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Abstract

Despite the recent success of state-of-the-art deep learning algorithms in object detection, the
practical applications of these methods and the availability of products which make use of this
technology is still very limited. In this work it is evaluated the possibility of applying this technology to
a table-top pick and place robot, which can be marketed at a low price to the general public. To that
end, two different scenarios are used, one referent to an household environment and another dedicated
to simulate an electronics laboratory. It is also studied two different philosophies for the training
data. In the first case a purposely curated dataset is used to collect the data, while on the second the
data is collected from standard internet searches and processed by the author. Furthermore, several
object detection methods (Faster R-CNN, YOLO, SSD) are tested in order to evaluate the practical
feasibility of this technology but also to evaluate which method would be best in order to consummate
this objective. In light of that, this work can be seen as a proof of concept of using deep learning based
object detection algorithms in a pick and place robot of small dimensions.
Keywords: Object Detection, Object Recognition, Deep Learning in Computer Vision, Pick and
Place Robot.

1. Introduction

For the last century, robots have changed from
science fiction to a reality in certain areas of our
life. Since the coining of the term by the brothers
Čapek [6], in the late 1910’s, robots have greatly
developed and are now present in all kinds of fields,
such as industry, transportation or medicine. Their
depiction in literature and cinematic fiction is ex-
tremely diverse. These depictions, and countless
other popular culture references, show a widespread
desire of integrating robots in menial and everyday
tasks.

This desire has given origin to several wide fields
of research, amongst which we can count Human-
robot Collaboration and Cobots. In fact, both these
fields have real applications, for instance, in health-
care [5], military applications [3], rescue [28], in-
dustrial production [34], domestic environment [10]
and many more.

Companies and markets have also taken a keen
interest in such devices, as they expect these to be-
come a big profitable market. A 2018 report pub-
lished by MarketsandMarkets [27] estimated that in
2025 the collaborative robot market will be worth
more than $12.000 Million. This expectation led
many companies to pursue the Cobots market and

many major players have presented their solutions.

The interest from such companies is justified by
the interest of end users and the population in gen-
eral. Several surveys [19, 38] demonstrates that, de-
spite the reality of this technology being far away
from day-to-day use, there is an acceptability and,
in fact, a demonstrated necessity in the general pop-
ulation for such kind of technology.

From this necessity, allied with the drop in price
of most of the technologies needed, one can easily
imagine the development in the near future of sev-
eral devices that would complement humans into
tasks more general, more abstract and less struc-
tured than the ones Cobots perform today. Inde-
pendent of which task we are previewing, in order
to achieve good performance, there is a set of opera-
tions of paramount importance: such a device must
be capable of accurately depict the outside world.
That is, any robot talked above must be capable
of extracting the location of objects from an input
sensory system, for instance a video feed, and be
able to classify its nature, so that the object can be
moved to a designated box, for example. This set
of operations is the main focus of this work.

Provided the circumstances, namely that there
are several generic objects in an image and the main
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goals are to extract information related to its loca-
tion as well as categorize such objects into classes,
this clearly takes us to the computer vision task of
object recognition. Andreopoulos and Tsotsos [2]
state that the recognition problem denotes the gen-
eral problem of identifying all the objects present
in the image and providing accurate location infor-
mation of the respective objects. Russakovsky at
al. [32] use the term object recognition broadly to
encompass both image classification, a task requir-
ing an algorithm to determine what object classes
are present in the image, as well as object detection,
a task requiring an algorithm to localize, as in re-
strict to a particular place, all objects present in the
image. Szeliski [36] defines object detection as cat-
egorizing not just whole images but delineate (with
bounding boxes) where various objects are located.
This shows a great similarity with the previous def-
initions of object recognition, reason for which the
terms are used interchangeably.

The tasks of identifying, locating and catego-
rizing objects are among the earliest in the field
of Computer Vision. In fact, one of the initial
drives of the field was to artificially recreate this
process, which comes effortlessly to virtually any
animal and certainly to intelligent animals. How-
ever, the biggest revolution for the task of object
recognition appeared in the 2012 edition of the Im-
ageNet challenge [32]. A team from the Univer-
sity of Toronto enter a convolutional neural network
(CNN) model [20], and won the competition with
a major error-rate drop from previous years. Since
2012, all the winners have used CNN models and
error-rates have steadily dropped to a very small
percentage, being on par or even surpassing human
capacities.

