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Resumo

O problema da desinformação tem criado preocupações relacionadas com fiabilidade do conteúdo

em redes sociais. As chamadas fake news, ou notı́cias falsas, espalham-se rapidamente e enganam

os utilizadores. Como tal, conclui-se facilmente que é necessário desenvolver uma solução que ajuda

a avaliar a confiabilidade da informação que é publicamente distribuı́da. Nesta dissertação, é proposto

um sistema de votação eletrónica totalmente descentralizado, que permite a votação anónima em car-

acterı́sticas de confiabilidade em informação publicada em redes sociais. Nas últimas décadas, muito

trabalho tem vindo a ser direcionado para o desenho de soluções de votação eletrónica que promovem

privacidade e integridade. Contudo, tanto quanto sabemos, nenhuma destas soluções aborda votação

aberta (sem fim definido) e descentralizada pela internet, com contagem de votos contı́nua e garantias

de privacidade. A nossa proposta utiliza assinaturas em grupo e pseudónimos para garantir elegibili-

dade sem revelar a identidade do votante, e implementa mix networks para assegurar anonimato. Esta

solução suporta vários processos de votação simultâneos, com boletins de votos flexı́veis, e apenas

necessita de uma volta de comunicação na fase de votação. Para além disto, também proporciona

outras propriedades desejáveis em votação eletrónica, tais como precisão e verificação.

Palavras-chave: Votação Eletrónica, Notı́cias Falsas, Segurança, Privacidade, Confiança
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Abstract

The problem of disinformation has raised concerns regarding the reliability of content on social me-

dia. The so-called fake news spread rapidly and mislead people. Therefore, it is clear how paramount

it is to develop a solution which helps to assess the credibility of information that is publicly distributed.

In this dissertation, a fully decentralized voting system is proposed, which allows people to vote anony-

mously on trustworthiness characteristics of posts on social media. In the past decades, significant effort

has been directed into designing electronic voting solutions which promote privacy and integrity. Never-

theless, to the best of our knowledge, none of these solutions approach open-ended, continuous-tallying

decentralized internet voting with privacy guarantees. The proposed scheme relies on ring signatures

and pseudonyms to grant eligibility without revealing the identity of the voter, and implements mix net-

works to achieve voter anonymity. It supports multiple concurrent voting processes with flexible ballots,

and only requires one round for the voting phase. Additionally, this proposal provides other desired

voting properties, such as accuracy and verifiability.

Keywords: Electronic Voting, Fake News, Privacy, Security, Trustworthiness
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Chapter 1

Introduction

Voting is a foundational principle of democracy. It emerged as a way of expressing disapproval.

Specifically, back in Ancient Greece, votes were registered on pieces of porcelain, which determined

whether politicians were to be exiled. It was not until the 1800s that paper voting was introduced. A few

decades later, Thomas Edison was granted a patent for one of his first inventions: an ”electronic voting

device”, which was meant to be used by the United States Congress. However, this vote recorder was

never implemented and paper ballots have remained around ever since.

In the 1980s, new efforts started aiming at developing alternatives to the conventional paper ballots

and physical voting, which revived the notion of electronic voting. Electronic voting (or e-voting) is a

broad concept. Generally, any voting process which involves a machine to cast ballots or count votes

is electronic. This includes voting through the internet (also called i-voting), which can be done any-

where, and voting in the presence of authorities, using specific devices. Examples of these devices are

scanners, which read paper ballots, and buttons or a touchscreen to vote.

Since that decade, an extensive amount of electronic voting protocols has unfolded and changed

drastically the voting process by lowering costs, tallying faster and providing more flexibility to the voters.

In fact, electronic voting may nowadays be applied efficiently to the majority of situations, ranging from

small electoral rolls to country-sized ones [77].

In this work, we use voting to address the problem of disinformation. The so-called fake news is dis-

torted or untrue information presented to readers or viewers. Relevantly, due to the growth of computer-

mediated communication, this phenomenon has proliferated, which has raised some concerns regarding

the trustworthiness of content on social media. The most significant event in which this problem gained

public awareness was in the 2016 United States Presidential Election [10]. This led not only to scan-

dals related with the impact on the results of the election, but also to privacy concerns inherent to the

collection of user data on the internet.

The next two sections explain how electronic voting can be demanding to implement and how it can

be used to support the evaluation of trustworthiness of information on social media.

This work was developed at INOV - Instituto de Engenharia de Sistemas e Computadores Inovação

under the supervision of Eng. Nelson Escravana, in collaboration with Instituto Superior Técnico under
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the advisory of Prof. Pedro Adão. It is integrated in the ongoing EUNOMIA Project [2], supported by the

European Union H2020 Research and Innovation Programme, with Grant Agreement number 825171.

1.1 Motivation

Electronic voting can be challenging. Some trust assumptions, such as untappable channels1, are

unrealistic for fully electronic voting, the reliability of each component of a system must be disputed and

earning the trust of a voter is hard. Additionally, it has many requirements that a system should comply

with, which can even sometimes contradict themselves.

