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Resumo

Apesar do recente sucesso de algoritmos de última geração de detecção de objecto usando apren-

dizagem profunda, as aplicações práticas deste métodos e a existência de produtos que fazem uso

desta tecnologia ainda é bastante limitada. Neste trabalho é avaliada a possibilidade de aplicar esta

tecnologia a um robô de manipulação, que possa ser vendido ao público a baixo preço.

Para esse efeito, 2 cenários diferentes são usados, um referente a um ambiente doméstico e outro

que pretende simular um laboratório de electrónica. Também são estudadas duas filosofias diferentes

para os dados de treino. No primeiro caso, uma base de dados curada para o efeito é usada para

recolher informação, enquanto no segundo caso a informação é recolhida através de pesquisas na

internet e processada pelo autor. Ademais, vários métodos de detecção de objecto são testados (Faster

R-CNN, YOLO, SSD) com o intuito de avaliar a viabilidade prática desta tecnologia, mas também para

avaliar qual dos métodos seria o melhor para consumar este objectivo.

Assim sendo, este trabalho pode ser visto como uma prova de conceito do uso de algoritmos de

detecção de objecto com aprendizagem profunda num robô de manipulação de pequenas dimensões.

Palavras-chave: Detecção de Objecto, Reconhecimento de Objecto, Aprendizagem Pro-

funda em Visão Computacional, Robô de Manipulação.
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Abstract

Despite the recent success of state-of-the-art deep learning algorithms in object detection, the practical

applications of these methods and the availability of products which make use of this technology is still

very limited. In this work it is evaluated the possibility of applying this technology to a table-top pick and

place robot, which can be marketed at a low price to the general public.

To that end, two different scenarios are used, one referent to an household environment and another

dedicated to simulating an electronics laboratory. It is also studied two different philosophies for the

training data. In the first case a purposely curated dataset is used to collect the data, while on the second

the data is collected from standard internet searches and processed by the author. Furthermore, several

object detection methods (Faster R-CNN, YOLO, SSD) are tested in order to evaluate the practical

feasibility of this technology but also to evaluate which method would be best in order to consummate

this objective.

In light of that, this work can be seen as a proof of concept of using deep learning based object

detection algorithms in a pick and place robot of small dimensions.

Keywords: Object Detection, Object Recognition, Deep Learning in Computer Vision, Pick and

Place Robot.
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Chapter 1

Introduction

1.1 Motivation

For the last century, robots have changed from science fiction to a reality in certain areas of our life.

Since the coining of the term by the brothers Čapek [1], in the late 1910’s, robots have greatly developed

and are now present in all kinds of fields, such as industry, transportation or medicine. Their depiction

in literature and cinematic fiction is extremely diverse and, in spite of a great evolution over the years,

robots, especially those available to the public, are not comparable to those depictions and, in fact, are

not able to emotionally connect with human. Even when they are incorporated on common daily life, it

is in a very limited way, far from the humanoid general purposed robots depicted, for example, on the

animated series “The Jetsons” or the cinematic franchise ”Star Wars”. However, these, and countless

other, popular culture references show a widespread desire of integrating robots in menial and everyday

tasks.

This desire has given origin to several wide fields of research, amongst which we can count Human-

robot Collaboration (HRC) and Cobots. Bauer, Wollherr and Buss [2] defined HRC as ”working with

someone on something”, that is, it implicates ”a common goal”, as opposed to Human-robot Interaction

that functions as a ”master-servant relationship” [3]. Cobots are defined as ”a robotic device which

manipulates objects in collaboration with a human operator” and ”provides assistance to the human

operator by setting up virtual surfaces which can be used to constrain and guide motion” [4]. In fact, both

these fields have real applications, for instance, in healthcare [5], military applications [6], rescue [7],

industrial production [8], domestic environment [9] and many more.

Companies and markets have also taken a keen interest in such devices, as they expect these to

become a big profitable market. A 2018 report published by MarketsandMarkets [10] estimated that in

2025 the collaborative robot market will be worth more than $12.000 Million. This expectation led many

companies to pursue the Cobots market and many major players have presented their solutions, such

as, ABB (YuMi, 2015), KUKA (LWR3, 2004), Fanuc (CR-35iA, 2015), Omron (Lynx, 2017), Universal

Robots (UR5, 2008; UR10, 2012; UR3, 2015), Epson (Flexion N-Series, 2016) and Festo (BionicCobot,

2010; OctopusGripper, 2017).
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The interest from such companies is justified by the interest of end users and the population in

general. A survey conducted by Khan [11] concluded that participants had, in general, positive attitudes

and found usefulness in Intelligent Service Robots (ISR), that is, a mobile platform that can perform

cleaning and transportation tasks in a domestic setting. Furthermore, it concluded that the preferential

measures for such device are 30-50 cm in diameter and 100-150 cm in height. This was later confirmed

by Wongphati, Matsuda, Osawa and Imai [12] for robotic arms, who also concluded that household tasks

were preferred, followed by workplace tasks and desk or working surface tasks. This demonstrates that,

despite the reality of this technology being far away from day-to-day use, there is an acceptability and,

in fact, a demonstrated necessity in the general population for such kind of technology.

From this necessity, allied with the drop in price of most of the technologies needed, one can easily

imagine the development in the near future of several devices that would complement humans into tasks

more general, more abstract and less structured than the ones Cobots perform today. It is possible to

imagine, for instance, that Cobots could be used in an household environment to help in mundane

tasks such as cooking or cleaning a table. Similarly, they could be used in an office environment to

perform comparable tasks. By contrast, they could also be used in more specialized environments such

as a laboratory. There they could complement humans by recognizing components and either picking

them up on cue or suggesting them to the user or, alternatively, alert for the dangerous use of those

components. Independent of which task we are previewing, in order to achieve good performance, there

is a set of operations of paramount importance: such a device must be capable of accurately depict the

outside world. That is, any robot talked above must be capable of extracting the location of objects from

an input sensory system, for instance a video feed, and be able to classify its nature, so that the object

can be moved to a designated box, for example. This set of operations is the main focus of this work.

1.2 Topic Overview

Provided the circumstances, namely that there are several generic objects in an image and the main

goals are to extract information related to its location as well as categorize such objects into classes,

this clearly takes us to the computer vision task of object recognition. Vision is popularly defined as the

process of discovering from images what is present in the world and where it is [13]. Andreopoulos and

Tsotsos [14] divide such a problem into four levels of tasks, with each task incorporating the previous:

• Detection: is a particular item present in the stimulus?

• Localization: detection plus accurate location of item.

• Recognition: localization of all the items present in the stimulus.

• Understanding: recognition plus role of stimulus in the context of the scene.

Therefore, the authors state that the recognition problem denotes the more general problem of iden-

tifying all the objects present in the image and providing accurate location information of the respective

objects.

2



Russakovsky at al. [15] use the term object recognition broadly to encompass both image classifica-

tion, a task requiring an algorithm to determine what object classes are present in the image, as well as

object detection, a task requiring an algorithm to localize, as in restrict to a particular place, all objects

present in the image. In fact, in spite of being possible to find some differences between the tasks of

object recognition and object detection, many authors use both terms interchangeably and the same will

be true for this work.

This is visible, for example, when Szeliski [16] defines object detection as categorizing not just whole

images but delineate (with bounding boxes) where various objects are located. This shows a great

similarity with the previous definitions of object recognition, reason for which the terms are used inter-

changeably.

The tasks of identifying, locating and categorizing objects are among the earliest in the field of

Computer Vision. In fact, one of the initial drives of the field was to artificially recreate this process,

which comes effortlessly to virtually any animal and certainly to intelligent animals.

1.2.1 Historical Overwiew

Lawrence Roberts, commonly accepted as the father of Computer Vision, published in 1963 [17], one

of the first efforts to process a photograph and build a computational model representative of the object

from the information in that photograph, in what he called machine recognition of pictorial data. In his

work, Roberts was able to build a 3-D model of an object from the pictorial data and produce 2-D projec-

tions of the model. He stated the biggest benefit of the investigation was ”an increased understanding

of the possible processes of visual perception”. However, his final goal was to ”recognize the same

similarity classes which humans do”, in what he called multiple object recognition.

In 1966, the Summer Vision Project [18] had the intention of solving most of the Computer Vision

tasks researchers still struggle with today, during one single summer. The promoters expected the

project to be ”a real landmark in the development of pattern recognition”. Furthermore, they stated that

the primary goal of the project was to create programs that would be able to separate the foreground and

background regions of an image and the final goal was ”Object Identification”, in other words, ”actually

name objects by matching them with a vocabulary of known objects”.

Another important paper on the field was published in 1973 by Fischler and Elschlager [19]. Given a

description of a visual object, they tried to find that object in a photograph. Their framework consisted of

breaking down the object into a number of more primitive parts, specifying an allowable range of spatial

relations between these primitive parts and then using an embedding metric to evaluate how well any

composition of primitive picture pieces matched the desired composite picture.

Another field that has close ties with object detection is Optical Character Recognition. Both fields

share several techniques and have advanced each other throughout the years. In 1980, when working

on optical character readers, Fukushima [20] proposed the Neocognitron, a neural network model for

pattern recognition. As stated by the author, this self organizing network had the capability of recognizing

stimulus patterns and learning them without a teacher, being invariant to position or small distortions.
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Efforts in the subsequent decades, all focused on how an artificial systems could perceive, identify

or recognize the objects and patterns of the real world [13, 21, 22]. These proposed different models

and different concepts in order to represent the world and achieve those tasks.

One of the main interests in object detection is the detection of humans and especially of human

faces. One of the first successful application of object detection was inspired by the work of Paul Viola

and Michael Jones [23], in what became known as the Viola-Jones Algorithm. Their work used Adaboost

algorithm and Haar-like features to perform near real-time face detection. The industry rapidly took

notice and, in 2006, Fujifilm announced the first digital camera with face recognition technology, using

the Viola-Jones Algorithm.

This was part of a trend, popular in the 2000’s, where methods would compute different types of

feature representations, with varying degrees of invariance to illumination, scale, rotation, occlusion and

other problems, and later feed those representations to a classifier. The works of Dalal and Triggs [24],

Lazebnik et al. [25] and Felzenswalb [26] presented important approaches to the problem.

With the advancements in this field, the need for a standardized dataset to be used as benchmarking

became clear. In 2005, the Pascal Visual Object Classes (Pascal VOC) project was launched [27]. It

provided a standardized dataset and created an annual competition both for the classification and the

detection task. The dataset was initially composed of 4 classes and 1578 images, although it was ex-

panded in the subsequent years. In 2010, the ImageNet Large Scale Visual Recognition Competition

(ILSVRC) started [15]. The dataset presented for the competition [28] was a major improvement from

Pascal VOC 2010, scaling up from 20 object classes and around 20 000 images to 1000 classes and

about 1.5 million images. This dataset has become one of the leading benchmarks in object classifi-

cation and object detection. Another important dataset for the field was launched in 2014, Microsoft

COCO [29]. The database presented an harder task because, rather than presenting images that were

specially thought to adjust to object recognition, it presented objects in its naturally occurring contexts.

In the 2012 edition of the ImageNet challenge, the biggest revolution for the task of object recognition

appeared. A team from the University of Toronto enter a convolutional neural network (CNN) model [30],

and won the competition with a major error-rate drop from previous years [15]. Since 2012, all the

winners have used CNN models and error-rates have steadily dropped to a very small percentage,

being on par or even surpassing human capacities [15].

Hence, from 2012 onward, it has been common practice and, in fact, the leading strategy to tackle

problems such as Image Classification and Object Detection to use some form of algorithm with a CNN

backbone. For that reason, this will be the strategy used for this work.