Hence, from 2012 onward, it has been common
practice and, in fact, the leading strategy to tackle
problems such as Image Classification and Object
Detection to use some form of algorithm with a
CNN backbone. For that reason, this will be the
strategy used for this work.

2. Background

Convolutional Networks are defined by Goodfellow
at al. [14] as a specialized kind of neural network for
processing data that has a known, grid-like, topol-
ogy and employ a mathematical operation called
convolution, which is a specialized kind of linear
operation. In other words, convolutional networks
are simply neural networks that use convolution in
place of general matrix multiplication in at least one
of their layers.

As was referred previously, they have been one of
the vital tools in Object Detection. Several archi-
tectures - Alexnet [20], VGG [33], GoogLeNet [35],
ResNet [15], Darknet [29], among others - have

proven to be fundamental feature extractors for the
task.

2.1. Object Detection Methods
Having these networks as reference, there is a pretty
elementar solution to the task of object recogni-
tion. Called the sliding window object localization,
it consists of running a classifier function (CNN or
not) over many rectangular subregions of an image
and taking its maximum as the object’s location.
However, this is evidently an inefficient method, be-
cause objects can appear in several locations, sizes
or aspect ratios, which leads to an enormous quan-
tity of regions needed to be evaluated.

Consequently, several methods emerged to tackle
this issue. These methods can generally be catego-
rized into two types [39]:

• One follows a more traditional object detec-
tion pipeline: generating candidates, region
proposals, at first and then proceeding to clas-
sify each proposal. The region proposal stage
usually makes use of one of several different
possible algorithms to generate regions of in-
terest (RoIs) to be analyzed, like selective
search [37], objectness [1] or fully connected
networks. It regularly is the bottleneck of the
method. The region proposal based methods
may include R-CNN [13], Fast R-CNN [12],
Faster R-CNN [31], R-FCN [9] and FPN [24].

• The second adopts a unified framework to
achieve classification and localization directly,
regarding object detection as a regression and
classification problem. Examples of this ap-
proach include MultiBox [11], YOLO [29] and
SSD [26].

Table 1 shows a comparison of the methods, from
the results obtained by Zhao et al. [39].

Method mAP(%) Rate (FPS)

R-CNN 66.0 0.03

Fast R-CNN 66.9 0.6

Faster R-CNN 73.2 9.1

(VGG16)

Faster R-CNN 83.8 0.4

(ResNet101)

YOLO 63.4 46

SSD300 74.3 45

SSD512 76.8 19

YOLOv2 78.6 40

Table 1: Object Detection methods: comparison of
performance on VOC07 test set (Zhao et al. 2018).

From the analysis of Table 1 it becomes pretty
clear the general advantages and disadvantages of

2



both types of methods. The methods that have a
candidate generation stage are generally more ac-
curate than the single shot methods, however that
accuracy comes at the expense of speed. When con-
sidering an application of object detection on video
feeds, both these parameters are determinant to the
success of the application and their relative impor-
tance should be evaluated in a case by case basis.

2.2. Transfer Learning

In practice, very few people train an entire Convo-
lutional Network from scratch as it requires large
quantities of data to perform well and a training
process that takes an incredibly large amount of
time. Instead, it is common to pretrain a CNN on a
very large dataset, such as ImageNet or MSCOCO,
and then use it either as an initialization or a fixed
feature extractor for the task to be implemented. In
fact, all of the methods described above make use of
this pretrained networks to implement the task of
object detection. This process is known as Trans-
fer Learning. Goodfellow et al. [14] define Trans-
fer Learning as the situation where what has been
learned in one setting is exploited to improve gen-
eralization in another setting. The same authors
give the following example: “we may learn about
one set of visual categories, such as cats and dogs,
in the first setting, then learn about a different set
of visual categories, such as ants and wasps, in the
second setting. If there is significantly more data in
the first setting, then that may help to learn repre-
sentations that are useful to quickly generalize from
only very few examples drawn from the second set-
ting”. When training an object detector, it is ex-
tremely common to use Transfer Learning. Several
libraries and frameworks provide Model Zoos with
several example models, which can be fine-tuned to
perform a specific task. This will be the procedure
adopted for this work.

