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Abstract

The modern world is dependent on many applications that require the use of autonomous underwater

vehicles (AUV). Thus, research into the improvement in performance and cost constraints for positioning

systems related to these agents is constantly necessary. This thesis addresses the problem of position

estimation based on single pseudo-range measurements. An acoustic positioning system for an AUV

is considered. A one-way travel-time (OWTT) setting with an offset between the emitting and receiving

clocks is assumed. Two cases are considered: one with known vehicle velocity and one where the

velocity is only given in relation to the velocity of the surrounding fluid. Continuous-discrete filters are

designed to obtain the desired estimates. In the first case, position and bias estimates are obtained with

three different solutions: the extended Kalman filter, the unscented Kalman filter, and a linear Kalman

filter with an augmented state. The performances are assessed via simulation results and complemented

by a thorough analysis with Monte Carlo simulations, which provide a comparison between the root

mean square error (RMSE) of each of the three filters, and these with the Bayesian Crámer-Rao bound

(BCRB). In the second case, position, velocity, and bias estimates are obtained. The chosen approach

is to secure preliminary results through the use of the extended Kalman filter, for which the performance

is assessed via simulation results. The solution analysis is complemented with Monte Carlo simulations,

which are carried out in order to compare the RMSE performance with the BCRB.

Keywords

underwater navigation; autonomous underwater vehicles; pseudo-range measurement; Kalman fil-

ter; augmented system
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Resumo

O mundo moderno depende de várias aplicações que utilizam veı́culos autónomos. Um constante

desafio é a melhoria do desempenho e dos custos dos seus sistemas de localização. Esta dissertação

aborda o problema de estimação de posição através de uma medida de pseudo-distância. É consider-

ado um sistema de localização acústica para um veı́culo autónomo subaquático. Assume-se one-way

travel-time (OWTT), existindo um desvio entre os relógios do emissor e do recetor. São considerados

dois casos: um em que se assume ter acesso à velocidade do veı́culo e um em que esta só é dada

em relação à velocidade do fluı́do. São projetados filtros contı́nuo-discreto para cada caso, de modo

a obter as estimativas pretendidas. No primeiro caso, estimam-se a posição do veı́culo e o desvio

dos relógios através de três soluções: um extended Kalman filter, um unscented Kalman filter e um

filtro de Kalman linear com um estado aumentado. A análise das soluções obtidas é complementada

pelas simulações de Monte Carlo, que se realizam de modo a comparar os resultados da raiz do erro

quadrático médio (RMSE) de cada filtro, entre si e com o Bayesian Crámer-Rao bound (BCRB). No se-

gundo caso, obtêm-se estimativas para a posição e velocidade do veı́culo, bem como para o desvio dos

relógios. A abordagem escolhida passa pela obtenção de resultados preliminares usando um extended

Kalman filter. O seu desempenho é analisado através de ensaios simulados e complementado pelas

simulações de Monte Carlo, que se realizam de modo a comparar o RMSE do filtro com o BCRB.

Palavras Chave

localização subaquática; veı́culos autónomos subaquáticos; medida de pseudo-range; filtro de Kalman;

sistema aumentado
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1
Introduction

1.1 Motivation

The use of autonomous underwater vehicles (AUVs) has been increasing in recent years, with major

applications in the industrial, military [1], and research fields. Some notable missions are the mapping

of the seafloor [2], which can be used for oil and gas infrastructure installation; inspection of underwa-

ter man-made structures to prevent leakages and other potential environmental impacts; surveillance

and information operations connected to military activities; fishing and fish farming; wreckage search for

missing aircrafts [3] or ships; research applications, from the study of the ecosystems through the mea-

surement of pH levels, element concentrations and presence of microscopic life in lakes and oceans, to

the study of the evolution and predicted progressions of these bodies of water.

The question of localization of such vehicles is relevant whether for geo-referencing or control pur-

poses. Traditional localization systems, such as the global positioning system (GPS), utilize electro-

magnetic transponders to provide range measurements from the agent to several sources, which allow

for the calculation of an accurate position via trilateration (see Section 2.1.2). Such solutions are not

available in an underwater scenario due to the strong attenuation that the electromagnetic waves suffer

in water. To overcome this problem, it is possible to use, instead, acoustic transponders. The three

major categories of underwater acoustic positioning systems are the long baseline (LBL) [4], the short

baseline (SBL) [5], and the ultra-short baseline (USBL) [6], which are differentiated based on the dis-

tance separating the active sensing elements. In the case of the USBL, the cost constraints are smaller,

but it presents a lower accuracy. The LBL and SBL require a higher investment in equipment, since

they involve the use of more acoustic transponders, as well as clock-synchronization software. A more

detailed description of these systems is provided in the following chapter.

The study of alternative localization methods, which can provide high accuracy in performance, while

also achieving a lower cost of production is, hence, imperative for the continued development of these

types of missions. As a result, this work addresses the problem of position estimation based on single

pseudo-range measurements.
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1.2 Objectives

The goal of this thesis is to provide some insight on the problem of navigation in which a single range

measurement is available to the agent. These distance measurements are assumed to be corrupted

by an unknown constant bias, which is explicitly taken into consideration in the design of the solutions.

The problem under consideration is, then, to design a continuous-discrete filter to estimate the position

of the agent, as well as the constant bias term. Two cases are considered: one with bottom-lock, i.e.,

with known velocity, and one without bottom-lock, i.e., with unknown velocity (see Section 2.1.3 for full

definitions). The first one provides no further estimates whereas the second one gives the additional

estimate of the speed of the surrounding fluid.

1.3 Contributions

The main goals of this work are:

• the development of a function to simulate an extended Kalman filter (EKF), one to simulate an

unscented Kalman filter (UKF), and one to simulate a linear Kalman filter (LKF) for an augmented

system, all related to the problem with bottom-lock;

• the presentation and discussion of the simulation results obtained for each function, to provide an

assessment on the performance of each one, as well as a comparison between them;

• the further comparison and thorough analysis on performance of these filters via Monte Carlo

simulation results;

• the performance analysis of preliminary results for the problem without bottom-lock via the simula-

tion of an EKF, complemented by Monte Carlo simulations.

1.4 Thesis outline

Chapter 2 provides some necessary background knowledge, as well as an analysis of the state of

the art technologies that address the problem of localization of AUVs. In Chapter 3, the notation used

throughout the work is established. An introduction to the two problems to be addressed is provided and

the two different systems are defined. In Chapter 4, a brief explanation of the functioning of the chosen

filters is provided. In Chapter 5, the suggested solutions for the system with bottom-lock are formulated

and initial numerical results are presented. Chapter 6 presents the suggested solution for the system

without bottom-lock and shows the initial numerical results. Chapter 7 offers a brief explanation of

the Bayesian Crámer-Rao bound (BCRB). In Chapter 8, the Monte Carlo simulations for the system

with bottom-lock are analysed, whereas Chapter 9 provides that analysis regarding the system without

bottom-lock. Chapter 10 gives a breakdown of the work accomplished and offers suggestions for future

work.
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2
Background and state of the art

2.1 Background

The three major categories of underwater acoustic positioning systems are the LBL, the SBL, and

the USBL, for which a representation is presented in Figure 2.1. Some important definitions for under-

standing the workings of these methods are analysed in the following sections.

Figure 2.1: Typical configurations for AUV localization using LBL, SBL, and USBL.
Source: [7].

2.1.1 Range and bearing measurements

Range and bearing measurements are two of the foundational concepts of acoustic positioning sys-

tems. The first is defined as the distance between a source position and the agent, typically obtained via

trilateration (see Section 2.1.2 for more details). The second refers to the angle difference between the

object and some direction. The direction of the force of gravity is taken as a reference vector and two

types of bearings are possible: absolute and relative. The former uses a fixed axis, either the Earth’s

magnetic North (magnetic bearing) or the true North (true bearing). The latter can also be useful and

relates the direction of forward movement of the agent with that of a known object. Bearing measure-

ments are obtained by phase-differencing, i.e., comparing the phase of the emitted acoustic beam and

the received signal.
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These positioning systems can work as one-way travel-time (OWTT), where the range measurement

is obtained from the difference between the time at which an acoustic signal is sent from the source and

the time it is received at the agent; or as two-way travel-time (TWTT), where the range measurement

is calculated using half the time between the moment at which the initial signal is sent from the source

and the moment at which the agent’s responding signal is received back at the source. In both cases,

the distances are calculated from the corresponding time-of-flight and the sound speed profile, which

relates the speed of sound propagation in water to its temperature, depth, and salinity. For OWTT, it is

clear to see the need for clock-synchronization between the source and the agent’s transponders, since

the time checks are performed at both ends.

2.1.2 Trilateration

To analyse the concept of trilateration, it is useful to start with a 2-D example, for which a represen-

tation is presented in Figure 2.2. By knowing the range between a signal source and the desired target,

one has information about the distance, but not about the direction at which the object is positioned, with

relation to the beacon. This way, one can only establish that the object is to be positioned at some point

within the circumference around the source with radius equal to that same range. Once two circumfer-

ences are established, and assuming they are not tangent to each other and indeed intersect, they will

do so at two points. Trilateration, then, implies the use of 3 beacons, giving 3 different circumferences,

the intersection of which will be the true position of the target.

For the 3-D case, the circumferences are replaced by the surfaces of spheres, and so, to get only

one point that gives the desired location, 4 beacons are used. Note that, in both cases, the position

could have to be obtained as the most likely point from a set of possibilities, since the circumferences or

surface spheres could intersect in an area or surface area, respectively, rather than a single point.

r1 r2

r3

Source 1
Source 2
Source 3
Agent location

Figure 2.2: Localization by trilateration.
Adapted from: [8].
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2.1.3 On-board systems

AUVs can integrate a myriad of on-board systems and sensors, depending on the mission needs.

The main ones considered in this work are the attitude and heading reference system (AHRS) and the

Doppler velocity log (DVL). The AHRS provides 3-D orientation by integrating data from gyroscopes, ac-

celerometers and magnetometers. Because of this sensor fusion, the potential drift from the gyroscopes

is compensated by reference vectors, namely gravity and the Earth’s magnetic field, which yields a more

accurate attitude information, including the roll, pitch, and yaw angles [9].

In traditional LBL navigation, the DVL provides a velocity vector for the vehicle by sending pulses

along a minimum of 3 acoustic beams, each pointing in a different direction. If the DVL is sufficiently

close to the ocean floor, these beams will be reflected and can then be received back by the transceiver.

This necessary condition is known as bottom-lock. The difference in frequency between the emitted

and the received waves is a result of the Doppler shift and can be used to calculate the desired inertial

velocity values of the vehicle. If the condition is not verified, only a relative velocity can be provided,

which corresponds to the velocity of the vehicle relative to the velocity of its surrounding fluid.

2.2 State of the art

The naming of the three broad classes of localization methods for AUVs is related to the distance

between the necessary transponders. Indeed, in LBL, the beacons are mounted on the seafloor at sig-

nificantly distanced positions, which can present some disadvantages, but produces the most accurate

results, while also being water-depth independent. This type of system is most commonly used for un-

derwater precision missions, due to the need for reliable results, but can be very costly, as a result of the

need for the 4 fixed beacons, as well as clock-synchronization in OWTT.

To improve the accuracy of the LBL, a DVL system can be integrated, as mentioned in Section 2.1.3.

An initial implementation of a combined Doppler/LBL based localization system is shown in [10]. An

adaptation of the LBL system into a system that uses buoys with GPS is analysed, for instance, in [11].

In SBL, a similar approach is taken, with the main difference being the positioning of the beacons. In

this case, the transponders are usually mounted on the bottom of a ship or dock and are separated by a

smaller distance. This method can achieve accuracy levels that resemble those of the LBL when a larger

baseline is provided, i.e., when the size constraints allow for larger spacing between transponders. This

type of system presents similar cost constraint problems. Experimental results of a SBL system are

presented in [5].

The USBL uses a different method and does not rely on trilateration to obtain the vehicle position.

This system uses only one transceiver, which provides only one range measurement, but also includes

an array of transducers separated by 10 cm, which provide bearing measurements. With one distance

measurement and by knowing the relative angles of the forward movement of the vehicle with relation
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to the source, one can obtain the location of the agent. Extensive research on the USBL has been

performed, namely in [6]. One example of the design and experimental validation of this type of system

can be seen in [12]. Several comparisons of the three methods have been performed, with [13] being an

early approach that presented a very thorough list of advantages and disadvantages for each system.

In [14], the concept of a synthetic LBL (SLBL) was brought up. In this method, a single acoustic

source is used, with range measurements being obtained with a specified sampling interval. Between

sampling instants, a high performance dead-reckoning system is used to compute the motion of the

vehicle. A discrete-time Kalman filter (KF) is applied to the linearized model of the system, essentially

applying standard trilateration techniques. This system obtains a good performance, since it is virtually

water-depth independent.

A similar idea is used in [15] with the definition of the virtual LBL (VLBL). In this case, a validation

of the range measurements is performed, meaning that the time steps between the four consecutive

“good ranges” recorded are not necessarily equal. The method uses dead-reckoning to virtually move

the source in the same direction and distance that the vehicle travelled during the time delay between

two measurements, providing virtual source locations.

The EKF is a very widespread method utilized for solution estimation in navigation problems, namely

in [16, 17]. An analysis of the behaviour of the estimation error of a discrete-time EKF, applied to a

stochastic framework, is presented in [18]. Conclusions are drawn about the error boundedness under

specified conditions. These include the need for sufficiently small initial error and sufficiently small noise,

which are heavy constraints for navigation systems. For this reason, other approaches which provide

global asymptotic stability are important in order to guarantee a more robust solution.

Some notable research on single range measurement positioning systems has been performed,

namely in [19], where preliminary experimental results with single beacon acoustic navigation are pre-

sented. In [20], the problems of single range navigation and source localization are addressed. A so-

lution based on an augmented state transforms the original nonlinear system into a linear time-varying

(LTV) system, which allows for the use of LTV system characteristics and enables the design of a LKF

giving globally exponentially stable (GES) error dynamics. In [21], the observability of single range navi-

gation is addressed, as well as some robustness issues. A robust predictor–corrector state estimator is

proposed, to cope with possible outliers in the range measurements.