To put things into perspective, we compare electronic voting with banking, as did Adida [7]. Banks

process millions of transactions daily, recording all the money that goes in and out of every account, and

keeping the receipts which customers can later use to audit their accounts. Similarly, one should be able

to let voters cast millions of votes, save them and later count them.

This analogy, however, faces two substantial misconceptions [7]. The first one is that, unlike in

banking, where there is a trusted administration, any entity participating in a voting process, including

authorities, can be dishonest. The second one relates to failure detection and recovery, which is well de-

fined in banking since there are records of every operation. In contrast, voting failures can go undetected

as some records are often purposely erased at the expense of privacy.

In fact, for this analogy to be accurate, some requirements have to be added. First, the bank cannot

know the balances of the customers. Second, a customer cannot prove their balance to anyone, while

still being sure that the money is safe. These new restrictions clarify the difficulty of designing a voting

system.

We shift our attention to fake news. This is a very delicate affair in the sense that fighting it is ex-

tremely difficult, which is due to a few reasons. First, content on the internet spreads rapidly and almost

uncontrollably. Second, social networking platforms present users with specifically targeted information

and advertisements. That is, it is not a single problem, instead every user is affected differently. Finally,

and most pertinent, users eventually end up misinterpreting the information or being persuaded into

changing their beliefs or behavior.

Taking these reasons into account, it is clear how paramount it is to develop a solution which helps

users to assess the reliability of information that is publicly distributed.

The EUNOMIA Project [2] focuses on fighting disinformation by providing social media users with

information cascades2, sentiment analysis and trustworthiness indicators for posts on social networks. It

introduces a concept called Human-as-Trust-Sensor, which places the user at the center of the reliability

evaluation process. Along these lines, users are helped to identify the provenance of information and

to understand how information has been modified and spread. Moreover, they are able to attribute

trustworthiness properties to that data.

EUNOMIA endorses a design philosophy which fosters openness and transparency. It is a fully

1A channel can be considered untappable if it uses a one-time pad to hide data because one-time pads are mathematically
unbreakable, thus providing perfect secrecy [70].

2An information cascade tracks changes made to data since its original source until it is presented to the user.
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decentralized peer-to-peer platform, delegating the decision-making process and overall system man-

agement to a set of independent nodes. In addition, it is a distributed system, meaning that there is no

single entity responsible for doing all the work, instead tasks are carried out by a set of nodes working

together in a distributed manner.

Since EUNOMIA nodes are operated by independent and unrelated entities, trust is a feature of

the overall system as we cannot guarantee that each of the entities is not malicious. The security

model states that the system as a whole can be trusted, as long as a subset of nodes remains honest.

Furthermore, storage in EUNOMIA is supported by a potentially hostile peer-to-peer network, which

can be accessed by the nodes, providing them with a highly distributed, decentralized storage solution.

Finally, all information that circulates outside of each node is presumed to be in a malicious environment

and should be adequately protected.

1.2 Contributions

This work focuses solely on the third part of the EUNOMIA Project, which is providing trustworthi-

ness indicators for online information. We propose a voting system which entitles users to assign trust

properties to social media posts, and choose whether their set of attributes, such as followers or polit-

ical ideology, is shown in the tally, if they wish to have their identity shown, or if they would like to stay

anonymous.

This approach focuses on gathering people’s input rather than delegating the task of information

classification to a third party. Still, the system is only responsible for showing the users the voting tally,

so it is up to them to make the decision of whether the information is trustworthy or not.

Currently, while there are no voting approaches tailored for this goal, many voting implementations

exist, which feature the most varied properties. All of these differ mainly on the methods used to achieve

ballot anonymization and validation, how voter registration is carried out (if it exists) and how tallying is

performed. Consequently, the cost and efficiency of every system depend on the underlying properties

and objectives of each one.

The voting server, integrated in each of the EUNOMIA nodes, and thus respecting the underlying

design requirements, is responsible for handling ballots, anonymizing them (if necessary) and count-

ing votes. All relevant public information is posted to a storage service, supported by the previously

mentioned peer-to-peer storage network.

Considering the previous section, we emphasize how challenging it is to design a voting system

under the security model of EUNOMIA. This is because the system is fully decentralized and distributed,

and has no trusted third party, meaning that no entity can be trusted individually.

Furthermore, regarding the voting component, some more challenges arise. First, voting processes

are open-ended, which raises many privacy complications. Second, the system must support multiple

simultaneous voting processes. Third, the system has to avoid double voting without knowing if users

have voted before. And fourth, ballots should be totally flexible and adaptable to different posts.

To summarize, the main contribution of this work is the design and implementation of a voting scheme
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which, besides tackling these challenges, promotes the following properties:

• Accuracy: All valid votes are counted (completeness) and all invalid votes are not counted (sound-

ness).

• Privacy: Choices of the voters are secret.

• Uniqueness: No voter can cast a ballot twice on the same post.

• Individual Verifiability: Voters can verify if their cast ballot represents correctly their voting inten-

tions (cast as intended) and that it has been properly submitted (recorded as cast).