2.3. Faster R-CNN

Faster R-CNN was proposed in 2016 by Ren et
al. [31]. It eliminates the selective search algorithm
of previous algorithms from the RCNN family and
lets the network learn the region proposals. Similar
to Fast R-CNN, the image is provided as an input
to a convolutional network which generates a con-
volutional feature map. Instead of using selective
search algorithm on the feature map to identify the
region proposals, a separate network is used to pre-
dict the region proposals - the Region Proposal Net-
work (RPN). This lowers the region proposal time
from 2 seconds per image, to about 10 ms, while it
also allows the region proposal stage to share lay-
ers with the following detection stages, causing an
overall improvement in feature representation. The
Region Proposal Network also makes the use of a set
of Anchors. For every point in the output feature

map, the network has to learn whether an object is
present in the input image at its corresponding loca-
tion and estimate its size. This is done by placing
a set of Anchors on the input image for each lo-
cation on the output feature map of the backbone
network. These anchors are a set of rectangular
shapes in various sizes and aspect ratios at this lo-
cation. The RPN is divided in two branches: the re-
gression branch and the classification branch. The
former outputs the 4 regression coefficients used to
improve the coordinates of the anchors boxes that
contain objects as done in Fast R-CNN. The latter
gives the probabilities of whether or not each point
of the feature map contains an object within all 9 of
the anchors at that point. Overall, Faster R-CNN
can be thought as the RPN as a region proposal
algorithm and Fast R-CNN as a detector network.

This work makes use of the Faster R-CNN algo-
rithm, seen as it is the most improved and faster of
the R-CNN family. It is also important to note it
achieve the best results in terms of accuracy when
compared to others methods.

2.4. YOLO: You Only Look Once

You Only Look Once (YOLO) is a general purposed
object detection algorithm that frames the task as
a unified problem, using the same deep neural net-
work to predict bounding boxes and class probabil-
ities [29]. YOLO was the first of the deep learning
based algorithms to achieve real time object detec-
tion. YOLO divides the input image into a S × S
grid. Each grid cell is responsible for the prediction
of B bounding boxes and the confidence scores for
those boxes. From the second version onwards, the
use of anchors boxes is also an important feature of
the algorithm.

To overcome the disadvantages of YOLOv2,
YOLOv3 [30] was published in 2018. There
were changes made, which account for a small
but important improvement when comparing with
YOLOv2,in terms of accuracy. This version can be
considered as an incremental improvement to the
works published before. The changes of this ver-
sion are: changes in the loss function computation,
more specifically, to the objectness scores of the loss
function; changes in class prediction, that is, change
from the use of softmax classifiers to independent
logistic classifiers, because the former impose the
assumption that each box has exactly one class; pre-
diction across 3 scales; new feature extractor net-
work, Darknet-53, constituted by 53 convolutional
layers and no pooling layers.

This work makes use of YOLOv3 because it is the
last stable version of the YOLO family of algorithms
and it has achieve state-of-the-art results in terms of
speed, while approaching the state-of-the-art results
in terms of accuracy.
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2.5. SSD: Single Shot MultiBox Detector
Introduced in 2016 by Liu et al. [26], the Single
Shot Detector (SSD) is a single stage method for
object detection, just like YOLO, reportedly bring-
ing a great improvement in accuracy for such class
of methods. This is fairly important because the
greater speed of single shot methods is many times
obtained at the expense of accuracy. The algorithm
uses a pretty simple and straightforward framework.
It discretizes the output space of bounding boxes
into a set of default boxes over different aspect ra-
tios and scales per feature map location. The use of
this default bounding boxes is similar to the uses of
anchors in Faster R-CNN, however they are applied
on several feature maps of different resolution, that
is, on different stages of the CNN. Instead of the
fully-connected networks, convolutional layers are
added, allowing prediction of detections at multi-
ple scales. Each added feature layer can produce a
fixed set of detection predictions using a set of con-
volutional filters. For a feature layer of size m × n
with p channels, the basic element for predicting
parameters of a potential detection is a 3 × 3 × p
kernel that produces either a score for a category,
or a shape offset relative to the default box coordi-
nates. At each feature map cell, the model predicts
the offsets relative to the default box shapes in the
cell, as well as the per-class scores that indicate the
presence of a class instance in each of those boxes.
Specifically, for each box out of k at a given loca-
tion, it computes c class scores and the 4 offsets
relative to the original default box shape. This re-
sults in a total of (c + 4)k filters that are applied
around each location in the feature map, yielding
(c + 4)kmn outputs for a m× n feature map.