Another heavy constraint on the problem of underwater navigation is the need for clock synchroniza-

tion in a OWTT setting. While this condition can be achieved prior to each mission via the appropriate

calibrations, this is not only an added burden, but is also proven to be insufficient for long missions, since

clock drift is inevitable unless clock synchronization is performed often. For this reason, solutions that

can explicitly account for the bias term added by the clock offset, as in [22], are of great interest.

In [23], the author addresses the desire for lower operational burden and hardware requirements in
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LBL navigation, as well as the clock offset concern. These were previously mentioned in [20] and [22],

respectively, and their combination yields estimations based on single pseudo-ranges. The solution

presented includes deriving an augmented state, for which the system dynamics become linear, so as to

allow for the use of the LKF. This expands the previously obtained advantages, by solving both issues,

while also obtaining GES guarantees.

One of the main contributions of this thesis is to expand upon the work in [23], by providing an

extensive comparison between the performance of the proposed solution and other existing estimators,

namely the EKF and the UKF. This is done through simulation results, along with Monte Carlo runs,

including a comparison with the BCRB.

Finally, one can note that the use of a sound speed profile for distance computation, previously

mentioned in Section 2.1.1, can pose some problems for navigation. Because the propagation speed

of an acoustic beam greatly depends on water temperature, depth, and salinity, typically the speed of

sound needs to be profiled for the operation area prior to deployment. This brings about an added step,

which increases the necessary hardware, as well as the overall difficulty of field experiments. It can

also bring errors, if the water characteristics are altered between the time of profiling and the time of

deployment, namely by ocean currents. This problem was addressed in [24], where the propagation

speed was explicitly estimated, along with the clock offset, in a LBL setting.
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3
Problem statement and notation

3.1 Notation

Throughout this work, A denotes an n×m matrix, where n > 1 and m > 1, a denotes an n×1 vector,

and a denotes a scalar. The identity matrix, of proper dimensions, is denoted by I, and In denotes the

n × n identity matrix. When matrix dimensions are omitted, the matrices are assumed to be of proper

dimensions. A block diagonal matrix is represented by diag(A1, ...,An). For x ∈ R3, xx, xy, and xz

represent the x, y, and z axis components of x, respectively. The transpose operator is denoted by

(.)T . A vector that follows a Gaussian distribution with mean µ and covariance matrix A is denoted by

a ∼ N (µ, A). The Special Orthogonal Group is denoted by SO(3) = {X ∈ R3×3 : XXT = XTX =

I3 ∧ det(X) = 1}. E{x} represents the expected value of vector x.

3.2 System dynamics

This thesis provides an extension of the work presented in [22], where multiple pseudo-range mea-

surements are available. The present work considers an acoustic positioning system for an underwater

vehicle, consisting of a fixed emitting source. The agent is equipped with an acoustic receiver and is

assumed to have access to the inertial position of the emitter, which is constant. A OWTT setting (see

Section 2.1.1) is considered, with no guarantee of clock synchronization between source and agent.

This time offset results in a bias term in the range measurements, which are, then, pseudo-range mea-

surements, obtained periodically. These values are not enough to estimate the position of the agent, as

more information about the movement of the vehicle is necessary. For this purpose, it is assumed that

the vehicle is equipped with an AHRS and a DVL (see Section 2.1.3 for more information about these

systems).

In order to adequately describe the system dynamics, two reference frames need to be introduced:

the local inertial coordinate reference frame, denoted by {I}, and a coordinate frame attached to the

vehicle, usually referred to as the body-fixed reference frame, denoted by {B}. Considering p(t) ∈ R3

as the inertial position of the vehicle, v(t) ∈ R3 as the velocity of the vehicle relative to {I}, expressed

in body-fixed coordinates, and R(t) ∈ SO(3) as the rotation matrix from {B} to {I}, given by the AHRS,
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the linear motion of the vehicle is, then, described by

ṗ(t) = R(t)v(t). (3.1)

In this work, two scenarios are considered: one in which it is assumed that the bottom-lock condi-

tion is verified, and so, the inertial velocity values are directly available to the vehicle; and one which

corresponds to the absence of bottom-lock, where only the velocity of the vehicle relative to the fluid is

available. The inertial position of the source, which is assumed to be fixed, is denoted by s ∈ R3. With-

out the offset between the emitting and receiving clocks, the range measurements would be given by

r(k) = ‖s− p(tk)‖. Let bc(tk) be the bias term that accounts for the effect of the unknown clock offset.

The pseudo-range measurements available to the vehicle are then given by

r(k) = ‖s− p(tk)‖+ bc(tk), (3.2)

with tk = t0+kT, k ∈ N, where T > 0 is the sampling period and t0 is the initial time. From the conditions

described, it is possible for the vehicle to receive a signal in which the time tag is greater than its own

clock. For these situations, the receiver would know that its clock is behind and could adjust its value to

a higher one, making it possible to consider the following assumption.

Assumption 1. All the pseudo-range measurements are positive, i.e., r(k) > 0 for all k.

A consideration about the factor that accounts for the offset of the clocks is also used throughout this

work.

Assumption 2. The offset of the clocks is constant, i.e., ḃc(t) = 0.

Notice that, because the filters are designed to be noise controllable (see Section 5.2.1 for full dis-

cussion), this restriction can be loosened. Indeed, even though the bias term is assumed constant, in

nominal terms, it is possible to track slow time-varying quantities.

3.2.1 System dynamics with bottom-lock

Considering the scenario in which bottom-lock can be guaranteed, the vehicle has direct access

to the inertial velocity values. In this case, the system can be described by a continuous nonlinear

system, because the movement of the agent is a physical phenomenon, i.e., it occurs in real-time, with

discrete-time output, since the pseudo-range measurements are obtained from a sensor, which implies

a sampling time. This duality of continuous-time movement and discrete-time measurements results in

continuous-discrete system dynamics, which are obtained by combining the previous assumptions with

(3.1) and (3.2), giving 
ṗ(t) = R(t)v(t)

ḃc(t) = 0

r(k) = ‖s− p(tk)‖+ bc(tk)

. (3.3)

The first problem considered in this work is the design of an estimation solution for (3.3).
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3.2.2 System dynamics without bottom-lock

In the absence of bottom-lock, the DVL provides only the velocity of the vehicle relative to the velocity

of its surrounding fluid. In (3.1), v(t) is, thus, the sum of its two components. Let vf (t) ∈ R3 denote the

velocity of the fluid in inertial coordinates and vr(t) ∈ R3 denote the velocity of the vehicle relative to the

fluid in body-fixed coordinates. Hence,

v(t) = RT (t)vf (t) + vr(t). (3.4)

In order to conclude the analysis of the system dynamics, one further assumption must be considered.

Assumption 3. The inertial fluid velocity is constant, i.e., v̇f (t) = 03×1.

Once again, using the argument of noise controllability, this restriction can be loosened and it is possible

to track slow time-varying quantities. With all three assumptions and combining (3.1), (3.2), and (3.4)

gives the continuous nonlinear system with discrete-time output

ṗ(t) = vf (t) + R(t)vr(t)

v̇f (t) = 0

ḃc(t) = 0

r(k) = ‖s− p(tk)‖+ bc(tk)

. (3.5)

The second problem considered in this work is the design of an estimation solution for (3.5).

3.3 Discretization

The auxiliary systems needed for vehicle positioning, including the DVL and AHRS, as well as the

measurements, are discrete-time systems, with associated sampling rates. The nonlinear system dy-

namics are considered in a continuous-discrete framework, so that pseudo-range measurements ob-

tained at low update rates are used to drive the estimation error to zero, while the other sensors, which

operate at a higher rate, are used to drive the system dynamics. It is, therefore, necessary to rewrite

them considering discrete-time measurements, with sampling period T . The discretization of the two

systems tackled in this work are presented in the following sections.

3.3.1 Discretization for system with bottom-lock

By discretizing system (3.3), the discrete-time system dynamics can be described by
p(tk+1) = p(tk) +

∫ tk+1

tk

R(τ)v(τ) dτ

bc(tk+1) = bc(tk)

r(k) = ‖s− p(tk)‖+ bc(tk)

. (3.6)
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Using the system described in (3.6) and defining the discrete-time states{
x1(k) = p(tk)

x2(k) = bc(tk)
,

one can write {
x1(k + 1) = x1(k) + u(k)

x2(k + 1) = x2(k)
,

with u(k) =

∫ tk+1

tk

R(τ)v(τ) dτ . From here, it is possible to rewrite the system dynamics as{
x(k + 1) = Ax(k) + Bu(k)

r(k) = ‖s− x1(k)‖+ x2(k)
, (3.7)

where r(k) are the pseudo-range measurements available to the vehicle. The system and input matrices,

respectively A and B, are constant over time, as given by

A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and B =


1 0 0
0 1 0
0 0 1
0 0 0

 . (3.8)

3.3.2 Discretization for system without bottom-lock

By discretizing system (3.5), the discrete-time system dynamics can be described by

p(tk+1) = p(tk) + Tvf (tk) +

∫ tk+1

tk

R(τ)vr(τ) dτ

vf (tk+1) = vf (tk)

bc(tk+1) = bc(tk)

r(k) = ‖s− p(tk)‖+ bc(tk)

. (3.9)

Using the system described in (3.9) and defining the discrete-time states
x1(k) = p(tk)

x2(k) = vf (tk)

x3(k) = bc(tk)

,

one can write 
x1(k + 1) = x1(k) + Tx2(k) + u(k)

x2(k + 1) = x2(k)

x3(k + 1) = x3(k)

,

with u(k) =

∫ tk+1

tk

R(τ)vr(τ) dτ .
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From here, it is possible to rewrite the system dynamics as{
x(k + 1) = Ax(k) + Bu(k)

r(k) = ‖s− x1(k)‖+ x3(k)
, (3.10)

where r(k) are the pseudo-range measurements available to the vehicle. The system and input matrices,

respectively A and B, are constant over time, as given by

A =



1 0 0 T 0 0 0
0 1 0 0 T 0 0
0 0 1 0 0 T 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


and B =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0


. (3.11)
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4
Kalman filter

4.1 Discrete-time linear Kalman filter

The LKF [25, 26] is a recursive process which aims to estimate the state at the next step based on

the current state and the measurement at the next step. This is done in two segments: a prediction

step and an update step. To describe the filtering methodology, consider the general discrete-time linear

time-varying system {
x(k + 1) = A(k)x(k) + B(k)u(k) + w(k)

y(k) = C(k)x(k) + n(k)
,

where A(k), B(k), C(k) are time-varying matrices, w(k) is the process noise, which follows the Gaus-

sian distribution w(k) ∼ N (0, Q(k)) , and n(k) is the observation noise, which follows the Gaussian

distribution n(k) ∼ N (0, R(k)) . The noises are considered to be mutually independent.

The following notation is used throughout the next sections: k|k represents the value of a quantity at

step k given the first k observations; k + 1|k represents the value of the variable predicted for time-step

k + 1 given the first k observations.

4.1.1 Prediction step

The filter starts by generating an a priori estimate for the state at the next step based on the cur-

rent state estimate and input, as well as the state and input matrices, and an a priori estimate for the

covariance matrix at the next step, as given by

x̂(k + 1|k) = A(k)x̂(k|k) + B(k)u(k)

for the predicted state estimate, and

P(k + 1|k) = A(k)P(k|k)AT (k) + Q(k)

for the predicted estimation error covariance, both obtained by using the results of the previous filter

iteration.

4.1.2 Update step

In this step, the resulting a priori measurement estimate is compared to the actual system measure-

ment, the optimal Kalman gains are calculated, and the a posteriori state estimate is computed. The

13



associated covariance matrix is also compared and updated. The associated equations are

ŷ(k + 1|k) = C(k + 1)x̂(k + 1|k)

for the predicted measurement,

res(k + 1) = y(k + 1)− ŷ(k + 1|k)

for the measurement residual,

S(k + 1) = C(k + 1)P(k + 1|k)CT (k + 1) + R(k + 1)

for the residual covariance,

W(k + 1) = P(k + 1|k)CT (k + 1)S−1(k + 1) (4.1)

for the optimal Kalman gain,

x̂(k + 1|k + 1) = x̂(k + 1|k) + W(k + 1)res(k + 1)

for the updated state estimate,

P(k + 1|k + 1) = (I−W(k + 1)C(k + 1))P(k + 1|k)

for the updated estimation error covariance, and

res(k + 1|k + 1) = y(k + 1)−C(k + 1)x̂(k + 1|k + 1)

for the measurement post-fit residual.

4.1.3 Limitations

Although the LKF works well in numerous situations, it has some constraints that limit the scenarios

in which it can be used. One major limitation is the fact that the LKF, as described above, can only be

applied to linear systems.

The problem addressed in this work is not a linear one, since the desired measurement is the dis-

tance between the source and the agent, which, in R3, implies the use of a norm. For this case, the LKF

cannot be directly applied. To mitigate this type of problems, some other tools can be used, namely the

EKF and the UKF, for which brief descriptions are presented in the following sections.

4.2 Discrete-time extended Kalman filter

The EKF [27,28] aims to generalize the results from the LKF, providing a possible solution for nonlin-

ear systems. This variation uses mathematical techniques to linearize the model about a working point.

It is applied to state-space models of the form{
x(k + 1) = f(k,x(k),u(k),w(k))

y(k) = h(k,x(k),n(k))
,

14



where x(k) is the state vector, u(k) is a known input, w(k) is the process noise with covariance matrix

Q(k), and n(k) is the observation noise with covariance matrix R(k). These noises are assumed to be

zero-mean and mutually independent. The functions f and h can be time-varying and nonlinear, how-

ever, they must be differentiable, for a linearization about an estimate of the current mean and covariance

to be possible. The problem is considered nonlinear if at least one of the functions is nonlinear.

The inner workings of the EKF are similar to the linear Kalman filter, except, instead of directly using

the state, input, and output matrices, one has to use the Jacobians of functions f and h, as defined by

F(k) =
∂f(k)

∂x

∣∣∣
x=x̂(k|k)

, (4.2)

and

H(k + 1) =
∂h(k + 1)

∂x

∣∣∣
x=x̂(k+1|k)

, (4.3)

respectively. These matrices can be time-varying, in which case their values must be calculated at each

filter iteration. Equivalent steps to the ones presented for the LKF are then taken.

