
An edge-based smart network monitoring
system for the Internet of Vehicles

Pedro Manuel Augusto Ferreira
Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Email: pedro.m.a.ferreira@tecnico.ulisboa.pt

January 2021

Abstract—Internet of Vehicles is the future of transportation.
It will be present everywhere and will have a huge impact on
our lives. Notwithstanding, there are plenty of aspects to take
into consideration while studying these networks, such as: data
dissemination, cybersecurity threats and vulnerabilities. For the
network to work efficiently, data has to be able to spread through
the network efficiently, therefore, to tackle the data dissemination
problem, a cluster-based routing algorithm was developed, R-
privo. Which, uses a machine learning clustering algorithm as
well as a routing algorithm based on social relationships between
nodes. The R-privo, as shown by its performance in simulations,
obtains high delivery rates with low overhead. Besides, due to
the amount of data needed for the IoV, it also requires a good
cooperation between nodes. In this sense, a misbehaving node
might have a huge impact on network performance. In light
of the above, a deep learning based monitoring system that is
capable of detecting anomalies in the network and identify known
misbehaviours was implemented. The monitoring algorithm is
capable of identifying the sybil attack and the id spoofing attack
with a high success rate, 68% and 95% for the sybil respectively.
Besides, the algorithm was also built capable of detecting other
misbehaviours without labelling them.
Keywords: Internet of Vehicles, Machine Learning,
Clustering, Deep Learning, Network Monitoring

I. INTRODUCTION

The Internet of Vehicles (IoV) aims to fully use the in-
formation and communication technologies for achieving the
coordinated development of human, vehicle, and environment,
which can alleviate traffic congestion, enhance transportation
efficiency, and existing road capacity, [1]. For the IoV to
work at its fully potential, a large amount of data has to
be able to spread throughout the network. In addition, such
amount of data leads to numerous cybersecurity threats and
vulnerabilities. Such threats can be from merely data breaches
where the attacker will gather data from other nodes to threats
that can impact the environment itself. To detect these attackers
an Intrusion Detection System (IDS), a system to detect any
anomaly or intrusion in a system, can be deployed to the
network. Due to the amount of data and possible vulnerabilities
most systems are exposed, nowadays, many IDSs use machine
learning approaches.

For the IoV to be used, the security of all data, nodes and
users has to be ensured. Therefore, a monitoring system must
manage all the data about vehicles, traffic, routes, signs, car
crashes and people who interact with the network.

Besides, this systems has to be flexible enough to work
everywhere and adapt to every city, village or any other place
it might be deployed. It has to learn to accomplish all goals
it was designed to achieve. Therefore, due to the amount of
data in the networks, a Deep Learning (DL) algorithm will be
used. In addition, such algorithm will require a lot of computer
power, notwithstanding, in such network, the response time
is also of utmost importance. Hence, to bring part of the
computer and storage power closer to the end users. The
algorithm will be deployed in the edge layer of the IoV.

Nevertheless, there are some aspects to take into consid-
eration. What if the algorithm stops working? What if the
algorithm does not share with the vehicles the correct data?
What if some nodes act in a way that may harm the others?
This may occur if the network is attacked. Therefore, such
algorithm should also be able to detect and act to eliminate
these threats.

On the light of the above, three objectives were outlines to
this work, the design and implementation of a clustering algo-
rithm stable in dynamic networks, design and implementation
of a routing algorithm complying with the paradigm of the IoV
and being capable of propagating data throughout the network,
and, develop a deep learning monitoring system on the edge
layer to detect any anomaly and classify behaviours in the
network, hence, helping mitigate the impact of misbehaviour
nodes.

II. STATE OF THE ART

Internet of Vehicles (IoV) is becoming the next transfor-
mation in the world of transportation. Its main goal is safety,
comfort and prompt delivery of its occupants with minimum
impact on the environment. With this goal in mind, there are
several applications for this technology, such as: managing
network traffic; reducing of traffic jams; alert the users about
any hazard; in case of an accident, call for specific help and
send information about the victims. The only way these goals
can be achieved is through communication between vehicles,
pedestrians, Road Side Unit (RSU)s, and public networks. This
huge amount of data leads to some challenges on security and
privacy of users and their data.

Most of the challenges in the IoV have also appeared in
other fields of study such as the Internet of Things (IoT),
with numerous similarities between the two areas. The same

architecture schema is being used to model both IoV and IoT,
splitting them into tree layers; Vehicles (Things), Edge and
Cloud.

The vehicles layer is mainly responsible for data collection
and actuation to control the physical world. Most devices in
this layer are resource constrained in terms of computational
power, storage, and energy. The edge layer is introduced to
help end devices. First, computation intensive tasks can be
offloaded to edge devices. Second, the edge layer can mask
communication heterogeneity among end devices and connect
them to the Internet. Third, edge devices help manage end
devices. At last, the cloud layer is utilised not only to store,
process, and analysed the collected data but also to provide
the additional support needed by many applications. [2]

One of the main differences between IoV and IoT is the
existence of RSUs, which are stationary units with much more
computation capacity than the vehicles and act as intermediary
link between the vehicles and the cloud. They are one of the
main components of the edge layers.

