković, V. R. Vieira (In preparation, 2020).

48


	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	2 Introduction to Quantum Information Geometry
	2.1 Distinguishability in classical and quantum systems
	2.2 Classical information geometry
	2.3 Pure state geometry
	2.4 Mixed state geometry

	3 Interferometric geometry from symmetry-broken Uhlmann gauge group and applications to topological phase transitions
	3.1 The geometry of the Sjöqvist metric
	3.2 Natural generalisations to degenerate cases
	3.3 Distance measures and Riemannian metrics
	3.4 Induced Riemannian metrics
	3.5 Interferometric measurement interpretation
	3.6 Interferometric metric in the context of band insulators
	3.6.1 Massive Dirac model


	4 Conclusions
	4.1 Conluding remarks
	4.2 Future work

	Bibliography