4.2.1 Prediction step

Like before, the filter starts by generating the a priori estimate for the state and the covariance matrix

at the next step, also based on the current state estimate and input, only this time, it uses the (potentially)

nonlinear function f and its Jacobian. The prediction step equations are given by

x̂(k + 1|k) = f(k, x̂(k|k),u(k))

for the predicted state estimate and

P(k + 1|k) = F(k)P(k|k)FT (k) + Q(k)

for the predicted estimation error covariance.

4.2.2 Update step

With the appropriate adjustments for the nonlinear case, by using the Jacobian matrices, the equa-

tions for the update step of the EKF are given by

ŷ(k + 1|k) = h(k + 1, x̂(k + 1|k))

for the predicted measurement,

res(k + 1) = y(k + 1)− ŷ(k + 1|k)

for the measurement residual,

S(k + 1) = H(k + 1)P(k + 1|k)HT (k + 1) + R(k + 1)

for the residual covariance,

W(k + 1) = P(k + 1|k)HT (k + 1)S−1(k + 1) (4.4)
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for the filter gain,

x̂(k + 1|k + 1) = x̂(k + 1|k) + W(k + 1)res(k + 1)

for the updated state estimate,

P(k + 1|k + 1) = P(k + 1|k)−W(k + 1)S(k + 1)WT (k + 1)

for the updated estimation error covariance, and

res(k + 1|k + 1) = y(k + 1)− h(k + 1, x̂(k + 1|k + 1))

for the measurement post-fit residual.

Note that, if the system is linear, then F(k) = A(k) and H(k + 1) = C(k + 1), which will make these

equations equivalent to the ones stated in the previous section and guarantee an optimal estimator.

4.2.3 Limitations

The EKF can be used in a much wider set of models, however, unlike its linear version, it is not, in

general, an optimal estimator, i.e., it does not calculate optimal Kalman gains. In fact, if the initial state

estimate is not accurate enough, the filter may diverge due to its inherent linearization.

Another problem with the EKF is that the estimated covariance matrix tends to underestimate the true

covariance matrix, which may cause misleading results. For this reason, the covariance matrix obtained

from the filter and the true covariance matrix are typically compared when analysing results.

4.3 Discrete-time unscented Kalman filter

The UKF [29] provides an alternative to the EKF and presents a nonlinear approach to Kalman

filtering without the need for linearization. This filter aims to provide an estimation solution for systems

of the form {
x(k + 1) = f(k,x(k),u(k),w(k))

y(k) = h(k,x(k),n(k))
, (4.5)

where x(k) is the state vector, u(k) is a known input, w(k) is the process noise with covariance matrix

Q(k), and n(k) is the observation noise with covariance matrix R(k). The noises are assumed to be

zero-mean and mutually independent. The functions f and h can be time-varying and nonlinear and the

problem is considered nonlinear if at least one of the functions is nonlinear.

The inner workings of the UKF are different from before. Indeed, instead of linearizing the system

functions, one now uses the unscented transform (UT) to obtain the desired estimates.
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4.3.1 Unscented Transform

The UT is a mathematical tool used to estimate the result of applying a given nonlinear transforma-

tion to a certain probability distribution, for which only a limited set of points are known. Considering a

random variable x ∈ Rn, with expected value x̄ and covariance matrix Px ∈ Rn×n, by applying a non-

linear function g : Rn → Rm, one can obtain a new random variable y ∈ Rm, with expected value ȳ and

covariance matrix Py ∈ Rm×m. The UT presents a simple way to estimate the statistical properties of

this new output variable.

Firstly, the UT uses the given information about the distribution of x (mean and covariance), to

calculate a set of sigma points which obey those statistical properties. The sigma points are then put

through the exact nonlinear function and the resulting points are used to compute the estimated values

for the mean and covariance of y. To each sigma point, there are two associated weights, one for the

first-order, i.e., the mean, and one for the second-order, i.e., the covariance. These weights allow for

the skewing of the resulting distribution more toward any specific point that might be deemed necessary,

and are chosen so that the following are true:

N∑
j=0

Wm
j = 1

E[xi] =

N∑
j=0

Wm
j
χj,i, for all i = 1, ..., L

, (4.6)

for the first-order weights, and

N∑
j=0

W c
j = 1

E[xixl] =

N∑
j=0

Wm
j
χj,iχj,l, for all pairs (i, l) ∈ {1, ..., L}2

, (4.7)

for the second-order weights.

The parameters α, k, β, and λ = α2(L+ k)− L are used to tune the distribution of the sigma points.

The parameter α determines the spread of the sigma points around the mean of x and is usually set to

a small positive value, k is a secondary scaling parameter which is usually set to 0, and λ is called the

composite scaling parameter. Finally, β is used to incorporate prior knowledge of the distribution of x

(for Gaussian distributions, β = 2 is optimal), and L is defined as the dimension of the random variable

x, which means L = n.

The sigma point calculation suggested in [29] is as follows
χ0 = x̄

χi = x̄ +
(√

(L+ λ)Px

)
i
, i = 1, ..., L

χi = x̄−
(√

(L+ λ)Px

)
i−L

, i = L+ 1, ..., 2L

,
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where χi is the i-th sigma point and
(√

(L+ λ)Px

)
i

is the i-th column of matrix
(√

(L+ λ)Px

)
.

The corresponding weights are also given in [29] as

Wm
0 =

λ

L+ λ

W c
0 =

λ

L+ λ
+ 1− α2 + β

Wm
i =W c

i =
1

2(L+ λ)
, i = 1, ..., 2L

,

where Wm
i is the weight of the i-th sigma point in relation to the mean estimation and W c

i is the weight

of the i-th sigma point in relation to the covariance estimation.

In order to obtain the desired estimation, the sigma points are propagated through function g so that

new points Yi = g(χi) are obtained. These are then used to estimate the mean and covariance of y, as

ȳ ≈
2L∑
i=0

Wm
i Yi

and

Py ≈
2L∑
i=0

W c
i (Yi − ȳ)(Yi − ȳ)T ,

respectively.

4.3.2 Initialization

As with other recursive methods, in order to apply the UKF to the system presented in (4.5), one

needs to set the initialization parameters. The initial state estimate is defined by x̂(0) = E[x(0)], with

covariance matrix P̂(0) = E
[
(x(0)− x̂(0))(x(0)− x̂(0))T

]
.

The UKF accounts for the noise terms w(k) and n(k), by defining an augmented state vector given

by

xa(k) =

x(k)
w(k)
n(k)

 ,
with covariance matrix

Pa(k) =

P(k) 0 0
0 Q(k) 0
0 0 R(k)

 .
The augmented state estimate is initialized with

x̂a(0) = E[xa(0)] =

x̂(0)
0
0

 ,
and its covariance matrix is initialized with

P̂
a
(0) = E

[
(xa(0)− x̂a(0))(xa(0)− x̂a(0))T

]
=

P̂(0) 0 0
0 Q(0) 0
0 0 R(0)

 .
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4.3.3 Prediction step

The UKF starts by calculating the sigma points, however, because of the application to systems of

the kind in (4.5), with augmented state vectors, we now have augmented sigma points. The calculations

are similar to the ones presented in Section 4.3.1, and one obtains
χa

0(k) = x̂a(k)

χa
i (k) = x̂a(k) +

(√
(L+ λ)Pa(k)

)
i
, i = 1, ..., L

χa
i (k) = x̂a(k)−

(√
(L+ λ)Pa(k)

)
i−L

, i = L+ 1, ..., 2L

,

where the weights are as defined in (4.6) and (4.7), and the general form of a sigma point is given by

χa
i (k) =

χ
x
i (k)

χw
i (k)
χn
i (k)

 .
The prediction step equations are given by

χx(k + 1|k) = f(k,χx(k),χn(k),u(k))

for the predicted sigma state estimate,

x̂(k + 1|k) =
2L∑
i=0

Wm
i
χx
i (k + 1|k)

for the predicted state estimate, and

P̂(k + 1|k) =
2L∑
i=0

Wm
i [χx(k + 1|k)− x̂(k + 1|k)][χx(k + 1|k)− x̂(k + 1|k)]T + Q(k)

for the predicted estimation error covariance.

4.3.4 Update step

As defined in Section 4.3.1, Yi are the new points obtained from passing the sigma points through

the required function. This way,

Yi(k + 1|k) = h(k + 1,χx(k + 1|k),χn(k + 1|k)).

The updated equations of the update step of the UKF are given by

ŷ(k + 1|k) =
2L∑
i=0

Wm
i Yi(k + 1|k)

for the predicted measurement,

res(k + 1) = y(k + 1)− ŷ(k + 1|k)

for the measurement residual,
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S(k + 1) =

2L∑
i=0

W c
i [Yi(k + 1|k)− ŷ(k + 1|k)][Yi(k + 1|k)− ŷ(k + 1|k)]T + R(k + 1)

for the residual covariance,

Pxy(k + 1) =

2L∑
i=0

W c
i [χ

x(k + 1|k)− x̂(k + 1|k)][Yi(k + 1|k)− ŷ(k + 1|k)]T

for the cross-covariance,

W(k + 1) = Pxy(k + 1)S(k + 1)−1 (4.8)

for the filter gain,

x̂(k + 1|k + 1) = x̂(k + 1|k) + W(k + 1)res(k + 1)

for the updated state estimate, and

P̂(k + 1|k + 1) = P(k + 1|k)−W(k + 1)S(k + 1)WT (k + 1)

for the updated estimation error covariance.

4.3.5 Limitations

The UKF is overall a better alternative than the EKF, particularly for highly nonlinear functions. It

also presents an opportunity for estimation when the system does not have differentiable functions,

which renders the EKF incapable of performing the task, due to the need to calculate the associated

Jacobians. So, if the original distribution is far from Gaussian, if the system is highly nonlinear and,

particularly, if the functions are not differentiable, this filter is the best option. However, the closer to a

linear problem and/or to a Gaussian prior distribution, the closer the UKF and EKF performances will be.

Due to the higher computational need for the UKF, especially when the Jacobians of the EKF are fairly

simple to obtain, the latter might still be a better option for problems which are close to linear.
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5
Proposed solution with bottom-lock

5.1 System dynamics and models

Recall the system dynamics presented in (3.7). For simulation purposes, the desired functions were

developed and tested resorting to MATLAB R2019b and Simulink. Since the system inputs and pseudo-

range measurements are obtained from sensors, these involve setting sampling rates. For these simula-

tions, the sampling times for both sensors are set to T = 10 s and a final simulation time tfinal = 10000 s

is considered. A Simulink model is designed to generate the system input u, following

u(k) =


cos
(
2πk
30

)
1.7 cos

(
2πk
20 + π

6

)
2 cos

(
2πk
45 + π

9

)
 .

This choice of input is related to the necessity for the system to be observable. Although the topic

of the system observability is not within the scope of this work, an extensive comment is made in [23]

regarding the need for rich trajectories. This input allows the trajectory of the agent to be rich enough

so that it includes changes in all position components, without falling into special cases, such as circular

trajectories where the range measurements would be virtually constant apart from the influence of noise.

A second Simulink model, which simulates the system dynamics, is presented in Fig. 5.1. In order

to be able to perform an analysis of the simulation results, namely to able to calculate estimation errors,

it is necessary to have access to all state variables. For this purpose, an auxiliary system is simulated,

by using a discrete state-space Simulink block. Because the state and input matrices of the auxiliary

system are the same as in (3.8), the state variables have the same behaviour as in the problem at

hand. Since the output and feedforward matrices of the auxiliary system are set to C = I and D = 0, it

directly outputs x. A MATLAB function block is then used to calculate the necessary norm for the system

pseudo-range measurements.
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Figure 5.1: Simulink model to simulate the nominal system dynamics.

The overall model takes as input the generated u, the state-space matrices necessary for the auxil-

iary system, as well as

s =


1

1

3

 [m], p(0) =


1

1

1

 [m], bc(0) = 2m, and x(0) =


1

1

1

2

 [m],

where s is the constant inertial position of the source, p(0) is the initial position of the vehicle, bc(0) is

the initial bias value, and so, x(0) is the initial state of the system. It outputs onto the workspace the

values of p , bc, and r over time, which represent simulated true values for the states and pseudo-range

over the run time. These allow for the visualization of the true value of the bias over the simulation

time, represented in Fig. 5.2, as well as the true value of the pseudo-range measurements over time,

represented in 5.3. A 3-D plot of the trajectory of the agent is also shown in Fig. 5.4.

0 2000 4000 6000 8000 10000
1

1.5

2

2.5

3

Time (s)

B
ia

s
va

lu
e

(m
)

Figure 5.2: Plot of the true bias value.
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Figure 5.3: Plot of the true pseudo-range values.

22



−4
−2

0
2

4

−10
−5

0

5
−20

0

px (m)py (m)

p z
(m

)

Figure 5.4: 3-D plot of the vehicle trajectory.

5.2 Noise description

Considering the discrete-time nonlinear system in (3.7), used to describe the problem at hand, it

is necessary to account for potential noises related to the system. In this case, it is assumed that

there are zero-mean, additive uncorrelated white Gaussian noises associated with the sensors used for

the measurement of the system input and the system pseudo-range measurements. Taking these into

account, a more accurate representation of the problem is{
x(k + 1) = Ax(k) + B[u(k) + m(k)]

r(k) = ‖s− x1(k)‖+ x2(k) + n(k)
(5.1)

or, equivalently, {
x(k + 1) = Ax(k) + Bu(k) + w(k)

r(k) = ‖s− x1(k)‖+ x2(k) + n(k)
(5.2)

where n(k) ∈ R is the Gaussian observation noise, n(k) ∼ N (0, R(k)) , and m(k) ∈ R4 is the Gaussian

process noise, m(k) ∼ N (0, M(k)) , associated with the measurement of the vehicle position displace-

ments, u(k). Because of the values of matrix B , the values of vector w(k) come as w(k) =

[
m(k)

0

]
,

therefore, w(k) ∼ N (0, Q(k)) , where Q(k) = diag(M1,1(k),M2,2(k),M3,3(k), 0). In practice, zero en-

tries in diag(Q(k)) are undesirable because of the aspects described in Section 5.2.1, and so Q4,4(k)

is always set to a small yet non-zero value.
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5.2.1 Noise controllability

Considering that the system at hand is described by a state equation that is linear time-invariant, and

that the controllability of the system is only dependent on its state and input matrices, respectively A

and B, a test on the controllability of the system can be performed by analysing the column rank of the

matrix Co, given by

Co =
[
B AB A2B A3B

]
.

