
An Automated Debugging Plug-in for Visual Studio
Code

Steven Brito Rui Maranhão
Department of Computer Science and Engineering

Instituto Superior Técnico, University of Lisbon
Portugal

Abstract—One of the most cumbersome phases of software
development is testing and debugging. It can easily become a
very tiring and expensive task, not to mention extremely prone to
errors. As such, several methods have been developed to improve
this task by automating the whole process as much as possible,
thus improving the overall quality of the end product. GZoltar is
a framework for automatic testing and fault localization for Java
projects, integrating seamlessly with JUnit tests. Additionally,
the framework provides intuitive feedback about code faults by
using different visualization techniques, which showcase the error
distribution along the code base. Currently, it is available as
a command line interface, ant task, maven plug-in, and as an
Eclipse plug-in. In the last couple of years, Eclipse’s popularity
has been decaying in comparison to other IDEs and code editors
(e.g., IntelliJ IDEA and Visual Studio Code). Visual Studio Code
is a source-code editor developed by Microsoft for Windows,
Linux and macOS. It includes support for debugging, Git,
syntax highlighting, intelligent code completion, snippets, and
code refactoring. Lately it has been rising in popularity, as it is
considered lightweight and flexible across several languages. The
main objective of this thesis is to develop an extension offering
the GZoltar functionalities in Visual Studio Code, which aims
to appease developers who want to use the framework but are
not as fond of using Eclipse as before, or have never had any
previous interaction with the IDE. The plug-in is published in
the Visual Studio Marketplace, and a user study was carried out
to assess its capabilities. Users were given a project and a limited
amount of time to find a fault that was previously injected in the
source code. In the end, they filled a form providing feedback of
their experience and also suggestions for future work. The study
proves that the extension can be effectively used to locate faults
in a program.

Index Terms—Fault Localization, Graphical Debugger, Auto-
matic Testing, Automatic Debugging

I. INTRODUCTION

Debugging, defined as the process of finding and resolving
problems within a computer program, is an intricate pro-
cess which comprises multiple tactics to try and solve these
problems. This set of tactics, which can usually be found
in debuggers, includes interactive debugging (a.k.a., step-by-
step), unit testing, code coverage, integration testing, among
many others. It is a crucial phase during the life cycle of
any software development process, allowing the developers
to be aware of existing problems in their code, as well as
to give them the chance to hone the product as much as
possible. However, the process itself can easily become a
very tiresome task. Besides being extremely costly in large
systems, debugging is also very much needed in software

dependant systems where a malfunction or fault can cause
deaths, injuries or even environmental harm [1]. These are
called safety-critical systems, and are heavily computer-based.
Naturally, a failure that has happened in a personal computer
may result in a loss of files and/or progress in a project, but a
failure in a safety-critical system such as nuclear power plants
or airplanes can cause injuries to lots of people, so clearly there
is a need to ensure not only mechanisms to tolerate errors in
those systems, but also to guarantee the quality of the software
being used in them.

One of the many difficulties present in debugging lies in
the ability to reproduce the error, or even knowing where it
originated. This is a non-trivial task, since several factors can
make it difficult to reproduce the problem, as well as doing
it in a time efficient manner. For this purpose, many of the
techniques created offer a solution to this by automating the
process as much as possible (automated testing), and by trying
to pinpoint the fault’s origin (fault localization).

Automated testing can ease this problem by automating
some repetitive but necessary tasks in a testing environment.
This is beneficial for large projects that either require testing
the same areas repeatedly, or simply have a large amount of
test cases, such that it would be too arduous for someone to do
manually. Fault localization techniques identify the reason for
the fault that can explain the bug or error encountered. Debug-
ging is a strenuous task to execute single-handedly, meaning
that automated techniques are clearly preferred over manual
ones. These techniques are usually classified by the approaches
they are based on, categorized in [2] as the following: SBFL
[3], slice-based [4], [5], statistics-based [6], program-state
based [7], model-based [8], machine learning-based [9], data
mining-based [10], [11] and other miscellaneous techniques.

Although there are several tools which integrate these
features [12]–[14], many of them lack a visualization tool to
provide intuitive feedback. As previously stated, large projects
are difficult to maintain and test as they grow larger in size.
A visual report of the faults and defects found in the code
base can easily extenuate this task, given that it is a more
straightforward approach than simply looking at plain text
indicating the several errors found.

GZoltar [15] is a framework for automatic testing and fault
localization for Java projects. It integrates seamlessly with
JUnit tests, and provides intuitive feedback about code faults
by using different visualization techniques. Its toolset imple-

ments the spectrum-based fault localization (SBFL) technique
using the Ochiai algorithm [16], which is known to be among
the best for fault localization. Currently, it is available as a
command line interface, ant task, maven plug-in, and finally
as an Eclipse plug-in. GZoltar is already widely used in many
systems such as ssFix [17], Astor [18], ACS [19], CapGen
[20], among others. However, in the last couple of years,
other IDEs have surpassed Eclipse in terms of popularity, for
instance, IntelliJ IDEA and VS Code. As such, the framework
will not have as much exposure as before, due to the declining
use of the IDE. For such a reason, we propose adapting the
framework as a plugin in a new code editor in hopes of catering
to a wider public.

