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Resumo

A Blockchain fornece um livro-razão imutável e infalsificável que pode ser descentralizado. Na prática,

os sistemas de blockchain existentes carecem de descentralização, por exemplo, devido a nós agru-

pados em centros de dados. Esta centralização pode levantar algumas preocupações de segurança,

como permitir a seleção de uma maioria de nós sob o controlo de um atacante malicioso. Uma pro-

priedade crucial que ajudaria a evitar este problema de segurança e a melhorar a descentralização é

a diversidade dos participantes da blockchain. Uma forma de impor essa diversidade pode ser através

da escolha de nós geograficamente dispersos, e nós acreditamos que é possı́vel consegui-lo através

da incorporação de coordenadas virtuais nos sistemas de blockchain, pois isso permitiria conhecer a

topologia da rede.

Tal sistema de coordenadas virtuais (VCS) precisa de ser robusto contra participantes maliciosos,

incluindo os que realizam ataques que possam ser mais eficazes no contexto da blockchain. Para abor-

dar esta questão, como ponto de partida desta tese, selecionamos Newton, um VCS descentralizado e

seguro. Avaliamo-lo num ambiente adverso, onde simulamos estratégias de ataque tentando ultrapas-

sar os mecanismos de segurança de Newton, com particular foco nos ataques relevantes no contexto

da blockchain, nomeadamente onde os atacantes formam um cluster na rede, como consequência de

serem operados pela mesma entidade.

Confirmamos que o Newton pode resistir aos ataques conhecidos contra VCS, mesmo quando re-

alizados pelo cluster. Desenhámos e testámos uma nova estratégia de ataque, Split Cluster Attack,

que descobrimos ser capaz de ultrapassar a defesa de Newton, degradando significativamente a sua

precisão.

Palavras-chave: Sistemas Distribuı́dos, Blockchain, Descentralização, Coordenadas Virtu-

ais, Cibersegurança
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Abstract

Blockchain provides an immutable and unforgeable ledger that can be decentralized. However, existing

blockchain systems lack decentralization, e.g., due to clustered nodes most likely confined to datacen-

ters. This centralization may raise some security concerns, e.g., allows the selection of a majority of

nodes under the control of some malicious attacker. One crucial property that would help to avoid this

security issue and to increase decentralization is to ensure diversity of participants in the blockchain. A

way to enforce that diversity can be by choosing geographically diverse nodes, and we hypothesize that

it is possible to achieve this by embedding virtual coordinates in the overlay of blockchain systems, as

that would allow for topology-awareness.

However, such a Virtual coordinate system (VCS) needs to be robust to malicious participants, includ-

ing the ones performing attacks most effective in the context of blockchains. To address this, as a starting

point for this thesis, we select Newton, a secure decentralized VCS. We evaluate it in an adversarial en-

vironment, where we simulate attack strategies trying to overcome Newton’s security mechanisms, with

a particular focus on attack strategies and scenarios relevant in a blockchain context, namely where the

attackers form a cluster in the network, as a consequence of being operated by the same entity.

We confirm that Newton can withstand the known attacks on VCS even when performed by the

cluster. We then design and test a new attack strategy, Split Cluster Attack, which we found capable of

disrupting Newton’s defense mechanisms, degrading significantly Newton’s accuracy.

Keywords: Distributed Systems, Blockchain, Decentralization, Virtual Coordinates, Cyberse-

curity
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Chapter 1

Introduction

Blockchain provides an immutable and unforgeable ledger that can be implemented in a fully decentral-

ized manner. The importance of blockchain systems comes mainly from the ability to bring trust to a

decentralized network, allowing for recording transactions between peers who do not trust each other,

and removing the need for a trusted third party for validating those transactions. Given the recent suc-

cess and increased visibility of this technology, blockchain-based applications are increasingly applied

to various fields. This success creates a pressing need to find and overcome existing challenges and

limitations of today’s blockchains, such as their pending security and scalability problems.

In a ”permissionless” (open membership) blockchain setting, anyone can create an address and be-

gin interacting with the network. This is derived from the nature of blockchain systems, namely the fact

that they are decentralized, anonymous, and equally accessible from any computer. Beyond the advan-

tages that result from this nature, such as increased privacy and low barrier to entry, some problems

may also arise in the presence of malicious users. In particular, if an attacker creates multiple nodes, it

becomes challenging to ensure that the system still works correctly [1, 2].

One crucial property to prevent such attacks is to ensure that there is a diversity of participants

contributing to the blockchain, in order to minimize the odds of selecting a majority of nodes under the

control of a malicious attacker, who can use that majority to subvert the system. However, in practice,

existing blockchain systems lack diversity. For example, Bitcoin and Ethereum, two of the most popular

blockchain-based networks, have been shown to have a significant number of clustered nodes [1], most

likely confined to datacenters controlled by a single person or entity. Additionally, when these studies

focus on the processing power instead of the number of nodes, they show that a low number of entities

in these networks possess the majority of the processing power that maintains the blockchain [1]. As

such, this lack of diversity has the potential to create security problems, thus reducing the benefit of a

truly decentralized system.

A central observation of this thesis is that, if we could enforce geographic diversity between the

nodes, then we would substantially raise the bar of an attacker trying to conduct this sort of attack,

since he or she could no longer operate all the nodes from a single location, such as a datacenter.

Furthermore, since blockchains form an overlay network between their members, it is possible to embed
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virtual coordinates in those overlays [3], thus allowing for choosing geographically diverse nodes, to

enforce – or at least increase – diversity in the blockchain. While this would not be a panacea that will

completely solve this problem, we still believe that it would be a valuable contribution, with the potential

to make it significantly harder for a single organization to control the network.

However, since there can be a malicious attacker that can try to subvert the protocol that determines

these coordinates in order to control the blockchain, we need to deploy a virtual coordinate system that

is secure in the presence of malicious participants. Thus, as described in this document, we started by

reviewing several virtual coordinate systems and concluded that Newton [4] is an appropriate starting

point to achieve secure virtual coordinates for the nodes in the overlay.

Newton’s security mechanisms prevent an attacker from spoofing its own coordinates or otherwise

manipulate the coordinates of other nodes. The idea of these security mechanisms is to enforce New-

ton’s laws of physics to recognize and reject tampered or malicious reports from one node to another.

The physical laws have to be obeyed by real-life systems, so they can represent security invariants that

all nodes in the system should follow. Therefore, if a node reports incorrect values of coordinates or

delays any measurements, it will introduce extraneous forces in the physics that explain the system,

which breaks the expected invariants, and can therefore be detected by the system. However, despite

their potential to improve the security of blockchains, their use in this context require that they are not

only robust against a single malicious node, but also against a cluster of nodes trying to disguise their

real location.

In this thesis, we test Newton against novel attack scenarios that we devised, with the goal of under-

standing how robust, and consequently how suitable it is for incorporating in blockchains. To this end,

we started by implementing Vivaldi and Newton in the context of a novel distributed systems simulator

based on the Rust programming language [5]. This then allowed us to test Newton under a wide variety

of adversarial scenarios: from executing the known attacks to virtual coordinate systems, performed

both by randomly distributed attackers in the network and attackers forming a cluster, to designing and

testing a novel Split Cluster Attack, which is a new attack strategy capable of disrupting Newton’s ability

to provide accurate coordinates, while the attackers deceive honest nodes into thinking that the nodes in

a cluster are split across different groups. Under the known attacks, Newton is able to match the base-

line accuracy, even for the cluster scenarios, however, the Split Cluster Attack, manages to degrade

Newton’s prediction performance.

The remaining of the thesis is organized as follows. Chapter 2 presents background and related work

on both blockchain and virtual coordinate systems. We explain the implementation details of Newton

and the attacks to perform in Chapter 3. Chapter 4 describes the metrics used in the measurements and

shows the validation of our implementation, as well as the results obtained from our experiments using

Newton. Finally, Chapter 5 presents the conclusions and future work.
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Chapter 2

Background

This chapter presents background and related work, including research on both blockchain and Vir-

tual Coordinate Systems (VCS). We begin by addressing blockchain-based systems in Section 2.1,

focusing, in particular, on the level of decentralization achieved in practice by blockchain-based sys-

tems/cryptocurrencies, and hence motivating the use of VCS to enforce diversity in blockchains (namely

to further decentralize permissionless consensus protocols). In Section 2.2, we describe VCS and focus

on their security aspects in Section 2.3.

2.1 Blockchain

Blockchain [6] is a peer to peer distributed ledger where transactions or digital events are recorded. This

ledger is immutable, unforgeable, and simultaneously maintained by the nodes (computing devices) in

the network. The transactions are grouped into blocks, and the blocks are then stored sequentially in the

ledger record, thus forming a chain of blocks. For transactions to be included in a blockchain, they first

need to be included in a candidate block (a possible new block to the chain). This entails a preliminary

check where the nodes of the network have to confirm that it is a valid transaction. Then, the nodes

run some consensus algorithm to reach an agreement on the next valid block to add the chain. In

particular, the consensus algorithms that are used nowadays in permissionless blockchains are based

on the notion of ”proof of work”. In these schemes, every node in the system acts as a miner trying to

solve a cryptographic puzzle, in addition to validating transactions and creating the blocks for the ledger,

usually in exchange for some reward. In this case, the consensus algorithm attempts to select the miner

who appends the next block, among the nodes that succeeded in solving the puzzle.

Blockchain [6] systems can be organized according to various different categories. The primary divi-

sion is between public and private blockchains. Private (or permissioned) blockchains have restrictions

on the individuals that may belong to the blockchain, usually just members of some organization. On the

contrary, public (or permissionless) blockchains have an open membership, and anyone can create an

address from where to send or receive transactions and begin interacting with the network anonymously.

The two primary permissionless blockchain-based cryptocurrencies are Bitcoin and Ethereum. Some
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entity by the name of Satoshi Nakamoto published the original Bitcoin protocol [7], and created the Bit-

coin network in 2009. Bitcoin was the first decentralized digital currency, and, ever since, blockchain

technology has increased its popularity. A popular alternative to Bitcoin is Ethereum [8, 9], also based

on blockchain technology. However, unlike Bitcoin, Ethereum enables the deployment not only of digital

currency (ether ) but also of decentralized apps and smart contracts.

One of the key properties that blockchain [6] has to offer is the high level of trust that can be derived

from a decentralized system, which allows for transactions between peers who do not need to trust each

other, while removing the need of a trusted third party to mediate those transactions. Since this trust is

closely tied to the lack of a centralized control over the system, we next survey a series of measurement

studies on both Bitcoin and Ethereum, regarding their level of decentralization.

2.1.1 Decentralization in blockchain-based Cryptocurrencies

Blockchain-based systems have decentralization as one of their key underlying properties. However,

a lack of diversity is currently observed in overlays such as Bitcoin or Ethereum, where a significant

fraction of the participating nodes is concentrated in a few data centers, reducing decentralization.

In [1], Gencer et al. present a measurement study on decentralization metrics in Bitcoin [7] and

Ethereum [8, 9]. When measuring network structure, the aim was to understand if the networks were

geographically clustered, through the use of measured and estimated latencies between nodes. These

latencies were used to infer estimates of geographic distances, and the results show that Ethereum

nodes are more distributed around the globe than Bitcoin nodes, but that both have nodes likely to be

running in data centers, due to the geographic proximity between these nodes.

The same authors also measured the distribution of mining power in Bitcoin and Ethereum. Mining

in these two networks is a complex and computationally expensive process, especially due to the proof

of work consensus algorithm, as explained before. The authors try to evaluate if the participants of

these networks are using more powerful hardware to succeed more often in solving the cryptopgraphic

puzzle, with the end result that the mining process becomes more centralized. The authors’ mining

power estimations for each entity are based on the ratio of main chain blocks generated by each entity.

Then through the examination of the weekly distribution of mining power in Bitcoin and Ethereum for ten

months from 2016 to 2017, the authors present results showing that over 50% of the mining power has

been shared by only eight miners in Bitcoin and five in Ethereum, during the ten months. These results

give us a sense of the centralization levels of these blockchain networks. Furthermore, powerful miners

who attract more and more members might try to appear less powerful, creating multiple entities, as not

to seem that they are contributing to the centralization of the network.

2.2 Virtual Coordinate Systems

Virtual Coordinate Systems (VCS) were proposed to address an issue in large-scale distributed systems,

related with the fact that the cost of direct measurements of network latency or bandwidth between
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nodes can outweigh the benefits of exploiting topology information, to be able to select the best nodes

to contact (e.g., its neighbors in an overlay network) [3]. For this purpose, VCS allows hosts to predict

network performance metrics between pairs of nodes without the need for explicit measurements, which

reduces significantly the network measurement overhead.