Because the state vector is of size n = 4 and the column rank of Co is of only 3, it shows that the

system is not fully controllable by its input u(k). This is not a problem and has no implications in the KF,

except for the fact that the control input u(k) does not affect the bias element of the state estimate, x̂,

during the prediction step.

As argued in [30], a similar analysis can be performed regarding the process noise. By re-writing

(5.2) as {
x(k + 1) = Ax(k) + Bu(k) + Ww(k)

r(k) = ‖s− x1(k)‖+ x2(k) + n(k)
,

one can consider w(k) as a second input for the system and perform another controllability analysis to

obtain the ability of the noise to affect the state. In this case, w(k) is a vector of independent, identically

distributed unit variance Gaussian noise sources, to which the gains in W are applied. The system noise

covariance matrix Q is given by Q = WTW. If the system formed by A and W is uncontrollable, then the

noise does not affect all the elements of the state and Q has zero diagonal entries for the uncontrollable

(“incorruptible”) states. This can be undesirable because the KF will drive the corresponding diagonal

elements of P to zero, since it minimizes its trace. Once that happens, the estimates of these states are

fixed, which means that no further observations will alter their values. To ensure a fulfilment of the KF

requirement for noise stabilizability and to avoid the situation mentioned before, all the diagonal entries

of matrix Q are set to low, yet non-zero values, to ensure that the system is noise controllable.

5.3 Filter parameters and design

In order to design an estimator for the system described by (3.7), an EKF, an UKF, and a LKF were

designed and tested, with and without sensor noises, and for different initial conditions. The construction

of each filter is described in the following sections.

5.3.1 EKF parameters and design

The function developed to simulate the EKF receives as input the state and input matrices, respec-

tively A and B, as well as the constants T , representing the sampling period, tfinal representing the final

simulation time, and s, representing the fixed location of the source. The noise covariance matrices Q

and R are also supplied, as well as the range and input values measured by the sensors, respectively r
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and u. Finally, the function receives the initial estimates for the state values and covariance matrix, x(0)

and P(0), respectively. The function then outputs a matrix with the state estimates for each iteration and

a cell-array with all the estimated covariance matrices, one P matrix associated with each filter iteration.

For the simulations in which no noise is considered, r and u are simply the real range and input val-

ues, whereas, when adding sensor noise, r and u are affected by additive white Gaussian noises, given

by n ∼ N (0, R) and w ∼ N (0, Q) , respectively. Q is a diagonal matrix, Q = diag(σ2
x, σ

2
y, σ

2
z , σ

2
b ), where

σ2
b is the small value discussed in Section 5.2.1, and σ2

x, σ2
y, σ2

z are the variances of the measurements of

the system inputs, which correspond to the variances of the vehicle position displacement components

in the x, y, and z axes, respectively. R = σ2, where σ2 is the variance of the range measurement. Note

that, because of the matrix inversion in equation (4.4), R cannot be null.

The simulation results of the designed EKF are shown in Section 5.4.1. The Jacobian matrices

mentioned in (4.2) and (4.3), are, in the case of the system at hand

F = A =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


and

H(k + 1) =

[
p̂x(k + 1|k)− sx
‖s− p̂(k + 1|k)‖

p̂y(k + 1|k)− sy
‖s− p̂(k + 1|k)‖

p̂z(k + 1|k)− sz
‖s− p̂(k + 1|k)‖

1

]
. (5.3)

Matrix F can be obtained from the fact that the system state equation is linear in x(k). As for matrix

H(k+1), the derivative of r(k+1) with respect to each of the predicted state variables must be calculated,

and so

H(k + 1) =
∂r(k + 1)

∂x

∣∣∣
x=x̂(k+1|k)

=

[
∂r(k + 1)

∂p̂x(k + 1|k)
∂r(k + 1)

∂p̂y(k + 1|k)
∂r(k + 1)

∂p̂z(k + 1|k)
∂r(k + 1)

∂b̂c(k + 1|k)

]
.

From the pseudo-range expression in (3.2), it is possible to conclude that
∂r(k + 1)

∂b̂c(k + 1|k)
= 1. To compute

the derivative with respect to p̂x(k + 1|k), it is useful to rewrite

r(k + 1) =

√ ∑
i=x,y,z

(si − p̂i(k + 1|k))2 + b̂c(k + 1|k).

From here, the calculation of the partial derivative becomes straightforward and is given by

∂r(k + 1)

∂p̂x(k + 1|k)
=

1

2
× 1√∑

i=x,y,z(si − p̂i(k + 1|k))2
× 2(sx − p̂x(k + 1|k))× (−1),

which can be simplified to
∂r(k + 1)

∂p̂x(k + 1|k)
=
p̂x(k + 1|k)− sx
‖s− p̂(k + 1|k)‖

.

A similar calculation is done for p̂y(k + 1|k) and p̂z(k + 1|k), which yields (5.3).
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5.3.2 UKF parameters and design

The function that was developed to simulate the UKF is very similar to the one described in Section

5.3.1: it also receives as input the state and input matrices, as well as the sampling period, the final

simulation time, and the fixed location of the source. The noise covariance matrices are also supplied,

as well as the range and input values measured by the sensors, and the initial estimates for the state

vector and covariance matrix. Finally, in order to perform the UT, the filter function needs to receive the

parameters that relate to its use, namely L, k, β, α, and λ, where λ = α2(L+ k)− L. The function then

outputs a matrix with the state estimates and a cell-array with the estimated covariance matrices.

The considerations about the range and input values, r and u, as well as the comments about Q

and R, are the same as the ones presented in Section 5.3.1. Namely, because of the matrix inversion

in equation (4.8), R cannot be null. The simulation results of the designed UKF, are shown in Section

5.4.2.

5.3.3 LKF parameters and design

The filter presented in this section is based on the solution of the single vehicle navigation problem

introduced in [23], in which an augmented state is suggested. To begin the description of the filter

design, one must start by analysing the problem formulation. The original formulation of the problem, in

(3.6), now uses a different choice of state variables, in this case,{
x1(k) = p(tk)− s

x2(k) = bc(tk)
,

still resulting in the system {
x1(k + 1) = x1(k) + u(k)

x2(k + 1) = x2(k)
,

with u(k) =

∫ tk+1

tk

R(τ)v(τ) dτ .

The state augmentation suggested in the paper takes advantage of the fact that the only nonlinearity

in this problem comes from the system range measurements. Because these values are measured at

each timestamp, and hence, are accessible to the state, it is possible to define
z1(k) = x1(k)

z2(k) = x2(k)

z3(k) = r(k)

,

where r(k) = ‖x1(k)‖+ x2(k), which yields the new state vector z(k) =


z1(k)

z2(k)

z3(k)

.
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To write the system in the state-space form, one must consider that
z1(k + 1) = z1(k) + u(k)

z2(k + 1) = z2(k)

z3(k + 1) = ‖z1(k + 1)‖+ z2(k + 1)

.

Combining these equations gives

z3(k + 1) = ‖z1(k) + u(k)‖+ z2(k). (5.4)

By squaring and expanding (5.4), one can obtain

z23(k + 1) = [‖z1(k) + u(k)‖+ z2(k)]
2 = ‖z1(k) + u(k)‖2 + 2‖z1(k) + u(k)‖z2(k) + z2(k)

2,

which can be further expanded as

z23(k + 1) = ‖z1(k)‖2 + 2u(k)T z1(k) + u(k)Tu(k) + 2‖z1(k) + u(k)‖z2(k) + z2(k)
2. (5.5)

Noting that

z3(k) = ‖z1(k)‖+ z2(k) ⇐⇒ z2(k) = z3(k)− ‖z1(k)‖ ⇐⇒ ‖z1(k)‖ = z3(k)− z2(k),

it is possible to rewrite (5.5) as

z23(k+1) = ‖z1(k)‖[ z3(k)−z2(k) ]+2u(k)T z1(k)+u(k)Tu+2‖z1(k)+u(k)‖z2(k)+z2(k)[ z3(k)−‖z1(k)‖ ],

which leads to

z23(k + 1) = 2u(k)T z1(k) + [ 2‖z1(k) + u(k)‖ − 2‖z1(k)‖ ]z2(k) + [ z2(k) + ‖z1(k)‖ ]z3(k) + u(k)Tu(k).

This can be simplified, as given by

z23(k + 1) = 2u(k)T z1(k) + [ 2‖z1(k) + u(k)‖ − 2‖z1(k)‖ ]z2(k) + z23(k) + u(k)Tu(k). (5.6)

Noting that

z3(k + 1)− z3(k) = ‖z1(k) + u(k)‖+ z2(k)− [ ‖z1(k)‖+ z2(k) ] = ‖z1(k) + u(k)‖ − ‖z1(k)‖, (5.7)

since z2(k + 1) = z2(k), one can replace (5.7) in (5.6) and obtain

z23(k + 1) = 2u(k)T z1(k) + 2[ z3(k + 1)− z3(k) ]z2(k) + z23(k) + u(k)Tu(k).

Finally, one obtains

z3(k + 1) =
2u(k)T

z3(k + 1)
z1(k) +

2[ z3(k + 1)− z3(k) ]
z3(k + 1)

z2(k) +
z3(k)

z3(k + 1)
z3(k) +

u(k)T

z3(k + 1)
u(k),

which is equivalent to

z3(k + 1) =
2u(k)T

r(k + 1)
z1(k) +

2[ r(k + 1)− r(k) ]
r(k + 1)

z2(k) +
r(k)

r(k + 1)
z3(k) +

u(k)T

r(k + 1)
u(k).
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The system can, then, be expressed as

z1(k + 1) = z1(k) + u(k)

z2(k + 1) = z2(k)

z3(k + 1) =
2u(k)T

r(k + 1)
z1(k) +

2[ r(k + 1)− r(k) ]
r(k + 1)

z2(k) +
r(k)

r(k + 1)
z3(k) +

u(k)T

r(k + 1)
u(k)

y(k + 1) = z3(k + 1)

,

which is equivalent to the state-space representation{
z(k + 1) = A(k)z(k) + B(k)u(k)

y(k + 1) = Cz(k + 1)
, (5.8)

where

A(k) =


I3 03×1 03×1

01×3 1 0

2
u(k)T

r(k + 1)
2
[ r(k + 1)− r(k) ]

r(k + 1)

r(k)

r(k + 1)

 ∈ R5×5, B(k) =


I3

01×3

u(k)T

r(k + 1)

 ∈ R5×3,

and C =
[
01×3 0 1

]
∈ R1×5, which can be regarded as a discrete-time linear time-varying system

for observer design purposes. Since the augmented system is equivalent to the system in (3.7), an

observer (filter) for (5.8) is also an observer (filter) for (3.7).

Due to the time dependencies of matrices A and B, they have to be calculated at every time step,

which means these matrices are no longer inputs of the function designed to simulate the filter. For the

LKF, the function receives, instead, matrix C. The remaining inputs and outputs of the function remain

the same as in Section 5.3.1, noting that the position estimates are now obtained by adding the position

of the source, s, to the first state variable, z1(k).

Because the state and input matrices are no longer linear time-invariant, the analysis made in Section

5.2.1 no longer applies, however, a similar case can be made for the undesirable presence of zero entries

in the covariance matrices for the LKF, and so, as a matter of consistency, the same non-zero entries

will be considered.

It is important to note that unobservable systems prohibit the use of KFs, since no information is

obtained through the observation equations for the unobservable states. This means the filter estimate

for these states will not converge to a meaningful solution [30]. The thorough analysis of the observability

of both the original nonlinear system and the derived augmented linear system is presented in [23]. To

this end, it is noted that the new systems can still be considered linear in the state for observer design

purposes, since A(k) depends on pseudo-range measurements which are assumed to be available and,

hence, considered as functions of time for observer (filter) design purposes. The analysis performed

allows for the design of these filters.
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Because of the augmented state, the covariance of the process noise for this filter is now

Q = diag(σ2
x, σ

2
y, σ

2
z , σ

2
b , σ

2
r), where σ2

r is also chosen as a small yet non-zero value. The value of R

remains the same, i.e., R = σ2, and, once again, because of the matrix inversion in (4.1) cannot be null.

The simulation results of the designed LKF with augmented state are shown in Section 5.4.3.

5.4 Simulation results with bottom-lock

The following sections present the selected conditions that show filter convergence for each of the

three designed filters, as well as the results obtained for the estimation errors. For the EKF and the

UKF, a set of conditions for which the filter does not converge is also presented, along with the sim-

ulation results. Some considerations about the convergence of the LKF and a comparison with the

non-convergence cases of the two alternative filters is also made. The choice of the noise covariance

matrices and non-zero initial error conditions is made such that direct comparison between all filters is

possible. As per the results in Section 5.4.2, the solution with the most difficult convergence is the UKF,

and so, the previous values are chosen to ensure this filter converges, and used throughout all filter

experiments.

5.4.1 EKF results with bottom-lock

All the simulations in this section imply a prior run of the previously mentioned Simulink models,

in order to obtain the inputs, ranges, and states necessary for the estimations and error calculations.

For all, the initial covariance matrix is set to P(0) = I and the noise covariance matrices are given by

Q = diag(10−4 I3, 10
−4) and R = 10−2.

5.4.1.1 Filter convergence
To check for filter converge, one should initially run the filter with correct starting conditions and no

noise and check for propagation errors. A run with sensor noise is performed to ensure the filter is

robust to its influence. Because in real-world scenarios one does not, necessarily, have access to an

accurate initial estimate, a run with non-zero initial error should also be performed, to ensure the filter

can overcome this issue. Finally, the experiment should be repeated for situations with sensor noise, in

order to have the best simulation of the real-world applications of the filter.

5.4.1.1.1 Correct initial conditions

For this experiment, the true starting conditions are considered, i.e., x(0) =
[
1 1 1 2

]T
[m], and

the true values of the range and inputs are used. The resulting plots for the position estimation error

and bias estimation error are presented in Figures 5.5 and 5.6, respectively. These show the expected

outcomes, since the errors start and remain at very small values for all time, which can be taken as zero,

given the scale of this problem, and are consistent with the known EKF response under these conditions.

These results prove that the designed filter does not have any propagation errors.
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Figure 5.5: Position estimation error of the EKF in the absence of sensor noise: zero initial error.
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Figure 5.6: Bias estimation error of the EKF in the absence of sensor noise: zero initial error.

