Clustering and Complexity Estimation for Air Traffic Flow
Management

Joana Costa
joana.p.costa@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Portugal

January 2021

Abstract

Air traffic control is usually considered one of the most demanding and stressful jobs in the world,
as they are responsible for the safety of thousands of passengers. To support their tasks, several
computer-aided systems have been developed, helping them to identify typical aircraft routes they have
to control, and measuring air traffic congestion and complexity. Such tools help them to anticipate the
aircraft’s trajectory and alert them if there is a conflict along its path or provide more time to process
the viable solutions.

In this context, this thesis focuses on identifying and clustering typical aircraft routes and on
computing the air space complexity. To achieve these objectives, a new method is proposed to evaluate
and compare different clustering techniques applied to traffic datasets, by sorting them according to the
best clustering result. On the other hand, it is also proposed a new method to estimate the controller’s
workload based on traffic data and airspace volume configuration. This last method can also suggest
the best configuration for a time interval of interest.

The conducted experimental evaluation showed that the OPTICS clustering algorithm, allied with
a preprocessing phase based on a 2-components PCA, is the best combination at clustering the traffic
dataset. It was also possible, to define a capable tool to identify the corresponding clusters to a
trajectory in real-time, without having to re-process considerable amounts of data. In what concerns
the controller’s workload, the obtained results showed to accurately estimate and predict the airspace
complexity, allowing to anticipate a sector configuration change for the time intervals of interest.
Keywords: Air Traffic Flow Management (ATFM), Clustering, Typical Flows, Complexity Indicators,

CAPAN parameters, Air Traffic Controller Workload, Sector Configuration.

1. Introduction

Air traffic control (ATC) is a crucial and
unquestionable pillar in aviation, to ensure and
maintain airspace safety and control.

Considering that most of European countries are
moving to free route airspace (FRA) giving aviation
companies more freedom to plan their flight routes,
it is now important to identify typical flows and
routes to improve the efficiency of Air Traffic
Controllers (ATCO). This efficiency is directly
related with capacity optimisation through sector
management.

The main objective of this research is to first
find typical flows, by computing trajectory clusters.
Then, use those clusters to calculate sector capacity
and complexity considering the controller working
experience.

Different density based clustering methods
with and without pre-processing mechanisms are
analysed through qualitative parameters, improved
and compared.

The improvement is performed over merging
clusters which present to be very similar in heuristic
computation.

The search for the best technique is done by
comparing the different techniques in a variety
of quality indicators, addressing a value for each
(technique, indicator) given how well they perform
in comparison to the others. Afterwards, results
are correlated into one unique performance metric
to rank all the clustering methods.

This work also focus on delivering an accurate
complexity estimator. This same relies on ATCOs
workload, through the computation of a set
of tasks defined to describe any situation the
controller may experience. This set of tasks were
defined by EUROCONTROL [1], its time averages
were identified from studies performed over many
European Countries (in 2015 more than half of
the European Air Control Centers (ACCs) have
performed at least one study). The goal at this
research is to create an algorithm that estimates



complexity in three to six hours in advance to
inform ATCOs about hotspots and the FMP in
order to take more informed decisions on sector
configurations to apply in the next hours.

2. Background
2.1. Air Traffic Complexity

Complexity is a topic that has been mentioned
and studied since 1960. Schmidt [2] in 1978 studied
the qualitative relations between workload (strain,
fatigue) and the performance of the men.

Hurst and Rose [3] were the first in measuring the
correlation of expert workload ratings with traffic
density having come up with a correlation value of
53%.

Stein [4] used Air Traffic Workload Input
Technique (ATWIT) in which controllers report
workload levels during simulation. After a
regression analysis they were able to explain 67%
of the variance. Four factors were considered:
localised traffic density, number of handoffs

outbound, total amount of traffic, number of
handoffs inbound.