• Universal Verifiability: Ability to confirm that all stored valid votes have been included in the tally

(counted as recorded) and that only eligible voters voted (eligibility check).

• Robustness: Resistance to partial failures, to malicious behavior by the authorities or the voters

and to some level of collusion.

• Transparency: All information relevant to the voting protocol is publicly available and able to be

verified.

These properties make up the adequate voting solution for the designated purpose, offering anonymity

and integrity.

1.3 Dissertation Outline

The remainder of the dissertation is outlined as follows:

• Chapter 2 provides a background on the concepts presented throughout the work.

• Chapter 3 develops on the main ideas of electronic voting and explains the evolution of the work

attained in the area so far.

• Chapter 4 proposes an electronic voting solution for the given problem.

• Chapter 5 explains how the solution was implemented.

• Chapter 6 reports the evaluation of the proposed solution.

• Chapter 7 concludes this dissertation.
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Chapter 2

Background

In this chapter, we present the background which is the foundation for the remainder of the topics

addressed in this work. It is assumed the reader already has some knowledge of mathematics and

public key cryptography.

We start by defining groups in Section 2.1, followed by cryptographic assumptions in Section 2.2.

Next, elliptic curves are tackled in Section 2.3. Finally, Section 2.4 provides an overview of zero knowl-

edge proofs.

2.1 Groups

This section introduces the notion of group. The group is the starting point for many of the con-

cepts which are presented later in this chapter. We refer to Katz and Lindell [70] for a more detailed

explanation.

Definition 2.1.1. A group is a pair (G, ◦), which defines G as a set and ◦ as binary operation for which

the subsequent conditions hold:

• Closure: For all g, h ∈ G, g ◦ h ∈ G.

• Existence of an identity: There exists an element e ∈ G, called identity, such that for all g ∈ G,

e ◦ g = g ◦ e = g.

• Existence of inverses: There exists an element h ∈ G, called inverse, such that for all g ∈ G,

h ◦ g = g ◦ h = e.

• Associativity: For all a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c).

Moreover, a group is abelian if the following additional property holds:

• Commutativity: For all g, h ∈ G, g ◦ h = h ◦ g.

For a question of simplicity, and when the binary operation ◦ is well understood, we refer to the group

simply as G. Also, the order (number of elements) of a group G is denoted by |G| and G is called finite

when it has a finite number of elements.
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Definition 2.1.2. A group G of order p is cyclic if there exists g ∈ G such that all elements of G can be

written as gn, for any n ∈ Z. The element g is then called the generator and group G can be specified

as G = 〈g〉.

Groups can be of prime order p, which are the only ones employed throughout this dissertation. One

intelligible example of a prime order group is Z∗p, which corresponds to all positive integers modulo p.

2.1.1 Fields

We now briefly define fields. Informally, a field can be specified as two abelian groups joined together,

with each of them supporting a distinct binary operation. The definition below formalizes the properties

of a field.

Definition 2.1.3. A field F is a set which defines two binary operations, usually called + and ·, respec-

tively addition and multiplication, for which the following conditions hold:

• F is an abelian group which designates + as its binary operation and has identity element 0.

• F \ {0} is an abelian group which designates · as its binary operation and has identity element 1.

• Distributivity: For all a, b, c ∈ F, a · (b+ c) = a · b+ a · c.

The order q of a field F can be pk, where p is a prime and k ∈ N. In this particular case, we say

that field F has characteristic p, it is called finite field or Galois field and represented by Fq or Fpk . Once

again, Z∗p can be an example of a prime field.

2.2 Cryptographic Assumptions

Computational hardness concerns the inability of a computer to solve a mathematical problem in

reasonable time, and cryptography usually relies on the intractability of these problems to build provably

secure systems. The assumptions rely on these problems because it is assumed that they cannot be

broken efficiently, or in polynomial time, with the existing computing power and algorithms. Therefore,

systems are secure as long as the assumptions hold.

In this section, we present the cryptographic assumptions upon which some of the propositions of

this work fall back on. We start by defining negligible functions, which serve as basis for the subsequent

definitions. We refer to Katz and Lindell [70] for more details.

Definition 2.2.1. A function f : N → R+
0 is negligible if, for every positive polynomial p, the condition

f(n) < 1
p(n) holds for a sufficiently large n.

Definition 2.2.2. The discrete logarithm (DL) problem states that, given a cyclic group G = 〈g〉 of order

q and g, h ∈ G, finding x ∈ Zq such that gx = h is hard.

We now consider a group generation algorithm G, which accepts a security parameter n and gener-

ates a tuple (G, q, g), where G is a cyclic group of order q and g is the generator of group G. Also, we

define an algorithm A, which receives the tuple (G, q, g, h) and outputs x ∈ Zq such that gx = h.
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Definition 2.2.3. The DL problem is hard relative to G if, for all probabilistic polynomial-time algorithms

A, there exists a negligible function negl such that

Pr[A(G, q, g, h) = x] ≤ negl(n).

Taking the previous definition into consideration, we infer that the DL assumption holds as long as

there exists a G where the DL problem is hard.