5.4.1.1.2 Correct initial conditions with added noise

For this experiment, the initial conditions are set to the true value, x(0) =
[
1 1 1 2

]T
[m], and the

measured (noisy) values of the range and inputs are considered. The position estimation error and bias

estimation error are presented in Figures 5.7 and 5.8, respectively. The latter exhibits some stronger

initial transients and then converges, while showing a slight offset, with 0.026m as the final error. As for

the position, the steady-state errors are within −0.2m and 0.2m of the true values, with the final error

being perror =
[
0.090 0.006 0.038

]T
[m]. The initial transients shown in both plots are a result of the

twofold impact of the introduced noises: directly, through the measured values of r and u; and indirectly,

through the propagation of matrices Q and R throughout the estimation steps shown in Section 4.2.
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Figure 5.7: Position estimation error of the EKF in the presence of sensor noise: zero initial error.
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Figure 5.8: Bias estimation error of the EKF in the presence of sensor noise: zero initial error.

5.4.1.1.3 Non-zero initial error

For this experiment, the initial conditions are set to x(0) =
[
−4 −4 −4 1

]T
[m] and the true val-

ues of the range and inputs are considered. The resulting plots for the position estimation error and bias

estimation error are presented in Figures 5.9 and 5.10, respectively. These show that the filter is fairly ro-

bust to changes in the initial estimate, since both the position and bias errors rapidly converge to zero, af-

ter the initial transients disappear. The bias estimation error reaches approximately 3.28× 10−12 m at the

final simulation time and the final position vector comes to perror ≈
[
−1.11 0.37 0.41

]T
× 10−11 [m],

which are both very satisfactory results and can be regarded as zero, given the scale of the experiment.

0 1000 2000 3000

−10

0

10

3000 4000 5000 6000 7000 8000 9000 10000
−1

−0.5

0

0.5

1
·10−3

px error py error pz error

Time(s)

Po
si

tio
n

er
ro

r(
m

)

Figure 5.9: Position estimation error of the EKF in the absence of sensor noise: non-zero initial error.
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Figure 5.10: Bias estimation error of the EKF in the absence of sensor noise: non-zero initial error.
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5.4.1.1.4 Non-zero initial error with added noise

For this experiment, the initial conditions are set to x(0) =
[
−4 −4 −4 1

]T
[m] and the measured

(noisy) values of the range and inputs are considered. The resulting plots for the position estimation error

and bias estimation error are presented in Figures 5.11 and 5.12, respectively. The first starts by peaking

and then converges to an interval between −0.2m and 0.2m. As for the bias error, it also shows a peak

in the initial 200 s and then converges to a value close to 0, maintaining the slight estimation offset shown

in 5.4.1.1.2.

From these results, one can attest to the relative robustness of the filter, since a convergence in the

given simulation time can be achieved from a non-zero error starting condition with added sensor noise.

When analysing these results, one should keep in mind that this is quite a tricky problem to solve, since

the filter only has access to the measured pseudo-range values, which could be derived from a number

of combinations of px, py, pz, and bc values. The better results obtained in the bias estimation can be

justified by the fact that it is a simpler estimation to begin with, since it is a constant value, rather than a

rapidly varying one. This information is available to the filter from the Jacobian matrix H in (5.3).
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Figure 5.11: Position estimation error of the EKF in the presence of sensor noise: non-zero initial error.
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Figure 5.12: Bias estimation error of the EKF in the presence of sensor noise: non-zero initial error.
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5.4.1.2 Failure of convergence of the EKF

The EKF does not provide any guarantees for convergence. In fact, when testing the filter, several

runs were found not to converge or not converge in the established time frame. For the most part,

however, one is able to obtain good results, so long as the initial state estimate is not too far from its

true value. To exemplify a case in which a convergence in the given time limit is not achieved, a run with

sensor noise following the same distribution as before and initial conditions as the sum of the true value

plus a large offset is performed. In this case, x(0) =
[
−999 −699 −999 −498

]T
[m].

The resulting plots for the position estimation error and bias estimation error are presented in Figures

5.13 and 5.14, respectively. The failure to converge is noticeable in both plots. Indeed, the error of py

starts at 700m, decreases to 400m, and then maintains an overall increase until the final simulation

time. The error of pz oscillates between 660m and 640m throughout the whole simulation and the error

of px does follow a decreasing trajectory but does not come close to converging. As for the bias, its

error starts at 500m, peaks around 1035m and then maintains an oscillation between 1038m and 1030m

throughout the simulation time, while slowly decreasing but never coming close to zero.
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Figure 5.13: Position estimation error of the EKF: failure of convergence.
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Figure 5.14: Bias estimation error of the EKF: failure of convergence.
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5.4.2 UKF results with bottom-lock

Like before, all the simulations in this section imply a prior run of the Simulink models, in order

to obtain the inputs, ranges, and states necessary for the estimations and error calculations. For all

experiments, the initial covariance matrix is set to P(0) = I and the noise covariance matrices are Q =

diag(10−4 I3, 10
−4) and R = 10−2. As mentioned in Section 5.3.2, the UKF requires some additional

tuning parameters, which are set to the standard values of k = 0, α = 10−3, β = 2, and λ = α2(L+k)−L

for all experiments. L is defined as being equal to 2n+ 1, where n is the size of the state vector. In this

case, it is then set to L = 9.

5.4.2.1 Filter convergence

The convergence of the filter is tested over several experiments, as mentioned in Section 5.4.1.1.

The results for each set of conditions are shown in the following sections.

5.4.2.1.1 Correct initial conditions

For this experiment, the initial conditions are set to the true values, i.e., x(0) =
[
1 1 1 2

]T
[m],

and the true values of the range and inputs are considered. The resulting plots for the position estimation

error and bias estimation error are presented in Figures 5.15 and 5.16, respectively.

These plots show a few initial differences in the UKF behaviour when compared to the EKF. Firstly,

whereas the EKF takes only the mean point of the Gaussian distribution and passes it through the

linearization of the nonlinear function, the UKF takes several sigma points to pass through the UT,

which means they do not all fall on the mean. In practical terms, this implies that, if the correct initial

conditions are given with no sensor noise, i.e. the mean is zero and there are no disturbances in the

measurements, the EKF has errors that start and stay at zero, as shown in Fig. 5.5, whereas the

UKF does not follow this behaviour, due to the weights assigned to the sigma points that do not fall

on the mean. This justifies the initial transients present in both the position and the bias error plots for

this experiment. Another noticeable difference is that the final errors are much larger than the ones

presented for the EKF. However, since these errors are still three orders of magnitude smaller than the

nominal values and convergence is clearly shown, one can see that the designed filter does not have

any propagation errors.
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Figure 5.15: Position estimation error of the UKF in the absence of sensor noise: zero initial error.
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Figure 5.16: Bias estimation error of the UKF in the absence of sensor noise: zero initial error.

5.4.2.1.2 Correct initial conditions with added noise

For this experiment, the initial conditions are set to the true values, i.e., x(0) =
[
1 1 1 2

]T
[m] and

the measured (noisy) values of the range and inputs are considered. The resulting plots for the position

estimation error and bias estimation error are presented in Figures 5.17 and 5.18, respectively. Both

show initial transients, with the estimation errors converging to the vicinity of zero, which shows the filter

to be robust to noise, under these conditions. The position error in steady-state is within approximately

−0.2m and 0.2m of the true values and the bias steady-state error is between −0.05m and 0.05m of the

true values. The final errors achieved are perror ≈
[
0.049 0.033 −0.022

]T
[m] and bcerror ≈ 0.0113m.
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Figure 5.17: Position estimation error of the UKF in the presence of sensor noise: zero initial error.
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Figure 5.18: Bias estimation error of the UKF in the presence of sensor noise: zero initial error.

5.4.2.1.3 Non-zero initial error

For this experiment, the initial conditions are set to x(0) =
[
−4 −4 −4 1

]T
[m] and the true

values of the range and inputs are considered. The resulting plots for the position estimation error and

bias estimation error are presented in Figures 5.19 and 5.20, respectively.

One major difference between this experiment and the one presented in Section 5.4.1.1.3 is that this

filter takes significantly longer to converge than the EKF. This is due to the fact that the system is linear

in the state, which causes the UKF to lose its precision advantages, since the higher order moments in

the state error distributions are not significant in this case [31]. The UKF also presents a higher com-

putational challenge because of its need to compute and propagate several sigma points. Nonetheless,

because the final errors achieved are of 1.61 × 10−3 m for the bias and
[
1.50 1.59 0.63

]T
× 10−3 [m]

for the position, one can consider them satisfactory in showing that the filter is fairly robust to changes

in the initial estimate.
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Figure 5.19: Position estimation error of the UKF in the absence of sensor noise: non-zero initial error.
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Figure 5.20: Bias estimation error of the UKF in the absence of sensor noise: non-zero initial error.

5.4.2.1.4 Non-zero initial error with added noise

For this experiment, the initial conditions are set to x(0) =
[
−4 −4 −4 1

]T
[m] and the measured

(noisy) values of the range and inputs are considered. The resulting plots for the position estimation error

and bias estimation error are presented in Figures 5.21 and 5.22, respectively. The first starts by peaking

and then converges to an interval between approximately−0.2m and 0.2m. The latter also shows a peak

in the initial 200 s and then converges to a value close to zero, maintaining the slight estimation offset

shown in previous experiments, with a final value of approximately 0.0113m.

From these results, one can attest to the relative robustness of the filter, since a convergence can

be achieved from a non-zero initial error with added sensor noise. Once again, it is important to keep

in mind the complexity of the problem and the heaviness of this method, when analysing the obtained

errors and the convergence times.
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Figure 5.21: Position estimation error of the UKF in the presence of sensor noise: non-zero initial error.
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Figure 5.22: Bias estimation error of the UKF in the presence of sensor noise: non-zero initial error.

5.4.2.2 Failure of convergence of the UKF

The UKF also does not provide any convergence guarantees and so a test on its limitations is also

performed. For this experiment, the initial conditions are set to x(0) =
[
−24 −14 −24 −2

]T
[m]

and the measured (noisy) values of the range and inputs are considered. The resulting plots for the

position estimation error and bias estimation error are presented in Figures 5.23 and 5.24, respectively.

It is noticeable in both plots that the filter is not able to converge with the given conditions. Indeed, the

error of px oscillates between 15m and 24m throughout the whole simulation, the error of py oscillates

between 9m and 15m, with a slight tendency to increase over the run time, and the error of pz oscillates

between 10m and 16m, with a slight decline over time. As for the bias, its error maintains an oscillation

between 19m and 22m throughout the simulation time, while slowly decreasing but never coming close

to a convergence to zero.

It is important to note that the large offset applied to the correct initial conditions in order to show a

case of filter non-convergence, is a few orders of magnitude smaller than the one used in the equivalent

EKF experiment, presented in Section 5.4.1.2. Indeed, when the EKF is run with these initial conditions,

it is able to converge, which shows that the UKF is less robust for the problem at hand. This behaviour

is justified by the fact that the UKF is designed to be able to track highly nonlinear functions, whereas,

the one presented in this work is mostly linear (as shown by matrices A and B being linear). The only

non-linearity comes from the output expression, which makes the UKF a worse option for this problem

and a more computationally heavy, and hence slower, one.
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Figure 5.23: Position estimation error of the UKF: failure of convergence.
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Figure 5.24: Bias estimation error of the UKF: failure of convergence.

5.4.3 LKF results with bottom-lock

Once again, the simulations in this section imply a prior run of the previously mentioned Simulink

models, in order to obtain the inputs, ranges, and states necessary for the estimations and error calcu-

lations. For all, the initial covariance matrix is set to P(0) = I5, and the noise covariance matrices are

Q = diag(10−4 I3, 10
−4 I2) and R = 10−2.

5.4.3.1 Filter convergence

The convergence of the filter is, once more, tested over the experiments mentioned in Section 5.4.1.1.

The results for each set of conditions are shown in the following sections. For the sake of completeness,

the estimation error of the additional state z3(k) is also presented in the final convergence experiment.

5.4.3.1.1 Correct initial conditions

For this experiment, the initial conditions are set to z(0) =
[
1 1 1 2 r(0)

]T
[m], where r(0) is the

initial true range value, i.e., the true values. The true values of the range and inputs are also considered.

The resulting plots for the position estimation error and bias estimation error are presented in Figures

5.25 and 5.26, respectively. These show the expected outcomes, since the errors start and remain at

very small values for all time, which can be taken as zero, given the scale of this problem, and prove that

the designed filter does not have any propagation errors.
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Figure 5.25: Position estimation error of the LKF in the absence of sensor noise: zero initial error.
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Figure 5.26: Bias estimation error of the LKF in the absence of sensor noise: zero initial error.

5.4.3.1.2 Correct initial conditions with added noise

For this experiment, the initial conditions are set to z(0) =
[
1 1 1 2 r(0)

]T
[m], i.e., the true

values, and the measured (noisy) values of the range and inputs are considered. The position estimation

error and bias estimation error are presented in Figures 5.27 and 5.28, respectively. The first shows

initial transients between −1m and 1m, with a steady-state between −0.2m and 0.2m, like in Figures

5.7 and 5.17. The bias estimation error also shows an initial transient and holds a similar steady-state

interval to previous experiments, however, this time the results are skewed toward negative values. The

slight estimation offset still holds, with final value bcerror ≈ −0.0264m. From the plots, one can see that

the LKF has a much faster convergence than the previous two filters, because it is applied to a linear

system and offers the guarantee of GES behaviour (see Section 5.4.3.2 for further details). This stability

guarantee means that solutions not only converge, but in fact converge faster than or at least as fast as

a particular exponentially decaying signal.
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Figure 5.27: Position estimation error of the LKF in the presence of sensor noise: zero initial error.
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Figure 5.28: Bias estimation error of the LKF in the presence of sensor noise: zero initial error.

5.4.3.1.3 Non-zero initial error

For this experiment, the initial conditions are set to z(0) =
[
−4 −4 −4 1 r(0)

]T
[m] and the

true values of the range and inputs are considered. The resulting plots for the position estimation

error and bias estimation error are presented in Figures 5.29 and 5.30, respectively. These show that

the filter is very robust to changes in the initial estimate, since both the position error and the bias

error converge to zero at around 200 s. The final errors are perror ≈
[
3.55 2.55 −7.11

]T
× 10−15 [m],

and bcerror ≈ 4.44× 10−16 m, which are great results, and considered zero with regard to the scale of the

problem.
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Figure 5.29: Position estimation error of the LKF in the absence of sensor noise: non-zero initial error.
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Figure 5.30: Bias estimation error of the LKF in the absence of sensor noise: non-zero initial error.