2.1.1 Relationship Complexity-Workload

Over the years, a variety of researches
showed a strong relationship between complexity
metrics and controller workload. Hurst and
Rose [3] measured the correlation of expert
workload ratings with traffic density with a result
of 53% of correlation. Stein [4] used Air
Traffic Workload Input Technique(ATWIT) for
four metrics ( localised traffic density, number of
handoffs outbound, total amount of traffic, number
of handoffs inbound) having a regression correlation
of 67%. Laudeman [5] introduces Dynamic Density
as a combination of "both traffic density and traffic
complexity”.

Mogford et al. [6] reviewed a number of studies
examining effects of ATC complexity on workload
and performance. They created a model relating
”source factors” and mediating factors resulting in
controller workload, Fig. 1.
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Figure 1: Relationship ATC Complexity and controller
workload [7]
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2.1.2 CAPAN tasks

Complezity Estimation depends on the sector
configuration, weather and 4D air traffic, airport
problem, restricted airspaces and air traffic
controllers. At this analyses an approach based on
controllers workload is proposed. The CAPacity
ANalyser (CAPAN) parameters are 38 tasks, very
detailed and specific, defined by EUROCONTROL
who tries to table all kinds of tasks the controllers
need to perform [8]. This table also tells the
amount of time each controller spends on each task,
given that he/she is EC or PC. Usually, sector
are controlled by two controller one occupying the
Executive Controller (EC) position and the other
working as the Planning Controller (PC).

2.2. Clustering - define the typical Routes

There are five main clustering methods which
told by order of importance: partitioning method,
hierarchical method, fuzzy clustering, density based
clustering, model based clustering. Nonetheless, at
this analyses the focus stays in density-based and
hierarchical clustering mechanisms.

Table 1 shows the main advantages and
disadvantages of some clustering methods. k-means
(partitioning method) is a well-known clustering
technique, reliable a still widely used. However, it
will be tested on the experimental results because
the density-based and hierarchical algorithms pose
the great benefit of not having to define apriori the
number of clusters required to identify.

Pre-processing  algorithms,  applied before
clustering, may improve final results. Principal
component analysis (PCA) [20, 21] is a well-known
pre-processing technique, but focused on global
similarity, PCA does not work well on non-linear
state spaces. To tackle those challenges
t-distributed stochastic neighbour embedding
(t-SNE) [22, 23] a more recent algorithm, focused
on keeping the local similarities can be better than
PCA.

Gallego et al. [14] introduce and applied two
evaluation methods to compare four clustering
techniques, those are the Silhouette Width
Criterion (SWC), proposed by Rousseeuw [24], and
the Density Based Clustering Validation (DBCV)
metric, presented by Moulavi [25].

Having acknowledged CAPAN tasks as useful
elements to estimate complexity and talked about
some clustering methods, pre-processings, which
could improve results, and evaluation techniques
applied at clustering, in next chapter a new
evaluation and comparison mechanism is proposed
as well as the explanation of how the CAPAN
parameters were inserted in an algorithm that
by looking at traffic data can define air traffic
controller workload at a given time resolution.



Table 1: Comparison of density based clustering

methods.
Clustering Advantages Disadvantages
Method
k-means Easy, simple Non-generic, it
[9, 10] computation. requires  that
the wuser has
some knowledge
of the airspace.
Does not detect
outliers.
DBSCAN  Generic, does Does not adapt
[11, 12] not demand  to the data since
any previous it has a fixed
knowledge epsilon.
allowing it to be
applied in any
airspace. Detects
outliers.
R-DBSCAN Generic, adapts Computational
[13, 14] to the dataset Time.
(low  density,
high  density),
detects outliers.
HDBSCAN Only Demands Computational
[15, 14] hyper-parameter Time.
(MinClusterSize).
Outlier
detection.
Generic.
OPTICS  Demands Computational
[14, 16, hyper-parameter Time.
17] MinClustSize.
Outlier
detection.
Generic.
Automatic No need Suggests an
Hierarchical to provide outlier removal
clustering  MinClustSize. method  before
[18, 19] clustering.

