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Abstract

With a tremendous increase in computational power observed in the past two decades and the
improvements in data collection and analysis, industries turned to digitalization. Within Industry 4.0,
scheduling using multi-objective functions is now an opportunity to provide solutions that address
several conflicting objectives and provide optimized decision-making. To address this problem a
Multi-Objective Artificial Bee Colony algorithm was implemented. The proposed algorithm combines
a coding method that only generates feasible solutions with different techniques to generate an
initial population and to generate new solutions. To measure the quality of solutions and the overall
performance of the algorithm, two metrics were used, the Hypervolume and the Mean Ideal Distance.
To obtain the ideal set of parameters that maximizes the ABC algorithm performance, a Bayesian
optimization algorithm was used. Moreover, this algorithm was validated and its performance evaluated
and tested for the Flexible Job Shop Scheduling Problem using two different types of benchmark
datasets, with a total of 15 instances evaluated. The proposed approach shows a good performance,
similar to that of the state of the art.
Keywords: Flexible Job Shop Scheduling, Multi-objective, Artificial Bee Colony Algorithm, Parame-
ter Tuning, Bayesian Optimization

1. Introduction

Throughout the last few decades, the world has ex-
perienced an exponential growth of data gathering,
storage and treatment. This growth has been cor-
related with the just as well exponential increase,
in computational power. A continuous exploration
and effort to maximize efficiency in all sorts of pro-
cesses and industries has taken humanity from the
steam engine powered factories that define the first
industrial revolution, in the late 19th century, pass-
ing through incremental technological progress such
as mass production and automated systems applied
to industries, to the digital era of today, defined
by a new stage of systems with new capabilities
to integrate and interact with information, cyber-
physical systems, the Internet of Things (IoT) and
cloud computing [28, 18].

Firstly formalised in Germany, the term In-
dustry 4.0 describes the fourth industrial revolu-
tion, marked by fast changing technologies like
the ones already stated above. Industry 4.0 in-
troduces a transformation from machine-based to
evidence-based decision making manufacturing sys-
tems where product-machine interaction is possi-
ble without human involvement, making an im-

pact on time and costs, by reducing planning time,
achieving better production control, lower energy
consumption, improving quality, among others [1].
Smart factories exchange large amounts of data and
information in real time between the different sys-
tems within a factory, allowing the different sys-
tems to perform better-informed decision in order
to improve production status, such as throughput
rates, energy consumption, inventory management
and more. [5, 17]

Scheduling for production management has al-
ways been an important problem in operations re-
search, and within the scope of Industry 4.0 it is
equally important, since it is a tool to improve the
overall factory efficiency and productivity. From
the collection of data from customers demands and
factory state, scheduling can affect planning and op-
timize decisions, according to the objectives of the
factory.

Scheduling focuses on finding the optimal or near-
optimal schedule, which mainly is the job sequence
and the operation-to-machine assignment, while
subject to constraints such as time. This can be
either a simple task or a very complicated one, de-
pending on the process domain, the constraints in-
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volved in the process and its performance indicators
[16].

Focusing on static environment scheduling the
nature of the different problems found can be di-
vided into two categories [14], deterministic, where
processing times and other parameters are set and
known a priori, or stochastic,where parameters and
processing times, modelled as random variables that
follow a probability distribution. Among the deter-
ministic problems a further classification is made,
distinguishing single from multiple machine prob-
lems, the difference between one another focuses
on the increased complexity of the problem. When
only one machine processes the whole set of finite
jobs, the problem is to find the sequence in which
to process the jobs. Multiple machines directly re-
late to more complex arrangements, these configu-
rations, by ascending order of complexity are par-
allel machine, flow shop and job shop.

For job shop problems [3], the operations of each
job can be assigned to a machine for processing,
meaning that a job can befall on a machine more
than once. The classical job shop problems has a set
of identical machines, and each operation can only
be performed in a specific machine. The flexible job
shop problem is defined as a set of multi-purpose
machines, where each operation can be performed
on more than one machine.