VS Code is a relatively recent lightweight, cross-platform
code editor developed by Microsoft for Windows, Linux and
macOS. It contains a plethora of useful features right out of
the box: IntelliSense, which provides code completion, vari-
able/parameter info, imported modules, etc.; built-in debugger;
built-in Git commands, allowing the developer to review file
differences, stage, commit, push and pull from the editor;
highly customizable, meaning it is possible to create/install
extensions to add languages, themes, debuggers or other types
of features. Overall, the combination of these features makes
a powerful tool for developers. Considering this, we deemed
necessary to provide GZoltar’s features as a plugin in VS Code
(called extension in this environment).

The main contributions of this paper are:
• We introduce the adaptation of a fault localization tool

as a plug-in in Visual Studio Code. The plug-in is built
to be as easy to use as possible, with hopes of ensuring
the best debugging experience possible.

• The plug-in is published in Visual Studio Marketplace,
the aggregator for all plug-ins related to Visual Studio,
Visual Studio Code, and Azure DevOps. Being easily
accessible in a public place allows it to be discovered
by more users.

• We have conducted a user study to obtain feedback from
users who have never interacted with GZoltar before. This
experiment serves to prove the effectiveness of the plug-
in, and also to know about ways to further improve and
develop it.

II. ARCHITECTURE

The extension’s architecture is presented in Figure 1. The
solution comprises of three main components: the GZoltar
command-line interface, which executes the test cases’ analy-
sis and returns the coverage results; the back-end, responsible
for accepting user requests and interacting with GZoltar to
obtain the analysis results. These results are then used to
build the webview; lastly, the webview, a panel that can render
HTML inside VS Code, presents the test cases’ results in the
form of three different hierarchical charts to the user. When the
extension is activated, the user can begin using it by requesting
the back-end for an analysis of the open Java project(s),
granted that certain requirements are met (more details about
this can be found in III-A). The back-end will then send the

request to the GZoltar CLI to execute the analysis and obtain
the results. Having those in hand, it will also instrument all
classes to obtain coverage results. Afterwards, these are sent to
the back-end so that they can be processed to create a webview.

III. BUILDING EXTENSIONS

VS Code is built using Electron [21], an open source frame-
work developed by Github. It allows for the development of
desktop GUI applications using web technologies, specifically
Node.js and the Chromium rendering engine. This means that
applications built with Electron are able to use HTML, CSS
and JavaScript. The extensions themselves may be built using
either JavaScript or TypeScript, which is a typed superset
of the former. The API provided is quite extensible, with
almost every part of VS Code being highly customizable.
Figure 2 shows the different parts of its interface that can be
customized. The tree view container allows for the addition
of new icons, sitting along with the default view containers
already added by VS Code. By clicking on the added icon,
a tree view is opened with new views integrated into the
extension. For each view situated in the tree view, an action
with a specific behavior may be attributed. The status bar item
can also be used to provide additional information regarding
the extension. Lastly, a component called webview allows the
extension to open tabs containing HTML, CSS and JavaScript
code.
VS Code extensions are created using two tools available in the
Node.js package manager, Yeoman and the VS Code Extension
Generator. Yeoman is an open source scaffolding tool for
web applications. As such, it can be used to generate project
templates, manage package dependencies, among other tasks.
The VS Code Extension Generator is installed along with
Yeoman, so that the generator can create a base folder structure
containing a rough implementation of an extension. The main
files which are essential to understanding the extension are
package.json (extension manifest) and extension.ts (entry file).

A. Extension Manifest

Each VS Code extension must have a package.json as its
Extension Manifest. The package.json file contains a mix
of Node.js fields such as scripts and dependencies and VS
Code specific fields such as publisher, activationEvents and
contributes. Some of the most important fields of the manifest
are the following:

• name and publisher, since VS Code uses
<publisher.name> as the unique identifier for the
extension.

• main indicates the extension’s entry point.
• engines.vscode specifies the minimum version of VS

Code API that the extension depends on.
• activationEvents is a set of JSON declarations. The ex-

tension becomes activated when the activation event hap-
pens. Examples of activation events include: having a file
of a certain programming language present in the folder
(e.g., ”onLanguage:python”); having a file that matches a
pattern (e.g., ”workspaceContains:**/pom.xml”); on start

Back End GZoltar

Visual Studio Code Extension

User Webview

Fig. 1. Architecture.

up, meaning that the extension will always be activated
regardless of the projects open.

• contributionPoints are a set of JSON declarations that
are made in the contributes field of the package.json
Extension Manifest. The extension registers Contribution
Points to extend various functionalities within VS Code,
such as: commands, contributing the UI for a command
consisting of a title and (optionally) an icon, category,
and enabled state. It is also possible to specify when the
command should be enabled (e.g., when a file with a
certain type is open on the editor); language, contributing
the definition of a language. This will introduce a new
language or enrich the knowledge VS Code has about a
language. This allows the developer to define a language
identifier which could be used as an activation event, or
even associate file name patterns.