3. Proposed System
At Figure 2 is the big picture of the the
proposed system.
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Figure 2: The general view of the proposed system

A selection of clustering methods is tested and
the clusters of the technique whose results are the

best are saved. At the best-fit algorithm it is
possible to see to which new cluster a trajectory
fits or a set of flights.

Having the traffic which we are interested in
analysing assigned to their respective clusters, it
is possible to predict the complexity with a time
resolution within the traffic situation.

With the complexity estimation an an application
is suggested, the automatic selection of the optimal
sector configuration.

3.1. Main flows determination - clustering
Figure 3 refers to the main steps of the
clustering algorithm.
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The creation of a new clustering technique
was not in the scope of this analyses, but the
study and possible enhancement of already existing
clustering methods is. The system here propose has
the ultimate objective of validation, enhancement,
determining certain identified quality indicators
and lastly compare and define the best clustering
results. It is the combination of machine learning
outcomes with deterministic benchmarking.

Some of the most mentioned clustering
techniques, on articles in air traffic sector
[13, 26, 15, 27, 14, 28] are here tested and
the objective is to create an air traffic data focused
technique to qualify, evaluate and compare their
results. The input is traffic data:
flight_id, callsign, icao24
grounspeed
altitude, latitude and longitude
track

e vertical rate
with positions updated at time rate 10 seconds.

First, there is the integration or not of
pre-processing PCA with number of components
equal to 2, 4 and 6 or t-SNE [29] algorithm with
dimension of 2. These pre-processing changes the
original data to a smaller dimension state-space.

Then, any of clustering technique from:
DBSCAN [30], R-DBSCAN [13], R-DBSCAN¥*,
a transformation of the R-DBSCAN which only
accepted cluster above k, it was was changed to
accept cluster with > k, HDBSCAN [27] and
OPTICS [30].



The outputs are the assignment of each
trajectories to one cluster or as belonging to an
atypical route and the centroids of each cluster. The
centroid of each cluster is the trajectory which best
suits to be in the center.

3.1.1 Validity

There are two types of validity intra- and inter-
cluster, these two base on the following validation
methods:

e Lateral validation

— distance similarity
— heading similarity
e Vertical validation

— vertical evolution similarity
For a cluster to be considered intra-cluster valid
70% of the trajectories must verify the 2D lateral
distance validity, the heading validity and also the
vertical evolution validity, i.e., the three constraints
must be verified, for the cluster to be considered
intra-cluster.
By means of simplification from this page
on, valid cluster means a cluster that verified
intra-cluster validity.
For a cluster to be considered inter-cluster valid,
it is enough that only one of the three constraints
is not complied.
With these validation
indicators can be taken:
1. number of cluster (NC);
trajectory assigned to clusters (TAC);
trajectories assigned to valid cluster (TAVC);
clusters intra- valid(%) (CIV);
Mean flights per valid cluster (MF_VC);
standard deviation number of flights over valid
cluster (SDF_VC);
percentage of inter-clusters valid(%) (PIV);
mean of wertical wvalidity among wvalid
clusters(%) (MVS_VC);
9. mean of lateral validity among wvalid clusters
(%) (MLS_VC);

10. mean of wertical wvalidity among non-valid
clusters (%) (MVS_NVC);

11. mean of lateral walidity among non-valid

clusters (%) (MLS_NVC).

parameter, quality
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3.1.2 Enhancement Merge

An enhancement is introduced at the methods
which changes also the quality indicators result.
The hypothesis is raised of merging the clusters
which tested to have any similarity, the new
centroid is computed and the intra-cluster validity
of the hypothetical new, larger one is computed.
In case, the hypothetical cluster is intra-valid,
the merge is accepted and the other clusters are
eliminated.