Flexible Job Shop scheduling problems using
multi-objective optimization can be solved by us-
ing three types of meta-heuristic approaches. The
first is by aggregating the multiple objectives into
an weighted sum. The second type of approaches
are non-Pareto approaches, where each objective is
handled separately. And finally Pareto optimality
approaches. Out of these three the most commonly
used are the weighted sum and the Pareto optimal-
ity approaches. Some examples of meta-heuristics
approaches using the weighted sum to solve the
multi-objective flexible job shop scheduling prob-
lem are given in [24, 12, 23, 26]. Some examples of
meta-heuristics techniques using the Pareto opti-
mality type of approach are given by [21, 10, 4, 19].

2. Background

The Flexible Job Shop Scheduling Problem
(FJSSP) is the generalization of the classical Job
Shop Scheduling Problem (JSSP). This means that
the main objective of the classical static JSSP is to
find the schedule that processes n jobs on m ma-
chines following a given objective function.

To generalize the JSSP, FJSSP has an additional
condition that imposes job variability and also cre-
ates the need for an operation sequence solution,
not only the machine assignment. FJSSP allows
operations to be executed by a set of machines in-
stead of a single machine, providing a more realistic

approach to the scheduling problems.

The FJSSP is stated as follows: a set of jobs,
independent from each other J = {J1, ..., Jn}; a
set of independent machines, M = {M1, ...,Mm};
a sequence of operations from each job Ji, Oik =
{Oi1, Oi2, ..., Oih}; each operation Oik, must be pro-
cessed by a subset of machines such that Mik ⊂M ,
if Mik = M ∀i, k then the problem becomes a flex-
ible job shop problem; each machine can execute
exactly one operation at a time; each job and each
operation must be processed exactly one time; each
job has a specific linear precedence structure with
the sequence of machines it visits; ef the precedent
operation is still being processed, the remaining
operations wait until the processing is completed;
the processing time PTikm is given by the time it
takes for operation Oik of job Ji to be performed in
machine Mm, without interruption; machines must
always be available at the start of the scheduling
horizon; the start time of every operation Oik on
machine m is defined as STikm; the finishing time
of each operation Oik on machine m is defined as
FTikm.

The FJSSP can be divided into two sub-
problems, a routing problem that selects the ma-
chine to process each operation, and the sequenc-
ing problem on all the selected machines to obtain
a feasible schedule. It has also some additional con-
straints, it requires the operation to only be pro-
cessed after all precedent operations have been pro-
cessed, another constraint requires that one ma-
chine handles one and only one operation at a time
and, finally, the precedence constraint for opera-
tions of the same job.

2.1. Objective Functions

The FJSSP intends to obtain a feasible schedule
while quantifying performance measures. Three
objective functions were taken into consideration,
the makespan, the total machine workload and the
maximum machine workload. The makespan, given
by equation 1 is the maximum completion time of
all jobs. The total workload, given by equation 2
is the amount of work it takes to finish all jobs.
Lastly, the maximum workload, given by equation
3 is the workload of the machine responsible for the
maximum workload. These objectives were chosen
not only by their significance as to measure the ef-
ficiency of a schedule, because they are also in con-
flicting with each other.

Cmax = max (C1, ..., Cj , ..., Cn) , (1)

(j ∈ J, k ∈M, i ∈ Oji)
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Wt =

m∑
k=1

n∑
j=1

nl∑
i=1

(pjikxjik) , (2)

(j ∈ J, k ∈M, i ∈ Oji)

Wm = max
1≤k≤m

 n∑
j=1

nl∑
i=1

(pjikxjik)

 , (3)

(j ∈ J, k ∈ K, i ∈ Oji)

The Multi-Objective Flexible Job Shop Schedul-
ing Problem (MOFJSSP) determines the machine
allocation for each operation and the sequence in
which those operations will be performed in a way
that optimizes multiple objectives. The mathemat-
ical formulation is presented below, based on [20].
Equation 4 is used to describe a multi-objective
problem without losing generality, where x corre-
sponds to the decision vector in space, meaning the
solutions found, and y represents the objective vec-
tor with l objectives.

min y = f(x) = (f1(x), ..., fl(x)) , (4)

(x ∈ Ω, y ∈ Rl, l > 1)

2.2. Representation
The representation of the problem can be done by
both a disjunctive graph and a Gantt chart.

The disjunctive graph is described by equation 5.