We now explain the Diffie-Hellman problem, which can be split into two distinct problems: the weaker

computational Diffie-Hellman (CDH) and the decisional Diffie-Hellman (DDH) [25].

Definition 2.2.4. The decisional Diffie-Hellman (DDH) problem states that, given a cyclic group G = 〈g〉

of order q and g, h1, h2 ∈ G, where h1 = gx1 , h2 = gx2 and x1, x2 ∈ Zq, it is hard to determine whether

an element h = gx1x2 or if h was chosen uniformly from G.

Intuitively, the CDH problem is based on the difficulty of calculating h = gx1x2 , which relies strongly

on the DL problem.

We now consider an algorithm B, which receives the tuple (G, q, g, ga, gb, gc), where a, b, c ∈ Zq, and

outputs 1 if gc = gab, and 0 otherwise.

Definition 2.2.5. The DDH problem is hard with respect to G if, for all probabilistic polynomial-time

algorithms B, there exists a negligible function negl such that

∣∣Pr[B(G, q, g, ga, gb, gc) = 1]− Pr[B(G, q, g, ga, gb, gab) = 1]
∣∣ ≤ negl(n).

Then, we conclude that the DDH assumption sustains, as long as there exists a G where the DDH

problem is hard.

2.3 Elliptic Curves

The application of elliptic curves in cryptography was initially proposed by Miller [79] and Koblitz

[71] in 1985. While it poses many advantages, such as reduced key sizes and stronger security, when

compared to the well-known, widely embraced RSA cryptosystem [96], its adoption only began roughly

a decade ago and it has been growing slowly.

Elliptic Curve Cryptography (ECC) leans on the definition of finite fields over elliptic curves. The

attractive feature of elliptic curves is that points can be arranged into (cyclic) groups where the discrete

logarithm problem is believed to be hard. So, when they are chosen adequately, the DL assumption

holds because there exist no algorithms to solve it efficiently.

In this section, we succinctly explain how elliptic curves operate and clarify how they are used in the

context of public key cryptography for this work. We mention Katz and Lindell [70] and Smart [103] for a

more thorough explanation.
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We now consider a finite field Fp, where p > 3 is a prime. The equation

E : y2 = x3 +Ax+B (mod p)

generally defines an elliptic curve over the finite field Fp, where A,B ∈ Z are constants. In this case, the

finite abelian group of points on the curve is denoted by E(Fp), and there exists a special point O, called

point at infinity, which is considered the additive identity.

Subgroups of points from E(Fp) support addition and multiplication, as portrayed in Figure 2.1. In

fact, the multiplication of a point P ∈ E(Fp) is only supported with a scalar value n, and comprises the

addition of P with itself n times. This operation, P + P + ... + P or nP , although easy to compute, is

believed to be hard to reverse. In other words, it is hard to compute n from Y = nP , knowing both Y and

P . This is called the elliptic curve discrete logarithm problem (ECDLP) and it is the foundation of ECC.

(a) Point Addition (b) Point Multiplication

Figure 2.1: Operations on Elliptic Curves [103].

One important consideration about the ECDLP is that, unlike the DLP for linear algebraic groups,

there exists no algorithm which can solve it in sub-exponential time, for the majority of cases. In fact, it is

believed to be harder to solve than other well-known problems, such as the standard discrete logarithm

and the integer factorization problems, and thus, yielding greater key size efficiency.

Another pertinent aspect about elliptic curves is the notation used to represent the operations be-

tween group elements or, in this case, points. As a convention, standard operations in a linear algebraic

group G, namely, multiplication and exponentiation, are considered analogous to the addition and scalar

multiplication in a group E(Fp) of elliptic curve points, respectively. For example, denoting gn in linear

algebraic groups can be regarded as equivalent to writing nG in ECC. Throughout this work, while we

usually resort to the algebraic notation, we may still use the elliptic curve notation in some cases.

ECC can excel at a variety of protocols, ranging from key agreement to digital signatures. In this

work, we resort to an elliptic curve to generate key pairs and zero-knowledge proofs. Concisely, key

pairs in ECC are composed of a private key s ∈ Zp and a public key P = sG, where G is a predefined

base point of the curve. Taking advantage of the ECDLP, we ensure that it is hard to deduce the private
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key s from the public key P .

2.4 Zero-Knowledge Proofs

Zero-knowledge proofs are very powerful cryptographic techniques, which allow a prover P to prove

a statement to a verifier V, without revealing any information, except the validity of that statement.

One very useful example is proving knowledge of a private key, which allows the verifier to know that

the prover holds the private key but nothing else. Zero-knowledge proofs were initially proposed by

Goldwasser et al. [62] in 1989.

When defining a zero-knowledge proof, the following conditions must hold:

• Completeness: If both the prover and the verifier are honest and the protocol is followed, the

verifier should accept the proof with probability one.

• Soundness: If the verifier is honest but the prover is dishonest, and the statement is false, the

verifier should only accept the proof with very low probability.

• Zero-Knowledge: The verifier should not learn anything aside from the validity of the statement.

