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Resumo

Com um tremendo aumento do poder computacional observado nas últimas duas décadas e as mel-

horias na recolha e análise de dados, as indústrias voltaram-se para a digitalização. Na Indústria 4.0, o

escalonamento através de funções multi-objectivo é agora uma oportunidade de fornecer soluções que

ponderam vários objectivos conflituosos e proporcionam uma tomada de decisão optimizada. Para re-

solver este problema, foi implementado um algoritmo de Colónia de Abelhas Artificiais Multi-Objectivo.

O algoritmo proposto combina um método de codificação que apenas gera soluções viáveis com difer-

entes técnicas para gerar uma população inicial e para gerar novas soluções. Para medir a qualidade

das soluções e o desempenho global do algoritmo, foram utilizadas duas métricas, o Hipervolume e

a Distância Média Ideal. Para obter o conjunto ideal de parâmetros que maximiza o desempenho do

algoritmo ABC, foi utilizado um algoritmo de optimização Bayesiano. Além disso, este algoritmo foi val-

idado e o seu desempenho avaliado e testado para o Problema de Programação Flexı́vel de Job Shop

utilizando dois tipos diferentes de conjuntos de dados de referência, com um total de 15 instâncias

avaliadas. A abordagem proposta mostra um bom desempenho, competitivo com o estado da arte.

Palavras-chave: Escalonamento de Produção Flexı́vel, Multi-objetivo, Algoritmo de Colónia

de Abelhas Artificiais, Afinação de Parâmetros, Optimização Bayesiana
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Abstract

With a tremendous increase in computational power observed in the past two decades and the

improvements in data collection and analysis, industries turned to digitalization. Within Industry 4.0,

scheduling using multi-objective functions is now an opportunity to provide solutions that address several

conflicting objectives and provide optimized decision-making. To address this problem a Multi-Objective

Artificial Bee Colony algorithm was implemented. The proposed algorithm combines a coding method

that only generates feasible solutions with different techniques to generate an initial population and

to generate new solutions. To measure the quality of solutions and the overall performance of the

algorithm, two metrics were used, the Hypervolume and the Mean Ideal Distance. To obtain the ideal

set of parameters that maximizes the ABC algorithm performance, a Bayesian optimization algorithm

was used. Moreover, this algorithm was validated and its performance evaluated and tested for the

Flexible Job Shop Scheduling Problem using two different types of benchmark datasets, with a total of

15 instances evaluated. The proposed approach shows a good performance, similar to that of the state

of the art.

Keywords: Flexible Job Shop Scheduling, Multi-objective, Artificial Bee Colony Algorithm, Pa-

rameter Tuning, Bayesian Optimization
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Chapter 1

Introduction

Throughout the last few decades, the world has experienced an exponential growth of data gather-

ing, storage and treatment. This growth has been correlated with the, just as well exponential increase,

in computational power. A continuous exploration and effort to maximize efficiency in all sorts of pro-

cesses and industries, has taken humanity from the steam engine powered factories, that define the first

industrial revolution, in the late 19th century, passing through incremental technological progress, such

as mass production and automated systems applied to industries, to the digital era of today, defined by

a new stage of systems with new capabilities to integrate and interact with information, cyber-physical

systems, the Internet of Things (IoT) and cloud computing, [1, 2].

A transformation in industry has started, from classical automation units to fully integrated automated

facilities, that are able to communicate with each other. These new facilities enable an increase not only

in overall efficiency, but also speed in which processes are handled, overall quality and productivity. Thus

creating industries with processes that are much more efficient and with greater flexibility to respond to

the ever changing market needs, enabling companies to produce faster, with better quality and highly

customized products at lower overall costs, [3, 4].

Firstly formalised in Germany, the term Industry 4.0 describes the fourth industrial revolution, marked

by fast changing technologies like the ones already stated above. All of these instruments described

contribute to new promising paths for industries and companies. Smart factories, are key drivers in

improving manufacturing operations and a motivation of manufacturing intelligence [5]. Through digital-

ization, optimization, production customization, centralized automation and adaptation, industries can

improve their operational efficiency and productivity.

Additionally, Industry 4.0 introduces a transformation from machine-based to evidence-based de-

cision making manufacturing systems, where product-machine interaction is possible without human

involvement, making an impact on time and costs, by reducing planning time, achieving better produc-

tion control, lower energy consumption, improving quality and more. Smart factories exchange large

amounts of data and information in real time between the different systems within a factory, allowing the

different systems to perform better-informed decisions, in order to improve production status, such as

throughput rates, energy consumption, inventory management and more. [6–8]
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Scheduling for production management has always been an important problem in operations re-

search, and within the scope of Industry 4.0 it is equally important, since it is a tool to improve the overall

factory efficiency and productivity. From the collection of data from customers demands and factory

state, scheduling can affect planning and optimize decisions, according to the objectives of the factory.

1.1 Scheduling for Production Management

In the context of production management, one of the most important steps of planning and oper-

ating manufacturing systems is scheduling. It is a common problem present in most industries, such

as steel tubes production [9], pharmaceutical [10], crude oil [11], agricultural [12], textile [13] and rail

transportation of hazardous materials [14]. The scheduling problem can be defined as the allocation

of resources over time, that suits a given performance indicator, and takes part in manufacturing and

production systems from industry 4.0 or traditional industry.

In industry 4.0, an intelligent scheduling system can enable jobs to be scheduled based on AI tech-

niques and problem solvers. When referring to an intelligent manufacturing system, a generic framework

categorizes the research topics into smart design, smart machines, smart monitoring, smart control,

and, finally, smart scheduling. This last topic mainly includes advanced models and algorithms to draw

on the data captured by sensors in order to achieve real-time reliable scheduling and execution [1].

Scheduling focuses on finding the optimal or near-optimal schedule, which mainly is the job sequence

and the operation-to-machine assignment, while subject to constraints such as time. This can be either

a simple task or a very complicated one, depending on the process domain, the constraints involved

in the process and its performance indicators [15]. A schedule optimizes one or more objectives that

determine the quality of that schedule. These objectives, also described as performance indicators,

can be the minimization of completion time, the reduction of machine usage, the minimization of job

tardiness, minimizing costs and many others.

Focusing on static environment scheduling, the nature of the different problems found can be divided

into two categories [16]:

• Deterministic - processing times and other parameters are set and known a priori ;

• Stochastic - parameters and processing times are modelled as random variables that follow a

probability distribution.

Among the deterministic problems, a further classification is made, distinguishing single from multiple

machine problems. The difference between one another focuses on the increased complexity of the

problem, as shown in Figure 1.1(a). When only one machine processes the whole set of finite jobs, the

problem is to find the sequence in which to process the jobs. Multiple machines directly relate to more

complex arrangements, these configurations, by ascending order of complexity are parallel machine,

flow shop and job shop.

• Parallel machine problems [17] - studies the construction of schedules for parallel machines pro-

cessing a set of one operation jobs. The main objective is to guarantee that the execution of all

2



(a) Classification of scheduling problems.

(b) Classification of performance meaures involved. (c) Classification of criteria.

Figure 1.1: Classification of the scheduling problems.

jobs is done in an equitable amount of time. This theory marked the first steps for the theory of

multiple machines, according to [16].

• Flow shop problems [18] - each job is defined by stages, and each step is performed on a machine,

each job has to pass through each machine and the machines need to be arranged in a certain

manner, this describes the pure flow shop. Another type of flow shop is the permutation flow shop

[19].

• Job shop problems [20] - in this problem, the operations of each job can be assigned to a machine

for processing, meaning that a job can befall on a machine more than once. The classical job shop

problems has a set of identical machines, and each operation can only be performed in a specific

machine. The flexible job shop problem as a set of multi-purpose machines, where each operation

can be performed on more than one machine.

As for the performance measures, classification divides them into two groups, regular and non-

regular, as it is shown in Figure 1.1(b). Further explanation on this matter will be given in the following

sections.

As for the classification shown in Figure 1.1(c), it refers to the segmentation of different works by their
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use of the criteria. It divides into single criterion, where only one performance measure is analysed, bi-

criteria, which studies the effect of two performance measures and finally, multi-criteria, examining the

effect of three or more performance measures in scheduling.

Multiple Machines Scheduling

Taking a further look into multiple machines scheduling problems, a more detailed classification

arises [21], dividing these problems into four segments, open shop, flow shop, job shop and flexible job

shop. The next paragraph provides a more detailed description of each segmented problem in order of

increased complexity. A more graphical representation is presented in Figure 1.2.

Figure 1.2: Classification of the shop scheduling problems.

The open shop scheduling problem handles the assignment of single operation jobs to machines.

The flow shop scheduling problem also considers jobs with more than one operation, imposing job vari-

ability, but since each job has to pass by each machine, it has no machine flexibility. The job shop

scheduling problem additionally states that the order of machines can differ from job to job. This in-

creased complexity translates into imposing machine flexibility.

Finally, the most complex problem, that in addition to the previous job shop problem establishes job

variability, the flexible job shop problem. It states that each operation of each job can be executed by a

different set of machines.

In this work, the shop problem chosen is the Flexible Job Shop Problem, FJSP, the following section

will enhance the complexity and interest around it.

Flexible Job Shop Problem

In the previous pages, the complexity of the FJSSP was detailed. It arises naturally from the way in

which the problem itself is stated.

A set of operations belonging to a job can be performed by a chosen machine, each machine can

only process an operation at a time repeatedly making each machine incessantly available. All this with

the main target of finding the sequence that minimizes or maximizes a performance measure.

The FJSP is an NP-hard problem, with an additional resolution dimension. Apart from having to find

the sequence of jobs it also needs to discover the machine allocation. Further details on the complexity

of this problem are shown in [22].
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Additionally, since FJSP was firstly introduced, it spiked the curiosity of researchers, in a review

article from 2015 [23], it can be seen that between 1990 and 2014, a total of 404 publications that

addressed the Flexible Job Shop Scheduling Problem, FJSSP, were found, and categorized into 410

different applications. Figure 1.3(a), shows the distributions of papers addressing the FJSSP by year,

according to the survey mentioned.

In [24] from 2020, out of 218 research papers analysed, 117 articles from 2002 to 2019, addressed

the multi-objective optimization of FJSSP with an heuristic approach. It also shows the yearly trend of

publications, showing a rise in the last decade, and finding an average of 9 publications per year. Figure

1.3(b) shows this previously described yearly trend. Both figures allow for the conclusion that the interest

on both FJSSP and the particularized problem for multi-objective has been increasing throughout the

years.

(a) Yearly distribution of papers addressing the FJSSP, since it was first intro-
duced until 2014, according to [23].

(b) Yearly distribution of papers addressing the multi-objective FJSSP, from
2002 until 2019, according to [24].

Figure 1.3: Yearly distribution of papers, tackling the FJSSP (a), and tackling specifically the multi-
objective FJSSP (b).
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Evaluation Criteria of Flexible Job Shop Scheduling Problems

As already stated, the criteria used to evaluated the performance can be divided into regular and non-

regular. An objective function is considered regular if it is an non-decreasing function of job completion

times. The main objective is to minimize that measure [25], thus these regular criteria intends to finish an

activity as early as possible. Some examples of regular criteria are the makespan (Cmax), total workload

of machines (WT ), critical workload (WM ), mean flow time (C), and others.

As for non regular criteria, this type of performance measures are described by a not monotonic

function of the job completion times, for example, finishing a job early in a just-in-time environment

would mean that there is an excess of work-in-progress, (WIP).

Taking into account the analysis done by [23] on this matter, out of 197 research papers evaluated, six

objective functions make up for 75% of the criteria used. These six objective functions, are makespan,

total workload of machines, critical workload (workload of the most loaded machine), mean tardiness,

total tardiness and production costs. 47.21% of those papers use single objective optimization, roughly

4% use bi-criteria optimization, and 23.35% used multi-objective optimization, more specifically, use

three regular objective functions, the makespan, total workload of machines and workload of the most

loaded machine.

For the purpose of this work, these objective functions will be used, makespan, total and critical

workload. Their conflicting nature makes them appropriate to use for multi-objective optimization as

they bring significant complexity to the problem.

1.1.1 Scheduling Techniques

Commonly, two approaches are considered for solving the multi-criteria FJSSP [20], the first one

consists on a deterministic approach mainly composed by exact methods, the second one consists on

heuristic or meta-heuristic approaches.

First it is important to differentiate the use of multi-objective optimization as opposed to single objec-

tive. From Figure 1.3(b) it is easy to see that this problem has awakened the interest of researchers.

Among the many reasons behind that lies the approximation to real-world problems, and simultaneously

the increased complexity when compared to single objective optimization.

Multi-objective optimization addresses the problem of conflicting criteria, which is described as com-

peting objectives, meaning that the difficulty of the problem drastically increases. When dealing with

multiple criteria the goal shifts to finding a solution that presents the best trade-off between these con-

flicting objectives.