5.4.3.1.4 Non-zero initial error with added noise

For this experiment, the initial conditions are set to z(0) =
[
−4 −4 −4 1 r(0)

]T
[m] and the

measured (noisy) values of the range and inputs are considered. The resulting plots for the position

estimation error and bias estimation error are presented in Figures 5.31 and 5.32, respectively. For the

sake of completeness, the estimation error of the additional state z3(k) is also depicted in Fig. 5.33. All

plots show higher transients in the initial 200 s, converging to oscillations between −0.2m and 0.2m. The

bias maintains the slight estimation offset, with a final value of approximately −0.19m. Because there

is no initial error added to the range, the plot starts at zero. From these results, one can attest to the

robustness of the filter, since a very fast convergence can be achieved under these conditions.
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Figure 5.31: Position estimation error of the LKF in the presence of sensor noise: non-zero initial error.
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Figure 5.32: Bias estimation error of the LKF in the presence of sensor noise: non-zero initial error.
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Figure 5.33: Range estimation error of the LKF in the presence of sensor noise: non-zero initial error.

5.4.3.2 Considerations on LKF convergence

The filter robustness is confirmed via the experiments in Section 5.4.3.1.4. However, it is important

to note a general characteristic of this proposed solution: because this filter can be proven to be global

exponentially stable (GES), as mentioned in [23], its convergence is guaranteed. For this reason, no

examples of filter non-convergence are provided, however, the filter is run with the same conditions

presented in Section 5.4.1.2 and in Section 5.4.2.2, to prove that the results obtained are significantly

better. In both cases, the state relates to the pseudo-range measurement is initialized with r(0), in order

to provide comparable results.

5.4.3.2.1 Comparison with EKF non-convergence

The LKF is run with sensor noise with covariance matrices Q = diag(10−4 I3, 10
−4 I2) and R = 10−2.

The initial conditions are set to P(0) = I5 and z(0) =
[
−999 −699 −999 −498 r(0)

]T
[m]. The

resulting plots for the position estimation error and bias estimation error are presented in Figures 5.34

and 5.35, respectively. In this case, because the initial error is significantly larger than the one used in

Section 5.4.3.1.4, it is noticeable that the convergence time is about four times longer. However, similar

steady-state oscillations are obtained both for the position and the bias errors, proving that the LKF for

the augmented state is a better solution than the EKF applied to the original state definition.
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Figure 5.34: LKF convergence for an initial condition that leads to failure of the EKF: position estimation error.

43



0 50 100 150 200

−500

0

500

500 1000 1500 2000
−2

−1

0

1

2

2000 4000 6000 8000 10000

−0.1

0

0.1

Time(s)

B
ia

s
er

ro
r(

m
)

Figure 5.35: LKF convergence for an initial condition that leads to failure of the EKF: bias estimation error.

5.4.3.2.2 Comparison with UKF non-convergence

Finally, the LKF is run with sensor noise with covariance matrices Q = diag(10−4 I3, 10
−4 I2) and

R = 10−2. The initial conditions are set to P(0) = I5 and z(0) =
[
−24 −14 −24 −2 r(0)

]T
[m]. The

resulting plots for the position estimation error and bias estimation error are presented in Figures 5.36

and 5.37, respectively. Because the UKF becomes unstable for initial errors that are only a few times

larger than the ones used in Section 5.4.3.1.4, the convergence time is very similar in this experiment,

in comparison with the one in that section. Once again, similar steady-state oscillations are obtained

both for the position and the bias errors, proving that the LKF of the augmented state is a better solution

than the UKF applied to the original state definition, which seems to indicate that the LKF is the better

solution overall. Further analysis is performed through the Monte Carlo experiments in Chapter 8.
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Figure 5.36: LKF convergence for an initial condition that leads to failure of the UKF: position estimation error.
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Figure 5.37: LKF convergence for an initial condition that leads to failure of the UKF: bias estimation error.
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6
Proposed solution without

bottom-lock

6.1 System dynamics and models

For the situation without bottom-lock, recall the discrete-time nonlinear system (3.10). For simulation

purposes, the same sampling and final simulation times mentioned in Section 5.1 were considered. In

order to maintain a similar trajectory to the one shown in Fig. 5.4, which gives a limited interval for the

range values, one can allow the velocity vector to be set to any desired value, so long as that value

is then compensated with the system entries. This gives a system in which the velocity of the vehicle

relative to the fluid is simply the compensation of the velocity of the fluid. The Simulink model that

provides the system input u, follows, in this case,

u(k) =


cos
(
2πk
30

)
− Tvfx(k)

1.7 cos
(
2πk
20 + π

6

)
− Tvfy(k)

2 cos
(
2πk
45 + π

9

)
− Tvfz(k)

 .
Once again, this choice of input provides a sufficiently rich trajectory of the agent. The second Simulink

model is similar to the one presented in Fig. 5.1, this time using the state and input matrices in (3.11),

Figure 6.1: Simulink model to simulate the nominal system dynamics without bottom-lock.
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and still setting the auxiliary matrices to C = I and D = 0. The remaining initial conditions are set to

s =


1

1

3

 [m], p(0) =


1

1

1

 [m], vf (0) =


0.1

0.1

0.1

 [m/s], and bc(0) = 2m.

The initial state estimate for the system is, then, given by x(0) =
[
1 1 1 0.1 0.1 0.1 2

]T
. The

resulting outputs are the same as before: the true value of the bias over the simulation time, represented

in Fig. 5.2, the true value of the pseudo-range measurements over time, represented in Fig. 5.3 and the

trajectory of the agent, depicted in Fig. 5.4. In this case, the model also outputs the true value of the

velocity over time. This new model is presented in Fig. 6.1.

6.2 Noise description

Once again, recall the system dynamics presented in (3.10). The more accurate representation of

this problem, taking into account the sensor noises mentioned in Section 5.2, is then{
x(k + 1) = Ax(k) + B[u(k) + m(k)]

r(k) = ‖s− x1(k)‖+ x3(k) + n(k)
(6.1)

or, equivalently, {
x(k + 1) = Ax(k) + Bu(k) + w(k)

r(k) = ‖s− x1(k)‖+ x3(k) + n(k)
(6.2)

where n(k) ∈ R is the Gaussian observation noise, n(k) ∼ N (0, R(k)) , and m(k) ∈ R7 is

the Gaussian process noise, m(k) ∼ N (0, M(k)) , associated with the measurement of the ve-

hicle position displacements, u(k). Once again, because of the values of matrix B , the values

of vector w(k) come as w(k) =
[
mT (k) 0 0 0 0

]T
, therefore, w(k) ∼ N (0, Q(k)) , where

Q(k) = diag(M1,1(k),M2,2(k),M3,3(k), 0, 0, 0, 0). Recall that, in practice, Q4,4(k), Q5,5(k), Q6,6(k), and

Q7,7(k) will always have to be set to small yet non-zero values.

6.2.1 Noise controllability

Once again, the system at hand is described by a state equation that is linear time-invariant, which

allows for the controllability of the system to be analysed via the column rank of matrix Co, given by

Co =
[
B AB A2B A3B A4B A5B A6B

]
.

In this case, the state vector is of size n = 7 and the column rank of Co is of only 3, which shows that

this system is also not fully controllable by its input u(k). The noise controllability analysis is as before,

which, once again, forces all the diagonal entries of matrix Q to be set to low, yet non-zero values, to

ensure that the system is noise controllable.
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6.3 Filter parameters and design

Like before, in order to design an estimator for the system described by (3.10), an EKF was designed

and tested, with and without sensor noises, and for different initial conditions. This represents an initial

approach to the problem without bottom-lock. Because the UKF presented unstable responses even for

the system with bottom-lock, it was not considered a good approach for this system, which represents

an even more complex problem.

Once again, for the simulations in which no noise is considered, r and u are simply the real range

and input values, whereas, when adding sensor noise, r and u are affected by additive white Gaussian

noises, given by w ∼ N (0, Q) and n ∼ N (0, R) , respectively. Q is a diagonal matrix,

Q = diag(σ2
x, σ

2
y, σ

2
z , σ

2
vx, σ

2
vy, σ

2
vz, σ

2
b ), where σ2

vx, σ2
vy, σ2

vz, and σ2
b are the small values discussed in

Section 6.2.1, and σ2
x, σ2

y, σ2
z are the variances of the measurements of the system inputs, which cor-

respond to the variances of the vehicle position displacement components in the x, y, and z axes,

respectively. R = σ2, where σ2 is the variance of the range measurement. Once again, because of the

matrix inversion in (4.4), R cannot be null.

The simulation results of the designed EKF are shown in Section 6.4. The Jacobian matrices men-

tioned in (4.2) and (4.3), are, in the case of the system at hand,

F = A =



1 0 0 T 0 0 0

0 1 0 0 T 0 0

0 0 1 0 0 T 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


and

H(k + 1) =

[
p̂x(k + 1|k)− sx
‖s− p̂(k + 1|k)‖

p̂y(k + 1|k)− sy
‖s− p̂(k + 1|k)‖

p̂z(k + 1|k)− sz
‖s− p̂(k + 1|k)‖

0 0 0 1

]
. (6.3)

Matrix F can be obtained from the fact that the system state equation is linear in x(k). As for matrix

H(k+1), the derivative of r(k+1) with respect to each of the predicted state variables must be calculated,

and so

H(k + 1) =
∂r(k + 1)

∂x

∣∣∣
x=x̂(k+1|k)

,

which, in this case, gives

H(k + 1) =
[

∂r(k+1)
∂p̂x(k+1|k)

∂r(k+1)
∂p̂y(k+1|k)

∂r(k+1)
∂p̂z(k+1|k)

∂r(k+1)
∂v̂fx(k+1|k)

∂r(k+1)
∂v̂fy(k+1|k)

∂r(k+1)
∂v̂fz(k+1|k)

∂r(k+1)

∂b̂c(k+1|k)

]
.
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From the pseudo-range expression in (3.2), it is possible to conclude that
∂r(k + 1)

∂b̂c(k + 1|k)
= 1, and that

∂r(k + 1)

∂v̂fx(k + 1|k)
=

∂r(k + 1)

∂v̂fy(k + 1|k)
=

∂r(k + 1)

∂v̂fz(k + 1|k)
= 0. The calculations regarding the derivative with

respect to p̂x(k + 1|k), p̂y(k + 1|k) and p̂z(k + 1|k) are the same as the ones presented in Section 5.3.

6.4 Simulation results without bottom-lock

All the simulations in this section imply a prior run of the previously mentioned Simulink models, in

order to obtain the inputs, ranges, and states necessary for the computation of the state estimates and

estimation errors. For all, the initial covariance matrix is set to P(0) = I7 and the noise covariance

matrices are given by Q = diag(10−4 I3, 10
−6 I4) and R = 10−4.

The convergence of the filter was tested over the experiments mentioned in Section 5.4.1.1. It was

proven that the filter does not have propagation errors, that it is robust to noise, and that it is robust to

changes in the initial estimate, in experiments equivalent to the ones presented in Sections 5.4.1.1.1,

5.4.1.1.2, and 5.4.1.1.3, respectively. For brevity, only the last experiment, showing the filter response

to non-zero initial error with added noise is shown in Section 6.4.1. A set of initial conditions that show

failure of convergence are also presented in Section 6.4.2.

6.4.1 Non-zero initial error with added noise

For this experiment, the initial conditions are set to x1(0) =
[
0 0 0

]T
[m],

x2(0) =
[
0.03 0.03 0.03

]T
[m/s], and x3(0) = 1.7m. The measured (noisy) values of the range and

inputs are considered, and the resulting plots for the position estimation error, velocity estimation error,

and bias estimation error are presented in Figures 6.2, 6.3, and 6.4, respectively.

The plots show dampened oscillations for the position and velocity errors, and a more asymp-

totic convergence for the bias error. The final estimates give perror ≈
[
−0.308 −0.123 0.248

]T
[m],

verror ≈
[
0.173 −0.183 1.552

]T
× 10−3 [m/s], and bcerror ≈ −0.059m. These errors represent only

2, 95% and less than 1, 6% of the nominal values for the bias and the velocity, respectively. Even though

the plots present position errors about twice as large as the ones obtained in Section 5.4.1.1.4 and bias

errors over ten times as large, they are still considered very good results, because the problem is sig-

nificantly harder in the case of trying to estimate seven different variables from only one measurement,

in what is an inherently nonlinear problem. Moreover, one can attest to the relative robustness of the

filter, since a convergence is clearly achieved. It should be noted that the higher error present in the

position estimates is to be expected because these variables can vary rapidly, whereas the velocity and

bias variables are constant.
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Figure 6.2: Position estimation error of the EKF without bottom-lock in the presence of sensor noise: non-zero initial
error.
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Figure 6.3: Velocity estimation error of the EKF without bottom-lock in the presence of sensor noise: non-zero initial
error.
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Figure 6.4: Bias estimation error of the EKF without bottom-lock in the presence of sensor noise: non-zero initial
error.

6.4.2 Failure of convergence of the EKF

As mentioned in Section 5.4.1.2, the EKF does not provide any guarantees for convergence. To

exemplify a case in which a convergence in the given time limit is not achievable, a run with sensor

noise following the same distribution as before and initial conditions as the sum of the true value plus a

large offset is performed. In this case, the conditions are set to x1(0) =
[
−4999 −3999 −4999

]T
[m],

x2(0) =
[
−1.9 −0.9 −1.9

]T
[m/s], and x3(0) = −4498m. The resulting plots for the position estima-

tion error, velocity estimation error and bias estimation error are presented in Figures 6.5, 6.6, and 6.7,

respectively. The first panel of each plot seems to indicate a convergence, however, one can see from
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the second panels that both the position and the velocity errors oscillate about zero, but with values that

are very large when compared with the nominal values of these variables. Further proof of the failure of

convergence comes from the bias error plot, which slowly decreases but never gets close to converging.

