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Resumo

Uma das mais recentes abordagens para projetar sistemas complexos com precisão e tempo com-

putacional praticável é o o algoritmo Super Efficient Global Optimization (SEGO) aplicado a multi-

fidelidade. Além disso, muitos sistemas envolvem múltiplas disciplinas que devem ser consideradas

durante o seu projeto. Como estas disciplinas influenciam-se diretamente informação entre as mesmas

é trocada durante a otimização através de esquemas de transferência. Uma vez que os esquemas

de transferência são uma parte significativa do tempo gasto numa otimização, novas configurações

dos mesmos podem ser úteis para reduzir o tempo computacional do processo. Assim, este trabalho

considera uma extensão de otimização multi-disciplinar para multi-fidelidade usando SEGO.

Neste trabalho, optimizamos uma asa de uma aeronave com o objetivo de consumir o mı́nimo com-

bustı́vel usando uma ferramenta de baixa fidelidade que considera modelos aerodinâmicos e estrutu-

rais, OpenAeroStruct (OAS). Verificamos que os esquemas de transferência do OAS não satisfazem o

requisito de conservação. Desenvolvemos uma extensão dos esquemas de transferência para permitir

que as disciplinas usem diferentes discretizações. Realizamos um estudo usando o algoritmo SEGO

variando os nı́veis de fidelidade de um a três e usando duas formas de Design of Experiments onde

verificamos que a melhor abordagem é a que usa dois nı́veis de fidelidade e amostras nested. De-

pois, a extensão dos esquemas de transferência é aplicada a um problema SEGO usando a melhor

abordagem. Verificamos que resultados semelhantes são obtidos, mas com uma redução no tempo

computacional.

Palavras-chave: Modelos surrogate, Otimização Bayesiana, Efficient Global Optimization,

Projeto Aero-estrutural
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Abstract

In the pursuit of designing complex systems accurately and with affordable computational cost, multi-

fidelity Super Efficient Global Optimization (SEGO) is one of the most recent approaches. Furthermore,

various systems involve multiple disciplines interaction that must be considered during the optimization.

These disciplines directly influence each other, hence information between them needs to be exchanged

during the optimization through transfer schemes. Since the transfer schemes are a significant part of

the computational cost in the optimization process, new configurations can be used to try to reduce

this time. Therefore, this work considers the extension of a multi-disciplinary optimization problem to

multi-fidelity using SEGO.

An aircraft wing is desired to be optimized with the aim of consuming the minimum fuel during the

flight mission. The problem is defined using a low fidelity multi-disciplinary tool, OpenAeroStruct (OAS),

that considers models for the aerodynamics and structures. In this work, we verify that the transfer

schemes implemented in OAS do not fulfill the conservation requirement. Then, an extension of the

transfer schemes is developed to enable different disciplines discretization. Multi-fidelity SEGO with

fidelity levels varied from one to three and two types of design of experiments is performed. We verify that

the best approach is the one that uses two fidelity levels with only nested samples in the initial dataset.

Then, the transfer schemes extension is employed in the best approach of multi-fidelity SEGO for the

same problem. We verify that very similar results are obtained with a computational cost reduction.

Keywords: Surrogate modeling, Bayesian optimization, Efficient Global Optimization, Aero-

structural design
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Chapter 1

Introduction

1.1 Motivation

When designing systems, the objective of designers is to choose the project parameters that make

the system satisfy its purpose in the best way possible. Taking an aircraft wing as example, the project

parameters can be the angle of attack and the wing chord. In this case, we may choose this values

in order to maximize the lift over drag ratio of the wing. This is known as the objective function to be

optimized. To achieve the best design, one may consider physically modeling the system and testing its

performance with different project parameters. This rapidly becomes unfeasible, therefore it is preferable

to create a mathematical model of the system, feed it to a computer and simulate different project

parameters until getting the optimal parameters. This process is known as optimization.

The next logic question is which model of the system to use? An initial naive answer would say to use

the most accurate model. However, for many real world problems, a single simulation can take hours or

even days to complete. As a result, design optimization becomes impossible with such models. To solve

this issue, less accurate models, also known as low fidelity models are available. Recalling the wing

example, a complex and accurate flow model for the wing aerodynamics would be the Direct Numeri-

cal Simulation and a low fidelity model would be the Reynolds-Average Navier-Stokes equations. Low

fidelity models can have a very high degree of discrepancy from the true quantity of interest. A way of

alleviating the prohibitive cost of high fidelity models without loosing so much accuracy is by constructing

approximation models, also called surrogate models or metamodels, that mimic the behavior of the orig-

inal model as closely as possible while being computationally cheaper to evaluate, as depicted in figure

1.1. The model is constructed based on a dataset of a limited number of intelligently chosen sample

points. This sample points, that constitute the dataset, can be obtained using the most accurate model

or can combine different models with different fidelity levels, enabling a cooperation between them. This

way, multi-fidelity optimization emerged, combining different information sources to construct the surro-

gate model. Multi-fidelity optimization has proven to be more efficient than single fidelity optimization [2],

since the combination of multiple information sources allow the model to better know the design space

with less computational cost.
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Figure 1.1: Surrogate: to model the model [1].

Another important topic when designing systems efficiently is the correct consideration of the mul-

tiple disciplines that interact with each other. Thereby, Multi-disciplinary Design Optimization (MDO)

emerged. This field focuses on use of numerical optimization to perform the design of systems that

involve a number of disciplines or subsystems [3]. Aerospace engineering due to its complexity and

multi-disciplinary nature, was one of the first applications of MDO. As depicted in figure 1.2, aerody-

namics, structures, propulsion and controls are some of the fields that interact when performing aircraft

design. The aircraft designs obtained from the single discipline optimization for each discipline of figure

1.2 are very distinct and have a poor performance for the other disciplines that are not taken into con-

sideration. The MDO allows obtain the best aircraft design that has a trade-off relationship between the

multiple participating disciplines.

Figure 1.2: Multi-disciplinary domains in an aircraft design process [4].

1.2 Topic Overview

In this section, we overview surrogate models and Bayesian optimization. Moreover, aircraft design

optimization and fluid-structure interaction are also approached.
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1.2.1 Surrogate Models

A surrogate is an approximation model of a quantity of interest, cheap to evaluate, constructed on a

finite set of evaluation samples called Design Of Experiments (DOE) [5]. Figure 1.3 illustrates a surro-

gate model constructed with three design points of the objective function. As referred in the motivation,

Figure 1.3: Surrogate model approximating the true objective function [6].

the surrogate can be constructed using samples from one or more information sources of the objective

function, allowing the fusion of information between different fidelity levels. One of the popular choices to

construct a surrogate is a Gaussian process [7], also referred as kriging [8]. Kriging models have been

widely used in many optimization approaches, from multi-fidelity [9] to multi-disciplinary [10]. In section

2.1, we discuss in depth the making of DOE and single and multi-fidelity kriging models.

1.2.2 Bayesian Optimization

Bayesian optimization is an approach that uses an approximation of the quantity of interest, con-

structed based on a finite set of data, and determines what is the best sample to query per iteration to

minimize (or maximize) a quantity of interest. This way, the surrogate model can be updated with the

new information and becomes progressively better as the optimization takes place in the region where

the minimum is supposed to be.

One particular Bayesian optimization algorithm is the Efficient Global Optimization (EGO), developed

by Schonlau, Welch and Jones [11]. EGO uses a kriging model as approximation of the objective

function, which provides access to the model uncertainty. This is an extremely convenient measure,

useful to determine where the next sample should be queried and, in case of multi-fidelity optimization,

which level of fidelity to use for that new sample. EGO has been extended to deal with constraint

problems (SEGO) and multi-fidelity problems (MFSEGO). This methods will be discussed in detail in

section 2.2.

1.2.3 Aircraft Design

As previously referred, the aircraft design involves the consideration of multiple disciplines. Tradition-

ally, each of these disciplines are sequentially analyzed by an independent expertise team. However,

these areas are tightly coupled and a change in the aircraft’s design affects more than one of these
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teams. This sequential approach optimization produces non-optimal results, which can be overpassed

by the integrated optimization approach or MDO.

Figure 1.4: Comparison between Pareto fronts for sequential and multi-disciplinary optimization [12].

Figure 1.4 shows a comparison between sequential optimization and MDO using a Pareto front for

fuel burn and takeoff gross weight. The objective is to minimize both quantities. A Pareto front is a set

of optimal solutions, where a metric can not be improved without sacrificing at least other metric. Figure

1.4 demonstrates the superiority of the MDO compared to sequential approach, as all the design points

computed by the MDO have a lower fuel burn for the same takeoff gross weight. Thus, all the solutions

achieved using the sequential approach are dominated by the MDO. Another example comparing the

performance of these two optimization approaches can be found in [13].

One of the most common applications of MDAO is coupled aerodynamic and structural optimization

due to the strong iterations between these two disciplines using the Breguet range equation [14, 15] as

metric. This quantity is given as

Wfuel = (Ws +W0)× exp
(R.CT

V

(CL
CD

)−1

− 1
)
, (1.1)

where Ws is the wing structural weight and W0 is the rest of the empty weight of the aircraft. In the

exponent, R is the range, CT is the specific fuel consumption, CL is the lift coefficient, V is the flight

speed and CD is the drag coefficient. From equation (1.1), we see the aerodynamic and structural

contribution to the fuel consumed during the flight mission. In this thesis, we perform aero-structural

optimization using this metric.

1.2.4 Fluid-Structure Interaction

When performing aero-structural optimization, the two disciplines are tightly coupled. A change in

the aerodynamic forces produces displacements in the structure and structural displacements deforms

the aerodynamic surface producing different aerodynamic forces. Thereby, information between the two

disciplines must be continuously exchanged during the optimization, through a fluid-structure interaction

scheme. The transfer schemes are dependent on the models and the discretization of these models

used to describe both disciplines.
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Figure 1.5: Percentage of computational cost per task for a hydrodynamics structural problem [16].

Figure 1.5 shows the computational cost percentage of the most demanding tasks for a hydrodynam-

ics structural problem [16]. We observe that the computational cost is mostly driven by the fluid dynamics

computations, but data handling is also demanding. This data handling refers to the data transfers be-

tween the two disciplines. The transfer schemes are therefore an important task in the process and the

way they are implemented greatly affects the optimization, in terms of results and computational time.

The ability to use different discretizations in both disciplines can be an interesting way to reduce the

optimization time with slight or non performance damage.

1.3 Objectives and Deliverables

This thesis aims to explore the potential of extension of a multi-disciplinary optimization to multi-

fidelity, as depicted in figure 1.6. Several researches have been developed in both topics. For instance,

Meliani et al. [17] studied aerodynamic multi-fidelity EGO to optimize an airfoil shape using the high

fidelity code ADflow and the low fidelity code Xfoil. The multi-disciplinary optimization topic has been

widely studied. Aerodynamics and structures, two tightly coupled disciplines, were the first ones to be

considered on a aircraft wing design [18, 19]. Then, MDO has been extended to complete aircraft opti-

mization [20, 21]. In order to develop an optimization strategy that incorporates these two topics, some

researches have been performed. Here, we highlight the work of Priem et al. [22] that implemented

Bayesian optimization to an industrial MDO framework for aircraft design.

Multi-fidelity optimization Multi-disciplinary optimization

Extension of multi-disciplinary optimization to multi-fidelity

Figure 1.6: Simplified schematic of the two main thesis topics.

This is a recent research area, so it is of extreme importance to understand how this approach

works using simple problems. This way, we will study the performance of multi-fidelity optimization

using SEGO in an aircraft wing considering the aerodynamic and structural disciplines. To integrate

the disciplines in the optimization, a low fidelity tool, OpenAeroStruct (OAS) [12], is used. This tool is

responsible for both discipline analysis and it discretizes the aerodynamic discipline as a set of panels

and the structural discipline as a set of finite element beams. The two discipline meshes have the same
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spanwise discretization in the original OAS tool, as we will explore in section 4.3. Firstly, the OAS tool

will be extended to work with non-identical spanwise discipline discretizations, in section 4.4. Then, a

deep discussion on the performance of single and multi-fidelity optimization will be carried out. The

number of fidelity levels used in the optimization is varied from one to three. The objective is to conclude

which approach provides better results. After the results discussion, using the best approach previously

identified and the same constraint problem, we will perform optimization using non-identical spanwise

meshes to discretize aerodynamics and structures and conclude if any performance improvement is

attained.

To summarize, this work aims to:

• Enhance the OAS tool to handle non-identical spanwise aerodynamic and structural mesh dis-

cretizations;

• Explore and compare SEGO results performed with single and multi-fidelity levels;

• Use the new transfer schemes to run SEGO with non-identical mesh disciplines discretization and

compare with the previous results.

The main contributions of this thesis are the developed code and a detail study of the SEGO results

with single and multi-fidelity levels and identical and non-identical spanwise disciple discretization.

1.4 Thesis Outline

This thesis is organized as follows. Firstly, in chapter 2, we describe in detail kriging models and

EGO applied to single and multi-fidelity information sources.

In chapter 3, we gloss over some background of Multi-disciplinary Design Analysis and Optimization

(MDAO) namely architecture, Multi-Disciplinary Analysis (MDA) approaches, optimization algorithms,

aerodynamic and structural models and fluid-structure interaction.

After some theoretical background of the topics covered in the thesis scope, the wing mesh and the

finite element structure is defined and the load and displacement transfer schemes implemented in OAS

are introduced, in chapter 4. Then, the developed new transfer schemes for non-identical spanwise

disciplines discretization are described.

In chapter 5, we start by defining the optimization problem along with the material properties, the

flight conditions and other parameters. After the complete problem set up, we start by discussing the

one fidelity level optimization results. The problem’s complexity is then progressively incremented for two

and three fidelity levels optimization. Then, the transfer schemes extension is employed in multi-fidelity

SEGO using the same problem. We end this chapter by summing the overall conclusions.

Finally, in chapter 6, the work’s achievements are summed up and suggestions for further develop-

ments are made.
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Chapter 2

Surrogate Modeling and Bayesian

Optimization

In this chapter, the mathematical fundamentals to perform multi-fidelity Bayesian optimization are

discussed in detail. In section 2.1, the single and multi-fidelity model fitting procedures are explained.

Then, in section 2.2, we consider the optimization techniques used to solve single and multi-fidelity

surrogate based problems. Finally, in section 2.3, we present the Python toolboxes used to implement

the previously described techniques.

2.1 Multiple Information Source Surrogate Modeling

A surrogate model, or metamodel, is a technique that mimics the behavior of the outcome of interest,

constructed on a finite set of sample data while being computationally cheaper. This technique is conve-

nient when the outcome of interest is too expensive to evaluate on an optimization process or sensitivity

analysis, since multiple measures are required [23].

Figure 2.1: Key stages of the surrogate modeling optimization.

Figure 2.1 illustrates the key stages of the surrogate modeling approach. The first step is the con-

struction of the DOE that can be obtained from different information sources, from computational simu-

lations to experimental data. We will present the technique employed to build the DOE in section 2.1.1.

Then, the surrogate construction is treated as a black box problem, where solely the input-output working

is meaningful. The surrogate model construction is covered in sections 2.1.2, 2.1.3 and 2.1.4.
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2.1.1 Design of Experiments

The DOE is the first step to construct a surrogate and it is a crucial stage, because it has a signifi-

cant effect on the model’s accuracy. In general, a good DOE should be ’space-filling’, that is, the sample

points should be spread over the entire design space as evenly as possible to capture the design be-

havior.

In particular, the Latin hypercube sampling is a random sampling technique, proposed by McKay et

al. [24], widely used for engineering purposes due to its simplicity. For the sake of clarity, we present the

most simple form of this sampling plan. Let n denote the required number of samples and d the number

of random variables. An n × d matrix P , in which each of the d columns is a random permutation of

1,..., n, and an n × d matrix R of independent random numbers from the uniform (0, 1) distribution are

established. The sampling plan is given as

S =
1

n
(P −R). (2.1)

Each element of S, sij , is mapped according to its target marginal distribution as

xij = Φ−1
xj

(sij), (2.2)

where Φ−1
xj

is the inverse of the target cumulative distribution function for variable j. Now, vector x̂i =

[x̂i1 x̂i2 ... x̂id], representing one sample, can be obtained.

An example of a Latin hypercube sampling for two dimensions and five samples is shown in figure

2.2. Note that for each column and for each row that partitions the design space there is one sample, a

feature of this sampling plan [25].

Figure 2.2: Latin hypercube sampling for two dimensions and five samples. The P and R matrices (a)
determines the plan illustrated in (b) [25].

Although the previous example explores efficiently the design space, there is the risk of some un-

desired correlation of the sampling plan. In the last decades, researchers have tried to improve the

space-filling properties of Latin hypercybe sampling, while managing the computational cost.

In this thesis, we use the Enhanced Stochastic Evolutionary algorithm designed by Jin et al. in 2005

[26] for building the Latin hypercube sampling. This algorithm improves the sampling process quality

by maximizing the minimum distance between samples, referred to as the maximin distance optimality

8



criterion.

2.1.2 Surrogate Modeling via Kriging

Next, we present kriging metamodels following Sasena [23]. Most of the surrogate models rely on the

assumption that the outcome of interest y(x) can be expressed as ŷ(x) + ε, where ŷ(x) is the model and

ε are the residuals considered to be independent identically distributed normal random variables. The

kriging model distinction is that the deviations, ε, are not independent, but rather a systematic function

of the samples location.

Figure 2.3: Correlation between errors ε(x) [23].

To illustrate the previous idea, figure 2.3 depicts a narrow region between two sample points of a

quadratic function fitted by the least squares approach. At the sample point xi, it is known the true

function value y(xi) and the model value ŷ(xi) and therefore the error ε(xi) = y(xi)− ŷ(xi). At xi+ δ, for

some small δ, it is only known the regression function value ŷ(xi + δ). The kriging approach assumes

that the smaller δ is, the more correlated the error ε(xi + δ) is with ε(xi).

The kriging model assumes that the approximation of the outcome of interest y(x) takes the form

ŷ(x) = m(x) + Z(x), constituted by two parts: a regression term (polynomial) m(x) and a functional

departure from that regression Z(x). The regression term for the universal kriging can be written as

m(x) =

r∑
j=1

βjfj(x), (2.3)

where fj(x) are the basis functions and βj are the corresponding coefficients. In ordinary kriging, m(x)

takes the form of a constant, where r = 1 and f1 = 1, leaving most of the prediction to Z(x).

The functional departure Z(x) is a Gaussian process with null mean and variance σ2
z (∼N (0, σ2

z))

representing uncertainty in the mean of ŷ(x). The corresponding covariance function can be expressed

as

cov(Z(x), Z(w)) = σ2
zR(x,w). (2.4)
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Here, σ2
z is a scalar factor known as the process variance, x and w are two design points in Rd and

R(x,w) is the spatial correlation function, also known as process kernel. The choice of the kernel

determines how the metamodel fits the data, that is, how quickly and how smoothly the function changes

from point x to point w.

One of the most commonly kernels used in kriging is the squared exponential correlation kernel,

R(x,w) = exp(−
d∑
b=1

θb(xb −wb)
2), (2.5)

where θ ∈ Rd and θ > 0 is a vector of hyperparameters of the kriging model. Observing equation (2.5), it

can be concluded that the function goes to zero as (xb−wb) increases, showing that the influence of the

sample data on the point to be predicted decreases as the distance between design points increases.

According to Forrester, Sóbester and Keane [27], the vector of hyperparameters θ is a width pa-

rameter that affects how far that influence extends. For instance, for high values of θ, the correlation

function is low and, consequently, there is a quick deterioration of the influence of the sampled data on

prediction, that is, only data points near each other are well correlated. The vector of hyperparameters is

fitted using a set of sample data X = {x1, ..., xn} with xi ∈ Rd, with observed responses Y = {y1, ..., yn}

with yi ∈ R.