To achieve a IoV fully operational, an enormous amount of
data has to be constantly shared between the different types
of nodes, therefore, a routing algorithm has to be deployed to
the network. Most traditional routing algorithms work based
on the property of shortest path to destination, however, in IoV
most nodes are mobile, which means that the algorithm has to
be able to exchange data between mobile nodes and has to be
delay tolerant. Examples of algorithms used on delay tolerant
networks are the traditionals epidemic [3], the prophet [4] and
the bubblerap [5]. There is also the Privo algorithm, an ef-
ficient PRIvacy-preserVing Opportunistic routing protocol for
Vehicular Delay-Tolerant Networks. This protocol models a
Delay Tolerant Network as a time-varying neighbouring graph
where the edges correspond to the neighbouring relationship
among pairs of nodes, the weight of an edge indicates the
strength of a relation at a given time.

When monitoring networks, the most common method is to
develop an Intrusion Detection System. These systems can be
divided into two areas, the anomaly detection systems, which
detect deviations to the normal behaviour of the network, and
misuse detection systems, which identify specific behaviours.
Traditionally, anomaly detection cannot identify any behaviour
and a misuse detection system cannot detect any anomaly
without previous knowledge of. Therefore, the hybrid intrusion
detection systems were created, to merge the two and take ad-
vantages of the best parts of each one. Several IDS are created
with machine learning algorithm with the goal automatically
inferring and generalising a learning model from sample data.
One of the main approaches is through Neural Networks,
which, with the right architecture will create an image of
the raw data that will be transformed into a representation
at a higher and more abstract level, which is known as Deep
Learning.

In addition, the authors of [2], present EdgeSec, a novel
security service for the IoT that with a few changes can be
deployed to the IoV. The EdgeSec is also deployed on the edge
layer, that has much more resources than the things layer, in

addition, it is much closer to the nodes than the cloud. Besides,
the edge layer has more information than the end devices about
the network as a whole and it keeps a stable relation with the
nodes, which can be beneficial to establish trust between nodes
[2].

In order to design and implement an edge-based smart
network monitoring system for the Internet of Vehicle, it
is necessary to model this network and all the case studies
necessary to develop such system. Considering that vehicles
and roads are not yet equipped with devices capable of
testing these networks, the ONE simulator was used [6].
This simulator was developed for Delay Tolerant Networks
and some modifications were required. The most significant
changes were the addition of the edge layer where some of
the most costly tasks are supposed to run; the implementations
of RSUs; the implementation of a new routing algorithm based
on privo [7]; and the addition of the deep learning algorithm.

III. DESIGN AND IMPLEMENTATION

This section provides a detailed description and discussion
of everything that was implemented in this work. It will start
with the network architecture. Then, clustering and routing
algorithms will be explained and analysed. At last, the moni-
toring of the network will be discussed.

A. Network Architecture

1) System Model: The proposed IoV network architecture
has three different layers, vehicles, edge and cloud. It is also
assumed that all vehicles connect with each other using an
802.11p Wireless Access in Vehicular Environments (WAVE)
interface, that, using the same values as [8], such as a
transmission range of 100 m and a data rate of 10Mbps. In
addition, each vehicle is also equipped with a more powerful
interface that can only be used to connect with RSU. This
interface has a bigger range, 250 m but has the same data
rate.

There are different types of nodes with different parameters,
the RSU, cars and buses. However, the only difference between
them is the buffer sizes, an RSU has 1024MB while a car has
a buffer size between 64MB and 256MB and all buses have
256MB.

As far as the offloading of data from the edge to the vehicles
is concerned, a node uploads data to the nearest RSU to be
processed, and, once the computation is finished, the output
will be sent through vehicles in the direction of the desired
node. Nevertheless, the RSUs are all connected through the
edge, thus, some data can be shared between them.

2) RSU Placement: In this work the ONE [6] simulator was
used, therefore, the addition of RSU and the representation
of the edge layer had to be done. The RSUs are supposed
to be stationary and their position should be near a road.
Therefore, the implementation of the RSU movement/position
was based on two movement models that the simulator already
had, StationaryMovement and MapBasedMovement.

The RSUs had to be spread across the city, in this sense,
two different approaches were developed.

The first one, 7 circles with the same centre but different
radius are placed centred in the city centre and the nodes are
distributed through the circles. The problem of this method
was that some important locations of the city were not cov-
ered. To tackle this problem, another solution was developed.
Consequently, the map was studied and the RSU were placed
one by one into strategic points, such as main interceptions,
main accesses to some parts of the city and city centre. The
simulator has data of some public transports routes that were
also taken into consideration.

This last node distribution used only a portion of the number
of nodes to cover all the city and presents much better results.
However, to implement this approach some information about
the city is required, therefore, in a simple simulation in a new
scenario, the first distribution approach would be advisable.

With more data the second approach could be transformed
into an optimisation problem, reducing the number of nodes
and improving results of the network. In a real-world applica-
tion this should be done since, as will be shown, these nodes
have a huge impact on the network.

B. Clustering Based Routing

The data dissemination is one of the utmost problems when
the IoV is concerned, in this sense, a clustering baser routing
algorithm was developed.

There are countless options to cluster nodes in a network,
the most trivial one is clustering based on their position.
However, this leads to a problem, the stability of the network.
The aim of the clustering algorithm is to create clusters of
nodes in IoV, where most nodes are moving in completely
different directions. For example, at a given time, a picture of
all cars in Lisbon was taken, and, according to that they were
assign to clusters based on their position. How different would
these clusters be if the photo was taken 1 minute later?

In light of the above, another metric was used, social
relationships. In this way, every time a node connects with
other node their social strength will be updated. On the other
hand, this metric will decrease if the two nodes do not connect
during a given period. All nodes will update their social
relations every hour and they will be clustered according to
the similarity of their relations, as explained below.