G = (V,Con ∪Dis) (5)

In the graph, operations are denoted by nodes
(i/j) ∈ V , with V being the set of nodes that rep-
resent the operations. The precedence constraints
of each operation in each job is assured by the con-
junctive arcs Con. The disjunctive arcs represent a
sequence of jobs done on the same machine, repre-
sented in Dis.

A Gantt chart is a commonly used bar chart that
gives a visual representation of a feasible solution.
It represents the allocation of the operations of each
job and its given sequence. It also gives a represen-
tation of this allocation, the starting time of each
operation and its respective completion time and
the idle time on each machine.

3. Implementation
This section describes the implementation of the
Multi-Objective Artificial Bee Colony algorithm im-
plemented, to solve the Flexible Job Shop Schedul-
ing Problem. This implementation was inspired by
works [19, 11, 15, 22, 25]. It also describes the
Bayesian Optimization algorithm used to tune the
parameters of the algorithm.

3.1. Artificial Bee Colony with Non-Dominated
Sorting Algorithm

The ABC algorithm was initially introduced by [8],
and later enhanced in [9]. Essentially inspired by
the intelligent foraging behaviour of a honeybee
swarm, it contains three types of foraging bees, the
employed bees, the onlooker bees and the scout bee.

A first step is taken by generating random food
sources and associating the employed bees to those
food sources. The employed bees then perform ex-
ploration, at the next step, the onlooker bees per-
form exploitation. Finally, the scout bees explore
the exhausting food source. This process will iter-
ate until it meets a stopping criterion. To translate
this process, each food source represents a feasi-
ble solution, its nectar amount corresponds to the
quantitative values of each objective function.

3.2. Procedure to implement the proposed ABC al-
gorithm

To properly define the algorithm implemented, first
it is necessary to make some definitions.

Pareto dominance, straightforwardly, if a solution
S1 dominates another solution S2 (S1 ≺ S2, which
also denotes that S2 is dominated by S1), then equa-
tions 6 and 7 must always be true.

∀i ∈ {1, 2, 3, ..., l} : fi(S1) ≤ fi(S2) (6)

∃i ∈ {1, 2, 3, ..., l} : fi(S1) < fi(S2) (7)

A Pareto non-dominated solution is a solution
that is not dominated by any solution within the set
of solutions found. It is considered an optimal solu-
tion and will be included in the Pareto front. The
Pareto front is the selection of the non-dominated
solutions found as well as their respective image
from the objective space.

As the number of solutions is rather diverse, and
may vary from iteration to iteration, it is neces-
sary to fractionate the solutions following a dom-
inance level and to sort them by that same level
and an additional method, the crowding distance
[27]. The process of sorting and fractionating the
solutions according to a dominance level di, will for
now on be defined as Non-dominated sorting. The
first level will accommodate the non-dominated so-
lutions from the current set, the second level will
uphold the solutions that are dominated by the ones
from the first level, this process repeats until there
are no more solutions to allocate.

Crowding distance for each solution is calculated
after the non-dominated sorting is complete, so that
for each level, the solutions are sorted in an ascent
order. For the first solution S1 and the last solu-
tion Slast the value of the crowding distance is not
calculated, it will be set as infinity. As for the re-
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maining solutions, the crowding distance cdi will be
calculated according to equation 8,

cdi =

{
∞ if i = 1 or i = last,∑L

l=1
fl(si+1)−fl(si−1)

fmax
l −fmin

l

otherwise,
(8)

where cdi is the crowding distance of solution si,
fl(si) represents the value of the lth objective func-
tion for solution si, f

max
l and fmin

l represent, re-
spectively, the maximum and minimum values of
that lth objective function.

3.3. ABC algorithm steps
A general procedure of the ABC steps can be given
by the following statements:

• Initialization step;

• Repeat

– Employed Bees Step;

– Onlooker Bees Step;

– Scout Bees Step;

– Update Solutions Set;

• Until it reaches maximum generation.

In the initialization step, the parameters are set,
a population is initialized, creating the initial food
sources with their respective nectar amounts, and
then the best ones are selected to continue.