Once the kernel is defined, it can be proven [23] that the mean and variance of the kriging process

can be expressed respectively as

µ(x) = f(x)′β + r(x)′R−1(Y − Fβ) (2.6)

and

σ2(x) = σ2
z [1− r(x)′R−1r(x) + (f(x)′ − r(x)′R−1F )(F ′R−1F )(f(x)′ − r(x)′R−1F )], (2.7)

where x ∈ Rd is the prediction point, R is the matrix of correlations among training points, r(x) is the

vector of correlations between the prediction point and the sample data, β is the vector of coefficients

βj presented in equation (2.3), F is the matrix of values of the regression basis function at the positions

of the training points and f(x) is the vector of values of these functions at the prediction point.

Parameters Estimation

With equations (2.6) and (2.7), one can compute an estimation of the mean and variance at a certain

prediction point x. However, the values of the parameters σ2
z , θ and β have to be estimated first. We

follow Schonlau’s approach [28] to show these parameters estimation. The estimation is based on

maximizing the likelihood function, a function that measures the goodness of fit of a statistical model to

Y given by

L(y) =

n∏
i=1

φ(yi), (2.8)
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where φ is the probability density function of the process. By hypothesis, a Gaussian process distribution

can be written as

φ(y;θ, σ2
z ,β) =

1√
2πσ2

z

2√
det(R)

exp
(
− 1

2σ2
(y − Fβ)′R−1(y − Fβ)

)
. (2.9)

The opposite log-likelihood function is a preferable form to solve the problem, since the product of

the density functions can quickly tend to zero, making the optimization process harder. This function is

written as,

l(y;θ, σ2
z ,β) = −n

2
(ln(2π) + ln(σ2

z)) +
1

2
det(R) +

1

2σ2
(y − Fβ)′R−1(y − Fβ). (2.10)

The vector and parameter β and σ2
z are determined by differentiating equation (2.10) w.r.t. β and σ2

z

respectively yielding

β = (F ′R−1F )−1F ′R−1y (2.11)

and

σ2
z =

(y − Fβ)′R−1(y − Fβ)

n
. (2.12)

If we substitute β and σ2
z back into equation (2.10) and ignoring constant factors we obtain

l(y;θ) = −1

2
(n ln(σ2

z) + det(R)). (2.13)

The estimation of the vector of hyperparameters θ is one of the major challenges when building a

kriging model, in particular when dealing with problems with many dimensions or with a large number of

sampling points. Inserting (2.11) and (2.12) into equation (2.13) we get

l(y; θ) =

− 1

2

[
n ln
( 1

n
(y − F (F ′R−1F )−1F ′R−1y)′ ×R−1(y − F (F ′R−1F )−1F ′R−1y)

)
+ ln(detR)

]
. (2.14)

The vector of hyperparameters are set by maximization of equation (2.14) w.r.t. θ using the COBYLA

optimizer [29], which stands for constrained optimization by linear approximation. This algorithm is

gradient-free and it constructs successive linear approximations of the objective function and constraints

via d+ 1 points (in d dimensions) and optimizes these approximations in a trust region at each step.

2.1.3 Multi-fidelity Kriging

In this section, we are focus on kriging models constructed via multiple information sources, asso-

ciated with a fidelity hierarchy, designated co-kriging. Let f1, f2, ..., fl be predictions of the quantity of

interest y, where fl has the best accuracy. We are interested in building a surrogate model for the y

quantity using the knowledge of l information sources to enhance the model.
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Relationship Enforcing

When studying physical problems, if a relationship between the information sources is known, it is

enforced in the model, allowing learning the model with less data. Kennedy and O’Hagan [30] proposed

a formulation that links the High Fidelity (HF) and Low Fidelity (LF) through a scaling factor ρ and a

discrepancy function δ(x) as

fHF (x) = ρfLF (x) + δ(x), (2.15)

with fLF (x) and δ(x) independent. The ρ factor captures the correlation and scaling differences between

the different fidelities into account. The discrepancy factor, δ(x), expresses other differences beyond

scaling that cannot be captured by ρ.

Le Gratiet [31] gives a formal definition of the ρ factor,

ρ =
cov(fHF , fLF )

var(fLF )
=

std(fHF )

std(fHF )

cov(fHF , fLF )

std(fLF )std(fLF )
=

std(fHF )

std(fLF )

cov(fHF , fLF )

std(fLF )std(fHF )
=

std(fHF )

std(fLF )
corr(fHF , fLF ), (2.16)

where std(.) is the standard deviation and corr(.) is the correlation.

Implementation

Le Gratiet [31] proposed an implementation of the Kennedy-O’Hagan’s multi-fidelity formulation that

modifies the regression term from the kriging model presented in equation (2.3) to take the lower fidelity

model as a basis function

m(x) =

r∑
j=1

βjfj(x) + βρfLF (x), (2.17)

where βρ is an estimation of ρ obtained via the maximization of the likelihood function as presented in

section 2.1.2.

Based on equation (2.15), the mean and variance of a high fidelity model (only two levels) can be

expressed respectively as

µHF = ρµLF + µδ (2.18)

and

σ2
HF = ρ2σ2

LF + σ2
δ . (2.19)

Le Gratiet’s learning is performed by firstly learn the lowest fidelity µLF and σ2
LF , then learn the relation-

ship between the two consecutive fidelity levels, that is, the scaling factor ρ and the discrepancy function

δ(.). This approach can be applied to l levels of fidelity, therefore equations (2.18) and (2.19) can be

rewritten as

µk = ρk−1µk−1 + µδk (2.20)
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and

σ2
k = ρ2

k−1σ
2
k−1 + σ2

δk
. (2.21)

Le Gratiet’s formulation requires the DOE to be closed-form. The nested DOE states that Xl ⊆

Xl−1... ⊆ X1, where Xk represents the sample data to train the model of fidelity level 1 to l, being l the

highest level. This formulation offers an expression of the uncertainty contribution of the fidelity level k

at design point x to the model (corrected from page 163, [31]) as

σ2
cont(k,x) = σ2

δk
(x)

l−1∏
j=k

ρ2
j . (2.22)

Equation (2.22) shows that the uncertainty of the fidelity level k is computed by the variance contribution

of the same level scaled using ρj until we get to the highest fidelity level.

2.1.4 Kriging Model combined with Partial Least Squares

The kriging model has become extremely popular because of its ability to accurately mimic computa-

tionally expensive functions and capability to estimate the error of the prediction. However, the standard

kriging model can be computationally expensive when the number of sample points n is large, since

the matrix of correlation R of size (n × n) must be inverted in equation (2.14). Moreover, for highly

dimensional problems, more hyperparameters θ must be estimated, consequently the matrix R must be

inverted multiple times.

To lighten this load, we use Partial Least Squares (PLS) to construct a new kernel that depends

on only a few parameters rather than d dimensions. The resulting method is called Kriging with Partial

Least Squares (KPLS). According to [32], PLS is a statistical method that projects input variables onto a

new space, called principal components, to find a linear relationship between input variables and output

variable. The principal components are a linear combination of the input variables. Usually, the number

of principal components h is between one and four, according to what is deemed enough to explain a ’

majority’ of data variations. Figure 2.4 illustrates a simple three-dimensional problem (d = 3), where the

PLS approach is employed to reduce the problem dimension to two principal components (h = 2).

Figure 2.4: Partial least squares construction of two principal components [32].
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The principal components are computed by searching the direction that maximizes the squared co-

variance between that direction and the output variable. By searching the principal components, one

obtains the matrix of the weights that transcribes the influence of the initial variables to the output vari-

able, trimming the dimension from d to h. Thereby, a new kernel of dimension h is defined, reducing the

problem dimension and making the surrogate model construction more efficient and faster.

The same concept is applied to co-kriging, only performing the PLS analysis step on high fidelity to

preserve the robustness to poor correlations.

2.2 Bayesian Optimization

Let us now introduce the optimization techniques used to solve single and multi-fidelity surrogate

based problems.

In 1975, Močkus [33] defined Bayesian optimization as an optimization technique based upon the

minimization of the expected deviation from the extremum of the studied function. The objective function

is treated as a black box function. This optimization approach places a prior (probability distribution

expressing our beliefs) over the objective through a surrogate model which is constructed with an initial

set of samples. The prior captures an estimated behavior of the function. This estimation is used to

construct an acquisition function, often also referred as Infill Sampling Criterion (ISC), that determines

what is the most appropriate query point to add.

Bayesian optimization is particularly advantageous for a multi-modal objective or if the objective

function is expensive to evaluate. Let us take an example of gold mining inspired by Krige [34]. Consider

that it is desired to mine for gold in an unknown area. Naturally, our goal is to find the location in the land

with the maximum gold to know where we should mine. We can learn the gold distribution by drilling at

different locations. However, drilling is costly, consequently we must find this location in order to execute

the minimum number of drills. Bayesian optimization can be used to propose new location candidates

with high promise of gold content.

2.2.1 Efficient Global Optimization (EGO)

In 1998, Jones [11] used Gaussian processes with the expected improvement function as ISC to

successfully developed the EGO algorithm. Since EGO’s publication, several researches have been

developed to extend the algorithm. In particular, adding constraint optimization [23, 35], increasing the

optimization efficiency [32] and using mixture of experts [36].

Next, we describe EGO following Jones [11]. Let y be the objective function. We start by getting a set

of samples X = {x1, x2, ..., xn} yielding the responses Y = {y1, y2, ..., yn}. Using this set of samples, a

kriging model is built with a mean and variance function µ and σ2 respectively, as described in section

2.1.2. Figure 2.5 shows a surrogate model, the error estimation depicted in (b) is computed through the

normal function estimation in the domain, depicted in (a) at x = 0.5.

The information provided by the kriging model is used to establish the Expected Improvement func-
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(a) Normal function estimation at x = 0.5 (b) SM with error estimation

Figure 2.5: Kriging model [37].

tion (EI), the employed ISC in EGO. This function will determine the next point to query. First, let

ymin = min{y1, y2, ..., yn} (2.23)

be the current best function value. The EI is simply given by

E[I(x)] = E[max(ymin − Y (x), 0)], (2.24)

where Y (x) is a random variable following the distribution N (µ(x), σ2(x)).

By expressing the right-hand side of equation (2.24) as an integral, and applying some tedious

integration by parts, one can express the EI in closed form,

E[I(x)] = (ymin − µ(x))Φ
(ymin − µ(x)

σ(x)

)
︸ ︷︷ ︸

Exploitation

+ σ(x)φ
(ymin − µ(x)

σ(x)

)
︸ ︷︷ ︸

Exploration

, (2.25)

where Φ(.) and φ(.) are respectively the cumulative distribution function and the probability density

function of N (0, 1). Then, we determine the next point to be sampled as

xn+1 = argmax
x

(E[I(x)]), (2.26)

and the respective response yn+1 is computed. This process is repeated for a certain number of times.

When performing EGO, it is required to provide a budget, that is, a number that will influence the number

of samples added to the model and, consequently the computational time of the optimization process.

Generally, the budget is related with the computational cost to query a function’s sample. Adding a new

sample to the surrogate model is associated with a numerical cost. As the optimization proceeds, new

samples are added to the model and the budget is consumed. The optimization will run until the budget

is reached.

After presenting the steps of EGO, let us explore its properties to better understand how it works

and how can it be extended to a multi-fidelity problem. The first property is the enrichment acquired

by the model as the optimization process takes place, since the more samples we have, the better the
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model approximates the objective. The second property is the exploration/exploitation trade-off when

it comes to choose the next sampling point. Equation (2.25) is a balance between seeking promising

areas of the design space (exploitation) and choosing something from where we can better learn the

design space (exploration). The term relative to Φ is large when µ(x) is small with respect to ymin, which

promotes exploitation. On the other hand, the term relative to φ is large when σ(x) is large, promoting

exploration. Thus, in areas where the kriging model is worse than the current best ymin, the EGO may

perform exploration. In areas where the kriging model is better than the current best, the EGO may

exploit. Note that E[I] = 0 when σ(x) = 0, consequently there is no possibility of sample a point that

was already chosen.

To demonstrate EGO’s performance, let us observe figure 2.6 that shows a simple one dimensional

multi-modal example. The dashed line represents the true objective function, while the solid line is the

kriging approximation. The circles show the sample points in each stage of the optimization. The plot at

the bottom represents the EI. Initially the kriging is constructed using four sample points, resulting in a

model poorly fitted when compared with the true function. The first samples to be plotted are on the right

side, where the model uncertainty is highest. Between iteration two and four, the model queries another

few points in that region where there is a high probability that a better point can be found. After four

iterations, the right region is explored, but the uncertainty of the model on the left region forces some

samples to be plotted. Finally, by the sixth iteration the local minima is achieved in the right region and

the kriging model mimics the true function closely.

Figure 2.6: EGO example. Dashed line is the true function, solid line is the kriging model, circles are the
sample points and the bottom plot is the EI [23].

More sophisticated ISC functions have been developed over the EI criterion, such as Watson and
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Barnes (WB2) criterion [38] formulated as

WB2(x) = −µ(x) + E[I(x)] (2.27)

As for the EI criterion, the next sampling point is obtained by the maximization of (2.27) employing the

SLSQP optimizer, which will be presented in section 3.4.

Figure 2.7 shows the EI and WB2 criterion for the same situation. The magnitude of EI is expected to

decrease during the iterative process, as the surrogate model becomes more accurate in the promising

areas of the design space. So, for high dimensional problems, where some areas have a high uncer-

tainty, the EI can suffer from an excess of exploration on those areas. To address this issue, the WB2

criterion adds the term −µ(x), avoiding an excess of exploration of uncertainty areas [36]. In addition,

Sasena [23] advised to use this criterion after comparing several infill sampling criteria with various test

cases. Thereby, in this dissertation we use the WB2 criterion as ISC.

(a) EI criterion (b) WB2 criterion

Figure 2.7: Infill sampling criteria [37].

2.2.2 Super-Efficient Global Optimization (SEGO)

One of the major drawbacks with EGO is that it only handles unconstrained problems. To address

this issue, Michael Sasena [23] proposed an extension of EGO called SEGO.

As in the EGO approach, the objective function y is approximated by a kriging model. Additionally,

we construct a surrogate for the m nonlinear constraints. The WB2 function is used to determine the

next sampling point

max
x∈Ωf

WB2(x), (2.28)

where the feasible domain Ωf is defined by the kriging model of the nonlinear constraints

Ωf = {x ∈ Rd : ĉ1(x) ≤ 0, ..., ĉm(x) ≤ 0}. (2.29)

The choice of the next sample is only driven by the WB2 of the objective function. Therefore, the

kriging models of the constraints should be accurate in order to not compromised the solution’s accuracy.

At each iteration, the new point to be sampled may not be a feasible point, because only the mean value
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of the kriging model ĉi is used to approximate the constraints. Even if the new point is not feasible,

evaluating the true functions adds information to the model. To consider the associated error estimation

of the constraints in a Bayesian optimization, various approaches are possible, as expected violation [39]

or predictive entropy search with constraints [40]. This approaches will not be handle in this dissertation.

We summarize the SEGO steps in figure 2.8.

Figure 2.8: SEGO diagram.

The first step is to construct the initial DOE. Then, the surrogate model is built based on this DOE

and the maximization of the ISC is computed to obtain the next sample to add to the data set. If the

budget has not yet been reached, the point is added to the data set and the kriging model is rebuilt. The

process is repeated until the budget is exhausted.

In the EGO, the surrogate building and the maximization of the ISC are optimization problems them-

selves that can be computationally expensive. Other optimization methods such as gradient-based

methods or genetic algorithms require very little computational effort where to evaluate the function

next. However, the number of functions evaluations to converge to a solution is large compared to EGO.

This approach converges more rapidly because it uses as much information as possible when determin-

ing the next point to query. Thus, EGO is ideal for expensive functions, when the designer can not afford

to perform a large number of functions evaluations, as the mining gold example referred at the beginning

of this section [23].

2.2.3 Multi-fidelity Super-Efficient Global Optimization (MFSEGO)

In this section, we extend the SEGO algorithm to multi-fidelity problems. The new algorithm is named

Multi-Fidelity Super Efficient Global Optimization (MFSEGO).

Following the approach presented by Meliani [17], the MFSEGO algorithm handles with a two-stage

decision process: (1) the search of the most promising sample and (2) the choice of level of enrichment

of this sample. The first problem is tackled by the ISC the same way as presented in section 2.2.1.

The second problem analysis the uncertainty of the chosen point and decides the fidelity level where
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this point should be queried. The choice of the fidelity level of enrichment favors the use of low fidelity

samples for exploration and high fidelity samples for exploitation.

Let f0, ..., fl be the lowest to highest fidelity model of the objective function, with the respective

querying costs c0, ..., cl. Recalling the recursive formulation of Le Gratiet introduced in section 2.1.3, we

known that fidelity levels relate as

fk = ρk−1 fk−1 + δk for k ∈ {1, ..., l} (2.30)

ρk−1 = corr(fk, fk−1)
std(fk)

std(fk−1)
(2.31)

σ2
k = ρ2

k−1σ
2
k−1 + σδ

2
k. (2.32)

Recalling equation (2.22) from section 2.1.3, the variance contribution of the fidelity level k at design

point x∗ is given by

σ2
cont(k,x

∗) = σδ
2
k(k,x∗)

l−1∏
j=k

ρ2
j . (2.33)

Due to the necessity of nested DOE, the fidelity levels lower than k of the sampling point x∗ are enriched

as well so the uncertainty reduction becomes

σ2
red(k,x∗) =

k∑
i=0

σδ
2
i (k,x

∗)

l−1∏
j=k

ρ2
j . (2.34)

The corresponding cost of the enrichment through fidelity level k yields

costtotal(k) =

k∑
i=0

ci. (2.35)

Mostafa [17] proposed the following enrichment level criterion

t = argmax
k∈(0,...,l)

σ2
red(k,x∗)

costtotal(k)2 + offset
, (2.36)

where t is the highest fidelity level to be added and offset is the scalar that takes into account the cost

of building the surrogate model and maximization of the ISC.

After presenting the MFSEGO, we now explore its properties. The MFSEGO algorithm only considers

the high fidelity information to update the value of ymin, presented in equation (2.23). Other fidelity levels

are only consider to help reducing some amount of the ISC, that is, the model’s uncertainty (exploration)

rather than effectively minimize the objective (exploitation). Thus, the algorithm ensures that the problem

converges to a global minimum of the high fidelity function. Note that the enrichment criterion, presented

in equation (2.36), integrates the correlation between fidelity levels. When the correlation is poor, ρ2
k → 0,

then σ2
red(k,x∗)

costtotal(k)2+offset → 0, pushing the algorithm to higher fidelities. The algorithm will not resample high

fidelity samples as ISC at these is zero. In addition, it will not resample low fidelity samples as the

enrichment criterion is zero and the algorithm is prompt to highest levels.

Similarly to the EGO’s problem presented in the previous section, let us introduce a one dimensional
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toy problem with two fidelity levels to demonstrate MFSEGO’s performance [41]. The high and low fidelity

functions are given as fHF (x) = (6x− 2)2 × sin(2(6x− 2))

fLF (x) = 0.5fHF (x) + 10(x− 0.5)− 5.

(2.37)

The cost ratio between the fidelity levels is assumed to be 1/1000.

Figure 2.9: Evolution of EI criterion and kriging model throughout MFSEGO iterations [41].