(a) Real Network, where arrows represent some network
measurement, e.g., actual RTT

(b) Geometric Space, where the dashed lines (distance
between nodes) represent an estimation of some network
measurement, e.g., estimated RTT

Figure 2.1: Correspondence between the real hosts and their virtual coordinates in the geometric space

The key idea of VCS systems is to characterize the network location of a node in the overlay by

modeling the real network as a geometric space, as shown in Figure 2.1. In this geometric space, all the

hosts have coordinates, and the distance between them represents some network performance mea-

surement, like latency or bandwidth. Latency is usually considered as the round trip time (RTT) between

hosts, and bandwidth is the maximum rate at which information can be transferred in the network.

In contrast, in peer-to-peer file sharing, bandwidth between a peer looking for some file and all the

peers that have that file is favored over latency.

In our case, location-awareness can enable the blockchain protocol to know how to choose nodes in

a way that enforces geographical diversity and increases decentralization. Therefore, in order to achieve

location-awareness, latency is the most relevant metric to be modeled by our implementation of the VCS

system, to be embedded in the blockchain scenario. Hence, all the approaches we present next focus

on latency.

VCS approaches have to guarantee sufficient accuracy for them to be useful in predicting distances

through virtual coordinates. As a way to accomplish that, these VCS algorithms tend to minimize some

error function when computing a prediction of these coordinates, with the meaning that a value of 0 in

this error function stands for a perfectly accurate coordinate.

VCS systems can be divided into two major groups, Landmark-based Systems, and Decentralized

Systems. Comparing both, the main difference is in the fact that the former relies on a priori trusted

set of nodes, a fixed infrastructure of landmarks, to serve as reference nodes. The latter, in turn, does

not require any fixed network infrastructure/set of reference nodes and makes no distinctions between

5



nodes. In other words, any node in the system may be used as a reference to any other node.

In Section 2.2.1, we give an overview of existing VCS systems and approaches, and in Section 2.2.2

we focus on Vivaldi [3], one of the decentralized approaches. We explain Vivaldi in more detail than the

other decentralized systems because it was subsequently extended to accomplish a robust decentralized

VCS called Newton [4], which is an important component of our work. Afterwards, we will explain

Newton, when talking about security in VCS, and discuss the reasons why we decided to focus on this

approach. Finally, in Section 2.2.3, we discuss the limitations of the approaches shown.

2.2.1 Existing Approaches

In this subsection we present various existing approaches of virtual coordinates.

Landmark-Based Systems The majority of landmark-based approaches consist of systems with two

types of nodes, the fixed landmarks and the regular hosts. Concretely, these landmarks are nodes that

compute their own coordinates after making latency measurements between all of them. The regular

hosts, in turn, are all the other nodes in the network system. The operations of regular hosts when com-

puting their coordinates include getting the coordinates of the landmarks while measuring the latency

to each one of them. With both the latency measurements and the coordinates of the landmarks, the

regular hosts can then compute their own coordinates.

There are several landmark-based systems, but since our primary focus is on the decentralization

aspect of a network, we do not study them in detail. An overview of some landmark-based systems may

be found in [10]. The reason why we do not focus on this class of systems is that, in most blockchain

systems, all nodes are indistinguishable, and therefore this is not compatible with relying on a fixed and a

priori set of trusted nodes (landmarks). Also, an unavoidable drawback of landmark-based approaches

is that landmarks represent a single point of failure and limit the scalability of these systems.

Decentralized Systems Decentralized VCS systems aim to accurately predict the latency between

nodes, through the creation and maintenance of virtual coordinates, without using fixed infrastructure

nodes. The essential features in the design of most decentralized approaches are a reference/neighbor

set, which is essentially a small set of topological neighbors in the network, a distance prediction mech-

anism, such as the Euclidean distance, and an error minimization technique of some distance error

function.

For a node x to determine its coordinate, a reference set is first selected. Then, the node x queries

the nodes from the reference set, and based on the reported information, x computes its coordinate. This

information may include metrics like local coordinates, measured RTT, and local error, which represents

the confidence of a node on its local coordinates. Finally, after a node has determined its coordinate, it

refines it by periodically querying the reference set.

We now present various decentralized virtual coordinate systems, more concretely, Big-Bang Simu-

lation [11], PIC [12], and PCoord [13, 14], leaving Vivaldi [3] for the next section.

6



Big-Bang Simulation (BBS) [11] simulates an explosion of particles that will be traveling in the Eu-

clidean space under the effect of the potential force field. The particles represent the geometric image

of the network nodes in the geometric (Euclidean) space, and they are initially placed at its origin.

This proposal is based on the simulation of Newtonian mechanics, where nodes are seen as particles

influenced by the force field induced between different nodes. As a way to reduce the total system error,

each pair of particles either pulls or repulses each other.

This force field is derived from the total embedding error, which is equal to the potential energy error.

The embedding error of the distance between each pair of particles drives the force field to make them

pull or repulse each other, to minimize their pair embedding error. The force affecting a specific particle

is equal to the sum of the induced forces by the other particles. If the force is positive, it pulls the two

particles together, whereas if it is negative, it repulses them apart.

The BBS method is based on several calculation phases performed sequentially. In the first phase, the

induced pair force field is equal to the difference between the geometric (Euclidean) and the network pair

distances. Also, BBS starts with an insensitive, less optimal potential function to minimize, the simple

squared error. As it moves along to the next phases, it uses increasingly sensitive potential functions.

Then, during the calculation phases, the particles remain traveling in trajectories, tending to reduce

the potential energy of the system. At the end of each phase, the system approximately achieves an

equilibrium point. This equilibrium point corresponds to the potential energy minimum, and it serves as

the initial position of the particles in the next phase.

If the particles were only under the normal force field effect, they would move too fast and oscillate

forever around their correct position. Therefore, a friction force exists alongside the normal force field.

This friction force dissipates some of the energy, slowing down and constraining the movements of the

particles, allowing them to stabilize after a while in positions of minimum potential energy.

Practical Internet Coordinates (PIC) [12] In this other proposal for a virtual coordinate system, nodes

compute their coordinates only once when joining the system. Additionally, any node that knows its

coordinates can be used as a reference for new nodes. For a new node to compute its coordinates, it

first measures the latency to a set of reference nodes and obtains the coordinates of each reference.

Then the new node runs the Simplex Downhill optimization algorithm [15], to minimize the errors of the

predicted distances between the node and the references, as a way to compute its coordinates.

To choose the reference set, PIC uses a hybrid strategy. This strategy is a mix between two other

strategies, where the first is a random strategy, which picks some of the nodes randomly; then the

second one is the closest nodes strategy, which picks, among the rest of the nodes, the closest to the

new node in the network topology.

One challenge of the hybrid strategy is to find the closest nodes in the network because the new node

does not know its coordinates yet. For that, the new node uses the PIC algorithm with the random

strategy to compute an estimate of its coordinates. Then uses this estimate to find the closest nodes,

and, in the end, the new node uses the PIC algorithm with the hybrid strategy to refine its coordinates.

In PCoord [13, 14], each node measures its round trip latency to some reference set of nodes and

gets their coordinates. Then, updates its coordinates in a way that minimizes the squared normalized

7



difference between the measured and the computed distances, using the Simplex Downhill algorithm

[15]. In particular, as for all the VCS systems we presented, the distance metric corresponds to the

measured latency, and the computed distance corresponds to the distance between the coordinates of

the nodes in the geometric space.

PCoord has three schemes, RandPCoord, ClusterPCoord and ActivePCoord. The first two schemes

assume the existence of a reference set, acting as bootstrap nodes to guide joining nodes. In RandP-

Coord, the reference nodes are chosen randomly, while in ClusterPCoord each joining node exploit the

topological information, separating the existing nodes in clusters based on their coordinates. Then, the

joining node chooses a random node from each cluster, to obtain a well-distributed reference set. The

third scheme, ActivePCoord, is an iterative process, where each node starts in the origin of the geomet-

ric space. Then, to refine its own coordinates in each iteration, the node uses triangulated distances to

choose a well-distributed reference set, to whose members it measures the distance.

Lehman et al. incorporated the following mechanisms in PCoord [14], to allow the system to converge

to low prediction errors in faster time, as well as to create robustness against faulty or misbehaving

nodes and triangle inequality violations in the network paths. (1) A weighted loss function is used

to give a higher weight to the reference nodes’ coordinates with higher prediction accuracy. (2) The

loss function also has a weighted ”resistance” that helps stabilize the coordinate convergence process,

avoiding oscillation. (3) A threshold-based ”damping” mechanism helps to avoid instability derived from

faulty reported information. For that purpose, the distance a node has to move towards new coordinates

is dampened by a factor inversely proportional to the fit error of the reference nodes’ coordinates and

distances.

2.2.2 Vivaldi

Vivaldi [3] is a decentralized, low-overhead, adaptive system, with a simple algorithm that assigns syn-

thetic coordinates to hosts, with the distance between their coordinates predicting the communication

latency, specifically RTT, between them, with low error.

Vivaldi was inspired by analogy to a real-world mass-spring system, therefore on a Euclidean coor-

dinate space. The Euclidean space has to satisfy the triangle inequality, dAC ≤ dAB +dBC , where dxy is

the distance between the nodes x and y. However, Internet routing policies often violate the triangle in-

equality [16–18], so Vivaldi cannot predict the exact RTT between hosts. Instead, the algorithm attempts

to find the coordinates that minimize the error of predictions.

In the design of Vivaldi, all nodes update their coordinates based on interaction with a subset of other

nodes (neighbor set). A node chooses half of these nodes randomly from all possible nodes and the

other half from a set of low-latency (nearby) nodes. In addition to the coordinate value, each node also

maintains a local error value, representing the confidence in the coordinate value. Algorithm 1 describes

how each node i updates its coordinates, after it sends a request to node j for its coordinate and local
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error value, and measures the actual RTT when the node j replies.

Algorithm 1: Vivaldi’s Node i Coordinate Update
Input: Remote node tuple < xj , ej , RTTij >

Output: Updated local node coordinate and error xi, ei

1 w = ei/(ei + ej);

2 es = |||xi − xj || −RTTij |/RTTij ;

3 ei = (es × ce × w) + (ei × (1− (ce × w)));

4 δ = cc × w;

5 xi = xi + δ × (RTTij − ||xi − xj ||)× u(xi − xj);

First, (line 1) a sample confidence (weight) w is calculated, balancing local and remote error. Then,

(line 2) the relative error of the sample is computed. (line 3) Then node i updates its local error with

a fraction of the sample error, weighted by the confidence in the remote coordinates, where ce is a

system parameter. (line 4) An adaptive time-step δ that depends on the confidence on the remote

node coordinates and a system parameter cc is now computed. Finally, (line 5) node i updates its local

coordinates by finding the force applied by the remote node, using a fraction of that force determined by

the adaptive time-step δ and multiplying that by a unit vector with the direction it should move.

One key challenge in the design of Vivaldi is that sampling only low-latency (nearby) nodes can lead

to coordinates that preserve local relationships but are far from correct on a global scale. This issue

is avoided by adding long-distance communications. In the proposed design, each node is assigned

eight neighbors: the four immediately adjacent to it and four chosen at random (on average, the random

neighbors will be far away). At each step, each node decides to communicate either with an adjacent

neighbor or a far away neighbor. In the evaluation of the system, it is shown that when half of the

communication is with distant nodes, coordinates converge quickly.

Dabek et al. [3] propose the use of height-vector coordinates, as a variant of Euclidean coordinates,

to better model latencies on the internet. A height-vector consists of a Euclidean coordinate augmented

with a height. The Euclidean part represents the latencies proportional to the geographic distance, and

the height represents the time to travel the access link from the node to the core. If the forces exerted

over a node from various other nodes cancel each other out, then the node will not move when in a

normal Euclidean space. However, in the height-vector, when that happens, the height forces push the

node away or towards the Euclidean plane.

Vivaldi requires no fixed infrastructure or landmarks, thus accomplishing decentralization; it can

piggy-back network sampling on the application’s traffic, which avoids overhead from extra communi-

cation traffic; and is reactive to changes in the network. A high time-step leads to high oscillation, and a

low time-step leads to slow convergence. Consequently, Vivaldi uses an adaptive time step parameter, δ,

to provide low oscillation, resilience against high-error nodes, and to make the system quickly converge

to accurate solutions, maintaining accuracy even as a large number of new hosts joins the network.
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2.2.3 Limitations and Discussion

In this section, we discuss known limitations of the coordinate approaches presented above, and how

they compare to each other. Then in Section 2.3, we will focus on their security aspects.