The next step, the employed bees step, these bees
will probe to new food sources with the soul objec-
tive of acquiring more nectar to their neighbour-
hood. When a new food source is found, an eval-
uation is made between the amount of nectar from
the old and the new food sources, and the best one
remains. Finally, these bees share their information
with the next foraging bees, by dancing within their
colony.

The next foraging bees start a new step in the al-
gorithm, the onlooker bees step, these foragers will
now select the food sources to explore through a
tournament selecting one food source per bee. Af-
ter this selection is done, the onlookers start ex-
ploring the neighbourhood of their selected food
source, similarly to the employed bees, but with
some added depth to their foraging.

The final step is the scout bee step, where a ran-
dom food source is chosen, and enhanced by this
bee exploring around the neighbourhood. Then if
this bee finds a new food source with a similar or
better fitness value. It will replace the food source
with the worst fitness value from within the current
set of food sources by the newly found one.

These moves will be performed until they sat-
isfy the termination criterion, which in this case, is
when it reaches the maximum number of genera-
tions.

3.4. Solution Representation and Encoding
Solutions will be represented by two vectors, a ma-
chine assignment vector and an operation sequence
vector, both vectors will represent a feasible solu-
tion. The first one, the machine assignment vector,
allocates each operation from each job to a machine
within its machine set. The second one, operation
sequence vector, conceals the sequence of operations
for each job.

The machine assignment vector depicts that each
integer from the vector corresponds to a machine
assigned uninterruptedly for each operation. The
operation sequence vector works a little differently,
since the operations from each job correspond to
their job number, and the ith happening of a job
denotes the ith operation of that same job.

3.5. Solution Decoding
To transform the machine assignment vector and
the operation sequence vector that constitute the
encoded representation of a feasible solution, into
a schedule is the action of decoding the solution.
It is necessary to establish at what time each op-
eration starts and ends, and also the idle time be-
tween operations in the same machine. The prece-
dence constraints must allows uphold, this means
that the second operation of a job, can only start
after the first one has finished, and if that oper-
ation can not start immediately after, due to its
machine being currently processing another oper-
ation, from another job, it will create idle time on
that machine. Considering the makespan objective,
a left-shift scheme may be applied in order to shift
operations as much to the left as possible, thus com-
pacting the schedule.

3.6. Population Initialization
An initial population needs to guarantee diversity
and quality of its solutions. Another important
point being the ability to avoid falling into local op-
tima. Like so it was used an hybrid way of generat-
ing an initial population set with P = PS×m×n so-
lutions, where PS is a predefined parameter related
to the size of the initial number of solutions. To
generate initial machine assignment vectors, three
rules were used: a random rule, a local minimum
processing time rule, and a global minimum pro-
cessing time rule. The operation sequence initial-
ization process also presents three rules: a random
rule, a most time remaining rule, and a most num-
ber of operations remaining rule.

3.7. Employed Bee Step
3.7.1 Exploitation Search for Machine As-

signment

For each solution from the employed bee step the
exploitation search for the machine assignment pro-
ceeds to generate an integer, from 1 to the total
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number of operations. Then, selects the positions
randomly from the machine assignment vector and
for each chosen position, it replaces the current al-
located machine from another within the candidate
machine set, in order to produce a new solution.
After generating the new solution, it evaluates and
compares with respect to the old solution.

3.7.2 Exploitation Search for Operation Se-
quence

For each solution from the employed bee step the
exploitation search for the operation sequence pro-
ceeds to select two jobs, randomly, then fills the po-
sitions of the first job chosen within the positions
of the second job, from left to right, and repeats
the process respectively, to generate a new solution.
After generating the new solution, it evaluates and
compares it with the old solution.

3.8. Onlooker Bee Step
3.8.1 Tournament Selection for the On-

looker bee step

Due to the difficulty of properly calculating the fit-
ness value that is associated with the probability
of an onlooker bee choosing a food source, a prob-
lem inherent to the multi-objective nature of the
algorithm, it was implemented a tournament se-
lection with size three. This method is described
as first selecting three solutions randomly from the
employed bee solutions, then sorting the solutions
according to the Pareto level and crowding distance
and choosing the best solution to be the food source
of the onlooker bee.