Figure 2.9 shows the evolution of the EI criterion and the surrogate model throughout the optimization

process. We start the optimization with three high fidelity samples and six low fidelity samples, as

illustrated in figure 2.9 (a). After adding two low fidelity samples to explore the design space and reduce

the uncertainty of the EI, at the third iteration, shown in figure 2.9 (c), one high fidelity sample is queried

for local exploitation. Then, the next high fidelity sample added in the forth iteration finds the global

optimum of the function.

To summarize, figure 2.10 schematizes the key stages of the MFSEGO algorithm. The general

procedure of MFSEGO, depicted in figure 2.10 (a), is similar to the SEGO procedure. The offset com-

putation is performed through the elapsed time between surrogate construction and maximization of the

WB2 criterion. As MFSEGO evolves, the number of sample points increases, consequently the time

to performed these two steps also increases. The enrichment level, where the algorithm computes the

response yn+1 of the next sample to be added to the data set, is more complex and it is schematized

below in figure 2.10 (b). The response yn+1 is computed for the lowest fidelity level function. The en-

richment criterion of two consecutive levels is compared and if the criterion of the consecutive highest
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(a) MFSEGO general procedure

(b) Enrichment Level

Figure 2.10: MFSEGO algorithm.

fidelity level k is larger than the fidelity level k− 1, the response is also computed for fidelity level k. This

process is repeated until the enrichment criterion of fidelity level k is smaller than the one of fidelity k−1.

Then, the surrogate model is rebuilt using the extra information added to the data base.

2.3 Surrogate Modeling Toolboxes

The Surrogate Modeling Toolbox (SMT) is a Python package developed by ISAE-Supaero, ONERA,

NASA and the University of Michigan that facilitates the use of surrogate models and the implemen-

tation of additional methods. It provides multiple surrogate models, for instance radial basis functions,

inverse-distance weighting and kriging. Sampling techniques, such as random sampling and the Latin

hypercube sampling using the Enhanced Stochastic Evolutionary algorithm, are available, as well as

multiple benchmarking problems, such as the Branin and Rosenbrock function. It includes the kriging
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model using partial-least squares approach for single and multi-fidelity (KPLS, MKPLS) [42]. An exam-

ple of how to use the SMT package to construct a kriging model is shown in the Python script below.

The kriging model is plotted in figure 2.11. The DOE to train the model is defined in xt and yt vectors

and the theta is set to 1× 10−2.

1 import numpy as np

2 from smt.surrogate_models import KRG

3

4 xt = np.array ([0.0, 1.0, 2.0, 3.0, 4.0])

5 yt = np.array ([0.0, 1.0, 1.5, 0.5, 1.0])

6

7 sm = KRG(theta0 =[1e-2])

8 sm.set_training_values(xt , yt)

9 sm.train ()

Listing 2.1: Python script to construct a kriging model using SMT [42]

Figure 2.11: Kriging model constructed in SMT [42].

An implementation of Le Gratiet’s formulation to build kriging models was implemented by Rémi

Vauclin [43], a former intern at ISAE-Supaero and it is available as part of the OpenMDAO package [44].

Mostafa Meliani [2] adapted his implementation to fit the format of the SMT library.

Although the SMT library includes the EGO implementation, the implementation of the updated EGO

for constraints (SEGO) for single and multi-fidelity, is a confidential Python package developed by ON-

ERA.
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Chapter 3

Multi-disciplinary Design Analysis and

Optimization

In the current chapter, some Multi-disciplinary Design Analysis Optimization (MDAO) background

within the scope of this thesis is glossed over. Let us start by introducing some basic concepts, followed

by a survey on the employed MDAO architecture and optimization algorithms. Then, the aerodynamic

and structural models are discussed and, finally, the interaction between disciplines is explained.

3.1 Terminology and Mathematical Notation

Before an optimization problem can be posed, it is essential to have a clear definition of some basic

concepts:

• Objective function: the function that represents the goal of the optimization problem, that is, the

quantity of interest that is being minimized (or maximized). Examples for our case could be the

amount of fuel consumed;

• Design variables: also known as design parameters, these variables are controlled by the opti-

mizer. These are henceforth the variables that are tuned to obtain the optimal value of the objective

function. These variables can be local or shared by multiple disciplines. In our situation, examples

of design variables could be angle of attack or wing span;

• Constraints: problem restrictions to obtain acceptable results. They can be simple bound con-

straints of some design variable, such as −10◦ < α < 10◦ , or more complex imposed relations,

such as L = D where L is lift and D is drag;

Now, let us define some terminology directly related with MDAO:

• Discipline analysis: consists in solving a system of equations that describes the functioning of one

discipline considered in the MDAO problem;
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• State variables: the outputs of solving a discipline analysis, which constitute the current state of

the system, at that iteration. They may or may not be controlled by the optimizer. Examples could

be the flow pressure or the displacement distribution;

• Coupling variables: state variables of one discipline that are used by other disciplines, such as the

aerodynamic loads on the surface that are passed to the structural analysis;

• Target variables: a copy of coupling variables made to allow discipline analyses to run indepen-

dently;

In the following sections, many of these notations will be referred to. This work’s terminology is

consistent with the work of Lambe and Martins [3], presented in table 3.1.

Table 3.1: Notation in MDO problem formulation [3].

Symbol Definition

x Vector of design variables
yt Vector of coupling variable targets (inputs to a discipline analysis)
y Vector of coupling variable responses (outputs from a discipline analysis)
f Objective function
c Vector of design constraints
()0 Functions or variables that are shared by more than one discipline
()i Functions or variables that apply only to discipline i
()∗ Functions or variables at their optimal value

3.2 Architectures

One of the most important considerations when implementing MDAO is which architecture to adopt

as it describes how a method handles the coupling of several disciplines and how the overall optimization

problem is solved. The architectures can be either monolithic or distributed. In monolithic approaches, a

single optimization problem is solved, whereas in a distributed approach the problem is partitioned into

multiple sub-problems containing small subsets of the variables and constraints [3]. We will only explore

monolithic architecture, as it is the only related with the thesis scope.

In a monolithic architecture framework, the MDAO problem is treated as a standard constrained

nonlinear programming problem, thus a single optimizer is employed to solve the problem. This optimizer

seeks out the values of the design variables that minimize the objective function, while satisfying the

constraints. There are many different architectures in the monolithic approach, but we will solely present

the Multi-Disciplinary Feasible (MDF) architecture, that we will be using during this dissertation. This

architecture is employed because it always returns a consistent set of feasible coupling variables at

every optimization iteration, as we will see. MDF solves the following optimization problem:
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minimize f(x, y(x, y))

with respect to x

subject to c0(x, y(x, y)) ≥ 0

ci(x0, xi, yi(x0, xi, yj 6=i)) ≥ 0 for i = 1, ..., N.

(3.1)

Figure 3.1: Extended design structure matrix for the multi-disciplinary feasible architecture with a Gauss-
Seidel multi-disciplinary analysis solver [12].

Figure 3.1 depicts the extended design structure matrix diagram [45] borrowed from Lambe and Mar-

tins [12]. This diagram is based on the design structure matrix [46, 47] and it is used to visualize the

dependency and process flow between components of the architecture on a single diagram. In the main

diagonal of the matrix are placed the components, such as the disciplines analyses, the driver and the

optimizer. In the off-diagonal locations placed in the same column to a component are the correspond-

ing inputs and in the same row to a component are the corresponding outputs. As an example, the

aerodynamics discipline has as inputs x0, x1 and yt2, yt3 and as outputs y1. External inputs are placed on

the top outer edges of the diagram, x(0) and yt,(0), respectively initial design variables and initial guess

of coupling variables. The final outputs are placed on the left outer side of the diagram, x∗, y∗1 and y∗2 .

Additionally, the process is broken down into stages by using a numbering system: the process

begins in (0) with the initial conditions and proceeds in numerical order. Loops are symbolized by → .

In figure 3.1, there are two loops, the MDA loop within the optimizer loop. The thin black line connects

the consecutive components to help visualize the process steps order. Further details of the diagram

syntax and interpretation are presented by Lambe and Martins [45].

Analyzing in more detail the MDF architecture and following the sequential numerical flow of figure

3.1, we observe that each discipline analysis computes its outputs that are passed to other discipline

analysis, or to the driver, when the MDA is being converged. After the MDA convergence, those outputs
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are used to evaluate the objective function and constraints. Thus, one of the benefits of this architecture

is that it always returns a fully consistent system design, even if the optimization process ended prema-

turely. However, the constraints are only evaluated after the MDA has converged, consequently the same

cannot be said regarding the constraint satisfaction. Although ensuring that each optimization iteration

is multi-disciplinary feasible is an advantage, developing the MDA procedure at every iteration can be

time consuming. In next section, we explore the approaches to perform MDA, namely the Gauss-Seidel

and Newton procedures.

3.3 Multi-Disciplinary Analysis (MDA)

3.3.1 Gauss-Seidel and Newton MDA

Different approaches can be used to solve the governing equations of the discipline analyses, the

inner loop of figure 3.1. These approaches are divide in two groups: fixed-point and Newton [48]. The

fixed-point approaches, keep the data of other analyses frozen (fixed), when solving a particular analysis.

As depicted in figure 3.2 (a), each analysis is surrounded by dashed line representing each of them being

solved individually. When doing so, the approach can use the previous iteration output, Jacobi approach,

or use the most recent output from the other analysis, Gauss-Seidel approach, depicted in figure 3.1.

Generally, the Gauss-Seidel converges faster than the Jacobi approach.

The Newton approach solves all the analyses simultaneously, as depicted in figure 3.2 (b) by the

dashed line surrounding the complete diagram.

(a) Fixed-point approach. (b) Newton approach.

Figure 3.2: Fixed-point and Newton MDA approaches [1].

The decision of each approach to use in the MDA convergence is made based on a study presented

in [12]. Figure 3.3 compares the computational costs of different MDA approaches for the solutions of

the coupled aero-structural system for level flight (1 g) and pull-up maneuver (2.5 g) using OAS. The

MDA approaches under investigation are the Newton, the Non-Linear Block Gauss-Seidel (NLBGS) and

the NLBGS with Aitken relaxation (NLBGS w/ Aitken). The Aitken relaxation is derived from the Gauss-

Seidel by introducing an extrapolation parameter. For the optimal extrapolation parameter, the NLBGS

with Aitken relaxation may converge faster than simple NLBGS by an order of magnitude [48].

By decreasing the spar thickness, the wing flexibility increases and consequently the coupling strength.

We observe that the NLBGS generally requires less time to solve the coupled system, but it can not con-
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Figure 3.3: Comparison of different solvers for the solutions of the coupled aero-structural system for
level flight and pull-up maneuver [12].

verge the systems with strongest coupling strength as well as Newton. In addition, as the spar thickness

decreases, the NLBGS without Aitken relaxation cannot converge the coupled system as fast as the

NLBGS with Aitken relaxation. Thereby, the approach used to converge the MDA in this dissertation is

the NLBGS with Aitken relaxation.

3.3.2 Aerodynamics and Structures MDA

To conclude this section, let us summarize the MDA step of the optimization problem studied in this

thesis. As referred, the two disciplines considered are the aerodynamics and structures. The aero-

dynamic discipline is the first one to be computed within the MDA iterative process and the structural

discipline is the second, as illustrated in figure 3.1 from section 3.2.

Figure 3.4 synthesizes the data flow through both disciplines, represented in green boxes. The

inputs of both disciplines are vertically aligned with the boxes and the outputs are horizontally aligned

with them. The steps (1) to (4) represent the MDA analysis, while step (5) represents the discipline

outputs used as inputs on the performance analysis.

Figure 3.4: Aerodynamics and structures MDA data flow.
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As depicted in figure 3.4, the aerodynamic discipline outputs the same data for the MDA convergence

and for the performance analysis. The outputs from the structural discipline are vastly different for MDA

and performance evaluation. For the MDA, we solely need the deformed mesh, whilst to evaluate the

structural constraints and other aerodynamic quantities extra information is needed.

3.4 Optimization Methods and Sensitivity Analysis

The optimizer component, depicted in figure 3.1, can use several methods to solve our problem.

The optimization methods are divided into gradient-free, also called zero-order or pattern search, and

gradient-based. The topics covered in chapter 2 describe the methodology to implement Bayesian

optimization, a gradient-free method. In this section, we will explore a gradient-based method, the

Sequential Least-Square Quadratic Programming (SLSQP).

3.4.1 Gradient-free Methods

Gradient-free methods do not rely on derivative information to guide them toward a local minimum

or identify when they have reached a local minimum [6]. Instead, they use solely the objective function

value to perform those tasks. These methods are more adequate than gradient-based methods when

dealing with discontinuous functions, discrete search space or noisy functions [1].

There are often problems, such as discrete design space or several local minima, where determinis-

tic methods are not adequate. In such situations, one should use heuristic (stochastic) methods that use

a degree of randomness to help escape local optima and thus increase the chance of finding global op-

timum. Some heuristic methods try to mimic some behavior found in nature, such as genetic algorithms

or ant colony optimization [1].

The Bayesian optimization, described in section 2.2, is a gradient-free, stochastic method employed

to optimize expensive to evaluate functions. This algorithm will be use to conduct an optimization study

with a multi-disciplinary problem.

3.4.2 Gradient-based Methods

Gradient-based methods define the search direction to progress from one iteration to the next, based

on both evaluations of the objective function and its derivative with respect to the design parameters.

These methods require a smooth objective function within the design space, but they only guarantee

convergence to a local optimum, being dependent of the initial guess. However, their main advantage is

that they are faster since they converge to the optimum with a significantly smaller number of function

evaluations.

The steepest descent is the simplest gradient-based method, where the search direction is obtained

via the gradient vector. Newton methods require second-order information (Hessian matrix) and exhibit

a much higher rate of convergence. To avoid the computation of the second-order derivatives, a new
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class of methods, referred to as Quasi-Newton, uses solely first-order information and relies on function

values and derivatives from previous iterations to approximate second-order information [14].

The gradient-based optimization algorithm employed in this work is the Sequential Least-Square

Quadratic Programming (SLSQP) [49]. This algorithm allows to minimize a function of several vari-

ables with any combination of bounds, equality and inequality constraints. The idea behind Sequential

Quadratic Programming (SQP) is to simplify the original problem, a non-linear programming problem,

into a sequence of simpler quadratic sub-problems at the design point xi and to use the solution of this

sub-problem to find the new point xi+1. We use this algorithm to minimize the WB2 criterion when

performing Bayesian optimization and to minimize the same MDO problem employed in Bayesian opti-

mization to obtain a reference solution.

To understand how the sub-problem is built in SQP, consider the equality constraint optimization

problem as

minimize f(x)

with respect to x ∈ Rn

subject to cj(x) = 0 for j = 1, ..., l.

(3.2)

We can define the Lagrangian function of this problem as

L(x, λ) = f(x) + λT c(x), (3.3)

where λ is the vector of Lagrange multipliers, a set of scalars. Deriving equation (3.3) in order to x and

λ we can obtain two important conditions:


δL
δxi

= δf(x)
δxi

+
∑N
n=1 λj

δcj(x)
δxi

= 0, for i = 1, ..., n

δL
δλj

= cj(x) = 0, for j = 1, ..., l.

. (3.4)

These first order conditions, known as the Karush-Kuhn-Tucker (KKT) conditions, are necessary for the

optimum of a constrained problem. This way, the constrained optimization problem with n variables and

l constraints has been transformed into an unconstrained problem of n+ l variables.

Going back to the SQP formulation, let us define a quadratic sub-problem at the design point xi as

minimize
1

2
pT∇2(f(x))ip+∇(f(x))ip

subject to ∇(cj(x))ip+ (cj(x))i = 0 for i = 1, ..., n,

(3.5)

where p is the only unknown and a factor that will determine the next point. We can define the first order

KKT conditions presented in equation (3.4) based on this subproblem yielding

∇
2(f(x))ip+∇(f(x))i −∇(cj(x))Ti λ = 0

∇(cj(x))ip+ (cj(x))i = 0, for i = 1, ..., n.

(3.6)
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The system can be expressed in matrix form,

∇2(f(x))i −∇(cj(x))Ti

∇(cj(x))i 0

 pi

λi+1

 =

−∇(f(x))i

−(cn(x))i.

 (3.7)

The previous system has the form of the Newton’s method, H × h = −g, where H and g represent

the Hessian matrix and Jacobian vector of the Lagrangian, respectively. The h is the finite difference

interval or perturbation step-size.

The first set of variables, pi, is used to update the design point as

xi+1 = xi + pi. (3.8)

The second set of variables, λi+1, is the updated value for the next design point [1].

Most applications of SQP are quasi-Newton methods, that is, use Hessian approximations for the

second-order terms rather than compute them analytically, as previously referred. The SLQP algorithm

performs such approximation. The SQP method can be extended to handle inequality constraints, a

useful feature since the problem we will be looking to minimize has equality and inequality constraints.

The inequality constraints are linearized as the equality constraints in equation (3.5). The most common

strategy to solve this problem is the active-set approach, where we only consider the active constraints

at a given iteration and treat them as equality constraints [50].

3.4.3 Sensitivity analysis

An important aspect to define how the problem is approach is the way the derivatives of the objective

function and the constraints with respect to the problem variables are computed. This is called sensitivity

analysis. Sensitivity analysis is the study of how the outputs of a model change in response to changes

in its inputs [51].

Several methods to perform sensitivity analysis exist, the most popular being finite differences, which

can use forward step formula for the first order (O(h)) approximation to the first derivative given by

∂f

∂x
=
f(x+ h)− f(x)

h
+O(h), (3.9)

where h is the step-size and O(h) is the truncation error proportional to h. The order of approximation

can be made higher at the expense of more complex formulae that require more function evaluation

points. Although finite differences method lacks robustness, they are very popular due to its simplicity.

This method is used to compute the derivatives in the maximization of the infill sampling criterion WB2

using the SLSQP algorithm.

To efficiently compute the derivatives of the MDO problem when using a gradient-based optimizer,

the SLSQP optimizer in our situation, more complex methods have to be implemented [51, 52]. The

computation of complete derivatives is required, that is, we want to compute derivatives across the

several components that constitute the system.
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The MDAO framework used in this work employs the modular analysis and unified derivatives sensi-

tivity analysis architecture. Let us briefly introduce this architecture, that is completely derived in Martins

and Hwang [52]. The first step is to concatenate the m input variables, the n state variables and the p

output functions into a single vector u as

u = [z1, . . . , zm, y1, . . . , yn, g1, . . . , gp]. (3.10)

The design variables are a subset of the input variables which are independent variables. Output

functions are the quantities we are interested in, such as the objective function and constraints, repre-

sented in figure 3.1 in the fifth step.

Now, we define the residual functions associated to u as

Ri(u) = zi − z∗i , for i = 1, . . . ,m (3.11)

for all the input variables zi,

Rm+1(u) = yi − y∗i (z1, . . . , zm, y2, . . . , yn) if yi is explicitly defined

Rm+1(u) = −Ri(z1, . . . , zm, y1, . . . , yn) if yi is implicitly defined
, for i = 1, . . . , n (3.12)

for the state variables yi, and

Rm+n+i = gi − g∗i (z1, . . . , zm, y1, . . . , yn), for i = 1, . . . , p (3.13)

for all the output functions gi. For equations (3.11-3.13), the input variable z∗i represents the value zi

at the point where we are evaluating the expressions. The y∗i and g∗i are the functions values at z∗i .

We may now concatenate all the residuals equations into a single system of equations as

R1(u1, . . . , uq) = 0

...