Assuming that all nodes keep a map that link the node’s
social strength with its neighbours and the value assigned to
it. In this sense, considering that the RSUs also store their
social strengths. If the edge merges all these data, it could be
presented as an Euclidean space with N dimensions, where N
is the number of RSUs and each node would be represented
by its social strength, as shown in Figure 1, where node A has
never connected with RSU 2 and node B has already connected
with all RSUs.

Based on this representation, and keeping in consideration
that the algorithm’s complexity, for a number of nodes much
larger than the number of dimensions (i.e. number of nodes
much larger than number of RSUs), is suitable for live
computation the k-means algorithm [9] was used to compute
the clusters. The algorithm will run 3 iterations each time it is

Fig. 1. Simple Euclidean space with 3 RSU

called. The number of iterations is a balance between resource
consumption and the accuracy of the algorithm.

Just after the k-means finishes, the occupation of all clusters
will be checked, and, in the case that one or more are empty,
the centroid of this(ese) cluster(s) will be placed over a point
of the largest cluster and the algorithm will run a few more
iterations, then, there will be no empty clusters and a balance
between their size.

Once all nodes are divided into clusters, the edge will
choose the cluster head, a node that represents the cluster
and will gather the messages from the cluster to deliver to
the somewhere else in the network, reducing the overload
of the network. This choice is based on two metrics, the
similarity between each node and the centroid that represents
the cluster, and the ego betweenness centrality of each node in
the network. The value that represents the similarity is usually
between 1 and 0. However, the value that represents the ego1

is not, thus, a function based on a logistic function was used
to map the ego values to values that could be compared with
the similarity. This function was chosen since only a small
percentage of the nodes have an ego larger than 7.5 and those
are the nodes that should be considered to cluster heads. Then,
the cluster head is the node whose metrics produces the lower
value from equation 1.

normalized ego ∗ 2 + similarity (1)

Notice that the cluster head formula, equation 1, gives and
extra weight to the ego in order to increase the importance of
a smaller normalized ego over the similarity to the centroid.

As stated before, it is essential to fully use the information
and communication technologies for achieving the coordina-
tion of human, vehicle and environment. Therefore, a reliable
routing algorithm is mandatory.

This algorithm must comply with the IoV paradigm pre-
sented above. Therefore, there are some aspects to take into
consideration while designing this algorithm.

First of all, it is assumed that the messages are transported
via nodes and not through the edge. This is important since
even though the RSUs share this connection, it is just used to
share data about the state of the network.

1metric concerning the centrality of a node in a graph of all nodes and their
connections

As far as the impact of the cluster in the routing is con-
cerned, there are a few constraints to ensure that the connecting
point between clusters are the RSUs and preferable the cluster
heads.

In addition, it is important to refer that if two nodes are
within range and one has a message for the other one, even
though they may belong to different clusters, the message will
be delivered.

In light of the above, the RSU based privo (R-privo) was
developed.

The routing algorithm is based on the privo algorithm [7]
and is built upon four mechanisms, inter-contact time, for-
warding policy, routing metric and average separation period
metric.

The inter-contact time metric is estimated for each pair of
nodes using an exponential weighted moving average to update
values based on previous data.

There are three forwarding policies available, direct single
copy, direct multi copy and limited multi copy. In the first
option, each message can only be sent from node to node
without the sender keeping a copy. While on the second
one, all nodes keep copies off all messages that pass through
them. Finally, the last policy has a limited number of times a
event/message can be copied.

As far as the routing metric is concerned, it depends
upon three smaller metrics that are similarity to destination,
betweenness centrality and average separation period.

At last, the average separation period is represented by the
mean time to encounter.

Here, MTTE, Sim and EgoBC, refer to the metrics presented
by [7], Mean time to encounter, Similarity and Ego between-
ness centrality respectively.

The R-privo algorithm is all about complying with the rules
of the paradigm used. Therefore, each node will follow the IoV
routing rules to filter which of the nodes in range can receive
the message. With this set of nodes, will run an algorithm to
check if the other node is preferable comparing to the current
node.

According to the offloading method chosen, the connection
between RSUs is only used to share which is the closest to the
destination node and which is the RSU with the largest ego
betweenness centrality, it will never be used to send messages
from one to another. This information will be used to forward
the messages in the direction of the best RSU or to the most
central one when the destination node has never made contact
with any RSU.

There is also one more aspect to take into consideration
about the proposed routing algorithm. When the limited multi
copy policy is used, there are times that instead of just
transferring that message, the node will create a replica to
the other node and keep the message. This change divides the
copies of the messages among nodes with a higher probability
of meeting the destination node.

As far as the implementation is concerned, the decision is
based on the type and cluster of the node who carries the
message. If the node is a RSU or it is from the same cluster

of the destination node, it will always create a replica before
transferring the message. In addition, if the similarity between
the carrier of the message and the destination is larger than a
threshold, the message will also be replicated and transferred.
Otherwise, the node will just transfer the message.

C. Intrusion Detection System

In the near future, IoV will be present in our lives, they will
change the way we see transportation and mobility. However,
this responsibility brings a huge risk. What if something goes
wrong? This leads to a need of an entity monitoring the
network, overseeing all the nodes and raising flags if one of
them is not responding as it should, or a node is intentionally
misbehaving.