This works makes use of this algorithm because it
achieved results very closely matched with theones
obtained by the YOLO algorithm, to an extend
that is difficult to separate them in terms of perfor-
mance

3. Implementation
The implementation can be separated into two dis-
tinct phases corresponding to two different environ-
ments and groups of objects to be detected.The first
phase intends to mirror an household or office en-
vironment, more specifically a desk with everyday
items that are used in these environments, such
as pens, cellphones, mugs, bottles, among others.
In this stage, the images and annotations used for
training were downloaded from an online dataset, in
order to evaluate if the quantity and quality of such
open sourced data is enough to obtain a working
model. The second phase corresponds to a sim-
ulated electronics laboratory or workshop, where
the detection is intended for objects such as ca-
pacitors, resistors or potentiometers. The images
used at this point, were downloaded from standard

searches on the internet and manually annotated by
the author. This was done in order to determined
if an untrained subject could provide quality data
to train the models.

All the models were implemented in the Python
programming language. All the discussed models
were trained, except otherwise stated, until the loss
stagnated. Training stoppage was forced manually
by the author, that is, no automatic stoppage cri-
teria was programmed. Furthermore, all the hyper-
parameters of training were the default parameters
of the frameworks used.

3.1. Tensorflow API and Ultralytics repository

TensorFlow Object Detection Application Pro-
gramming Interface (Tensorflow API) [16] is an
open source framework built on top of TensorFlow
that aims to make it easy to construct, train and
deploy object detection models. Together with the
TensorFlow Model Zoo, TensorFlow Object Detec-
tion API provides the user with multiple pre-trained
object detection models with instructions and ex-
ample codes for fine-tuning and transfer learning.

In this work, a Faster R-CNN model and a SSD
model, both with a backbone convolutional archi-
tecture using the Inception module and both pre-
trained on MSCOCO [25], were selected from the
Model Zoo and trained using the Tensorflow API.

While the SSD and Faster R-CNN models were
possible to be trained using the Tensorflow API, the
same cannot be said for the YOLO models. When
YOLO was proposed, the author also released a spe-
cific open-sourced framework written in C, Darknet,
in order to facilitate the training of such models.
However, seen as C is not as user-friendly of a pro-
gramming language as Python, several translators
were built, generally with compatibility with Ten-
sorflow or PyTorch. These libraries are very useful,
seen as, they enable Transfer Learning from the pre-
trained models in huge datasets. This work makes
use of one of those libraries [18], with compabilbity
with PyTorch.

3.2. The Open Images Dataset

The Open Images Dataset V4 [23] was launched in
2018, by a team working in Google AI. For object
detection, it contains 15.4 Million bounding boxes
for 600 object classes, annotated on 1.9 Million im-
ages, which, the authors state, is 15 times more
bounding boxes than the next largest datasets.

One of the major advantages of this dataset has
to do with the way it was created. The images
it contains were collected from Flickr, a popular
images and video hosting site, without any prede-
fined list of classes or tags. The images that ap-
peared somewhere else on the internet were then
removed, in order to reduce the bias towards web
imagery. This is greatly beneficial when training
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an object detection algorithm because the images
are presented in a natural ambient, often in clut-
tered environments, easily verified by its average of
8 annotated objects per image.