Most VCS use the Euclidean space as the virtual geometric space of choice, and, as we referred

before, the Euclidean space has to satisfy the triangle inequality, dAC ≤ dAB+dBC , where dxy is the dis-

tance between the nodes x and y. However, Internet routing policies often violate the triangle inequality,

as shown in several studies [16–18], because internet traffic does not always follow the shortest path. In

short, VCS systems need to be designed to be ”Triangle Inequality Violation”, or TIV-aware, since, when

in the presence of TIVs, VCS systems make edges shrink and stretch in the geometric space, which

results in oscillations and consequently in large prediction errors.

Approaches such as PIC [12], which has a security mechanism relying on a TIV-based test, might

degrade the system’s performance in benign settings, because of the assumption that triangle inequality

holds on the network (as we will detail in Section 2.3.2 when discussing the security approaches in

VCSs.

Taking into account the existence of TIVs, Chen et al. propose Pharos [19, 20], a multi-set coordi-

nates scheme that contributes to a reduction of the impact of TIVs on distance predictions. Pharos aims

to improve accuracy in simulation-based algorithms (SBA) like BBS [11] and Vivaldi [3]. An SBA system

simulates a physical system, where the nodes’ coordinates are then computed by minimizing the energy

state of that system. In particular, when Vivaldi operates in the presence of TIVs, it ends up stuck in

endless oscillations, with the nodes not converging towards correct and stable coordinates [10]. Chen

et al. used Vivaldi as a representative SBA system and studied it to find out that the range of distances

between peers has a significant impact on the performance of the system. As a solution, Pharos splits

the nodes into clusters with different ranges of distances, and create two coordinate sets where one

of them has local coordinates and the other has global coordinates. The former is the most accurate

for predicting short distances and the latter for longer distances. This way, when predicting intra-cluster

distances, the local coordinates are used, while the global coordinates are for inter-cluster predictions.

Furthermore, Pharos uses Vivaldi’s algorithm for all distance predictions. Therefore, the authors com-

pared the performance of Pharos with the one of Vivaldi, obtaining results showing that Pharos achieves

higher accuracy than Vivaldi. Similarly, Phoenix [21] also addresses TIVs and accuracy. Its authors

designed it to be a decentralized and improved version of the landmark-based system IDES [22].

Finally, in order to adapt to topology changes, the nodes of these systems keep updating its co-

ordinates during their stay in the system, with the intuition of minimizing the difference between real

latencies and estimated latencies to other nodes. The minimization referred can be executed in several

ways. Systems like PIC [12] and PCoord [13, 14], as they are based on multidimensional minimization,

can be caught by some local minimum, different from the global one, close to the starting value. This

characteristic makes these systems very sensitive to the initial coordinates of the nodes. It allows for the

possible attribution of different coordinates to the same node. They are usually slow to converge and

sensitive to high error measurements. Concretely, the multidimensional minimization algorithm running

is the Simplex Downhill [15]. On the other hand, simulation techniques like spring relaxation used in
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Vivaldi [3] are not sensitive to the initial conditions of the system, tolerate high error nodes, and are

inexpensive to compute, providing a suitable technique for decentralized systems.

TIVs
Aware

Error
Minimization
Technique

Year

BBS [11] - Big-Bang Simulation 7
Minimize Potential

Energy of the System
2004

PIC [12] - Practical Internet Coordinates 7 Simplex Downhill 2004
PCoord [13, 14] 3 Simplex Downhill 2004, 2006
Vivaldi [3] 7 Minimize Squared Error 2004
Pharos [19, 20] 3 Minimize Squared Error 2007

Phoenix [21] 3
Minimize Weighted

Sum of Squared Errors
2007, 2009

Table 2.1: Decentralized VCS - Overview

Table 2.1 contains an overview of the different decentralized virtual coordinate systems we have

presented. The column TIVs Aware shows if the system is aware, and consequently, can deal with the

existence of TIVs in the network. Then, the Error Minimization Technique shows the error minimization

technique that the VCS uses.

2.3 Security in Virtual Coordinate Systems

One of the most critical limitations of VCS systems is security, especially as the majority of these sys-

tems assume honest nodes that fully-cooperate and report correct information to each other. Thus,

when in benign settings, VCS systems have good accuracy. However, the system’s performance rapidly

deteriorates when under attack by nodes acting as insider attackers, that is, malicious nodes with access

to the same data as legitimate nodes.

We start by presenting known attacks to VCS systems in Section 2.3.1, and in Section 2.3.2 we show

existing security mechanisms. In the same way, as with Vivaldi above, we explain Newton in more detail

than any other VCS security mechanism, because it is a crucial part of our work. Newton is explained

in Section 2.3.3.

2.3.1 Attacks on VCS

In this section we will look at known types of attacks to VCS, aiming at lowering the performance of VCS

systems. These are internal attacks, executed by insider attackers, as described previously.

Kaafar et al. [23, 24] were the first to identify some basic attacks that are effective against coordinate-

based systems and showed how vulnerable Vivaldi is against them. They classified the attacks in four

different types: isolation attack, which aims at convincing the victim node that it is in an isolated location

in the network; repulsion attack, which has some lying node trying to reduce its attractiveness, convincing
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the other nodes that it is far away; disorder attack aims at introducing chaos as a form of denial of

service (DoS) attack; and system control, where an attacker tries to take control of a reference node or

to become one, and in this way be able to influence the coordinate maintenance process.

Zage et al. [25] also identified some basic attacks, but in a more specific way considering how the

malicious node can lie to perform different manipulations. Concretely, an attacker can influence the

round-trip time (RTT) by delaying measurement probes, and can also lie about its coordinates and local

error value, to conduct the following attacks:

Inflation Attack has attackers that lie about their coordinates, resulting in a victim node having

incorrect coordinates, far from the correct ones. To accomplish this, an attacker can, for instance, report

a low error and close coordinates to the victim, and delay the measured RTT.

Deflation Attack aims at maintaining a victim node immobile. For that purpose, an attacker may

report coordinates that result in an estimated RTT (|xv − xa|, where xv and xa are the coordinates from

the victim node and the attacker, respectively) similar to the measured RTT, making the victim node think

that it should not move.

Oscillation Attack, like the disorder attack, introduces chaos in the coordinate system. Attackers

choose random coordinates to report and randomly delay measurement probes. Consequently, the

remaining nodes have to keep updating their coordinates, not converging to their correct positions.

Additionally, Chan-Tin et al. [26, 27] identified more advanced attacks, frog-boiling and network

partition, that are slow attacks, more subtle and difficult to identify. The objective of both is to disrupt the

accuracy and stability of victim nodes’ coordinates.

Frog-boiling Attack has a node lying in small amounts at a time, moving their coordinates in one

direction. Over time, the coordinates of the lying node end up being far from its real position, but each

step is small enough not to trigger the anomaly detection in the security mechanisms based on outlier

detection.

Network partition Attack is an extension of the frog-boiling attack, with multiple nodes colluding

together and moving in opposite directions.

2.3.2 Security Mechanisms

When trying to make VCS systems robust to attacks, there are two kinds of security mechanisms. The

first one relies on landmarks, while the second one is decentralized. For landmark-based approaches,

the high-level intuition is that their security techniques focus on trying to secure the set of trusted land-

marks (reference nodes) used in the coordinates computations. This makes it simpler to reason about

their robustness to attacks than in decentralized approaches. However, this comes with a cost in scal-

ability and single points of failure. In contrast, decentralized systems make fewer assumptions and can

scale better, but can be more susceptible to attacks, as any node can be an insider attacker.

As already referred, we direct our attention to decentralized systems. As such, for landmark-based

security mechanisms [28, 29], we only detail a single system as an example of this type of approach.

Saucez et al. [28] define a reputation-based system that associates a reputation with each node of
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the system. The reputation of a node is directly proportional to how reliable the node is. It is associated

with the node’s past behavior and with how long it has been in the system.

Specifically, a node A’s reputation is a combination of trust from all the other nodes towards A, where

trust represents an expectation on the future behavior of A, based on experiences observed in the past

of node A.

As a way of evaluating the reputation of every node in the system, two new entities were created: the

Reputation Computation Agent (RCA), a certificating agent that is used to construct a reliable reputation

for any node in the distributed system; and the Surveyors, chosen nodes with the job of estimating the

reputation of the remaining nodes. Every node in the system have a few surveyors assigned. When

evaluating a new reputation for some node A, the RCA uses the trust surveyors have in node A and the

trust it has in the set of surveyors that evaluate node A.

This reputation-based approach was then incorporated into Vivaldi, to make it more robust to attacks.

The resulting system was named Reputation-based Vivaldi (RVivaldi), with the idea of keeping Vivaldi’s

standard procedure when the neighbor nodes are reliable, but limiting the changes of coordinates when

they are not reliable. Despite becoming more robust to attacks, RVivaldi has the drawback of introducing

a single point of failure and trust, the RCA. Furthermore, RVivaldi introduces a substantial overhead

when calculating a node’s coordinates, because when that is happening, the node will also take into

consideration its neighbors’ reputation, besides their coordinates. After that calculation, this node still

needs to contact the RCA to update its own reputation.

Decentralized Approaches:

PIC [12] was one of the first systems to introduce a security mechanism against malicious behavior.

To remove malicious nodes from the reference set, PIC relies on a test based on triangle inequality. In

particular, a malicious node is identified when it is perceived to be causing a violation of the triangle

inequality, dAC ≤ dAB + dBC , where dxy is the distance between the nodes x and y. However, as dis-

cussed in Section 2.2.3, the triangle inequality is regularly violated by latencies in the internet. As such,

the PIC’s security mechanism might lower the accuracy of the system in scenarios without malicious

nodes.

Regarding PCoord [14], as we briefly described in Section 2.2.1, it already incorporates mechanisms

to tolerate faulty or misbehaving nodes.

Zage et al. [25, 30] explored the performance of decentralized virtual coordinate systems (VCS) in

adversarial environments and proposed a solution that uses outlier detection to make them more robust

against insider (or Byzantine) attacks. More specifically, nodes that report data that is very different from

what the other nodes are reporting are likely to be malicious nodes, and therefore their reports should

be discarded. For that reason, each node must first learn what good behavior is regarding the behavior

of the nodes in the system, so that they can recognize malicious behavior and discard the corresponding

updates, which are considered outliers. To this end, the following metrics the are analyzed.

A 3-tuple of <remote error, change in remote coordinates, latency> is used to generate spatial outlier

statistics and a 5-tuple of <remote error, local error, latency, change in remote coordinates, change in

local coordinates> to generate temporal outlier statistics. Then, a spatial outlier detection checks if the
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metrics reported from one node are consistent with the ones from its neighbor nodes. Every time an

update is received from a neighbor, the detection mechanism is executed, given the 3-tuple described

above. The last u updates are stored in a queue, with u being equal to the size of the neighbor set. The

Mahalanobis distance is then calculated between the last observation tuple and the centroid of the last u

updates in the queue. For a new update to be accepted, the distance previously computed must remain

under a spatial threshold.

In addition to detecting spatial outliers, a temporal outlier detection checks the consistency of a given

node over time. To this end, the outlier detection takes into consideration the previously described 5-

tuple. For each neighbor node, a temporal centroid is computed using incremental learning. The newly

received metrics are then compared to the mean, standard deviation, and sample count for that node,

using a simplified Mahalanobis distance. For the update to be accepted, the distance must not exceed

a temporal threshold.

Both the spatial outlier detection and the temporal outlier detection are combined to identify outlier up-

dates, and consequently, not including them in the new coordinate computations. An update is accepted

if both the spatial threshold and the temporal threshold are not exceeded.

Wang et al. [31] propose a security mechanism that has two different approaches. One for secur-

ing coordinate computations and another for securing delay measurements. The authors show that a

Byzantine fault detection algorithm can protect the coordinate computation, detecting malicious nodes

that lie about their coordinates. To that end, either Byzantine Fault Tolerance (BFT) [32] or Byzantine

Fault Detection (BFD) [33] can be used. For instance, Wang et al. [31] show that the PeerReview [33]

accountability protocol, which is a BFD techique, can be used to secure how coordinates are computed.

Additionally, the authors propose a triangle inequality violation (TIV) detection algorithm to secure the

delay measurements. Following the intuition that delaying measurements is likely to result in severe

TIVs, and that edges causing them are likely to have a low prediction ratio (predicted/measured), Wang

et al. [31] recur to a TIV alert technique that uses the prediction ratio to identify malicious nodes.