3.1.3 Comparison

Each value (quality _indicator,
clustering_technique) suffers a transformation
which takes into account their rank in indicator
1 and how far from the mean value at quality
indicator ¢ (Equation 1). The transformed values
at the same clustering mechanism are summed
into one single value. Having a single value assign
to each clustering technique, it is possible to sort
the clustering techniques from the one with better
qualitative results (lowest single value) to the worse
one (Equation 2).

qualt_mean; — qualt_value; ;

comp_value; ; = rank; ;& 100

(1)
(2)

R; = Ei]ilresultiyj

3.2. Best-fit Cluster
This algorithm was created to be used on
a flight that changed trajectory or to define the
cluster each flight belongs to from a set that is not
large enough to perform clustering.
Succinctly, the three steps of Best-Fit-Cluster:

e Perform Lateral Evaluation (2d lateral
distance and heading difference) and Vertical
Evaluation (vertical evolution) from one
trajectory to all existing clusters;

e For each trajectory, there are three possible
cases, the trajectory only belongs to one case:

— Case 1 the trajectory has
min_percentage_of_samples_valid on
all three constraints at one or, possibly,
more clusters;

— Case 2 the trajectory only has
min_percentage_of_samples_valid at
the lateral constraints, but not at the
vertical evaluation, at one or more
clusters; it means the trajectory could
not comply all the three constraints with
not even one cluster;

— Case 3 the trajectory does not even
comply Lateral Evaluation with any
cluster;

e Case 3 is the only one which inserts the
trajectories inside the anomalies designation,
if the trajectory fits in Case 1 or 2 it will be
assign to a cluster.

3.3. Optimal Sector Configuration
This study focus on the building of a reliable

algorithm that through air traffic trajectories (past,



present and near future) can determine (or predict)
the complexity of an air traffic situation.

At Figure 4 is the principal scheme of the
complexity estimation system’s organization.
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Figure 4: Proposed system for complexity estimation
and application
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There are a lot of inputs to be able to extract a
valuable output. The traffic data of interest already
assign to its cluster or as an anomaly, the existing
sector configurations in the air control center (ACC)
where it applies and the sectors’ geometries and the
time resolution to extract the complexity.

PASC means Pre-selection of the Airspace Sector
Configuration, which with the analysis of the
Hourly Entry Count (HEC) will decide the set of
sector configurations feasible to perform a more
extended analyses based on complexity. At the next
stage, CE stand for Complexity Estimation where
an algorithm performs the necessary complexity
prediction calculations, and finally at AS, airspace
sectorisation, an objective function decides which
sector configuration is the best for the time interval
of analysis.

3.3.1 Pre-selection

Usually the tabled HEC are compared with
the actual HEC to identify hotspots. Figure 5 is
a representation of the Peak and Sustain values,
which in this example are constant, and the actual
HEC values calculated every 20 minutes.
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Figure 5: Graph demonstrating HEC between 0 to 24H,
it seems from 21 to 24H there was not any traffic

3.3.2 Complexity Estimation

Complexity estimation is based on the CAPAN
parameters, a list of tasks EUROCONTROL created
[8] with their time means was used at this stage.

The tasks can be identified on two main groups:

e Tasks that only refer to an isolated aircraft,
such as the entry, the exit, the report on
reaching a specific flight level (FL), instruction
to climb, etc.;

e Tasks that refer to the interaction of two
flights; usually flight that get to a distance
which demands levels of cautiousness or
possibly intervention.

Figure 6 exemplifies different tasks that can
happen inside a sector. Tasks related to flight x
(flx) are not written at the Figure not to fill the
picture with lot of information. All the tasks related
to Flight y (fly)are written.
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Figure 6: Example CAPAN tasks related to the flights
according to where they come from, in which flight
phase are they, if they change flight phase, the time
they spend in sector, the trajectory and the existence
of conflict.

When flight y comes in at climb from the
inbound, 5 tasks are associated: receiving flight
information (T1), receive time and level estimation
from same ACC (T4), first call with aircraft that
comes from same ACC (T11), conflict search to
establish initial level clearance for flight entering the
sector in climb or descent (T13) and, considering
that the only flight in sector is flz, by the the
time fly passes, conflict search to establish sector
planning clearance (T14).