Rq(u1, . . . , uq) = 0

⇔ R(u) = 0. (3.14)

We introduce the vector r as the value of the residual vector. We desire to solve the system of

equation (3.14) at r = 0, the system’s solution. Assuming that ∂R/∂u is invertible at the solution of the

system, we may define
du

dr
=
∂(R−1)

∂r
, (3.15)

evaluated at r = 0. Applying the inverse function theorem at equation (3.15), one obtains

∂(R−1)

∂r
=
[∂R
∂u

]−1

, (3.16)
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which we can now combine with equation (3.15) to obtain

∂R

∂u

du

dr
= I =

∂RT

∂u

duT

dr
. (3.17)

Equation (3.17) is called the unifying derivative equation. Thereby, we shown that the derivatives of

the outputs with respect to the inputs of the model can be computed by solving the linear system (3.17).

3.5 Discipline Models

Recalling figures 3.1 and 3.4, we need mathematical formulations to model the aerodynamic and

structural disciplines analysis, presented inside the inner MDA loop. In next sections, we start by pre-

senting the vortex lattice method used to model the aerodynamic discipline and then the finite element

method used to model the structural discipline.

3.5.1 Aerodynamics

As a starting point to this section, let us have a look on some aerodynamic concepts and numerical

methods used on several wing model schemes. In the next sections we follow Anderson [53].

Vortex Flow Element

Let us start by introducing the vortex flow element, the most essential concept when modeling lifting

surfaces. It is defined as a flow where the streamlines are concentric circles of constant velocity about

a given point, as illustrated in figure 3.5. Moreover, the streamline velocities vary from one to another

inversely with distance from the origin.

Figure 3.5: Vortex flow element [53].

The velocity components in the radial and tangential directions, Vr and Vθ, respectively, are ex-

pressed by

Vθ = constant
r = C

r

Vr = 0.

(3.18)
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In order to evaluate the constant C, the flow’s circulation is evaluated, defined as

Γ = −
∮
C

Vds = −Vθ(2πr)⇒ Vθ = − Γ

2πr
. (3.19)

In equation (3.19), we see that by solely knowing Γ, the vortex strength, we know the tangential

velocity of a vortex flow at any point.

Next, we need to extend the concept of vortex element, to something more related to the numerical

methods of model lifting surfaces. Thus, it is discussed the concept of vortex filament, depicted in figure

3.6.

Figure 3.6: An arbitrarily shaped vortex filament of strength Γ [53].

A vortex filament is just an extension of the point vortex flow, previously described, applied to an

arbitrarily shaped line. The flow induced in any plane perpendicular to this line by the filament itself is

identical to that induced by a point vortex of strength Γ. To express the induced velocity by the filament

segment dl at a point P , we resort the Biot-Savart law,

dV =
Γ

4π

dl× r

||r3||
. (3.20)

By integrating equation (3.20) from negative infinity to infinity, it can be obtained the velocity at point P

induced by the entire vortex filament.

The physician Hermann von Helmholtz established basic principles of the vortex behavior, known as

the Helmholtz’s vortex theorem:

1. The strength of a vortex filament is constant along its length;

2. A vortex filament can not end in a fluid; it must extend to the boundaries of the fluid (be they finite

or infinite) or form a closed path.

Lifting Line Theory

Based on the concepts presented in last subsection, we can now move on to a finite wing model built

on a single vortex filament, the Prandtl’s classical lifting line theory, illustrated in figure 3.7. This theory

establishes that a wing is replaced by a vortex of strength Γ, bound to a fixed location in the flow, the

lifting line. Recalling the Helmholtz’s theorem that states that the vortex filament cannot end in a fluid,
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Figure 3.7: Diagram of a single horseshoe vortex wing modeling scheme.

this bound vortex continues as two free vortexes trailing downstream from the wing tips to infinity. Due

to the shape formed by the vortex, it is called a horseshoe vortex.

We may now enhance the approach by superimposing multiple horseshoe vortexes, coincident along

a single line, the lifting line. Figure 3.8 illustrates this concept, where only two horseshoe vortexes are

Figure 3.8: Diagram of a superimposition of two horseshoe vortexes on the lifting line.

represented for the sake of clarity. Analyzing figure 3.8, we observe that only a single bound vortex of

strength Γ1 acts on the entirety of the wing’s span from point a to point b. It is also the strength of the

vortexes that then trails off at the ends of the wing. Superimposed on this is a second horseshoe vortex

on cd. As a result, the strength of the vortex on this segment is Γ1 + Γ2. Additionally, two vortexes are

trailing off to infinity on point c and d with Γ2 strength.

Summarizing, the lifting line theory models a wing through several horseshoe vortexes on a single

lifting line. This model enables only one-dimensional spanwise discretization, which translates in the

number of horseshoe vortexes implemented.

Vortex Lattice Method

Let us extend upon the previous model by superimposing several lifting lines along the chordwise

direction in order to enable a two-dimensional discretization, so that chordwise variation is also handled.

More specifically, let us model the wing as a set of distributed spanwise and chordwise lifting panels.

Each panel contains a single horseshoe of an unknown strength. Figure 3.9 shows one of these panels
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in dashed line, while the horseshoe vortex associated is drawn with solid line. The bound vortex is

located at one quarter of the chord from the front of the panel with two trailing vortex lines shed from

each end. Additionally, we define a control point at the center line of the panel and three quarters from

the front of the panel.

Figure 3.9: Lifting panel with a single horseshoe vortex [53].

The required strength of the vortex on each panel is obtained by applying the flow tangency condition

at the respective control point, that specifies that the velocity normal to the panel must be zero. The

normal velocity is made up of a freestream component and an induced flow component defined as

V∞.n + un = 0 (3.21)

where V∞ is th freestream velocity, n is the normal to the panel and un is the induced flow component.

The induced flow component un is a linear combination of the effects of the strengths of all panels

and can be expressed as

un =

N∑
j=1

Ai,jΓj , (3.22)

where N represents the total number of vortexes defined and Ai,j represents a row of the aerodynamic

influence coefficient matrix. The influence coefficient Ai,j represents the induced flow on panel i due to

the vortex on panel j. The aerodynamic influence coefficient matrix is computed through the Biot-Savart

law, introduced in equation (3.20). Therefore, the zero flow normal to the surface can be described by

equation (3.23)
N∑
j=1

Ai,jΓj = −V∞.n (3.23)

Solving the linear system (3.23), we obtain the circulation distribution for the entire surface. Subse-

quently, we can compute the aerodynamic forces acting on each individual panel by the Kutta-Joukowski

theorem,

Fi = ρ (V∞ + vi) Γi × bi, (3.24)

where vi and bi are, respectively, the velocity induced by the vortexes at the control point and the vector

describing the bound vortex for each panel.

The resultant force distribution can be decomposed in lift and drag distributions, which can then be
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integrated to obtain the total aerodynamic forces of the wing.

3.5.2 Structures

In the previous section, we established how we can determine the aerodynamic effect of the lifting

surface. We must now define a structural model that allows us to obtain the wing stiffness, which is then

used to compute the displacements of the structure.

The finite element method approach is engaged. This method divides the lifting surface into smaller

parts with the aim to simplify the model computations. The relevant equations are solved for each part,

in a local frame of reference, and then the results are transformed to a global reference frame and

combined, so that, the complete system behavior is captured [54].

The most common wing structure component is the wing-box, with a thin-walled spar and hollow

interior, as illustrated in figure 3.10 (a). However, for the sake of simplicity, a single one-dimensional

thin-walled beam of circular cross-section is employed, as shown in figure 3.10 (b).

(a) Wing-box cross-section model. (b) Spar cross-section model.

Figure 3.10: Wing-box and spar cross-section models.

Base Elements

When applying the finite element method, one important decision is which element to use. The beam

element chosen to model the wing structure is a combination of three base elements, namely two plane

beam elements, one truss element and one torsional bar element.

Let us first establish the truss element illustrated in figure 3.11 under pure axial loads. This element

is used to capture the extension/compression suffered by the model, since its degrees of freedom are

displacements on the x axis.

Figure 3.11: Finite element for axial analysis.

The stiffness matrix of this element can be written as

[k]a =
EA

L

 1 −1

−1 1

 (3.25)
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and its displacement vector is

u = [u1 u2]. (3.26)

Here, E is the Young Modulus, A is the element’s cross sectional area and L is the element’s length.

Next, we define the element for torsion in the x axis, shown in figure 3.12.

Figure 3.12: Finite element for torsional analysis.

The stiffness matrix yields

[k]t =
GJ

L

 1 −1

−1 1

 (3.27)

where G is the shear modulus and J is the polar moment of inertia. The corresponding displacement

vector is given by

u = [αx,1 αx,2]. (3.28)

Lastly, the element under pure bending condition is defined, depicted in figure 3.13 considering

bending about the z axis.

Figure 3.13: Finite element for bending analysis.

The stiffness matrix of such element is written as

[k]b =
EIz
L3


12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

 (3.29)

with the displacement vector

u = [v1 αy,1 v2 αy,2], (3.30)

where Iz is the second moment of inertia about its respective axes. This element is also employed for

bending about the y axis, with Iz being replaced by Iy.
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Employed Element

Finally, we can present the employed element, which superimposes the three elements described in

the previous section. The complete element is illustrated in figure 3.14.

Figure 3.14: 12 degrees of freedom beam element [12].

Assuming the displacement/rotation vector is

u = [u1 v1 w1 αx,1 αy,1 αz,1 u2 v2 w2 αx,2 αy,2 αz,2], (3.31)

the local spatial beam element stiffness matrix is given by the combination of the stiffness matrices of

the simpler elements as

[k]e =



EA
L

12EIz
L3

0

12EIy
L3

0

0

Symmetric

GJ
L

0

0

0

4EIy
L

0

−6EIy
L2

0

0

4EIz
L

0

0

0

6EIz
L2

0

EA
L

0

0

0

0

0

−EA
L

12EIz
L3

0

−6EIz
L2

0

0

0

−12EIz
L3

0

12EIy
L3

0

0

0

6EIy
L2

0

−12EIy
L3

0

0

GJ
L

0

0

0

0

0

−GJ
L

0

0

0

4EIy
L

0

6EIy
L2

0

0

0

2EIy
L

0

−6EIy
L2

0

0

4EIz
L

0

0

0

−6EIz
L2

0

2EIz
L

0

0

0

6EIz
L2

0


. (3.32)

The elementary matrix [k]e is formulated for each element in the local reference frame and then

transformed to the global frame. This transformation involves a rotation matrix, which will not be detailed.

After that, the global stiffness matrix [K] of the entire structure is obtained by assembling each element

[k]e matrix transposed to the global frame. As discussed in the previous section, the aerodynamic

analysis provides a set of loads applied on each of the aerodynamic panels. These loads are used to

compute the equivalent loads and moments applied on the beam nodes on a global load vector F. Once

38



both stiffness and load vectors are assembled, we can solve the Hook’s law formulated as

[K]u = F, (3.33)

in order to get the displacement and rotation vector enacting on the structure. Then, we can iterate upon

the architecture using the updated mesh on the aerodynamic analysis.

3.6 Fluid-structure Interaction

To conclude this chapter, we introduce the fluid-structure interaction. In the previous sections, we

described the aerodynamic and structural models used to obtain the pressure and displacement distri-

butions along the wing, respectively. During the analysis, information needs to be exchange between

the two domains, such aerodynamic pressures and structural displacements. Thus, we must now estab-

lished this fluid-structure interaction.

Assuming that the aerodynamic and structural solution is known at iteration k, the steps to obtain the

coupled system solution at iteration k + 1 are summarized below [1]:

1. Solve the aerodynamic system for the current iteration k + 1;

2. Integrate fluid pressure onto structural domain;

3. Solve the structural analysis with the aerodynamic loads as input;

4. Transfer structural displacements onto the aerodynamic mesh, that is, update the surface mesh;

5. Repeat steps 1 to 4 until convergence;

The update of the surface mesh, specified on step 4, will promote a new aerodynamic pressure field.

The goal is to repeat the process until one obtains a pressure field that produces an updated mesh that

when aerodynamically analyzed produces the same pressure field.

Figure 3.15: Transfer of the pressure of an aerodynamic node to the nodal forces on a given finite
element (adapted from [14]).
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An approach for data exchange between the two disciplines is necessary, as schematically repre-

sented in figure 3.15. The pressure field p of an aerodynamic node in the Aerodynamic Mesh (AM) is

transformed into forces that are applied to the respective structural nodes in the Structural Mesh (SM).

The transfer scheme must satisfy the requirements of being consistent and conservative [14]. Con-

sistency states that resultant forces and moments due to the pressure field, must be transferred into an

equivalent set of nodal forces and moments, thereby satisfying the load conservation. However, there

is an infinite number of sets of nodal forces that satisfy this requirement. The second requirement, con-

servation, states that the virtual work performed by the load vector, fj , over displacements, δus,j , on the

structural mesh, must be equal to the work performed by the pressure field, p, undergoing equivalent

displacements, δua,i, on the aerodynamic mesh [12]. Equations (3.34) and (3.35) translate the virtual

work on each of the domains, structural and aerodynamic, where ni represents the unit vector normal

to the aerodynamic element and S is the panel’s area.

δAs = fj δus,j (3.34)

δAa =

∫
S

pni δua,i dS (3.35)

In section 4.3 and 4.4, the transfer schemes for identical and non-identical disciplines discretization,

respectively, are presented.
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Chapter 4

Aero-Structural Design Analysis and

Optimization Framework

In this chapter, we will present the low fidelity tool employed to perform aero-structural analysis and

optimization, OAS. We start by introducing the OAS tool, in section 4.1. In section 4.2, the aerodynamic

wing mesh and structural spar mesh generation is presented. Then, in section 4.3, we describe the load

and displacement transfer schemes of OAS. After the discussion of the original transfer schemes, the

developed transfer schemes for non-identical spanwise discipline discretization are explained in section

4.4.

4.1 Aero-structural Design and Optimization Tool

To implement MDAO, the OAS tool is employed [12]. OAS is an open-source low-fidelity aero-

structural analysis and optimization tool coupling the vortex-lattice model with 12 degree of freedom

beam element, both described in sections 3.5.1 and 3.5.2. It is written entirely in Python within the Open-

MDAO framework [55], an open-source high-performance computing platform for efficient optimization.

How the data flow is carried out during the analysis, referred to as architecture, is an important aspect

of MDO problems that was discussed in section 3.2. Fully analytic derivatives are provided for each

component using the modular analysis and unified derivatives, as presented in section 3.4.3. Section

A.1 explains how OAS work with more detail.

4.2 Aerodynamic Mesh and Finite Element Structure

OAS problems are initialized by the definition of the lifting surfaces, that is, the aerodynamic wing

mesh and the structural beam finite elements.

To define the refinement of the aerodynamic mesh, two variables, ′num y′ and ′num x′, are specified.

The ′num y′ and ′num x′ variables represent the spanwise and chordwise discretizations, respectively,

and determine the number of panels that discretize the wing. The base shape to model the lifting
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surface is the NASA Common Research Model (CRM) developed by Vassberg et al. [56]. This model

was originally developed as a benchmark solution for aerodynamic analysis and it has been extensively

used to compare simulations methods. Thus, CRM became the recurrent model used for investigating

new analysis and optimization methods.

As an example of a mesh generation, figure 4.1 displays an aerodynamic mesh constructed based on

the CRM shape. As it can be observed, structural beam elements are overlapped with the aerodynamic

mesh. Moreover, these structural elements have the same spanwise discretization, since the elements

radius changes are coincident with the panels limits. OAS imposes the same spanwise discretization in

both disciplines for the sake of simplicity [12].

Figure 4.1: Aerodynamic CRM grid and beam finite elements.

Recalling figure 3.1 from section 3.2, the mesh generation is located in step (1), outside the MDA

loop. Consequently, this process is repeated before the initialization of every disciplines analysis loop. It

is on this mesh that aerodynamic and structural analyses are converged.

4.3 Load and Displacement Transfer Schemes

When working with more than one discipline within MDAO, information between the disciplines needs

to be constantly exchanged as referred in section 3.6 and schematized by figure 4.2. One crucial aspect

is how the information transfer between them is performed. As presented in section 3.6, the transfer

schemes must be consistent and conservative. The OAS simplifies the transfer schemes by imposing

Figure 4.2: Aerodynamic and structural cycle flowchart (adapted from [57]).

the same spanwise discretization for aerodynamic and structural disciplines, as previously observed in

figure 4.1.
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Jasa, Hwang and Martins [12] described the transfer scheme of OAS satisfying the requirements of

being consistent and conservative. However, the transfer schemes found in the OAS implementation

were different from the ones described in [12]. For the sake of completeness, in this section both

schemes will be examined.

4.3.1 Consistency and Conservation Requirements

Let us start by introducing the transfer scheme that satisfies the requirements of consistency and

conservation, as presented in [12].

For the load transfer, let us first examine how the aerodynamic load per unit area T of one VLM panel

is transferred to a finite element structure. Figure 4.3 illustrates a wing section, where the upper limit is

the leading edge (LE) and the lower limit is the training edge (TE), and a spar structure. Additionally,

figure 4.3 illustrates an aerodynamic panel ABCD, the two spanwise (y) aligned structural nodes 1 and

2, the position vectors from the structural nodes to the panel’s center of pressure cp (rcp,1, rcp,2) and

the forces and moments that have been transferred onto them (Fs,1, Fs,2, Ms,1, Ms,2). The subscript

s indicates that the quantity is in the structural mesh and S is the panel’s area. As observed in figure

4.3, the load distribution T is applied on the cp which is located at the middle of the panel ABCD in the

spanwise direction (y), so half of T is applied to each of the structural nodes 1 and 2.

Figure 4.3: Scheme for transferring the load distribution T to adjacent structural nodes [12].

The nodal forces and moments on left and right structural nodes are given by

Fs,i =

∫
panel

1

2
TdS =

1

2
TS (4.1)

and

Ms,i =

∫
panel

ri ×
1

2
TdS =

1

2
rcp,i ×TS, (4.2)

where i = 1, 2 indicates nodes 1 and 2, and ri is the vector pointing from the structural node to a point

on the panel.

Equations (4.1) and (4.2) guarantee a consistent scheme, because the forces and moments are

equated to be equivalent results from the aerodynamic load distribution.

We must complete the transfer scheme by describing the displacement transfer. The objective is

to transfer the computed displacements of the structural elements to deformations of the aerodynamic
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mesh ua. The transfer scheme is defined as

ua =
1

2

2∑
i=1

(
ds,i + θs,i × ri

)
, (4.3)

where ds,i and θs,i are the translational and rotational components of the structural displacements, and

ri points from structural node i to the aerodynamic center of pressure corresponding to ua. A constant

factor of one-half is used, since we average the contributions from the left and right structural nodes,

because we are evaluating the aerodynamic mesh at the midpoint in the spanwise direction.

After defining both transfer schemes, we verify if the conservativeness requirement is satisfied. The

virtual work effected on the structural mesh, δAs, by the nodal forces and moments is given by

δAs =

2∑
i=1

(
Fs,i . δds,i + Ms,i . δθs,i

)
. (4.4)

Inserting equations (4.1) and (4.2) in (4.4), we obtain

δAs =
1

2

2∑
i=1

(
T . δds,i + (rcp,i ×T) . δθs,i

)
S. (4.5)

The aerodynamic virtual work δAa performed by T over δua is

δAa =

∫
panel

TδuadS, (4.6)

where we can insert ua from equation (4.3), yielding

δAa =
1

2

2∑
i=1

∫ (
T . δds,i + T . (δθs,i × ri)

)
dS. (4.7)

Since T, ds,i and θs,i are constant over the panel, equation (4.7) can be rewritten as

δAa =
1

2

2∑
i=1

(
T . δds,i + T . (δθs,i × rcp,i)

)
S. (4.8)

By vector algebra, we have

T . (δθs,i × rcp,i) = (δθs,i × rcp,i) .T = δθs,i . (rcp,i ×T) = (rcp,i ×T) . δθs,i. (4.9)

Thereby, equation (4.8) is equivalent to

δAa =
1

2

2∑
i=1

(
T . δds,i + (rcp,i ×T) . δθs,i

)
S. (4.10)

Then, we can conclude that equations (4.5) and (4.10) are equivalent (δAs = δAa), which proves that

the load and displacement transfer schemes are conservative.
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4.3.2 Implemented Scheme

Let us now present the transfer schemes encountered in the OAS implementation (version 2.2.0).