3.8.2 Exploitation search in Onlooker Bee
Step

With all the onlooker bees having a selected food
source from the tournament selection described
above, every onlooker bee will perform the tech-
niques described for the employed bee step to gener-
ate new neighbouring solutions and the better solu-
tions found will update the population to establish
a new population Pt.

3.8.3 Crossover Operators

The crossover operators were designed to enhance
the exploring capabilities of the onlooker bees, or
in other words, to share information in order to
find more promising food sources (better solutions).
Since the solution is composed by the machine as-
signment vector and the operation sequence vector,
different crossover operators, one for each of these
parts, were designed.

Starting by first describing the crossover oper-
ators for machine assignment, two operators were

used, the two-point crossover operator and an uni-
form crossover operator. For the operation se-
quence, the crossover operator implemented is a
modified precedence operation crossover operator
(MPOX) according to the precedence preserving
order-based crossover (POX).

3.9. Local Search Based on the Critical Path
A local search method was implemented in the on-
looker bees step to promote the intensification of
the exploration capacity of the algorithm.

The graph G has two dummy nodes, node 0 and
node E = N+1, where N is total number of opera-
tions. These nodes will have no processing time, the
starting time of node 0 will be 0, and the comple-
tion time of node E is the makespan of the sched-
ule. The earliest starting time of operation Oij ,
expressed by equation 9, will be designated as ESij

and will be defined as the maximum time value be-
tween the earliest completion time in the operation
that precedes operation j in the job i, represented
as POJ

ij = Oi,j−1 and the earliest completion time
of the previously executed operation on the same
machine k, represented by POM

ij . The earliest com-
pletion time of operation Oij , expressed in equation
10, is the sum between the earliest starting time of
that same operation and its processing time on ma-
chine k.

ESij = max
(
EC(POJ

ij), EC(POM
ij )
)

(9)

ECij = ESij + PTijk (10)

To compute the earliest starting and comple-
tion times, the process will perform iteratively from
node 0 until node E, in other words, from left to
right. To compute the latest starting and com-
pletion times, the process will be done backwards,
starting from node E, ending in node 0.

The latest starting time of operation Oij with-
out delaying the makespan, given by equation 11,
designated as LSij is given by the subtraction be-
tween the latest completion time of that same oper-
ation and its processing time machine k. The latest
completion time of operation Oij without delaying
the makespan , given by equation 12, designated as
LCij is given by the minimum time value between
the latest starting time of the operation that fol-
lows j within job i, designated as FOJ

ij = Oi,j+1,
and the latest starting time of the operation that
follows Oij on machine k, designated as FOM

ij .

LSij = LCij − PTijk (11)

LCij = min
(
LC(FOJ

ij), LC(FOM
ij )
)

(12)

It is also important to note that for the dummy
nodes these values will remained unaltered. Also,
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the makespan will be given by the latest comple-
tion time of the ending node E. The total slack of
each operation translates into the time amount as
to which an operation can be delayed without de-
laying the makespan, intuitively, if an operation has
zero slack, it means that if that operation delays,
then the makespan will delay as well, thus making
it a critical operation, and is expressed in equation
13.

TSij = LSij − ESij (13)

Once a critical path is found, the critical op-
erations will be moved towards minimizing the
objective functions. Referencing the theorem in
[25], in the schedule represented by graph G, if
a new schedule represented by graph G′ obtained
by moving an operation Oij /∈ χ(G) in G, then
Cmax(G) ≤ Cmax(G′). This means that minimiz-
ing the makespan, and consequently total and max-
imum workload can only be achieved through mov-
ing the critical operations exclusively.

An operation can only be moved and inserted into
another position if it satisfies the following inequal-
ity:

max
(
EC(POM

(G−
i ,v)

), EC(POJ

(G−
i ,coi)

)
)

(14)

+PTcoi,k ≤ min
(
LS(FOM

(G−
i ,v)

), EC(FOJ

(G−
i ,coi)

)
Where v is the operation in G− that will succeed

operation coi in the newly appointed position. This
relates to another theorem from [25] which states
that a schedule G′ is obtained by inserting coi into a
position located before operation v on machine Mk

in G−i under the circumstance that satisfies 14. The
positions that will be available to insert coi into,
before v, are appointed by Γ, which is the set of po-
sitions before all the operations of δk excluding Ψk

and after all the operations from Ψk excluding δk.
ψk(G) consists of the possible machines in which
each critical operation can be performed sorted to
minimize total and maximum workload. Where δt
and δm are used as metrics to consider respectively
the total and maximum workload.