We refer to Smart [103] for more details on this topic.

2.4.1 Proofs of Knowledge

Proofs of knowledge are a category of zero-knowledge proofs. As expected, the goal is to prove

knowledge of a secret value without revealing it. We can achieve this using an interactive protocol called

sigma (Σ), which comprises three moves: commitment, challenge and response. The Schnorr protocol

[101] is a particular example of the sigma protocol, which allows one to prove knowledge of a discrete

logarithm in a cyclic group where the DL problem is hard.

To define proofs of knowledge formally, we resort to the symbolic notation proposed by Camenisch

and Stadler [32]. We then generally represent proofs of knowledge as

PK{(x1, ..., xn) : logical operations between statements about x1, ..., xn}

where x1, ..., xn are only known to the prover, and everything else is common knowledge.

As an example, we provide the proof of knowledge PK{(x) : h = gx}, where G = 〈g〉 of prime order

p and h ∈ G are known to all parties, and x ∈ Zp is secret. The flow of the protocol is shown in Figure

2.2.

As anticipated, one can also join together multiple statements about the secrets which knowledge is

being proved. Figure 2.3 depicts the course of the sigma protocol for PK{(x, y) : a = gx ∧ b = hx · gy},

which has a conjunction of statements. Once again, everything except the secrets x, y ∈ Zp is well

known by all entities.
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Prover P Verifier V

pick random k ∈ Zp

r := gk
r−−−−−−−−−→

pick random c ∈ Zp

c←−−−−−−−−−

s := k + cx (mod p)
s−−−−−−−−−→ confirm:

gs = hc · r

Figure 2.2: Sigma protocol to prove knowledge of x.

Prover P Verifier V

pick random kx, ky ∈ Zp

ra := gkx

rb := hkx · gky
ra,rb−−−−−−−−−→

pick random c ∈ Zp

c←−−−−−−−−−

sx := kx + cx (mod p)

sy := ky + cy (mod p)
sx,sy−−−−−−−−−→ confirm:

gsx = ac · ra
hsx · gsy = bc · rb

Figure 2.3: Sigma protocol to prove knowledge of x AND y.

Additionally, we point out a scenario where we would like to prove knowledge of two discrete log-

arithms with a single challenge value, PK{(x) : a = gx ∧ b = hx}. We call this special case the

Chaum-Pedersen protocol [34], which flows exactly like the Sigma protocol.

We may also want to prove knowledge of n out of m statements. These proofs of partial knowledge,

based on the sigma protocol, were first suggested by Cramer et al. [40]. To exemplify, we demonstrate

the proof PK{(x, y) : a = gx ∨ b = hy}, where everything aside from x, y ∈ Zp is common knowledge.

Because this is a disjunction of statements, the prover has to prove, at least, one of the two statements.

In this case, we assume the prover only knows x. The flow is illustrated in the Figure 2.4.

One relevant aspect about the interactive sigma protocol is that its results are only verifiable by the

participating entities. Also, this proof system might not be secure against a cheating verifier, which may

have an unknown efficient strategy to recover the secret value, after many executions of the protocol.

We call this property honest-verifier zero-knowledge (HVZK).

In 1986, Fiat and Shamir [54] proposed a solution to transform the three-move HVZK interactive

protocol into a non-interactive general proof of knowledge. In this technique, called Fiat-Shamir heuristic,

the challenge is generated from the common knowledge, which eliminates the need of calculating a

random challenge. Figure 2.5 shows a non-interactive protocol for PK{(x) : h = gx}. We define
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Prover P Verifier V

pick random kx, cy, sy ∈ Zp

ra := gkx

rb := hsy · b−cy ra,rb−−−−−−−−−→

pick random c ∈ Zp

c←−−−−−−−−−

cx := c− cy (mod p)

sx := kx + cxx (mod p)
cx,cy,sx,sy−−−−−−−−−→ confirm:

c = cx + cy (mod p)

gsx = acx · ra
hsy = bcy · rb

Figure 2.4: Sigma protocol to prove knowledge of x OR y.

H : {0, 1}∗ → {0, 1}∗ as a cryptographic hash function and denote a‖b as a concatenation of strings a

and b.

Prover P Verifier V

pick random k ∈ Zp

r := gk

c := H(h‖g‖r)
s := k + cx (mod p)

s,r−−−−−−−−−→ calculate: c := H(h‖g‖r)

confirm: gs = hc · r

Figure 2.5: Non-interactive protocol to prove knowledge of x.

The transcript of the non-interactive version of the sigma protocol can be saved and verified later by

everyone. Relevantly, this non-interactive protocol can be used to create a signature scheme, which is

called a signature proof of knowledge (SPK). Such signature is represented as

SPK{(x) : y = gx}(m).