The load transfer scheme that was found in the OAS tool only differentiates from the one presented in

subsection 4.3.1 by the position vectors rcp,i. The position vectors are defined from the middle of the

structural beam element to the panel’s center of pressure cp, so instead of each panel has two position

vectors, as illustrated in figure 4.3, it has only one, as illustrated in figure 4.9. Then, recalling the transfer

of load T of one panel to the adjacent structural nodes illustrated by figure 4.3, not only the forces

transferred to the nodes are equal, but also the moments, once the same moment arm is used.

The displacement transfer implemented in OAS was given by

ua = ds,i + θs,i × ri (4.11)

where ri is a vector pointing from the structural node to the aerodynamic mesh node, both aligned. The

transfer of the displacement of a structural node to a mesh node, ua, presented in equation (4.11), is

computed solely with the information from the respective aligned structural node. In contrast, equation

(4.3) transfers the displacements from two structural nodes to the center of pressure of the panel. The

displacements at the panel’s center of pressure are applied to the four aerodynamic mesh nodes that

compose the panel.

The implemented transfer schemes do not fulfill the conservation requirement. In fact, they prove only

to be conservative for rectangular wings (taper ratio of one). For tapered wings, it is not conservative,

although the difference between the virtual works is very small.

The discrepancy between the transfer schemes was communicated to the Michigan MDO laboratory

research group [58]. The load scheme is easily corrected, since only the moment arm needs to be

rectified. However, to fix the displacement scheme, it is necessary major structural code changes. A

new version (2.2.2) will be released in the future, with both transfer schemes based on the article strategy

[12].

New transfers schemes for non-identical discipline discretization are developed and presented in the

next section. Figure 4.4 shows a timeline with the two OAS versions released through time. Since the

rectification of the transfer schemes is a longstanding process, the new ones are developed based on

version 2.2.0.

Figure 4.4: OpenAeroStruct versions chronologically ordered.
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4.4 Transfer Schemes for Non-identical Discipline Discretization

When performing MDAO with more than one discipline, generally, the disciplines are modeled in

two different ways, as in our case, owing to different requirements for the solution of the structural

and flow equations, respectively. The aerodynamic analysis often requires an accurate description of

the boundary (VLM panels), while for the structural analysis, the body can be simplified (beam-like

elements). Even if the structural and flow discretizations are modeling the same boundary surface, often

the structural computational nodes do not coincide with the ones used for the flow as illustrated in figure

4.5. Again, the flow computational requires higher resolution than the structural analysis due to the need

for solving smaller scales [1, 16].

Figure 4.5: Different fluid and structure mesh modeling the same boundary (adapted from [16]).

The transfer schemes are very dependent on the approaches used to model the disciplines and

the discretization of these models. The way they are constructed greatly influences the optimization

performance in terms of results and computational time spent (see figure 1.5). Thereby, extend the

transfer schemes of OAS might be a useful update to save some computational time with just slight or

non damage in the optimization results. In this section, we extend the OAS transfer schemes for non-

identical discipline spanwise discretization, based on OAS version 2.2.0. We start by presenting two

methods to perform load transfer, and then we present one method to perform displacement transfer.

Since these new schemes are based on transfer schemes that do not fulfill conservation, they do not

satisfy this requirement either.

4.4.1 Load Transfer

Method 1

Method 1 performs the load transfer considering that the force and moment of a structural node is

computed through the area bounded by half length of the left beam element to half length of the right

beam element of that node. The content of that area can vary, from multiple sections of aerodynamic

panels to just one panel section according to the applied discretization.

Figure 4.6 illustrates the area corresponding to node 1 for two different discipline discretizations. For

figure 4.6 (a), the Aerodynamic Discretization (AD) is more refined than Structural Discretization (SD)

and for figure 4.6 (b), SD is more refined than AD. The aerodynamic panels are represented by the

continuous line and the area associated to node 1 is bounded by the dashed line. In figure 4.6 (a) node
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1 has associated 3 panel slices and in figure 4.6 (b) node 1 has associated only 2 panel slices. Each of

these parts has an associated area Si and a load per unit area Ti.

(a) AD more refined than SD (b) SD more refined than AD

Figure 4.6: Panels sections associated to node 1 to perform load transfer.

The equations to compute the force and moment of a structural node yields

Fs =
∑n
i=1 TiSi

Ms =
∑n
i=1 rcp,i ×TiSi,

(4.12)

where Ti and Si are, respectively, the load and area associated to panel slice i. The vector rcp,i points

from the point on the beam element aligned with the center of pressure to the aerodynamic center of

pressure of the panel’s slice.

To illustrate this method, let us analyze how the load is transferred to the structural nodes using the

same discipline discretization, depicted in figure 4.7.

Figure 4.7: Scheme for transferring the load T to adjacent structural nodes for method 1 with same
discipline discretization (adapted from [12]).

The forces and moments at the nodes are defined as

Fs,1 = TS1

Fs,2 = TS2

(4.13)

and Ms,1 = rcp,1 ×TS1

Ms,2 = rcp,2 ×TS2.

(4.14)
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Method 2

Let us now establish method 2. This method considers the panel’s area covered by each finite

element, and applies a linear shape function to transferred the load T to both nodes.

Figure 4.8 depicts the area corresponding to nodes 1 and 2 for two cases: (a) AD more refined than

SD and (b) SD more refined than AD. Similarly to figure 4.6, the aerodynamic panels are represented

by the continuous lines and the area of the nodes is bounded by the dashed lines.

(a) AD more refined than SD (b) SD more refined than AD

Figure 4.8: Panels sections associated to node 1 and 2 to perform load transfer.

The forces and moments of two consecutive nodes are given by

Fs,i =
∑n
j=1 TjSj .

lFE−xj

lFE

Fs,i+1 =
∑n
j=1 TjSj .

xj

lFE

(4.15)

and Ms,i =
∑n
j=1 rij ×TjSj .

lFE−xj

lFE

Ms,i+1 =
∑n
j=1 rij ×TjSj .

xj

lFE
,

(4.16)

where Tj and Sj are the load associated to the panel slice j, xj is the y distance between node i and

the center of pressure of panel slice j, lFE is the y coordinate of the length of the beam element and

rij points from the point on the beam aligned with the center of pressure to the aerodynamic center of

pressure of panel slice j.

Once again, for the sake of clarity, let us introduce the load transfer of method 2 using the same

discipline discretization outlined in figure 4.9.

The forces and moments of nodes 1 and 2 are defined asFs,1 = TS .
lFE−xj

lFE
= TS . 1

2

Fs,2 = TS .
xj

lFE
= TS . 1

2

(4.17)

and Ms,1 = rcp ×TS .
lFE−xj

lFE
= rcp ×TS . 1

2

Ms,2 = rcp ×TjSj .
xj

lFE
= rcp ×TS . 1

2 .

(4.18)

It is worth of mention that the edges of the panel are aligned with the structural mesh nodes, that is,

48



Figure 4.9: Scheme for transferring the load T to adjacent structural nodes for method 2 with same
discipline discretization (adapted from [12]).

A,D have the same y coordinate as node 1 as well as C,D have the same y coordinate as node 2.

In the particular case of the same discipline discretization, xj is half of lFE , consequently the transfer

scheme is equal to the one presented in section 4.3.

Comparison between Load Transfer Methods

After presenting in detail both developed load transfer schemes, we now compare them. As pre-

viously referred, both schemes are developed based on the implemented non-conservative version of

OAS (version 2.2.0), presented in section 4.3.2. Since both schemes are non-conservative, we do not

performed a conservation study to compare them. As future work, when the new OAS version is re-

leased (version 2.2.2), the transfer schemes can be updated and the conservation study to compare

both methods must be performed. For now, we will just briefly comment both methods. The first method

is more accurate when the wing chord tends to zero as the spanwise edge is closer. To examine this

special case, let us assume the same discipline discretization is taken to distribute the load. If we use

method 2, the two nodes closest to the wing tip have the same force distribution, while with method 1,

the force is higher on the node associated with a higher chord, which is more accurate. Due to this

reason, we employ method 1 to perform MFSEGO in section 5.8. Method 2 is more related with the

implemented approach and uses shape functions to distribute the load. Shape functions are a com-

mon used technique in FEM to discretize an unknown field, usually the displacements. They are also

employed to develop complex FSI schemes as presented in [16].

Additionally, for the new load transfer schemes based on the new OAS version (version 2.2.2), the

moment arms will be defined from the structural nodes to the panels slice center of pressure, as it is

depicted in figure 4.3. We can anticipate that for method 2 when the AD is much more refined than

the SD, there is the possibility that the moment arms get to big for some nodes and consequently the

moments get inaccurately too high. Figure 4.10 shows the moment arms associated to node 1 and node

2 in blue and orange, respectively. We see that the centers of pressure closer to node 1 and 2 produce

big moment arms in node 2 and 1, respectively.
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Figure 4.10: Moment arms associated to node 1 and 2 for method 2 when AD is more refined than SD.

4.4.2 Displacement Transfer

After establishing two load transfer schemes, let us now introduce the displacement transfer for non-

identical discipline discretization.

As mentioned in section 4.4.1, the edges (at constant y) of the panels are aligned with the struc-

tural nodes for the same discipline discretization. The displacement transfer algorithm compares the y

location of the structural nodes with the aerodynamic mesh nodes. In case this y coordinate of the aero-

dynamic mesh nodes does not match any of the structural nodes, a linear regression of the displacement

with the information of the two surrounding structural nodes and the y coordinates is performed. Thus,

we obtain displacements on a structural mesh with the same discretization as the aerodynamic mesh.

Then, the displacement scheme concludes the computations by following the steps presented on section

4.3.2.

To clarify the scheme, let us introduce an example illustrated in figure 4.11. Since there are no

structural nodes aligned with edge A,D, a linear interpolation with nodes 1 and 2 is computed to obtain

the displacement of node 4 yielding

Figure 4.11: Scheme for transferring the displacement of the structural mesh to the aerodynamic mesh.

us,4 =
us,2 − us,1
ys,2 − ys,1

. ys,4 + us,1 − ys,1
(us,2 − us,1
ys,2 − ys,1

)
, (4.19)

where us,i is the structural displacement associated with node i and ys,i is the y coordinate of node i.

The same idea is applied in nodes 2 and 3 to produce node 5.
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Chapter 5

Comparison of Optimization using

Different Multi-fidelity Levels

In this chapter, it is presented an optimization study comparing the results of SEGO using one, two

and three fidelity levels. Firstly, we define the optimization problem being minimized and the constants

and optimizer parameters. Then, the multi-fidelity parameters are defined and the correlation between

fidelity levels is explored. After the complete problem description, the results are thoroughly discussed.

5.1 Optimization Problem Definition

Let us start by summarizing our optimization problem, with 11 design variables and two constraint

functions in table 5.1. The problem has taken from previous ONERA internal studies on the subject.

Table 5.1: Optimization problem definition.

Function/variable Note Quantity Bounds

minimize fuel consumed Breguet range equation 1

w.r.t. angle of attack 1 [8, 12]◦

wing twist B-spline using 5 cp 5 [-6, 3]◦

spar thickness B-spline using 5 cp 5 [0.0015, 0.05] m
Total design variables 11

subject to lift = weight for cruise flight 1
σvon Mises ≤ σy

2.5 von Mises stresses using KS function 1
Total constraint functions 2

The quantity we will be looking to minimize is the amount of fuel consumed during the flight. The fuel

consumed is computed through the Breguet range equation given by

Wfuel = (Ws +W0)× exp
(R.CT

V

(CL
CD

)−1

− 1
)
, (5.1)
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where Ws is the wing structural weight, W0 is the rest of the empty weight of the aircraft. In the exponent,

R is the range, CT is the specific fuel consumption, CL is the lift coefficient, V is the flight speed and CD

is the drag coefficient. Equation (5.1) shows how the optimizer will minimize the amount of fuel spent:

by means of reducing the wing weight and increasing the CL/CD ratio, keeping the other parameters

constant.

The design variables wing twist and spar thickness are implemented by a spline spanwise distribu-

tion. We set the number of control points for these design variables and define a b-spline curve from

these. Then, the values on the structural nodes are computed from the b-spline curve.

To ensure the non-failure of all finite elements, a von-Mises yield criterion evaluates the structural

integrity. The material yield strength of the spar is represented by σy and a safety factor of 2.5 is used.

We utilize a constraint aggregation method, based on the Kreisselmeier-Steinhauser function [59], thus,

rather than define a constraint per each spar element, a single failure constraint needs to be applied.

5.2 Constants and Optimizer Parameters

Next, we specify the material properties and the flight conditions used in the optimization problem

previously defined, presented in tables 5.2 and 5.3. These constants are for the commercial aircraft

B777-300 [60]. The material selected to model the beam elements is the aluminium 7075, a major

constituent of the aircraft wings of the B777 series [61]. The flight conditions and the thrust specific fuel

consumption presented in table 5.3 are for cruise conditions.

Parameter Value

Young’s Modulus E(Pa) 70× 109

Shear Modulus G(Pa) 30× 109

Yield Strength σy(Pa) 500× 106

Density ρs(kg/m3) 3× 103

Table 5.2: Spar material properties (Aluminium 7075).

Parameter Value

Mach number M 0.84
Altitude h(m) 10.7× 103

Air density ρ(kg/m3) 0.38
Range R(m) 11× 106

Empty weight W0(kg) 1.2× 105

Thrust specific fuel consumption CT (kg/W/s) 1.54× 10−5

Table 5.3: Cruise flight conditions and thrust specific fuel consumption.

Lastly, we present the employed numerical tolerances to converge the MDA and the optimization

problem, shown in table 5.4. The first two lines of the table 5.4 are the relative and absolute tolerances

used to converge the Gauss-Seidel MDA solver, depicted in figure 3.1. The Gauss-Seidel approach

solves a coupled system, a set of residual equations that represent the discipline analysis. The stopping

criterion for each design point, that is, the MDA solution, is given by the two default tolerances of OAS.
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The last line of table 5.4 is a relative tolerance used to converge the optimization problem when using

the SLSQP optimizer.

Parameter Value

Absolute error tolerance 10−7

Relative error tolerance 10−30

Optimizer tolerance 10−3

Table 5.4: Gauss-Seidel MDA and SLSQP optimizer numerical tolerances.

5.3 Fidelity Levels and Associated Cost

The mesh discretization associated to each fidelity level (high, medium and low) is based on the

mesh convergence study shown in figure 5.1.

The analyzed quantity to perform the mesh convergence is the structural failure of the beam ele-

ments. If structural failure is higher than 0, then failure has occurred in at least one beam element. The

mesh convergence was performed analyzing different quantities, such as the fuel consumption and the

lift coefficient (see appendix A.2). The structural failure proved to be the quantity that requires more

mesh resolution to converge, thus it is the quantity used to select the different discretizations of each

fidelity level.

The variables num y and num x in figure 5.1 are the spanwise and chordwise wing discretization,

respectively introduced in section 4.2. As the mesh is progressively refined, the time to run the MDA

increases and the model converges to -0.84. Obviously, a more refined mesh is a higher fidelity model. In

industrial problems, the lowest fidelity level takes significant lower computational time to run the analysis

than the high fidelity level model. Consequently, the results obtained from low fidelity level are usually

less accurate than the high fidelity ones. Thus, we choose the less refined mesh of figure 5.1 to be the

low fidelity mesh. As medium fidelity mesh, we choose the second less refined mesh. Although the

structural failure of this mesh has not converged, it presents a great improvement upon the low fidelity

mesh. The second most refined mesh of figure 5.1 is set as high fidelity mesh, since it presents excellent

convergence results.

Figure 5.1: Structural failure mesh convergence study.

53



The discretization associated to each fidelity level is summarized in table 5.5 and it is illustrated in

figure 5.2 (a), (b) and (c). Figure 5.2 shows the aerodynamic mesh and the structural finite elements.

Table 5.5: Discretization associated to high, medium and low fidelity levels.

Fidelity levels High Medium Low

num y 61 9 5
num x 7 5 3

(a) High fidelity mesh. (b) Medium fidelity mesh. (c) Low fidelity mesh.

Figure 5.2: Wing discretization for varying fidelity meshes.

In industrial problems, the cost ratios imposed to a sample of each fidelity level are linked to the com-

putational time needed to run the analysis. Here, as we are using the same low fidelity computational

tool (OAS) for all fidelity levels, the time difference to run the analysis between the fidelity levels is not

very significant. Consequently, the costs of each level obtained from the computational time to run the

analysis are very different from real costs values. Since we are testing an optimization algorithm, we

impose the costs of each fidelity level to be more related with real problems. The cost of the high fidelity

samples is always set to 1 and thus, the other fidelity levels have smaller associated costs. The cost

selected to the low fidelity samples is based on previous internal studies, where a multi-fidelity aerody-

namic optimization problem with the costs related to the computational time analysis were studied. To

select the cost of the medium fidelity samples, a linear interpolation between the selected costs for high

and low samples and the structural failure values was performed from figure 5.1. We could have tested

multiple costs ratios to study the algorithm behavior.

The cost ratios imposed to a sample of each fidelity level are summed up in table 5.6. As referred in

section 2.1.3, Le Gratiet’s formulation for multi-fidelity surrogate modeling requires nested DOE. Conse-

quently, the real cost associated when performing enrichment through fidelity level k is the sum of the

costs of fidelity level k to the lowest level. These costs are used to select the enrichment level of the next

sampling x∗ as shown in equation (2.36) in section 2.2.3.

Table 5.6: Cost ratios associated to each fidelity level.

Fidelity cost High Medium Low

Normalized cost 1 50/125 1/125
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5.4 Design of Experiments Sampling Size

The sampling size of the employed DOEs are summarized in table 5.7. The DOEs are partitioned in

two different groups - modified DOE and complete DOE - each of them compound by two DOEs of two

and three fidelity levels optimization (2 F and 3 F). Additionally, there is the DOE corresponding to one

fidelity level optimization (1 F).

Table 5.7: Design of experiments sampling size.

Number of fidelities

Fidelity level 1 F
Modified DOE Complete DOE

2 F 3 F 2 F 3 F

Low - 40 40 80 160
Medium - - 40 - 80
High 40 40 40 40 40

The complete DOE group considers that the number of DOE samples of the fidelity level k doubles

the number of DOE samples of the most accurate consecutive fidelity level k + 1. Thus, half of the

DOE samples of each fidelity level are equal to the samples of the most accurate consecutive fidelity

level (nested DOE), and the other half of the samples is extra information to the model construction.

The DOE from the complete group for 3 F is the only one that is computed using Latin hypercube

sampling, explained in section 2.1.1, while the remaining four DOEs are obtained by filtering from it. To

construct the modified DOE, the filtering process preserves the sample values that are nested, that is,

equal. Consequently, each fidelity level has the same number of samples. The complete DOE of 2 F

is achieved in the same way as the modified DOE of 2 F, but the first 40 non-nested samples are also

considered to inform the model. Usually, the number of high fidelity samples must be three to four times

the number of design variables of the problem. Thus, it was decided to use 40 high fidelity samples on

each DOE.