To ensure a better user experience, it is best to be as specific
as possible when creating activation events, since the user
may already have several extensions already installed on
their device, and adding another extension’s initialization may
hinder VS Code’s start up. As such, the last activation event
(on start up) must only be used when no other activation events
combination works.

B. Entry File

The extension entry file exports two functions, activate and
deactivate. activate is executed when the registered activation
Events happen. This is the main entry point, and it is where
any and all sorts of preparation for the extension must happen.
In this method, it is possible to register commands indicated
in the manifest by assigning behaviors to them. We can also
create and update tree views, update the status bar, and basi-
cally control any section of the extension. deactivate allows
us to clean up before the extension becomes deactivated. For

many extensions, explicit cleanup may not be required, and the
deactivate method can be removed. However, if an extension
needs to perform an operation when VS Code is shutting down
or the extension is disabled or uninstalled, this is the correct
method to do so.

C. Tree View Container

VS Code’s Tree View API allows extensions to show
content in the sidebar in Visual Studio Code. This content
is structured as a tree and conforms to the style of the built-in
views of VS Code. In order to add a treeview to the extension,
the following steps are required: contribute the treeview in the
package.json file, create a TreeDataProvider, and register the
TreeDataProvider.

1) package.json Contribution: As previously mentioned in
III-A, the contributionPoints allows us to register many func-
tionalities in an extension, with the treeview being one of them.
To do that, the contributes.views Contribution Point must be
used. However, to create a treeview container, an entry to the
contributes.viewsContainers is also required. This is necessary
because the treeview itself is essentially an agglomerate of
elements organized in a tree-like fashion, so they could be
placed in any containers, including the default ones already
included in VS Code.

A treeview container entry is composed of an id, the title
for the container and an icon, which will appear on VS Code’s
sidebar. The treeview entry requires the id of the container it
will appear on, an id for the treeview itself and a name too.

2) Tree Data Provider: VS Code needs data to display in
the newly created view, so next we must provide data to the
view that was registered. Firstly, a TreeDataProvider must be
implemented. Providers are always of a generic type T, which
needs to extend from the class TreeItem. A TreeItem represents
a treeview item down to its core elements, with the most

Fig. 2. VS Code UI.

relevant fields being the label, which is what is shown in the
tree, and the collapsible state, meaning that if this item has any
children, it can be opened or closed to reveal them. As such, a
provider needs to be of a certain type of TreeItem to be fully
implemented. There are two methods in a TreeDataProvider
that are required:

• getChildren(element?: T): ProviderResult<T[]> - this
method returns the children for the given element, or root
if no element is passed. Basically, when a treeview is
created it will be empty at first, and as such, the given
element will be nonexistent. A verification to this case
must be made, so that we can appropriately decide what
children are to be returned. On the first scenario where
there are no elements, we return the ones which will
populate the tree initially. Then, when there are actual
items, if the element requires children (in the context of
the extension and its underlying business logic), then we
must return them. Depending on the case, some elements
may or may not have children, so we must always verify
that we are assigning children to the correct elements.

• getTreeItem(element: T): TreeItem |
Thenable<TreeItem> - this returns the UI representation
of the element that gets displayed in the view. If no
changes are needed to be made regarding the element,
then this method simply returns the element received.

3) Registering the TreeDataProvider: The final step is to
register the previously created data provider to the view. This
can be achieved in the following two ways:

• vscode.window.registerTreeDataProvider - registers the
tree data provider by providing the data provider and the
view id registered in the manifest file.

• vscode.window.createTreeView - create the treeview by
providing the registered view id and the data provider.
It is similar to the method described above, with the
difference being that this will give access to the treeview
itself, which we can use for performing other view
operations.

4) Updating Tree View Content: Once created, a treeview’s
items will remain static unless we add the capability to update
them. This can be done by using the onDidChangeTreeData
event in the provider.

• onDidChangeTreeData?: Event<T | undefined | null>
- the type T must be the same one that the provider
uses. This is a function that represents an event to which
you subscribe by calling it with a listener function as
argument. This has to be paired with an event emitter
that can be fired to signalize the event change.

• EventEmitter<T | undefined> - the type T must be the
same one that the provider uses. An event emitter can be
used to create and manage an event for others to subscribe
to. One emitter always owns one event.

D. Status Bar Item

A status bar item is a status bar contribution that can show
text and icons and run a command on click. This can be used
to provide additional information about the extension, such as

lengthy background work that is being executed to signify the
users that the extension is still working, despite not being able
to show results right away. The status bar item can be created
in the following way:

• vscode.window.createStatusBarItem - creates a status bar
item by indicating its alignment (left or right) and the
priority. A higher value means the item should be shown
more to the left.

E. Webview

The webview API allows extensions to create fully cus-
tomizable views within VS Code. Webviews can be used to
build complex user interfaces beyond what VS Code’s native
APIs support. A webview is similar to an HTML iframe within
VS Code that the extension controls. A webview can render
almost any HTML/CSS/JavaScript content in this frame, and it
communicates with extensions using message passing. Despite
the possibilities that webviews provide, they should be used
sparingly and only when VS Code’s native API is inadequate.
They are resource heavy and run in a separate context from
normal extensions, so if the functionality can only exist within
VS Code and is important enough that the high resource cost
is disregarded, then webviews are the correct tools to use. A
webview can be created in the following two ways:

• vscode.window.createWebviewPanel - creates and shows
a new webview panel by indicating: the view type (a
string that identifies the type of the webview panel); the
title; the show options (where to show the webview in
the editor, e.g., on the active column, on a new column
beside the active one, etc.); and the panel options, which
contain settings for the panel. Examples include keeping
the content even when the panel is no longer visible,
enabling scripts, specify paths from which the webview
can load local resources, among many others.