The first approach to handle Multi-Objective Flexible Job Shop Scheduling Problem, MOFJSSP, relies

on mathematical models, typically used in smaller size problems due to the need of high computational

power. The second approach has been widely studied within the scientific community due to its capability

to generate good solutions for NP-hard and combinatorial problems, such as the FJSSP. Within the

heuristic approaches two types exist: hierarchical and integrated [26]. Hierarchical approaches intend

to reduce complexity through decoupling the sequencing and routing sub-problems, by solving them
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consecutively. On the contrary, integrated approaches do not differentiate between the sequencing and

routing sub-problems.

Figure 1.4 refers to the distribution of the different techniques used to solve the multi-objective FJSSP,

according to [24]. It shows the five different methods found to evaluate multi-objective functions, and

that Pareto optimality is used as ranking and selection method on 56.9% of the papers analysed. The

figure shows the arrangement of methods used sorted by technique [24]. The genetic algorithm, that

belongs to the evolutionary algorithms category, is separated in this configuration due to the number of

papers evaluated that utilized this specific algorithm. It also shows that algorithms such as Artificial Bee

Colony and other swarm intelligence heuristics favour Pareto optimality method, as well as Evolutionary

Algorithms and Genetic Algorithms, whereas Ant Colony Optimization algorithms use the weighted sum

method.

Figure 1.4: Different techniques applied to solve the MOFJSSP.

Deterministic Techniques

The deterministic approaches, composed of mathematical models of the multi-objective FJSSP are

established through multi-criteria Mixed Integer Linear Programming (MILP), and are typically extensions

of previously published single criterion models.

For instance, in [9] it is contemplated the production of seamless steel tubes, with several machines

available in parallel that bring flexibility to the scheduling problem. The problem in question provides two

quests for scheduling: first determine the allocation of jobs for each machine and second the sequence

of jobs at each stage. The authors developed a non-linear mixed integer linear programming model with

the total idle time of machines and the waiting time of jobs as the performance measuring criteria, and

then proposed a genetic algorithm.

A review on several mathematical models designed for the FJSSP from [27], evaluates these models

with respect to the decision variables that represent the operations execution sequence of the different

machines. The authors in [28] present a multi-objective model to minimize makespan and total tardiness.

Mathematical models for MOFJSSP and solutions using exact method are mainly used for small and

medium sized problems, due to their ability to provide fairly high quality solutions, which can be used as
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a comparison cornerstone for the development of heuristic methods.

The masters thesis [29] provides a detailed analysis showing the inefficiency of these models for

larger sized problems.

Heuristics and Meta-heuristics Techniques

Solving production scheduling problems with the aid of heuristics and meta-heuristics has become

common over the past few decades. Heuristics are methods that require few to medium computational

power, that find sensibly good quality solutions, but have a major setback which is not guaranteeing to

find globally optimal solutions. The difference between heuristics and meta-heuristics is that the latter

are high level heuristics that choose and guide heuristics, as local search, in order to escape local

minimums, but despite these efforts, can not fully guarantee the global optimum is reached.

Heuristics are methods supported by the idea of exploring in neighbourhoods, such methods begin

from an initial solution and iterate attempting to find better solutions within the neighbourhood of previ-

ously formed solutions. These search techniques stop after a given stopping criterion is reached, usually

after enough iterations and the solution is ”stuck”.

Meta-heuristics, for instance, genetic algorithms and tabu search, extend local search by escaping

local optimum solutions. These meta-heuristics, escape local optimum by creating better starting points

for the local search in an astute manner, instead of just generating random solutions, or by exploring

worse solutions. This will increment the space and the variety of the search for the following iteration.

In [30] a Pareto optimality-based hybrid algorithm is presented to solve the MOFJSSP. This hybrid

technique merges the knowledge illustration skills of fuzzy logic with the adaptive abilities of evolutionary

algorithms. First it generates an initial population with an approach by localization and then uses a

genetic algorithm to find better solutions.

Another example can be found in [31], where a hybrid multi-objective evolutionary approach is used to

solve the MOFJSSP, based on the well known NSGA-II. It uses a modified crowding distance measure

to maintain diversity within the population, and obtain better results if there are fewer non-dominated

solutions found. It also uses local search based on critical path to improve the convergence ability of the

algorithm.

Other examples of meta-heuristics used to solve the MOFJSSP are Genetic Algorithms (GA) [32, 33],

Particle Swarm Optimization (PSO) [34], Memetic Algorithms (MA) [35], Artificial Bee Colony (ABC)

[36, 37], Variable Neighbourhood Search (VNS) [38], Tabu Search (TS) [39] and Ant Colony Optimization

(ACO) [40]. Meta-heuristics have been widely used to solve production scheduling problems, not only

in the flexible job shop problem, but also for areas such as open shops, flow shops, classical job shops,

batch processing and others.

Moreover, many of the approaches used to solve multi-objective optimization problems can be clas-

sified into three different categories [41]. The first category addresses the multi-objective optimization

problem by aggregating the objective functions used into a weighted sum. The second category is a

non-Pareto approach were each objective is handled separately. The third category is based on find-

ing Pareto optimality. Although there are some examples of algorithms using the first category to solve
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the multi-objective optimization problem, like [42–45], the majority of approaches use Pareto optimality

to handle the multi-objective optimization problem, as shown by figure 1.4. Some examples of papers

addressing MOFJSSP with a Pareto optimality approach are [46],[47] and [48].

1.1.2 Artificial Bee Colony Algorithm

Artificial Bee Colony algorithms integrates the Swarm Intelligence branch of algorithms that is sum-

marily defined by algorithms that model the collective behaviour of a decentralized population of interact-

ing, self-organized swarms [49]. Swarm meta-heuristic were first introduced in the early 1990s, with the

advancements on computational power, the computational cost was greatly reduced and researchers

rotate towards drafting their ideas from nature to solve computer aided problems [50]. Efficient meta-

heuristic procedures have been developed based on honey bees intelligent behaviour, in particular, they

are motivated by mutual cooperation and self-organization to guide the bees in the allocation of tasks

and search for new food sources.

Swarm is the term used for describing the aggregation of a population of natural creatures, like fishes,

birds, insects, through collective behaviour. Such behaviour was extensively studied by researchers,

for methods such as Ant Colony Optimization [51] or Fish School Search [52]. Swarm Intelligence is

gaining importance in research areas such as computer science, biology, engineering and operations

research. Evolutionary algorithms are search algorithms that resemble natural evolution and the Swarm

Intelligence branch is no different, with publications in the fields of renewable energy [53], medical image

processing [54], robotics [55], smart structures [56], to name a few.

Similarly to evolutionary algorithms, swarm intelligence methods also start with an initial population

of organisms, the initial solutions, and from that point perform mutations and recombinations, and se-

lect the fittest organisms to subsist each generation, improving the solutions. The difference is that in

swarm procedures, the unsupervised isolated organisms perform changes based on the perception of

their neighbourhood, showing a stochastic behaviour. As for the idea behind ABC, it relies on the self-

organized division of tasks presented in swarm intelligence that can be observed in honey bee colonies.

The Artificial Bee Colony algorithm, ABC, is a meta-heuristic approach first introduced in 2005 by

Karaboga [57]. Karaboga then evaluated the performance of the proposed algorithm by comparing with

GA, PSO and PS-EA (Particle Swarm inspired by an evolutionary algorithm) in [49]. In this study it

showed that the proposed algorithm when compared to the GA, PSO and PS-EA methods, is able to

escape local minimum and behaved efficiently for optimization problems with multi-variable and multi-

modal functions. This method is inspired by the behaviour of honey-bee swarms and has three different

types of bees: the scout bees that fly randomly and without guidance within the search domain, then the

employed bees that use the neighbourhood space to select a random solution in order to perturb, and

finally the onlooker bees that utilize fitness functions to select the probabilistic solution by exploiting the

neighbourhood space. The bees act based on greedy selection. This means that when they find a new

location with higher nectar amount, they forget the older location and memorize the new one.

This algorithm has an extensive number of applications, on diverse fields such as Renewable Energy
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Systems [58, 59], in Nuclear Energy Systems [60], in medical Image Segmentation [61] and in Robotics

[55].

In [58] it is presented an ABC to solve power loss minimization, voltage stability index and emis-

sions for photovoltaic, wind and fuel cell systems. The proposed multi-objective achieved results with

considerably good quality and better diversity when compared to NSGA-II and MOPSO procedures.

Within the renewable energy scope, [59] proposed an ABC algorithm to accurately identify the pa-

rameters of solar cells. When comparing the technique with other evolutionary algorithms, it showed

a better search capacity to face multi-modal objective functions, and the experimental results show the

robustness and accuracy of the method applied.

In the field of nuclear energy [60] proposes an ABC algorithm to find the best fuel lattice design of a

pressurised water nuclear reactor that maximises the operating time. In this research it was also applied

a GA and a PSO for the same problem and the results obtained verified that the ABC outperformed both.

It also shows that the artificial bee colony algorithm used offers more flexibility and less parameters for

controls.

In [61] it is presented a novel automated approach for blood vessel segmentation with a clustering

approach. Initially fuzzy c-means (FCM) is optimized using an ABC to localize the retinal vessels and

then using a local search for boosting the cluster centres.

In the field of robotics, [55] presents a co-evolution global-best-leading ABC algorithm to handle the

optimization problems with dimension-independent and dimension-dependent parts. It also address the

robot path planning problem to test the effectiveness of the proposed algorithm. The proposed algorithm

finds higher quality and more robust results than the comparison algorithms.

1.2 Objectives

The main objective of this thesis is to develop tools for solving the Multi-Objective Flexible Job Shop

Problem, given this, it can be divided into three sub-objectives:

• Implement a Multi-Objective Artificial Bee Colony algorithm using a Pareto optimality approach;

• Implement metrics that evaluate the convergence and diversity of non-dominated solutions for

tuning the parameters used in the algorithm;

• Test the overall performance of the algorithm developed using two different benchmark datasets.

1.3 Contribution

The contributions of this thesis focus on the development and implementation of a method to produce

schedules with multi-objective optimization.

This work follows the plan of creating a schedule with considerable high quality that is capable of

reaching high levels of performance through the minimization of the makespan, total workload of ma-
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chines and maximum workload. To achieve these results an Artificial Bee Colony algorithm was imple-

mented,with a coding method that finds feasible solutions every time. Different strategies were used to

generate an initial population and to apply mutation and crossover procedures. To improve quality of the

solution a local search operator based on the critical path was applied.

Furthermore, to deal with the different parameters needed to employ the implemented algorithms,

a Bayesian Optimization technique was used. Lastly, the performance of the proposed algorithm is

evaluated using two benchmark datasets and comparing the results with several state-of-art algorithms.

1.4 Outline

From this point forward, this work is organized as follows.

Chapter 2 gives a further explanation and formally formulates the Flexible Job Shop Scheduling

Problem, for a multi-objective approach.

Chapter 3 details the implementation of the multi-objective Artificial Bee Colony with a Non-Dominated

Sorting Algorithm, and describes the process behind parameter tuning using Bayesian Optimization.

Chapter 4 discusses the results gathered by the proposed algorithm, as well as the performance

evaluated through benchmarks.

Chapter 5 summarizes the results obtained and gives some perspectives on the future work based

on the insights retrieved from this work.
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Chapter 2

Flexible Job Shop Problem

This chapter will describe the Flexible Job Shop problematic and provide a description and formula-

tion of the respective problem.

2.1 Flexible Job Shop Scheduling Problem

The Flexible Job Shop Scheduling Problem (FJSSP) is the generalization of the classical Job Shop

Scheduling Problem (JSSP). This means that the main objective of the classical static JSSP is to find

the schedule that processes n jobs on m machines following a given objective function.

To generalize the JSSP, FJSSP has an additional condition that imposes job variability and also

creates the need for an operation sequence solution, not only the machine assignment. FJSSP allows

operations to be executed by a set of machines instead of a single machine, providing a more realistic

approach to the scheduling problems.

The FJSSP is stated as follows:

• A set of jobs, independent from each other J = {J1, ..., Jn};

• A set of independent machines, M = {M1, ...,Mm};

• A sequence of operations from each job Ji, Oik = {Oi1, Oi2, ..., Oih};

• Each operation Oik, must be processed by a subset of machines such that Mik ⊂M . If Mik = M

∀i, k then the problem becomes a flexible job shop problem;

• Each machine can execute exactly one operation at a time;

• Each job and each operation must be processed exactly one time;

• Each job has a specific linear precedence structure with the sequence of machines it visits;

• If the precedent operation is still being processed, the remaining operations wait until the process-

ing is completed;
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• The processing time PTikm is given by the time it takes for operation Oik of job Ji to be performed

in machine Mm, without interruption.

• Machines must always be available at the start of the scheduling horizon;

• The start time of every operation Oik on machine m is defined as STikm;

• The finishing time of each operation Oik on machine m is defined as FTikm

The following table illustrates the problem formulation, the rows correspond to the operations and the

columns to the machines, the entries correspond to the respective processing time (∞ corresponds to

an operation that cannot be performed in that machine).