This example basically constitutes a Schnorr signature [101], where message m is signed using

the private key x. This works exactly like the non-interactive protocol shown in Figure 2.5, except that

message m is added to the challenge, such that c := H(h‖g‖r‖m). One advantage of this scheme is the

possibility of adding other conjunctive or disjunctive statements, which allows one to build a signature,

while proving knowledge of complex statements.
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Chapter 3

Related Work

The key purpose of this chapter is to give a better perception of the electronic voting field, the chal-

lenges it entails and how they have been solved throughout the past decades. Furthermore, this chapter

provides a realization of how the existing work contributed to the solution proposed in this dissertation.

We start by reviewing the essentials of electronic voting in Section 3.1. We present the implications

of voting electronically, followed by an overview of the entities and phases of a general voting process.

This overview wraps up with the assessment of the properties desired in an electronic voting system.

Afterwards, Section 3.2 discusses the current protocols, grouping them by cryptographic technique and

presenting them chronologically. Still in Section 3.2, we study the differences between the cryptographic

approaches, comparing them by efficiency, flexibility and security.

Finally, Section 3.3 presents a concept called ring signature, which has many use cases, ranging

from e-voting to e-cash. We explain this cryptographic notion, clarify its relevance to voting schemes

and discuss current work.

3.1 Electronic Voting

In the past decades, electronic voting systems have been getting enhancements, making them a

reasonable alternative to traditional physical voting protocols. They can yield significantly better cost

and time efficiency, which makes them even more attractive.

This applies to internet voting, which, aside from the aforementioned advantages, can also improve

flexibility for the voters, specifically by allowing them to vote in a more convenient location, which may

even increase turnout. Although, electronic voting systems are not limited to internet-based, fully elec-

tronic systems, instead they also encompass a few other types. The two most relevant ones are ex-

plained below.

• Direct-recorded electronic (DRE) voting machines are devices which present voters with a dig-

ital ballot and allow them to vote through an interface, usually buttons or a touchscreen. DRE

machines replace paper ballots in the sense that they are placed in conventional voting stations,

promoting uncoercibility.
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• Optical Scan voting machines combine paper ballots with electronic devices, such that voters are

given special ballots, which are then read by this machine. While they do not replace the paper

ballots, they allow for faster tallying.

Voting systems are composed of entities which follow steps to achieve a result. While some of them

may resort to different techniques, the goal is the same: a process which delivers security, privacy

and integrity. The following two subsections develop on the entities and phases of a generalized voting

scheme, and the last subsection states the core requirements to accomplish the main objective.

3.1.1 Entities

This section elucidates on the components of a voting scheme. Since this is just an abstract defini-

tion, a true voting implementation may have more entities than the ones mentioned.

• Voter: This entity has the right to choose between a number of possibilities, or to write up their

choice1, and then submit their decision.

• Registration Authority: It is responsible for assuring that only eligible voter exercise their right at

most once. Therefore, it needs to check the identity of a voter and verify if such elector is registered

to vote before they cast a ballot.

• Tallying Authority: This authority is in charge of collecting, counting the votes and publicly sharing

the election results. It should also confirm the authenticity and uniqueness of each ballot, however

this can be done by a separate entity called validator.

• Supervisor: Manages the entire voting process, compiles a list of eligible voters and is able to

start, suspend and terminate elections.

Finally, there exists a structure commonly called bulletin board, which works as an append-only log

used by voting protocols to save relevant voter information and ballots. A bulletin board can be distributed

among multiple machines to improve availability, and usually ensures the integrity of data, for example,

by using digital signatures.

3.1.2 Phases

To better understand how the voting process develops, this section states and describes all the steps

necessary to conduct a correct electoral process. Once again, this is an abstraction so, for that reason,

a real solution might have more or less phases than the ones referred.

1. Preparation: This consists of compiling a list of eligible voters and preparing the ballots.

2. Authorization: Verify if a voter who is trying to cast a ballot is indeed authorized to do so.

3. Voting: A voter makes a choice and submits their decision.
1This is called a write-in ballot.
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4. Claiming: The voters are able to check if their vote is set for counting, and complain if a cast vote

is not listed for tallying.

5. Tallying: The tallier checks that all votes are well formed, counts all of them and publishes the

election outcome.

3.1.3 Properties

Most of the properties of a secure voting approach are already listed and explained in Section 1.2.

Even though, there are still a few which will not be implemented in this work and were not previously

mentioned. These properties are clarified below.

• Fairness: In a fair system, election authorities cannot know voting results until the tallying phase.

• Receipt-Freeness: This notion refers to refraining the system from providing voters with a proof

of how they voted, after the ballot was cast [20, 64, 86, 99].

• Coercion-Resistance: This is the strongest privacy property, which, besides offering receipt-

freeness, tries to fight an active coercer by making infeasible for the adversary to confirm if the

coerced voter complied with the demands [38, 69].

The last two properties are improvements to the privacy property, and thus, much stronger. They

aim at preventing vote-buying and vote-coercion, and that is why many electronic voting proposals try to

incorporate them.

3.2 Voting Protocols

This section focuses on the evolution of existing voting solutions. Besides describing the work ac-

complished by each proposal, such as goals, contributions and relevance, we also identify strengths and

limitations of each one. In addition, we point out the aspects which can be improved or extended and

any features which are planned to be refined in the future.