When fly changes from climb to cruise phase, task
17 happens, report on an aircraft (AC) on reaching
a specified level has to be performed. Task 33 (radar
intervention two aircraft on crossing tracks, both
in cruise at same FL, needs to be called when the
flights are that close, as it is drawn inside sector,
their distance is bellow the minimum. Some time
after, task 24 is called to supervise the two AC, at
crossing tracks, same FL.

3.3.3 Airspace Sectorisation

Complexity is a function of time and tasks
performed. When a task is confirmed to happen
it is also assign to the time it happens. Just like a
dictionary, where the keys are the time when tasks
are suppose to happen, more precisely, the epoch !

Lunix epoch started at 00:00:00 UTC 15t January 1970



and the value, assigned to the key, is a cumulative
sum of the time means associated to the tasks that
happened at the same epoch.

Whenever the algorithm finds a task that is
predicted to happen, according to a flight trajectory
or a conflict, it also determines when it happens.
Hence, the epoch to when it is predicted to happen
is searched in the dictionary and, if there is a key
with the same epoch, the time mean associated
to the task is added to the value already there
(a simple sum). Otherwise, a new key is defined,
assigned to the time mean related to the task.

After having computed the complexity at the
sector configurations, pre-selected at stage one,
the airspace Sectorisation phase is designated to
compute the Complexity at a time resolution
between ¢y and t; as shown in Equation 3.

time

of

total workload
by the sum
tabled_tasks_mean_time
occurred inside [t;, t; +
time_workload_resolution)]

C lact =
omplaty(%) time_workload_resolution

x 100
(3)

3.3.4 Objective function

Finally, the delta function is the cumulative
sum of the excess of complexity given by to sectors
of each sector configuration being tested.

The delta function is computed for configurations
with the same number of active sectors. Then,
the sector configuration with the smallest delta is
saved in a short term memory, as the best_delta;.
After having the best_delta, 1, which corresponds
to opening of one more sector, the deltas are
compared. If, Equation 4 is verified, the search
stops and the sector configuration chosen is the
one related to best_delta,,. Otherwise, the search
continuous until the next best_delta does not
considerably improve the results to justify the
opening of one more sector.

best_delta,, < best_delta,1 + 20% (4)

4. Experimental Results

This chapter presents the results of the
conducted evaluation to validate the proposed
main-flows  determination and complezity
estimation methods.

In order to provide meaningful results, an input
dataset with a significant representation of real
life traffic has to be used preferably, with typical
challenges that air traffic controllers face everyday.
Therefore, from the available datasets, the flights
crossing the upper Switzerland airspace, from
August 1%t 2018 was selected.  This airspace

is divided into two ACCs (Geneva ACC and
Zurich ACC), which is relevant for computing the
workload between different ACCs and analyse how
it translates in terms of complexity.

4.1. Main Flows - Clustering

This section presents the testing results for the
clustering techniques already discussed. Before the
introduction of clustering the original traffic dataset
(Figure 7) is difficult to understand and make some
sense out of.

Figure 7: Daily Traffic 15" August 2018

4.1.1 Evaluation and Comparison Techniques

With the five techniques and all the possible
cases with and without the pre-processing methods
PCA and t-SNE, there are 23 different clustering
mechanism to compare. At Table 2 are the top 6
clustering methods.

Table 2: Results Comparing Techniques

Rank Method Qualification
1 OPTICS PCA 2 53.16
2 DBSCAN t-SNE 54.38
3 DBSCAN PCA 2 57.04
4 RDBSCAN* t-SNE 57.20
5 RDBSCAN t-SNE 58.12
6 RDBSCAN PCA 2 58.98

Looking at Table 2, it is concluded that the best
technique is OPTICS with PCA 2. It was thought
that DBSCAN would occupy the lower ranks at
the Ranking Table 2 because of the epsilon static
nature. Nevertheless, DBSCAN with t-SNE gets
the second place at this Table and DBSCAN with
PCA 2 gets the third.