The cost associated to obtain each of the DOEs can be computed through tables 5.6 and 5.7 and

are presented in table 5.8. These are the initial costs before the optimization starts.

Table 5.8: Cost associated to each design of experiments.

1F
Modified DOE Complete DOE

2 F 3 F 2 F 3 F

40 40.32 56.32 40.64 73.28

5.5 Correlation between Fidelity Levels

After we have chosen the mesh refinement for each fidelity level, we can study the correlation be-

tween them. To perform this study, we use the Pearson correlation coefficient given as
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ρ =

∑n
i=0(xi − x)(wi − w)√∑n

i=0(xi − x)2.
√∑n

i=0(wi − w)2
=

cov(X,W )√
var(X).var(W )

, (5.2)

where n is the sample size, xi and wi are individual sample points, and x and w are the mean of the

variables. The cov() is the covariance between X and W and var() is the standard deviation of X and

W . The Pearson correlation coefficient measures the strength of the linear correlation between two

variables. The coefficient has a value between 1 and −1, where the value of 1 corresponds to a perfectly

positive linear relationship, 0 represents no linear correlation, and 1 represents a perfectly negative linear

correlation.

To evaluate the Pearson correlation between fidelity levels, we use 100 run tests of a DOE with 40

samples of each fidelity level, as the 3 F modified DOE, presented in table 5.7. The Pearson coefficient

is measured between high fidelity and medium fidelity and high fidelity and low fidelity samples for the

objective function and the two constraints functions of the optimization problem, defined in table 5.1. We

depict the results in a box plot format (figures 5.3 and 5.4), where the maximum, minimum, mean and

median values are shown to help the analysis.

(a) Fuel consumption. (b) Trimmed flight. (c) Structural failure.

Figure 5.3: Pearson correlation between high fidelity and medium fidelity DOE samples for different
functions of interest.

Examining figure 5.3, we observe that the majority of the high fidelity and medium fidelity samples

have a Pearson coefficient close to one, that is, these samples have a strong positive linear relationship.

This does not mean that high and medium fidelity samples provide the same values for the three quanti-

ties, but rather that, for the majority of the DOE, a linear relationship is verified between the 40 samples

of high and medium fidelity. Thus, one can conclude that the medium fidelity samples add valuable

information to the model. Nevertheless, there are some outliers DOE, where this almost perfect linear

relationship is not verified.

Figure 5.4 shows that the Pearson correlation between high fidelity and low fidelity samples is very

different from figure 5.3. The lower and upper quartile values, the maximum and minimum values of the

box plots have decrease significantly. Thereby, we conclude that the quality of the information provided

by the low fidelity samples to the model is very dependent on the DOE. Some have good or reasonable
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(a) Fuel consumption. (b) Trimmed flight. (c) Structural failure.

Figure 5.4: Pearson correlation between high fidelity and low fidelity DOE samples for different functions
of interest.

correlations, but others have such low correlations that, instead of enrich, may erratically inform the

surrogate model and, therefore, negatively influence the optimization. We will explore this idea in the

next sections. Figure A.4, in appendix, represents the low, medium and high fidelity values for the

objective function and the two problem constraints of the first (out of 100) 3 F modified DOE. This figure

exemplifies the previous conclusions, since we observe stronger linear correlation between high and

medium fidelity samples than between high and low fidelity samples.

In statistical analysis, the p-value is a number between zero and one representing the probability

of obtaining test results at least as extreme as the results actually observed, under the assumption

that the null hypothesis is correct [62]. The null hypothesis states that there is no relation between

the data. A very small p-value means that such an extreme observed outcome would be very unlikely

to have no relation. A threshold value for the p-value, called the significance level, is chosen. This

threshold is usually between one and five percent. If the p-value is smaller than the threshold, then the

null hypothesis can be rejected. The p-values of all the analysis above are mainly smaller than three

percent, except for a few outliers.

5.6 Multi-fidelity Parameters Definition

Built on the five types of DOE previously presented, the kriging surrogate model is constructed using

the PLS extension (KPLS) with four principal components. In general, its regression term is considered

to be constant or linear. A parametric study using ten optimizations was made varying this parameter

and slightly better results were found using the linear term. The parameters are summarized in table

5.9.

The optimization budget is a parameter to control the desired computational time to solve the problem

and it is managed by summing progressively the associated cost of each point to be sampled during

the optimization and stopping the optimization process when the budget has been reached. The chosen

optimization budget is a trade-off between having acceptable computational time for several optimization
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runs and acceptable objective function results. The objective function results are considered to be

acceptable when they are close or smaller than those of the reference solution presented in section

5.7.1. After some experiments, the budget of 110 was defined. It is important to note that this budget

is only to the optimization process and it does not include the cost associated to each DOE presented

in table 5.8. As referred in section 2.2, the infill sampling criterion employed is the WB2. The optimizer

used to maximize the WB2 criterion at every iteration step is the SLSQP. The optimization parameters

are summed up in table 5.10.

Surrogate Number of Polynomial
model components type

KPLS 4 linear

Table 5.9: Surrogate model parameters.

Optimization
budget ISC Optimizer

110 WB2 SLSQP

Table 5.10: Optimization parameters.

The Root Square Constraint Violation (RSCV) is used to evaluate the results in terms of constraint

violation and it is given by

RSCV =
√
C2

1 + C2
2 , (5.3)

where C1 is the equality constraint, lift=weight, and C2 is the inequality constraint, von Mises stress for

wing failure. If the inequality constraint is positive, then the wing has failed and the constraint is violated.

Thus, we solely consider C2 in the RSCV calculation when it is positive. The common logarithmic (log)

RSCV is employed during the results analysis for simplicity.

5.7 Comparison of Different Multi-fidelity Levels in Optimization

In the next sections, let us compare the optimization results of 100 run tests for the five types of DOE

previously described. We start by the simplest optimization with one fidelity level progressing up to the

more complex ones employing samples of three fidelity levels.

5.7.1 Reference Solution

For each of the DOE types, we filter the 100 run tests based on a reference solution. This solution,

shown in table 5.11 along with the corresponding log (RSCV) value, is obtained using the SLSQP op-

timizer, the numerical tolerances presented in table 5.4 and the high fidelity mesh discretization. The

reference solution is presented with more detail in appendix A.7.1. Although one can use the number of

analyses performed to obtain the reference solution as a reference cost, it is not a good term of com-

parison with the gradient-free solutions because the SLSQP optimizer uses derivatives that should be

accounted to make a fair comparison. Our objective is, based on this reference solution, to define the

minimum requirements that the solutions of the 100 run tests must satisfy. Thereby, we are looking for

a tolerance to apply to the objective function solution and a maximum log (RSCV) value. Together, they
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are going to define the maximum threshold of our filtering process. These limits are defined based on a

trade-off relationship. It is desired that a significant amount of run tests fulfills the requirements to allow

significant data statistical studies, where we can observe tendencies and take conclusions. However, it

is also desired that the filtered results are close to the reference solution and have an acceptable degree

of constraint violation. Naturally, if the chosen tolerance and the log (RSCV) value are too high, some of

the filter results have poor quality. In contrast, if the chosen parameters are too low, we loss optimization

results that are important in the conclusion making. After some tests, a tolerance of 1% is applied to the

reference solution and the maximum log (RSCV) value of −2.5 is defined. The two last lines of table

5.11 show the defined threshold for the filtering process.

Table 5.11: Reference solution and maximum acceptable values to filter the results.

Parameter Value

Reference objective function solution 1.06801× 105 Kg
log (RSCV) −5.23

Maximum acceptable objective function solution 1.07869× 105 Kg
Maximum acceptable log (RSCV) −2.5

During the filtering process of the 100 run tests, we are seeking for the best solution of each test.

This solution is the one that has the lowest objective function (fuel consumption) value and fulfills the

established requirements. Table 5.12 shows the number of optimizations for each DOE type that is con-

served after the filtering process. The number of solutions that fulfilled the requirements has the same

order of magnitude, except for the 3 F optimizations. We will explore the reasons for this phenomenon

in section 5.7.4.

Table 5.12: Number of optimizations conserved after the filtering process.

1 F
Modified DOE Complete DOE

2 F 3 F 2 F 3 F

74 72 32 78 43

5.7.2 One Fidelity Level Optimization

The filtered best solutions of one fidelity level optimization are shown below in the format of three

box plots and one scatter plot. Figure 5.5 represents the box plots for three quantities, the log (RSCV)

(a), the solution cost (b) and the fuel consumption (c). Each of the box plots have some statistical data

(maximum, minimum, mean and median) on the right side to help the analysis, similarly to the Pearson

box plots in section 5.5. Note that the cost box plot includes the cost associated to the building of the

initial DOE (see table 5.8). Analyzing figure 5.5 (a), the log (RSCV) values are slightly concentrated in

the higher values. The costs, represented in figure 5.5 (b), vary in a wide range, but are also clustered

at the higher values. The fuel burn, in figure 5.5 (c), shows that there is a tendency for the acceptable

solutions to be concentrated towards the lower values of the range.
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(a) Log (RSCV) box plot. (b) Cost box plot. (c) Fuel consumption box plot.

Figure 5.5: Box plots of log (RSCV), solution cost and fuel consumption for the best solutions of the 1
fidelity level optimization.

Figure 5.6 shows the scatter plot where each circle represents a best filtered solution associated

with a cost and a fuel consumption value in the vertical and horizontal axis, respectively. Moreover, the

color of the circle provides a qualitative representation of the log (RSCV) value of that solution. The

more negative the log (RSCV) value is, the less the solution violates the constraints. The vertical green

line represents the reference solution presented in table 5.11. The scatter plot relates the information of

the three box plots and enables to get data relations. Figure 5.6 depicts a cluster of circles in the lower

values of fuel consumption, a result aligned with the fuel consumption box plot conclusions. Additionally,

we see that this data cluster is mainly associated with the highest costs of box plot 5.5 (b).

Figure 5.6: Scatter plot for the best solutions of 1 fidelity level optimization.

The results from all the optimizations will be presented in these format and will be compared with the

one fidelity level optimization that will be used as a benchmark solution.

5.7.3 Two Fidelity Levels Optimization

Let us start by comparing the results of one fidelity level optimization with two fidelity levels optimiza-

tion using the complete DOE (hereinafter referred to as 1 F and 2 F complete DOE, respectively). Figure

5.7 shows the box plots for three quantities, log (RSCV), cost and fuel consumption for the 2 F complete

DOE.
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(a) Log (RSCV) boxplot. (b) Cost box plot. (c) Fuel consumption box plot.

Figure 5.7: Box plots of log (RSCV), solution cost and fuel consumption for the best solutions of the 2
fidelity levels optimization using complete DOE.

Observing the RSCV box plots, figures 5.5 (a) and 5.7 (a), we see that the median of the 2 F complete

DOE results is lower than that of the 1 F results. The interquartile range for the 2 F complete DOE is

larger, the upper quartile is greater, and the lower quartile is lower when compared with 1 F. The same

verifies for the lower adjacent value of the 2 F complete DOE that is lower than that of the 1 F. The

batches have very close means, and the 2 F complete DOE is more upper skewed. This way, although

half of the RSCV results of the 2 F complete DOE are in a smaller range than the ones of 1 F, the

extension of the interquartile and the lower adjacent limit to lower values prevent from concluding which

of the approaches has better constraint violation.

Comparing now the cost box plots, figures 5.5 (b) and 5.7 (b), we observe that for the 2 F complete

DOE the median and mean costs are greater and the data set distribution is less disperse and more

upper skewed. Thus, we can conclude that the costs of the 2 F complete DOE best solutions are more

likely to reach the maximum budget. This means that this approach is progressively getting better results

through the optimization process, whilst the 1 F tends to find the best solution earlier and the rest of the

budget is spent without getting a better result than the one already obtained.

The cost analysis solely is not sufficient to conclude which of the approaches is better, since it

depends on the quality of the objective function values associated to these costs. Thereby, we now

discuss the last box plots relative to the fuel consumption, presented in figures 5.5 (c) and 5.7 (c), that

suggest that the 2 F complete DOE best solutions tend to have lower fuel consumption values, because

the median and mean are lower and the data set is more concentrated in the low values, that is, it is

more down skewed.

Finally, we analyze the scatter plots 5.6 and 5.8, which connect the cost, the fuel consumption and

the log (RSCV) quantities of the solutions and from which we can conclude which is the best approach.

Starting by the log (RSCV) values, no clear conclusion can be taken between the log (RSCV) and the

other two quantities. The first impression when observing both plots is the data clustering in the upper

left corner of the 2 F complete DOE solutions in contrast to the 1 F scattered solutions. We can then

conclude that, for the 2 F complete DOE, the fuel consumption concentration previously observed in box

61



Figure 5.8: Scatter plot of the best solutions of 2 fidelity levels optimization using complete DOE.

plot 5.7 (c) is in general associated with the highest costs. Although, from the 1 F scatter plot, we can

observe a slight trend of the best solutions values being associated with the higher costs, the relation is

not so clear as for the 2 F complete DOE.

The 2 F approach not only starts with a more informed model, but also usually starts with the explo-

ration of the design space by querying low fidelity (LF) samples and then the exploitation phase, where

mainly high fidelity (HF) samples are queried, as previously explained in section 2.2.1. In the first stage,

the optimizer reduces the uncertainty of the acquisition function, allowing a more efficient decision when

querying HF samples. The data clustering in the scatter plot shows that this approach manages most

of the times to find low fuel consumption values with different initial DOE, providing robustness to the

method. Some best solutions have the highest budget, but not low fuel consumption values. These

are solutions that, due to the quality of the DOE, would probably need higher budgets to achieve better

solutions. As seen in section 5.5, the quality of the DOE is related with the Pearson coefficient and some

DOEs have worse correlation between the samples than others. In contrast, the 1 F optimization, that

only queries HF samples, is less complex than the 2 F approach, but it lacks of robustness. Due to the

fact that there is no introductory space exploration neither LF samples in the initial DOE, the optimizer

is deciding more randomly which samples to query. This way, the best solution is less often the lower

one and the associated cost to this solution is very variable. A good solution is much more dependent

on quality of the DOE used to initialize the problem. The quality of the DOE referred here is not related

with the Pearson correlation, since the DOE has only HF samples, but rather the samples position that

also influence the optimization result.

Thereby, we can conclude that the 2 F complete DOE approach is the one that provides the best

solutions more often and so, we proceed the performance comparison between 2 F optimizations using

complete and modified DOE (hereinafter referred to as 2 F complete DOE and 2 F modified DOE,

respectively). Figure 5.9 shows the box plots for log (RSCV), cost and fuel consumption of 2 F modified

DOE.

Starting again by the log (RSCV) box plot distributions, represented in figures 5.7 (a) and 5.9 (a), we

see that the mean and median values of the 2 F modified DOE solutions are greater than that of the

2 F complete DOE solutions. Moreover, the interquartile range is smaller, and the lower adjacent limit

is greater for the 2 F modified DOE solutions. We can then conclude that these data set distribution is

62



(a) Log (RSCV) boxplot. (b) Cost box plot. (c) Fuel consumption box plot.

Figure 5.9: Box plots of log (RSCV), solution cost and fuel consumption for the best solution values of
the 2 fidelity levels optimization using modified DOE.

less disperse. Although both batches are upper skewed, the 2 F modified DOE solutions have a more

marked lack of symmetry. Therefore, one can conclude that the 2 F modified DOE produces solutions

with higher constraint violation. The modified DOE supplies less information (less 40 LF samples) to

construct the initial surrogate models of the objective function and constraints. We do not know the

quality of these 40 LF samples for each DOE (how well they inform the model), but we can try to extract

some conclusions from the Pearson coefficients, in figure 5.4. Observing this figure, we see that the

coefficients of the trimmed flight constraint are much better than the failure constraint, since for the first

constraint half of the DOEs samples have a correlation equal or higher than 0.77 and for the second

constraint this value is 0.41. Thus, the information loss when we remove the 40 LF samples of the DOEs

may be significant for the constraints surrogate models. Naturally, less informed constraint surrogates

will tend to produce solution with higher constraint violations.

Next, let us discuss the cost distribution box plots, shown in figures 5.7 (b) and 5.9 (b). The mean

and the median values are lower for the 2 F modified DOE solutions. The overall range has expanded

due to the lower values of the lower quartile and lower adjacent limit. The data distribution is less upper

skewed. Then, we conclude that the costs of the 2 F modified DOE solutions are more likely to be lower

than that of 2 F complete DOE solutions.

The fuel consumption box plots (shown in figures 5.7 (c) and 5.9 (c)) show that the mean and the

median values decrease also for the modified DOE solutions. The data dispersion is lower due to the

lower values of the upper quartile and upper adjacent limit. We observe that half of the lower solutions

of the complete and modified DOE approaches are approximately in the same range. But, for the upper

half, the range extension is significantly higher for the complete DOE approach. Therefore, the fuel

consumption values of the 2 F modified DOE solutions have a tendency to be lower than that of 2 F

complete DOE.

Similarly to 1 F and 2 F complete DOE, figure 5.10 shows the same type of scatter plot for the 2

F modified DOE results. Observing the scatter plots 5.8 and 5.10, we start by noting that, again, it

is difficult to detected any relation between the log (RSCV) values and the other two quantities. We
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Figure 5.10: Scatter plot of the best solutions for 2 fidelity levels optimization using modified DOE.

also see that both have a data clustering in the upper left corner of the distributions, that is, the lower

fuel consumption values are associated with the maximum costs. This means that there is progressive

improvements in the course of both optimizations. We also observe that for the 2 F complete DOE there

are more scattered solutions across the domain, a pattern which is in line with the fuel consumption box

plot. Those scattered solutions are also more often associated with the maximum costs.

Thereby, the modified DOE approach is more likely to provide better solutions outcomes, which

appears to be an odd tendency, since the problem is initiated with less information. Again, let us observe

the Pearson coefficients in figure 5.4 to extract some conclusions. We see that for the HF and LF

samples of the fuel consumption half of the DOEs have Pearson coefficients between 0.08 and 0.47.

This means that a significant part of the DOEs have low Pearson coefficients and consequently low

quality. Thus, for some DOEs, these 40 non-nested LF samples included in the complete DOE data set

are erratically informing the kriging and inducing the optimizer into less promising areas of the design

space where the budget is spent. These 40 non-nested LF samples are responsible for the larger data

scattering observed in the complete DOE optimization.

Let us investigate the optimization process by having a deeper look into the queried samples. For

each of the run tests that fulfilled our requirements for the 2 F approaches, we collect the number of non-

nested HF and LF samples queried through the entire optimization process. Then, we plot figure 5.11

(a), (b), (c) and (d) that associate the fuel consumption and the log (RSCV) value of the best solution with

the number of samples queried per fidelity. Figure 5.11 (a) and (c) correspond to the log (RSCV) and

fuel consumption, respectively, for the complete DOE approach, while figure 5.11 (b) and (d) correspond

to the log (RSCV) and fuel consumption, respectively, for the modified DOE. The different size of the

dots of figure 5.11 is associated with the number of LF samples used in the optimizations. A larger dot

means that more LF samples were queried.

Tables 5.13 and 5.14 complement figure 5.11 offering a more quantitative insight. The intervals of

LF samples represent the minimum and the maximum number of LF samples that were queried for the

corresponding number of HF samples. The associated percentages are in relation to the number of

acceptable run tests of each approach, presented in table 5.12. The number of filtered solutions for the

complete and modified DOE is 78 and 72, respectively.