3.10. Recombination and Selection
A final method in the onlooker bee step that will de-
cide the population to proceed to the scout bee step
is the recombination and selection approach. The
recombination and selection method combines the
populations within the Onlooker Bee Phase, then
sorts the solutions with non-dominated sorting. Us-
ing the best solutions to update the set of solutions.

3.11. Scout Bee Step
The scout bee step is used to randomly generate
a new food source that replaces the worst solution
found. Global exploration will be applied to the

solution to intensify the population diversity and
improve results.

3.12. Parameter Tuning

The algorithm implemented to solve the MOFJSSP
needs to initialize promptly a set of key parameters.
This set of 8 parameters is composed by the param-
eter related to the maximum generation, Genmax,
the parameter related to the initial population size
PS, the probability of the machine assignment to be
executed by rule 1, and respectively the rule 3, the
probability of the operation sequence to be executed
by rule 1, and respectively the rule 3, the probabil-
ity for solutions to participate in the tournament
selection and finally the probability to perform the
two-point crossover.

Such a number of parameters to be set can have
different methodologies to tune these parameters.
Also, since these parameters will affect the perfor-
mance of the algorithm implemented, it was imple-
mented a Bayesian optimization algorithm for tun-
ing the parameter set.

3.12.1 Bayesian Optimization

The Bayesian Optimization (BO) algorithm was
chosen for being a state-of-art solution in circum-
stances where a finite set of parameters will directly
reflect on the performance of an algorithm. The
choice of these parameters can not be done intu-
itively, also, it is a computationally expensive sys-
tem and through other methods, such as a grid
search, would consume a tremendous amount of
time and could leave out of testing lots of parameter
set combinations.

The main advantage of choosing Bayesian opti-
mization is that the iterative process of retrieving
the best combination of parameters is done through
an unbiased utility function, that will maximize the
performance of the proposed algorithm when choos-
ing an new set of parameters to test, resulting in a
lot of computational time saved and reducing the
number of tests to be done.

3.12.2 Performance Metrics

To establish a proper evaluation of the performance
of the proposed algorithm and how the parameters
influence it, two metrics that evaluate both solu-
tions diversity and convergence were used. The
metrics used were the Hypervolume and the Mean
Ideal Distance.

4. Results

In a first instance the results of the setting of pa-
rameters are presented. Then, the results from the
implemented algorithm were tested using two differ-
ent Benchmark datasets, the Brandimarte dataset
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[2] and the Kacem dataset, from [7, 6]. These re-
sults are compared with several state-of-art algo-
rithms, combining both weighted sum and Pareto
optimality approaches to solve the multi-objective
optimization problem.

4.1. Parameter Tuning
The parameter tuning was done using a Bayesian
optimization algorithm. The algorithm was im-
plemented with the aid of the Matlab function
bayesopt.

It uses a specific parameter, the exploration ver-
sus exploitation ratio from the acquisition function,
which was set to ε = 0.5, to establish equal impor-
tance on exploration and exploitation. Also, the
acquisition function used was the expected improve-
ment, µEI , and the maximum number of iterations
defined was 30. The search for the optimal set of pa-
rameters was done on two metrics, the Mean Ideal
Distance and the Hypervolume, for each metric and
for each benchmarked instance, the algorithm was
executed 5 times to ensure consistency within the
obtained sets of parameters.

Table 1 summarizes the final parameters ob-
tained, and table 2 the final parameters that change
according to each specific benchmarked instance.