1.3 Objectives

The general purpose of this thesis is to study the input sensory system of a device such as a small

Cobot, that is, the video feed of a tabletop pick and place robot, and to be able to extract location and

class information from such a collection of images. It is, therefore, the study of applying object detection

algorithms to extract that information. Thus, the objectives of this work can be summarized as follows:
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1. Implement object detection algorithms that can be used for the task at hand.

2. Compare the performance of three object recognition algorithms (YOLO, Faster R-CNN and SSD)

on the task.

3. Evaluate the impact of different environments in the performance of the different algorithms. The

intention is to use environments that simulate an opportunity of collaborative robotics.

4. Assess the benefits of different methods of data collection, one using a curated database and one

generating a custom database.

1.4 Thesis Outline

This work is divided into 5 chapters. The present chapter establishes the reasons for this work, its

motivation, along with defining the problem and providing some historical context for it. In Chapter 2

some important concepts for the development of this work are clarified. Next, Chapter 3 indicates the

practical approach to the problem, that is, the resources used to solve the enunciated issue. The results

of this approach are detailed in Chapter 4, while Chapter 5 is dedicated to summarising the overall quality

of the solutions, inferring some hypotheses from the results and recommending some future work.
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Chapter 2

Background

The next sections will be dedicated to providing some contextual knowledge required to object detec-

tion. First, some theoretical concepts regarding convolutional neural networks are enunciated. Then,

some CNN architectures are focused. Next, we introduce object detection methods and some metrics

designed to compare them. Finally, the methods used in this work are discussed in detail.

2.1 Convolutional Neural Networks

Convolutional Networks are defined by Goodfellow at al. [31] as a specialized kind of neural network

for processing data that has a known, grid-like, topology and employ a mathematical operation called

convolution, which is a specialized kind of linear operation. In other words, convolutional networks are

simply neural networks that use convolution in place of general matrix multiplication in at least one of

their layers.

Convolutional Neural Networks had been successfully used before the 2012 edition of the ImageNet

challenge, mainly in pattern recognition with the works of LeCun et al. [32–34]. They had resurfaced

around 2006 with the work of Hinton and Salakhutdinov in dimensionality reduction [35] and with the

work of Mohamed et al. in speech recognition [36]. However, it was from 2012 onward they proved ideal

for several computer vision tasks.

Being a feedforward neural network, its goal, stated by the same authors, is to approximate some

function f∗. A feedforward network defines a mapping y = f(x; θ) and iteratively learns the value of

the parameters θ, also known as weights, that result in the best approximation. On the other hand,

there is another set of parameters that affect the training of a neural network and cannot be adapted

by the learning algorithm itself, the hyperparameters1. These can be used to control the behaviour of

the learning algorithm. Some hyperparameters relevant to the training of CNNs will be discussed later,

because of their importance in the training process and their contributions to the convergence of the

process.

These mappings are called networks because they are typically represented by composing together

1There is however a field of research dedicated to automated hyperparameter tuning, hyperparameter optimization.
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many different functions. The model is associated with a directed acyclic graph describing how the func-

tions are composed together. For example, we might have three functions f (1), f (2), and f (3) connected

in a chain, to form f(x) = f (3)(f (2)(f (1)(x))). These chain structures are the most commonly used

structures of neural networks. In this case, f (1) is called the first layer of the network, f (2) is called the

second layer, and so on. The final layer of a feedforward network is called the output layer. The overall

length of the chain gives the depth of the model. As will be discussed later, the depth of a network is

an important hyperparameter on its training and is the object of much scientific discussion [37–39]. Also

important, when selecting the hyperparameters, is the width of the network, that is, the dimensionality

of the hidden layers [37, 40, 41].

During neural network training, we drive f(x) to match f∗(x). The training examples specify directly

what the output layer must do at each point x; it must produce a value that is close to y. The behavior of

the other layers is not directly specified by the training data. It is the learning algorithm that must decide

how to adjust the weights of these layers to best approximate f∗ and, for that reason, these are called

hidden layers.

Many authors describe the task of driving f(x) to match f∗(x) as an optimization problem [31, 42, 43],

that is, either minimizing or maximizing some function L(x), the loss function, also called the objective

function, the cost function or the error function. These functions usually include two terms: the first,

frequently called data loss, evaluates the performance of the network when compared to the ground-

truth; the second term, the regularizer, is used to reduce the generalization error, that is, to improve the

model’s performance for examples outside the training data. The technique most often used to minimize

the loss function is called Gradient Descent [44] or Method of Steepest Descent and is based on the

observation that the gradient of a function points in the direction of maximum increase and, therefore, the

negative gradient will point in the direction of maximum decrease. Thus, the gradient descent method

applied to neural networks can be summarized as shown in Figure 2.1.

Initialize the weights randomly

Compute the loss
and its gradient

Update the weights in the op-
posite of the gradient direction

Figure 2.1: Simplified algorithm for the gradient descent method.

Knowing the direction of the gradient, it is also necessary to know the magnitude of the update, in

other words, how big of a step do we take in that direction. This is maybe the most important hyperpa-

rameter when training a neural network and is called the learning rate [31].

However, most machine learning applications don’t use the gradient descent method in its original
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formulation. This happens because the full loss of a dataset is the average loss across the entire dataset.

Such a computation isn’t feasible when the number of examples in a dataset increases and a dataset

used for computer vision applications can reach millions of examples. Hence, rather than using the

entire dataset a small sample of training examples is sampled at each iteration, a mini batch, and an

estimate of the full sum on that set is computed. This is called Stochastic Gradient Descent (SGD).

Another technique used to improve the performance of SGD is Momentum [45], an accumulation of

an exponentially decaying moving average of past gradients that promotes movement in their direction.

Simplifying, the size of the step in the negative gradient direction, which was previously only dependent

on the learning rate, now depends on how large and how aligned a sequence of gradients are. The step

size is largest when many successive gradients point in exactly the same direction.

The convolution operation2 is defined by Goodfellow at al. [31] as an operation on two functions of a

real-value argument given by:

s(t) = (x ∗ w)(t) =
∫
x(a)w(t− a)da (2.1)

In convolutional network terminology, the first input, x, is referred to as the input and the second, the

function w as the kernel or filters. The output is referred to as the feature map. In machine learning

applications, the input is usually a multidimensional array of data and the kernel is usually a multidimen-

sional array of parameters that are adapted by the learning algorithm, both referred to as tensors. This

function are, therefore, discretized and zero everywhere but the finite set of points for which we store the

values. This means that in practice we can implement Equation 2.1 as a summation over a finite number

of array elements. We also use convolutions over more than one axis at a time. For example, if we use

a two-dimensional image I as our input, we probably also want to use a two-dimensional kernel K. Thus

a convolution is given by:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.2)

As is depicted in Figure 2.2, a typical layer of a convolutional network consists of three stages. In the

first stage, the layer performs several convolutions in parallel to produce a set of linear activations. In the

second stage, each linear activation is run through a nonlinear function, an activation function. The most

popular choices for activation function include the Logistic Sigmoid and Hyperbolic Tangent functions and

more recently the Rectified Linear Unit (ReLU) function. In the third stage, we use a pooling function

to modify the output of the layer further. A pooling function replaces the output of the net at a certain

location with a summary statistic of the nearby outputs. For example, the max pooling operation reports

the maximum output within a rectangular neighborhood. Other popular pooling functions include the

average of a rectangular neighborhood, the L2 norm of a rectangular neighborhood, or a weighted

average based on the distance from the central pixel. This operation is very relevant to translation and

size invariance. The combination of these tools in different structures makes up the architecture of a

2The operation used in a convolutional neural network does not correspond precisely to the definition of convolution as used in
other fields such as pure mathematics.
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network.

Figure 2.2: The components of a typical convolutional neural network layer (Goodfellow et al. 2016).

2.2 CNN Architectures

The 2012 winner of the ImageNet competition introduced a CNN architecture, later known as AlexNet [30],

composed of 5 convolutional layers and 3 fully-connected layers, combined with some normalization and

max-pooling layers. The use of dropout and data augmentation to avoid overfitting, the use of the ReLU

function as activation function and the implementation of training on multiple GPU’s were also determi-

nant in the success of the architecture. Using stochastic gradient descent (SGD) with a batch size of 128

examples, momentum of 0,9 and weight decay of 0,0005, a 7 models ensemble and also a learning rate

initiated at 0,01 and reduced by 10 every time the validation accuracy would plateau, AlexNet was able

to achieve a top-5 error rate of 16,4% for classification. In other words, the fraction of test images for

which the correct label is not among the five labels considered most probable by the model was 16,4 out

of 100. That represented a major advancement from the 25,8% rate registered by the previous year’s

winner.

In the 2014 edition, two influential architectures were introduced, and both presented important im-

provements and produced another jump in performance. Both proposals explored the concept of depth

of a network, to a great effect.

The first of these network, called VGG [46], had two version, one with 16 trainable layers and another

with 19 layers. However, the architectural aspects of the network were largely maintained from the

work on ALexNet, except for the restriction to 3 × 3 kernels alone and for the use of normalization,

which was proved not to improve performance, but rather just to increase memory and computation

time consumption. Using training parameters also very similar to [30], it achieved a top-5 error rate for

classification of 7.3%, placing it second in the challenge, and won the localization challenge.

The second one, called GoogLeNet [47], presented a model with 22 trainable layers and introduced
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the concept of an Inception module as its building block, in order to improve computational efficiency.

The simplest version, the naı̈ve version, of an Inception module is shown in Figure 2.3. The main idea of

this module is based on finding out an optimal local sparse structure, which is crucial to computational

and memory efficiency. This also allows for a certain cluster of highly correlated units in each layer, that

concentrates higher abstraction characteristics captured by the bigger filter and lower ones captured by

the smaller filters. However, there is one big problem with the module presented above: this approach is

prohibitively expensive in terms of computational complexity, seen as the number of output filters equals

the sum of filters from the previous stage. In order to tackle this issue, the strategy shown in Figure 2.4

was proposed, inspired by the work of Lin et al. [48].

Figure 2.3: Inception module, naı̈ve version (Szegedy et al. 2014).

The introduction of additional 1 × 1 bottleneck layers works as a linear combination of the depth

information and achieves the desired dimension reduction. Furthermore, this layers can function as

learnable pooling layers and introduce additional non-linearity to the network, which improves perfor-

mance. This model won the 2014 edition of the ImageNet Challenge with a top-5 error rate of 6.7% in

the classification task.

Figure 2.4: Inception module with dimension reductions (Szegedy et al. 2014).

The success of these two models demonstrated the importance of depth in the performance of a

Convolution Neural Network. Taking this into consideration, the 2015 winner [49] presented a model

with 152 trainable layers. This evidences the importance researchers gave to the concept of depth, as

they believed deeper networks would bring a great improvement in performance. Nonetheless, it was

an early finding of this work that deeper models are harder to optimize than shallower ones. Taking

that into consideration, the team introduced residual learning and proposed the building block show in

Figure 2.5. They hypothesized that, instead of learning the entire desired mapping H(x), a residual
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mapping F(x) := H(x) − x would be easier to optimize. This hypothesis proved very successful and

the resulting network, ResNet, achieved great success, sweeping all competition it entered and having

a top-5 error rate on the ImageNet classification challenge of 3.6%. This was a great feat, given that

Russakovsky et al. [15] estimated the the top-5 error rate of a trained human annotator at 5.1%.

Figure 2.5: Residual learning building block (He et al. 2016).

The several networks mentioned above are generally the architectural backbone of object recognition

methods. Models usually start with these networks, trained on very large datasets, and fine-tune its

parameters to suit a certain situation.

2.3 Object Detection Methods

Having these networks as reference, there is a pretty elementar solution to the task of object recognition.