• vscode.window.registerWebviewPanelSerializer - registers
a webview panel serializer, i.e., a webview that can
automatically be restored when VS Code restarts. This is
done by indicating the view type and a WebviewPanelSe-
rializer. This is explained in more detail further ahead.

1) Scripts and Message Passing: Webviews can also run
scripts, but JavaScript is disabled by default for security
reasons. This can be easily re-enabled by passing in the
enableScripts: true option in the panel options when creating
a webview. An extension can send data to its webviews
using webview.postMessage(). This method sends any JSON
serializable data to the webview. The message is received
inside the webview through the standard message event win-
dow.addEventListener(’message’, listener). Webviews can also
pass messages back to their extension. This is accomplished
using the postMessage function on a special VS Code API
object inside the webview. To access the VS Code API
object, the method acquireVsCodeApi must be called inside the
webview. This function can only be invoked once per session.
The instance of the VS Code API returned by this method
should be held onto, and hand it out to any other functions that

wish to use it. To send a message to the extension the method
vscode.postMessage() can be used to send JSON serializable
data.

2) Persistence: Webviews that are created by the createWe-
bviewPanel method are destroyed when the user closes them
or when the .dispose() method is called. The contents of
webviews however are created when the webview becomes
visible and destroyed when the webview is moved into the
background. Any state inside the webview will be lost when
the webview is moved to a background tab. Scripts running
inside a webview can use the getState and setState methods
to save off and restore a JSON serializable state object. This
state is persisted even if the webview content itself is destroyed
when a webview panel becomes hidden. The state is destroyed
when the webview panel is destroyed. By implementing a
WebviewPanelSerializer, the webviews can be automatically
restored when VS Code restarts. The serialization builds on
getState and setState, and can only be enabled if the exten-
sion registers a WebviewPanelSerializer for the webviews. To
achieve this, the method registerWebviewPanelSerializer can
be called to register the serializer.

IV. BACK END

The main file from the extension (extension.ts) serves as
the entry file, and its activate method will be called when
the activationEvents conditions defined in the manifest file are
met. Then, it will create an instance of FolderContainer (a
representation of all the acceptable Java projects that are open
in the workspace) and use it to create the GZoltarCommander,
which is responsible for having all of the commands that
will be run in the extension. The commander holds the
implementation for all of the features available to the user, and
as such, handles the creation of the webview that will present
the main HTML containing the fault reports. Additionally, it
also serves as the representation of the tree view container,
since that is where the main features of the extension will
reside.

A. Manifest File

As mentioned earlier in III-A, the manifest file contains
fields such as the activation events for the extension and
commands. This section will explain in detail the main fields
of the GZoltar extension’s package.json.

Starting with activation events, the extension must only be
activated when in the presence of at least one Java project.
In order to run GZoltar, many conditions must be satisfied
before we can successfully perform an analysis on a project.
Specifically, we need the folders containing the source and test
files, and the project’s dependencies. As such, the extension
will only be accepting projects with a build automation tool,
which is capable of achieving every single one of those
conditions. This is largely due to the fact that GZoltar’s
capabilities are meant to be used on projects considerably
large in size, to the point where debugging starts to become
harder and more time consuming than it already is. A project
lacking a build tool is likely to have a small test case suit,

and an automated fault localization tool is not as necessary.
Using a build tool means that a project’s folder structure
will be the same in most cases, so the folders containing
the necessary files are in fixed folders following a specific
naming convention, facilitating the automating process of the
extension. Our build tools of choice are Maven and Gradle,
since both remain the most used automation tools for Java
projects [22]. To identify a project with Maven or Gradle, a
file named pom.xml or build.gradle need to be present at the
root of the project, respectively. Thus, the activation events
for the extension need to be able to recognize at least one of
those files before activating the extension itself.

Next on the manifest file, it is necessary to declare in the
contributes field the activity bar for GZoltar. This activity bar
will present the user with every open and acceptable Java
project, and allow them the possibility to run an analysis over
that it, as well as other miscellaneous commands. All of these
commands must also be declared in the contributes field.

For the sake of simplicity, GZoltar’s extension will provide
three commands to the user. These are meant to be simple
commands with a clear function, so as to not make the
extension’s interface too complex. This allows for an easier
understandable interface, with the purpose of being more
accessible to new users. They are the following:

• Run: performs an analysis on the selected Java project
and presents the results in HTML to the user. A new
analysis is performed every single time this command is
executed. Although it is possible to be notified when a
file is changed due to VS Code’s API (thus granting the
possibility to optimize this process, and only execute it
again when files are changed), it is not possible to detect
file changes on disk, i.e., changes triggered by another
application or even from VS Code’s own API.