The filter was tested with the same Q and R matrices as in Section 5.4.1 throughout all experiments,

however that choice of parameters showed poorer results overall. Instead, the chosen values presented

in Section 6.4 prove to make the filter fairly resistant to initial estimation errors, which justifies the need

for a much larger offset to clearly show an example of EKF failure of convergence, in comparison with

the equivalent experiment, shown in Section 5.4.1.2. In testing the failure of convergence, changes in

the initial bias estimation proved to affect the outcome more than changes in any of the other variables.
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Figure 6.5: Position estimation error of the EKF without bottom-lock: failure of convergence.
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Figure 6.6: Velocity estimation error of the EKF without bottom-lock: failure of convergence.
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Figure 6.7: Bias estimation error of the EKF without bottom-lock: failure of convergence.
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7
Bayesian Crámer-Rao bound

The BCRB is a lower bound on the variance of unbiased estimators and it states that the variance of

any unbiased estimator is at least as high as the inverse of the Fisher information. An unbiased estimator

that reaches this lower bound is said to be fully efficient and, generally, the closer to the bound, the more

efficient the estimator.

The use of the BCRB in the analysis of the results of the designed filters, in spite of the algorithms

potentially providing biased estimations, is justified. Indeed, the BCRB can also provide a bound for

the variance of biased estimators, with the particularity of potentially finding points where the resulting

variance falls below the theoretical BCRB. This means the bound can serve as a term of comparison,

even if it is not actually a strictly lower bound for biased estimators.

Because of the inherent process and measurement noises, the systems considered in this work are

stochastic, since they do not always produce the same output for a given input. There is still no general

BCRB computation formula for this type of system, however, there is a solution for systems of the form{
x(k + 1) = f(x(k),u(k)) + w(k)

y(k) = h(x(k)) + n(k)
,

where w is the process noise, which follows a Gaussian distribution, w(k) ∼ N (0, Q(k)) , and n is the

observation noise which follows the Gaussian distribution, n(k) ∼ N (0, R(k)) . Because the analysed

systems fall in this category, since they are of the form{
x(k + 1) = A(k)x(k) + B(k)u(k) + w(k)

y(k) = h(x(k)) + n(k)
,

the computations for the BCRB are possible. They are similar to the ones made for the EKF, only this

time the Jacobian of the output matrix is calculated at the true state. The information matrix J(k) is given

by the recursion

J(k + 1) = (Q(k) + F(k)J−1(k)FT (k))−1 + Pm(k + 1),

where F is the Jacobian of f , calculated as in (4.2). Pm(k + 1) is given by

Pm(k + 1) = Ex(k+1){HT (x(k + 1))Q−1(k + 1)HT (x(k + 1)))},
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and H(k + 1) is the Jacobian of h calculated as

H(k + 1) =
∂h(k + 1)

∂x

∣∣∣
x=x(k+1)

.

To allow for the evaluation of the performance of the estimator given the specific structure of a partic-

ular problem, one can perform the evaluation along nominal state trajectories, x̄(k), for which the term

Pm(k + 1) can be simplified as

Pm(k + 1) = HT (x̄(k + 1))Q−1(k + 1)HT (x̄(k + 1))).

Finally, the BCRB is given by PL(k) = J(k)−1. Since this is a measure regularly used for comparison

with root mean square error (RMSE) values, one can take the square root of the diagonal entries of PL

to obtain comparable results. For the systems at hand,
√

PL1,1
would give the desired BCRB value

related to position px and used for comparison with RMSE or other quantities related to the standard

deviation rather than the covariance.

7.1 BCRB for the system with bottom-lock

The computations of the Jacobians are similar to the ones presented in 5.3 and yield

F = A =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

and H(k + 1) =
[
px(k+1)−sx
‖s−p(k+1)‖

py(k+1)− sy
‖s−p(k+1)‖

pz(k+1)−sz
‖s−p(k+1)‖ 1

]
.

Note that this is also the result used for the LKF, since this analysis is related to the original system and

not the derived augmented one.

7.2 BCRB for system without bottom-lock

The computations of the Jacobians are similar to the ones presented in 6.3 and yield

F = A =



1 0 0 T 0 0 0

0 1 0 0 T 0 0

0 0 1 0 0 T 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


and

H(k + 1) =

[
p̂x(k + 1|k)− sx
‖s− p̂(k + 1|k)‖

p̂y(k + 1|k)− sy
‖s− p̂(k + 1|k)‖

p̂z(k + 1|k)− sz
‖s− p̂(k + 1|k)‖

0 0 0 1

]
. (7.1)
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8
Monte Carlo simulations with

bottom-lock
Monte Carlo simulations are commonly used in engineering, mathematics, and physics, with different

purposes and outcomes. As it relates to the problem at hand, this method is useful to obtain statistical

properties by using repeated sampling. As the KF response depends greatly on a number of parameters,

to have a better sense of its behaviour, one can sample a set universe of possible values for said

parameters and run the algorithm. The resulting outputs can be used for statistical analysis.

8.1 EKF with bottom-lock Monte Carlo simulations

For each Monte Carlo run, the values of umeasured(k) and rmeasured(k) are generated by adding white

Gaussian noise to the true values of the system inputs and range measurements. The process noise is,

then, centered around the true values, with a chosen covariance matrix Q = diag(10−4 I3, 10
−4). The

observation noise is also centered around the true values, with covariance matrix R = 10−2. At each

run, an initial condition is also sampled from the Gaussian distribution with zero mean, i.e., centered

around the true initial conditions, with covariance matrix P = diag(100 I3, 25), which is also the given

initial covariance matrix of the filter.

For the purposes of this experiment, 10000 runs were performed and a threshold for convergence

was set to 1m for the positions and 0.3m for the bias. This means that if the absolute value of the final

state estimate errors are above this value, the filter is said to not converge. These values were chosen

empirically, but can be considered to provide good outcomes, since all 10000 runs converged.

The average error over time for each of the state variables is presented in Figures 8.1 and 8.2.

From these, one can verify that during the initial transients a much higher error is present, with the

values growing smaller for larger timestamps. The errors in steady-state stay between −3× 10−3 m and

3 × 10−3 m for the position coordinates and also reach a very low value for the bias variable (around

8.2065 × 10−4 m at the final time). The final bias error can be disregarded when compared to the true

value of the bias term (indeed, since the nominal value is 2m, the error presented in the plot represents

only around 0.04% at the final simulation time and around 0.11% at the last peak, shown at t = 9600 s).
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Figure 8.1: Position estimation average error of the EKF.
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Figure 8.2: Bias estimation average error of the EKF.

The standard deviation for each state variable is given by the square root of its corresponding diag-

onal element of the average covariance matrix, i.e., for px, the standard deviation is given by
√

P1,1 ,

where P is the average covariance matrix of the filter over all runs that converge. Because this value

tends to overestimate the performance of the filter, it is interesting to compare the internal perception

of convergence with the actual outcomes. Therefore, a comparison between the EKF standard devia-

tion, the BCRB, and the RMSE obtained for each of the state variables is shown in Figures 8.3 - 8.6.

For these, one can see three notable sections. The first allows for the confirmation of the initial value,

where the BCRB begins at 10m for the positions and at 5m for the bias, which correspond to the stan-

dard deviations associated with the covariance matrix of initial conditions mentioned before. The RMSE

starts at values close to the BCRB, although not exactly matching. The second panel shows the initial

convergence and the third panel shows the oscillatory results for the positions and bias.

The third panel of Figures 8.3 - 8.6 prove that the RMSE does a good job in following the behaviour

of the BCRB, which might suggest that this is a good algorithm for the desired estimation. One should

note that there are occasional points at which the RMSE falls below the BCRB line. This behaviour can

be explained by the BCRB characteristics mentioned in Chapter 7, where it is a definite lower bound

for any unbiased estimators for a certain system, whereas the EKF gives no guarantees of an unbiased

estimation. In fact, we know from the previous analysis that this estimation is indeed a biased one, which

is again visible in the third panel of Fig. 8.6, where the bias RMSE is mostly below the BCRB. Table 8.1

provides a summary of the results obtained for this filter.
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Figure 8.3: Position px estimation RMSE of the EKF.
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Figure 8.4: Position py estimation RMSE of the EKF.
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Figure 8.5: Position pz estimation RMSE of the EKF.
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Figure 8.6: Bias estimation RMSE of the EKF.
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Table 8.1: Monte Carlo outcomes of the EKF for system with bottom-lock.

Number of

convergences
Run time (min)

Final average

position error (m)

Final average

bias error (m)

10000 4.55 [−2.18 7.94 − 4.60]T × 10−4 8.21× 10−4

A brief analysis on the initial and final Gaussian distributions of the state variables is performed.

Because the different components of the position evidence similar results, the analysis can be performed

only on the x component, without loss of information. The Gaussian distribution fitted to the initial error of

px is presented in Fig. 8.7, whereas the Gaussian distribution fitted to the initial error of bc is presented

in Fig. 8.8. The difference between the internal perception of convergence and the actual results is

further exemplified for the variables px and bc, in Figures 8.9 and 8.10, respectively. These show the

Gaussian distribution fitted to the histogram of the final error of each variable, as well as the internal

distribution assumed by the filter for each one. The fact that the plot of the Gaussian distribution of

the EKF falls below the plot of the fitted Gaussian distribution in Fig. 8.10 is related to the previously

mentioned behaviour in the third panel of Fig. 8.6, where the bias RMSE is mostly below the BCRB.
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Figure 8.7: Initial px distribution of the EKF.
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Figure 8.8: Initial bc distribution of the EKF.
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Figure 8.9: Final px distribution of the EKF.
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Figure 8.10: Final bc distribution of the EKF.

8.2 UKF with bottom-lock Monte Carlo simulations

The same method described in Section 8.1 is used, with chosen covariance matrices

Q = diag(10−4 I3, 10
−4), R = 10−2, and P = diag(100 I3, 25). For the UKF the same number of

runs is performed, maintaining the thresholds for convergence as 1m for the positions and 0.3m for the

bias. This means that if the absolute value of the final state estimate errors are above this value, the

filter is said to not converge. In this case, one can start by attesting the worse performance of this filter,

since only 8278 convergences were achieved.

The average error over time for each of the state variables is presented in Figures 8.11 - 8.12. From

these, one can verify that much higher values are present during the initial transients, with the results

diminishing for larger timestamps. The steady-state errors are now only achieved at around 9000 s, with

its values being between around −0.1m and 0.1m for the position coordinates and reaching 0.023m for

the bias. Comparing the results with the ones in Section 8.1, it is clear that the UKF presents much

higher average errors for this problem than the EKF, with an increase of around 30 times for both the

position and bias errors. The final bias error can still be disregarded in comparison with the nominal bias

value, since it represents only a 1.15% error.

A comparison between the BCRB, the RMSE, and the UKF standard deviation obtained for each

of the state variables is also shown in Figures 8.13 - 8.16. Regarding these plots, one can see three

notable sections. The first allows for the confirmation of the initial value, where the BCRB begins at 10m

for the positions and at 5m for the bias, which correspond to the standard deviations associated with

the covariance matrix of initial conditions mentioned before. The RMSE starts at values close to the

BCRB. The second panel shows the initial convergence and the third shows the oscillatory results for

the positions and bias.
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Figure 8.11: Position estimation average error of the UKF.
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Figure 8.12: Bias estimation average error of the UKF.

It can be noted, from the third panel of Figures 8.13 - 8.15, that the RMSE now shows a higher

value when compared to the BCRB, and so, the offsets shown in the estimations now come from the

filter’s inability to produce better results in the given time, rather than a necessarily intrinsic bias in its

estimations. For this filter, the BCRB does seem to provide a definite lower bound, although the UKF also

gives no guarantees of an unbiased estimation. Table 8.2 provides a summary of the results obtained

for this filter.

Figures 8.17 and 8.18 present the Gaussian distribution fitted to the histogram of the final error of

px and bc, respectively, as well as the internal distribution assumed by the filter for each one. The

convergence difficulty previously mentioned is further shown in these plots, since the disparity between

the two Gaussians is higher than the ones presented in Section 8.1. The Gaussian distribution fitted to

the initial errors are similar to the ones presented in Figures 8.7 and Fig. 8.8.

Table 8.2: Monte Carlo outcomes of the UKF for system with bottom-lock.

Number of

convergences
Run time (min)

Final average

position error (m)

Final average

bias error (m)

8278 17.45 [−1.69 4.26 0.67]T × 10−2 0.023
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Figure 8.13: Position px estimation RMSE of the UKF.

0 2 4 6 810
0

5

10

2000 4000 6000 8000
0

2

4

6

8

10

9000 9200 9400 9600 9800 10000
0

0.2

0.4

BCRB RMSE UKFstd

Time(s)

Po
si

tio
n
p
y

R
M

S
E

(m
)

Figure 8.14: Position py estimation RMSE of the UKF.
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Figure 8.15: Position pz estimation RMSE of the UKF.
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Figure 8.16: Bias estimation RMSE of the UKF.
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Figure 8.17: Final px distribution of the UKF.
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Figure 8.18: Final bc distribution of the UKF.

8.3 LKF with bottom-lock Monte Carlo simulations

The same method described in Section 8.1 is used, with chosen covariance matrices

Q = diag(10−4 I3, 10
−4 I2), R = 10−2, and P = diag(100 I3, 25, 10

−4). For the LKF the same num-

ber of runs is performed, maintaining the thresholds for convergence at 1m for the positions and 0.3m

for the bias, and adding a threshold of 0.3m for the range. This means that if the absolute value of the

final state estimate errors are above this value, the filter is said to not converge. In this case, one can at-

test to the global convergence guarantee mentioned in Section 5.4.3.2, since 9999 of the runs converge

under the above circumstances. The only run that does not converge under this description, is not a

case of failure of convergence, but a case in which the final errors are above the considered thresholds.

The average error over time for each of the state variables is presented in Figures 8.19 - 8.21. From

these, one can verify that the LKF presents the lowest peaks in the initial transients, out of all the tested

filters. The steady-state errors are now achieved very fast, at around 500 s, with the plots presenting

clear periodic behaviour. There are noticeable skews towards negative values for both the bias and pz.

All errors are of the order of 10−2 m, which is in fact higher than the steady state errors achieved with the

EKF. However, because these results are still very good when compared to the true values, and taking

into consideration the initial transients and the fast convergence, this seems to be the best filter option

for the problem at hand.
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Figure 8.19: Position estimation average error of the LKF.
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Figure 8.20: Bias estimation average error of the LKF.
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Figure 8.21: Range estimation average error of the LKF.

A comparison between the BCRB, the RMSE, and the LKF standard deviation obtained for each

variable is shown in Figures 8.22 - 8.25. Regarding these plots, the three notable sections remain.