M1 M2 M3 M4

O11 4 7 6 5
O12 2 6 ∞ 5
O21 4 5 7 ∞
O22 5 ∞ 6 3
O23 ∞ 5 4 7
O31 5 3 ∞ 6
O32 ∞ ∞ 4 ∞
O41 2 4 5 ∞
O42 ∞ 4 2 ∞
O43 5 4 6 3

Table 2.1: Processing time of each operation Oji in each machine Mi

As already stated, the FJSSP has an additional problem when compared to the classical JSSP, where

the assignment of an operation is not fixed to a specific machine a priori, but instead it is assigned a set

of machines able to perform that operation. This increases the complexity of the problem, since it has

both a sequencing and a machine assignment problem.

The FJSSP can now be divided into two sub-problems, a routing problem that selects the machine to

process each operation, and the sequencing problem on all the selected machines to obtain a feasible

schedule. Additionally, some constraints related to this, are:

• The technique constraint which requires the operation to only be processed after all precedent

operations have been processed, this will keep operations from overlapping and keep the machine

available for other operations;

• The resource constraint which requires that one machine handles one and only one operation at

a time;

• The precedence constraint for operations of the same job.
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2.2 Objective Functions

The FJSSP intends to obtain a feasible schedule while quantifying performance measures. In manu-

facturing, the performance of a system relies on numerous factors, for example, cost, job manufacturing

makespan, resources utilization, employee allocation, machine utilization, and many others.

In order to establish this performance quantification, some objectives are taken into account, in order

to determine how the schedule must be created. This section will present some of the most important

objectives to consider when scheduling a FJS.

Makespan

The makespan (Cmax), represented in (2.1), is the maximum elapsed time between the beginning of

each job and its ending task, this is the maximum completion time of all jobs in the production system.

The intention behind using the makespan as an objective of the FJSSP is to produce feasible schedules

where all jobs are completed as fast as possible.

Cmax = max (C1, ..., Cj , ..., Cn) , (j ∈ J, k ∈M, i ∈ Oji) (2.1)

Another objective, that is correlated with the makespan, is the Weighted Completion Time, given by

equation (2.2). With an increased parameter, the weight wj , that corresponds to the importance of each

job.

WCT =

n∑
j=1

(wjCj) , (j ∈ J) (2.2)

Workload

Machine workload can be divided into two objectives, the Total Machine Workload (TMW) given by

equation (2.3), and the Maximum Machine Workload (MMW) given by equation (2.4). The first one

(TMW) refers to the processing times of each operation, of each job, and its minimization will result in a

more efficient allocation of the operations in its respective machines. The second one (MMW) considers

the balance of workload between all machines and intends to avoid allocating too much work to a single

machine.

Wt =

m∑
k=1

n∑
j=1

nl∑
i=1

(pjikxjik) , (j ∈ J, k ∈M, i ∈ Oji) (2.3)

Wm = max
1≤k≤m

 n∑
j=1

nl∑
i=1

(pjikxjik)

 , (j ∈ J, k ∈ K, i ∈ Oji) (2.4)

Tardiness and Lateness

Some objectives related to the due dates of jobs are the tardiness and the lateness objectives. To

minimize the lateness, Lj , of a schedule is the same as minimizing the maximum lateness, Lmax of that
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schedule, and is defined in equations (2.5) and (2.6), where dj corresponds to the due date.

Lj = Cj − dj , (j ∈ J) (2.5)

Lmax = max (Li, ..., Ln) (2.6)

Tardiness handles the number of tardy jobs as an objective, will qualify how tardy a job is, instead of

measuring lateness and is given by equations (2.7) and (2.8).

Tj = max {0, cj − dj} , (j ∈ J) (2.7)

n∑
j=1)

Tj , (j ∈ J) (2.8)

Besides the objective functions described above, there are many others, such as Manufacturing

Cost, Earliness, Unity penalty, and many others. The choice of an objective function depends on the

practical uses of the considered scheduling problem.

For this case, three objective functions were taken into consideration, the Makespan, the Total Ma-

chine Workload and the Maximal Machine Workload. These objectives were chosen not only by their

significance as to measure the efficiency of a schedule, but they are also in conflicting with each other.

Another motivation to choose these three specific objectives is the fact that they have been widely

documented within the literature, which will help for the sake of results analysis.

2.3 Mathematical Formulation

The Multi-Objective Flexible Job Shop Scheduling Problem (MOFJSSP) determines the machine

allocation for each operation and the sequence in which those operations will be performed in a way that

optimizes multiple objectives. The mathematical formulation is presented below, based on [62].

But first it is important to give some definitions, equation (2.9) is used to describe a multi-objective

problem without losing generality. Where x corresponds to the decision vector in space and y represents

the objective vector with l objectives.

min y = f(x) = (f1(x), ..., fl(x)) , (x ∈ Ω, y ∈ Rl, l > 1) (2.9)

So, the multi-objective flexible job shop scheduling problem can be mathematically formulated as

follows:
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Minimize Cmax = max (C1, ..., Cj , ..., Cn) , (j ∈ J, k ∈M, i ∈ Oji)

Wt =

m∑
k=1

n∑
j=1

nl∑
i=1

(pjikxjik)

Wm = max
1≤k≤m

 n∑
j=1

nl∑
i=1

(pjikxjik)

 , (j ∈ J, k ∈ K, i ∈ Oji)

(2.10)

subject to STjik +
∑
k

PTjik ×Xjik ≤ STj,i+1,k, (j ∈ J, k ∈ K, i ∈ Oji)) (2.11)

ST r
jik +

∑
ji

PTjik ×Xjik ≤ ST r
lpk, (j ∈ J, k ∈ K, i ∈ Oji, p ∈ J, l ∈ Oji) (2.12)

STjik ≤ ST k
lpk + (1−Xjik)×BN, (j ∈ J, k ∈ K, i ∈ Oji) (2.13)

ST k
lpk + (1−Xjik)×BN ≥ STjik, (j ∈ J, k ∈ K, i ∈ Oji) (2.14)∑

ij

Xjik = 1 (j ∈ J, k ∈ K, i ∈ Oji) (2.15)

∑
ij

Xjik ≤ 1 (j ∈ J, k ∈ K, i ∈ Oji) (2.16)

Xjik ≤ Yjik (j ∈ J, k ∈ K, i ∈ Oji) (2.17)

Xjik =

1, if operation Oji is selected to be performed on machine k

0,otherwise
(2.18)

Yjik =

1, if operation Oji can be performed on machine k

0,otherwise
(2.19)

Equations (2.11) to (2.19) ensure that all the previously described constraints in section 2.1 are re-

spected. Equation (2.11) ensures that an operation belonging to the same job can only start once the

previous one is finished, this constraint guarantees the technological sequence for each job. Equation

(2.12) ensures that each machine will process one operation at a time, it represents a disjunctive con-

straint on the machine sequencing problem. Equations (2.13) and (2.14) guarantee the application of

the link constraints, ensuring that the starting time of an operation is the same as the starting time of its

machine. Equation (2.15) ensures that every operation is allocated to one machine from its candidate

set, equation (2.16) ensures that only one operation is allocated to a specific machine at any given time

and equation (2.17) guarantees that operations will only be allocated to machines that are available for

them. Finally, equation (2.18) guarantees that an operation is allocated to a machine and equation (2.19)

defines if the machine is able to process that operation.

In order to define the Makespan equation (2.1) is used, for the Total Machine Workload (2.3) and for

the Maximal Machine Workload (2.4).
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2.4 Representation

2.4.1 Disjunctive Graph representation

In order to represent the scheduling problem it will be used a disjunctive graph, as defined in equation

(2.20).

G = (V,Con ∪Dis) (2.20)

In the graph, operations are denoted by nodes (i/j) ∈ V , with V being the set of nodes that represent the

operations, this set will include two dummy nodes, the starting node (1) and the finishing node (N + 1).

The precedence constraints of each operation in each job is assured by the conjunctive arcs Con.

A conjunctive arc (i, j)→ (k, j) denotes that operation Oji, precedes operation Oki belonging to that

same job, these arcs are defined for any two operations within the same job. Also, these directed arcs

ensure that the technological constraint is fulfilled. Adding to this premise, the starting node is connected

to the first operation of each job, and the ending node is also directly connected to the last operation of

each job, as it can be observed on figure 2.1(a).

The disjunctive arcs represent a sequence of jobs done on the same machine, at first these arcs

exist in both directions, but in order to make a feasible schedule that fulfils both the machine assignment

and operation sequence, only one direction of those arcs will be selected. Given the example on figure

2.1(a), at first, the disjunctive arcs represented by dashed lines would have either directions, but for each

of those arcs, only one direction would be able to deliver a feasible schedule. The final graph will turn all

the disjunctive arcs that allow to have a feasible schedule into directed arcs, this will be considered as

the set Dis′, ans thus obtaining a new acyclic graph G′ = (V,Con ∪Dis′).

Each arc will have a weight, that translates into the length of that arc, which is the processing time of

the operation from which that arc originated (example: the arc (i, j) → (k, j) will have a weight PTjik).

Respectively, the starting node and the ending node will have no processing time, so the weight of the

conjunctive arcs that connects them to their respective operations will have no weight. The time to

complete the longest path of the graph is the makespan, and the new directed graph will be given by

equation (2.21), with S is an acyclic complete selection of the disjunctive edges turn into directed edges.

G(S) = (V,Con ∪ S) (2.21)

The final graph will deliver a feasible schedule corresponding to a sub-graph S which, contains all the

conjunctive arcs, for each pair of disjunctive arcs, S contains only one of them and finally S is acyclic,

meaning that it does not contain any directed cycle.

To further explanation, the graph in figure 2.1(a) presents the graph from the problem formulated in

table 2.1 turned into a feasible schedule. Node 1 and Node 12 correspond respectively to the starting

and the finishing nodes. Node 2 corresponds to operation O1,1, Node 3 to operation O1,2, Node 4 to

operation O2,1, and so on. The numbers above each node, in blue, represent the processing time of

that operation. The full arrows describe conjunctive arcs, and the dashed arrows correspond to the

disjunctive arcs.
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2.4.2 Gantt Chart representation

A Gantt chart is a commonly used bar chart that gives a visual representation of a feasible solution.

It represents the allocation of the operations of each job and its given sequence. It gives also a rep-

resentation of this allocation and also the starting time of each operation and its respective completion

time and the idle time on each machine.

The schedule that minimizes both the makespan and workload will be a more compact schedule,

where the last operation to be processed will be completed at a lower time instance, and well balanced

in terms of operations in each machine, such that the minimum processing time is chosen, but also

ensures that the operations are well distributed within the machines.

The main advantage in using a Gantt Chart is that the information that contains is easily visualised

and interpreted. To corroborate this premise figure 2.1(b) easily gives information about the the number

of jobs, operations and machines, the starting and completion time of each operation, it also deliver

information about the machine allocation, operation sequence and idle times on each machine. Also by

observing table 2.1 it can also be concluded that the schedule presented on this Gantt chart is not an

optimal one.

(a) Disjunctive Graph

(b) Gantt Chart

Figure 2.1: Representation of a Disjunctive Graph and a Gantt Chart.
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Chapter 3

Multi-Objective Artificial Bee Colony

for Flexible Job Shop Scheduling

The first section of this chapter will provide a thorough description of the algorithm used to implement

the Multi-Objective Flexible Job Shop Scheduling Problem, inspired by works [32, 33, 35–37]. The next

section describes the process of tuning the parameters used in the algorithm, to obtain better solutions,

using Bayesian Optimization.

3.1 Artificial Bee Colony with Non-Dominated Sorting Algorithm

In order to solve the MFJSSP described in section 2.3, it was implemented an Artificial Bee Colony

with Non-Dominated Sorting Algorithm. The ABC algorithm was initially introduced by [57], and later

enhanced in [49], essentially inspired by the intelligent foraging behaviour of a honeybee swarm, it

contains three foraging bees, the employed bees, the onlooker bees and the scout bee.

A first step is taken by generating random food sources and associating the employed bees to those

food sources. Then these bees will explore their neighbourhood in search for new food sources, and

choose to keep exploring or drop the newly found food source, based on the amount of nectar it provides.

Once the employed bees complete their process and enrich the hive with neighbouring food sources with

considerably good amounts of nectar, this information will be shared with the onlooker bees.

And by now the employed bees have established a so called dancing area, which is the area from

the hive where the information of food sources and their nectar amounts is traded. The onlooker bees

will choose which food sources to explore based on the quality of that food source, determined by the

nectar it provides, resulting in food sources with higher quality will captivate more of these onlooker

bees. These bees will increase the dancing area by exploiting the chosen food sources with the same

objective of finding higher quality food sources.

The exhausting food source from the employed bees, will then be associated with a scout bee that

will then explore around that food source for a new and better one.