In this section, a deep learning approach that runs on the
edge layer will be described. This algorithm runs based on
data from each node, retrieving a probability of a misbehaviour
by the given node, and if this output is high, it will give an
indication of the most probable behaviour.

It is important to mention that the objective of this project
is only to detect and, if possible, identify the malicious
behaviour. The goal of this algorithm is to help the network
manager by giving alerts, it will not affect any node or the
network directly.

The data given to the algorithm are the type of node (normal
node, cluster head or RSU); ego in the network; number of
nodes in range; number of messages received; number of
messages sent; buffer size; node location; and social strength
with its three strongest connections. The location is given as
a coordinate X,Y.

These data will be stored in blocks of three arrays that
form a 2D array that contains data of a given node at three
different times. The number of samples in each block of data
was chosen to take into consideration the past of the node
without a huge impact on the performance of the algorithm.
Therefore, the input format will be 9× 3.

All data used is sent by the vehicles to the edge every time a
nodes connects with an RSU. If a node does not share its data,
it means that it is not connecting with the edge, consequently,
its role in the network will be less important and the impact
of its actions will be lower.

These data will enter in a convolution auto encoder that
will use the convolution property to simulate a dependency
of data during time. The aim of this algorithm is to encode
the input data into a smaller space than the original, and then,
from the encoded data, decode it to restore the original input.
The performance of the algorithm is measured by the mean
squared error between the input and the output data. Therefore,
the train of the algorithm is all about finding a robust analysis
of the data, thus, building a robust anomaly detector.

The auto encoder used is formed by convolution layers.
These layers receive a 3D input and convolve it with a set
of kernels, or filters, and applies an activation function to the
filter outputs, in this case, a Rectified Linear Unit. Each kernel
has a localised support in the first two spacial coordinates and
a full range on the depth on the input (third coordinate). It will

compute the value of each neuron of the next layer according
to this paradigm.

All layers of the algorithm have the same parameters, a
kernel of 3× 2 and a stride of 1. The kernel can be seen as a
filter, where its size is the filter size. The amount of the filter
shift is given by the stride.

At each iteration, the kernel will analyse the data it is
covering and compute a single value to represent it. In the
end, the data is reshaped according to equation 2, that has to
be applied to both dimensions.

output vol =
(input vo− kernel size)

stride
+ 1 (2)

In light of the above, the encoder consists of two convo-
lution layers that will transform the input data into 5 neuron
arrays of 7×2 and then 3 arrays of 5×1. Then, the decoder is
two layers of the reverse function with the same parameters,
as shown in Figure 2.

Fig. 2. Architecture of the Convolution Auto Encoder used

To conclude, in the algorithm used (Figure 2), each neuron
of the second layer will be computed based on the first layer
neurons covered by a kernel (3×2) that will shift one position
every time (stride) it is applied. In this case, the depth of
the first layer is just one, thus, the kernel will only consider
6 neurons each time. Notwithstanding, for the other layers,
as their depth is larger than one, the kernel will cover more
neurons, for example, between layer 2 and 3, at each iteration,
30 (3× 2× 5) neurons will be considered.

To implement this neural network, a library called
DeepLearning for Java [10] was used. It was trained in a
different program, only the testing part runs at the same
time as the simulations. As mentioned before, the algorithm
will issue the mean squared error between the input and the
output, therefore, values closer to 0 represent nodes whose
behaviour is closer to the normal. When this value is larger
than a threshold, the node will be labelled as misbehaving.
This threshold will be adjusted during the simulation to be
adapted to each case. Its initial value will be the largest value
obtained while testing the algorithm. The mean score of this
test as its relation with the maximum value will also be stored
and will be used as a guideline to the update of the threshold.

During the simulation, every time the algorithm runs, the
mid value will be adjusted as shown in equation 3.

mid value = mid value ∗ 0.9 + new value ∗ 0.1 (3)

Then, the relation obtained during testing will be applied to
this value, thus, the threshold will be updated.

As mentioned above, there are plenty of behaviours or
malfunctions that may have a huge impact on the network.
Therefore, the following behaviours were implemented.

The node not working behaviour consists of a node
dropping or simply not sending any of the messages it receives.
In addition, the node may have a malfunction on its 802.11p
communication interface, therefore, it can only communicate
with RSUs. These actions were implemented on the three
different types of nodes, RSUs, cluster heads and normal
nodes.

As far as the identity spoofing is concerned, it is expressed
by a node that successfully identifies itself as another node,
or has having a different role in the network. for example, a
node claiming that it is a RSU or a cluster head when it is
simply a normal node.

The implementation is essentially lying when the node
connects with any other node by changing its identification
to the desired one or replacing the nodes identification with a
RSU’s.

The sybil attack occurs when a node, the attacker, subverts
the reputation system by creating a large number of pseudony-
mous identities and uses them to gain influence in the network.
In this case, by creating these replicas, the attacker would rise
in the network and in case of success would become a cluster
head. The impact of this node would also be noticed outside
of its cluster hence the attacker would occupy a central node
in the network.

This attack lies on the creation of a group of nodes that will
be always in range of the attacker. For the other nodes, these
nodes will appear as normal vehicles.

One aspect to take into consideration when creating this
behaviour is the fact that the replicas and the attacker have to
share the same resources (computer power and buffer size),
therefore, the replicas of the attacker usually do not have as
many resources as a normal node.

Besides the detection of a misbehaviour, the edge should
also be able to label the above described actions. Therefore,
when the previous algorithm raises a flag, the data will be
forwarded to a new neural network.