Called the sliding window object localization, it consists of running a classifier function (CNN or not) over

many rectangular subregions of an image and taking its maximum as the object’s location. However,

this is evidently an inefficient method, because objects can appear in several locations, sizes or aspect

ratios, which leads to an enormous quantity of regions needed to be evaluated.

Consequently, several methods emerged to tackle this issue. These methods can generally be cate-

gorized into two types [50]:

• One follows a more traditional object detection pipeline: generating candidates, region proposals,

at first and then proceeding to classify each proposal. The region proposal stage usually makes

use of one of several different possible algorithms to generate regions of interest (RoIs) to be

analyzed, like selective search [51], objectness [52] or fully connected networks. It regularly is

the bottleneck of the method. The region proposal based methods may include R-CNN [53], Fast

R-CNN [54], Faster R-CNN [55], R-FCN [56] and FPN [57].

• The second adopts a unified framework to achieve classification and localization directly, regarding

object detection as a regression and classification problem. Examples of this approach include

MultiBox [58], YOLO [59] and SSD [60].
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2.3.1 Mean Average Precision (mAP) and Frames per Second (FPS)

To compare these models there is the need to define metrics capable of giving important information

about the most important aspects of the task of object detection, accuracy and speed. When comparing

accuracy the standard single-number metric used is mean Average Precision (mAP).

To understand the concept of mAP is helpful to separate it into two parts:

• mean: stands for the arithmetic mean, that is, the sum of all values divided by the number of items.

• Average Precision: an average of the precision values for the class.

To compute the Average Precision the concepts of precision and recall are crucial. Precision is the

rate of the items predicted as positive that actually are positive and is given by Equation 2.3. Recall is

the rate of positive items in the set that actually are predicted as positive, given by Equation 2.4.

Precison =
TP

TP + FP
(2.3)

Recall =
TP

TP + FN
(2.4)

where TP stands for true positive, FP stands for false positive and FN stands for false negative.

Hence, when applying to object detection, precision represents the number of times the models is correct

when it detects a certain class, while recall represents the number of times a class is detected when

present. The remaining problem is: how do we determine if a prediction is right of wrong. For that,

it is important the concept of Intersection Over Union (IOU). The IOU is given by Equation 2.5 and it

denotes the area of the overlap of the predicted bounding box and the ground-truth bounding box over

the area of their union. In Figure 2.6 we can see a visual representation of IOU computation (a) and

what it represents to have high or low values of IOU (b). Two bounding boxes match if their IOU is over

0.5. This is the criterion defined by the PASCAL VOC competition [27]. Other competitions have stricter

criteria [29], however this will be the criterion used for this work.

IOU =
Area(Bp ∩Bgt)

Area(Bp ∪Bgt)
(2.5)

Finally, to compute Average Precision, a precision-recall curve is produced. This curve summarizes

the trade-off between precision and recall values for a model using different confidence thresholds. An

example of a precision-recall curve can be seen in Figure 2.7. As computed on the PASCAL VOC

competition, the computation of AP for this work is as follows:

• First, a version of the precision-recall curve with precision monotonically decreasing is produced,

by setting the precision for recall r to the maximum precision obtained for any recall r′ > r.

• The AP is finally computed as the area under this curve by numerical integration.

In this work the framework create by Cartucho et al. [61] is used to compute the mAP.
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(a) Visual representation of IOU computation (b) IOU examples

Figure 2.6: Intersection over area: computation and examples (Rosebrock 2017).

Figure 2.7: Precision-recall curve.

The second aspect important when comparing models is speed. The metric generally used in to

evaluate speed is the rate of prediction, in frames per second (FPS). This is simply the inverse of the

time it takes the model to predict the objects in one image.

2.3.2 Comparing Methods

Having discussed the metrics generally used to evaluate the performance of models, it is now possible

to compare them. Table 2.1 shows a comparison of the methods, from the results obtained by Zhao et

al. [50].

Method mAP(%) Test Time (sec/img) Rate (FPS)

R-CNN 66.0 32.84 0.03
Fast R-CNN 66.9 1.72 0.6
Faster R-CNN(VGG16) 73.2 0.11 9.1
Faster R-CNN(ResNet101) 83.8 2.24 0.4
YOLO 63.4 0.02 46
SSD300 74.3 0.02 45
SSD512 76.8 0.05 19
YOLOv2 78.6 0.03 40

Table 2.1: Object Detection methods: comparison of performance on VOC07 test set (Zhao et al. 2018).
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From the analysis of Table 2.1 it becomes pretty clear the general advantages and disadvantages

of both types of methods. The methods that have a candidate generation stage are generally more

accurate than the single shot methods, however that accuracy comes at the expense of speed. When

considering an application of object detection on video feeds, both these parameters are determinant to

the success of the application and their relative importance should be evaluated in a case by case basis.

2.3.3 Transfer Learning

In practice, very few people train an entire Convolutional Network from scratch as it requires large

quantities of data to perform well and a training process that takes an incredibly large amount of time.

Instead, it is common to pretrain a CNN on a very large dataset, such as ImageNet or MSCOCO, and

then use it either as an initialization or a fixed feature extractor for the task to be implemented. In fact,

all of the methods described above make use of this pretrained networks to implement the task of object

detection. This process is known as Transfer Learning. Goodfellow et al. [31] define Transfer Learning as

the situation where what has been learned in one setting is exploited to improve generalization in another

setting. The same authors give the following example: “we may learn about one set of visual categories,

such as cats and dogs, in the first setting, then learn about a different set of visual categories, such as

ants and wasps, in the second setting. If there is significantly more data in the first setting, then that may

help to learn representations that are useful to quickly generalize from only very few examples drawn

from the second setting”. Furthermore, Olivas et al. [62] define Transfer Learning as the improvement

of learning in a new task through the transfer of knowledge from a related task that has already been

learned. When training an object detector, it is extremely common to use Transfer Learning. Several

libraries and frameworks provide Model Zoos with several example models, which can be fine-tuned to

perform a specific task. This will be the procedure adopted for this work.

2.4 R-CNN: Regions with CNN features

R-CNN emerged in 2014 by the works of Girshick et al. [53] and was one of the first algorithms to

propose applying Convolutional Neural Networks to the problem of object detection. A simplified model

of the algorithm can be observed in Figure 2.8. The method, as proposed by the authors, can be divided

into three modules: the generation of category-independent region proposals; the use of a Convolutional

Neural Network, resulting in a fixed length features vector; and finally a classification step.

The first module uses selective search [51] to generate candidate regions, called region proposals or

Regions of Interest (RoI), were objects may appear. The selective search algorithm works by generating

sub-segmentations of the image that could belong to one object — based on color, texture, size and

shape — and iteratively combining similar regions to form objects. In the case of R-CNN, selective

search generates 2000 region proposals that have different sizes and aspect ratios. Seen as the second

module can only deal with fixed sized inputs, the regions have to be warped into 227× 227 RGB images.

For the second module, the authors originally used the AlexNet [30] to generate a 4096-dimensional
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Figure 2.8: R-CNN representation (Girshick et al. 2014).

features vector for each of the 2000 region proposals. This meant that on each step (each stage of

training or at test time) there were 2000 passes through a CNN. The network was firstly pre-trained on

the ILSVRC2012 classification dataset for a 1000 classes image classification task, so that convolution

layers could learn general basic image features. The parameters are then fine-tuned to be applicable to

the situation at hand, specifically the distorted input images and specific target classes for the detection

task. This is achieved by:

• Replacing the final 1000 classes layer of the network obtained in pre-training by a (N + 1) classes

randomly initialized softmax classifier, where the additional class is use for the general background

class.

• Each region proposal is mapped to the ground truth instance with which it has maximum IoU. If

the IoU is greater than 0.5, the RoI is labeled as a positive for the ground truth class. Otherwise,

the box is treated as background.

• The network is trained using SGD at a learning rate of 0.001. In each iteration 32 windows with

object and 96 background windows are sampled to form a mini-batch of size 128. The sampling is

biased to positive windows because they are much scarce.

The third module corresponded to a set of class-specific Support Vector Machines (SVMs) - an

individual classifier for each class - that scored each of the features vector for the region proposals,

resulting in a 2000 × N matrix of scores, where 2000 corresponds to the number of region proposals

and N to the number of classes. For this stage, when training for each particular class, all regions that

have a IoU of more than 0.3 with the bounding box ground truth are considered positive. The overlap

threshold, 0.3, was selected by the authors through a grid search over {0, 0.1, ..., 0.5} on a validation set.
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In addition to predicting the presence of an object within the region proposals, the algorithm also

predicts four values which are offset values to increase the precision of the bounding box. The input to

the bounding box regressor are the pairs of predicted proposals P and the target proposals G, shown in

Equation 2.6.

P i = (P i
x, P

i
y, P

i
w, P

i
h)

Gi = (Gi
x, G

i
y, G

i
w, G

i
h) (2.6)

The target transformations that need to be learned are given by Equation 2.7.

tx = (Gx − Px)/Pw

ty = (Gy − Py)/Ph

tw = log(Gw/Pw) (2.7)

th = log(Gh/Ph)

where the first two represent a scale-invariant translation of the center of the bounding box and the final

two represent logarithmic space transformations of the width w and height h.

The predicted transformation is given by dk(P ), which is modeled as a linear function of the features

vector resulting from the CNN, denoted by φ5. So, we have dk(P ) = wT
k φ5(P ), where wT

k is a vector of

learnable model parameters.

Ĝ, that is, the corrected predicted bounding box is given by Equation 2.8.

Ĝx = Pwdx(P ) + Px

Ĝy = Phdy(P ) + Py

Ĝw = Pw exp(dw(P )) (2.8)

Ĝh = Ph exp(dh(P ))

Finally wk is learned by optimizing Equation 2.9

wk = argmin
x

N∑
i

(tik − ŵT
k φ5(P

i))2 + λ ‖ŵk‖2 (2.9)

Although R-CNN represented a major evolution in the object detection problem, some major draw-

backs were easily spotted. First of all, the method was still quite slow, as visible in Table 2.1 with test

times for each image reported between 40 and 60 seconds, putting it far from real-time object detection.

It is also very time-consuming and computationally costly to train on 2000 region proposals. Another

issue concerns the fact that training is a multi-stage process (first fine-tuning a CNN, then fitting SVMs

to CNN features and then learning bounding box regressors). Finally, the selective search algorithm

is fixed, that is, no learning is happening at that stage, which leads to the generation of bad region

proposals.
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Aware of these drawbacks, Girshick improved on his earlier work and published in 2015 Fast R-

CNN [54]. The focus of this work was to improve on R-CNN and, mainly, making it faster. The main

issue that caused R-CNN to be slow was the fact that 2000 different crops of images were fed into a

Convolutional Neural Network. Taking that into consideration, Fast R-CNN takes an entire image as input

to a CNN. The original image is also used to generate region proposals, again using selective search.

Several convolutional and max pooling layers produce a convolutional feature map of the original image.

This feature map is then cropped using the projections of the region proposals obtained before, using

a RoI pooling layer. This layer works by dividing the h × w RoI window into an H × W grid of sub-

windows of approximate size h/H ×w/W and then max-pooling the values in each sub-window into the

corresponding output grid cell. This gives rise to fixed-size output features of size (H ×W ) irrespective

of the input size. H and W are chosen such that the output is compatible with the network’s first fully-

connected layer. These features vector are then fed into a sequence of fully-connected networks that

finally branch into two sibling output layers: one used to classify the objects in the image and the other

to refine the bounding boxes produced through offsets. A representation of the method can be seen in

Figure 2.9.

Figure 2.9: Fast R-CNN representation: the original chosen CNN was a VGG16 network (Girschick
2015).