Veracity [34] is a fully decentralized service designed with the intent of securing network coordinate

systems (like Vivaldi [3], for example). As we already explained, in decentralized VCS, any participating

node (referred to as the investigator) must securely update its coordinates. To accomplish that, it peri-

odically requests the coordinates from some other node (referred to as the publisher), while measuring

the RTT between both.

Unlike these existing approaches, Veracity does not require trusted parties nor a priori secrets. In most

implementations, the investigator has a fixed neighbor set where publishers have to be pre-assigned.

Instead, Veracity has a distributed directory service, implemented using DHTs (Distributed Hash Tables),

and it is used by each node to select random publishers on demand. To become robust to malicious

nodes, Veracity goes through a two-step verification process:

• The first step is when the publisher coordinates verification, which detects nodes that concurrently

report false coordinates. During this step, a verification set (VSet) is assigned to each publisher.

Each VSet member independently computes the accuracy of the coordinates the publisher re-

ported, and a majority has to accept the publisher’s coordinates so that the investigator does not
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discard it.

• The second step is the candidate coordinate verification. After the investigator knows that the

publisher’s coordinates are valid, it must detect if the publisher delayed the RTT probe response. To

accomplish that, the investigator computes a candidate coordinate using the publisher’s coordinate

validated in the first step and the measured RTT. Then, estimation errors among the investigator

and a randomly chosen set of peers (RSet) are computed for both the current and the candidate

coordinates of the investigator. Finally, the investigator updates its coordinate to the candidate

coordinate only if this new coordinate results in a small increase in estimation error (i.e., below

some threshold).

One of the positive characteristics of this system is that it does not make a distinction between intention-

ally falsified coordinates and inaccurate coordinates due to limitations of the embedding process. That

ends up preventing the use of inaccurate coordinates.

2.3.3 Newton

Newton [4] is a decentralized VCS that extends Vivaldi [3] with security mechanisms. The objective is to

withstand a large number of attacks on VCS systems, by using safety invariants derived from Newton’s

three laws of motion. The known attacks Newton considers are the inflation, deflation, oscillation, frog-

boiling and network partition attacks, that were already explained in Section 2.3.1. The main underlying

idea is to have all the participating nodes following Newton’s laws, and, if a node lies, the system detects

that it violates some safety invariant, and the update from that node can be ignored.

Newton’s three laws of motion are the following: First Law : a body stays at rest unless acted upon by

an external, unbalanced force; Second Law : a force f on a body of mass m, undergoes an acceleration

a, such that a is proportional to f and inversely proportional to m; Third Law : when a first body exerts a

force on a second body, the second body exerts an equal but opposite force on the first body.

The rationale underlying the detection of the attacks previously described is that, when an attacker

node lies about its coordinates, it is implying that some forces have previously acted upon it, thus in-

troducing extraneous indirect forces into the system. Introducing these forces breaks the first and third

laws. Furthermore, when an attacker delays a probe or lies about its local error, it is introducing extrane-

ous direct forces between itself and another node. This case breaks the second law. Therefore, Newton

introduces the following mechanisms to detect these violations:

• Detecting extraneous indirect forces: Newton incorporates in its design two detection methods,

one for randomly chosen neighbor nodes, and the other for physically close neighbor nodes:

– Random nodes: By Newton’s third law, there can be no unbalanced forces in a mass-spring

system. By the definition of the first law, an extraneous indirect force introduced by an at-

tacker will be an unbalanced force. Then, the third law implies that an unbalanced force can

be detected by finding the centroid of the nodes’ coordinates. Consequently, the following

invariant is used to detect such violations.
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First invariant, IN1: If the centroid of a node i and the randomly selected nodes from its

neighbor set is at the origin of the geometric space, then no unbalanced force has been

introduced. However, if the centroid is not at the origin, then an attacker (or collection of

attackers), has introduced an unbalanced force that has the same direction as a force vector

from the origin to the centroid c. Therefore, a node i can find an attack by observing that the

centroid c is non-zero, or over some threshold.

– Physically close nodes: Because all nodes are connected via springs and are physically

close, they will experience similar forces from the same nodes, thus leading to the following.

Second invariant, IN2: if nodes i and k are physically close, and node i experiences a force

fij from node j, then node i would expect node k to experience a force fkj from j similar to

the vector projection of fij onto the vector u(xj − xk), where xj and xk are the coordinates of

the nodes j and k.

Node i knows where node k is expected to have its updated coordinates, and it calculates the

difference, in distance, between this expected location and the location reported by k. Then,

if the distance is over some threshold, i rejects the update from k.

• Detecting extraneous direct forces: The second law states how much a node should accelerate,

given the force and mass of a node. Additionally, in a mass-spring system, the amount of force

applied to a node is dominated by Hooke’s law, F = −kx, which states that the amount of force on

a node is proportional to the spring’s current displacement x from its rest position, and where k is

the spring constant 1. These laws can be checked by the following.

Third invariant, IN3: As the springs in the physical system stabilize and come closer to their rest

position, nodes should decelerate, and as a consequence, the forces applied to them should de-

crease over time.

2.3.4 Discussion

In this section, we compare the security mechanisms previously presented, with a particular focus on

Newton [4], which we believe to be the most complete and robust approach that we can use in our work.

We have briefly described some landmark-based defenses. However, as we previously referred, we are

more interested in fully decentralized approaches, since they do not require a priori trust in a predefined

set of nodes.

An important downside of all the approaches, except PCoord and Newton, is that they remain sensi-

tive to the presence of TIVs in the network. The resistance and damping mechanisms in PCoord reduce

the instability from path anomalies, thus allowing the system to be more robust to triangle inequality

violations in the network. As for Newton, it leverages the threshold for the IN3, in such a way as to

not let TIVs reduce Newton’s performance in benign settings. Moreover, most mechanisms introduce

overheads during the process of computing coordinates. Seibert et al. [4] wanted to preserve Vivaldi’s

characteristics of efficiency and low-cost, so no further network communication is added, and the amount
1How stiff the spring is.
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of computation and memory needed for the use of the invariants is minimal. This way, Newton does not

add significant overhead to Vivaldi’s operation.

Chan et al. [26, 27], first show that outlier detection is not a good approach to deal with slow attacks

like the frog-boiling and network partition attacks that they propose. Concretely, outlier detection-based

systems, like [25], would learn the behavior of these attacks as good behavior and fail at dealing with the

attacks. Then, Chan et al. also showed that Veracity [34], despite not being based on outlier detection,

but instead, in a decentralized reputation mechanism, also fails to detect the ”small-step” tampered

updates.

However, Newton [4] and Becker et al.’s work [35] were designed with the frog-boiling and network

partition attacks into consideration, so they both are capable of mitigating these advanced attacks in

addition to the basic ones. Becker et al. [35] designed the method to be also capable of resisting

complex attack strategies, where several single attacks are launched. In short, Becker et al.’s work [35]

detects the attacks with supervised machine learning techniques, such as classification decision trees,

that must be trained to learn the difference between benign and malicious data. This need for training

raises problems such as the need to re-train for deployment in another system, and the fact that labeled

data and ground truth to train the model can be hard to get. Additionally, it is infeasible to use this

approach in a real system in a distributed and local manner, as this requires every node to train the

algorithm locally and to have a different decision tree, which can be resource consuming and result in

different results for different runs. As for Newton, no training is needed, and it can mitigate the attacks

by resorting to physical laws, with each node making the computations locally.

Summing up, Newton came to surpass some of the problems of all the above systems. Specifically,

Newton and Becker et al. [35] are the tested security mechanisms that, in addition to the basic attacks,

also mitigate more advanced attacks like the frog-boiling and network partition attacks. Wang et al. [31]

has a high cost for computing public-key cryptography and some other operations, which introduces a

substantially higher overhead than Newton. Consequently, it is also less desirable than Newton.

Table 2.2 contains an overview of the different decentralized security mechanisms we have pre-

sented. The Target VCS, shows to which VCS the security mechanism might be applied. Instead of a

VCS name, the Generic term can be used to denote that the security mechanism may be applied to any

VCS. In the TIVs Aware, we can see if the mechanism helps to deal with TIVs. Then in the Advanced At-

tacks, as all mechanisms can deal with the basic attacks, we can see if they can mitigate the frog-boiling

and the network partition attacks.
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Idea
Target
VCS

TIVs
Aware

Advanced
Attacks

Year

PIC security [12] Test based in TIVs. PIC 7 7 2004

PCoord security [14]
”Damping” mechanism to
avoid instability derived

from faulty reported information.
PCoord 3 7 2006

Zage et al. [25] Outliers Detection. Generic 7 7 2007

Wang et al. [31]
Byzantine Fault Detection

and TIV detection algorithm.
Generic 7 - 2008

Veracity [34]
Voting scheme for

malicious updates detection.
Generic 7 7 2009

Becker et al. [35]
Supervised Machine Learning

detection techniques.
Vivaldi 7 3 2011

Newton [4]
Safety Invariants based on
Newton’s laws of physics.

Vivaldi 3 3 2014

Table 2.2: Security Mechanisms - Overview (”-” is for unclear or unknown cases)
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Chapter 3

Implementation

In this chapter, we start by describing our approach in Section 3.1, and in the following ones, we go

through the main phases of our implementation process. As we worked in a simulated environment,

we present the core concepts of Corten [5], the simulator used, in Section 3.2. Our implementation is

then divided into two major parts: the Virtual Coordinate System and the attacks to be performed on

this system. From all the VCS we showed in Chapter 2, the one we chose was Newton, and we present

the relevant aspects of its implementation in Section 3.3. Lastly, the attacks on VCS and the concept of

a new attack strategy for a scenario where some cluster of the network tries to split its coordinates are

explained in Sections 3.4 and 3.5, respectively.

3.1 Problem Description

A way to enforce diversity of participants in blockchains and thus minimizing the odds of selecting a

majority of nodes under the control of a malicious attacker can be by choosing geographically diverse

nodes. In this thesis, we hypothesize that it is possible to achieve this by embedding virtual coordinates

in the overlay of blockchain systems, as that would allow for topology-awareness.

However, since we may have to handle a malicious attacker that can try to subvert the protocol that

determines these coordinates in order to control the blockchain, we need to deploy a virtual coordinate

system that is secure in the presence of malicious participants. From the comparative overview of

secure decentralized VCS systems done in Section 2.3.4, we conclude that Newton [4] is, according to

our assessment, the most suitable choice for this purpose.

Given this context, we need to make sure that the defense strategies that Newton puts in place are

robust against the attacks that might be most effective in the context of blockchains. Therefore, we

evaluate Newton in an adversarial environment, where we simulate attack strategies trying to overcome

Newton’s security mechanisms, with a particular focus on attack strategies and scenarios relevant in

a blockchain context, namely where the attackers form a cluster in the network, as a consequence of

being operated by the same entity. Consequently, our work consists of the following two main stages:

• Perform a set of known attacks to VCS to try to degrade the system performance, specifically its
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accuracy and in some cases stability, but in a novel context, where the attackers form a cluster

in the network. The cluster varies in size, being formed by a different number of attackers, and

distance to the rest of the network, where we aim at comparing attackers randomly positioned in

the network, attackers forming a cluster close to the network, and forming a cluster far isolated

from the rest of the network. The measurements and results of these experiments are shown in

Section 4.4.

• Split Cluster Attack devises a new attack, aimed at concealing the clustering of a set of nodes by

making it appear as multiple separate sets. Section 3.5 presents the design of this new attack and

Section 4.5 its evaluation.

3.2 Simulation Environment

The implementation is conducted in a simulation environment, which allows us to remove a lot of the

complexity of a real execution, since simulators avoid the details of the network implementation, re-

placing it with a queue-based model, and presenting a simplified interface that abstracts the network [5].

Consequently, we get a controlled environment where we can focus more on the protocol and algorithms

we are working with. This way, we can simulate a networked system, with nodes spread across locations

connected through wide-area latency links, running the protocols and attack strategies described in this

thesis, as we will demonstrate in our evaluation in Chapter 4.

Regarding the simulator to use, we picked the Corten Simulator [5], since it is a discrete event-

based distributed algorithms simulator that, among other things, models network asynchrony, namely

latency, but at the same time is simple enough to allow for fast prototyping and a scalable evaluation. In

particular, Corten offers the following main features:

• Network modeling of latency, jitter, packet loss, and link asymmetry. Specifically, latency is given

by a matrix of inter-host internet latencies, jitter can be used with a uniform distribution, a lognormal

distribution, or it can be disabled and packet loss is defined by the percentage of packets lost, with

a value between 0.0 (0%) and 1.0 (100%).