This deep learning algorithm will have the same input
as the previous one but will be a classification problem,
thus, it will have only 5 different outputs: sybil attack; node
not working; identity spoofing; normal behaviour; and new
unknown behaviour. It will start with a convolution layer to
simulate the dependency of data over time and will consist of 3
dense layers and a softmax function to discern the labels. The
choice of the number of layers and the number of neurons was
a balance between the flexibility of the network, as with more
layers the network can synthesise a wider variety of nonlinear
functions with fewer neurons, and the difficulty to train given
that a deeper (more layers) and denser (more neurons) network
requires more computation.

The Data set used to train this network was divided into
two, the training set and the validation set. This model uses

the validation set to implement the early stopping, a technique
used to ensure that the network is not over-fitted to the trained
data.

Another aspect to be taken into consideration is the fact
that the network cannot be trained to detect new unknown
behaviours, as that would be a paradox. Therefore, the neural
network is trained to label the 4 known behaviours, and, when
the confidence on the result is low, the behaviour will be
classified as an unknown one. The output of this algorithm is
an array with four positions, one for each label, that represent
how confident is the network in assigning the label to the data
set. The sum of the four positions of the array is always one.
Therefore, given a data set, if there is not a confidence larger
than 0.5 for any label, the data can be labelled as unknown
behaviour.

IV. RESULTS AND ANALYSIS

In this section, the results of the algorithms and implemen-
tation mentioned in the previous section will be discussed.
Starting with the performance of the clustering based routing
algorithm will be presented and finishing with the results
obtained for the monitoring system will be analysed.

A. Clustering Based Routing

1) Clustering Evaluation: As discussed before, the network
will divide the nodes into clusters. The main goals of the
approach used are covering as many nodes as possible and
creating the clusters as stable as possible. In addition, the
larger the number of clusters, the more specific information
a cluster gives about its nodes. Nevertheless, the size of each
cluster shall be taken into consideration, i.e. the number of
clusters shall be much lower than the number of nodes.

Thus, the clusters were made using a k-means algorithm
based on the social relations of the nodes. To evaluate the
performance of the algorithm, the number of nodes eligible for
clustering and the number of cluster changes per hour were
measured during several simulations.

The following test was done by simulating 56 nodes over 48
hours. The 56 nodes are 5 of each group of home, office and
meeting spots plus 2 buses for each of the 8 routes. In addition,
30 RSUs were hand placed to improve the performance, as
shown in the previous section. Each simulation was done 3
times with different seeds and the results presented refer to
the average of the results obtained.

Regarding the number of nodes covered by the algorithm,
it is important to mention that only nodes that already made
contact with an RSU are known by the edge and therefore
eligible for clustering. In addition, this result does not depend
on the number of clusters. The algorithm is based on the
relations with the RSUs, therefore it only depends on their
position. Nevertheless, it is an important metric that should be
taken into consideration when studying the clusters.

Several tests were done and as expected, during the first
two days, the nodes start to made contact with the RSUs
which leads to an increase in the number of nodes covered.
The most significant changes occur in the morning and in

the evening that is when the nodes are supposed to move
between home, office or meeting spots (following the workday
movement model). During the work time, the values are much
more stable. This values and changes should be taken into
consideration when studying the stability of the algorithm.

To further analyse the clustering algorithm, a cluster
changes metric is defined where all cluster changes count as
one, when a node does not have a cluster and joins one and
when a cluster changes from one cluster to another, both count
only as one cluster change.

In the simulation with only one cluster, all nodes eligible for
clustering belong to the same cluster, therefore all changes will
be nodes that were added to the clustering set. In addition, the
number of clusters was varied between one and eight. Given
that all clusters have exactly the number of nodes covered,
with the objective of presenting clear data, the changes related
with new nodes eligible for clustering were subtracted from
the number of cluster changes per hour. In Figure 3, each
colour represents a different simulation scenario, each vertical
bar shows the sum of nodes who had a cluster change during
each hour. For example, during the second hour, there were
a total of 65 cluster changes, but when using two clusters,
there was just an average of 7 changes. In addition, as it can
be seen, there is not any cluster change counted in the first
hour, this is because all the changes in this period were nodes
making the first contact with the RSUs.

To give a clearer image of when the network starts to
converge, an average of all these simulations were done and it
can be seen in Figure 4. In addition, in this figure, in contrast
with the previous one, all cluster changes are represented,
both nodes who connect for the first time with an RSU and
nodes who change from one cluster to another. That is why,
in the second figure, there are values on the first hour of the
simulation, all these cluster changes are nodes who were not
registered for clustering and made the first contact with one
RSU during this time slot.

As seen in Figure 4, it takes an average of six/seven hours
to reach a stable point. Furthermore, with the increasing of
the number of clusters a decrease of the stability can be seen
(Figure 3). However, as it can be also be seen that even for
the less stable configurations, after 48 hours the number of
changes per hour tends to less than 1, which shows that the
approach developed leads to a stable clustering solution as
desired.