When analysing the quality of the dataset the au-
thors report quite good results for the dataset.The
precision and recall for the analysed images are re-
spectively 97.7% and 98.2%, both very high val-
ues. Furthermore, the authors also analysed the
quality of the bounding boxes, reporting an IoU of
0,87 when evaluating the geometric agreement of
the boxes, that is, the IoU of two boxes drawn of
the same object by two different annotators. In
light of this, the Open Images Dataset was chosen
and OIDv4 Toolkit [76] was used when downloading
the images

3.3. Models trained on 1 class

The order to test the feasibility of training an ob-
ject detector and get a feeling for some of the con-
ditions needed for the train process, for example
the number of images and the time needed for the
process, the first practical application tested was
training a model on just one class. Such a class
was chosen considering it is an object of everyday,
intensive and widespread use. It was also needed
to take into consideration both the scenarios and
the environments that serve as reference for this re-
port. Several classes of the Open Images Dataset
were considered, finally settling on the Pen class. In
the used dataset, 198 images were available for such
a class, annotated with 293 bounding boxes, which
were divided into training and testing partitions.

3.4. Models trained on 4 classes

To further the knowledge on training and to analyze
the impact of having multiple classes on a trained
model, a second set of models were trained to de-
tect four classes. Besides the class already chosen
before, the new classes chosen were: Glasses (as
in vision-aiding glasses), Mobile phone and Mug.
These classes were chosen because they are com-
monly found items on a office or home tables and,
combined with that, they have a comprehensive set
of images in the Open Images Dataset. Hence, the
training partition entailed 1375 images and the test-
ing partition got 381 images, with 1805 and 475
bounding boxes, respectively.

3.5. Models trained on 10 classes

The final set of models for the first phase were
trained on ten different classes. Following the crite-
ria attended previously, the six classes added were:
Book, Bottle, Coin, Headphones, Human Hand and
Tin Can. Despite not being an object found fre-
quently on a table, the Human Hand class was also
chosen because of the possible real-time in-frame
movement of objects by an human subject.

In order to investigate the impact of class imbal-
ance, the decision was made to use three different
datasets. The first was composed by all the images
and bounding boxes available for the classes in the
Open Images Dataset. On the second, images were
randomly selected so that their number for each
class in the train and test partition were about the
same. On the third, mages were randomly selected
so that the number of bounding boxes for each class
in the train and test partition was about the same.
The number of images and bounding boxes in the
training and testing partitions for each dataset can
be seen in Table 2.

Dataset Images BB
Train Test Train Test

(1) 3785 946 9917 2514
(2) 1497 472 3389 1188
(3) 1284 326 2282 556

Table 2: Number of images and bounding boxes on
each set used to train the 10 classes models.

3.6. Models trained with manually annotated im-
ages

There were several purposes in training models with
manually annotated images. The first objective is
to determine if it is possible to obtain a set of im-
ages and annotations, from a source other than a
purposely curated database, good enough to train
a workable model, seen as such databases are very
rare and possess a relative small number of classes.
The second purpose, related to the main objective
of this work, is to reflect on and check if it would
be possible for a program to be coded, that would
allow training “at home”, that is, the training of a
model by an untrained end user of a possible prod-
uct.

The choice of classes and general environment to
be simulated were also object of consideration. The
chosen classes were: capacitor, potentiometer and
resistor. These point out to an electronics related
environment such as an electronics workshop or an
electronics laboratory. This invalidates the work-
flow of the previous phase. The workflow of this
phase can be encapsulated into three stages: ob-
taining and selecting images, annotating the images
and training the models.

Obtaining and selecting images: The images used
in this phase were obtained through several query
searches on Google Images. The images were then
downloaded in bundle, that is, all the resulting im-
ages were downloaded, resulting in a total of 1175
images for the capacitor class, 1061 images for the
potentiometer class and 1333 images for the re-
sistor class. Next, the images had to be filtered,
that is, a selection of the useful images had to
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be made. Images such as drawings, animations,
schematics, graphics, pages from technical docu-
mentation, table duplicate images were removed.
Also removed, were images too strenuous to an-
notate, images where the objects were not visible
and images that didn’t correspond to the intended
search. The resulting dataset from this process was
comprised of 320 images for the capacitor class, 273
images for potentiometer and 313 for resistor.