Generally, voting protocols are categorized by the cryptographic procedure used to anonymize votes.

The first three subsections present the voting proposals based on the most frequently employed cryp-

tographic approaches. While these three are the most common, there exist other techniques, namely,

threshold cryptography [46, 47, 90], which finds its roots in the secret sharing scheme by Shamir [102],

and zero-knowledge proofs [62]. They are usually used together with one of the leading approaches.

For example, threshold cryptography is usual in multi-authority voting protocols, in which entities share

a private key.

Schemes in each subsection are sorted out with respect to publishing date and correlation with other

work, meaning that subsequent approaches are newer and possibly extend previous solutions. The

last subsection discusses and compares all the solutions and how they fit and adapt to each particular

situation.
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3.2.1 Mix Networks

The concept of mix network was first presented by Chaum [37] in 1981 and it set out to solve the

problem of anonymization of communication between two parties and their identities, both in email and

in electronic voting. In this approach, an entity called mix receives a list of encrypted inputs, and de-

crypts and shuffles it in a random way, such that the outputs are permuted and, thus, unlinkable to the

inputs. Usually, to achieve greater anonymity, a few mixes are set up sequentially, creating a mix net-

work (abbreviated, mixnet) or shuffle network. This technique is particularly useful when the underlying

communication system does not provide confidentiality or, even more important, anonymity.

Mix networks can be implemented in two ways. The first one is called a re-encryption mixnet and,

in this case, the information is encrypted initially, and every time it goes through a shuffle agent, it is

re-encrypted and permuted. The second one is the decryption mixnet proposed by Chaum [37], and it

works by first encrypting the inputs successively with the public key of each mix (like an onion), and then

sending them through the mix network in the inverse order of the encryption, for each mix to decrypt its

messages, shuffle them and send them to the next mix. The latter is depicted in Figure 3.1.

In the context of voting, the inputs to the mix network are the ballots. Succinctly, the encrypted

ballots, along with the voter identity, are placed in the bulletin board. Throughout the voting phase, the

voters can access the bulletin board and confirm that their encrypted ballot is, in fact, there. When the

election finishes, the identities of the voters are discarded, and the ballots are shuffled and decrypted by

the mix network, in a single batch. In the end, the decrypted ballots can be counted and no one is able

to correlate them with the voters, or even with the initial ciphertexts.

When used in voting, it is desired that a mixnet provides correct operation, privacy by creating un-

linkability between inputs and outputs, and robustness by generating strong proof that the shuffling and

the cryptographic operations were carried out correctly.

Figure 3.1: Operation of a Decryption Mix Network.

Chaum [37] is considered the pioneer of electronic voting because his proposition includes an elec-

tion scheme which ensures privacy, providing unlinkability between voters and ballots. This work has

the greatest relevance in this field and its contributions are present in many subsequent voting solutions.

Still, this primordial proposition lacks efficiency as the length of the ciphertext increases with the number

of mixes used. Also, it focuses only on the operation of the mixnet and not on proving that shuffling was
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done correctly, which is important in a voting context, since it usually translates into verifiability.

Following this approach, Park et al. [88] proposed a new anonymous channel, which improved the

efficiency of the Chaum mix network, and developed one of the first election schemes based on mixnets.

The first contribution solved the aforementioned ciphertext length expansion problem present in the work

by Chaum [37]. This was achieved by using ElGamal [49, 52] instead of RSA [96], making the ciphertext

length, and corresponding voter work, independent of the number of mixes. Second, they presented a

voting protocol which resorts to their improved mix network, automatically enhancing efficiency. It also

satisfied fairness by guaranteeing that votes disrupted due to the incorrect operation of the mix network

were detected, and, thus, ensuring that a partial tally is not released. This will not influence an eventual

follow-up re-election process, an issue which could happen in the proposition by Chaum [37].

Notwithstanding, this protocol [88] still has a few weaknesses. Pfitzmann [92] showed that the

anonymity of the proposed channel can be compromised, either by taking advantage of the cryptosys-

tem, or by actively injecting specific ciphertexts into the mixes. Regarding the election scheme, ballots

have to be decrypted individually, and malformed votes are only detected during the tallying phase.

The next paper presented one of the first voting solutions featuring receipt-freeness, a property pre-

viously introduced by Benaloh and Tuinstra [20], and pioneered the concept of universal verifiability,

nowadays existing in the majority of voting systems, and therefore the relevance of this work. Sako

and Kilian [99] proposed said voting solution, which resorts to anonymous channels [37, 88] to ensure

voter privacy. Aside from this, the proposition reduces the unwieldy necessity of a physical voting booth

required by the Benaloh-Tuinstra [20] and Niemi-Renvall [83] protocols to the existence of a one-way un-

tappable channel from the voting authorities to the voters. In this work, universal verifiability is achieved

by requesting each mix center to prove interactively2 that their messages were processed correctly.