• Refresh: refreshes the interface to show if new projects
have been added/removed. VS Code allows users to create
a workspace (a project that consists of one or more
projects) giving them the possibility to work on multiple
projects at once. Whenever a project is added/removed,
the interface should be automatically updated to reflect
this change. However, in the off-chance that it is not, this
command acts as a fail-safe measure.

• Reset: cleans the configuration folder for each project
open with the extension. As we have mentioned before,
GZoltar needs several conditions to be able to execute an
analysis correctly, and even after that, it creates a multi-
tude of files as a result. So, to organize this conglomerate
of files and folders, we create an invisible configuration
folder for each acceptable Java project that is open within
the extension. This folder will have the necessary jars
and dependencies to run GZoltar, and the results of the
executions. In case of a mishap in a configuration folder,
this command allows the user to start a new one with a
clean slate.

B. Entry File

The main file is the entry way for the extension’s execution.
The extension will be running when the method activate is
called. Initially, it asserts that in the currently open workspace,
there is at least one open acceptable Java project. Due to the
activation event defined in the manifest file, it is technically
impossible for the extension to enter the activate method
without there being a single open project. Still, VS Code’s
API demands that a verification be made before accessing
any of the folders residing in the workspace. These folders
are then processed and stored in a newly created instance of
FolderContainer (IV-E), which represents all of the acceptable
and currently open Java projects. This instance is passed on to
the GZoltarCommander (IV-C), the holder of the commands’
implementation and the tree view container. This method also
contains a listener that will update the FolderContainer every
time a project is added/removed. Lastly, it registers every
command available in the extension by using the commander’s
implementations.

C. GZoltar Commander

The commander is responsible for providing the elements in
the tree data provider and also updating its elements when a
change occurs. The elements in question are the open Java
projects. It also contains the implementation of the three
commands previously mentioned in IV-A. The run command is
the most intricate of the three, due to the many steps involved
in executing GZoltar. Firstly, it ensures the configuration folder
for the selected project exists, and obtains the necessary
dependencies. To execute GZoltar, a command-line interface,
it uses the CommandBuilder which contains methods that
simplify the creation of these commands, and returns them
as formatted strings ready to use. With each command ready,
the commander notifies in the status-bar what the extension is
doing at all times, to keep the user updated in case a certain
command is taking a long time to execute. In the end, it will
create a ReportPanel and present it to the user with the results
obtained from the execution, and also a Decorator, which
indicates in the text editor the severity on each line of code.

D. Command Builder

In order to run GZoltar, there are three main methods that
must be executed in succession. The first one is the listTest-
Methods, which obtains the names of all the test methods in
the test case suite. The next one is runTestMethods that uses
the previous results to execute the test cases and obtain the
coverage. The last one, faultLocalizationReport uses the data
obtained from the previous method to generate the reports that
are used in the webview and decorator.

E. Workspace

The FolderContainer serves as a container for every open
Java project while the extension is active. Its only purpose is
to add/remove project folders, and retrieve the specific folder
when required. The representation of a singular project folder
is the Folder class. It is responsible for holding the webview,

Fig. 3. Suspiciousness icons.

decorator and build tool pertaining to this project. The build
tool contains information such as the folder names for the
source and test classes, and also how to get the project’s
dependencies.

F. Report Panel

The report panel contains the HTML visualizations that
are presented to the user. Since the visualizations have levels
organized in a hierarchy, it is possible to double click on each
level to zoom in. Each level represents a segment in the code,
meaning that at the highest level, the whole chart represents
the root of the project, and at the deepest level, it represents
a single line of code. It also displays the path at the top of
the chart, as we progress through it. We can click at the final
level of the chart to open the file referenced by that line of
code.

G. Decorator

The decorator indicates in the text editor the severity on each
line of code. After GZoltar runs an analysis on the test suite
and presents the webview to the user, it obtains information
regarding the lines of code and their suspiciousness levels.
Then, depending on the highest level of suspiciousness, the
rest is also calculated. Meaning that if the highest level is 0.1,
then that line of code is considered highly suspicious, whereas
in a project where the highest level is 0.9, a line of code with
0.1 is not as suspicious.

There are four levels of suspicion used to rank each state-
ment, as seen in Figure 3. Red is used for very high likelihood,
orange for high likelihood, yellow for medium likelihood,
and green for low likelihood. These icons are color coded,
but they also have an internal symbol. These symbols come
from the organization called ColorADD [23], whose aim is to
help color-blind people determine which color is which, by
creating a set of icons that are used to represent all primary
and secondary colors. This way, even if the user has difficulties

distinguishing between the initial colors, the internal symbols
identify the correct and intended meaning behind them.

After the webview is presented to the user, every time a
file is open in the text editor, the decorator is set to show the
suspiciousness icons on the sidebar before each line of code.
This will persist even after the webview is closed. If a new
analysis is made, then the decoration will also be updated to
reflect the changes made.

V. PUBLISHING THE EXTENSION

In order to make the extension readily available to other
users so that they may find it, download and use its features,
we have to publish it to the VS Code Extension Marketplace.
The marketplace is where we can find all of the published
extensions that we may wish to install on our computers.