To translate this process, each food source represents a feasible solution, its nectar amount corre-
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sponds to the quantitative values of each objective function. The employed and scout bees perform

exploration, as the onlooker bees perform exploitation. This process will iterate until it meets a stopping

criterion.

3.1.1 Procedure to implement a Pareto-based Artificial Bee Colony for the Multi-

Objective Flexible Job Shop Problem

To properly define the algorithm implemented, first it is necessary to make some definitions. As

previously stated in 2.3, a multi-objective problem is described as in 2.9, thus to define which solutions

are better, and which are worse, it is necessary to apply some widely known notations and methods to

classify them.

Starting with the Pareto dominance, straightforwardly, if a solution S1 dominates another solution

S2 (S1 ≺ S2, which denotes that S2 is dominated by S1), then 3.1 and 3.2 must always be true.

∀i ∈ {1, 2, 3, ..., l} : fi(S1) ≤ fi(S2) (3.1)

∃i ∈ {1, 2, 3, ..., l} : fi(S1) < fi(S2) (3.2)

Equation 3.1 ensures that for all objective functions, their respective values in S1 are less or equal

than the values of S2. Equation 3.2 ensures that at least one of the values of S1 from an objective

function is smaller than that of S2.

With this definition of Pareto dominance it is now possible to define a Pareto non-dominated so-

lution, which is a solution that is not dominated by any solution within the set of solutions found, it is

considered an optimal solution and will be included in the Pareto front.

The Pareto front is the selection of the non-dominated solutions found as well as their respective

image from the objective space. In this work it will also be used a structure to register the non-dominated

solutions, which will be updated constantly through each iteration of the algorithm, as shown in figure

3.1.

Figure 3.1: Exemplification of the Non-dominated sorting procedure.
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Algorithm 1 Pseudo-code of the Non-Dominated Sorting Algorithm

1: for each solution i from the Population do . Create the first Pareto Front
2: Allocate a set SDi, to memorize solutions which are dominated by i
3: Define ndi as the number of solutions that dominate i, initially, as zero
4: for each solution i from the Population do
5: if Solution j is dominated by i then
6: Add that solution to SDi;
7: if Solution i is dominated by j then
8: Increment ndi by 1;
9: if ndi = 0 then

10: Store solutions i in the first Pareto front
11: Set k as 1 . Create other Pareto Fronts until all solutions are sorted
12: if kth Pareto Front is not empty then
13: kth + 1 Pareto Front is empty
14: for each solution i ∈ kth Pareto Front do
15: for each solution j ∈ SDi do
16: Decrement ndj by 1
17: if ndj = 0 then
18: Store solution j in the kth + 1 Pareto Front
19: Increment k by 1 and go to line 12

As the number of solutions is rather diverse, and will vary from iteration to iteration, it is necessary

to fractionate the solutions following a dominance level and to sort them by that same level and an

additional method, the crowding distance [13]. The process of sorting and fractionating the solutions

according to a dominance level di, will for now on be defined as Non-dominated sorting. The first level

will accommodate the non-dominated solutions from the current set, the second level will uphold the

solutions that are dominated by the ones from the first level, this process repeats until there are no more

solutions to allocate.

In each level, solutions will have different objective values, so the crowding distance measures how

close or far an individual solution is from its neighbour. Crowding distance for each solution is calcu-

lated after the non-dominated sorting is complete, so that for each level, the solutions are sorted in an

ascent order. For the first solution S1 and the last solution Slast the value of the crowding distance is

not calculated, it will be set as infinity. As for the remaining solutions, the crowding distance cdi will be

calculated according to equation 3.3.

cdi =

∞ if i = 1 or i = last∑L
l=1

fl(si+1)−fl(si−1)

fmax
l −fmin

l

otherwise
(3.3)

Where cdi is the crowding distance of solution si, fl(si) represents the value of the lth objective

function for solution si, fmax
l and fmin

l represent, respectively, the maximum and minimum values of

that lth objective function.

With this stated, it is easy to conclude that solutions with higher crowding distance will contribute to

more diverse group of solutions, thus as a final though a solution S1 belonging to the same level di as

the solution S2 , is superior than the latter one, if its crowding distance is higher (d1 = d2 and cd1 > cd2).

The methods described in this section will be used in the algorithm described in the following section,
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as a way to organize solutions and to keep higher number of diversely allocated solutions.

3.1.2 Algorithm Steps and Procedure

The implemented algorithm will start its iterative process by linking the employed bees to a food

source, that was generated randomly, when initializing the parameters and food sources. In the next

step these employed bees will move to a new food source within the neighbourhood of their previous

food source, always rating them by the amount of nectar. When these bees complete their process,

they share their information with the onlooker bees, who will then move from food source to food source,

always evaluating the amount of nectar in each source.

A general procedure of the ABC steps can be given by the following statements:

• Initialization step;

• Repeat

– Employed Bees Step;

– Onlooker Bees Step;

– Scout Bees Step;

– Update Solutions Set;

• Until it reaches maximum generation.

In the initialization step, the parameters are set, a population is initialized, creating the initial food sources

with their respective nectar amounts, then the best ones are selected to continue.

The next step, the employed bees step, these bees will probe to new food sources with the soul ob-

jective of acquiring more nectar to their neighbourhood, when a new food source is found, an evaluation

is made between the amount of nectar from the old and the new food sources, and the best one remains.

Finally, these bees share their information with the next foraging bees, by dancing within their colony.

The next foraging bees start a new step in the algorithm, the onlooker bees step, these foragers will

now select the food sources to explore through a tournament selecting one food source per bee. After

this selection is done, the onlookers start exploring the neighbourhood of their selected food source,

similarly to the employed bees, but with some added depth to their foraging.

The final step is the scout bee step where a random food source is chosen, and enhanced by these

bee exploring around its neighbourhood and then if this bee finds a new food source with a similar or

better fitness value, it will replace the food source with the worst fitness value from within the current set

of food sources by the newly found one.

These moves will be performed until they satisfy the termination criterion, which in this case, is when

it reaches the maximum number of generations.

The algorithm described can be further visualized in figure 3.2, which gives a general framework

of the process, and the pseudo-code for the implemented method is described in algorithm 2, that

presents a more detailed schema of the steps described above. A further explanation of the different

steps is provided from sections 3.1.3 to 3.1.12.
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Algorithm 2 Pseudo-code of the ABC Algorithm

1: Initialize parameters:
2: Initial Population (PS),
3: Maximum Generation (Genmax),
4: Probability of Tournament (Pas),
5: Probability of Crossover (Pc),
6: Probabilities of rules for generating the Machine Assignment vector (Pm1 and Pm2)
7: and Probabilities of rules for generating the Operation Sequence vector (Po1 and Po2)
8: Initialize population from the procedures to generate machine assignment an operation sequence

vectors that compose each solution, and calculate the value of each objective function;
9: Apply Non-Dominated Sorting to the population;

10: repeat
11: Employed Bee Step:
12: Apply exploitation search;
13: Update Population, if possible;
14: Onlooker Bee Step:
15: Apply exploitation search generating population Pt;
16: if Randomnumber < Pas then
17: Apply tournament selection to select solution s′ from the solutions found in previous step;
18: else
19: Select solution s′ randomly from the solutions found in previous step;
20: Apply crossover operators:
21: if Randomnumber < Pc then
22: Two-point crossover for machine assignment;
23: else
24: Uniform crossover for machine assignment;
25: Apply crossover operator for operation sequence;
26: Apply local search based on critical path generating population Qt;
27: Apply recombination and selection to Pt and Qt and update global population with the best

Pareto front if possible;
28: Scout Bee Step:
29: Select, randomly, a solution from population;
30: Apply exploitation search, generating a new solution;
31: Apply local search to the newly generated solution;
32: Replace the worst solution in population (found through crowding distance) by the newly gen-

erated solution, if possible;
33: until iteration = Genmax
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Figure 3.2: Structure of the ABC algorithm implemented.
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3.1.3 Solution Representation and Encoding

In the previous section food sources are a representation of solutions, these solutions will be rep-

resented by two vectors, a machine assignment vector and an operation sequence vector, both

vectors will represent a feasible solutions. The first one, machine assignment vector, allocates each op-

eration from each job to a machine within its machine set, the second one, operation sequence vector,

conceals the sequence of operations for each job.

Figure 3.3: Illustration of a coded solution.

As an example, the processing time table 2.1, were there is four jobs, four machines, and a solution

is represented in figure 2.1, that graph comes from the decoding of the machine assignment vector and

the operation sequence vector that can be observed in figure 3.3. The decoding technique will be further

explained in section 3.1.4.

The machine assignment vector [1 1 2 4 3 2 3 1 3 4] depicts that operation one, from job one O11 will

be processed on machine 1, operation 2, from job one O12 will be processed on machine 1, operation

one, from job two O21 will be processed on machine 2, and this same logic will apply to the remaining

operations, so that each integer from the vector will correspond to a machine assigned uninterruptedly

for each operation.

The second part of the solution, the operation sequence vector [2 2 3 4 1 4 2 3 4 1] works a little

differently, the vector corresponds to the following sequence (O21 → O22 → O31 → O41 → O11 → O42 →

O23 → O32 → O43 → O12), in words, the operations from each job correspond to their job number, and

the ith happening of a job denotes the Ith operation of that same job.

3.1.4 Solution Decoding

To transform the machine assignment vector and the operation sequence vector that constitute the

encoded representation of a feasible solution, into a schedule is the action of decoding the solution. To

represent the schedule it will be used a Gantt chart, like the one in figure 2.1(b) and it is necessary to

establish at what time each operation starts and ends, and also the idle time between operations in the

same machine.

As already stated in section 2.4 the precedence constraints must allows uphold, this means that the

second operation of a job, can only start after the first one has finished, and if that operation can not

start immediately after, due to its machine being currently processing another operation, from another

job, it will create idle time on that machine. Considering the makespan objective, a left-shift scheme may

be applied in order to shift operations as much to the left as possible, thus compacting the schedule.
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3.1.5 Population Initialization

As previously stated, a solution needs two components the machine assignment vector and the

operation sequence vector, and so an initial population needs to guarantee diversity and quality of its

solutions, another important point being the ability to avoid falling into local optima, and so it was used

an hybrid way of generating an initial population set with P = PS × m × n solutions, where PS is a

predefined parameter related to the size of the initial number of solutions.

To generate initial machine assignment vectors, three rules were used: a random rule, a local

minimum processing time rule, and a global minimum processing time rule.

1. Random rule: in order to introduce diversity to the vector it generates, it selects a random machine

within the machine candidate set for each operation and allocates it to its respective position in the

machine assignment vector.

2. Global minimum processing time rule: this rule intends to consider the global workload of the

solution. Its process is described by:

(a) Find the minimum processing time of the entire processing time table;

(b) Fix the minimum value found on the machine assignment vector;

(c) In the column where it was found the global minimum processing time, add its value to every

other entry from that column;

(d) Go back to point (a) and without considering the fixed rows and repeat the process until all

operations are allocated to a machine.

3. Local minimum processing time rule: similar to the second rule, the main difference is that it

selects the minimum processing time for each row. The steps for this rule are explained as follows:

(a) From the first operation, represented by the first row, and for each row of the processing time

table, find the minimum processing time of the row;

(b) Fix the minimum value found on the machine assignment vector;

(c) Add the selected processing time to every other entry from the same column;

(d) Go back to point (a) until all rows of the processing time table are handled.

The operation sequence initialization process presents three rules, similarly to this first one de-

scribed, only with different rules. The three rules applied were: a random rule, a most time remaining

rule, and a most number of operations remaining rule.

1. Random rule: it generates a randomly the sequence of operations on each machine.

2. Most time remaining rule: it sequences the jobs in a non-increasing remaining time order, so that

the job with the most remaining time will be selected first. It pursues the following method:

(a) Operations are pre-allocated to the machines, so sum up the processing time of all operations

per each job, to calculate the remaining work to be concluded for each job;
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(b) Sort the jobs by the amount of work to be done and select the one with the higher value;

(c) Fix the first operation from the selected job on the operation sequence vector;

(d) Subtract the processing time of that fixed operation to the amount of work to be concluded

from the selected job;

(e) Go back to point (b) and repeat until all operations are sequenced.

3. Most number of operations remaining rule: it selects first the jobs with the most unprocessed

operations remaining.

(a) Operations are pre-allocated to the machines, so sum up the number of operations per job,

to calculate the remaining operations to be concluded for each job;

(b) Sort the jobs by the amount of operations to be done and select the one with the higher value;

(c) Fix the first operation from the selected job on the operation sequence vector;

(d) Subtract one to the amount of operations to be concluded from the selected job;

(e) Go back to point (b) and repeat until all operations are sequenced.

3.1.6 Exploitation Search in Employed Bee Step

As it was mentioned in section 3.1.2, in order to find new food sources within the neighbourhood, the

employed bees perform exploitation search, which consists on examining a limited, yet promising region

within the search space. Since a food source consists of two parts, the machine assignment vector and

the operation sequence vector, two different exploitation procedure will be implemented for each part of

the solution.