• Process Asynchrony, which can be disabled, according to the authors of [5], is a feature that only

Corten offers. It allows for making simulation executions more realistic, simulating the fact that

local method calls can be executed before or after the expected time, due to various reasons.

• Process Churn, which is useful to investigate application behavior under faults in the network.

• Checkpointing, which allows to save the state of the system and re-run it from that point several

times.

Among the important characteristics of Corten is the fact that it prevents programmers from creating

unrealistic situations, even if accidentally, such as programming applications that allow some process in

one node to call local methods from another process/node in an atomic manner (as this would eliminate
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the time needed for messages to go from one node to another, which is not possible in a real execution).

The way to prevent this is to only allow processes to communicate through messages, thus enforcing

isolation between processes (applications). Additionally, Corten is intended to be efficient, specifically

memory and time-efficient, as well as present good scalability, supporting simulations of systems with

thousands or even millions of processes in a single machine, like a laptop, which was our case. In

order to achieve this, the Rust programming language was used in the implementation of Corten, as it is

developed with efficiency concerns, especially regarding memory management. Corten was even tested

with up to one million nodes, far more than what we use in our simulated scenarios, and additionally,

the authors compared it with a state-of-the-art simulator, PeerSim [36], and revealed that Corten scaled

better both in terms of time and memory.

As any simulator should, Corten makes sure that every experience is reproducible, and for this, it

relies on the ability to reproduce the output of its Random Number Generator (RNG), more specifically

using a pseudo-random generator. This RNG receives an initial value, called seed, and generates

random values for different seeds, but the same values for the same seed. This makes it possible to run

experiments multiple times and get always the same course of action, which, in the context of our work,

means that we can, for example, guarantee the same course of updates of virtual coordinates for the

same network until the point in time where different attacks occur. With this concept in mind, we take

care of using the API made available by Sequeira et al. [5], to maintain the reproducibility capabilities.

Lastly, the configuration of the simulations is described in a YAML file, where both the simulation

parameters, as well as the user-developed application parameters are defined. The simulation’s config-

uration includes, among others, parameters related to the number of processes/nodes, the simulation

time, the time between consecutive probes sent, level of asynchrony, network latency, jitter and packet

loss, and seed value for the RNG. In the next section, we will also mention the application’s parameters.

3.3 Newton

The Newton protocol [4] was explained in Chapter 2, in two different sections, since it consists of two

components, namely Vivaldi as the base protocol, and Newton’s security invariants applied on top of it.

The core algorithm from Vivaldi [3] was explained in Section 2.2.2 and the changes that turn it into New-

ton, mainly the security invariants, in Section 2.3.3. We next provide more detail on our implementation

of these protocols.

This implementation leverages the Corten simulator, which is coded in the Rust programming lan-

guage, and requires its applications to also be written in Rust. Consequently, we had to implement all

our code in Rust as well. Furthermore, the main parameters of the application are specified in the con-

figuration file mentioned previously in Section 3.2, including the number of neighbors, i.e., the number

of elements that each node has in its neighbor set, which was explained in Section 2.2.2, and security

invariants, which allows us to turn on/off the security mechanisms, and consequently run either Vivaldi

or Newton.

Our explanation of the implementation of Newton is split into two parts: first, the implementation of
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the base code of Vivaldi, and then the security invariants based on Newton’s laws of physics, which add

the security aspect.

3.3.1 Vivaldi

A node running Vivaldi needs to store the following main attributes: Local Virtual Coordinates, Local

Error and Neighbor Set. Additionally, the main method, which contains the core algorithm of the system

is the one that takes care of updating the coordinates, and additionally also updates the local error.

Virtual Coordinates. The coordinates that each node keeps are intended to allow the estimation of

the RTT between nodes, which is accomplished by computing the distance between coordinates. Fur-

thermore, it should be easy to manage these coordinates and make the RTT estimates. As mentioned

in [3], the simplest solution is to use n-dimensional coordinates and the standard Euclidean distance

function, as per Equation 3.1, where x and y are the coordinates of the two nodes, and n is the number

of dimensions.

d (x, y) =

√√√√ n∑
i=1

(yi − xi)2 (3.1)

Additionally, Seibert et al. [4] have shown that Newton operates well using simple two-dimensional co-

ordinates. Consequently, and considering we run all experiments in a simulation environment and not in

a real Internet deployment, we use two-dimensional coordinates in the Euclidean space.

Error The local error value each node maintains represents the confidence the node has in its coordi-

nate value. This error is a float with values within [0.0, 1.0], and starts with the value 1.0 at the beginning

of an execution. In Algorithm 1, we can see how it is updated.

Neighbor Set The neighbor set was described in Section 2.2.2, where we explained that half of the

neighbors are low-latency nodes and the other half are random nodes from the network. Each node

creates its neighbor set at the beginning of execution and following the next two steps:

1. Choosing the closest neighbors is done using the simulator’s global knowledge of the network,

where the #neighbor set/2 nodes with the lowest latency to the current node are chosen.

2. Choosing the random neighbors is done in a straightforward way given this global knowledge. A

node uses this knowledge to pick the #neighbor set/2 nodes randomly with uniform probability.

In a real setting, however, without the global knowledge of the pairwise latencies of the network,

nodes cannot know directly which are the closest nodes to them. Therefore, we propose that both new

nodes and all nodes at the beginning of the system’s execution use the Vivaldi/Newton algorithm, but

only with randomly chosen neighbors. This way, they can compute an estimate of the coordinates, and

then update the neighbor set to include the closest nodes found with this estimation. Afterwards, with

the continuous updates in the system, the coordinates will be refined.
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Coordinate Update Regarding the updating of coordinates in the system, our implementation directly

reflects the specification given in Section 2.2.2, with its core rationale in Algorithm 1.

3.3.2 Security

Regarding the security in Newton, the central idea falls in the usage of security invariants based on

Newton’s laws of motion. Therefore, in addition to the logic that is already present in the version with

no security, every node after receiving an update/reply from another node checks the invariants, and,

if at least one is violated, the update is discarded. Specifically, when receiving an update from a ran-

dom neighbor, IN1 and IN3 are checked; and, if the update is coming from a close neighbor, then the

invariants that are checked are IN2 and IN3 (as we explained in Section 2.3.3).

IN1 A node i calculates the centroid of its local coordinates and its random neighbors’ coordinates,

considering also the force being applied in the current update, as we show in Equation 3.2, where xp

represents the coordinates of node p, fij the force that node j is trying to apply on node i in the current

update, and n the number of nodes in the network.

c =

∑n
p=1 xp + fij

n
(3.2)

If the distance from the origin to the centroid c is larger than some IN1 threshold, then node i detected

an attack. Subsequently, it can find which node introduced the unbalanced force into the system and is

therefore the attacker. For every neighbor, node i sums up all the forces that the neighbor has applied

to it, and computes the vector projection of the summed forces onto the centroid vector. The neighbor

node whose projection has the greatest magnitude is, therefore, the greatest contributor to the moved

centroid. Specifically, if the current updating node j is the neighbor with the greatest magnitude, then

the current update will be ignored.

IN2 We implemented the IN2 verification exactly as described in Section 2.3.3, when discussing the

detection of extraneous indirect forces introduced in the system by physically close nodes. However,

we must add that, to compute the expected new coordinates for the currently updating remote node, we

take into consideration the last forces of all the neighbors (close and random) that the local node has

experienced. Specifically, the procedure of IN2 as described in Section 2.3.3 is done for each neighbor

of the local node and the resulting projections are summed up, and the result gives us the expected

new coordinates for the updating remote node. This value is then compared with the actual reported

new coordinates from the remote node, and, if the distance between the two is greater than some IN2

threshold, the local node rejects the update.

IN3 As the springs in the physical system stabilize and come closer to their rest position, nodes should

decelerate, and as a consequence, the forces applied to them should decrease over time. To verify if

nodes reporting updates are indeed slowing down over time, the local node calculates the median f̃
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and median absolute deviation D of the magnitude of the force that each node is applying to it. If the

magnitude of any force mj is some deviations larger than the median, the node will ignore it. This is

shown in Equation 3.3, where t is the threshold for the number of deviations.

mj > f̃ + t ∗D (3.3)

Additionally, there are different thresholds defined for randomly chosen neighbors tr and physically close

ones tc, where the median is calculated separately for both types of neighbors. The rationale for this is

that close nodes exert smaller force values but deviate more from the median, while randomly chosen

nodes are the opposite [4]. Hence, the threshold for the close neighbors will be higher than the threshold

for randomly chosen nodes.

3.4 Existing Attacks

Next, we provide further detail about how we implemented the concepts behind the different known

attacks, possible in the context of VCS (inflation, deflation, oscillation, frog-boiling and network partition

attacks), which were previously presented in Section 2.3.1. There, we also explained that to manipulate

other nodes and perform attacks in VCS systems, an attacker can influence the coordinate computation

of other nodes by reporting false coordinates and/or local errors, and influence the RTT computed by

other nodes by delaying their measurement probes.

The main difference between a benign node and an attacker is the extra logic to perform the attacks.

When an attacker receives a probe from another node, it will first check if the current simulation time is

higher than the predefined attack starting time. If this is the case, it will do whatever is defined for the

current type of attack to perform. The configuration file, which we mentioned in Section 3.2, contains the

definition of both the attack starting time and the attack type, but also the percentage of attackers.

We next explain the core of our implementation for each attack to achieve their objectives. Firstly,

however, a technique that is common to the five types of attack is the behavior regarding the local

error report. Specifically, if an attacker has a high local error, it may lie and report a low error value.

The objective is to cause the impression of having stable coordinates and maximize their impact on the

computations of the nodes receiving the report. In Algorithm 1, presented and explained in Section 2.2.2,

regarding Vivaldi/Newton’s updating algorithm, we can see that a lower remote error ej results in a higher

sample confidence w (line 1), which will allow for a higher time-step δ (line 4). Consequently, an updating

node receiving these reported values will use a bigger fraction of the force that the attacker is applying

to it (line 5).

Now we present the specifics of each attack:

Inflation Attack: Attacker node lies about having coordinates far away from the origin, which pulls

benign nodes from their correct coordinates. Specifically, when replying to a probe, the node will gen-

erate coordinates with a random direction and positioned further from the origin than any other node.

Consequently, it is an attack on accuracy.
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Deflation Attack: Prevent benign nodes from updating towards their correct coordinates – as such,

this is also an attack on accuracy. To accomplish it, the attacker can report coordinates close to the

origin, or coordinates that make the victim think that it does not have to move, i.e., coordinates that

result in a distance to the victim’s coordinates equivalent to the actual measured RTT. We implemented

this attack according to the former, and again the direction from the origin is random.

Oscillation Attack: Attacker node lies about its coordinates and delays probes up to 1 second, both

in a random way, intending to create chaos in the system. This one is not only an attack on accuracy,

but stability as well.

Frog-Boiling Attack: Another attack on both accuracy and stability. Attacker lies in small amounts,

accumulating a large error over time. At the start of the experiments, before any updates, the attacker

chooses a random direction. Afterwards, it responds to each consecutive probe with fake coordinates

moving along that direction, but just a small amount at a time. Specifically, in our implementation, it

moves 0.25ms between consecutive probes.

Network Partition Attack: Same as the Frog-Boiling attack, but with multiple nodes colluding to-

gether. Pairs of nodes move in opposite directions and colluding attackers are paired randomly at the

beginning, just before the system starts updating. Afterwards, the colluding nodes update each other

with their coordinates, so that they can synchronize and start moving in opposite directions, in the same

way as in the Frog-Boiling attack.

3.5 Split Cluster Attack

This is a new type of attack, inspired by the actions that an entity trying to operate a cluster in a permis-

sionless Blockchain might take, in order to deceive a secure virtual coordinate system trying to detect

and deactivate such a cluster. As such, the main goal of the Split Cluster Attack is to split a cluster

into multiple separate groups in the eyes of the rest of the network. It is performed by the nodes in

the referred cluster, which will cooperate and lie to the remaining nodes in the network, i.e., the benign

nodes.

We model an advanced attacker with insider knowledge about Newton’s protocols and defense mech-

anisms, which can leverage that knowledge regarding the calibration of security parameters. Given that

Newton is supposed to guard against this level of attacker [4], we set the goal of trying to separate the

previously mentioned cluster into multiple groups to the extent possible. In other words, even if it is not

possible to fully deceive the system and convince that the cluster nodes are blended with the rest of the

network, we want to at least minimize the perceived level of clustering of the nodes under control of the

attacker.