Annotating the images: The resulting dataset
had to be annotated, that is, indicate the location
of the objects in each image by means of bound-
ing boxes. A program was produced, where the
annotators indicated the top-left and bottom-right
corners of the relevant objects in the image, using
mouse clicks, and the classes of such objects, by the
ways of keyboard selection. After a final review of
the annotated objects and acceptance of the results,
the program produced two annotations files accord-
ingly to the specifications of the frameworks later
used for training - a .txt file for YOLO training
and a .csv file for the Tensorflow API. It is impor-
tant to denote that the annotation process is quite
strenuous. It took two annotators a combined time
of about 25 hours to produce the annotations for
the 906 images of the dataset.

Training the models: In order to further inves-
tigate the impact of class imbalance, the decision
was made to use two different datasets. The first
one was comprised of all the collected and selected
images. The second one was a balanced dataset,
where images were randomly selected so that the
number of bounding boxes for each class was the
same.

4. Results
Taking into consideration that the main goal of this
work is to be able to perform real-time or near real-
time object detection on video feeds, several sample
videos were taken, in order to evaluate the resulting
models. The videos were capture with a simple we-
bcam of model SelecLine PPW-10, with definition
640 × 480. The purpose of using such a device is
to evaluate the possibility of adapting the trained
models to a household item, readily available at a
low price. These videos were implicitly different in
factors such as: illumination, distance to the ob-
jects intended to be identified, background color,
the pose of the objects to be detected, the presence
or absence of movement, the area of the frame where
objects were present or occlusion of the objects to
be detected. From these videos, several frames were
then randomly selected. These were then manu-
ally annotated in order to obtain the ground-truth
bounding boxes. The comparison of such bound-
ing boxes with the ones predicted by each model
enables the computation of the mAP. FPS was sim-
ply measured as the inverse of the time between

predictions on the video feed of the webcam. It is
important to denote that the best result possible
for this metric is 30 FPS, seen as this is the rate of
capture for the webcam feed.

4.1. Models trained on 1 class
The verification set obtained for these models, using
the process described above, was composed by 89
images with 141 ground-truth boxes for the Pen
class. The obtained results for the models trained
in this section can be seen on Table 3.

Model mAP(%) Rate (FPS)

Faster R-CNN 72.20 6

SSD 12.58 23

YOLO 58.14 23

Table 3: Results for the models trained on 1 class.

We can see the Faster R-CNN model performs the
best in terms of accuracy while being significantly
slower when predicting the results. The SSD model
matches the YOLO model has the fastest model but
performs very poorly in terms of accuracy. Further-
more, the YOLO model performs very well in terms
of speed but lags behind the R-CNN model when
accuracy is concerned.

Despite good performance, the Faster R-CNN
model seems to be sometimes affect by illumination
and distance to the object to be detected. Hence,
despite some drawbacks, the R-CNN model seems
to produce good results, close to the state-of-the-art
results.

4.2. Models trained on 4 classes
The composition of the verification set can be seen
in Table 4. The obtained results for the models of
this section can be seen in Table 5.

Class Pen Mug Phone Glasses

BB 60 56 45 37

Table 4: Verification set for the 4 classes models.

Model mAP(%) Rate (FPS)

Faster R-CNN 59.36 6

SSD 16.79 20

YOLO 45.99 20

Table 5: Results for the models trained on 4 classes.

The accuracy values tend to decrease from the
models trained on 1 class, indicating the mod-
els perform worse when detecting the classes that
aren’t Pen. For the R-CNN model the speed doesn’t
seem to be affected when the total number of classes
the model can detect is increased, while for the
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other models the speed is slightly lower than be-
fore. The Faster R-CNN model continues to be the
more accurate, while the others continue to lead on
speed.

Delving deeper into the computation of mAP for
each model, it is possible to see that the presence of
the Mug class greatly decreases the value of mAP
for the models. In fact, if the class was to be dis-
regarded, the value of mAP for the R-CNN model
would be equal to 73.19%, higher than the one ob-
tained on Section 4.1. The same happens with the
other models. If the 2 worst performing classes were
to be disregarded for the YOLO model, its mAP
would be 67.32%.