The first confirms the initial value, the second shows the initial convergence, and the third shows the

oscillatory results obtained for the positions and bias. The first panels show the expected results, where

the BCRB begins at 10m for the positions and at 5m for the bias, which correspond to the standard

deviations associated with the covariance matrix of initial conditions mentioned before. The RMSE

starts at values close to the BCRB, although not exactly matching.

When comparing the third panel of the plots with their equivalents from Section 8.1, one can see

similar RMSE values, which suggests the filter obtains similarly accurate results. We can again verify

the faster convergence of this filter and a fairly decent tracking of the BCRB by the RMSE. One should
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note, once more, that the occasional points at which it falls below the bound, show the biased nature of

the filter (also seen in the negative skews mentioned in the analysis of the plots of the average errors).

The asymptotic convergence shown in the second panels, heavily contrasts with the high peaks

shown in the second panels of Figures 8.3 - 8.6, which provides further proof that this filter is a better

option for the desired estimation. Table 8.3 provides a summary of the results obtained for this filter.
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Figure 8.22: Position px estimation RMSE of the LKF.
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Figure 8.23: Position py estimation RMSE of the LKF.
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Figure 8.24: Position pz estimation RMSE of the LKF.

62



0 2 4 6 810
0

2

4

6

200 400
0

2

4

2000 4000 6000 8000 10000
0

2

4

6

8
·10−2

BCRB RMSE LKFstd

Time(s)

B
ia

s
R

M
S

E
(m

)

Figure 8.25: Bias estimation RMSE of the LKF.

Figures 8.27 - 8.29 present the Gaussian distribution fitted to the histogram of the final error of px, bc,

and r, respectively, as well as the internal distribution assumed by the filter for each one. The Gaussian

distribution fitted to the initial range errors is displayed in Fig. 8.26, whereas the position and bias

distributions are still similar to the ones presented in Figures 8.7 and 8.8. Once again, the persistence

of RMSE values below the BCRB for the bias variable is associated with Fig. 8.28, where the LKF

Gaussian distribution falls below the fitted Gaussian distribution.

Table 8.3: Monte Carlo outcomes of the LKF for system with bottom-lock.

Number of

convergences
Run time (min)

Final average

position error (m)

Final average

bias error (m)

Final average

range error (m)

9999 6.03 [4.87 − 4.70 − 6.32]T × 10−3 −0.016 −7.74× 10−4
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Figure 8.26: Initial r distribution of the LKF.
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Figure 8.27: Final px distribution of the LKF.
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Figure 8.28: Final bc distribution of the LKF.
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Figure 8.29: Final r distribution of the LKF.

8.4 Filter comparison

In order to weigh up the three simulated filters, some further analysis is performed. Once again,

because the different components of the position evidence similar results, the analysis can be performed

only on the x component, without loss of information. The RMSE results for px and bc for each filter, as

well as the corresponding BCRB values are shown in Figures 8.30 and 8.31, respectively. These allow

for a better comparison between the obtained tracking for each filter, showing clear poorer results for the

UKF and reinforcing the biased nature of the EKF, since its RMSE consistently falls below the BCRB.

In order to perform a numerical comparison, the average value is calculated for the final half of the

simulation time, i.e., between 5000 s and 10000 s. The results are shown in Table 8.4 and show that

the EKF RMSE has the closest average values, however, it is consistently below the BCRB. The LKF

presents the lowest difference to the BCRB without going under those values, while the UKF is clearly

the worst performing filter.
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Figure 8.30: Position px estimation RMSE comparison.
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Figure 8.31: Bias estimation RMSE comparison.

Table 8.4: Average RMSE and BCRB values between 5000 s and 10000 s.

px(m) py(m) pz(m) bc(m)

BCRB 0.0678 0.0570 0.0478 0.0421

RMSE EKF 0.0656 0.0551 0.0441 0.0296

RMSE UKF 0.9525 0.9005 0.4022 0.6831

RMSE LKF 0.0742 0.0647 0.0520 0.0483

Referring back to Tables 8.1, 8.2, and 8.3, one can see that the UKF has significantly less runs that

achieve a convergence under the specified thresholds, whereas the EKF and LKF have comparable

performances. Evaluating the final average errors, the EKF considerably outperforms the other two

filters with regard to the position. The UKF shows much worse results related to the final average bias

error, whereas the EKF and the LKF have comparable results. A laptop with the following specifications

was used: Intel (R) Core (TM) i7-1065G7 CPU @ 1.30GHz 1.50GHz processor, NVidia GeForce MX250

graphics card, 16 GB LPDDR4X-3733 RAM, SDD 1TB disk and Windows 10 Home 64 bits operating

system. It is clear from the previously mentioned tables that the UKF has a much longer processing

time. As far as convergence times, the LKF shows clearly faster results.
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9
Monte Carlo simulations without

bottom-lock

For each Monte Carlo run, the values of umeasured(k) and rmeasured(k) are generated by adding white

Gaussian noise to the true values of the system inputs and range measurements. The process noise is,

then, centered around the true values, with a chosen covariance matrix Q = diag(10−4 I3, 10
−6 I4). The

observation noise is also centered around the true values, with covariance matrix R = 10−4. At each

run, an initial condition is also sampled from the Gaussian distribution with zero mean, i.e., centered

around the true initial conditions, with covariance matrix P = diag(100 I3, 0.01 I3, 25), which is also the

given initial covariance matrix of the filter.

For the purposes of this experiment, 10000 runs were performed and a threshold for convergence

was set to 5m for the positions, 0.05m/s for the velocities and 0.8m for the bias. This means that if the

absolute value of the final estimation errors are above these values, the filter is said to not converge.

These values were chosen empirically, but can be considered realistic, since 9199 convergences were

achieved. Because this is a harder problem, one allows for larger thresholds than the ones used for the

equivalent simulations with bottom-lock.

The average error over time for each of the state variables is presented in Figures 9.1 - 9.3. From

these, one can verify that during the initial transients a much higher error is present, with the val-

ues growing smaller for larger time-stamps. The first panel of the plots shows a much more oscil-

latory response, when compared with the situation with bottom-lock, which shows the higher sensi-

tivity of the experiment without bottom-lock. The initial transients are about 10 times larger than the

ones obtained in Section 8.1 for position px, whereas positions py and pz are increased 5 times. The

second panel shows that the oscillatory responses for the position and velocity variables continue to

be dampened for larger time-stamps, which suggests a longer convergence time, however good re-

sults can be achieved, considering the final average errors are perror ≈ [0.89 − 0.012 − 0.178]T [m],

verror ≈ [1.50 1.78 4.84]T × 10−3 [m/s], and bcerror ≈ −0.052m.

The first panel of Fig. 9.3 clearly shows the previously mentioned offset in this estimation, which is

further verified in the considerable difference between the two Gaussian distributions in Fig. 9.14. The
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second panel of Fig. 9.3 shows that the estimation follows an asymptotic convergence to the true value,

but the results are not as good as before. The final time average bias error achieves approximately a

2, 6% error, clearly much higher than the previous 0.04%, or even the 0.11% (considering the last peak

from Figure 8.2, rather than the final value). The velocity presents a larger error along the z axis than

the x or y axes, with the final error being 4.84% of the nominal value.
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Figure 9.1: Position estimation average error of the EKF without bottom-lock.
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Figure 9.2: Velocity estimation average error of the EKF without bottom-lock.
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Figure 9.3: Bias estimation average error of the EKF without bottom-lock.

The standard deviation for each state variable is given by the square root of its corresponding diag-

onal element of the average covariance matrix, i.e., for px the standard deviation is given by
√

P1,1 ,

where P is the average covariance matrix of the filter over all runs that converge. Because this value
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tends to overestimate the performance of the filter, it is interesting to compare the internal perception of

convergence with the actual outcomes. Therefore, a comparison between the EKF standard deviation,

the BCRB, and the RMSE obtained for each of the state variables is shown in Figures 9.4 - 9.10.

Regarding these plots, there are, once again, three notable sections. Like before, the first panel of

the figures confirm that the values of the BCRB begin at 10m for the positions, 0.1m/s for the velocities

and at 5m for the bias, which correspond to the standard deviations associated with the covariance

matrix of initial conditions. The RMSE starts at values close to the BCRB. The second panel shows

the initial convergence and the third shows the oscillatory results for the positions and velocities and

the more asymptotic behaviour for the bias. All images exhibit a close tracking of the BCRB by the

EKF standard deviation, with the RMSE results being the most different. This indicates that the filter is

overestimating its performance and can explain some of the issues with convergence. The third panel

of Figures 9.7 - 9.9 show that the filter has a much harder time following the correct behaviour than in

Section 8.1, presenting a lot more oscillations than in the previous case. However, because the correct

order of magnitude is achieved, one can still assume this to be a good solution for the desired estimation.

The velocity errors are the ones where the filter has the most accurate perception of its estimations, as

shown by the nearly overlapping Gaussian distributions in Fig. 9.13.

In this case, the fact that the resulting EKF estimations are biased is hinted at in Figures 9.7 and 9.8,

where the plot of the RMSE falls below the BCRB. The plot in Figure 9.10 explains the conclusion from

Section 6.4.2, where the bias initial condition seemed to have a bigger effect on the overall convergence.

This is because the RMSE does not achieve a closer tracking of the BCRB, which justifies the potential

problems with the divergence of the filter. A summary of the outcomes of the Monte Carlo runs for this

filter can be seen in Table 9.1, which allows for a direct comparison with the results in Table 8.1.
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Figure 9.4: Position px estimation RMSE of the EKF without bottom-lock.
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Figure 9.5: Position py estimation RMSE of the EKF without bottom-lock.
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Figure 9.6: Position pz estimation RMSE of the EKF without bottom-lock.
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Figure 9.7: Velocity vx estimation RMSE of the EKF without bottom-lock.
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Figure 9.8: Velocity vy estimation RMSE of the EKF without bottom-lock.
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Figure 9.9: Velocity vz estimation RMSE of the EKF without bottom-lock.
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Figure 9.10: Bias estimation RMSE of the EKF without bottom-lock.

The difficulty in BCRB tracking by the RMSE is further exemplified for the variables px, vx, and bc,

in Figures 9.12 - 9.14. These show the Gaussian distribution fitted to the histogram of the final error

of each variable, as well as the internal distribution assumed by the filter for each one. The Gaussian

distribution fitted to the initial error of vx is presented in Fig. 9.11, whereas px and bc follow distributions

similar to the ones shown in Fig. 8.7 and Fig. 8.8, respectively. Once again, because the different

components of the position and of the velocity evidence similar results, the analysis is performed only

on the px and vx components, without loss of information.

Having performed an impartial analysis of these results, it is important to, once again, note the

difficulty of this problem. Indeed, achieving the correct order of magnitude of the BCRB by the position

RMSE is, in and of itself, a very satisfactory result. The fact that the average position error in steady-

state converges to below 2m indicates that the filter will provide the desired tracking of the vehicle with

decent accuracy, however it does imply a much longer convergence time. Overall, the obtained results

prove to be very good, as it is excellent to achieve such small errors for a problem of this complexity.
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Figure 9.11: Initial vx distribution of
the EKF without bottom-lock.
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Figure 9.12: Final px distribution of
the EKF without bottom-lock.
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Figure 9.13: Final vx distribution of
the EKF without bottom-lock.
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Figure 9.14: Final bc distribution of
the EKF without bottom-lock.

Table 9.1: Monte Carlo outcomes of the EKF for system without bottom-lock.

Number of

convergences
Run time (min)

Final average

position error (m)

Final average

velocity error (m/s)

Final average

bias error (m)

9199 7.70 [0.89 − 0.012 − 0.178]T [1.50 1.78 4.84]T × 10−3 −0.052
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10
Conclusion

The work developed in this thesis addressed two problems of localization based on single pseudo-

range measurements. The first is related to a system with bottom-lock, for which the three position

components, as well as the bias associated with the clock offset, were successfully estimated. The three

proposed solutions for this problem were compared, via simulation results, under the same conditions.

A thorough Monte Carlo analysis was performed, for which the RMSE and average error of the solutions

were computed and compared. The UKF clearly underperformed, when compared with the remaining

solutions, presenting the largest average errors and RMSE, as well as the longest convergence time.

The LKF presented slightly higher steady-state errors than the EKF but a much faster convergence and

less biased estimations.

Initial conditions with which the filters would not converge were shown for the EKF and the UKF,

noting that the latter needed a much smaller increment to present this failure of convergence. Equivalent

simulations were performed with the LKF, which proved to converge in both cases due to its GES

guarantee, further illustrating the advantages of this filter. Taking all factors into account, because the

EKF and LKF present comparable results, as well as computational costs, and since the LKF shows a

much faster convergence time and offers global convergence guarantees, one concludes that this is the

best solution among all three. It is noted that all simulations were run with the same tuning parameters,

chosen to allow for a convergence of the UKF, which means that further tuning of the EKF and LKF

parameters could potentiate better results for these filters.

The second problem is related to a system without bottom-lock, for which only an introductory ap-

proach was taken, with the design and testing of an EKF. The three position components, the three

velocity components, and the bias associated with the clock offset were successfully estimated. This

filter presented a much longer convergence time when compared with the version with bottom-lock,

which is to be expected considering the increased difficulty of the problem. The resulting steady-state

errors for this system, as well as the difference between the obtained RMSE and the BCRB, were also

higher than for the system with bottom-lock. However, because the results are still deemed satisfactory,

and convergence within the set thresholds is obtained for most Monte Carlo runs, one can consider the

estimations to be successful.
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Future work can be done for the system with bottom-lock, mainly relating to the tuning of the pa-

rameters, although the best solution is proven to be the LKF, for which more thorough results were

presented in [23]. Extrapolating from the results obtained for the system with bottom-lock, one could

take a similar approach and design a LKF for the system without bottom-lock by further augmenting the

state. The same analysis performed in this work for the system with bottom-lock should be performed for

the system without bottom-lock. This way, an extensive comparison between the EKF and LKF should

be performed. A comparison with the UKF for the system without bottom-lock could also be attempted,

although, given the results obtained for the system with bottom-lock, it is unlikely that this filter will con-

verge, whatever the parameter tuning. If a better performance of the LKF is also obtained for the case

without bottom-lock, the final step would be to test the application of both of the developed LKF solutions

in field experiments.
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