Our approach was devised while taking into account the security invariants of Newton, and therefore

we try to surpass these one by one. In particular, there are three security invariants that Newton tries

to validate, and that consequently need to be circumvented by our strategy. With this in mind, we next

explain the design of this attack strategy, and what it does to deal with each of the invariants:

IN1: First, we want to take into account IN1, which detects erroneous behavior by checking if the
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centroid moves away from the origin of the geometric space. Consequently, to dodge detection, the

attackers need to avoid moving the centroid, and for that, our design for this attack will start by using the

same base ideas as the network partition attack: splitting the cluster, with its nodes slowly getting their

coordinates far away from each other, in opposite directions.

IN2: To allow the attackers from the cluster to get around this invariant, the cluster have to be isolated

from the rest of the network or at least positioned far enough to avoid its nodes to be selected as close

neighbors of any of the benign nodes in the network, since IN2 is only tested for low RTT neighbors.

IN3: Lastly, the third security invariant, IN3, checks if the forces in the system decrease over time.

To overcome this invariant, the idea is for the attackers to keep the forces they are applying to benign

nodes under the deviation threshold of IN3. Since a strategy along the lines of the network partition

attack is being used, the attacker will deviate its coordinates from their real position, lying by small

increments at a time. Additionally, we will have the attacker decrease the fake increment proportionally

to the median magnitude of the force (which is explained in Section 3.3.2 under IN3) applied by the

neighbor set of some node. Mainly, this allows the force introduced in the system and applied to another

node by the wrong reports (the small increments) over time to be proportional to the IN3 threshold,

which determines when to ignore an update that tries to apply a force higher than the maximum defined

in each time instant. Specifically, each attacker will simply compute its median force and use it as a

reference.

In Figure 3.1, we present the median magnitude of force applied to a single node over time, in a benign

setting, which we will analyze to understand how to dodge the IN3 most effectively. The grey area in

Figure 3.1(a) is defined by the error, in the form of the median absolute deviation, and in Figure 3.1(b) the

allowed deviation, where the upper bound is the threshold tr that IN3 uses to detect malicious updates

coming from randomly selected neighbors. It is equal to 5×D, where D is the median absolute deviation

and 5 is the number of deviations allowed defined for IN3 for randomly selected neighbors.

(a) Median Absolute Deviation (b) Random IN3 Threshold - 5 Median Absolute Deviations

Figure 3.1: Median Magnitude of Force

As the execution starts, all nodes have their virtual coordinates in the origin and will begin updating

them, with bigger movements at first, and then, when approaching the correct location, with smaller and

smaller movements just to refine the coordinates. We can verify in Figure 3.1 that the curve decreases
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over time, with the biggest drop in the median magnitude during the first 400 seconds. Regarding the

median absolute deviation, it also decreases over time, as shown in Figure 3.1(a), and consequently,

the allowed deviation from the median magnitude, shown in Figure 3.1(b), gets smaller over time too,

with the upper bound of the grey area getting closer and closer to the curve of the magnitude, which

leaves an ever smaller margin for introducing extraneous forces into the system. This implies that it gets

harder and harder to push the coordinates from their real position before benign nodes start ignoring

the updates. Concluding from this brief analysis, our design for this attack takes advantage of the

higher force magnitude allowed by the IN3 threshold at an early stage of execution, and, for maximum

efficiency, this attack must be performed from the beginning of the system’s execution, or at least from

the beginning of the execution of the specific target nodes.

In summary, the attackers will be forming a cluster positioned far enough from the rest of the network,

to avoid that any of its nodes are selected as close neighbors of the nodes outside the cluster, excluding

this way the IN2 checks against these nodes updates. They will start to lie to the benign nodes from the

start of the execution when the IN3 threshold is more tolerant, as we saw in Figure 3.1, and the attack

consists essentially in the Network Partition behavior, where the colluding attackers avoid moving the

centroid of the network (IN1 weakening), but with a dynamic value for the small fake increments, which

will decrease over time to avoid detection from IN3. With all these provisions in place, the attack should

be able to disguise the physical clustering and/or reduce the virtual coordinate system’s performance,

mainly accuracy.

In Section 4.5 we will iterate over these ideas and gather results showing what this strategy can

accomplish against the security mechanisms of Newton. Specifically, we will start by showing if the

attack can indeed deal with the different invariants, with the approaches explained in this section, and

then verify if this attack strategy is effective against Newton.
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Chapter 4

Measurements and Results

In this chapter we present the results of our experimental evaluation of the proposed attack strategies,

and of the overall effectiveness of Newton as a safeguard against certain types of Sybil attacks against

blockchain networks. We start by describing the experimental setup and the main metrics used in

Section 4.1. In Section 4.2, we demonstrate the comparison between the results of tests performed

in [4] by the creators of Newton and the results of those same tests recreated by us, in order to validate

our code. Afterward, and to prepare for our experiments, we present in Section 4.3 our procedures on the

preparation of the latency data, i.e., the network, we use. Sections 4.4 and 4.5 present our experiments,

results, and analysis while trying to find weak points on Newton’s protocol. Especially regarding attack

strategies performed by attackers that form a cluster. Finally, in Section 4.6 we present a summary of

the evaluation done in this chapter.

4.1 Experimental setup and metrics

Newton’s code is executed in each node individually, without the need of any central nodes for coordi-

nation of the algorithm, which complies with the decentralization characteristics we want for our VCS

system. Regarding our choices for the system parameters, as in [3] and [4], each node picks 64 neigh-

bors, with half being low RTT nodes and the other half random nodes. In addition, Seibert et al. have

shown in [4] that the following values can be used in any Internet-wide deployment, and so we used

them while configuring Newton: IN1 threshold 20 ms, IN2 threshold 35 ms, five deviations for random

neighbors and eight deviations for close neighbors regarding IN3 thresholds.

In all simulations, we use a Euclidean Coordinate Space with two dimensions, as we had already

mentioned in Section 3.3.1, where all nodes join in the beginning in a flash-crowd scenario and continue

until the end of the execution. Every node is constantly selecting a new node from its neighbor set to

which to send a probe, and consequently receive an update in its reply. A probe is sent by each node

every 2 seconds, unless otherwise stated, and every node has only one pending probe at a time.

Regarding the main metrics we use to analyze the experiments, we have the Prediction Error to help

us visualize the accuracy of the system and the Velocity for the stability. Accuracy and stability of the
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system go up when prediction error and velocity go down, respectively.

• Prediction Error of the system is computed in three levels. Specifically, it is the median of all the

errors of each node. In turn, the error of each node corresponds to the median of the link errors

involving that node. Lastly, the error of a link, which is a virtual connection between two nodes,

follows Equation 4.1, where RTTactual is the real RTT between two nodes, and RTTprediction is the

distance between the virtual coordinates generated by each node ( ||xj − xi|| for nodes i and j ).

pred error = |RTTactual −RTTpredicted| (4.1)

• Velocity is given by Equation 4.2, where 4x refers to the distance that some node travels, and t is

the time taken to make that distance. The system’s velocity is computed as the average velocity of

all the nodes, and we calculate it for different time instants.

v =
4x
t

(4.2)

4.2 Validation

We begin by reporting the set of experiments that validate our implementation of Newton and the know

attacks in virtual coordinate systems. This is important to validate the quality of our implementation and

to check the correctness of the components of this work.

The first type of validation was unit testing. As we were developing the code, we wrote and ran unit

tests for our methods/functions in an incremental way, trying to guarantee the correctness of the building

blocks of more complex behavior, until we end up with Vivaldi implemented. (As explained in Section 3.3,

we first implemented Vivaldi and then the security invariants that turn it into Newton.)

After finishing the implementation of the Vivaldi algorithm, we created a small network that allows

us to visualize the behavior of the VCS, and check if it was working properly. In Figure 4.1 we have

the geometric representation of the original network we created, with only 15 nodes, where each node

chooses a neighbor set with 8 elements, and the distances between the various coordinates are in-

tended to represent the RTTs between nodes. Then, in Figure 4.2, we present the output of Vivaldi at 3

different points in time. Figure 4.2(a) shows the system’s starting point, with all nodes in the origin of the

Euclidean space, as all the nodes join the network at the beginning of the experiment in a flash-crowd

scenario. Figure 4.2(b) presents a subsequent point in time, where the coordinates are being updated

but the system has not stabilized yet. Lastly, in Figure 4.2(c) we show the representation of the network

after the coordinates of the nodes stabilize. Regarding the accuracy of the system, we achieved a pre-

diction error of 122.0 ms when the simulation starts, 50.76 ms at the time of Figure 4.2(b), and 0.58

ms in Figure 4.2(c). Regarding the prediction error obtained when the virtual coordinates stabilize, we

consider that it represents a good accuracy from our implementation of Vivaldi. In particular, when we

look at both the original coordinates and the ones generated by Vivaldi, we can easily identify the same

3 groups of nodes ([1 - 6, 10 - 14], [0, 8, 9], and [7]) in both. The only node that misses its location,
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relative to the other nodes, in the geometric representation is number 4, and there are slight differences

in the distances between the 3 groups, which are all explained by the fact that the network has 15 nodes

but the neighbor set of each one has 8 nodes to update with. This highlights an intrinsic characteristic

of Vivaldi, as it is not feasible for every node to update with every other node in the network.

Figure 4.1: Original network geometric representation

(a) Beginning (b) Mid-progress (c) Stabilized

Figure 4.2: Vivaldi generated geometric representation

The next step is to validate the complete implementation of Newton, now with the security invariants,

and to verify if our implementation of the attacks has the intended effect on the VCS system. For

that, we recreate the simulation tests done in [4], to which we compare our results. In order to have

the same conditions as the authors, we first had to take into account the latency data used by them,

which they obtained from the King data set [37], containing pairwise measurements between 1740

nodes, with an average RTT of 180ms and a maximum RTT of 800ms. Hence, we used the King

data set as well. Additionally, the malicious nodes only start their attacks after the system stabilizes, at

about one third of the time, and we vary their percentage in the network between 10% and 30%, just

like the authors have also done. We present our results and the results obtained in [4] for the same

experiments in Figures 4.3 through 4.7, which show the accuracy, represented by the prediction error

of the system, for different attack scenarios. This prior set of results includes Newton and Vivaldi under

various attacks, Vivaldi under no attack1 serving as a baseline, and, specifically in the data from [4] (a

and c), an OutlierDetection curve that is not relevant for our work and we just ignore it. Furthermore, for

each attack scenario we show the case for 10% of the nodes being attackers (a and b) and for 30% (c

and d), where the attackers are chosen randomly from all nodes.
1Represented as NoAttack
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We now compare the results from our implementation with the previously published results, focusing

on three main points:

• We first make a comparison between our baseline and theirs (NoAttack ), which behave similarly,

both stabilizing with a prediction error below 20 ms, concretely in our results around 16 ms. This

can be verified, for instance, in Figure 4.3(a) and Figure 4.3(b).

• Secondly, we validate our implementation of the five attacks. To this end, we analyze the effects

that the different attacks have on the accuracy of the system with nodes running the insecure

Vivaldi. The way accuracy reacts and changes when the system is under attack lets us know if our

implementations of the attacks (b and c) has the intended behavior shown in the results from [4]

(a and b). Additionally, when comparing these results, we can spot some differences in some of

the prediction error values between them. We hypothesize that these are due to minor differences

in the configuration of the system, and possibly in the attacks and the simulations between us and

Seibert et al. [4], as well as the use of different simulators (P2PSim 2 vs Corten [5]). However, the

results validate the quality of our implementation, since we are mainly interested in the trend of the

accuracy curve, and not so much in smaller deviations from the exact values obtained in [4].

Inflation Attack : Figure 4.3 shows the accuracy under an inflation attack. We can see that, in

both cases, the prediction error of Vivaldi rapidly increases after the attack has started and then

remains almost constant for the rest of the time. Additionally, it gets higher with the increase in the

percentage of attackers.

Deflation Attack : This attack have a smaller impact on Vivaldi than the inflation attack, as is the

case for both us in Figure 4.4(b) and 4.4(d), and Seibert et al. in Figure 4.4(a) and 4.4(c). Once

again, the prediction error increases with the increase of attackers.

Oscillation Attack : In Figure 4.5 we have the accuracy under the oscillation attack, and we can

make the same observations as in the inflation attack results, simply with slightly lower prediction

errors.