Taking the previous information into considera-
tion, it is visible the R-CNN model is again the best
performing model and produces good results, spe-
cially if we exclude the worst performing class

4.3. Models trained on 10 classes
The composition of the verification set used for this
phase can be seen in Tabel 6. Equally, the obtained
results for the models can be seen in Table 7. The
references (1), (2) and (3) correspond, respectively,
to the models trained with an imbalanced dataset,
a dataset balanced in the number of images and a
dataset balanced in the number of bounding boxes.

Class Pen Mug Phone Glasses

BB 55 43 47 47

Class Coin Headphones Bottle Book

BB 58 49 45 44

Class Tin Can Human Hand

BB 47 43

Table 6: Verification set for the 10 classes models.

Model mAP(%) Rate (FPS)

(1) (2) (3)

R-CNN 38.44 33.66 20.99 6

SSD 11.00 6.83 4.88 19

YOLO 26.68 18.50 22.50 20

Table 7: Results for the models trained on 10
classes.

The increase in the number of classes to detect
seems to have an effect on the accuracy of the mod-
els. Analyzing the detections, the problem looks to
be located on images with cluttered environments,
that is, with several objects in an image. In this
kind of image, the models seem to correctly predict
one or two classes, but fail to make predictions on
the remaining objects of the images. This appears
to be confirmed by the accuracy results when the

verification set is reduced to images with 1 or 2 ob-
jects. These results are shown in Table 8. The table
clearly shows the models perform much better with
less objects to predict per image.

Model mAP(%)

(1) (2) (3)

Faster R-CNN 58.54 47.25 30.50

SSD 18.03 4.37 7.37

YOLO 44.32 19.34 25.81

Table 8: Results for the models trained on 10 classes
using images with 2 objects or less.

A consideration that is possible to take for the re-
sults relates to the balancing of the training dataset.
It is quite clearly that the efforts made in that area
didn’t produce good results. However,the effect of
the balancing isn’t straightforward. Although, this
effect isn’t equal for all the classes, the classes with
less examples in dataset (1) seem to be benefited
by balancing while the ones with the most exam-
ples seem to be hindered.

We’ll explore the best performing model, the
Faster R-CNN model trained with dataset (1). As
is the case in Section 4.2 if we exclude the worst
performing class there is an increase in accuracy.
The obtained mAP would be 42.07% for the entire
verification dataset and 65.05% for the smaller veri-
fication dataset. If we go further and eliminate also
the influence of the second worst performing class,
the value for the second verification set would be
69.61%. Although not state-of-the-art, this value
approaches those reported.

4.4. Models trained with manually annotated im-
ages

As stated in Section 3.6 two dataset - balanced and
imbalanced - were produced for training models in
this phase of the work. The general results ob-
tained for the consequently 6 models can be seen
in Table 10. Furthermore the composition of the
verification set by class can be seen in Table 9.

Class Resistor Capacitor Potentiometer

BB 113 102 82

Table 9: Verification set for the manually annotated
models.

The Faster R-CNN model continues to be the
best performing model in terms of accuracy, while
the others have an edge when speed is concerned.
The balancing of the dataset seems to produce ei-
ther virtually no difference or a negative one, when
talking about accuracy. The performance of the
models, in terms of accuracy, greatly decreases from
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Model mAP(%) Rate (FPS)

Balanced Imbalanced

R-CNN 36.83 37.50 6

SSD 11.01 4.68 20

YOLO 19.52 24.69 20

Table 10: Results for the models trained with man-
ually annotated images.

the models of previous sections and from the results
reported for each algorithms in the literature. The
dip in performance may be due to several factors.
First, it was expected that the images used in this
phase were not as appropriate for the task of object
detection as images from a curated dataset. Sec-
ond, the size of the objects in the verification set
is quite small, which leads to a a big difference be-
tween the images on the dataset used for training
and the images on the verification set.

5. Conclusions

Regarding the main general objective, the study of
the input sensory system of a tabletop pick and
place robot, we can see from the work developed
that it is possible to devise a general system capa-
ble of recognizing to a good extend everyday objects
and possible to be applied to commercial use. Com-
paring with other solutions published [21, 22], the
accuracy metric on those solutions is better. How-
ever, such solutions, and by consequence their ver-
ification sets, are designed for very limited scenar-
ios. In this work, the purpose of the product is
more general and, despite lower accuracy, the solu-
tion found can be satisfactory. However, it is fairly
clear that such a product has several limitation and
should be design with those limitations in mind.