In addition to the above studied approach, the stability of
clustering based on proximity was also tested. The goal of
this test was only to give a comparison with the most trivial
approach to the problem, therefore, only a superficial analysis
was done. In here, the contacts that a node had during two
consecutive time slots were compared and the number of
changes counted. During the first slot the number of changes
was 11, then dropped to 8 and every time the node moved
the values were similar, when the node was not moving these
values were near 1. Nevertheless, these values are just for one
node, which means that it represents only 1/50 of the cluster
changes. Therefore, the difference between the stability of the

Fig. 3. Sum of the average cluster changes over time

Fig. 4. Average cluster changes over time

social based approach and this one is evident.
All in all, when clustering a network of vehicles, there are

some aspects to take into consideration, such as, what are the
clusters representing, the size of the clusters and the network,
and the stability that the algorithm used will provide. As
presented, clustering based on social relations leads to stable
results, and it is advisable to be used when the nodes are
always moving and have some movement patterns, such as in
the IoV case.

2) R-privo: As far as the routing algorithm is concerned, it
should be noticed that the algorithm is an adaptation of another
one built to Delay Tolerant Networks, the Privo algorithm [11].

To evaluate the performance, the following data was col-
lected over several simulations: the delivery probability, the
overhead ratio, the average latency, the average hop count and
the average buffer time.

This study will focus on the delivery rate and the overhead
ratio of each solution and the scenario used to this simulation
was the same scenario used for the clustering tests.. A Limited
multi copy policy of 6 copies was chosen to boost the delivery
rate with a small impact on the overhead. In addition, the
algorithm will be evaluated by comparing the delivery rate and
the overhead ratio with four different algorithms, epidemic,
prophet, bubblerap, and privo. Moreover, all simulations have
both vehicles and RSUs, however, while in the R-privo, the
RSUs have a different behaviour than the other nodes, on

the other algorithms, the only difference between them is the
buffer size and the movement, the RSUs are static.

In the first instance, the delivery rate of each algorithm
was compared. As shown in Figure5, the privo have the best
performance, immediately followed by the R-privo. Then the
bubblerap and the prophet reach nearly 45% and the epidemic
could only achieve 30%.

Fig. 5. Delivery rate of the 5 routing algorithms

As far as the overhead is concerned, there is an enormous
difference between the algorithms, with values ranging be-
tween 1311 and 5, with the R-privo and the privo algorithm
presenting the best overheads by far. This disparity of values
was expected hence the epidemic and the prophet do not assign
any limit to the number of copies, the first one copies the

message to every node it makes contact with and the other
one copies to all nodes that have a better metric than him. As
far as the bubblerap, has its own restrictions on who to copy to.
However, with these configurations, the privo and the R-privo
have a limit on the number of copies of 6. Figure 6 shows the
overhead of each algorithm as a table printing the values. To
encompass all values in the same figure, a logarithmic scale
was used.

Fig. 6. Overhead ratio of the 5 routing algorithms

As seen in the figure above, the R-privo presented worse
results than the privo. This is due to the fact that one of
the main differences between these algorithms relies on the
restrictions to transfer a message, the R-privo will only share
the messages within its cluster while the privo will share them
with any node with a greater chance to meet the destination.

To conclude, the R-privo is an algorithm that was developed
to take advantage of the architecture of the IoV, it can be seen
as an evolution of the privo algorithm to this paradigm. The
R-privo has a delivery rate in the same range of the other
standard routing algorithms with an overhead much lower. In
addition, this algorithm needs, in average, only 1.8 hops to
deliver a message when the others need 3.0, 4.7, 3.8 and 1.9
for bubblerap, epidemic, prophet and privo respectively. On
the other hand, both the latency and the average buffer time of
this algorithm are much worst that the others, notwithstanding,
this is to be applied to a network of vehicles where each node
have more resources that a usual node in a network where
these algorithms are used.

B. Intrusion Detection System

As presented before, the monitoring of the network consists
of two different algorithms, one that detects anomalies and the
other that tries to identify that anomaly.

This study was done over several simulations when some
nodes were programmed to misbehave and the edge would try
to detect. Every time the first algorithm detects an anomaly,
the data will also pass through the second one to classify the
behaviour.

In this work, a true positive is when an attacker situation
is correctly labelled and a false positive when a normal is
classified as a misbehaving one. A true negative is when a
normal node is labelled correctly and a false negative is when
an attacker situation is mislabelled.

Before using it in the real simulation, the algorithms were
trained and tested. The training of the algorithms consisted of
uploading a data set and the algorithm updated its weights to
best perform on the given data. As mentioned in the previous
section, this data was obtained in several simulations with
different parameters.

During all the following tests, the attackers will behave
maliciously from the beginning until the end of the simulation.
Their data will be monitored every time they made contact
with an RSU and the algorithm will not take into consideration
any label given to that node before, i.e, in this study, instead
of testing a node based on all its history, the tests will
only take into consideration the data sample acquired at each
moment. Therefore, they are presented below as different
attack situations. Usually, each simulation has 5 misbehaving
nodes and during the simulation time, each node is inspected
by the algorithm 20 to 30 times, depending on its movement
patterns.

After all the training, the algorithms were deployed to the
simulations. In the first instance, the algorithm was used to
monitor a network where all nodes had normal behaviour. To
this analysis, 1500 tests were done over 106 nodes. From these
1500 tests, 117 were labelled as a potential anomaly, however,
from this 117, the second algorithm labelled 108 as normal
behaviour. This indicates that from 1500 samples, only 9 were
false positives, only 0.6%.