There’s no significantly differences between
R-DBSCAN and R-DBSCAN*, which accepts
smaller clusters. They are almost always hand in
hand.

Hence, it is clear that the use of a pre-processing
method improves their place on the rank. Many
researchers discuss that PCA and t-SNE can bias
the data, but, at least here, it created better results.
However, it is not possible to say which method
creates the best results, t-SNE and PCA with
2 components occupy the first places. Figure 8



synthesizes the main quality indicator results of the
top 4 techniques.
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Figure 8: Results of most relevant quality indicators of
the top 4 clustering techniques.

4.1.2 Results of Best-clustering Technique

Figure 9 presents the obtained cluster centroids
at the best technique (OPTICS with PCA 2),
and trajectories related to them. 24 clusters were
identified, here the clusters were organized by six
per graph to facilitate the understanding. The top
six clusters are represented at the top left of Figure
9 with a number of trajectories per cluster between
65 and 32.
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Figure 9: The resulting best clustering ‘ technique
OPTICS PCA 2 represented using sectflow library [31].

The six main clusters (upper left) of Figure 9
show that there are at least two flows from South
heading North in each corner of Switzerland upper
airspace (the one more to the left may be heading
France and the other may be heading Austria,
Germany or Czech Republic). Another two are
coming from Northeast (from German Airspace)
to Southwest (heading South of France). There is
also one, the most common one (with 66 flights),
coming from North (maybe Germany, Austria or
Poland) to South in direction to Italy or North
Africa. Another identical cluster with 32 routes, is
doing the opposite route heading North of Europe.
At last, there is one in pink (42 flights) heading

Hungary, Slovenia or Croatia. It is very interesting
to find out how just one day of analysis finds such
patterns.

4.1.3 Best-fit-cluster applied between 9a.m. and
10 a.m.

The considered methodology to analyse if a
flight belongs to a cluster using the independent
Best-fit Cluster approach, is deterministic, as
explained at Section 3.2. As an example, flights
taken between 9 a.m. and 10 a.m. are
submitted to best-fit-cluster algorithm with the
cluster centroids obtained from OPTICS with PCA
2 (the best qualified method at ranking 4.1.1).
Figure 10 illustrates the traffic between 9 a.m.
and 10 a.m. (128 trajectories) before running the
best-fit-cluster, Figure 11 presents the results of the
best-fit 88 trajectories (68.8% of the total) were
tagged as typical routes. The most used routes
during this time interval are at the top left, eight
flights (pink route) are coming from South of France
heading Germany, other route is doing exactly
the opposite (light green), nine flights. Another
common route does the trajectory from South to
North France crossing Switzerland (dark blue). 12
flights are crossing Switzerland Northeast entering
Austria’s Airspace.
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Figure 10: Traffic between 9 a.m. and 10 a.m. without
tagging
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Figuré 11: Typical routes identified at the traffic Figure
10 with the best-fit-cluster

This provides one example of the importance
and potential of clustering the trajectories and




finding the cluster that best-fits in it. Seeing the
clusters that are going to be present in a specific
time interval helps visualizing and understanding
better the conflict and consequences before they
take place, also it is very helpful for the FMP to
choose the best sector configuration according to
the main traffic.

4.2. Complexity Estimation

It was defined by EUROCONTROL [32] that the
workload should not exceed 70%. A study of the
best sector configuration for the time interval 5 a.m.
to 6 am. and 9 am. to 10 a.m. is performed
it was observed that the best sector configurations
were U3K and U4J, respectively. There were still
some peaks but some sectors were already as small
as possible others did not presented a considerable
improvement by opening one more sector. Here we
present the evolution of complexity (as explained in
section 3.3) as well as HEC with time, at resolution
3 minutes.