The first of the constraints to be considered is the
fact that it is pretty explicit that some classes of
objects are more suitable to this purpose than oth-
ers. For instance, small objects seem to be harder
to identify and locate than others of superior di-
mensions. It is clear that the training examples
for the image recognition algorithms can’t be indis-
criminate and dissociated from the objective of the
system to be projected.

The second constraint relates to the detection of
objects in cluttered environments. In such environ-
ments, the algorithms suffer a dip in accuracy per-
formance, which means that any device using these
algorithms should be design having that in consider-
ation. That is, it should avert situations where the
objects are closely together. Alternatively, it could
also take advantage from the fact that, despite hav-
ing a dip in performance, the detector seems to still
predict correctly some of the object in the image.

The third consideration necessary is the fact that

the best performing algorithms are affected by some
hindering factors. Low illumination can sometimes
decrease the performance of the algorithms. Fur-
ther study is necessary to determine how much it
contributes to such decrease. The distance to the
objects to be identified also can be a problem, but
seems to only affect small objects as previously dis-
cussed. Background color also appears to be a fac-
tor with importance but its effects were only seen
in limited cases.

Relating to the specific situations studied in this
work, it can be concluded that the choice of algo-
rithm to perform object detection should fall onto
Faster R-CNN when accuracy is the top require-
ment for a situation. On the other hand, if speed is
preferred, the YOLO algorithm should be favored.
Regarding the SSD algorithm, the results obtained
are very distant, in terms of accuracy, from the ones
reported by the authors and by other sources. This
could mean that a series of blunders may have af-
fected the training of such models, affecting the re-
sults obtained.

Another conclusion regarding the implementa-
tion of this work concerns the balancing of the train-
ing datasets. It is possible to comprehend that the
balancing of the datasets in this work wasn’t suc-
cessful and, in fact, lowered the performance of the
models. The most probable cause of such a situ-
ation was the fact that the method used for the
balancing, subsampling, may not be the most ap-
propriate for this task. Other methods such as over-
sampling, data augmentation or SMOTE [8] can be
used to test the effects of data unbalancing and un-
derstand if it is possible to improve performance.

Regarding the possible annotation of images by
an end user, it may be fair to say that such a pro-
cess would be very difficult to implement. That is
justified by two arguments. The biggest hurdle to
such a process would be the difficulties that would
be presented to an untrained annotator. As is re-
ferred, the annotating process is very time consum-
ing and tedious. Furthermore, it is abundantly ex-
plicit throughout this work that some images are
more appropriate to train a model than other. As
an end user wouldn’t be alert to this fact, there is no
guarantee that he images chosen for training would
be suitable.

Finally, it is important to mention that the mod-
els studied in this work can also be applied to many
other situations. This unspecialization and possi-
bility for general use is one the best feature of the
object detection algorithms studied.

5.1. Future Work

In the future, it is essential to increase the capac-
ity of the implemented models by expanding the
database used for training and the number of classes
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they are able to recognize. It is also important,
the study of future or recently published algorithms
for object detection such as YOLOv4 [4], YOLOv5
or End-to-End Object Detection with Transform-
ers [7]. Equally, it should be important to accom-
pany developments in the databases with object de-
tections tasks. Regarding the applications related
to pick and place robots, it would also be impor-
tant to add information on the depth aspect of im-
ages. Using cameras with such capabilities, it may
be important for this task to perform object de-
tection on RGB-D images. Regarding the device
suggested in this work, it would be beneficial to
evaluate the possibility of implementing the studied
algorithms in an embedded system or a single board
computer such as a Raspberry Pi or the more spe-
cialized NVIDIA Jetson, Google Coral or Khadas
VIM series. It is also possible to imagine a semi-
automatic process of training for unknown objects
in a scene, where a model would provide the loca-
tion information, maybe following recent works in
class agnostic object detection [17], and the user
would provide the name for the class.
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