One may ask how the optimizer can choose 110 HF samples and still LF samples without wasting
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(a) Complete DOE log (RSCV) (b) Modified DOE log (RSCV)

(c) Complete DOE Fuel consumption (d) Modified DOE Fuel consumption

Figure 5.11: Scatter plot of the amount of samples queried per fidelity level in function of the log (RSCV)
and fuel consumption quantities for the 2 fidelity levels optimization using complete and modified DOE.

Table 5.13: Percentage of filtered solutions by the number of queried samples per fidelity level for the 2
fidelity levels optimization using complete DOE.

High fidelity samples 107 108 109 110
Low fidelity samples [275, 386] [152, 248] [19, 138] [0, 16]

Percentage of optimizations 7.7% 3.8% 34.6% 53.8%

Table 5.14: Percentage of filtered solutions by the number of queried samples per fidelity level for the 2
fidelity levels optimization using modified DOE.

High fidelity samples 108 109 110
Low fidelity samples [167, 241] [18, 128] [0, 15]

Percentage of optimizations 8.3% 38.9% 52.8%

the budget. In fact, the optimizer only stops picking samples when the established budget is reached

or exceeded. Since the LF samples have a very low cost, sometimes even having queried LF samples,

the budget has not been reached yet and it is still possible to query 110 HF samples. However, in such

situations, the budget is always exceed.

At the first glance, we see that the two optimization approaches use a significant amount of HF

samples. Moreover, from tables 5.13 and 5.14, more than half of the filtered solutions uses the maximum

number of HF samples and few optimizations picked a larger number of LF samples. We also observe

that the complete approach chooses four different quantities of HF samples, unlike modified approach

that only chooses three. The extra quantity corresponds to 107 HF samples and it is chosen by a small
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portion of the complete DOE optimizations that naturally, uses more LF samples. Nevertheless, having

a longer exploration phase does not mean worst results. So, for which situations does the complete

DOE provide worst results than the modified DOE?

Examining figure 5.11, we observe that the maximum values of the fuel consumption for the complete

DOE approach are greater than the modified DOE, for the same number of queried HF samples (110,

109 and 108). Thus, the 40 non-nested DOE that sometimes erratically inform the model and make

the algorithm explore less promising areas lead the optimizer to start the exploitation phase focusing on

those areas.

Analyzing how the number of DOE per fidelity level relates with the log (RSCV) values, we see

that there is no clear relation. We also see that the best fuel consumption values are associated with

the optimizations where more non-nested LF samples were picked, while when the exploration phase

(solely with LF samples) is not executed or is very poor, there is a higher probability of not getting such

good results. Observing the enrichment level criterion in equation (2.36), in section 2.2.3, we see that

by increasing the difference between the cost levels, we can increase the number of non-nested LF

samples queried. Thus, one should select tools to enable cost reduction, such as using a less refined

discretization for the low fidelity samples. It is expected that increasing the costs difference between

fidelity samples, not only the best solutions of the acceptable run tests improve, but also the number of

acceptable run tests increase. Please, see in appendix A.4 the optimization history of the 59th acceptable

run test for two fidelity levels optimization using modified DOE, where further conclusions are taken.

5.7.4 Three Fidelity Levels Optimization

In this section, we discuss the three fidelity levels optimization results using complete and modified

DOE (hereinafter referred to as 3 F complete DOE and 3 F modified DOE, respectively).

We start by comparing the log (RSCV) box plots of the 3 F solutions with the 1 F shown in figures 5.12

(a), 5.14 (a) and 5.5 (a). The batches of the 3 F have a smaller range and are more upper skewed, so the

provided solutions have higher constraint violations. This result suggests that the 3 F approaches use

much less HF samples than the 1 F and the 2 F approaches, compromising the log (RSCV) solutions.

Next, making the same analysis between the cost box plots of 3 F and 1 F optimizations, depicted in

figures 5.12 (b), 5.14 (b) and 5.5 (b), we notice a behavior similar to that observed for the log (RSCV)

quantity. As the DOE of the 3 F is significantly more expensive than the 1 F DOE (see table 5.8), this

tendency can be anticipated. We are interested in discovering if this general cost increase generated

better results than the 1 F results.

Thus, we compare the fuel consumption box plots of the 3 F and the 1 F, presented in figures 5.12

(c), 5.14 (c) and 5.5 (c). We observe that the overall batches of the 3 F approaches have greater

median, mean, minimum and maximum values. The interquartile range of both approaches is wider and

its limits are higher. Moreover, the data distribution is less down skewed. We then conclude that the 3 F

optimizations have a tendency to provide fuel consumption results much worse than the 1 F approach.

The skewess loss suggests that the data is more scattered through the domain as we will confirm by the
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scatter plots.

(a) log (RSCV) box plot. (b) Cost box plot. (c) Fuel consumption box plot.

Figure 5.12: Box plots of log (RSCV), solution cost and fuel consumption for the best solution values of
the 3 fidelity levels optimization using complete DOE.

Figure 5.13: Scatter plot of the best solutions for 3 fidelity level optimization using complete DOE.

Finally, we analyze the scatter plots of 3 F and 1 F optimization, presented in figures 5.6, 5.13 and

5.15, and observe that the results of the 3 F approaches have higher costs and are less clustered than

the best fuel consumption values, as expected.

The 3 F optimizations not only tend to provide worst results with higher costs, but also have more

solutions that failed to fulfill the requirements, as noted in table 5.12. We can then conclude that the 3

F optimizations are less efficient than the 1 F and, consequently, less efficient than the 2 F approaches.

The reason for this tendency may be related with less HF samples chosen during the optimization. The

extra fidelity level and the necessity of nested DOE increases the cost of those samples, making the

optimizer choosing less of them. We will investigate the queried samples of the 3 F approaches, as we

did for the 2 F approaches, in order to better understand why the 3 F provides such bad results.

Before we have a deeper look into the optimization process, let us first compare the two 3 F optimiza-

tions results. Starting by the log (RSCV) box plots presented in figures 5.12 (a) and 5.14 (a), we see

that in one hand, for the 3 F modified results, the lower quartile limit and lower adjacent value are higher,

but the median is lower and the mean is similar. Thus, no clear conclusion about the results constraint

violation can be take. Next, analyzing the cost box plots of the 3 F approaches, depicted in figures 5.12
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(b) and 5.14 (b), we observe that the 3 F modified DOE approach is shifted down, that is, it is associated

with lower cost values. The cost to build the 3 F modified DOE is lower than to build the complete DOE,

as presented in table 5.8, so this is an expected behavior. Analyzing now the fuel consumption box plots,

in figures 5.12 (c) and 5.14 (c), we see that the upper quartile limit of the modified DOE is higher, making

the interquartile range of this approach higher. In addition, the median and mean values are also higher

and the data distribution is more symmetric, that is, less down skewed. Then, we conclude that the 3 F

modified DOE tends to produce more solutions with higher objective function values than the complete

DOE.

(a) log (RSCV) box plot. (b) Cost box plot. (c) Fuel consumption box plot.

Figure 5.14: Box plots of log (RSCV), solution cost and fuel consumption for the best solution values of
the 3 fidelity levels optimization using modified DOE.

Figure 5.15: Scatter plot of the best solutions for 3 fidelity levels optimization using modified DOE.

Indeed, observing the scatter plots 5.13 and 5.15, we verify that, although the modified DOE ap-

proach produces less costly results, they are more scattered so the performance of this approach is

worse than the performance of the 3 F complete DOE optimization. Additionally, the number of run tests

that fulfilled the requirements established in section 5.7.1 is smaller for the 3 F modified DOE, as it can

be seen in table 5.12. The reason for this is related with the difference between the complete and modi-

fied DOE of 3 F. The DOE of the modified DOE has less 120 LF and 40 Medium Fidelity (MF) samples

than the complete DOE. As commented previously, the LF samples can have very low Pearson coeffi-

cients, so the information provided by the LF for the initial model can be incorrect. However, observing
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figure 5.3, the Pearson coefficient between the HF and the MF samples is very high for the most of the

DOE. Thus, the information provided by the MF to the initial model is very reliable. Thereby, we conclude

that, in contrast to the 2 F optimizations, the information loss from the complete to the modified DOE in

the 3 F optimizations is significant to the model and negatively influence the performance.

Let us now analyze the type of samples queried during the 3 F optimization process, as we did for

the 2 F approaches in the previous section. Once again, the number of non-nested HF, MF and LF

samples are collected for each acceptable run test. We constructed figure 5.16 that depicts the number

of queried samples by fidelity in function of the fuel consumption. The number of HF samples is always

represented in the horizontal axis, while MF and LF samples quantity is represented by the graph’s

hue. The plots aligned vertically are for the same approach (complete or modified DOE), the hue of the

upper plots represents the MF samples and the hue of the down plots represents the LF samples. Since

(a) Complete DOE - Medium fidelity samples (b) Modified DOE - Medium fidelity samples

(c) Complete DOE - Low fidelity samples (d) Modified DOE - Low fidelity samples

Figure 5.16: Scatter plot of the amount of samples queried per fidelity level in function of the fuel con-
sumption quantities for the 3 fidelity levels optimization using complete and modified DOE.

the same approach (complete or modified DOE) are aligned vertically in figure 5.16, each acceptable

solution of each approach is represented twice and aligned vertically. For each solution, we can easily

see the number of samples per fidelity level and the respective fuel consumption. The log (RSCV) is

not presented here because, once again, no clear relation is observed between this quantity and the

samples queried.

Tables 5.15 and 5.16 complement figure 5.16 by providing the percentage of acceptable run tests

per number of chosen samples. We divided the solutions in three groups of queried HF samples and we
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present the maximum and the minimum number of MF and LF samples for each group.

Table 5.15: Percentage of filtered solutions by the number of queried samples per fidelity level for the 3
fidelity levels optimization using complete DOE.

High fidelity samples [11, 39] [40, 59] [60, 77]
Medium fidelity samples [135, 233] [78, 133] [5, 61]
Low fidelity samples [2, 206] [0, 66] [0, 458]

Percentage of optimizations 23.3% 53.5% 23.3%

Table 5.16: Percentage of filtered solutions by the number of queried samples per fidelity level for the 3
fidelity levels optimization using modified DOE.

High fidelity samples [19, 39] [40, 59] [60, 78]
Medium fidelity samples [157, 206] [66, 133] [0, 60]
Low fidelity samples [3, 13] [1, 32] [0, 1961]

Percentage of optimizations 15.6% 28.1% 56.3%

We immediately see that, unlike the 2 F approaches, the number of HF samples queried during the

optimization widely varies. However, as expected, the quantity of chosen HF samples is much lower for

the 3 F approaches when compared with the 2 F approaches. From tables 5.15 and 5.16, the number of

MF samples queried inversely varies with the number of HF samples queried, for both approaches, but

the same can not be said about the LF samples.

The optimizations that fulfilled the requirements of the complete DOE approach tend to choose the

number of HF samples between [40, 59], while the ones of the modified DOE tend to choose the number

of HF samples between [60, 78]. As previously referred, the modified DOE has less 120 LF and 40

MF samples informing the initial model. When performing the enrichment criterion level (see equation

(2.36)) during the optimization of the 3 F modified DOE, the uncertainty reduction with HF samples is

more advantageous than querying lower fidelity samples. For a more informed initial model (complete

DOE), this reduction of uncertainty with HF samples is less often beneficial. For both approaches, the

best fuel consumption values are obtained for the number of HF samples between 45 to 70. However,

even between this range of HF samples, the performance of the method is very uncertain and the best

solutions never reach the minimum fuel consumption values obtained using 2 F approaches. This leads

us to conclude that, even though the Pearson coefficient between the HF and MF samples is close to

one for the majority of the DOEs, it is essential to have more HF samples queried during the optimization

to obtain better fuel consumption results and more run tests that fulfill the requirements. To query more

HF samples using 3 F approach, one can try to reduce the discretization and consequently the cost of

the MF samples. This action will probably generate a reduction in the Pearson coefficients between HF

and MF samples. However, having more HF samples queried will compensate this reduction.
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5.8 Optimization using Two Multi-fidelity Levels for Non-identical

Discipline Discretization

In this section, we study the potential of multi-fidelity optimization using the transfer schemes devel-

oped in section 4.4 for non-identical discipline discretization. Again, 100 run tests are performed and

the same problem, optimization constants, parameters and reference solution are used. Since it was

previously concluded that the best approach is the 2 F modified DOE, this approach will be adopted

here. Nevertheless, new discretizations and costs associated to the fidelity levels must be defined.

Therefore, in appendix A.5, we perform a mesh convergence study using different discipline dis-

cretizations, to observe the behavior of three quantities: fuel consumption, trimmed flight and structural

behavior. The main conclusion is that the three quantities can still produce quality results when the AM

is refined and the SM is coarser than the spanwise AM. In this case, the analysis computational time

naturally decreases, which can lead to faster optimizations without a significant result penalty. This way,

we opted to change the HF discretization and keep the LF discretization, as presented in table 5.17

Fidelity level High Low

num y 61 5
num x 7 3
num s 31 5

Table 5.17: Discretization of high and low fidelity
levels for non-identical discipline discretization.

High fidelity Low fidelity

1 1/200

Table 5.18: Cost of high and low fidelity levels
for non-identical discipline discretization.

The cost associated to each fidelity level is presented in table 5.18. As previously concluded in

section 5.7.3, the cost of the LF samples should be reduced to yield better results. Thus, our LF samples

adopted the same cost as the LF samples of an aerodynamics multi-fidelity problem presented by Meliani

[17]. The Pearson correlation between the samples of the 100 DOE is presented in section A.6.1 in

appendix. Next, in figure 5.17 we present the fuel consumption results that fulfilled the requirements.

The other two qualities (log (RSCV) and cost) are very similar to the ones of the 2 F modified DOE

approach, so we do not present them.

Figure 5.17: Fuel consumption for multi-fidelity optimization using non-identical discipline discretization.

We observe similar results as the ones of two fidelity levels optimization using modified DOE, which
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proves that reducing the structural discretization simplifies the analysis model without worsening the

optimization results. The number of acceptable run tests was 86, which is a significant increase in

relation to the number of acceptable run tests of the 2 F approach in table 5.12. This increase is related

with the lower cost associated to the LF samples. In appendix A.6.2, we observe the scatter plot of this

results.

5.9 Summary and Overview

To conclude this chapter, we present the mean time to perform ten optimizations of all the studied

approaches in table 5.19. The 100 run tests optimizations performed previously were not possible to use

in this study, since they were ran in different machines. The computational time is an important aspect

to take into account when comparing the fidelity approaches.

Table 5.19: Mean computational time to run 10 optimizations of each fidelity level approach.

Time
1F

Modified DOE Complete DOE Non-identical
discipline discretization

2 F 3 F 2 F 3 F

Hours 0.63 1.70 3.15 1.67 3.27 1.60

Comparing the run time between optimizations with a different number of fidelity levels used, we

observe that the higher the number of fidelity levels, the higher the computational time. This is an

expected behavior, since adding a fidelity level to the optimization substantially increases the overall

complexity of the algorithm, namely the DOE, the surrogate construction, and the enrichment level

criterion. Thus, when choosing the number of fidelity levels, we must be aware that adding a fidelity level

to the optimization implies a time penalty, so the decision of use an extra fidelity level must provide a

significantly improvement of the results, as observed between 1 F and 2 F. Comparing the time of the

2 F approaches with the non-identical discipline discretization approach, we observe a slight reduction,

as expected.

Finally, we conclude this chapter by ordering the approaches by performance improvement from the

left to the right.

Figure 5.18: Fidelity level performance improvement from the left to the right.

As it can be seen in figure 5.18, the 2 F approaches have a better performance than the 1 F, proving

the advantage of performing multi-fidelity optimization over single-fidelity optimization. Although the 3

F approaches have lower performance than the 1 F, we can change the parameters of 3 F in order to

obtain a better performance. The approach that uses non-identical discretization is the best performance

approach due to the computational time reduction in relation to the 2 F modified DOE. In appendix A.7

the best solutions of 2 F modified DOE and reference solution are shown and discussed.
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Chapter 6

Conclusions

6.1 Summary and Achievements

In this work, we extended the transfer schemes of OAS to non-identical discipline discretization. To

developed these new schemes, we had to deeply understand the implemented schemes in OAS. During

this process, we discovered that the original implemented schemes in OAS were not in compliance with

the conservation requirement. We informed the MDO lab that developed OAS and they started to work

on a new version (version 2.2.2) that has not yet been released. Thus, we developed our new schemes

to account with different discipline discretization based on the implemented transfer schemes that do not

fulfilled the conservation requirements. Two different load transfer schemes and one discipline transfer

schemes were developed.

We performed a study to explore and compare the results of SEGO using a different number of

fidelity levels, varying from one to three, and different DOE. In total, we tested 5 different approaches

by running 100 run tests of each, each run test starting with a different dataset to construct the kriging

model. We concluded that the best approach is the multi-fidelity optimization using 2 fidelity levels with

only nested samples in the initial dataset, which proves the superiority of multi-fidelity optimization over

single-fidelity optimization using SEGO.

Then, the optimization approach that provided the best results was used to test the new transfer

schemes. We selected new mesh discretizations and associated costs and performed again 100 run

tests. We concluded that the results were very similar to the ones of 2 fidelity levels with a reduction of

the computational time needed to run the optimization. Thereby, we can deduce that using a different

spanwise discretization in the aerodynamic and structural disciplines is a viable solution to reduce the

computational time of an optimization process while keeping the quality of the result.

6.2 Future Work

As future work, it would be interesting to update the three developed transfer schemes for non-

identical spanwise discretization of aerodynamic and structural disciplines according to the new version
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of OAS (version 2.2.2), which is still being developed. After this update, it should be performed a conser-

vation study of the aerodynamic and structural virtual work using load transfer method one and two and

the displacement transfer. From this study, it can be concluded which of the proposal methods has a

better performance in terms of virtual work conservation. Then, more detailed mesh convergence stud-

ies with non-identical disciplines meshes can be done and multi-fidelity SEGO using the new updated

OAS ability can be performed.

Another interesting development would be to implement the derivatives on the new transfer schemes

and all the functions that were created in OAS in order to enable different discipline discretization. This

way, the transfer schemes can be updated in the OAS Github repository and problems using gradient-

based optimizer with different discipline discretization can be executed.
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Appendix A

Appendix A

A.1 Aero-Structural Design and Optimization Tool: OpenAeroStruct

OAS is a low fidelity aero-structural analysis and optimization tool. In general, to run an optimization

problem in OAS we start by defining the lifting surface, then we specify the flow and problem conditions

followed by the definition of the design variables, constraints and objective function. The definition of

the lifting surface is addressed in section 4.2. As we will see, in the definition of the lifting surface

we decide the number of panels and structural elements that discretize the wing. In addition, we also

define some parameters, such as the structural properties. The flow and problem conditions are treated

as independent variables. As an example of these parameters we have the flight speed, the Mach

number and the Reynolds number. The last step before the optimization is the definition of the design

variables, constraints and objective function. There is a certain set of parameters that can be used as

design variables, such as angle of attack, twist distribution, taper and span. Common constraints include

structural failure and fixed lift coefficient. Finally, the objective function has also different alternatives

including drag, weight and fuel burn.

There are two types of variables that can be assigned as wing design variables. While sweep, taper

and dihedral are scalars associated to the entire surface, twist and chord distribution are arrays that

contain values for specific spanwise locations along the surface. The design variables defined as arrays

along the span are controlled by control points that influence a b-spline interpolation instead of directly

controlling the nodal mesh points.

Figure A.1 shows the semi-span being controlled by the b-spline knots, the green points. The blue

curve is interpolated from the green points and it modified the aerodynamic mesh. The number of

control points is defined according to the desired interpolation order, independently of the fidelity of the

aerodynamic mesh.