Parameter Value
Pas 0.634
Pc 0.624
pm,rule1 0.1790
pm,rule3 0.7940
po,rule1 0.2430
po,rule3 0.8120

Table 1: Parameters used in the proposed al-
gorithm, Pas, Pc, pm,rule1,pm,rule3, po,rule1 and
po,rule3

4.2. Results comparison
The algorithms chosen to compare the proposed
implementation with involve algorithms that both
multi-criteria approaches for the multi-objective op-
timization and Pareto optimality approaches, to
verify the superiority of results from the latter one
with respect to the first type of approaches. And
also compare the proposed algorithm with other
Pareto optimality approaches.

4.2.1 Kacem dataset results comparison

The proposed algorithm was tested with the five
instances from the Kacem dataset, using the pa-
rameters described in the previous section. The
results were compared with five already exist-
ing algorithms, such as Approach by Localiza-
tion (AL+CGA) [7], Particle Swarm Optimization

Inst. PS Init.Pop. Gen. Max.Gen.
mk01 1.458 88 2.073 125
mk02 1.945 117 3.630 218
mk03 0.988 119 3.099 372
mk04 1.230 148 1.424 171
mk05 0.999 60 2.306 138
mk06 1.423 213 1.756 263
mk07 1.030 103 3.399 340
mk08 0.874 175 3.709 742
mk09 0.830 249 1.422 426
mk10 0.865 260 1.684 505
kacem1 1.900 38 2.445 49
kacem2 1.365 88 1.555 100
kacem3 1.365 96 2.381 167
kacem4 1.547 155 1.730 173
kacem5 1.131 170 2.565 285

Table 2: Parameter values for the initial population
of solutions and maximum generation.

Combined with Simulated Annealing (PSO+SE)
[23], Particle Swarm Optimization combined with
Tabu Search (PSO+TS) [26], Discrete Artificial Bee
Colony (P-DABC) [13] and an Enhanced Pareto Ar-
tificial Bee Colony (EPABC) [19]. Amongst these
algorithms, PSO+SE and PSO+TS, both use a fit-
ness function that aggregates the objective func-
tions into a single fitness function to be minimized,
turning the problem into multi-criteria evaluation.
AL+CGA proposes an approach that simultane-
ously minimizes the makespan and balances the
workload of each machine. It is only on P-DABC
and EPABC that a Pareto optimality approach is
used.

Algorithms kacem5

Cmax WT WM

AL+CGA s1 23 95 11

s2 24 91 11

PSO+SA s1 12 91 11

PSO+TS s1 11 93 11

P-DABC s1 12 91 11

s2 11 93 11

EPABC s1 11 91 11

s2 11 93 10

Proposed MO-ABC s1 11 91 11

s2 12 91 11

Table 3: Results comparison on the instance kacem5
(15× 10).

Table 3 presents the results obtained by these five
algorithms and the proposed algorithm, for the in-
stance kacem5. The proposed algorithm can obtain
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either more non-dominated solutions or better solu-
tions when compared with the first four algorithms
presented in table 3. As for the last two, the P-
DABC and the EPABC, the results are quite similar
either by number of non-dominated solutions or by
the quality of solutions. Since both these two algo-
rithms already outperform the previous four men-
tioned, it is reasonable to say that the proposed
algorithm has an overall good quality performance
for these five Kacem instances.

4.2.2 Brandimarte dataset results compar-
ison

The second benchmarks dataset used to test the
implemented algorithm is the Brandimarte dataset.
The instances of this dataset are generated through
a uniform distribution between given limits. The
proposed algorithm is using the parameters de-
scribed in the previous section. The results from
five other algorithms found in literature were used
to compare the results of the implemented algo-
rithm. These algorithms are a search algorithm
developed by Xing [24], a Multi-Objective Genetic
Algorithm (MOGA)[21], an Hybrid Tabu Search Al-
gorithm (HTSA) [12], a Shuffle Frog-Leaping Algo-
rithm (HSFLA) [10] and a Particle Swarm Opti-
mization (MOPSO) [4].

On the algorithm presented by Xing, and on
HTSA, the multi-objective problem turns into a
mono-objective problem by evaluating the objective
functions with a weighted sum. MOGA, HSFLA
and MOPSO, all use a Pareto optimality approach
to evaluate non-dominated solutions.