The first of the two outputs of the model (per RoI) is a discrete probability distribution, p = (p0, ..., pN ),

over N +1 categories. p is computed by a softmax classifier over the N +1 outputs of a fully connected

layer. The second of the outputs are bounding-box regression offsets, tn = (tnx , t
n
y , t

n
w, t

n
h), for each of

the N object classes. tn specifies a scale-invariant translation and log-space height/width shift relative

to an object proposal, calculated as in Equation 2.7.

The fine-tuning of the parameters, that is, the training process, can jointly optimize the classifier and

the bounding box regressors, through a multi-task loss, given by Equation 2.10.

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(t
u, v) (2.10)

Lcls is the factor related to the classification task and is given by Lcls(p, u) = − log pu, that is, the

log loss for true class u. The loss related to the localization task, Lloc, is defined over a ground truth
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v for class u, given by v = (vx, vy, vw, vh) and the prediction for the same class, t = (tux, t
u
y , t

u
w, t

u
h).

The function [u ≥ 1] is equal to 1 when u ≥ 1 and 0 otherwise. The background class is labeled, by

convention, u = 0 and, therefore, Lloc for such a class is ignored. Lloc is then given by Equation 2.11.

Lloc(t
u, v) =

∑
i∈{x,y,w,h}

smoothL1
(tui − vi) (2.11)

where smoothL1 is a robust L1 loss, given by Equation 2.12.

smoothL1
=

0.5x2, if|x| < 1

|x| − 0.5,otherwise
(2.12)

The parameter λ of Equation 2.10 is used to control the balance between the two losses. The original

results were obtained for λ = 1.

Concerning the training pipeline, like in R-CNN, 25% of the ROIs are object proposals that have at

least 0.5 IoU with a ground-truth bounding box of a foreground class. Unlike R-CNN, each mini-batch is

constructed from 2 images, with 64 RoIs from each image.

In essence, Fast R-CNN produced several improvements to R-CNN family of algorithms, namely:

• Higher detection quality (mAP) than R-CNN.

• Training is single-stage, using a multi-task loss.

• Training can update all network layers.

• The method performs much faster at test time. In fact, there was such an improvement, that

selective search became the bottleneck for the method, as can be seen in Figure 2.10. Analysing

the figure we easily conclude that most of test time for Fast R-CNN, 2.3 seconds, it taken by

selective search, which takes about 2 seconds.

Figure 2.10: Test time comparison between R-CNN and Fast R-CNN (Girshick et al. 2014, He et al.
2014, Girschick 2015).
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Taking the last statement into account, a new method was proposed in 2016 by Ren et al. [55]. The

authors introduced a new method, called Faster R-CNN, that eliminates the selective search algorithm

and lets the network learn the region proposals. Similar to Fast R-CNN, the image is provided as an

input to a convolutional network which generates a convolutional feature map. Instead of using selective

search algorithm on the feature map to identify the region proposals, a separate network is used to

predict the region proposals - the Region Proposal Network (RPN). This lowers the region proposal time

from 2 seconds per image, to about 10 ms, while it also allows the region proposal stage to share layers

with the following detection stages, causing an overall improvement in feature representation. A simple

representation of the model can be seen in Figure 2.11.

Figure 2.11: Faster R-CNN representation (Ren et al. 2016).

The Region Proposal Network also makes the use of a set of Anchors. For every point in the output

feature map, the network has to learn whether an object is present in the input image at its corresponding

location and estimate its size. This is done by placing a set of Anchors on the input image for each

location on the output feature map of the backbone network. These anchors are a set of rectangular

shapes in various sizes and aspect ratios at this location.

A representation of the Region Proposal Network architecture is shown in Figure 2.12. It shows that

the network is divided in two branches: the regression branch and the classification branch. The former

outputs the 4 regression coefficients used to improve the coordinates of the anchors boxes that contain

objects as done in Fast R-CNN. The latter gives the probabilities of whether or not each point of the

feature map contains an object within all 9 of the anchors at that point.

Overall, Faster R-CNN can be thought as the RPN as a region proposal algorithm and Fast R-CNN

as a detector network. The results of the model were quite good, mainly in its objective of reducing the
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Figure 2.12: The architecture of the Region Proposal Network (Ananth 20191).

time taken by the region proposal stage. The authors reported that detection with a VGG RPN takes

198ms compared to the 1.8 seconds of Selective Search.

This work makes use of the Faster R-CNN algorithm, seen as it is the most improved and faster

of the R-CNN family. It is also important to note it achieve the best results in terms of accuracy when

compared to others methods.

2.5 YOLO: You Only Look Once

You Only Look Once (YOLO) is a general purposed object detection algorithm that frames the task as

a unified problem, using the same deep neural network to predict bounding boxes and class probabili-

ties [59]. It belongs, therefore to the second of the categories described in Section 2.3. YOLO was the

first of the deep learning based algorithms to achieve real time object detection.

YOLO divides the input image into a S × S grid, as can be seen in Figure 2.13. Each grid cell

is responsible for the prediction of B bounding boxes and the confidence scores for those boxes. This

confidence score reflects how certain the model is that the box contains an object and also how accurate

it estimates the predicted box is. It is given by Equation 2.13.

Pr(Object)× IOU truth
pred (2.13)

where Pr(Object) is the probability of an object existing in the box and IOU truth
pred is the Intersection Over

Union of the areas of the predicted and ground truth bounding boxes.

2Available at https://towardsdatascience.com/faster-r-cnn-for-object-detection-a-technical-summary-474c5b857b46
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Figure 2.13: YOLO Pipeline (Redmon et al. 2016).

Each bounding box consists of 5 predictions: x and y, the coordinates of the center of the box, h and

w, the height and width, and the confidence score. Each grid cell is also responsible for providing one,

and only one, set of conditional probabilities for all the C classes Pr(Classi|Object), independent of the

number of bounding boxes. Thus, the final confidence of a prediction at test time is given by:

Pr(Classi|Object)× Pr(Object)× IOU truth
pred = Pr(Classi)× IOU truth

pred (2.14)

It is clear from Equation 2.14 that the test time score takes into consideration both the probability of

a class appearing in a box and how well a box fits the object. The final prediction is, thus, encoded in a

S × S × (B ∗ 5 + C) tensor.

The convolutional neural network architecture of YOLO is inspired by the GoogLeNet [47] and Lin

et al. [48] works discussed above. Yet, instead of using the Inception modules used by Szegedy et

al. [47], it simply uses the 1 × 1 bottleneck layers followed by 3 × 3 convolutional layers. It has 24

convolutional layers followed by 2 fully connected layers. The full architecture of the network can be

seen in Figure 2.14. The shown example was trained on Pascal VOC, that possesses 20 classes, with

S = 7 and B = 2. Hence, the output is a 7× 7× 30 tensor

Except for the final layer, the used activation function is a modified version of a ReLU, a leaky rectified

linear unit (Leaky ReLU), given by:

φ(x) =

x, if x > 0

0.1x, otherwise
(2.15)

During training, the loss function to be optimized is an adjusted version of sum-squared error. The

adjustments are needed because in every image many cells do not contain any object. This leads to very

low confidence scores that can overpower the gradient from cells with objects. Hence, it is necessary

to increase the loss from bounding box coordinates predictions and decrease the loss from confidence

for boxes that do not contain objects. To this objective, the parameters λcoord and λnoobj are used, and
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Figure 2.14: YOLO Network Architecture (Redmon et al. 2016).

set, in the original article, to 5 and 0.5, respectively. Moreover, sum-squared error would equally weight

deviations in large boxes and small boxes. As this is undesirable, the square root of the bounding box

width and height are used instead of its width and height. The loss function is given by:

λcoord

S2∑
i=0

B∑
j=0

1
obj
ij [(xi − x̂i)2 + (yi − ŷi)2] + λcoord

S2∑
i=0

B∑
j=0

1
obj
ij [(
√
wi)−

√
ŵi)

2+

+ (
√
hi)−

√
ĥi)

2] +

S2∑
i=0

B∑
j=0

1
obj
ij (Ci − Ĉi)

2 + λnoobj

S2∑
i=0

B∑
j=0

1
noobj
ij (Ci − Ĉi)

2+

+

S2∑
i=0

1
obj
i

∑
c∈classes

(pi(c)− p̂i(c))2

(2.16)

where 1
obj
ij indicates that the bounding box j in cell i is responsible for that prediction and 1

obj
i indicates

whether and object is present in cell i.

The first term of Equation 2.16 penalizes the deviations of the localization of the center of the bond-

ing boxes. The second one penalizes the disparity in width and height. The third tries to maximize

confidence for cells where objects exist. The fourth forces the confidence scores to 0 when there is no

object in a cell. The final term is the one responsible for the classification loss. It is important to denote

that the loss function only penalizes classification when an object is present in a cell.

The second version of YOLO, YOLOv2 [63], improves on the initial model. Added to some changes

in the training process, namely the use of Batch Normalization, pre-training at higher resolutions and

multi-scale training, the most important changes are detailed below. These alterations account for the

improvement in performance one can see in Table 2.1, where YOLOv2 achieves a higher mAP compared

to YOLO, despite being a bit slower.

• The use of anchor boxes: while the first version would randomly initialize the aspect ratio of

bounding boxes, YOLOv2 uses anchor boxes, that is, chosen priors with a determined aspect
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ratio, predicting, then, offsets to said boxes. This simplifies the problem and makes it easier for

the network to learn. Instead of hand picking the boxes, YOLOv2 uses k-means clustering to find

good priors.

• Cell grid dimensions: transition to a 13× 13 cell grid (S = 13).

• Changes to the network architecture: the second version of YOLO discards the fully-connected

layers, assuming a fully convolutional architecture, and reduces the number of convolutions to 19.

YOLO has a third version, YOLOv3 [64], published in 2018 by the original author of YOLO. There were

changes made, which account for a small but important improvement when comparing with YOLOv2,

in terms of accuracy. This version can be considered as an incremental improvement to the works

published before. The changes of this version are:

• Changes in the loss function computation: The objectness scores of the loss function of

YOLOv3 - the last three terms of Equation 2.16 - are computed using logistic regression, instead

of the squared errors used in YOLOv2.

• Changes in class prediction: change from the use of softmax classifiers to independent logistic

classifiers, because the former impose the assumption that each box has exactly one class. This

is not true for datasets with overlapping labels - for instance, a bounding box that corresponds both

to the Woman and Person classes.

• Prediction across 3 scales: The network downsamples the input image until the first detection

layer. Then, layers are upsampled by a factor of 2 and concatenated with feature maps of previous

layers having identical feature map sizes. Another detection is now made. The same upsampling

procedure is repeated, and a final detection is made. YOLO authors report that this helps get

better results when detecting small objects.

• New Feature Extractor Network: the authors introduce a new network, Darknet-53, constituted

by 53 convolutional layers and no pooling layers.

This work makes use of YOLOv3 because it is the last stable version of the YOLO family of algo-

rithms3 and it has achieve state-of-the-art results in terms of speed, while approaching the state-of-the-

art results in terms of accuracy.

2.6 SSD: Single Shot MultiBox Detector

Introduced in 2016 by Liu et al. [60], the Single Shot Detector (SSD) is a single stage method for object

detection, just like YOLO, reportedly bringing a great improvement in accuracy for such class of methods.

This is fairly important because the greater speed of single shot methods is many times obtained at the

expense of accuracy. The algorithm uses a pretty simple and straightforward framework. It discretizes
3In fact, during the course of this work there were two further versions of YOLO published, YOLOv4 (April 2020) and YOLOv5

(June 2020) but further investigation is necessary before they are stable, in the opinion of the author.
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the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per

feature map location. The use of this default bounding boxes is similar to the uses of anchors in Faster

R-CNN, however they are applied on several feature maps of different resolution, that is, on different

stages of the CNN. A representation of the method can be seen on Figure 2.15.