Exploitation Search for Machine Assignment

For each solution Si from the employed bee step the exploitation search for the machine assignment

proceeds as described in the next list:

1. Generate an integer I from 1 to O, randomly, where O is the whole number of operations;

2. Select randomly I positions from the machine assignment vector of the solution Si;

3. For each chosen position, replace the current allocated machine from another within the candidate

machine set in order to produce a new solution Si,new, anticipating cases where the candidate set

is only composed of one machine, in that case, no replacement will be done;

4. After generating Si,new, evaluate it. If Si,new dominates Si, then replace Si with Si,new, if they have

different objective values and do not dominate one another, then keep both and update SS.
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Exploitation Search for Operation Sequence

For each solution Si from the employed bee step the exploitation search for the operation sequence

proceeds as described in the next list:

1. Select two jobs J1 and J2, randomly. Assuming that the number of operations of J1 is less than or

equal to the one of J2;

2. Fill J1 within the positions of J2 from left to right, and repeat the process for J2 into the positions of

J1, in order to generate the new solution Si,new;

3. After generating Si,new, evaluate it, if Si,new dominates Si, then replace Si with Si,new, if they have

different objective values and do not dominate one another, then keep both and update SS.

To exemplify this procedure, figure 3.4, demonstrates it for jobs 3 and 4 from the example use in

section 3.1.3.

Figure 3.4: Representation of the exploitation search for operation sequence.

These two procedures were applied to the employed bee step to generate new promising food

sources.

3.1.7 Tournament Selection for the Onlooker bee step

Due to the difficulty of calculating properly the fitness value that is associated with the probability

of an onlooker bee choosing a food source, due to the multi-objective nature of the algorithm, it was

implemented a tournament with size three. This method is described as follows:

1. Select three solutions randomly from the employed bee solutions;

2. Sort the solutions according to the Pareto level and crowding distance and choose the best solution

to be the food source of the onlooker bee.

3.1.8 Exploitation search in Onlooker Bee Step

With all the onlooker bees having a selected food source from the tournament selection described

in section 3.1.7, every onlooker bee will perform the techniques for machine assignment vector and

operation sequence vector described in section 3.1.6, to generate new neighbouring solutions and the
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better solutions found will update the population to establish a new population Pt, to be used by the

crossover operators described in the next section.

3.1.9 Crossover Operators

The crossover operators were designed to enhance the exploring capabilities of the onlooker bees,

or in other words, to share information in order to find more promising food sources, better solutions.

Since the solution is composed by the machine assignment vector and the operation sequence vector,

and similarly to section 3.1.6 it was designed different crossover operators for each of this parts.

Associated with this, there is the probability Pas were for each solution Si from the current solution

set it will be attributed another solution S′ randomly if it has a probability Pas or higher, alternatively if it

has a probability (1−Pas), then it will attribute a solution by tournament selection with the same process

as described in section 3.1.7.

Crossover Operators for Machine Assignment

Starting by first describing the crossover operators for machine assignment, two operators were

used, associated with another probability Pc, were it is used the two-point crossover operator and with

probability (1− Pc) an uniform crossover operator is used.

To describe the two-point crossover it is first necessary to introduce some comments on parent,

child and partial chromosomes. The parent chromosomes will be identified as PA and PB , the child

chromosomes as CA and CB , in order to have partial chromosomes two crossover points are needed

which will be denoted as cp1 and cp2, and finally, the partial chromosomes between cp1 and cp2 from the

parent chromosomes are Ap and Bp, respectively the partial chromosomes from the child chromosomes

correspond to Ac and Bc. The two-point crossover can be described as follows:

1. Select PA and PB as parent chromosomes and create the empty CA and CB child chromosomes;

2. Select randomly, the two crossover cp1 and cp2, and associate the partial chromosomes Ap and

Bp;

3. Attribute all genes to CA and CB except for the ones belonging to the partial chromosomes;

4. Perform the following steps:

(a) If exists the same gene, the gene of Ap as compared to the gene of Bp, then exchange mutual

position information and move to Ac and Bc, respectively;

(b) Save the order information and move the remaining genes to the child chromosomes.

The uniform crossover procedure for solutions Si and S′ will be described in the following list.

1. Generate a binary string uniformly that composed of 0 and 1, with the same length of the machine

assignment vector;
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Figure 3.5: Example of the two-point crossover for machine assignment.

2. The new solution will assume the elements which are 1 from solution S′ and the elements which

are 0 from solution Si.

Figure 3.6: Example of the uniform crossover for machine assignment.

Crossover Operator for Operation Sequence

Finally, for the operation sequence, the crossover operator implemented is a modified precedence

operation crossover operator (MPOX) according to the precedence preserving order-based crossover

(POX), the method for solutions Si and S′ can be described as follows:

1. Generate a random subset of all jobs;

2. The new solutions will inherit the element of Si at the position if that element belongs to the subset

generated, if not, it inherits the elements of S′ that do not belong to the subset. The element

inheritance is performed from left to right.

Figure 3.7: Illustration of the crossover for operation sequence.
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3.1.10 Local Search Based on the Critical Path

A step towards reaching an optimal solution requires to promote the intensification of the exploration

capacity of the algorithm, thus a local search method was implemented to the onlooker bees step. To

describe the local search based on critical path it is first needed to remind the notations and the models

to represent a feasible solution stated in section 2.4. Additionally to the previously stated notations and

definitions of the graph model described in section 2.4.1, some further explanation will be given in the

following lines.

Starting by describing the process to make a graph G, to better understand which operations belong

to each job, there will be dummy nodes such as, node 0 and node E = N + 1, where N is total number

of operations. These nodes will have no processing time, the starting time of node 0 will be 0, and the

completion time of node E is the makespan of the schedule.

The processing time for each operation will be expressed in each respective node. The earliest start-

ing time of operation Oij , expressed by equation 3.4, will be designated as ESij and will be defined as

the maximum time value between the earliest completion time in the operation that precedes operation

j in the job i, represented as POJ
ij = Oi,j−1 and the earliest completion time of the previously executed

operation on the same machine k, represented by POM
ij .

ESij = max
(
EC(POJ

ij), EC(POM
ij )
)

(3.4)

The earliest completion time of operation Oij , expressed in equation 3.5, is the sum between the

earliest starting time of that same operation and its processing time on machine k.

ECij = ESij + PTijk (3.5)

To compute the earliest starting and completion times, the process will perform iteratively from node

0 until node E, in other words, from left to right. Now, to compute the latest starting and completion

times, the process will be done backwards, starting from node E, ending in node 0.

The latest starting time of operation Oij without delaying the makespan, given by equation 3.6,

designated as LSij is given by the subtraction between the latest completion time of that same operation

and its processing time machine k.

LSij = LCij − PTijk (3.6)

The latest completion time of operation Oij without delaying the makespan , given by equation 3.7,

designated as LCij is given by the minimum time value between the latest starting time of the operation

that follows j within job i, designated as FOJ
ij = Oi,j+1, and the latest starting time of the operation that

follows Oij on machine k, designated as FOM
ij .

LCij = min
(
LC(FOJ

ij), LC(FOM
ij )
)

(3.7)

It is also important to note that for the dummy nodes these values will remained unaltered. Also, the
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makespan will be given by the latest completion time of the ending node E.

The total slack of each operation translates into the time amount as to which an operation can be

delayed without delaying the makespan, intuitively, if an operation has zero slack, it means that if that

operation delays, then the makespan will delay as well, thus making it a critical operation. The total slack

of an operation is given by subtracting the earliest starting time to the latest starting time, as expressed

in equation 3.8.

TSij = LSij − ESij (3.8)

Once a critical path is found, the critical operations will be moved towards minimizing the objective

functions. Referencing the theorem in [35], in the schedule represented by graph G, if a new schedule

represented by graph G′ obtained by moving an operation Oij /∈ χ(G) in G, then Cmax(G) ≤ Cmax(G′).

This means that minimizing the makespan, and consequently total and maximum workload can only be

achieved through moving the critical operations exclusively.

An operation can only be moved and inserted into another position if it satisfies the following inequal-

ity:

max
(
EC(POM

(G−i ,v)
), EC(POJ

(G−i ,coi)
)
)

+ PTcoi,k ≤ min
(
LS(FOM

(G−i ,v)
), EC(FOJ

(G−i ,coi)

)
(3.9)

Where v is the operation in G− that will succeed operation coi in the newly appointed position. This

relates to another theorem from [35] which states that a schedule G′ is obtained by inserting coi into

a position located before operation v on machine Mk in G−i under the circumstance that satisfies 3.9.

If Cmax(G′) = Cmax(G) then coi is not the critical operation in G′. This theorem avoids falling into a

cyclic behaviour by appointing coi as a non-critical operations in the next iteration. Now, to examine

which positions will be available to insert coi into, before v, there is the need of Γ, which is the set of

positions before all the operations of δk excluding Ψk and after all the operations from Ψk excluding δk.

This translates that in G−i , the schedule obtained by inserting the critical operation coi into γ in Γk is

always feasible and that exists a position in Γk that minimizes the makespan. This means that only the

positions in this set are checked when trying to move the critical operation on machine Mk, as it can be

seen from algorithm 3.

Now, ψk(G) consists of the possible machines in which each critical operation can be performed

sorted to minimize total and maximum workload. Where δt and δm are used as metrics to consider

respectively the total and maximum workload, defined by equation 3.10:

δt(coi 7→Mk) = PTcoi,k − PT (coi, k from coi∈G)

δm(coi 7→Mk) = Wk(G) + PTcoi,k

(3.10)

This condition ensures that the attempts to minimize the makespan, also guarantee that it will mini-

mize the total and maximum workload objectives, by sorting this ψk according to an ascent order of δt
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and δm.

The procedure explained above is detailed in algorithm 4, and after it generates a new solution, this

procedure evaluates its perform with respect to the old solution, and similarly to what has been described

so far, if the solution dominates the old one it will update the population, and if none dominates one

another, both will be kept.

Algorithm 3 Pseudo-code of the inserting operations procedure in local search.

1: Get the set of Γk on machine Mk

2: for each position γ in Γk do
3: if γ satisfies equality 3.9 then
4: Insert coi into γ in G−i return true

return false

Algorithm 4 Pseudo-code of the moving operations procedure in local search.

1: Get the set of nc critical operations CO = {co1, co2, ..., conc}
2: Exclude them from graph G, generating nc new graphs G−

3: Sort ψ(G) according to δt and δm
4: for each operation coi executed on machine Mk from the candidate machine set do
5: if G−i = ∅ then
6: Store a copy of G− to G∗ and exclude coi from G∗

7: Assume G∗ as G−i
8: if Inserting an operation on machine is true then
9: Assume G−i as the new G′ return G′

return ∅

3.1.11 Recombination and Selection

A final method in the onlooker bee step that will decide the population to proceed to the scout bee

step is the recombination and selection approach.

1. Starts by combining populations Pt and Qt together, and sorting them through the non-dominated

sorting procedure;

2. Selects the solutions from the best front to update the SS, and if the number of solutions from

that front exceeds the initial population size P , the solutions from that front will be sorted in a

descending order of crowding distance and only the ones with a higher number will update SS.

3.1.12 Scout Bee Step

The scout bee step is used to randomly generate a new food source that replaces the worst solution

found. Global exploration will be applied to the solution to intensify the population diversity and improve

results, this step is described next.

1. Select a random solution from SS;

2. Perform exploitation search for the machine assignment on the selected solution, generating a new

temporary solution Stemp;
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3. Perform local search based on the critical path to the new temporary solution Stemp and generate

Sscout;

4. Evaluate and compare the new solution generated with the worst solution from the SS and replace

it with Sscout if it is better.

3.2 Parameter Tuning

As it was mentioned in section 3.1.2, shown by the general overview in figure 3.2 and by the algorithm

2, the algorithm implemented to solve the MOFJSSP needs to initialize promptly a set of key parameters.

This set of 8 parameters is composed by the parameter related to the maximum generation Genmax

the parameter related to the initial population size PS, the probability of the machine assignment to be

executed by rule 1, and respectively the rule 3, the probability of the operation sequence to be exe-

cuted by rule 1, and respectively the rule 3, the probability for solutions to participate in the tournament

selection and finally the probability to perform the two-point crossover.

Naturally, such a number of parameters to be set can have different methodologies to tune and set

these parameters. And since these parameters will affect the performance of the algorithm implemented,

it was implemented a Bayesian optimization algorithm for tuning the parameters set.

3.2.1 Bayesian Optimization

The Bayesian Optimization (BO) algorithm was chosen for being a state-of-art solution in circum-

stances with a finite set of parameters, that will directly reflect on the performance of an algorithm

whose choice of parameters can not be done intuitively, that is a computationally expensive system and

through other methods such as a grid search would consume a tremendous amount of time and could

leave out of testing lots of parameter set combinations.