Table 4 it shows the results for non-dominated
solutions with the minimum makespan obtained.
Observing the solutions for mk01 and comparing
them to the ones obtained by the proposed algo-
rithm, it can be seen that the only algorithms that
outperform are the MOPSO, HTSA and MOGA, in
the Total Workload objective ,WT . For mk02 and
mk08, the results are similar to the ones obtained
by MOGA, HTSA and MOPSO, in terms of perfor-
mance.

In mk04, the result obtained dominates all other
results in comparison. In mk05, the solutions for
MOPSO, HTSA and HSFLA also dominate the so-
lution obtained by the proposed algorithm. In mk03
it does not out perform the presented algorithms, as
the total workload value is higher. In mk09 it does
not out perform any of the other algorithms. On
mk06 the solutions by MOGA and MOPSO domi-
nate the solution obtained with the proposed algo-
rithm. For mk07 and mk10 the only solution that
the proposed algorithm dominates is the one pro-
posed by Xing. By observing table 4 induces that
the results from the proposed algorithm, although

Instance Objective Xing MOGA HTSA HSFLA MOPSO Proposed

MO-ABC

Cmax 42 40 40 40 40 40

MK01 WT 162 169 167 165 167 170

WM 42 36 36 37 36 36

Cmax 28 26 26 26 26 26

MK02 WT 155 151 151 152 151 151

WM 28 26 26 26 26 26

Cmax 204 204 204 204 204 204

MK03 WT 852 855 852 852 852 993

WM 204 199 204 204 204 204

Cmax 68 66 61 62 61 60

MK04 WT 352 345 366 364 382 390

WM 67 63 61 61 60 60

Cmax 177 173 172 173 173 173

MK05 WT 702 683 687 685 683 686

WM 177 173 172 173 173 173

Cmax 75 62 65 64 62 63

MK06 WT 431 424 398 403 424 425

WM 67 55 62 55 55 57

Cmax 150 139 140 141 139 141

MK07 WT 717 693 695 696 693 697

WM 150 139 140 141 139 141

Cmax 523 523 523 523 523 523

MK08 WT 2524 2524 2524 2524 2524 2524

WM 523 515 523 523 523 523

Cmax 311 311 310 311 310 312

MK09 WT 2374 2290 2294 2275 2514 2424

WM 299 299 301 299 299 299

Cmax 227 214 214 215 214 218

MK10 WT 1989 2082 2053 1957 2082 2038

WM 221 204 210 198 204 204

Table 4: Results comparison on the ten Brandi-
marte instances.

they are not best for all instances, do not disperse,
thus it is noticeable that this algorithm provides
reasonably good results.

5. Conclusions

The objective of this thesis was to develop tools
able to create a schedule for a multi-objective op-
timization problem. To achieve this, an Artificial
Bee Colony algorithm was implemented .

To accomplish the proposed objective, the imple-
mentation of the Artificial Bee Colony algorithm
was done using Matlab. The presented algorithm
makes use of an aggregation of techniques to gen-
erate a good quality initial population, a coding
scheme that generates only feasible solutions and a
non-dominated sorting algorithm to sort and main-
tain the fittest individuals. To enhance the search
capabilities of the algorithm, a local search based
on critical path was implemented.

To test the proposed algorithm, a Bayesian op-
timization algorithm was first implemented to find
the set of parameters that maximizes the perfor-
mance of the algorithm according to metrics that
evaluate both convergence and diversity within the
solutions found.

After testing the algorithm using two benchmark
datasets and comparing it with several different al-
gorithms, the implementation and quality of the so-
lutions obtained were both verified. Although the
solution found by the proposed algorithm showed
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not to be always the best solution for the instances
from the Brandimarte dataset, one instance in par-
ticular outperformed other algorithms, the mk03.
As for the other instances of this particular dataset
when the solution presented by the proposed al-
gorithm was not the best, the difference between
the solution found and, the others presented by the
algorithms in comparison, is relatively small, thus
making them good quality solutions. Differently, in
the instances from the Kacem dataset, the proposed
algorithm obtained high quality solutions. For all
five instances, the proposed algorithm found a good
diversity of non-dominated solutions, when com-
pared to the other algorithms from the state-of-art
the solutions found were of considerably good qual-
ity.
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