Extensions are published using vsce, short for Visual Studio
Code Extensions, which is a command-line tool for packaging,
publishing and managing VS Code extensions. It can also
search, retrieve metadata, and unpublish extensions. When
inside an extension folder, it is possible to package it into
a VSIX file, or publish it given the specified publisher ID
(explained in more detail further below). A VSIX package
is a file that contains one or more Visual Studio extensions,
together with the metadata Visual Studio uses to classify and
install the extensions. That metadata is contained in the VSIX
manifest and the [Content Types].xml file. A VSIX package
may also contain additional files to provide localized setup
text, and may contain additional VSIX packages to install
dependencies.

A. Publisher ID

As previously stated, we need a publisher ID to publish
the extension. The published extension needs an entity that
is responsible for publishing it, i.e., an “owner” of sorts. This
entity is responsible for managing the extension’s versions, and
how it will be presented to the public. To create the publisher
ID, one of the two ways explained below can be used.

1) Using vsce: vsce can only publish extensions using
Personal Access Tokens. A personal access token (PAT) is used
as an alternate password to authenticate into Azure DevOps.
Since VS Code is part of the tools in Microsoft’s environment,
it is possible to use a PAT obtained from the Azure DevOps
services. First, we have to make sure we have an Azure
DevOps organization, which is used to connect groups of
related projects. After creating a group and a personal token
associated with it, it is now possible to create a publisher.
The extension also needs to include the publisher name in the
package.json file. With the PAT in hand, we can use vsce to
create a publisher. vsce will remember the provided PAT for
future references to this publisher. However, while this is still
a viable method to do so, it is considered deprecated and is
soon to be removed, so it is not recommended to create a
publisher using vsce.

2) Using the Marketplace: By logging in the Visual Studio
Marketplace, it is possible to manage publishers and exten-
sions associated with them. To create a publisher, we only
need to input its name and ID as obligatory fields. The rest,
such as the company website or even source code repository
are optional fields. With the publisher created, we can now
create extensions by uploading a VSIX file. A few moments
after uploading it, the extension will be live and ready to be
downloaded by other people.

VI. RESULTS

This section presents the results obtained throughout this
project. We will show how the extension’s features can be
accessed and what the final product looks like. We will also
present an evaluation of the results achieved by conducting
a user study. The goal of this evaluation is to measure the
extension’s usability and efficiency with users that have never
had any previous interaction with GZoltar. They were given a
project and a limited amount of time to find a fault that was
previously injected in the source code.

A. Using the Extension

To access GZoltar’s functionalities, we click on GZoltar’s
icon in the activity bar previously mentioned in IV-A. The
menu that is open after that will show every single open and
acceptable Java project in the current workspace (shown in
Figure 4. To run GZoltar on a specific project, we click on
the icon right next to the project’s name.

While GZoltar is running, it is possible to see on the lower
right corner of the status bar what phase it is currently on.
This is to help the user by indicating that the extension is
doing background work, on the off chance that the analysis
takes some time to complete. This can be seen in Figure 5.

After it is done running, a new tab will open on the right
side of the editor. The newly opened tab will show the results
of the analysis in the form of a chart (Figure 6). The colors
in the charts indicate the likelihood of a certain code segment
being suspicious. The color coordination is the same as the
one already shown in IV-G. It is possible to navigate through
the chart by double clicking on each color coded segment.

Right clicking on the chart will reset it back to its original
state. Clicking on an edge segment (which corresponds to a
single line of code) will open the file associated with that line
of code.

We can also change the visualization that is currently being
shown. On the activity bar menu, under the project that was
just used to perform an analysis, we can choose one of the
three charts to change the visualization that we want to see.

Lastly, when a file is opened after performing an analysis,
it will show an icon to indicate the level of suspiciousness for
each line of code. The icon’s colors are the same as the ones
represented in the charts.

Fig. 4. GZoltar Commands.

Fig. 5. GZoltar Status Bar Update.

B. Feedback

In order to validate the usefulness of the extension’s current
version, nine users were selected to test the efficiency of the
interactive visualizations. We recorded the time that each user
took to finish the testing and debugging task. At the end
of this process, each user filled a form with the feedback
of their experience and some suggestions for future work.
This usability test was important to test the efficiency of the
extension and also to create guidelines to improve future de-
velopments of this tool, thus providing some insight regarding
future versions.

The time limit for this task was 20 minutes, with its main
purpose being on obtaining feedback about the extension’s us-
ability and usefulness, since its effectiveness has been proven
in previous studies [24]. Most of the users were able to find

Fig. 6. GZoltar Result.

the fault (77%), while the rest that were not able to find it did
manage to pinpoint the fault’s most likely localization. Since
all the users had previous experience with VS Code, they were
comfortable with the environment.

The survey had a section for the users to answer about their
experience with the debugging session, and also give their
feedback. Many of the questions regarding the usability and
interface of the extension were made using a scale from 1
(very poor) to 5 (very good).

A majority of the users (55.5%) stated the extension to be
easy to understand at first. However, when asked how hard
it was to learn how to effectively use it, the responses were
evenly split between moderately easy and moderately hard.