The main advantage of choosing Bayesian optimization is that the iterative process of retrieving the

best combination of parameters is done through an unbiased utility function, that will maximize the algo-

rithms performance when choosing an new set of parameters to test, resulting in a lot of computational

time saved and reducing the number of tests to be done. The Bayesian optimization, as shown in [63],

starts by creating a surrogate model, SM , of the system f(x), that is subjected to an optimization of the

parameters combinations, described as x, that have been tested, and their respective outputs y = f(x).

Equation 3.11 describes the optimization problem fittingly.

x∗ = arg min
x∈<p

f(x) (3.11)

Where p is the number of parameters that minimizes the objective function. The surrogate model is

created through an unbiased stochastic procedure, defined as the Gaussian process.

The Gaussian process is defined by two guidelines, a mean function m(x) and a kernel function

k(x,x′). The kernel function, gives information about the correlation between the objective function
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values of the two points considered (x,x′), and considering the various options to choose, the one

that best suits for Bayesian algorithms favours to be the Mattern 5/2 Kernel function, according to [64],

described in equation 3.12

kM5/2 = θ20

(
1 +
√

5× r(x,x′) +
5

3
× r(x,x′)2

)
+ e−

√
5×r(x,x′) + θn (3.12)

where,

r(x,x′)
2

=

np∑
p=1

[(
xp − x′p
θp

)2
]

(3.13)

With θp as the ratio parameter between length and scale for each dimension p, the ratio that expresses

the relevance of each parameter in the output, θ0 and θn are respectively, the amplitude and noise

parameters chosen.

After creating the surrogate model, it will be analysed by an acquisition function, to determine the

best combination to test next. Amongst the various acquisition functions to choose from, according to

[65], the one that shows better performance, is the expected-improvement acquisition function, µEI . The

main advantage of this acquisition function is its ability to control the exploration versus exploitation ratio

for new solutions, from using this ratio as an input parameter. To better describe this process, algorithm

5 gives a summarized explanation. The results from this parameter optimization were used to fuel the

algorithm presented in section 3.1, and are further elaborated in section 4.1.

Algorithm 5 Pseudo-code of the Bayesian optimization.

Input: Maximum number of iterations
Output: Optimal parameter set

1: x1 ← rand(x) . Choose a starting point, a random parameter set
2: y1 = f(x1) . Compute the output and store parameter input and output observation
3: Obs = [x1; y1]
4: SM ← Obs . Create the surrogate model
5: i = 2
6: while i ≤ Maximum number of iterations do
7: xi = arg max a(x|SM) . Maximize the acquisition function to choose the new parameter set
8: yi = f(xi)
9: Obs = append(Obs, [xi; yi]) . Compute the output and append the observation to Obs

10: SM ← Obs . Update the surrogate model
return xi that corresponds to the minimum yi

3.2.2 Performance Metrics to Evaluate Solutions

Considering the implemented algorithm, the Pareto front of three objective functions, will be a 3D

Pareto front, but, for the sake of simplicity, the explanation of the metrics used to evaluate, and to find the

best set of parameters through the Bayesian optimization, will be done by a bi-objective generic Pareto

front, like shown in figure 3.8. In figure 3.8(a) the results are displayed irregularly, where the closeness to

the Pareto front is not constant, and some results appear more distant than others, this shows solutions

that did not converge well. As for the middle one, figure 3.8(b) clearly shows an irregular, non-uniform

distribution of solutions, that are actually closer to the Pareto front, when compared to the left figure, but
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with solutions that are more spread out. Finally, in figure 3.8(c) shows an example that is not only closer

to the Pareto front, but its solutions are evenly distributed throughout the objective space.

(a) Bad convergence (b) Bad diversity (c) Good convergence and diversity

Figure 3.8: Three examples of solutions for a bi-objective problem, where the Pareto front is represented
by the green line whereas the the solutions are represented as black circles.

In conclusion, to completely analyse the performance of a multi-objective algorithm, it is not only

necessary to analyse its convergence, but also the diversity within the solutions. There exists several

indicators expressed in table 3.1, showing what they measure, if only convergence, only diversity, or

both. To analyse the behaviour of the algorithm, and inspired by the metrics from [66], [67] and [68], the

metrics chosen in this work were the Mean Ideal Distance and the Hypervolume.

Metric What it measures

DM
Spacing Diversity
Spread

Set Convergence
Generational Distance Convergence
Error Rotation

Hypervolume
Mean Ideal Distance Convergence and Diversity
G-metric

Table 3.1: Performance indicators of multi-objective algorithms.

Hypervolume

This metric can measure both convergence and diversity in the case of a bi-objective algorithm, it

calculates the area created by the non-dominated front in the objective space, provided a reference point,

where in the case of this work, for three objective functions, it calculates the volume. The metric result is

given by summing up the rectangular areas/ parallelepiped volumes bounded by some reference point,

as seen in [69]. As a result, a simple representation of the hypervolume metric is shown in equation 3.14,

and from that it can easily be concluded that the computational complexity increases greatly with the

increasing number of objective functions. If a result shows a high value of hypervolume, is consequently
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a converged and well-spread set of solutions.

HV =
∑

si∈SS

(Vsi) (3.14)

Where, Vsi is the hypervolume of solution si with respect to the reference point VR. To exemplify,

in figure 3.9, two solutions are presented, the one that occupies more area is similarly the one that is

closer to the Pareto front, as well as more well-spread, given this, solution A has a higher hypervolume

value than solution B, thus A is a better solution set than B .

Figure 3.9: Exemplification of the hypervolume calculation for a bi-objective problem.

As it can be observed by the figure above, the reference point is a sensitive point for choosing the

best solution set, thus needs a careful choice as shown by [69].

Mean Ideal Distance

Similarly to the hypervolume metric, so does the Mean Ideal Distance [67] evaluate a solutions set

quality by measuring both convergence and diversity. This metric is given by the average distance

between non-dominated solutions and the origin point, as shown by equation 3.15, where fl(si) is the

value of the objective function l for solution si, |SS| is the number of solutions from the population.

MID =

∑
si∈SS

(√∑
l∈L

(
fl(si)

2
))

|SS|
(3.15)
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Chapter 4

Results and Discussion

In this section, results from the methods proposed in Chapter 3 are presented. First, the ABC

algorithm from section 3.1 is tuned with the algorithm described in section 3.2 and tested with FJSSP

benchmarks. Finally, the results obtained are presented and discussed.

The ABC as well as the Bayesian optimization algorithms were implemented using Matlab 2018b.

The implemented algorithm was tested on the ten instances of the Brandimarte dataset from [70] and

on the five Kacem instances from [71] and [30], in order to verify and validate its performance for solving

the multi-objective flexible job shop scheduling problem.

The first dataset, the Brandimarte, is composed of instances that range from 10 to 20 jobs, 4 to 15

machines, with instances that contain jobs with 3 to 15 operations per job and processing times varying

from 1 to 20, as it can be seen from table 4.1, with Mik being the average maximum number of machines

that an operation can be performed at.

Instance Number Number Number of |Mik| Processing
of Jobs of Machines Operations per Job Time

mk01 10 6 5 to 7 3 1 to 7
mk02 10 6 5 to 7 6 1 to 7
mk03 15 8 10 5 1 to 20
mk04 15 8 3 to 10 3 1 to 10
mk05 15 4 3 to 10 2 5 to 10
mk06 10 15 15 5 1 to 10
mk07 20 5 5 5 1 to 20
mk08 20 10 5 to 15 2 5 to 20
mk09 20 15 10 to 15 5 5 to 20
mk10 20 15 10 to 15 5 5 to 20

Table 4.1: Attributes of the Brandimarte dataset instances.

The second dataset used to evaluate the quality of the algorithm was the Kacem dataset, with five

instances, which range from 4 to 15 jobs, 5 to 10 machines, 2 to 4 operations per job, an Mik that ranges

from 5 to 10, and processing times that go from 1 time unit to 99. From table 4.2 it is possible to infer that

each instance increases complexity from the previous, both by number of jobs and number of machines.
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To obtain a better performance of the ABC, the parameters were tuned using Bayesian optimization

as described in section 3.2. The next section describes the tuning process used. The rest of this chapter

shows the results obtained for both datasets and provides a thorough discussion of these results.

Instance Number Number Number of |Mik| Processing
of Jobs of Machines Operations per Job Time

kacem1 (4× 5) 4 5 2 to 4 5 1 to 54
kacem2 (8× 8) 8 8 3 to 4 6 to 8 1 to 12
kacem2 (10× 7) 10 7 2 to 3 7 1 to 99
kacem3 (10× 10) 10 10 3 10 1 to 20
kacem4 (15× 10) 15 10 2 to 4 10 1 to 56

Table 4.2: Attributes of the Kacem dataset instances.

4.1 Parameter Tuning

As already mentioned above, the parameter tuning was done using the Bayesian optimization al-

gorithm presented in Chapter 3. The algorithm was implemented with the aid of the Matlab function

bayesopt.

It uses a specific parameter, the exploration versus exploitation ratio of the acquisition function, which

was set to ε = 0.5, to establish equal importance on exploration and exploitation. Also, the acquisition

function used was the expected improvement, µEI , and the maximum number of iterations defined was

30. The search for the optimal set of parameters was done on two metrics, the Mean Ideal Distance and

the Hypervolume. For each metric and for each benchmarked instance, the algorithm was executed 5

times to guarantee consistency within the obtain sets of parameters.

Figure 4.1 shows box plots for the different results obtained for benchmark instance mk01, to ex-

emplify the process behind choosing the right set of parameters. It shows that between metrics, the

difference within the parameters set is very little and the results from both measures are quite similar.

The parameters were obtained using the median values from both metrics.

The parameters obtained from this process are presented in table 4.3 for the Brandimarte instances,

and table 4.4 for the Kacem instances. Further detail and discussion of the different parameters used is

presented in the following sections.

4.1.1 Generating the initial population

The ABC algorithm belongs to the Swarm Intelligence algorithms and needs an initial population of

solutions to start the evolution of the colony. The initial solutions need to have relatively good quality and

diversity, as they shape starting neighbourhood, the solution space that will be explored, and are a key

factor to avoid the solution falling in local optima.

In the algorithm implemented, the solution is coded with two vectors, the machine assignment and

the sequence of operations. The initial population of bees is generated with the aid of the methods
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Figure 4.1: Results from several runs of the Bayesian Optimization for instance mk01.

Instance Population Size Generation Pc Pas pm,rule1 pm,rule3 po,rule1 po,rule3

mk01 1.458 2.073 0.744 0.591 0.168 0.859 0.303 0.831
mk02 1.945 3.630 0.469 0.638 0.187 0.786 0.271 0.720
mk03 0.988 3.099 0.515 0.579 0.114 0.844 0.176 0.801
mk04 1.230 1.424 0.683 0.750 0.160 0.744 0.243 0.698
mk05 0.999 2.306 0.624 0.638 0.177 0.804 0.169 0.711
mk06 1.423 1.756 0.716 0.630 0.168 0.742 0.278 0.850
mk07 1.030 3.399 0.579 0.574 0.197 0.731 0.256 0.679
mk08 0.874 3.709 0.652 0.663 0.128 0.872 0.262 0.836
mk09 0.830 1.422 0.538 0.599 0.217 0.786 0.219 0.869
mk10 0.865 1.684 0.625 0.648 0.183 0.794 0.203 0.857

Table 4.3: Set of parameters for each instance of the Brandimarte dataset tested.

Instance Population Size Generation Pc Pas pm,rule1 pm,rule3 po,rule1 po,rule3

kacem1 (4× 5) 1.900 2.445 0.629 0.651 0.215 0.776 0.355 0.848
kacem2 (8× 8) 1.365 1.555 0.600 0.598 0.149 0.824 0.201 0.767
kacem3 (10× 7) 1.365 2.381 0.566 0.640 0.229 0.854 0.165 0.731
kacem4 (10× 10) 1.547 1.730 0.595 0.597 0.185 0.789 0.157 0.812
kacem5 (15× 10) 1.131 2.565 0.632 0.634 0.179 0.829 0.302 0.838

Table 4.4: Set of parameters for each instance of the Kacem dataset tested.

detailed in section 3.1.5. These methods are composed of three rules for both the machine assignment

vector and the operation sequence vector.

The three rules that generate the initial machine assignment vectors give different solutions. Two
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of these rules, the local minimum processing time and the global minimum processing time produce

different results, but slightly similar, meaning that these two rules do not introduce much variability to

the solutions they generate. A third one, the random rule is used for this exact purpose, to introduce

variability to the population.

As for the operation sequence part of the population, also three rules are employed. The random

rule selects jobs to be sequenced randomly and sets them on the first available entry. The most time

remaining rule, appoints jobs giving priority to the ones that have a higher processing time to do, hence

more work to be done. Lastly, the most number of operations remaining rule appoints jobs according to

the operations yet to be done.

Identically to the global minimum processing time and the local minimum processing time rules, the

most time remaining and most numbers of operations rules create good solutions with low variability. The

random rule was also implemented to introduce more variability to the generated operation sequences.