Frog-Boiling Attack : As one of the advanced slow attacks, as explained in Section 2.3.1, this

has a slow but constantly increasing impact on the accuracy of Vivaldi. When comparing Fig-

ure 4.6(a) and 4.6(c) to Figure 4.6(b) and 4.6(d), respectively, we observe a similar increase of the

prediction error, with the exception of a higher increasing rate of our prediction error in the scenario

with 10% attackers.

Network Partition Attack : The exact same comparison as the one we made for the frog-boiling

attack is valid here. The only slight difference is a smaller increasing rate of the prediction error.

The results of the different systems under network partition attack are showed in Figure 4.7.

The conclusion from these comparisons is that we believe that our implementation of the five

attacks is correct and, since it displays the intended behavior when trying to degrade the perfor-

mance of the system.

2https://pdos.csail.mit.edu/archive/p2psim/
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• Lastly, we want to highlight that, just as in the original implementation [4], our implementation of

Newton is able to successfully mitigate the five attacks while providing good performance for both

percentages of attackers. Specifically, it can keep the error low and match the baseline prediction

error (NoAttack ), with a value around 16 ms in both the original and our tests, even after the attacks

start.

(a) [4] - 10% attackers (b) Our - 10% attackers (c) [4] - 30% attackers (d) Our - 30% attackers

Figure 4.3: Accuracy - Simulation results from [4] (a, c) and from our implementation (b, d), under the
Inflation Attack

(a) [4] - 10% attackers (b) Our - 10% attackers (c) [4] - 30% attackers (d) Our - 30% attackers

Figure 4.4: Accuracy - Simulation results from [4] (a, c) and from our implementation (b, d), under the
Deflation Attack

(a) [4] - 10% attackers (b) Our - 10% attackers (c) [4] - 30% attackers (d) Our - 30% attackers

Figure 4.5: Accuracy - Simulation results from [4] (a, c) and from our implementation (b, d), under the
Oscillation Attack

(a) [4] - 10% attackers (b) Our - 10% attackers (c) [4] - 30% attackers (d) Our - 30% attackers

Figure 4.6: Accuracy - Simulation results from [4] (a, c) and from our implementation (b, d), under the
Frog-Boiling Attack
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(a) [4] - 10% attackers (b) Our - 10% attackers (c) [4] - 30% attackers (d) Our - 30% attackers

Figure 4.7: Accuracy - Simulation results from [4] (a, c) and from our implementation (b, d), under the
Network Partition Attack

4.3 Network Setup

As mentioned in Section 3.2, the Corten Simulator [5] will need a matrix of inter-host internet latencies

of the network in the simulations. The data sets used by most wide-area simulations are outdated, given

that several years passed after their creation, as is the case of the King data set [37], one of the most

used data sets in virtual coordinate systems experiments from the past several years. For that reason,

we use a data set containing pairwise measurements of latencies taken from 226 PlanetLab nodes,

which was used by the authors of Corten in 2019.

Additionally, there are two relevant points to address, the dimension, or the number of nodes, of the

network and the creation of the cluster that will be performing the attacks, as explained in Section 3.1.

Hence, we describe our procedure next.

Procedure

We want to create and modify a network to use in our simulation environment, and as we said above,

we use the data set of the 226 PlanetLab nodes. However, this data set contains the measurements of

latencies between the nodes, but in order to use the network represented by this dataset as a basis and

modify it, we need to obtain a geometric representation of these 226 nodes. For this, and having already

validated the implementation of Newton [4], we used it to generate a geometric representation from the

latency matrix (data set), and thus obtain coordinates for the 226 nodes.

Dimension: As a 226 node network would not be very relevant in the context of blockchain today,

due to having a small number of nodes, we have expanded the network to obtain a network with a

minimum 3 of 1000 nodes and thus have more relevant results in our experiments, which are presented

in Section 4.4 and Section 4.5. To this end, for each node in the original network, a number n of co-

located new nodes were created. With n being determined by Equation 4.3, where threshold is the

minimum number of nodes we want for the network (before adding the cluster of malicious nodes), and

current num nodes is the current number of nodes of the network being expanded.

n = d threshold− current num nodes

current num nodes
e (4.3)

3It will have more nodes when the cluster is created.
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In the particular case of the experiments of our evaluation, solving the Equation 4.3, we have

n = d 1000−226
226 e = d 774226e = d3.42e = 4, where threshold = 1000 and current num nodes = 226, and

consequently we added 4 nodes near every one of the 226 nodes, with random directions.

Cluster: Regarding the creation of the malicious cluster, we wanted to get a generic way to position

it, allowing for increasing its isolation as it gets further away from the rest of the network. The procedure

we describe next allows us to do just that, by systematically controlling the way we create and position

the cluster relative to the rest of the network. We present Figure 4.8 as a visual representation, aimed

at helping understand the procedure.

• Input values: the percentage of nodes of the network that belong to the cluster, and the distance

between the cluster and the convex hull of the rest of the network. In particular, these two vari-

ables allow us to characterize the cluster for the different experiments we run in Section 4.4 and

Section 4.5.

• Compute the convex hull of the set of nodes in the network4. In Figure 4.8(b) the contour of the

green shadow is the convex hull, which is the smallest convex set that contains all the nodes in

the network, and the algorithm used to compute it was QuickHull, since it is the one implemented

in the library geo 0.14.2 5 from Rust, the programming language we used. The use of the convex

hull is relevant mainly for the next step, where we compute the position of the cluster.

• The vector from the centroid of the network to its closest point on the convex hull gives us the

direction in which we move the cluster (Figure 4.8(c)). Along this direction, we position the cluster

outside the convex hull, with a pre-defined distance away from it. This distance, as implied above,

is chosen according to different scenarios.

(a) Network (b) Convex Hull (c) Direction to move cluster

Figure 4.8: Cluster creation and positioning

• Finally, the nodes in the cluster are created and positioned randomly around the previously com-

puted location. The number of nodes in the cluster, represented by m, can be computed by solving

f = m
m+b , where b is the number of benign nodes (nodes in the network excluding the ones from

the cluster) and f is the percentage of nodes from the network that belong to the cluster, which

4Network after adding co-located nodes.
5https://docs.rs/geo/0.14.2/geo/algorithm/convexhull/trait.ConvexHull.html#tymethod.convex hull.
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are known a priori. Equation 4.4 shows how to compute m, allowing us to know how many nodes

to create for the cluster.

f =
m

m+ b

m = fm+ fb

m(1− f) = fb

m =
fb

1− f

(4.4)

Finally, after extending the network and adding the cluster, we generate the matrix of latencies be-

tween all nodes. To do that, the important thing to know is that computing the latency between two nodes

corresponds to calculating the distance between the corresponding coordinates and then divide it by 2.

The reason for that, as explained in Section 2.2.2, is that the distance between two nodes represents

an estimate of the RTT between the nodes, and the Corten Simulator assumes that each latency in the

matrix is the one-way communication time between two nodes.

4.4 Existing Attacks

In this section, we evaluate the impact that known attacks to VCS have when performed by a cluster of

attackers (representing an adversary flooding the network with nodes under its control), and varying the

distance between the cluster and the rest of the network. This focus on an isolated cluster is in contrast

with the scenario of randomly disperse attackers, which is the type of attack tested by Seibert et al. [4],

and by ourselves in Section 4.2. In other words, we are evaluating existing attacks, but using a novel

configuration for the set of nodes controlled by the attacker.

All the experiments in this section run for approximately 1.4× 107 ms, unless stated otherwise, and,

unlike all the previous simulations, we now set the time between probes to 2500 ms. The reason for

this is that the maximum RTT of the network we set up in Section 4.3 was 1408.25 ms and, during the

oscillation attack, attackers can delay probes up to one second, thus increasing the maximum RTT to

2408.25 ms. Hence, to have the same configuration across all the different attack scenarios, probes are

sent every 2500 ms in every experiment of this section.

We vary the percentage of nodes from the network that are attackers between 10% and 30%, as in

the previous section. We create the network as explained in Section 4.3 and, before adding the attacker

nodes, the network has 1130 nodes, with a subsequent total of 125 attacker nodes in the 10% scenario

and 484 attackers nodes in the 30% scenarios being added. The former will result in a total of 1255

nodes, and the latter in 1614 nodes.

We first try to understand the effect of cluster isolation on the effectiveness of the attacks. To this

end, we test each attack on different topologies, varying the distance from the cluster to the convex hull

of the rest of the network, more concretely, using 50ms and 500ms. Additionally, we run simulations
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where randomly distributed attackers perform the attacks. When analyzing the results for each attack,

we present and compare the system’s accuracy for these different scenarios. As a baseline for each

attack, we present the accuracy when no attack is performed. This results in four accuracy curves over

time, which are labeled as NoAttack, Random, Cluster50 and Cluster500.

We now present the results of the experiments for each of the different attacks, where each one

starts at 4, 000, 000 ms, allowing the system to stabilize first:

Inflation Attack : To report fake coordinates far away from the origin, an attacker randomly chooses

a distance between 900 and 1000 ms, which is far enough from the origin to be beyond every correct

node in the network. Observing Figures 4.9(a) and 4.9(c), we realize that the cluster scenarios have

less impact on the virtual coordinates than the random one. Hence, it is of no surprise that Newton

is able to keep the prediction error matching with the baseline, since the cluster, even far away, has

no advantage over the randomly distributed attackers, which we had already seen in Section 4.2 that

Newton could withstand. This is because, regardless of the positioning of the attackers, the unbalanced

forces introduced in the system during the attack, displace the centroid and allow Newton to detect the

attack through IN1 (Figures 4.9(b) and 4.9(d)).

Deflation Attack : In this attack, to report coordinates close to the origin, the distance to it is randomly

chosen between 0.1 and 1.0 ms. When analyzing Figures 4.10(a) and 4.10(c), we observe that when

the attack starts, the prediction error of the system (using Vivaldi) rapidly peaks when under the attack

of the cluster at 500 ms of distance, with higher values than with the random attackers. However, even

without the security mechanisms, Vivaldi is able to match the baseline prediction error in the cluster

scenarios. We can see in Figures 4.10(b) and 4.10(d) that Newton is able to successfully mitigate the

attack once again.

Oscillation Attack : As we explained in Section 3.4, an attacker not only lies about its coordinates but

also delays probes by up to 1 second. Regarding the coordinates reported, it randomly generates fake

coordinates between 0.1 and 1000 ms of distance to the origin in any direction. Just like in the inflation

attack, the cluster attackers have a smaller impact than the random attackers on the system’s accuracy,

as can be seen in Figures 4.11(a) and 4.11(c). Once again, as in the previous attacks, Newton is able

to match the baseline accuracy in all scenarios, as shown in Figures 4.11(b) and 4.11(d), which we

attribute to the IN3 ability to detect when forces do not decrease over time.

Frog-Boiling Attack : As we mentioned in Section 3.4, the small deviations that the attacker reports

in each update have a length of 0.25 ms. Figure 4.12 presents the prediction error of the system under

the frog-boiling attack. When there are 30% of attackers, we can see in Figure 4.12(c) that the cluster

eventually starts degrading accuracy more than the random attackers, which had not been the case in

the other attacks. However, and regardless of the scenario, the attackers are not able to prevent Newton

from reaching stable and accurate coordinates.

Network Partition Attack : Like in the Frog-Boiling attack, the small inaccuracies that the attacker

reports in each update that is sent increment its fake coordinates by 0.25 ms. In Figure 4.13 we have

the accuracy results, which allow us to see, when Vivaldi is under attack, that the network partition attack

has an even slower impact than the frog-boiling attack, even though both attacks are considered to be
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slow attacks. Newton is still able to protect against the network partition attack, even without relying so

much on IN1, since colluding attackers avoid moving the centroid.

(a) Vivaldi - 10% attackers (b) Newton - 10% attackers (c) Vivaldi - 30% attackers (d) Newton - 30% attackers

Figure 4.9: Accuracy - Inflation Attack

(a) Vivaldi - 10% attackers (b) Newton - 10% attackers (c) Vivaldi - 30% attackers (d) Newton - 30% attackers

Figure 4.10: Accuracy - Deflation Attack

(a) Vivaldi - 10% attackers (b) Newton - 10% attackers (c) Vivaldi - 30% attackers (d) Newton - 30% attackers

Figure 4.11: Accuracy - Oscillation Attack

(a) Vivaldi - 10% attackers (b) Newton - 10% attackers (c) Vivaldi - 30% attackers (d) Newton - 30% attackers

Figure 4.12: Accuracy - Frog-Boiling Attack

Stability: We have just seen the accuracy results obtained by Newton under all the different attacks

we consider, and how it is able to match the baseline accuracy and maintain it over time. Thus, it is of no

surprise that we learn from Figure 4.14, Figure 4.15 and Figure 4.16, that it obtains stable coordinates,

which are represented by a small velocity value close to 0. The stability results are only presented for the

oscillation, frog-boiling and network partition attacks, as these are the attacks that also intend to disrupt

stability, in addition to accuracy. When comparing the impact of the frog-boiling and network partition

attacks over Vivaldi, we observe that the cluster attackers have a higher impact on disrupting stability
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(a) Vivaldi - 10% attackers (b) Newton - 10% attackers (c) Vivaldi - 30% attackers (d) Newton - 30% attackers

Figure 4.13: Accuracy - Network Partition Attack

than the random attackers during the frog-boiling attack, whereas the opposite happens in the network

partition attack. However, Newton can deal with both. Additionally, we present the zoomed-in velocity

axis for the three attacks, which highlights that, in all scenarios, Newton reaches velocity values with

minor, almost insignificant deviations from the baseline.