Considering that in the beginning of the simulations all the
nodes signatures are the same, if the algorithm is applied, all
nodes will have the same classification. Over the simulation,
the signatures will become more and more distinct. Therefore,
in the first instance, the time that the systems need to warm
up, i.e. there is a difference between the signature of a
normal node and an attacker, was studied. With this objective,
several simulations focusing the first hours of the simulation
were done, these simulations concern the first two behaviours
(sybil and id spoofing) with distinct parameters. In this study,
the evolution of the true positives, false positives and false
negatives were collected and once the values of the true
positives is larger than the values of false negatives and false
positives, it indicates that the system is warmed up and the
algorithm is ready to run. For example, in Figure 7 is presented
the evolution of the classification metrics for the id spoofing
attack.

Fig. 7. Evolution of classification metrics for the id spoofing attack

During these tests, the classification metrics have started to
stabilise after 3 hours, therefore, 10800 seconds was chosen
as warm up time.

1) Sybil Attack: With all the tests and the simulations for
a normal situation done, it was time to start testing against
misbehaviour. At first, the sybil attack was studied. For this,
several simulations were done, varying the movement model
of the attacker and the number of replicas it creates. Among
all these simulations, the monitor system had run 597 attack
situations, from these, 407 were labelled as having an anomaly
and were studied by the behaviour identifier who labelled all
407 as sybil attackers. This means that once an attacker is
captured by the anomaly detector, the behaviour identifier will
be able to label this attack correctly. In addition, this false
negative rate (approx. 32%) derives from the similarity of an
attacker with a node with an important role in the network,
i.e. high Ego betweenness centrality. Moreover, during this
study, a total of 8000 nodes were monitored and only 16 were
mislabelled as sybil attackers which leads to a false positive
rate of only 0.22%.

During the study above, the fact that when the attacker cre-
ates more replicas, it is easier to detect was confirmed. When
testing with 3 replicas, the false negatives were significantly
higher than the most used configuration, 5 replicas.

2) Identity Spoofing: As far as the id spoofing attack is
concerned, when a node identified as an RSU makes contact
with the edge, and this node is not registered as an RSU,
the monitor system already knows that something not normal
is occurring. Therefore, it will always run the behaviour
identifier.

During the testing period, the algorithm run the data of
18000 tests, from which 389 were attack situations. Consider-
ing the attackers, 370 were labelled as attackers. In addition,
during these tests, there were 100 false positives, i.e. nodes
that were labelled as attackers and had normal behaviours.

3) Node Not Working: Regarding the detection of nodes
not working, the difference between a node not working and
a node whose role in the network is not important is small.
I.e. a node that at a given time stopped working and a node
who went to an isolated place and cannot connect to anyone
result in a similar behaviour. This behaviour was not tested on
RSUs hence if one of these nodes was not working it would be
unable to connect with the edge and therefore, it was assumed
that the edge would be able to detect this anomaly without the
algorithm.

Regarding the results obtained, for he node not working
behaviour the true positive rate was only around 50%. As
mentioned before this behaviour has a signature similar to
the normal behaviour and even when the anomaly detector
captures these nodes, it is not guaranteed that the behaviour
identifier will not label it as a normal node with a normal
behaviour. To have a greater certainty about this behaviour, it
would be advisable to wait for at least one more iteration on
the algorithm and check if the classification stays the same.

On the other hand, the false positive rate on this behaviour,
just like on the others, is close to zero, in a total of 5000

evaluations, only 33 were misclassified as a node not working.
In Table I, is shown a summary of the performance of the

monitoring systems in this scenario.

TABLE I
SUMMARY OF THE MONITORING SYSTEM

sybil idspoofing node not working
true positive (%) 68 95 52

false positive (%) 0.22 0.6 0.8
true negative (%) 98.78 99.4 99.2

false negative (%) 32 5 48

The system was also tested in two different scenarios where
a strong dependency on the data used to test was proven. In
addition, comparing the influence of the data deviation on the
performance of the algorithms, the behaviour identifier showed
a smaller influence.

To conclude, the monitoring algorithm has a high success
rate identifying the attacks above and despite the results
obtained for the nodes not working, the algorithm can be
a huge help when managing a network. As expected, the
anomaly detection system has a strong dependency on the
training scenario, while the behaviour identifier has more
flexibility. Nevertheless, as shown above, the performance
improves with the training of the algorithm, and, for better
results, the algorithm should be trained with data of the
network where it is deployed.

In a real world application, the algorithm should be collect-
ing data and from time to time and add the data collected to
the training set. By doing so, the algorithm would learn more
about the network it is supervising and it will be more suitable
to detect any anomaly on that system. Moreover, to increase
the certainty of a classification, the algorithm could assign the
different classifications to the respective node, thus, combining
consecutive measurements to reduce the uncertainty.

In addition, an increment on the deviation to the normal
behaviour could be seen on all nodes when there is a node
misbehaving, proving that even one node misbehaving has an
impact on the network as a whole.

V. CONCLUSIONS

A. Achievements and Contributions

The main objective of this thesis was to develop an edge-
based monitoring system to the internet of vehicles. To achieve
this, a clustering algorithm for these networks, a routing
algorithm to ease the communication between nodes and a
deep learning algorithm to detect and identify possible attacks
and misbehaviour were also developed.

On the light of the above, a routing algorithm that could
comply with the paradigm of IoV was needed. With that
objective, the R-privo was developed, an algorithm based on
the privo algorithm to take advantage of the edge layer and
the location of the IoVs.

In addition, the algorithm also divides the network in
clusters by their social relationships, grouping the nodes that
most likely will share the same connection. While studying

the clustering approaches on the IoV, two metrics were
used, similarity and ego betweenness centrality. During this
approach, higher importance was given to the similarity when
choosing the cluster head. All in all, clustering based on
social relationships between nodes was elected as an advisable
approach to this problem, providing a stable solution that due
to the choice of the IoVs as anchors, is also robust to an
increment of the number of nodes.