More documentation about how OAS work can be found in [12, 63].

80



Figure A.1: Normalized Semi-span controlled by b-spline knots [63].

A.2 Mesh Convergence for Identical Spanwise Discipline Discretiza-

tion

In this section, we include the other two quantities used to perform mesh convergence for identical

spanwise discipline discretization, fuel burn and trimmed flight, presented in Figures A.2 and A.3. As

commented in section 5.3, the structural failure is slower to converge, thereby it is the quantity used to

decide the mesh discretization associated to each fidelity level.

Figure A.2: Mesh convergence for trimmed flight.

Figure A.3: Mesh convergence for fuel consumption.
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A.3 Correlation between Three Fidelity levels Modified DOE

Figure A.4 shows the value of the fuel consumption and the two problem constraints for the 40

nested DOE samples of the first 3 F modified DOE. The LF samples show a high discrepancy from the

HF samples with a poor linear relationship. The MF samples show a good linear relationship between

the HF samples.

Figure A.4: Nested DOE of the first 3 fidelity level modified DOE.

A.4 Optimization History of the 59th Acceptable Run Test of the

Optimization for Two Fidelity Levels using Modified DOE

Figure A.5: Scatter plot of the optimization history of the 59th acceptable run test for 2 fidelity levels
optimization using modified DOE.

In figure A.5 we show the 59th acceptable run test of the 2 F modified DOE optimization. Each

circle of figure A.5 represents an HF sample that fulfills the requirements and, additionally, the circle’s

color represents the iteration stage. We observe that, at the beginning of the optimization, the objective
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function value of the queried samples is very variable, which corresponds to the exploration phase, and

as the optimization takes place the objective function of the queried samples is getting more localized,

which corresponds to the exploitation phase. As previously commented, for a significant amount of

acceptable optimizations (this one included), the number of queried non-nested LF samples is very low,

due to the cost associated to the LF level. This means that the exploration phase, where only by LF

samples should be queried, also queries HF samples. If the fidelity levels had a more pronounced cost

difference, an exploration phase with solely LF samples would be performed. This exploration would also

query much more samples than the exploration depicted in figure A.5, due to the low cost of LF samples.

As approximately from the cost 120 the optimizer reaches a fuel consumption value very close to the

best solution, we conclude that the optimization budget can be reduced without significantly affecting

the best solution.

Many run tests that fulfilled the requirements using two fidelity level have an optimization history

similar to the one shown in figure A.5. Then, one can reduce the budget of these approaches and still

get valuable solutions. However, not all the acceptable run tests have an history evolution similar to

figure A.5 and thus one must be aware that reducing the budget will leads to fewer acceptable run tests.

A.5 Mesh Convergence for Non-identical Spanwise Discipline Dis-

cretization

In this section, we present a mesh convergence study for identical and non-identical spanwise dis-

cipline discretization. The objective is to perform MDA and study the behavior of the objective function

and the two constraints for multiple mesh discretizations. Additionally, we also present the computational

time of each analysis. Two aerodynamic mesh discretizations are used, the high and medium fidelity

meshes of chapter 5. For both meshes, the spanwise structural discretization starts to be the same as

the aerodynamic and then it is progressively coarsened. The notation to designate the aerodynamic and

structural discretization (AD and SD) used in this document, num y, num x and num s, is replaced here

by n y, n x and n s respectively, to make the graphs of this section easier to interpret.

A.5.1 Fuel Consumption

The quantity of interest to minimize is the fuel consumption using the Breguet range equation, as

explained in section 5.1. Let us recall the Breguet range equation as

Wfuel = (Ws +W0)× exp
(R.CT

V

(CL
CD

)−1

− 1
)
. (A.1)

Here, the only variables are the structural weight Ws and the lift-to-drag coefficient ratio CL/CD.

We are going to observe the fuel consumption and other quantities for different mesh discretizations

using an histogram. Each column of the histogram represents a different combination of AD and SD. The

histograms are organized as follows: in the first four columns we use the more refined AD corresponding
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to the high fidelity mesh of chapter 5 and SD is progressively coarsened, starting with the spanwise AD

equals to the SD. Then, we use the medium fidelity AD of chapter 5 and SD is again progressively

coarsened, starting with the spanwise AD equals to the SD. The most accurate values are naturally

associated with the most refined meshes for both disciplines, located in the leftmost column of the

histograms.

To study the behavior of the fuel consumption for multiple mesh discretizations, let us start by an-

alyzing the structural mass and the drag-to-lift coefficient ratio, presented in figure A.6 (a) and (b),

respectively.

(a) Structural mass. (b) Lift-to-drag coefficient ratio.

Figure A.6: Structural mass and lift-to-drag coefficient ratio for multiple mesh discretizations.

As it can be observed, when the AD is kept constant and the SD is progressively coarsened, the

structural mass tends to increase and deviates from the most accurate model, the leftmost column. The

structural mass, depicted in figure A.6 (a), is influenced by the structural element radius and the structural

element thickness. To explain this behavior, let us explore this quantities performance. The element

radius are computed using the structural mesh (SM) and the thickness over chord ratio, a quantity

that is related with the wing profile. The SM is similar to the aerodynamic mesh (AM), but it has the

same spanwise discretization has the structural discipline. Naturally, when the same spanwise discipline

discretization is used, the SM is coincident with the AM, however for different disciplines discretizations,

the SM is obtained from linear interpolations of the AM. Figure A.7 illustrates the AM and SM, in black

and green color, respectively, when the spanwise AD is 9 and the spanwise SD is 5. It also illustrates

the structural elements in different colors. Elements with the same radius and thickness are represented

in the same color.

Figure A.7: Aerodynamic and structural meshes for non-identical spanwise discretization.
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The element radius is the thickness of the mean chord of the two chords that surround the structural

element. These two chords are obtained from the SM. When the SD is coarse, as the example illustrated

in figure A.7, less elements discretize the wing beam. Consequently, the length of the chords that

surround these elements are very different. For one structural element, the chord associated with the

node closer to the wing tip is much smaller than the chord associated with the node closer to the wing

interior. Thereby, the mean chord will generate a radius for the element that is too thick for the element

tip closer to the wing tip and too thin for the element tip closer to the wing interior. This corresponds

to an approximation of the structural mass by excess and default, respectively. The structural mass

dramatically increases when the SD is coarse, as it can be observed in figure A.6 (a) in the three

rightmost columns. This indicates that the mass ’increase’ is higher than the mass ’loss’. For situations

when the SD is less coarse, this phenomenon is less accentuated, as depicted in figure A.6 (a) for the

most refined AD.

Figure A.6 (a) shows us an interesting behavior when the SD is constant and two AD are used, as

depicted by columns four and six. If the AM is more refined than the SM (column four), the AM is more

informed than the structural discipline, so the linear interpolations obtain a SM similar to the situation

where the same discipline discretization is used. The same structural mass is obtained. Thereby, for

the structural mass quantity, it is counter-productive to use smaller SD than the AD. However, for other

quantities this is not the case, as we will see.

Let us now focus on the thickness parameter behavior. Each structural element has an associated

thickness. This quantity is computed using the b-spline curve defined from the control points. We defined

the control points so that the thickness increases as we get closer to the wing root. For a refined SD,

the element thickness is more accurate, it is progressively getting thicker as we approach the wing root.

As the SD is getting coarse for the two AD, this progressive thickening is not so accentuated. Again, the

thickness will be too thick for the wing tip and too thin for the wing root. So, when the SD is coarsen,

there is a mass excess in the wing tip and a mass default in the wing root. From figure A.6 (a), we may

say again that the mass ’loss’ is less significant than the mass ’increase’. Once again, for the same SD

and different AD, the thickness of the elements is similar.

The drag-to-lift coefficient ratio, depicted in figure A.6 (b), shows that this quantity has approximately

a constant value for the same AD. However, we see some fluctuations, specially for the more refined

AD. To understand these variations, we must understand the lift and drag coefficients. The lift coefficient

is computed from the lift that is computed from the panels forces. The panels forces mainly depend

on the wing deformed mesh. The drag coefficient has two components, the induced drag and the

viscous drag. Both drags are also mainly influenced by the wing deformed mesh geometry. So, the

deformed mesh geometry is the quantity that dominates the behavior of figure A.6 (b). The deformed

mesh is computed in the displacement transfer function. When the AD is not coincident with the SD, the

displacement transfer function does a linear interpolation to transfer the displacements and rotations of

the nodes and thus obtain the deformed mesh. This process was described in detail in section 4.4.2.

This linear interpolation may sometimes provide worse deformed meshes, that influence the lift and drag

coefficients. Naturally, this effects is more accentuated when the AD is much more refined than the SD.
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This quantity show us that using an AD higher than the SD is worth it, in contrast to the structural mass.

Figure A.8: Fuel consumption for multiple mesh discretizations.

Finally, we observe the fuel consumption histogram, depicted in figure A.8. We conclude that this

quantity has a behavior similar to the structural mass, presented in figure A.6 (a). Decreasing the SD

relatively to the spanwise AD may be a good way to reduce the computational time without significantly

worsening the results or even improving the results, as depicted in the last two columns of figure A.8.

A.5.2 Trimmed Flight

The trimmed flight is one of the constraints of our optimization problem that translates in lift equals

weight during the flight. The formula used to verify this requirement is given as

L

W
= 1− 0.5ρV 2S

CL
(Ws +Wfuel +W0)× g

, (A.2)

where the variables are S, the wing surface, CL, the lift coefficient and Ws and Wfuel, the structural and

fuel weight. The structural and fuel weight for multiple mesh discretizations are represented in the last

subsection A.5.1 in figures A.6 (a) and A.8. Thus, we present in figure A.9 similar histograms for the

wing area and lift coefficient.

(a) Wing area. (b) Lift coefficient.

Figure A.9: Wing area and lift coefficient for multiple mesh discretizations.

The wing area is constant for the same AD, regardless of the SD. The coarser the AD, the larger the

wing area. This is an intuitive result if we observe figure 5.2 that shows three different AM discretizations.

This figure shows that due to the reduced number of panels, a coarser mesh models the wing more
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roughly, specially at the leading edge, with an excess of wing area. When more panels are used, the

wing shape is captured more effectively, and therefore the wing area is smaller.

Investigating the lift coefficient histogram, in figure A.9 (b), we observe that for the same AD the CL

is constant with some fluctuations that we explored in the previous section A.5.1.

Figure A.10: Lift over weight for multiple mesh discretizations.

We are now ready to analyze the lift over weight histogram, depicted in figure A.10. We see that this

quantity behaves similarly to the fuel consumption and the structural mass, which is expected, since they

are variables of equation (A.2). That way, the same conclusions of the fuel consumption analysis are

applied to the lift over weight. Decreasing the SD relatively to the spanwise AD can be used to reduce the

computational time without significantly worsening the results or even improving them, as also explained

in the previous section. The second and third columns from the left of figure A.10 show discretizations

where the decreasing of SD deteriorates the results. The sixth column shows a discretization where

decreasing the SD improves the results.

A.5.3 Structural Failure

The structural failure is the second constraint of our problem. As referred in section 5.1, to simplify

the structural failure we use the Kreisselmeier-Steinhauser aggregation method. Consequently, a single

scalar function defines the complete structural integrity, that if positive, implies that at least one element

has failed. This constraint is related with the structural displacement, the element radius and the element

thickness. Figure A.11 show the tip displacement in the vertical (z) direction (see figure 4.3) and the

failure for the same discipline discretizations. We decided to depicted the tip displacement because the

structural element of the wing tip is the one that experiences the largest displacement.

Starting by analyzing figure A.11 (a), we observe that when the AD is constant and the SD decreases,

the tip displacement increases and deviates from the most accurate value (leftmost column). As the SD

is getting coarser, there are less structural nodes to distribute the panels loads, consequently the nodes

are overloaded and the tip displacement in the z direction is accentuated. Let us also analyze the case

when the SD is constant and two AD are used (forth and sixth column). We observe that for this case

the tip displacement is higher and less accurate when the AD is more coarse. For a coarser AD, the

panels forces are less accurate, which influences the load transfer and, consequently, influences the

displacements.
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(a) Tip displacement. (b) Structural failure.

Figure A.11: Tip displacement and structural failure for multiple mesh discretizations.

We can now analyze the structural failure depicted in figure A.11 (b). We observe that as the SD

is coarsened, the structure is less close to failure. From figure A.11 (a), we just concluded that, for the

same condition, the tip displacement in the z direction is more accentuated. Thus, it would be expected

that the failure quantity would be higher as the SD is coarsened. Then, the radius and the thickness of

the elements are the parameters that influence the failure behavior. As explained in section A.5.1, the

element radius is computed from the mean chord of the element of the SM and the thickness-over-chord

ratio. The mean chord associated to the structural elements are larger than when SD is more refined.

Consequently, the element radius are also larger than for a more refined the SD, influencing the failure.

Analyzing the behavior of the structural failure when the SD is kept constant and the AD is varied, we

observed that, as the AD is refined, the failure decreases. This is solely related with the displacements

behavior, since the element thickness and radius are constant. From figure A.11 (a), we just concluded

that, for the same condition, the tip displacement in the z direction decreases. Assuming that this is the

most probable element to fail, naturally the failure is smaller.

A.5.4 Computational Time

Finally, we observe the time needed to compute each of the analysis for the same discretizations

studied in the last sections. Figure A.12 shows that the computational time is directly related with

the disciplines discretizations, as expected. As the discretization increases, whether aerodynamic or

structural, the analysis time increases.

Figure A.12: Computational time for multiple mesh discretizations.
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A.5.5 Conclusion

From the mesh convergence study and the corresponding time needed to run the analyses, we

can conclude that for the refined aerodynamic discretization, decreasing the structural discretization for

half of the spanwise aerodynamic discretization still provides good results for the three quantities. The

computational time needed to run this analysis is slightly reduced but, in a complete optimization, it

might lead to a time reduction of several minutes. For less refined aerodynamic meshes, the quality of

the results of the three quantities decreases more rapidly as the structural discretization is decreased,

which demonstrates the importance of a high aerodynamic discretization. Naturally, the time needed to

complete these analyses also reduces as the structural discretization reduces.

A.6 Optimization using Different Multi-fidelity Levels for Non-identical

Discipline Discretization

A.6.1 Correlation between Fidelity Levels

In this section, it is presented the Pearson correlation plots for the DOE samples of the non-identical

discretize problem. The results are presented in box plots similar to the ones depicted throughout this

dissertation.

Figure A.13 shows the Pearson correlation box plots for the SD more refined than AD problem.

Comparing with the Pearson correlation between the HF and LF samples presented in figure 5.4 in

section 5.5, we observe that the batches of figure A.13 have a similar behavior, with the coefficients of

the fuel consumption and structural failure slightly smaller and the coefficients for trimmed flight slightly

higher.

(a) Fuel consumption. (b) Trimmed flight. (c) Structural failure.

Figure A.13: Pearson correlation between high fidelity and low fidelity DOE samples of the non-identical
discretize problem for three different quantities.

Once again, the p-values of all the analyses above are mainly smaller than three percent, except for

a few outliers, so the null hypothesis can be rejected.
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A.6.2 Scatter Plot

Figure A.14 shows the scatter plot for the acceptable run tests of the two fidelity levels optimization

using modified DOE for non-identical discipline discretization.

Figure A.14: Scatter plot for the best solutions of 2 fidelity levels optimization using modified DOE for
non-identical discipline discretization.

As expected, this scatter plot is very similar to the ones of two fidelity levels presented in section

5.7.3 in figures 5.8 and 5.10. Most of the acceptable solutions have low fuel consumption values and

are associated with a high cost, that is, the optimizer is progressively getting better results throughout

the optimization process.

A.7 Solutions of the gradient-based and gradient-free approaches

A.7.1 Reference Solution

In this section, we present the design variables, constraints and objective function values of the

reference solution presented in section 5.7.1.

Table A.1: Reference solution.

Parameter Final value

Angle of attack 8.5◦

Wing twist [3.0112, 2.2642, 1.0056, -1.5633, 2.5506] ◦

Spar thickness [0.025, 0.026, 0.0323, 0.0316, 0.0352, 0.025] m

Stable flight 1.08× 10−6

Structural Failure 5.77× 10−6

Fuel consumption 1.06801× 105 Kg
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Figure A.15 shows the lifting surface geometry of the reference solution along with the twist, lift,

thickness and von mises failure spanwise distribution. The elliptical lift distribution is shown in the lift

plot in green dashed line. This lift distribution results in the least induced drag for a given wing span

and it would be obtained if only the aerodynamic discipline was considered. We observe in figure A.15

that the lift distribution of the reference solution is not the elliptical one. When considering aerodynamic

and structural disciplines, the elliptical distribution of circulation is not obtained, because loading more

the wing near the fuselage and alleviating on the tip promotes the reduction of the bending moments,

allowing a more lighter wing structure and a reduction on the load per span. From the von mises plot in

figure A.15, we observe that the wing failure is closer to be reached near the fuselage.

Figure A.15: Reference Solution lifting surface and twist, lift, thickness and von mises failure spanwise
distribution.

A.7.2 Solution for the Optimization with Two Fidelity Levels using Modified DOE

Next, we present the best solution for the optimization with two fidelity levels using the modified DOE

in section 5.7.3. Among the acceptable solutions of this approach, we consider that the best solution

is the one in the Pareto front of figure 5.10 that has the lowest fuel consumption and consequently the

highest cost. The best solution has an associated cost of 146.24 and a log (RSCV) value of -3.0172.

The results are presented next as

Table A.2: Best solution of the acceptable solutions of two fidelity levels optimization using modified
DOE.

Parameter Final value

Angle of attack 10.1◦

Wing twist [-3.1678, -1.0029, -1.1013, -3.0864, -2.8588] ◦

Spar thickness [0.0015, 0.0015, 0.0323, 0.0316, 0.0252, 0.05] m

Stable flight −9, 6121× 10−4

Structural Failure −8.9059× 10−5

Fuel consumption 1.0123× 105 Kg
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A.7.3 Solution for the Optimization with Two Fidelity Level using Modified DOE

and Non-identical Discipline Discretization

Again, we present the same type of solution for the optimization using non-identical discipline dis-

cretization, presented in section 5.8. The best solution has an associated cost of 139.0941 and the log

(RSCV) of -2.5681.

Table A.3: Best solution of the acceptable solutions of two fidelity levels optimization using modified DOE
and non-identical discipline discretization.

Parameter Final value

Angle of attack 11.7◦

Wing twist [-3.0025, -2.8831, -1.3464, -3.7778, -3.9574] ◦

Spar thickness [0.0015, 0.0015 , 0.0365, 0.0272, 0.0254, 0.05] m

Stable flight −1.9154× 10−4

Structural Failure 2.7139× 10−3

Fuel consumption 1.0124× 105 Kg

Comparing this solution with the one of table A.2, we observe that they are very similar. This proves

that employing structural discretization lower than the spanwise aerodynamic discretization is a good

alternative to reduce the computational weight.

Comparing the solutions of tables A.2 and A.3, two gradient-free approaches, with the one of table

A.1, the reference solution that uses a gradient-based optimizer, we see that the reference solution has

a higher fuel consumption value and lower constraints violation. The result of the reference solution is

influenced by the applied tolerances (see table 5.4) and the optimization starting point. If the tolerances

were relived, the constraints would be more violated and that would affect the final design variables, for

instance the spar thickness would be more thin in the tip. This would promote a lower fuel consumption

result. The multi-fidelity optimizations are not restricted by any starting point, although the initial dataset

greatly influences the optimizer performance. The optimizations are mainly impacted by the budget.

From the results obtained, we can conclude that in order to obtain results with less violation of constraints

the budget would have to be increased.
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