(a) Vivaldi - 30% attackers (b) Newton - 30% attackers (c) Newton - 30% attackers
(zommed in)

Figure 4.14: Stability - Oscillation Attack

(a) Vivaldi - 30% attackers (b) Newton - 30% attackers (c) Newton - 30% attackers
(zoomed in)

Figure 4.15: Stability - Frog-Boiling Attack

(a) Vivaldi - 30% attackers (b) Newton - 30% attackers (c) Newton - 30% attackers
(zommed in)

Figure 4.16: Stability - Network Partition Attack

Start Attack from Beginning: In an attempt to make the attacks more effective against Newton, we

ran each one of them from the beginning of the system execution, with 30% of attacker nodes in the
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network. We present the prediction error results of these experiments in Figures 4.17 and 4.18, which

run for 2.5 × 107 ms, unlike all the previous experiments in this section. This is to give enough time for

Newton to stabilize, since, when nodes are attacked when not yet near their correct positions, they will

take longer to stabilize, due to the number of (malicious) updates ignored. As we can observe, Newton

mitigates all five attacks. The main observation is that during the network partition attack, the system

takes longer to match the baseline accuracy, specifically in the random attacker scenario.

(a) Inflation (b) Deflation (c) Oscillation

Figure 4.17: Accuracy - Newton with 30% of attackers. Simple attacks from beginning.

(a) Frog-Boiling (b) Network Partition

Figure 4.18: Accuracy - Newton with 30% of attackers. Advanced attacks from beginning.

Summing up from the results obtained in this section, we observe that the defense mechanisms of

Newton are strong enough to mitigate not only the known attacks performed by random attackers but

also by attackers forming a cluster, even if isolated from the rest of the network. In fact, the cluster

attackers were less effective than the randomly distributed ones. We attribute this to the fact that half of

the neighbor sets are composed of close (low RTT) neighbors. An isolated cluster, sufficiently distant to

avoid its nodes from being chosen as close neighbors, will consequently reduce its influence over the

network, since fewer of its attacker nodes will be neighbors (reference nodes) of the benign nodes.

4.5 Split Cluster Attack

Unlike in the experiments from the previous section, in this attack, nodes send a probe every 2 seconds

because this is enough to allow for one pending probe at a time, since the max RTT in the network

(Section 4.3) is 1408.25 ms and attackers do not delay probes in this attack scenario.
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As we explained in Section 3.5, the rationale behind the split cluster attack and how we intend to

avoid each one of the three security invariants is as follows:

For IN1, which is looking out for the displacement of the centroid of the network, the approach is to

minimize the deviation of the centroid by adopting the core behavior of the network partition attack, with

colluding nodes counter-balancing and canceling the extraneous forces introduced in the system by their

lies.

Regarding IN2, we obtained the total number of close neighbors of benign nodes that are attackers, for

the network used in our simulations, as follows:

• 10% Attackers:

– Randomly distributed attackers: 1446

– Cluster at centroid of network: 210

– Cluster at 50 ms: 0

– Cluster at 500 ms: 0

• 30% Attackers:

– Randomly distributed attackers: 3797

– Cluster at centroid of network: 244

– Cluster at 50 ms: 0

– Cluster at 500 ms: 0

As we can see, comparing the random scenarios with the cluster ones, in the former, there are signifi-

cantly more close neighbors of benign nodes that are attackers, than in the latter. We are interested in

the scenarios where this number is as low as possible, because IN2 is only verified for updates coming

from close neighbors, and, in the case of the network we are using for the simulations, there are no

nodes from the cluster being chosen as low RTT (i.e., close) neighbors when it is at least at 50 ms away

from the convex hull of the rest of the network.

Lastly, we have IN3, which, at this point, is the last line of defense of Newton, as we witness in Figure 4.19

with results from the scenario where the cluster is at 50 ms. We observe that, under the network partition

attack, Newton is unable to identify malicious updates from the nodes of the cluster, with IN1 and IN2

active (curve IN1 + IN2). However, with only IN3 active (curve IN3), it keeps the Prediction Error of the

system low.

To deal with IN3, as explained in Section 3.5, we produce small lies that push the coordinates of an

attacker slowly away from its correct position and decrease over time, making the force generated by

these fake movements remain below the IN3 threshold in benign nodes. To analyze the effect of the

attack after its completion, we present the results for accuracy of our experiments in Figure 4.20, where

we varied the percentage of attackers between 10% and 30%. Serving as a baseline is the prediction

error curve of a simulation of Newton under no attack, then a curve that resulted from the scenario where

the attackers are randomly distributed around the network, and finally the prediction error curves for the
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Figure 4.19: Network Partition - Cluster at 50 ms with 30% attackers

scenarios with the attackers forming a cluster, whose distance to the rest of the network convex hull was

varied between 50 ms and 500ms.

We first observe that in order for the attack to be effective, the attackers must represent at least

30% of the nodes in the network, since we have a clear increase of the error in Figure 4.20(b), but not

in Figure 4.20(a). In fact, Newton was able to maintain the accuracy of the system during the three

scenarios of attack (random, cluster50, cluster500), matching the accuracy of the benign scenario, with

10% of attackers. For 30% of attackers, we can see in Figure 4.20(b), that randomly distributed attackers

have no significant impact on the system’s accuracy, and once again Newton is able to match it with the

accuracy of the benign setting. On the other hand, we observe that the curves for the cluster scenarios

have an increase, with Cluster50 reaching around the double of Cluster500, at around 50ms and 25ms

of error, respectively. Regarding the reason that makes the attack successful when performed in the

cluster scenarios, but not in the random one, this is related to the detection of malicious updates by IN2.

Specifically, the attackers are isolated and distant enough so that the remaining nodes in the network

do not choose any of them as close neighbors, and consequently do not even run the IN2 check on

their updates. In contrast, randomly positioned attackers around the network have a lot of their updates

checked by the IN2, as they are selected as close neighbors quite often, as we said earlier in this section.

As we mentioned in Section 3.5, the attack must start right from the beginning of the system ex-

ecution, because of the higher tolerance of IN3 to the forces applied between nodes. In Figure 4.21,

we have the accuracy of the system when performing this attack after the system has stabilized, at

4000 seconds, which shows no significant impact. Looking at the Figure 4.21(b), where we zoom in

the prediction error axis, we can notice where the attack starts, but the prediction error peaks after an

insignificant increase of less than 0.1 ms, then it starts decreasing and stabilizes with an insignificant

difference of around 0.04 ms above the accuracy of the system under no attack.

A noteworthy aspect of this evaluation is the following: in prior work [4], the authors say that Newton

can avoid significant degradation of its accuracy until the system reaches 50% of attacker nodes. In

this thesis, however, we just presented an attack strategy where Newton’s security invariants cannot

provide enough protection to allow for accurate coordinates, accomplishing that with a minimum of 30%

attackers.
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(a) 10% Attackers (b) 30% Attackers

Figure 4.20: Split Cluster Attack - Accuracy

(a) 30% Attackers (b) 30% Attackers (Zoomed in)

Figure 4.21: Split Cluster Attack - Accuracy with attack starts at 4000 seconds
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4.6 Summary of Evaluation

To close this chapter, we summarize the main observations from the experiments we have conducted.

We first validated our implementation of Newton and the known attacks on VCS systems, and prepared

the latency data, i.e., the network, to use in our experiments. Afterward, we evaluated Newton under

the known attacks (inflation, deflation, oscillation, frog-boiling and network partition attacks) but in a

novel scenario, which to the best of our knowledge has not been tested before, where attackers form a

cluster at different distances from the rest of the network. We also tested Newton against a new attack

strategy we designed, called Split Cluster Attack. After analyzing the experimental results, we reached

the following conclusions:

Newton is able to mitigate all the attack scenarios presented in Section 4.4, even matching the

baseline accuracy, what takes us to confirm that it is a reliable Virtual Coordinate System even under

attack. However, we managed to disrupt its security with our Split Cluster Attack, which design we

explained in Section 3.5. As can be seen in Section 4.5, for the attack to be effective, the cluster

of attackers must represent at least 30% of the network, it must be performed right from the start of

Newton’s deployment, and the cluster must be at a minimum distance that prevents the honest nodes

from choosing attacker nodes as close (low RTT) neighbors. This implies that Newton is less robust than

previous studies suggest in attack scenarios for blockchain systems. That said, it is still an important

first line of defense that could be useful in practice.
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Chapter 5

Conclusion

In this thesis, we highlighted the current lack of decentralization in blockchain systems, and how in order

to minimize the odds of selecting a majority of nodes under the control of a malicious attacker (who can

use that majority to subvert the system), one crucial property is the diversity of participants contributing

to the blockchain. With that in mind, we build on the concept of virtual coordinate systems, which model

networks as geometric spaces, attributing virtual coordinates to each node in this space. These virtual

coordinates allow for efficient estimation of latency between nodes in the network. A central observation

of this thesis is that we could increase the diversity in blockchains by embedding virtual coordinates in the

overlay of the blockchain and choosing geographically diverse nodes for contributing to the blockchain.

These virtual coordinate systems need to be robust and resilient to attacks, and therefore, in our

work, we started by making a comparative review of various decentralized Virtual Coordinate Systems,

with the goal of understanding which one seems to be the most complete and secure. As a result of this

review, we selected Newton as the one we believed most capable.

We showed, through various simulations, that Newton is indeed very robust even when under attack,

being able to mitigate all the attacks presented in Section 4.4, including the cluster attack scenarios we

devised.

Another contribution of this work is the Split Cluster Attack, which we designed with inside knowl-

edge about Newton’s protocol. This attack strategy is able to disrupt Newton’s prediction accuracy. In

particular, the nodes from the cluster performing the attack are able to deceive the remaining nodes

from the network into thinking that they (the attackers) are split across different groups. This is, to our

knowledge, the first negative result that is presented in the context of Newton, given that the original

paper only mentions the ability to cope with advanced attackers that leverage insider knowledge about

calibration-specific parameters used by the algorithm [4].

For the Split Cluster Attack to be effective, the cluster of attackers must represent at least 30% of

the network, it must be performed right from the start of Newton’s deployment, and the cluster must

be at a minimum distance that prevents the honest nodes from choosing attacker nodes as close (low

RTT) neighbors. However, all these requirements reduce the number of occasions when attackers

could perform the attack. In particular, the need to start the attack from the beginning of the system’s
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execution can be a substantial barrier. Consequently, despite having created an attack strategy capable

of degrading Newton’s performance significantly, we still believe, from the remaining experiments done

in this thesis, that Newton is suitable and robust enough to be useful when deployed on a blockchain

system.

5.1 Future Work

A promising avenue for future work is to design a modification for Newton, in order to optimize it and make

it also resilient to the Split Cluster Attack. Additionally, another possibility is to run the scenarios tested in

this work in a real implementation. In particular, the main avenue for future work resides in incorporating

Newton [4], as a virtual coordinates algorithm, in the blockchain source code. This would require building

an overlay between nodes (or adapting the existing overlays used by the blockchain) and embedding

virtual coordinates for the nodes in that overlay, which could allow for topology-awareness, and from

there enforcing greater diversity of participants in the blockchain network by choosing geographically

diverse nodes. With this purpose, either Bitcoin [7] or Ethereum [8] could be used as a representative

blockchain system where to implement the Newton algorithm, as they are two of the most popular

blockchain systems at this time and have a large amount of documentation available. Subsequently,

an evaluation of the blockchain will compare a baseline version, where no VCS was applied, with the

result of the blockchain system with Newton incorporated. Even though this evaluation might be less

exhaustive due to the greater difficulty in running real-world experiments, it would still be relevant to

evaluate both the resilience to attacks and the overheads that are introduced by our techniques.
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