Figure 2.15: Representation of Single Shot MultiBox Detector (Liu et al. 2016).

The early network layers are based on a standard architecture used for high quality image classifica-

tion. The original paper makes use of the VGG-16 architecture, truncating the fully-connected networks,

however, several other architectures can be used to implement the method.

Instead of the fully-connected networks, convolutional layers are added, allowing prediction of de-

tections at multiple scales. Each added feature layer can produce a fixed set of detection predictions

using a set of convolutional filters. For a feature layer of size m × n with p channels, the basic element

for predicting parameters of a potential detection is a 3× 3× p kernel that produces either a score for a

category, or a shape offset relative to the default box coordinates.

At each feature map cell, the model predicts the offsets relative to the default box shapes in the cell,

as well as the per-class scores that indicate the presence of a class instance in each of those boxes.

Specifically, for each box out of k at a given location, it computes c class scores and the 4 offsets relative

to the original default box shape. This results in a total of (c + 4)k filters that are applied around each

location in the feature map, yielding (c+ 4)kmn outputs for a m× n feature map.

When training the model, a key characteristic is its matching of the default boxes to a ground truth.

First, each ground truth box is matched to the default with which it has the greatest IoU. Then, the default

boxes are matched to any ground truth with which it has an IoU greater than 0.5. This second step is an

important difference from other works [58] from which this matching is inspired.

The objective function to be minimized is shown in Equation 2.17, where xpij = {1, 0} is an indicator

for matching the i-th default box to the j-th ground truth box of category p, and N is the number of

matched default boxes.

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g)) (2.17)

The localization loss, Lloc(x, l, g), is a Smooth L1 loss between the predicted box (l) and the ground

truth box (g) parameters, given by Equation 2.18 for the offsets regressed for the center (cx, cy) of the
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default bounding box (d) and for its width (w) and height (h).

Lloc(x, l, g) =

N∑
i∈Pos

∑
m∈(cx,cy,w,h)

xkijsmoothL1
(lmi − ĝmj )

ĝcxj = (gcxj − dcxi )/dwi

ĝcyj = (gcyj − d
cy
i )/dhi (2.18)

ĝwj = log(
gwj
dwi

)

ĝhj = log(
ghj
dhi

)

The confidence loss, Lconf (x, c) is the softmax loss over multiple classes confidences (c), described

in Equation 2.19.

Lconf (x, c) = −
N∑

i∈Pos

xpij log(ĉ
p
i )−

N∑
i∈Neg

log(ĉ0i ) where ĉpi =
exp(cpi )∑

p c
p
i

(2.19)

Additionally, still on the subject of training, data augmentation and positive biased sampling are used

in order to improve results, the same way they are used in R-CNN.

This works makes use of this algorithm because it achieved results very closely matched with the

ones obtained by the YOLO algorithm, to an extend that is difficult to separate them in terms of perfor-

mance.
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Chapter 3

Implementation

In this chapter, the implementation of the algorithms discussed in Chapter 2, as well as some additional

tools used for their implementation, will be discussed. The implementation can be separated into two

distinct phases corresponding to two different environments and groups of objects to be detected.

The first phase intends to mirror an household or office environment, more specifically a desk with

everyday items that are used in these environments, such as pens, cellphones, mugs, bottles, among

others. In this stage, the images and annotations used for training were downloaded from an online

dataset, in order to evaluate if the quantity and quality of such open sourced data is enough to obtain a

working model.

The second phase corresponds to a simulated electronics laboratory or workshop, where the de-

tection is intended for objects such as capacitors, resistors or potentiometers. The images used at this

point, were downloaded from standard searches on the internet and manually annotated by the author.

This was done in order to determined if an untrained subject could provide quality data to train the

models.

All the models were implemented in the Python programming language. This language was chosen

because Python is the most widely used language for Deep Learning applications, with a significant open

sourced community, several frameworks dedicated mostly to Deep Learning, such as Tensorflow [65],

PyTorch [66], Theano [67], Keras [68] or Caffe [69], and extensive bibliography on the subject [70–72].

All the discussed models were trained, except otherwise stated, until the loss stagnated. Some

exceptions to the former statement are due to blunders or time and resources limitations. For example,

some models were trained overnight. Training stoppage was forced manually by the author, that is, no

automatic stoppage criteria was programmed. Furthermore, all the hyperparameters of training were

the default parameters of the frameworks used, unless otherwise stated.

The next sections will detail the frameworks used to implement this work, the database used on the

first phase as well as some specifics of the trained models.
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3.1 Tensorflow API

According to its authors, Tensorflow [65] is an interface for expressing machine learning algorithms, and

an implementation for executing such algorithms. It falls under the category of Deep Learning Frame-

works, some examples of which were declared in the introduction to this chapter. In a simple manner,

these frameworks are interfaces, libraries or tools which allow an individual to build Deep Learning mod-

els in a simple and fast way, while also optimizing the computational process.

Tensorflow is perhaps the most popular and used of these frameworks. Created by the Google Brain

team and open-sourced in 2015, it presents several advantageous features. It supports multi-CPU and

GPU executions, which not only greatly impacts the time needed for training but also decreases the

time needed for testing and implementation. Furthermore, it is possible to use the same computation

expressed with Tensorflow in a wide range of systems, ranging from large-scale distributed systems to

small mobile devices (Tensorflow Lite).

TensorFlow Object Detection Application Programming Interface (Tensorflow API) [73] is an open

source framework built on top of TensorFlow that aims to make it easy to construct, train and deploy

object detection models. Together with the TensorFlow Model Zoo, TensorFlow Object Detection API

provides the user with multiple pre-trained object detection models with instructions and example codes

for fine-tuning and transfer learning.

There is a great advantage in using pre-trained models, initially trained with massive databases,

requiring computational times and resources not feasible for most individuals or institutions. This pre-

train contributes to the model’s “perception” of what is an object and its general characteristics, even

before dividing the objects into specific classes. However, these are not final models. Using transfer

learning, they need to be adjusted to their final purpose.

In this work, a Faster R-CNN model and a SSD model, both with a backbone convolutional architec-

ture using the Inception module and both pre-trained on MSCOCO [29], were selected from the Model

Zoo and trained using the Tensorflow API. The reported mAP were 28 for the former and 24 for the latter

and the speeds of inference were of 58ms and 42ms, respectively.

3.2 Darknet and Ultralytics repository

While the SSD and Faster R-CNN models were possible to be trained using the Tensorflow API, the

same cannot be said for the YOLO models. When YOLO was proposed, the author also released a

specific open-sourced framework written in C, Darknet, in order to facilitate the training of such models.

However, seen as C is not as user-friendly of a programming language as Python, several translators

were built, generally with compatibility with Tensorflow or PyTorch. These libraries are very useful, seen

as, they enable Transfer Learning from the pre-trained models in huge datasets. This work makes use

of one of those libraries [74], with compabilbity with PyTorch. It was chosen because it is a stable library

with extensive work and good documentation.
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3.3 Models Trained Using a Curated Dataset

3.3.1 The Open Images Dataset

The Open Images Dataset V4 [75]1 was launched in 2018, by a team working in Google AI. It contains

over 9.2 Million annotated images for the tasks of image classification, object detection and visual re-

lationship detection. For object detection in particular, it provides 15.4 Million bounding boxes for 600

object classes, annotated on 1.9 Million images, which, the authors state, is 15 times more bounding

boxes than the next largest datasets.2

One of the major advantages of this dataset has to do with the way it was created. The images it

contains were collected from Flickr, a popular images and video hosting site, without any predefined list

of classes or tags. The images that appeared somewhere else on the internet were then removed, in

order to reduce the bias towards web imagery. This is greatly beneficial when training an object detection

algorithm because the images are presented in a natural ambient, often in cluttered environments, easily

verified by its average of 8 annotated objects per image. This technique also leads to natural class

proportions. These characteristics are highly desirable because they construct training data very similar

to the expected images when testing real world applications while avoiding initial design bias.

Besides the bounding boxes’ location and dimensions, images in this dataset are annotated with five

other attributes:

• GroupOf : the box covers more than five instances of the same class which heavily occlude each

other.

• Partially occluded : the object is occluded by another object in the image.

• Truncated : the object extends outside of the image.

• Depiction: the object is a depiction such as a cartoon, drawing, or statue.

• Inside: the box captures the inside of an object (e.g. inside of an aeroplane or a car).

Attribute Occluded Truncated GroupOf Depiction Inside

Frequency 66,06% 25,09% 5,99% 5,45% 0,24%

Table 3.1: Percentage of boxes with the five different attributes on Open Images (Kuznetsova et al.
2018).

Table 3.1 details the percentage of images labeled with each of this five attributes. The table further

evidences that the dataset was carefully built to be mostly composed of images in natural, everyday

scenes. These characteristics can, hopefully, lead to an object detection model capable of detecting an

object even if it is behind another object or not entirely in the frame. The low percentage of the inside

attribute can lead the reader to assume a bias towards outdoor scenes, however this can be misleading.
1available at https://storage.googleapis.com/openimages/web/index.html
2A flare dendrogram with all the 600 boxable objects can be found in https://storage.googleapis.com/openimages/2018_

04/bbox_labels_600_hierarchy_visualizer/circle.html
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This happens because the percentages refer to all the bounding boxes in an image, while the Inside

attribute only refers to the object that is generally the background of said image. For instance, an apple,

a pen and a mug can be inside an aeroplane, and while all the bounding boxes will be referent to an

indoor scene, only the aeroplane’s box will be annotated with the Inside attribute.

Obviously, not all the classes in the Open Images Dataset are equally frequent. Figure 3.1 plots

the number of annotated boxes for each class. Besides further evidencing the size advantage of this

dataset - most classes have one order of magnitude more boxes annotated than the next largest dataset

- it also hints at a difficulty for the work of this report. The most common classes when analysing

most datasets used in object detection applications tend to be related to the presence of humans or

animals. The classes related to the task of driving - cars, traffic signs, sidewals, etc. - are also quite

common. However, when creating applications that deal with other classes, for instance office supplies

or household appliances, the quantity of data tends to diminish.

Figure 3.1: Number of boxes per object class on the Open Images Dataset V4 (Kuznetsova et al. 2018).

Finally, when analysing the quality of the dataset the authors report quite good results for the dataset.

The precision and recall for the analysed images are respectively 97.7% and 98.2%, both very high

values. Furthermore, the authors also analysed the quality of the bounding boxes, reporting an IoU of

0,87 when evaluating the geometric agreement of the boxes, that is, the IoU of two boxes drawn of the

same object by two different annotators.

OIDv4 Toolkit [76] was used when downloading the images.

3.3.2 Models trained on 1 class

In order to test the feasibility of training an object detector and get a feeling for some of the conditions

needed for the train process, for example the number of images and the time needed for the process,

the first practical application tested was training a model on just one class. Such a class should be, in

the opinion of the author, an object of everyday, intensive and widespread use. It was also needed to

take into consideration both the scenarios and the environments that serve as reference for this report.
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Several classes of the Open Images Dataset were considered, finally settling on the Pen class.

In the used dataset, 198 images were available for such a class, annotated with 293 bounding boxes.

Figure 3.2 shows some examples of the images used for training with the respective ground-truth bound-

ing boxes annotated.

Figure 3.2: A sample of the images used to train the 1-class models with the respective ground-truth
bounding boxes (Kuznetsova et al. 2018).

The images were divided into two groups, corresponding to the train and test partitions. The first

received 159 images, annotated with 244 bounding boxes, while the test partition was composed of 39

images, corresponding to 49 object examples. This represents, approximately, a 4 to 1 proportion on

images and a 5 to 1 proportion on bounding boxes.