These rules were implemented with a probability of occurrence associated to them. These probabili-

ties were determined by the parameter tuning with Bayesian optimization in order to tune, along with the

other parameters, the creation of an initial population.

Figure 4.2: Distribution of the probability of occurrence associated with the rules to generate the initial
population.

Figure 4.2 illustrates how the probability of occurrence for each rule was implemented. For each part

of the solution there are two probabilities of occurrence associated. The rules were configured according

to the following probabilities:

• A solution being generated using local minimum processing time rule: pm,rule1;

• A solution being generated using global minimum processing time rule: pm,rule3 − pm,rule1;

• A solution being generated using random assignment rule: pm,rule3;

• A solution being generated using most work remaining rule: po,rule1;

• A solution being generated using most number of operations remaining rule: po,rule3 − po,rule1;

• A solution being generated using random sequencing rule: po,rule3.

Tables 4.3 and 4.4 both show that the difference between the values for these probabilities of occur-

rence for each benchmark instance is significantly small. Figure 4.3 illustrates this, showing the box plot

for these values from all benchmarks tested. This figure shows that these probabilities of occurrence do

not vary significantly depending on the benchmark used, hence do not vary significantly when the static

environment changes. Resulting from this observation, it may be implied that fixed values obtained from

the tuning process can be used. Table 4.5 shows the standard deviations obtained for each of these
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parameters, and since these values are substantially lower than the median value, the final parameters

were set by the given median values presented.

Parameter Standard Deviation Median Value

pm,rule1 0.0316 0.1790
pm,rule3 0.0441 0.7940
po,rule1 0.0592 0.2430
po,rule3 0.0656 0.8120

Table 4.5: Standard deviation and median values for the parameters that generate the initial solutions.

Figure 4.3: Distribution of the probability of occurrence associated with the rules to generate the initial
population.

4.1.2 Population size

For evolutionary algorithms, the initial population size plays an important role in determining the

performance of the algorithm. If the chosen initial population is small, the algorithm might converge too

quickly and not provide a decent exploration of the search space, and if the initial population is too large

the algorithm will take a lot of computational effort in order to converge.

Regarding this specific parameter, the unbiased Bayesian optimization algorithm provided the results

for tuning the parameters, shown in tables 4.3 and 4.4 in the column that corresponds to Population Size.

The initial population is calculated as a product of this parameter by the number of machines, m, and

the number of jobs, n, InitialPopulation = PopulationSize ×m × n, where the initial population is

the initial number of solutions generated by the algorithm. The initial population size for each instance

tested is shown in table 4.6.
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Instance Population Size Initial Population Generation Maximum Generation

mk01 1.458 88 2.073 125
mk02 1.945 117 3.630 218
mk03 0.988 119 3.099 372
mk04 1.230 148 1.424 171
mk05 0.999 60 2.306 138
mk06 1.423 213 1.756 263
mk07 1.030 103 3.399 340
mk08 0.874 175 3.709 742
mk09 0.830 249 1.422 426
mk10 0.865 260 1.684 505
kacem1 1.900 38 2.445 49
kacem2 1.365 88 1.555 100
kacem3 1.365 96 2.381 167
kacem4 1.547 155 1.730 173
kacem5 1.131 170 2.565 285

Table 4.6: Values for the initial population of solutions.

4.1.3 Tournament selection parameter

The tournament selection finds the most suitable solution for another individual to perform the crossover

operators, as opposed to this operation the algorithm will assign a random individual to apply the same

operators. The details of this procedure are explained in section 3.1.7.

Similarly to the parameters used to generate initial solutions, the tournament selection also has a

probability of occurrence. The values for this parameter were tuned using the Bayesian optimization. The

considerations were to maximize the hypervolume metric as well as minimize the mean ideal distance

metric, and the parameter in question is Pas.

The probability of occurrence for tournament selection or random selection are expressed as follows:

• Probability of applying tournament selection to the population: Pas

• Probability of applying random selection to the population: (1− Pas)

By observing the column concerning Pas in tables 4.3 and 4.4, it is possible to derive a standard

deviation for this particular parameter of 0.0438, which is less than 5%. This allows to conclude that,

once tuned, this parameter should not change with the different instances used. And so, it is possible to

set Pas as 0.634.

4.1.4 Crossover operators parameter

To improve global exploration around the multiple neighbourhoods, machine assignment and oper-

ation sequence crossover operators were implemented. For the operation sequence only a modified

precedence operation crossover (MPOX) was implemented. For machine assignment two crossover op-

erators were implemented, uniform crossover and two-point crossover. All crossover operators are fully
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detailed in section 3.1.9.

For the operation sequence crossover operator, since only one was implemented, the probability

of happening was set at 1. As for the machine assignment crossover operators, the probability of oc-

currence was tuned using the Bayesian optimization algorithm, with considerations as to maximize the

hypervolume metric, as well as, minimize the mean ideal distance metric. The parameter which con-

cerns the crossover operators is Pc. As for the crossover operators, the probability of occurrence for

each is expressed as follows:

• Probability of applying uniform crossover to the machine assignment vector: (1− Pc)

• Probability of applying two-point crossover to the machine assignment vector: Pc

As for the results obtained, seen in tables 4.3 and 4.4, this particular parameter appears to have

a standard deviation of 0.0731. This is considerably smaller than the median value, which allows to

conclude that once tuned, this parameter is not affected by the instance used. And so, it is possible to

set Pc as 0.624.

4.1.5 Termination criterion

The termination criterion used was a maximum number of iterations, also defined as the maximum

number of generations due to the evolutionary nature of the algorithm. Similarly to what happens with

the Population Size parameter, also the maximum number of iterations plays an important role in the

algorithms convergence and diversity. If the number of generations is assumed too low, then prosperous

solutions might not be achieved.

Again, using the Bayesian optimization algorithm considering the metrics used, the values obtained

for this parameter are presented in tables 4.3 and 4.4, with respect to the parameter Generation. Fur-

thermore, the maximum number of generations depends on the number of machines, m, and the number

of jobs, n, and is calculated as Maxgenerations = Generation ×m × n. These values are presented in

table 4.6, under the column Maximum Generation.

4.2 Results comparison

To evaluate the performance of the ABC algorithm implemented, two benchmarked datasets were

used and the results obtained for each were compared with several other algorithms. The algorithms

chosen to compare the proposed implementation with involve algorithms with multi-criteria approaches

for the multi-objective optimization and Pareto optimality approaches. To verify the superiority of results

from the latter one with respect to the first type of approaches. And also compare the proposed algorithm

with other Pareto optimality approaches.

The results were obtained after 20 runs of each instance from each dataset, and by selecting the

fittest solutions. The following sections provide results comparison for each dataset.
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Figure 4.4 shows the non-dominated solutions obtained in all iterations. The more dispersed points

represent the first solutions obtained by the algorithm, whereas the solutions highlighted show the best

solutions found.

Figure 4.4: Swarm-chart of solutions obtained for instance kacem1.

4.2.1 Tests on Kacem dataset

The proposed algorithm was tested with the five instances from the Kacem dataset described by table

4.2, using the parameters presented in table 4.4. The results were compared with five already existing

algorithms, namely Approach by Localization (AL+CGA) [71], Particle Swarm Optimization Combined

with Simulated Annealing (PSO+SE) [44], Particle Swarm Optimization combined with Tabu Search

(PSO+TS) [45], Discrete Artificial Bee Colony (P-DABC) [72] and Enhanced Pareto Artificial Bee Colony

(EPABC) [36].

(a) A solution for kacem1 instance (4 × 5) with Cmax = 11,
WT = 32 and WM = 10.

(b) A solution for kacem2 instance (8 × 8) with Cmax = 14,
WT = 77 and WM = 12.

Figure 4.5: Gantt charts of solutions for two Kacem instances, 1 and 2 ((4× 5) and (8× 8)).
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Amongst these algorithms, PSO+SE and PSO+TS, both use a fitness function that aggregates the

objective functions into a single fitness function to be minimized, turning the problem into multi-criteria

evaluation. AL+CGA proposes an approach that simultaneously minimizes the makespan and balances

the workload of each machine. It is only on P-DABC and EPABC that a Pareto optimality approach is

used.

Instance/ AL+CGA[71] PSO+SA[44] PSO+TS[45] P-DABC[72] EPABC [36] Proposed MO-ABC
Objective s1 s2 s1 s2 s1 s2 s1 s2 s3 s1 s2 s3 s4 s1 s2 s3 s4

kacem1
Cmax 16 11 11 12 13 11 12 13 11 11 12 13 13
WT 34 32 32 32 33 32 32 33 34 32 32 32 33
WM 10 10 10 8 7 10 8 7 9 10 8 8 7
kacem2
Cmax 15 16 15 16 14 15 14 15 16 14 15 16 16 14 15 16 16
WT 79 75 75 73 77 75 77 75 73 77 75 73 77 77 75 73 75
WM 13 13 12 13 12 12 12 12 13 12 12 13 11 12 12 13 12
kacem3
Cmax 12 11 12 11 12 11 11 11 12 12
WT 61 63 60 61 60 61 61 62 60 61
WM 11 11 12 11 12 10 11 10 12 11
kacem4
Cmax 7 7 7 8 7 8 8 7 8 7 8 7 8
WT 45 44 43 41 43 42 41 43 42 42 41 43 42
WM 5 6 6 7 5 5 7 5 5 6 7 5 5
kacem5
Cmax 23 24 12 11 12 11 11 11 11 12
WT 95 91 91 93 91 93 91 93 91 91
WM 11 11 11 11 11 11 11 10 11 11

Table 4.7: Results comparison of the five Kacem instances.

Table 4.7 presents the results obtained by these five algorithms and the proposed algorithm. The

proposed algorithm can obtain either more non-dominated solutions or better solutions when compared

with the first four algorithms presented in table 4.7. As for the last two, the P-DABC and the EPABC, the

results are quite similar either by number of non-dominated solutions or by the quality of solutions, since

both these two algorithms already outperform the previous four mentioned. It is reasonable to say that

the proposed algorithm has an overall good quality performance for these five Kacem instances.

Figures 4.5 and 4.6 show the Gantt chart representations of some solutions of each of these in-

stances.

4.2.2 Tests on Brandimarte dataset

The second benchmarks dataset used to test the implemented algorithm is the Brandimarte dataset.

As described by table 4.1, the instances of this dataset are generated through a uniform distribution

between given limits. The proposed algorithm is using the parameters described in table 4.3. The results

from five other algorithms found in the literature were used to compare the results of the implemented

algorithm. These algorithms are a search algorithm developed by Xing [42], a Multi-Objective Genetic

Algorithm (MOGA)[46], an Hybrid Tabu Search Algorithm (HTSA) [43], a Shuffle Frog-Leaping Algorithm
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(a) A solution for kacem2 instance
(10 × 7) with Cmax = 11, WT = 62
and WM = 10.

(b) A solution for kacem4 instance
(10 × 10) with Cmax = 8, WT = 41
and WM = 7.

(c) A solution for kacem5 instance
(15 × 10) with Cmax = 11, WT = 91
and WM = 11.

Figure 4.6: Gantt charts of solutions for the Kacem instances 3, 4 and 5 (respectively (10× 7), (10× 10)
and (15× 10)).

(HSFLA) [47], and a Particle Swarm Optimization (MOPSO) [48]. The best results are enhanced in bold

in table 4.8.

(a) Distribution of results according to makespan, Cmax. (b) Distribution of results according to total workload, WT .

(c) Distribution of results according to maximum workload, WM .

Figure 4.7: Distribution of the results for different algorithms.

On the algorithm presented by Xing, and on HTSA, the multi-objective problem turns into a mono-

objective problem by evaluating the objective functions with a weighted sum. MOGA, HSFLA and

MOPSO, all use a pareto optimality approach to evaluate non-dominated solutions.

Table 4.8 shows the results for non-dominated solutions with the minimum makespan obtained. Ob-

serving the solutions for mk01 and comparing them the ones obtained with the proposed algorithm, it

can be seen that the only algorithms that outperform it are the MOPSO, HTSA and MOGA, specifically in

the Total Workload objective ,WT . For mk02 and mk08, the results are similar in terms of performance,

to the ones obtained by MOGA, HTSA and MOPSO.
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(a) A solution for mk01 with Cmax = 40, WT = 170 and WM =
36.

(b) A solution for mk02 with Cmax = 26, WT = 151 and WM =
26.

Figure 4.8: Gantt charts of solutions for the mk01 and mk02 instances.

In mk04, the result obtained dominates all other results in comparison. In mk05, like in mk01, the

solutions for MOPSO, HTSA and HSFLA also dominate the solution obtained by the proposed algorithm.

In mk03 it does not out perform the presented algorithms, as the total workload value is always higher.

In mk09 it does not out perform any of the other algorithms.

(a) A solution for mk03 with Cmax = 204, WT = 993 and
WM = 204.

(b) A solution for mk04 with Cmax = 60, WT = 390 and WM =
60.