Everyone agreed that the icons/buttons are moderately intu-
itive, claiming that while they are not bad, there is definitely
room for improvement. Regarding the information that was
presented to the users, when asked if it was being presented in
a clear and understandable manner, the responses were mostly
on the positive side (55.6%).

Following up on the extension’s performance, an over-
whelming majority rated its responsiveness as good (77.8%)
or very good (22.2%), claiming that the interaction with the
visualizations and the source code went smoothly.

Once more, most of the users (66.7%) believed the extension
to be helpful in finding the bug, while others did not think it
was as crucial. Additionally, most of them (88.9%) agree that
the extension does require a bit of user experience, meaning
that the extension’s usefulness increases along with the user’s
experience. Overall, the users reported the session as a positive
experience, as far as debugging sessions go.

When asked about the concepts related to GZoltar, all of
the users agreed that automatic debugging is very important.
They also rated visual debuggers to be very necessary, as well
as debuggers integrated into an IDE.

The survey also had an open question for the users to
indicate any issues found during the session, or suggestions
they might have. Some suggested that changing the zoom
from double click to a single click might improve the user
experience. Others suggested different or more intuitive icons
for the interface. Regardless, none of them had any issues with
the debugging task.

Thus, this experiment validates the initial hypothesis that
GZoltar’s interactive visualizations can help developers to find
faults in a short period of time.

VII. RELATED WORK

There have been several tools developed that pose a solution
to the problems initially mentioned.

Tarantula [25] is fault localization tool for programs written
in the C programming language. It is a visualization tool which
allows the user to inspect potentially faulty statements present
in failed tests by visually mapping each program’s statement
in the outcome of an executed test suite. Tarantula provides
the developer a global view of the source code, making use
of a color and brightness component to showcase the different
results, depending on the test results. The color component
depends on the percentage of passed/failed test cases. If a
higher percentage of passed test cases executes a statement,
it will appear more green. However, if a higher percentage of
failed test cases executes that statement, it will appear more
red. In the event that both percentages are equal, the statement
will appear yellow. The brightness component illustrates the
percentage of coverage by either passed or failed test cases,
meaning that a statement will either be drawn at full brightness
if all test cases execute it, or completely dark otherwise.

Jaguar [26] is a fault localization tool for Java programs,
available as an Eclipse plug-in and a command line tool.
It uses SBFL techniques based on both data and control-

flow spectra. Most SBFL techniques use control-flow spectra
(which take into account statements and branches) due to
the low cost associated. Since data-flow spectrum subsumes
control-flow, it can provide more information to better assist
during the fault location process. However, this implies a
higher run-time overhead compared to using control-flow only.
Nevertheless, recent studies show that with large and long-
running programs both spectra can be used with acceptable
overhead. In terms of visual assessment, Jaguar provides visual
information with Jaguar viewer. There are four colors used
to represent suspicious, with red (danger) being used on the
most suspicious entities, orange (warning) to those with high
suspicion, yellow (caution) to moderate suspicion and finally
green (safety) to label the least suspicious ones. The viewer
shows a list of all the suspicious statements differently colored,
with the possibility of choosing among seven types of views.

EzUnit is a tool which integrates with Eclipse and links
JUnit test failures to locations in the source code. It creates
a list with several code blocks and their failure probability,
where each line is highlighted with a color that represents
the severity of the probability (e.g., green for low probability
or red for high probability). This tool also provides a graph
view of all the methods calls in a test case, since possible
fault locations are usually restricted to methods called by one
or more failed unit tests. Finally, it can also mark each line
with information about the failure probability of that code
block. Overall, EzUnit is one of the most complete graphical
debuggers out there, being completely integrated with the IDE,
and providing many options to help the developer.

VIII. CONCLUSION

At the beginning of this document, we explored the concept
of debugging and its intricacies. That is, the many techniques
associated, its relevance in software development and the
potential risks if not handled correctly. Debugging is clearly
very important for any type of software, especially in safety-
critical systems, so having more options to explore this field is
beneficial to developers. Considering this, automated and fault
localization tools help automate this process, but most tools
are incomplete. Most debugging tools and techniques reported
usually lack a powerful visualization tool, or on the off chance
that they have one, it is typically in the form of a list with
potentially faulty statements.

Thus, there is an evident need for a tool with already
established results and visualizations proven to be effective,
which is why we are aiming to provide GZoltar in a more
recent development environment in hopes of being more
widely adopted by the community.

As such, we intended to port GZoltar (an automatic fault
localization tool) to Visual Studio Code, a code editor that
has gained a lot of traction in the recent years. The extension
provides an interface from which the user can obtain a global
view of the project and immediately spot the places where it is
most likely to contain the fault. The extension’s functionalities
will be present to the user when it identifies the open folder to
be a Java project. From there, the user can request to construct

the views from the current set of test cases, and visualize them
in HTML form in a webview panel. Finally, an evaluation was
carried out as a user study to determine whether the extension
meets with users’ expectations, and proves to be helpful in a
debugging situation.

A. Future Work

The initial goals set for this project were achieved, however
there are always new ideas to further improve the extension.
Since GZoltar is open-source, the extension itself is also open
for change by anyone willing to contribute.