3.3.3 Models trained on 4 classes

To further the knowledge on training and to analyze the impact of having multiple classes on a trained

model, a second set of models were trained to detect four classes. Besides the class already chosen on

Section 3.3.2, the new classes chosen were: Glasses (as in vision-aiding glasses), Mobile phone and

Mug. These classes were chosen because they are commonly found items on a office or home tables

and, combined with that, they have a comprehensive set of images in the Open Images Dataset.

At this stage, all the images available on the Open Images Dataset for each class were used. As

before, the images were divided into train and test partitions. The first entailed 1375 images and the

second got 381 images, with 1805 and 475 bounding boxes, respectively. This data can be observed
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in Figure 3.3, where it is also possible to examine the proportion of each class in the partitions, both in

images and in bounding boxes.

(a) Division of images into the train and test partitions. (b) Division of bounding boxes into the train and test partitions.

(c) Proportion of class images in the train partition. (d) Proportion of class images in the test partition.

(e) Proportion of class bounding boxes in the train partition. (f) Proportion of class bounding boxes in the test partition.

Figure 3.3: Characteristics of the set of images used to train the four-classes models.

When training the SSD model there was a necessity for some adjustments. Due to the limitations of

some of the used equipment, namely the GPU running out of memory, the batch size had to be reduce,

from the original 64 to 8 images per batch, and the dimensions of the images (width and height) had to

be reduced by half. The latter was done using the open-cv function resize and the interpolation method

INTER-AREA, that is, resampling using pixel area relation.

A sample of the images used for the three additional classes can be seen in Figure 3.4, with the

annotated bounding boxes. In the Figure, it is possible to denote some potential problems, specially for

the Glasses class. In fact, most of the examples for this class aren’t images of the isolated object, but

rather of the object on a human face. This could lead the model to expect some characteristics of a
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human face around the object when identifying glasses, which isn’t helpful on a tabletop environment.

Furthermore, the class has many examples of different types of glasses, such as diving goggles or

sunglasses, that are not necessarily of interest to our model. The other two classes are in general,

better suited to training, with several examples of different types of mobile phones or mugs and different

poses for those items.

Figure 3.4: A sample of the images used to train the 4-class models with the respective ground-truth
bounding boxes (Kuznetsova et al. 2018).
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3.3.4 Models trained on 10 classes

The final set of models for the first phase were trained on ten different classes. Following the criteria

attended in Section 3.3.3, the six classes added were: Book, Bottle, Coin, Headphones, Human Hand

and Tin Can. Despite not being an object found frequently on a table, the Human Hand class was also

chosen because of the possible real-time in-frame movement of objects by an human subject.

The distribution of the images and bounding boxes used for training, comprised of all the data avail-

able for the classes in the Open Images Dataset is available in Figure 3.6. As can be seen, there is a big

disparity in the availability of data for the different classes. That is, the dataset used is highly imbalanced,

more specifically, there is a big class imbalance. Several works are dedicated to study the impact of im-

balance and class imbalance [77–79]. The general conclusion is that class imbalance has a significantly

negative impact on the performance of many object detection methods. To test such an hypothesis, the

set was balanced, using two different approaches. First, images were randomly selected so that their

number for each class in the train and test partition were about the same. Hence, the number of images

and bounding boxes, as well the distribution of classes, for each class are exhibited in Figure 3.7. As

can be observed, the aforementioned balancing doesn’t produce a perfectly balanced set, seen as the

number of bounding boxes for the Book class is far superior to the number of the rest of the classes.

This happens because each image of the class usually entails a large number of bounding boxes, more

so than any of the other objects. An example of this fact can be noticed in Figure 3.5. As is the case,

for many of the images for this class, there are many instances of the object present, in this particular

example 39. Having that in mind, a third dataset was produced. Images were randomly selected so that

the number of bounding boxes for each class in the train and test partition was about the same. The

information for this dataset can be visualize in Figure 3.8.

Figure 3.5: Example of an image annotated with the Book class (Kuznetsova et al. 2018).
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(a) Division of images into the train and test partitions. (b) Division of bounding boxes into the train and test partitions.

(c) Proportion of class images in the train partition. (d) Proportion of class images in the test partition.

(e) Proportion of class bounding boxes in the train partition. (f) Proportion of class bounding boxes in the test partition.

Figure 3.6: Statistics on the first set of images used to train the ten-classes models.

As was the case in Section 3.3.3, the batch size of the SSD model had to be reduced. The images

used were also resized to half its size, using the same method as before.

A sample of the images used during the training process can be seen in Figure 3.9. Several char-

acteristics of the images and of the bounding boxes used are worth pointing out. As is to be expected,

some images were annotated with bounding boxes of more than one class, however, it is possible to

observe several instances where desired classes are present in the image and weren’t annotated. This

is very prevalent in the Glasses and Human Hand classes, categories that are present in many images

and not always annotated. A further manual annotation of such examples could contribute to an im-

provement of the training set. There are also several bounding boxes that indicate a group of objects,

that is, they are example of the Open Images Dataset attribute, GroupOf. For the environment in study,

these may not be the best boxes for training the model. So, there are possibly some gains in eliminating
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(a) Division of images into the train and test partitions. (b) Division of bounding boxes into the train and test partitions.

(c) Proportion of class images in the train partition. (d) Proportion of class images in the test partition.

(e) Proportion of class bounding boxes in the train partition. (f) Proportion of class bounding boxes in the test partition.

Figure 3.7: Statistics on the second set of images used to train the ten-classes models.

such example images.
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(a) Division of images into the train and test partitions. (b) Division of bounding boxes into the train and test partitions.

(c) Proportion of class images in the train partition. (d) Proportion of class images in the test partition.

(e) Proportion of class bounding boxes in the train partition. (f) Proportion of class bounding boxes in the test partition.

Figure 3.8: Statistics on the third set of images used to train the ten-classes models.
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Figure 3.9: A sample of the images used to train the 10 classes models with the respective ground-truth
bounding boxes (Kuznetsova et al. 2018).
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3.4 Models trained with manually annotated images

There were several purposes in training models with manually annotated images. The first objective

is to determine if it is possible to obtain a set of images and annotations, from a source other than a

purposely curated database, good enough to train a workable model, seen as such databases are very

rare and possess a relative small number of classes. The second purpose, related to the main objective

of this work, is to reflect on and check if it would be possible for a program to be coded, that would allow

training “at home”, that is, the training of a model by an untrained end user of a possible product with the

characteristics discussed in Section 1.3.

The choice of classes and general environment to be simulated were also object of consideration.

The chosen classes were: capacitor, potentiometer and resistor. These point out to an electronics

related environment such as an electronics workshop or an electronics laboratory. This decision greatly

influences the workflow for the training of a model. For instance, the workflow for creating a database as

the one in Section 3.3.1 becomes invalidated, seen as, there are not a significant number of images on

Flickr for the described classes. Hence, these classes can be considered more “technical” or “bussiness

related”, in as much as they don’t usually appear in general purpose images, as the ones shared on

social networks. Thus, it is also important to test if such classes and such images can be used to

construct good models.

The workflow of this phase can be encapsulated into three stages: obtaining and selecting images,

annotating the images and training the models.

3.4.1 Obtaining and selecting images

The images used in this phase were obtained through several query searches on Google Images. The

queries used to procure the images were:

• Capacitor: capacitor, capacitor breadboard, capacitor with background, ceramic capacitor and

electrolytic capacitor.

• Potentiometer: potentiometer, potentiometer breadboard and potentiometer circuit board.

• Resistor: resistor, resistor background, resistor breadboard and resistor circuit board.

The images were then downloaded in bundle, that is, all the resulting images were downloaded,

resulting in a total of 1175 images for the capacitor class, 1061 images for the potentiometer class and

1333 images for the resistor class.

Next, the images had to be filtered, that is, a selection of the useful images had to be made. Images

such as drawings, animations, schematics, graphics, pages from technical documentation, table and

duplicate images were removed. Also removed, were images too strenuous to annotate, images where

the objects were not visible and images that didn’t correspond to the intended search. An example of

the removed images can be seen in Figure 3.10. The resulting dataset from this process was comprised

of 320 images for the capacitor class, 273 images for potentiometer and 313 for resistor.
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Figure 3.10: A sample of the images removed while selecting the appropriate images for training.
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3.4.2 Annotating the images

The resulting dataset from Section 3.4.1 had to be annotated, that is, indicate the location of the objects

in each image by means of bounding boxes. A program was produced, where the annotators indicated

the top-left and bottom-right corners of the relevant objects in the image, using mouse clicks, and the

classes of such objects, by the ways of keyboard selection. After a final review of the annotated objects

and acceptance of the results, the program produced two annotations files accordingly to the specifi-

cations of the frameworks later used for training - a .txt file for YOLO training and a .csv file for the

Tensorflow API. The workflow of the program can be seen in Figure 3.11

(a) Original Image. (b) Class selected.

(c) Top-left corner selected. (d) Bottom-right corner selected.

(e) Final result, ready to be confirmed.

Figure 3.11: Workflow of the program produced to annotate images.
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As indicated by Kuznetsova et al. [75], a perfect box is the smallest possible box that contains all

visible parts of the object. Although simple at first sight, this definition has a few caveats, the main of

which is: “what is and isn’t part of the object?”. This question lead to the decision of not including the

metal pin of capacitors and resistors as part of the objects, due to several facts:

• These are often not presented in its entirety in the collected images.

• Their composition and dimensions lead many times to a difficulty in their recognition. For instance,

shiny metals often face a difficulty in identification related to light flares.

• Considering the general objective of this work relates to a pick and place robot, the pins are

irrelevant to the task, seen as it is more difficult to pick the objects by the pins.

The features of the resulting dataset, with bounding boxes annotations, are detailed in Figure 3.12.

(a) Number of images that contain each of the classes. (b) Number of bounding boxes for each class.

Figure 3.12: Features of the annotated dataset.

Finally, it is important to denote that the annotation process is quite strenuous. It took two annotators

a combined time of about 25 hours to produce the annotations for the 906 images of the dataset. Seen

as the total number of bounding boxes is 4349, the time spent corresponds to 20s per bounding box,

which is quite acceptable. Hence, one can assume that any dataset with a sufficient size will take a

considerable amount of resources to annotate.

3.4.3 Training the models

In order to further investigate the impact of class imbalance, the decision was made to use two different

datasets. The first one was comprised of all the collected and selected images, with the characteristics

detailed on Figure 3.12. The second one was a balanced dataset, where images were randomly selected

so that the number of bounding boxes for each class was the same and equal to the maximum possible,

505. Hence, the second dataset possessed the characteristic detailed in Figure 3.13.

A sample of the images used and the corresponding labels can be seen in Figure 3.14. Analysing

the images, it is possible to make some considerations:
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(a) Number of images that contain each of the classes. (b) Number of bounding boxes for each class.

Figure 3.13: Features of the annotated and balanced dataset.

• The items are specially focused in the images and occupy large portions of them. Considering that

those items are very small in real life (around 1 cm for resistors, for example) this may not be the

best representations for a real-world situation.

• The object are very few times presented in a natural ambient, that is, the images seem to have

been computational enhanced and their backgrounds are most of the times artificial.

• The images have, in general, several different objects and they are located in the same regions.

Although the two previous points are generally detrimental when training an object detector, this

characteristic can be helpful, specially when detecting objects in cluttered environments.

Figure 3.14: Manually annotated images used to train the models with the respective ground-truth
bounding boxes.
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Chapter 4

Results

Taking into consideration that the main goal of this work is to be able to perform real-time or near real-

time object detection on video feeds, several sample videos were taken, in order to evaluate the resulting

models. The videos were capture with a simple webcam of model SelecLine PPW-10, with resolution

640× 480. The installation can be seen in Figure 4.1. The purpose of using such a device is to evaluate

the possibility of adapting the trained models to a household item, readily available at a low price. These

videos were implicitly different in factors such as:

• Illumination.