Figure 4.9: Gantt charts of solutions for the mk03 and mk04 instances.

On mk06 the solutions by MOGA and MOPSO dominate the solution obtained with the proposed

algorithm. For mk07 and mk10 the only solution that the proposed algorithm dominates is the one

proposed by Xing.

Figure 4.7 shows the difference between the different results shown in table 4.8. In this figure, it can

be seen that the results from the proposed algorithm, although they are not the best for all instances, do

not disperse, thus it is noticeable that this algorithm provides reasonably good results. Each sub-figure

shows, for each instance, the results obtained for each objective function used. Figure 4.7(a) shows

that the results obtained with the proposed algorithm do not diverge from the ones presented by the

algorithms in comparison, all in terms of makespan. Despite this, shows that comparing the solutions

presented in table 4.8 showing that the best algorithms overall are the MOPSO and the MOGA, the

figure in questions illustrates that the dispersion from the solutions presented by these algorithms, and

the proposed algorithm, is considerably small, making it nearly insignificant. Allowing the conclusion that
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the proposed algorithm provides good quality solutions, for the instances that compose this Brandimarte

dataset.

(a) A solution for mk05 with Cmax = 173, WT = 686 and
WM = 173.

(b) A solution for mk06 with Cmax = 63, WT = 425 and WM =
57.

Figure 4.10: Gantt charts of solutions for the mk05 and mk06 instances.

Figure 4.8 shows the Gantt chart representation of solutions for mk01 and mk02. Figure 4.9 shows

the same representation but for instances mk03 and mk04, figure 4.10 shows for instances mk05 and

mk06, figure 4.12 shows for instances mk07 and mk08. Finally, the same Gantt chart representation is

shown in figure 4.12 for instance mk09 and mk10.

(a) A solution for mk07 with Cmax = 141, WT = 697 and
WM = 141.

(b) A solution for mk08 with Cmax = 523, WT = 2524 and
WM = 523.

Figure 4.11: Gantt charts of solutions for the mk07 and mk08 instances.
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Instance Objective Xing [42] MOGA [46] HTSA [43] HSFLA [47] MOPSO [48] Proposed
MO-ABC

Cmax 42 40 40 40 40 40
MK01 WT 162 169 167 165 167 170

WM 42 36 36 37 36 36

Cmax 28 26 26 26 26 26
MK02 WT 155 151 151 152 151 151

WM 28 26 26 26 26 26

Cmax 204 204 204 204 204 204
MK03 WT 852 855 852 852 852 993

WM 204 199 204 204 204 204

Cmax 68 66 61 62 61 60
MK04 WT 352 345 366 364 382 390

WM 67 63 61 61 60 60

Cmax 177 173 172 173 173 173
MK05 WT 702 683 687 685 683 686

WM 177 173 172 173 173 173

Cmax 75 62 65 64 62 63
MK06 WT 431 424 398 403 424 425

WM 67 55 62 55 55 57

Cmax 150 139 140 141 139 141
MK07 WT 717 693 695 696 693 697

WM 150 139 140 141 139 141

Cmax 523 523 523 523 523 523
MK08 WT 2524 2524 2524 2524 2524 2524

WM 523 515 523 523 523 523

Cmax 311 311 310 311 310 312
MK09 WT 2374 2290 2294 2275 2514 2424

WM 299 299 301 299 299 299

Cmax 227 214 214 215 214 218
MK10 WT 1989 2082 2053 1957 2082 2038

WM 221 204 210 198 204 204

Table 4.8: Results comparison of the ten Brandimarte instances.
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(a) A solution for mk09 with Cmax = 312, WT = 2424 and
WM = 299.

(b) A solution for mk10 with Cmax = 218, WT = 2038 and
WM = 204.

Figure 4.12: Gantt charts of solutions for the mk09 and mk10 instances.
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Chapter 5

Conclusions

The objective of this thesis was to develop tools able to create a schedule for a multi-objective opti-

mization problem. To achieve this, it was implemented an Artificial Bee Colony algorithm.

To accomplish the proposed objective, the implementation of the Artificial Bee Colony algorithm

was done using Matlab. The presented algorithm makes use of an aggregation of techniques to gen-

erate a good quality initial population, a coding scheme that generates only feasible solutions and a

non-dominated sorting algorithm to sort and maintain the fittest individuals. To enhance the search

capabilities of the algorithm, a local search based on critical path was implemented.

To test the proposed algorithm, a Bayesian optimization algorithm was first implemented to find the

set of parameters that maximizes the performance of the algorithm according to metrics that evaluate

both convergence and diversity within the solutions found.

After testing the algorithm using two benchmark datasets and comparing it with several different

algorithms, the implementation and quality of the solutions obtained were both verified. Although the

solution found by the proposed algorithm showed not to be always the best solution for the instances

from the Brandimarte dataset, one instance in particular outperformed other algorithms, the mk03. As

for the other instances of this particular dataset when the solution presented by the proposed algorithm

was not the best, the difference between the solution found and, the others presented by the algorithms

in comparison, is relatively small, thus making them good quality solutions. Differently, in the instances

from the Kacem dataset, the proposed algorithm obtained high quality solutions. For all five instances,

the proposed algorithm found a good diversity of non-dominated solutions, when compared to the other

algorithms from the state-of-art the solutions found were of considerably good quality.

5.1 Future Work

While the results obtained were good, some improvements are needed to achieve a better approxi-

mation of a real work environment. While a static schedule is a good tool to start, in reality activities are

disrupted by dynamic events such as job arrivals, job cancellations, machine breakdowns, and more.

For future work, an implementation on dynamic environment is proposed, using the dynamic events
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mentioned. Another proposition of future work is to include other objective functions such as tardiness

or lateness, and implement the problem with release and due dates.
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[4] M. Lorenz, M. Rüßmann, R. Strack, K. L. Lueth, and M. Bolle. Man and Machine in Industry 4.0.

Boston Consulting Group, page 18, 2015.

[5] S. Smuts, A. van der Merwe, and H. Smuts. A Strategic Organisational Perspective of In-

dustry 4.0: A Conceptual Model. In International Federation for Information Processing, vol-

ume 2, pages 307–318. 2020. ISBN 978-3-030-45001-4. doi: 10.1007/978-3-030-44999-5.

URL http://dx.doi.org/10.1007/978-3-030-45002-1{_}2{%}0Ahttp://link.springer.com/

10.1007/978-3-030-45002-1.

[6] F. Jovane and E. Westkämper. The ManuFuture Road. 2009. ISBN 9783540770114. doi: 10.1007/

978-3-540-77012-1.

[7] A. Azevedo and A. Almeida. Factory templates for digital factories framework. Robotics and

Computer-Integrated Manufacturing, 27(4):755–771, 2011. ISSN 07365845. doi: 10.1016/j.rcim.

2011.02.004.

[8] E. H. D. Ribeiro da Silva, A. C. Shinohara, E. Pinheiro de Lima, J. Angelis, and C. G. Machado.

Reviewing digital manufacturing concept in the Industry 4.0 paradigm. Procedia CIRP, 81:240–

245, 2019. ISSN 22128271. doi: 10.1016/j.procir.2019.03.042. URL https://doi.org/10.1016/

j.procir.2019.03.042.

[9] L. Li and J. Z. Huo. Multi-objective flexible Job-shop scheduling problem in steel tubes produc-

tion. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 29(8):117–126,

2009. ISSN 10006788. doi: 10.1016/s1874-8651(10)60063-4. URL http://dx.doi.org/10.1016/

S1874-8651(10)60063-4.

57

http://dx.doi.org/10.1016/J.ENG.2017.05.015
http://dx.doi.org/10.1007/978-3-030-45002-1{_}2{%}0Ahttp://link.springer.com/10.1007/978-3-030-45002-1
http://dx.doi.org/10.1007/978-3-030-45002-1{_}2{%}0Ahttp://link.springer.com/10.1007/978-3-030-45002-1
https://doi.org/10.1016/j.procir.2019.03.042
https://doi.org/10.1016/j.procir.2019.03.042
http://dx.doi.org/10.1016/S1874-8651(10)60063-4
http://dx.doi.org/10.1016/S1874-8651(10)60063-4


[10] L. Venditti, D. Pacciarelli, and C. Meloni. A tabu search algorithm for scheduling pharmaceutical

packaging operations. European Journal of Operational Research, 202(2):538–546, 2010. ISSN

03772217. doi: 10.1016/j.ejor.2009.05.038. URL http://dx.doi.org/10.1016/j.ejor.2009.05.

038.

[11] F. Oliveira, P. M. Nunes, R. Blajberg, and S. Hamacher. A framework for crude oil scheduling in

an integrated terminal-refinery system under supply uncertainty. European Journal of Operational

Research, 252(2):635–645, 2016. ISSN 03772217. doi: 10.1016/j.ejor.2016.01.034.

[12] C. Bohle, S. Maturana, and J. Vera. A robust optimization approach to wine grape harvesting

scheduling. European Journal of Operational Research, 200(1):245–252, 2010. ISSN 03772217.

doi: 10.1016/j.ejor.2008.12.003. URL http://dx.doi.org/10.1016/j.ejor.2008.12.003.

[13] Y. Zhang, D. W. Gong, X. Y. Sun, and Y. N. Guo. A PSO-based multi-objective multi-label feature

selection method in classification. Scientific Reports, 7(1):1–12, 2017. ISSN 20452322. doi:

10.1038/s41598-017-00416-0. URL http://dx.doi.org/10.1038/s41598-017-00416-0.

[14] K. Fang, G. Y. Ke, and M. Verma. A routing and scheduling approach to rail transportation of

hazardous materials with demand due dates. European Journal of Operational Research, 261(1):

154–168, 2017. ISSN 03772217. doi: 10.1016/j.ejor.2017.01.045. URL http://dx.doi.org/10.

1016/j.ejor.2017.01.045.

[15] M. L. Pinedo. Planning and Scheduling in Manufacturing and Services. 2006. ISBN

9780387303031.

[16] A. Nagar, J. Haddock, and S. Heragu. Multiple and bicriteria scheduling: A literature sur-

vey. European Journal of Operational Research, 81(1):88–104, 1995. ISSN 03772217. doi:

10.1016/0377-2217(93)E0140-S.

[17] T. C. Cheng and C. C. Sin. A state-of-the-art review of parallel-machine scheduling research.

European Journal of Operational Research, 47(3):271–292, 1990. ISSN 03772217. doi: 10.1016/

0377-2217(90)90215-W.

[18] D. Lei. Multi-objective production scheduling: A survey. International Journal of Advanced Manufac-

turing Technology, 43(9-10):925–938, 2009. ISSN 02683768. doi: 10.1007/s00170-008-1770-4.

[19] D. Danneberg, T. Tautenhahn, and F. Werner. A comparison of heuristic algorithms for flow shop

scheduling problems with setup times and limited batch size. Mathematical and Computer Mod-

elling, 29(9):101–126, 1999. ISSN 08957177. doi: 10.1016/S0895-7177(99)00085-0.

[20] K. Genova, L. Kirilov, and V. Guliashki. A survey of solving approaches for multiple objective flexible

job shop scheduling problems. Cybernetics and Information Technologies, 15(2):3–22, 2015. ISSN

13144081. doi: 10.1515/cait-2015-0025.

[21] R. Wardlaw. Genetic algorithms for Shop Scheduling Problems : a Survey. 125(February):1–12,

1999.

58

http://dx.doi.org/10.1016/j.ejor.2009.05.038
http://dx.doi.org/10.1016/j.ejor.2009.05.038
http://dx.doi.org/10.1016/j.ejor.2008.12.003
http://dx.doi.org/10.1038/s41598-017-00416-0
http://dx.doi.org/10.1016/j.ejor.2017.01.045
http://dx.doi.org/10.1016/j.ejor.2017.01.045


[22] M. R. Garey, D. S. Johnson, and R. Sethi. The Complexity of Flowshop and Jobshop Scheduling.

Mathematics of Operations Research, 1(2):117–129, 1976. ISSN 0364765X. doi: 10.1287/moor.1.

2.117.

[23] I. A. Chaudhry and A. A. Khan. A research survey: Review of flexible job shop scheduling tech-

niques. International Transactions in Operational Research, 23(3):551–591, 2016. ISSN 14753995.

doi: 10.1111/itor.12199.

[24] A. Turkyılmaz, O. Senvar, I. Unal, and S. Bulkan. A research survey: heuristic approaches for

solving multi objective flexible job shop problems. Journal of Intelligent Manufacturing, 31(8):1949–

1983, 2020. ISSN 15728145. doi: 10.1007/s10845-020-01547-4.

[25] G. K. Rand and S. French. Sequencing and Scheduling: An Introduction to the Mathematics of the

Job-Shop, 1982. ISSN 01605682.

[26] H. Hoogeveen. Multicriteria scheduling. European Journal of Operational Research, 167(3):592–

623, 2005. ISSN 03772217. doi: 10.1016/j.ejor.2004.07.011.
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