4.2.1 Results between 5 a.m. and 6 a.m.

The optimal sector configuration obtained for
the time interval 5 a.m. to 6 a.m. is U3K. A
simple representation of the sector configuration
U3K, is provided at Figure 13. Sectors LSGL14C
and LSGL67C are represented at Figure 12, they
do not suffer any excess of complexity.

LsGL14C LSGL6TC
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Figﬁre 12; Sector complexity LSGL14C and LSGL67C
for both EC and PC and HEC, between 5a.m. and 6

a.m.

At Figure 13 is the evolution of complexity and
HEC at sector LSGL5C this sector has a hotspot at
[05:21, 05:25] with workload 124.58% for the EC
controller and 40.78% for the PC controller, the
considerable discrepancy between the workload of
the two controllers stress out that it is probably due
to conflicts. The EC has the greater responsibility,
therefore spending more time, on conflicting tasks
than the PC controller. It is not possible to
decrease or cease the hotspot by changing sector
configuration because sector LSGL5C is already the
smallest as it gets, the next best solution is to
re-route or level-cap the flight that is causing a lot
of conflicting tasks.

4.2.2 Results between 9 a.m. and 10 a.m.

At time interval 9 a.m. to 10 a.m. the
suggested sector configuration by the algorithm is

LSGLSC
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Figure 13: Sector complexity LSGL5C for both EC and
PC and HEC, between 5 a.m. and 6 a.m. and well as
simple representation of U3K sector configuration
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U4J, it has four active sectors, LSGL14C (figure
14), LSGL5C (figure 15), LSGL6C (figure 16) and
LSGL7C. LSGL7C is not here represented but it
does not have any hotspot. LSGL14C has two
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Figure 14: Sector complexity LSGL14C for both EC
and PC and HEC
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hotspots one at first interval and another at [09:18,
09:21[. LSGL5C has five hotspots, among which
there is one particularly high (above 200%, at
[09:39, 09:41[. LSGL6C has also five hotspots for
the EC controller but the highest one is below 140%.
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Figure 15: Sector complexity LSGL5C for both EC and
PC and HEC

The high hotspot at LSGL5C is mainly due to
a conflict of one flight with two other flights, at
different times but very closely (between 09:39 and
09:40).

LSGL14C could be split in more sectors in order
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to avoid the two workload of EC controller above
the safety threshold, but it was observed that the
other sector did not have such considerable amounts
of workload (the highest peak was at LSGL3C
below 20% at 09:36 to 09:39). LSGL4C the smallest
sector as it gets still has one peak at first time
interval (09:00 to 09:03) at 90% even tough the peak
at 09:18 to 09:21 decreases below 30%, however tha
algorithm considers it is better to have the sectors
joined into one and suffer an additional peak of 83%
(below 100%).

The analysis is also performed per flight such
that, when a flight is found causing many conflicts,
it is easy to change its trajectory and compute
again the sectors complexity. Usually it is
always better to avoid complexity hotspots through
optimal sector configuration, but when it still does
not remove the excess of controllers workload,
short-term ATFCM measures (STAM) are mostly
adequate.

5. Conclusions

Pre-processing techniques did improve the
clustering results, specially PCA with 2 components
and t-SNE, with OPTICS with PCA 2 as the
top clustering method. Also Dbest-fit-cluster
happened to be a technique that can rapidly and
without needing as many data define which flight
trajectories are typical routes and with are not.

Concerning, complexity estimation the algorithm
is capable of predicting the workload of each
controller just by analysing traffic data, it can
also define the time intervals of highest demand
to posteriorly study which flight is causing this
increase in complexity.

In the future, it would be advisable to use
the three constraints (lateral 2d distance, heading
difference, vertical evolution) to disregard the
trajectories that were wrongly tagged to a cluster
by the machine learning mechanism.  Another
suggestion would be to take some complexity
indicators and perform the correlation between

them having as reference the complexity value
determined at the algorithm here developed or to
teach a neural network.
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