In addition, the R-privo, even though being built with more
constraints to comply with the IoV paradigm, was able to beat
the traditional algorithms (epidemic, prophet and bubblerap)
and reach the same performance levels of the privo algorithm,
presenting itself as an ideal algorithm for these networks.
Furthermore, the R-privo’s routing rules are strongly related to
the cluster of each node, therefore, an increment on the number
of clusters will decrease the delivery rate of the algorithm

At last, with the environment set to properly simulate an
IoV network, the edge based monitoring system was devel-
oped. This system is formed by two different deep learning
algorithms, one to detect anomalies in the network and the
other to identify those anomalies.

The first one, the anomaly detection system, has the pur-
pose of detecting deviations from a normal behaviour in the
network. It is very useful to identify nodes who may be
misbehaving, however, this algorithm cannot distinguish the
different misbehaviours.

The second algorithm, the behaviour identifier, is able to
identify any known attack, i.e. the algorithm has to be taught
how to detect each studied attack, therefore, the identifier
cannot detect any new attack.

The monitoring systems is built to take advantage of both
algorithms. In addition, the choice of the data to be collected
and used to evaluate each node was also studied as well as
the architecture of each algorithm.

At last, in a scenario similar to the one used to train, the
monitoring system is able to detect and identify 68% of the
sybil attacks, 95% of the id spoofing attacks, and 52% of the
nodes not working. In addition, the behaviour identifier has
able to correctly classify all the Sybil attackers that were sent
by the anomaly detector. Nevertheless, the results obtained for
the nodes not working is due to the fact that this behaviour
and a node who is in an isolated zone have similar signatures.
Notwithstanding, the monitoring system is able to identify the
above mentioned behaviours and can be a great tool for any
network manager.

To conclude, in this thesis the ONE simulator was adapted
to work with IoVs, an algorithm was developed to comply with
the network paradigm and to take advantages of what the IoVs
add to the system, and an edge-based monitoring system capa-
ble of identifying several behaviours was developed, fulfilling
all the objectives presented in the introduction.

B. Future Work and System Limitations

With more time and resources some improvements could be
done.

As far as the location of the RSUs is concerned, a optimisa-
tion problem could be developed to find the optimal location
of each RSU.

Regarding the clustering algorithm, the G means algorithm
[12] could be tested and compared with the one used. The
G means algorithm has the advantage that it will choose the
most suitable number of clusters, providing greater flexibility
to the algorithm.

At last, the monitoring system could be retrained from time
to time with live data, adapting the system to the network
it is monitoring. In addition, the classifications of each node
could be saved to have the evolution of each node over time
as it would also increase the certainty of a given classification
by comparing it with the previous ones. The algorithm could
also be able to act to reduce the impact of a misbehaving
node in the network. Moreover, some behaviours could be
added to the system, for example, the black hole or grey hole
attack. Finally, the complexity of the deep learning algorithms
could be greater, which would improve the performance of
the monitoring systems but would require more computation
power.

REFERENCES

[1] F. Yang, J. Li, and T. Lei. Architecture and key technologies for internet
of vehicles: a survey. Commun. Inf. Netw. 2, 1–17 (2017), 2017.

[2] K. Sha, R. Errabelly, W. Wei, T. A. Yang, and Z. Wang. Edgesec: Design
of an edge layer security service to enhance iot security. 2017 IEEE 1st
International Conference on Fog and Edge Computing (ICFEC), pages
81–88, 2017.

[3] Amin Vahdat, David Becker, et al. Epidemic routing for partially con-
nected ad hoc networks. Technical Report CS-200006, Duke University,
2000.

[4] Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic routing
in intermittently connected networks. In Petre Dini, Pascal Lorenz,
and José Neuman de Souza, editors, Service Assurance with Partial
and Intermittent Resources, pages 239–254, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

[5] P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: Social-based forwarding
in delay-tolerant networks. IEEE Transactions on Mobile Computing,
10(11):1576–1589, 2011.

[6] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. The ONE Simulator
for DTN Protocol Evaluation. In SIMUTools ’09: Proceedings of the
2nd International Conference on Simulation Tools and Techniques, New
York, NY, USA, 2009. ICST.

[7] N. Magaia, C. Borrego, P. R. Pereira, and M. Correia. eprivo: An
enhanced privacy-preserving opportunistic routing protocol for vehicular
delay-tolerant networks. IEEE Transactions on Vehicular Technology,
67(11):11154–11168, 2018.

[8] N. Magaia and Z. Sheng. Refiov: A novel reputation framework
for information-centric vehicular applications. IEEE Transactions on
Vehicular Technology, 68(2):1810–1823, 2019.

[9] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means
clustering algorithm. Journal of the royal statistical society. series c
(applied statistics), 28(1):100–108, 1979.

[10] Deep learning for java. Available at https://deeplearning4j.org/
(2020/12/10).

[11] N. Magaia, C. Borrego, P. Pereira, and M. Correia. Privo: A privacy-
preserving opportunistic routing protocol for delay tolerant networks. In
2017 IFIP Networking Conference (IFIP Networking) and Workshops,
pages 1–9, 2017.

[12] Greg Hamerly and Charles Elkan. Learning the k in k-means. In
Advances in neural information processing systems, pages 281–288,
2004.