• Distance to the objects intended to be identified.

• Background color.

• The pose of the objects to be detected.

• The presence or absence of movement.

• The area of the frame where objects were present.

• Occlusion of the objects to be detected.

From these videos, several frames were then randomly selected. These were then manually anno-

tated using the same method as in Section 3.4.2 in order to obtain the ground-truth bounding boxes. The

comparison of such bounding boxes with the ones predicted by each model enables the computation of

the mAP.

The other factor used in the evaluation of the models relates the the time needed for the model to

make a prediction. The used metric was the rate of prediction in FPS, that is, the number of frames the

model could evaluate in a second. In order to obtain the results for this metric, it was simply measured

the time between predictions on the video feed of the webcam. It is important to denote that the best

result possible for this metric is 30 FPS, seen as this is the rate of capture for the webcam feed.

In the following sections, we show the obtained results for each trained models, using such metrics

and analyse some details of those results.
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Figure 4.1: Webcam installation used for results evaluation.

4.1 Models Trained Using a Curated Dataset

4.1.1 Models trained on 1 class

The verification set obtained for these models, using the process described above, was composed by

89 images with 141 ground-truth boxes for the Pen class. The obtained results for the models trained in

this section can be seen on Table 4.1.

Model mAP(%) Rate (FPS)

Faster R-CNN 72.20 6
SSD 12.58 23
YOLO 58.14 23

Table 4.1: Results for the models trained on 1 class.

The first conclusions that can be extracted from the analysis of Table 4.1 are:

• The Faster R-CNN model performs the best in terms of accuracy while being significantly slower

when predicting the results.

• The SSD model matches the YOLO model has the fastest model but performs very poorly in terms

of accuracy.

• The YOLO model performs very well in terms of speed but lags behind the R-CNN model when

accuracy is concerned.
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However there are some insights very important to compare the Faster R-CNN and YOLO models

that aren’t visible in Table 4.1. In order to have a deeper understanding of the performance of both

models we have to look at their precision-recall curves. These are shown in Figure 4.2.

(a) R-CNN Model (b) YOLO Model

Figure 4.2: Precision-recall curves of the R-CNN and YOLO models trained on 1 class.

For this test, it is possible to observe that the R-CNN model has a bigger trade-off between the

precision and recall numbers, that is, although the final value of recall is higher than the one obtained

for the YOLO model, it comes at the expense of precision, which is lower than in (b). This becomes

clear when analyzing the true and false positive numbers available in Figure 4.3. Depending on the

final application of the model, that is, if it is more important to have the highest precision or the highest

recall, the choice of model can fall on the second model or, preferably, the first model but with a higher

confidence threshold for prediction.

Figure 4.3: Number of true positives and false positives for the models trained on 1 class.

Figure 4.4 encompasses a deeper analysis of the R-CNN model as it is the best performing model

in terms of accuracy. The ground-truth boxes are marked in blue or pink, respectively, if they have a

correspondent prediction or not. Equally, the prediction bounding boxes are green or red, if they are

classified as true positives or false positives.
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• It is visible that the model performs worse when luminosity is low. That is evidenced by (a) as

opposed to (b). Despite that the model seems to be resistant to variations in luminosity to a certain

degree.

• It is also apparent that the model has better results when the objects are closer to the camera, as

demonstrated by (c) as opposed to (d).

• The model is resistant to occlusion and movement to a certain degree, as can be seen in (e) and

(f). Even (g) can be seen as a proof of good result, as far as occlusion is concerned. Despite

the prediction being classified as a false positive, as its IOU with the ground-truth bounding box is

below 0.5, it is true that it corresponds to part of a pen.

• The region of the image where the object appears doesn’t seem to affect the model. In spite of

that, when an object is encountered in the edge of the image and that is combined with other

adversarial factors, such as occlusion (h) or a greater distance to the objects (i), the model seems

to behave worse.

• Items similar to pens, such as a test light screwdriver (d,i,j), seem to easily fool the model.

Hence, despite some drawbacks, the R-CNN model seems to produce good results, close to the

state-of-the-art results given in Table 2.1.

4.1.2 Models trained on 4 classes

The composition of the verification set can be seen in Figure 4.5. None of the images used in Sec-

tion 4.1.1 was used in this section. The different proportion of bounding boxes between classes results

from the real situation in study. Specifically, in the real world, it is expectable that the occurrence of the

class Pen exceeds the occurrence of the other classes and so on. The obtained results for the models

of this section can be seen in Table 4.2.

Model mAP(%) Rate (FPS)

Faster R-CNN 59.36 6
SSD 16.79 20
YOLO 45.99 20

Table 4.2: Results for the models trained on 4 classes.

The conclusions that can be drawn from Table 4.2 are:

• The accuracy values tend to decrease from the models trained on 1 class, indicating the models

perform worse when detecting the classes that aren’t Pen.

• For the R-CNN model the speed doesn’t seem to be affected when the total number of classes the

model can detect is increased, while for the other models the speed is slightly lower than before.

• The Faster R-CNN model continues to be the more accurate, while the others continue to lead on

speed.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.4: Predictions of the R-CNN model trained on 1 class.
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Figure 4.5: Verification set composition for the 4 classes models.

Delving deeper into the computation of mAP for each model, we obtain Figure 4.6. The results for the

AP of the Pen class are different from the ones in Section 4.1.1 because of two factors: the verification

sets are different and the models that make the predictions are also different. It is possible to see in

Figure 4.6 that the presence of the Mug class greatly decreases the value of mAP for the models. In

fact, if the class was to be disregarded, the value of mAP for the R-CNN model would be equal to

73.19%, higher than the one obtained on Section 4.1.1. The same happens with the other models. If

the 2 worst performing classes were to be disregarded for the YOLO model, its mAP would be 67.32%.

(a) R-CNN Model (b) SSD Model (c) YOLO Model

Figure 4.6: Comparison of the AP by class for the models trained on 4 classes.

Having a deeper look into the R-CNN model, it is important to take into consideration the precision-

recall curve and the absolute values of predictions. This information is present in Figure 4.7. Some

information that can be withdrawn from the figure is:

• The Mobile phone class has a high value of value of AP due to a consistently high value of preci-

sion.

• The Pen class, despite worse and the previous one, still presents good results.

• The Glasses class has a big trade-off between precision and recall. Depending on the objective

of application or the preference of the user the confidence threshold value should be adjusted to

have higher precision or higher recall.

50



• Despite poor results, when analysing mAP, the Mug class has high values for precision, which

means that each time the model predicts there is a mug in the image, it is highly probable the

prediction is true, despite not many mugs being identified. A possible cause for this is that, in

the verification set, the mugs used were white and, many times, in a white background. This can

be seen in Appendix A. Furthermore, one of those was of small dimensions and seems to be

predicted less times than the other. This may indicate the model learned certain dimensions for

the Mug class that aren’t compatible with the first mug.

(a) PR curve for Mobile Phone class (b) PR curve for Pen class (c) PR curve for Glasses class

(d) PR curve for Mug class (e) Absolute values for predictions

Figure 4.7: Precision-recall curves and predictions distribution for the R-CNN model trained on 4
Classes.

The same information is shown in Figure 4.8 for the YOLO model. Some points that are apparent in

the figure are:

• The Mobile phone class performs worse than in the R-CNN model. It has a bigger trade-off be-

tween precision and recall.

• The Pen class performs better than in the R-CNN model, but the final value of precision is worse,

evidenced by the greater number of false positives. The confidence threshold value for this class

should be higher.

• The Mug and Glasses have low values of mAP, but high precision values. For the Mug class the

explanation may be the same as the given above. For the Glasses class, the model only seems

to detect it when the object are on a certain position and at a certain distance, as can be seen in

Appendix A.

Taking the previous information into consideration, it is visible the R-CNN model is again the best

performing model and produces good results, specially if we exclude the worst performing class.
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(a) PR curve for Mobile Phone class (b) PR curve for Pen class (c) PR curve for Glasses class

(d) PR curve for Mug class (e) Absolute values for predictions

Figure 4.8: Precision-recall curves and predictions distribution for the YOLO model trained on 4 Classes.

4.1.3 Models trained on 10 classes

The composition of the verification set used for this phase can be seen in Figure 4.9. Equally, the

obtained results for the models can be seen in Table 4.3. The references (a), (b) and (c) correspond,

respectively, to the models trained with an imbalanced dataset, a dataset balanced in the number of

images and a dataset balanced in the number of bounding boxes.

Figure 4.9: Verification set composition for the 10 classes models.

The increase in the number of classes to detect seems to have an effect on the accuracy of the mod-

els. Analyzing the detections, the problem looks to be located on images with cluttered environments,

that is, with several objects in an image, such as Figure 4.10. In this kind of image, the models seem to

correctly predict one or two classes, but fail to make predictions on the remaining objects of the images.

This appears to be confirmed by the accuracy results when the verification set is reduced to images with

1 or 2 objects. These results are shown in Table 4.4. The table clearly shows the models perform much
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Model mAP(%) Rate (FPS)
(a) (b) (c)

Faster R-CNN 38.44 33.66 20.99 6
SSD 11.00 6.83 4.88 19
YOLO 26.68 18.50 22.50 20

Table 4.3: Results for the models trained on 10 classes.

better with less objects to predict per image. In fact, except for the SSD model with training dataset

(b), all the models have better results in this verification set, with the best performing ones approach-

ing the performance of the models of Section 4.1.2. As was previously referred in Section 3.3.4, the

dataset used for training of the models usually focus each image for a specific class, which may be an

explanation for this kind of behaviour.

Figure 4.10: Example of image with cluttered environment.

Model mAP(%)
(a) (b) (c)

Faster R-CNN 58.54 47.25 30.50
SSD 18.03 4.37 7.37
YOLO 44.32 19.34 25.81

Table 4.4: Results for the models trained on 10 classes using images with 2 objects or less.

In what concerns speed, the SSD model seems to be somewhat affected with the increase of the

number of classes, while the other methods keep approximately the values from previous sections. This

factor, allied with the fact that YOLO has an higher mAP, seems to suggest that, when speed of prediction

is an important factor, the YOLO algorithm has an edge over the SSD models.

Another consideration that is possible to take for the results relates to the balancing of the training

dataset. It is quite clearly that the efforts made in that area didn’t produce good results. Indeed, every

model performs worse when trained with the balanced dataset than with the original dataset. However,

the effect of the balancing isn’t straightforward. Actually, some classes present an increase in AP in
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consequence of the balancing. For example, the Coin class has an AP of 16.83% for the Faster R-

CNN model trained with dataset (b), compared to the 0% AP obtained with dataset (a). Similarly, the

Headphones class has an AP of 35.37% for the YOLO model trained with dataset (b) and of 20.49%

when dataset (a) is used. Although, this effect isn’t equal for all the classes, the classes with less

examples in dataset (a) seem to be benefited by balancing while the ones with the most examples seem

to be hindered.

Exploring the best performing model, the Faster R-CNN model trained with dataset (a), Figure 4.11

shows the AP for each class. As is the case in Section 4.1.2, the models struggles with the Mug class.

Additionally, the Glasses class also performs worse in this phase. However, it is important to point out

that the AP of this class greatly increases when the verification set is comprised of images with 2 or less

objects. In such conditions the AP for this class is 76.75%. It is quite clear that the Coin gravely impacts

the overall performance of the model. The reason for this problem may be in the fact that the images

for this class in the training set are quite close to the target, making the objects rather big, as can be

seen in Figure 3.9. Oppositely, the images in the verification set make the objects seem relatively small.

If we exclude such a class, the obtained mAP would be 42.07% for the entire verification dataset and

65.05% for the smaller verification dataset. If we go further and eliminate also the influence of the Mug

class, the value for the second verification set would be 69.61%. Although not state-of-the-art, this value

approaches the ones reported by Zhao et al. in Table 2.1.