1) Differently Color Coded Graphics: GZoltar relies heav-
ily on colors to indicate the suspiciousness levels of the lines
of code in the project. It also makes use of symbols to assist
colorblind people in distinguishing the colors. But still, the
graphics that are presented in the webviews do not have those
symbols, and contain only four colors: green, yellow, orange
and red. An improvement to this would be to allow the user
to select the color scheme they desire, to better fit with either
their personal preference, or to suit the colors they are able to
perceive.

2) More Build Tools: The extension currently only accepts
Java projects using Maven or Gradle. Although those are the
most popular build tools, it would attract more people if it
also accepted more build tools.

3) Windows Integration: The current CLI of GZoltar only
works immediately in UNIX based systems. Which means, to
be able to use GZoltar in a Windows operating system, it is
necessary to use a UNIX-based CLI along with the Remote-
WSL VS Code extension to open folders in the Windows
subsystem for Linux. This adds a couple of extra steps for
Windows users to use GZoltar in VS Code, so it would benefit
them if this still seemingly unknown problem were to be fixed
to appease all users.

REFERENCES

[1] J. C. Knight, “Safety critical systems: challenges and directions,” in Pro-
ceedings of the 24th international conference on software engineering,
2002, pp. 547–550.

[2] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, 2016.

[3] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An
empirical investigation of the relationship between spectra differences
and regression faults,” Software Testing, Verification and Reliability,
vol. 10, no. 3, pp. 171–194, 2000.

[4] M. Weiser, “Program slicing,” in Proceedings of the 5th international
conference on Software engineering. IEEE Press, 1981, pp. 439–449.

[5] F. Tip, A survey of program slicing techniques. Centrum voor Wiskunde
en Informatica Amsterdam, 1994.

[6] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” in Acm Sigplan Notices, vol. 40. ACM, 2005,
pp. 15–26.

[7] S. M. Daniel S. Wilkerson. (2001) Delta tool. [Online; accessed
October 30, 2019]. [Online]. Available: http://delta.tigris.org/

[8] R. Reiter, “A theory of diagnosis from first principles,” Artificial
intelligence, vol. 32, no. 1, pp. 57–95, 1987.

[9] W. E. Wong and Y. Qi, “Bp neural network-based effective fault local-
ization,” International Journal of Software Engineering and Knowledge
Engineering, vol. 19, no. 04, pp. 573–597, 2009.

[10] S. Nessa, M. Abedin, W. E. Wong, L. Khan, and Y. Qi, “Software
fault localization using n-gram analysis,” in International Conference
on Wireless Algorithms, Systems, and Applications. Springer, 2008,
pp. 548–559.

[11] T. Denmat, M. Ducassé, and O. Ridoux, “Data mining and cross-
checking of execution traces: a re-interpretation of jones, harrold and
stasko test information,” in Proceedings of the 20th IEEE/ACM inter-
national Conference on Automated software engineering. ACM, 2005,
pp. 396–399.

[12] W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. Thuraisingham,
“Effective software fault localization using an rbf neural network,” IEEE
Transactions on Reliability, vol. 61, no. 1, pp. 149–169, 2011.

[13] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated
predicate switching,” in Proceedings of the 28th international conference
on Software engineering. ACM, 2006, pp. 272–281.

[14] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical debugging:
A hypothesis testing-based approach,” IEEE Transactions on software
engineering, vol. 32, no. 10, pp. 831–848, 2006.

[15] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: an eclipse
plug-in for testing and debugging,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2012, pp. 378–381.

[16] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund, “A practical
evaluation of spectrum-based fault localization,” Journal of Systems and
Software, vol. 82, no. 11, pp. 1780–1792, 2009.

[17] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for automated
program repair,” in Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. IEEE Press, 2017,
pp. 660–670.

[18] M. Martinez and M. Monperrus, “Astor: A program repair library for
java,” in Proceedings of the 25th International Symposium on Software
Testing and Analysis. ACM, 2016, pp. 441–444.

[19] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE,
2017, pp. 416–426.

[20] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in Proceedings
of the 40th International Conference on Software Engineering. ACM,
2018, pp. 1–11.

[21] Github. (2013) Electron. [Online; accessed October 30, 2019]. [Online].
Available: https://electronjs.org/

[22] Perforce. (2020) Coloradd. [Online; accessed October 22, 2020].
[Online]. Available: https://www.jrebel.com/blog/2020-java-technology-
report#build-tool

[23] M. Neiva. (2010) Coloradd. [Online; accessed October 21, 2020].
[Online]. Available: https://www.coloradd.net/

[24] C. Gouveia, J. Campos, and R. Abreu, “Using html5 visualizations in
software fault localization,” in 2013 First IEEE Working Conference on
Software Visualization (VISSOFT). IEEE, 2013, pp. 1–10.

[25] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test informa-
tion to assist fault localization,” in Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002. IEEE, 2002, pp. 467–
477.

[26] H. L. Ribeiro, H. A. de Souza, R. P. A. de Araujo, M. L. Chaim, and
F. Kon, “Jaguar: a spectrum-based fault localization tool for real-world
software,” in 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST). IEEE, 2018, pp. 404–409.