(a) Entire verification set (b) Verification set with 2 object or less per image

Figure 4.11: Average precision by class for the Faster R-CNN model trained with dataset (a).
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4.2 Models trained with manually annotated images

As stated in Section 3.4.3 two dataset - balanced and imbalanced - were produced for training models

in this phase of the work. The general results obtained for the consequently 6 models can be seen in

Table 4.5. Furthermore the composition of the verification set by class can be seen in Figure 4.12

Figure 4.12: Verification set composition for the 3 classes models.

Model mAP(%) Rate (FPS)
Balanced Imbalanced

Faster R-CNN 36.83 37.50 6
SSD 11.01 4.68 20
YOLO 19.52 24.69 20

Table 4.5: Results for the models trained with manually annotated images.

Some indications that can be withdrawn from Table 4.5 are:

• The Faster R-CNN model continues to be the best performing model in terms of accuracy, while

the others have an edge when speed is concerned.

• The balancing of the dataset seems to produce either virtually no difference or a negative one,

when talking about accuracy.

• The performance of the models, in terms of accuracy, greatly decreases from the models of Sec-

tion 4.1 and from the results reported for each algorithms in the literature.

The last statement represents an important remark for this work. The dip in performance may be due

to several factors. First, it was expected that the images used in this phase were not as appropriate for

the task of object detection as images from a curated dataset. Some of the reasons for that are stated in

Section 3.4.3. Second, the size of the objects in the verification set is quite small. This leads to several

problems:

• There is a big difference between the images on the dataset used for training and the images on

the verification set. As referred in Section 3.4.3, the images used for training are specially focused
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in the objects in questions and, for that reason, very different from a real-world situation we can

imagine. Possibly, if the images used for training were of simulated real scenarios, taken purposely

for this application, the results would be better. However this bring a application problem for the

product in analysis: it is impossible to simulate all the scenarios where a commercial available

product can be used and, as such, if the data used for training can’t generalize to most situations,

the product is rendered useless.

• There is a bigger influence of the IOU criteria used for the mAP computation, that is, seen as the

objects are very small in the image, a small deviation in pixels of the predicted bounding box can

mean a great deviation in IOU. Although this is a factor, its influence seems to be very limited

because, when we lower the requirement of IOU for a prediction to be considered true to 30%, the

improvements in mAP are marginal, as can be seen in Table 4.6.

Model mAPIOU=.30(%)
Balanced Imbalanced

Faster R-CNN 38.41 38.47
SSD 11.01 4.68
YOLO 19.84 25.20

Table 4.6: mAP for the models trained with manually annotated images with IOU=30%.

When analysing the results in further detailed, it is possible to see that the previous statement re-

garding the influence of balancing a dataset can be misleading. In fact, it is possible to see in Figure 4.13

that the balancing the dataset greatly improves the performance of the detection of the class that has

fewer examples in the imbalanced dataset, the Potentiometer class, across all trained models. This

may indicate that reducing the number of example from other classes isn’t the best approach and that

balancing can be beneficial using, however, other techniques.

Finally, it is important to point out that the biggest problem of the models trained in this Section is

the fact that there is a very low number of predictions for each class, that is, although precision for each

model is relatively high, recall is very low. This seems to be confirmed by Figure 4.14. Comparing with

Figure 4.12, it is possible to see that the number of prediction made by the models is very low when

comparing with the number of examples in the set. In fact, except for one class in one of the models (the

Potentiometer class in the Faster R-CNN model trained with the balanced dataset), no model is capable

of accurately predicting even 50% of one class. This seems to be related to the point argued before

concerning the distinction between the training and the verification sets.
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(a) R-CNN model with balanced dataset (b) SSD model with balanced dataset (c) YOLO model with balanced dataset

(d) R-CNN model with imbalanced dataset (e) SSD model with imbalanced dataset (f) YOLO model with imbalanced dataset

Figure 4.13: Comparison of the AP by class for the models trained with manually annotated images.

(a) R-CNN model with balanced dataset (b) SSD model with balanced dataset (c) YOLO model with balanced dataset

(d) R-CNN model with imbalanced dataset (e) SSD model with imbalanced dataset (f) YOLO model with imbalanced dataset

Figure 4.14: True positive and false positive prediction for each model.
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Chapter 5

Conclusions

Regarding the main general objective, the study of the input sensory system of a tabletop pick and place

robot, we can see from the work developed that it is possible to devise a general system capable of

recognizing to a good extend everyday objects and possible to be applied to commercial use. Comparing

with other solutions published [80, 81], the accuracy metric on those solutions is better. However, such

solutions, and by consequence their verification sets, are designed for very limited scenarios. In this

work, the purpose of the product is more general and, despite lower accuracy, the solution found can be

satisfactory. However, it is fairly clear that such a product has several limitation and should be design

with those limitations in mind.

The first of the constraints to be considered is the fact that it is pretty explicit that some classes of

objects are more suitable to this purpose than others. For instance, small objects seem to be harder to

identify and locate than others of superior dimensions. On the other hand, if the objective of the system

was to recognize smaller objects, it could be design such that the objects to be detected could be closer

to the sensor, that is, such that they would better resemble the training examples used. The contrary

could also lead to an improvement in performance, namely, the training examples could be chosen so

that they better resemble the final objective images. This means the training of the image recognition

algorithm can’t be indiscriminate and dissociated from the objective of the system to be projected.

The second constraint relates to the detection of objects in cluttered environments. In such environ-

ments, the algorithms suffer a dip in accuracy performance, which means that any device using these

algorithms should be design having that in consideration. That is, it should avert situations where the

objects are closely together. Alternatively, it could also take advantage from the fact that, despite having

a dip in performance, the detector seems to still predict correctly some of the object in the image. For

instance, in a pick and place robot, it is possible to imagine a situation that the detector rightly predicts

objects that are then removed from the working environment, decluttering it and improving the detector

performance in the next moment of detection.

The third consideration necessary is the fact that the best performing algorithms are resistant to the

majority of the hindering factors referred in the beginning of Chapter 4, but not to all. Low illumination

can sometimes decrease the performance of the algorithms. Further study is necessary to determine
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how much it contributes to such decrease. The distance to the objects to be identified also can be a

problem, but seems to only affect small objects as previously discussed. Background color also appears

to be a factor with importance but its effects were only seen in limited cases.

Relating to the specific situations studied in this work, it can be concluded that the choice of algorithm

to perform object detection should fall onto Faster R-CNN when accuracy is the top requirement for a

situation. On the other hand, if speed is preferred, the YOLO algorithm should be favored. Regarding

the SSD algorithm, the results obtained are very distant, in terms of accuracy, from the ones reported

by the authors and by other sources. This could mean that a series of blunders may have affected the

training of such models, affecting the results obtained.

Another conclusion regarding the implementation of this work concerns the balancing of the training

datasets. It is possible to comprehend that the balancing of the datasets in this work wasn’t successful

and, in fact, lowered the performance of the models. The most probable cause of such a situation was

the fact that the method used for the balancing, subsampling, may not be the most appropriate for this

task. Other methods such as oversampling, data augmentation or SMOTE [82] can be used to test the

effects of data unbalancing and understand if it is possible to improve performance.

Regarding the proposition stated in Section 3.4, regarding the possible annotation of images by

an end user, it may be fair to say that such a process would be very difficult to implement. That is

justified by two arguments. The biggest hurdle to such a process would be the difficulties that would be

presented to an untrained annotator. As is referred in Section 3.4.2, the annotating process is very time

consuming and tedious. Furthermore, it is abundantly explicit throughout this work that some images

are more appropriate to train a model than other. As an end user wouldn’t be alert to this fact, there is no

guarantee that he images chosen for training would be suitable. Indeed, the same argument is valid for

the quality of the annotations, of which there also isn’t any guarantee. However, it is possible to imagine

that a trained group of people could expand the capabilities of products already in use, accompanying

the evolution of datasets such as the Google Open Images Dataset or otherwise creating new and

purposely built datasets.

Finally, it is important to mention that the models studied in this work can also be applied to many

other situations. This unspecialization and possibility for general use is one the best feature of the object

detection algorithms studied. In light of this, the proven feasibility of the use of this technology allows

one to imagine several applications of it. It is possible to imagine the use of the technology in devices

that would collaborate with an human in an work platform, a electronics stand, an instrumentation booth,

a kitchen, and in inconceivable amount of other applications.

5.1 Future Work

In the future, it is essential to increase the capacity of the implemented models by expanding the

database used for training and the number of classes they are able to recognize. It is also important,

the study of future or recently published algorithms for object detection such as YOLOv4 [83], YOLOv5

or End-to-End Object Detection with Transformers [84]. Equally, it should be important to accompany
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developments in the databases with object detections tasks. The Open Images Dataset was analysed

in this work using its fourth version. It is now already in its sixth and continues to grow. Regarding the

applications related to pick and place robots, it would also be important to add information on the depth

aspect of images. Using cameras with such capabilities, it may be important for this task to perform

object detection on RGB-D images, reviewing the works already published by some authors [85–87].

Regarding the device suggested in this work, it would be beneficial to evaluate the possibility of imple-

menting the studied algorithms in an embedded system or a single board computer such as a Raspberry

Pi or the more specialized NVIDIA Jetson, Google Coral or Khadas VIM series. In the future, there are

also several possibilities for the operation of the suggested device. For instance, a process can be de-

vise to “deconstruct scenes”, that is, withdrawn from the working space the recognized objects, leaving

just the unknown ones. From there, a semi-automatic process of training could be constructed, where

a model would provide the location information, maybe following recent works in class agnostic object

detection [88], and the user would provide the name for the class.
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Appendix A

Verification set and predictions for the

best performing models

A.1 Models trained on 1 class

Figure A.1: Verification set and predictions for the R-CNN model (part 1 of 6).
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Figure A.2: Verification set and predictions for the R-CNN model (part 2 of 6).
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Figure A.3: Verification set and predictions for the R-CNN model (part 3 of 6).
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Figure A.4: Verification set and predictions for the R-CNN model (part 4 of 6).
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Figure A.5: Verification set and predictions for the R-CNN model (part 5 of 6).
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Figure A.6: Verification set and predictions for the R-CNN model (part 6 of 6).
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A.2 Models trained on 4 class

Figure A.7: Verification set and predictions for the R-CNN model (part 1 of 7).
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Figure A.8: Verification set and predictions for the R-CNN model (part 2 of 7).
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Figure A.9: Verification set and predictions for the R-CNN model (part 3 of 7).
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Figure A.10: Verification set and predictions for the R-CNN model (part 4 of 7).
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Figure A.11: Verification set and predictions for the R-CNN model (part 5 of 7).
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Figure A.12: Verification set and predictions for the R-CNN model (part 6 of 7).
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Figure A.13: Verification set and predictions for the R-CNN model (part 7 of 7).
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A.3 Models trained on 10 class

Figure A.14: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
1 of 10).
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Figure A.15: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
2 of 10).
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Figure A.16: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
3 of 10).
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Figure A.17: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
4 of 10).
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Figure A.18: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
5 of 10).
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Figure A.19: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
6 of 10).
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Figure A.20: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
7 of 10).
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Figure A.21: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
8 of 10).
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Figure A.22: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
9 of 10).
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Figure A.23: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
10 of 10).
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A.4 Models trained with manually annotated images

Figure A.24: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
1 of 6).
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Figure A.25: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
2 of 6).
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Figure A.26: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
3 of 6).
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Figure A.27: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
4 of 6).
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Figure A.28: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
5 of 6).

98



Figure A.29: Verification set and predictions for the R-CNN model trained with imbalanced dataset (part
6 of 6).
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