Despite these improvements, this approach by Sako and Kilian [99] still has a few setbacks. The

first one is shared between all solutions of this category, which is the heavy processing load that mix

networks imply. Second, while the voter effort is independent of the number of mix servers, the work of

a verifier is still proportional to it, since each mix has to be checked. Third, the abovementioned one-

way untappable channel cannot be satisfied by cryptography, and hence the channel must be physical.

Finally, Michels and Horster [78] pointed out two more serious issues, namely, a coercer cannot collude

with a mix, otherwise it might compromise the correctness of the tally, and one honest mix may not be

enough to ensure privacy. As a matter of fact, none of the presented solutions so far are robust, that is,

if a mix refuses to cooperate, the system is incapable of producing a correct tally.

Abe [3] came up with a robust, threshold mix network which holds the universal verifiability property

resorting to cut-and-choose3 methods. This proposition is different than the previous ones because it

implements threshold cryptography [47], so, instead of having a mix server own an entire private key,

this secret key is generated in a distributed manner, such that t mixes are necessary to decrypt some

2The proof can be made non-interactive by employing the Fiat-Shamir Heuristic [54], allowing everyone to check the correctness
without having to interact with the mix.

3This class of protocols was first introduced by Rabin [94], and popularized as cut-and-choose by Brassard et al. [27], one
decade later. They allow an entity to prove to another that some information respects the convention agreed upon by them,
usually without revealing any part of the information itself. Examples include zero-knowledge proofs [62] and witness hiding
protocols [53].
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information. As a result, this protocol attains privacy even if t− 1 servers are malicious, and robustness

as long as, at least, t shufflers are cooperative. Regarding efficiency, the work done by each verifier is

uncorrelated with the number of mix servers, unlike in the work by Sako and Kilian [99], and the tasks

required by each mix are independent of the number of mixes as well.

Still, in terms of computational effort, efficiency can be improved and the protocol is impractical for

large-scale elections. Also, when the inputs to the mix network are very long, it is usually a best practice

to divide them into smaller ones, otherwise performance might decrease severely, which is a problem

affecting the next proposal as well.

In the same year, Jakobsson [65] presented a more efficient and robust mix network. Similarly to

the previous work [3], this proposition consists of a mix network based on re-encryption and threshold

decryption. It avoids the use of cut-and-choose methods, replacing them with a scheme of undeniable

signatures4, and allows the work and interactions for each voter to be significantly low, thus conferring

much better efficiency to this protocol. However, this approach lacks a crucial integrity property, which

is universal verifiability, making it unsuitable for the majority of voting scenarios. In addition, it has been

demonstrated by Desmedt and Kurosawa [48] that this solution is not as robust as claimed by presenting

an attack which compromises one mix server, consecutively preventing the system from computing the

correct output.

Since proofs of correct operation in mixnet-based schemes are complex and computationally de-

manding, Neff [82] introduced a new protocol to obtain shuffle verifiability, in which the complexity is

linear to the number of ciphertexts, and applied this solution to current voting systems, achieving greater

efficiency. Consequently, this protocol accomplished universal verifiability at a much lower cost than the

one presented by Sako and Kilian [99]. Despite being a strong approach to achieve verifiability, the au-

thor focused only on the efficiency of proving shuffles of ElGamal ciphertexts. Also, while this proposal

is efficient and adequate for large-scale voting, versatility and efficiency can still be improved.

In 2002, a novel technique to prove the correctness of a mix network was put forward by Jakobsson

et al. [67]. This procedure, named randomized partial checking, provides strong evidence of correctness

instead of a full proof of accurate operation, which can be even faster than the operations carried out by

the mixes (such as permutations). Hence, it is more efficient when compared to other systems which

use other cut-and-choose protocols, such as zero-knowledge proofs. It works by requiring each mix to

randomly reveal half of its input/output pairs, and allowing verifiers to confirm that they match. In a voting

context, this translates into a much simpler and less costly option.

Nevertheless, probabilistic verification faces a somewhat considerable tradeoff with privacy, since the

mixes must constantly disclose random information to be verified. Therefore, voter privacy is provided

by the mix network as a whole, rather than by each mix individually.

The next proposition introduced one of the first solutions which includes coercion-resistance, con-

sequently addressing common problems in voting, namely, vote-coercion and vote-buying. Juels et al.

[69] claimed that most receipt-free approaches comprise unrealistic assumptions and have to face some

concerns, specifically forced abstention, randomization, wherein a voter is coerced into choosing a ran-
4Introduced by Chaum and van Antwerpen [35], undeniable signatures are similar to digital signatures, with the exception that

they require the cooperation of the signer to be verified. Without help from the signer, the verifier cannot validate the signature.
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dom candidate, neutralizing the vote, and simulation, in which a coercer forces a voter to divulge their

private key and votes on their behalf. The contributions of this work encompass a definition of the proper-

ties of coercion-resistance and the development of a voting scheme based on the previously mentioned

definitions, which was also able to weaken the assumptions of preceding receipt-free protocols. Yet, this

solution requires a time-consuming preparation phase and it is only practical for small elections since

the work of tallying authorities grows quadratically with the number of voters.

Then, Benaloh [17] proposed a lightweight and less sophisticated yet effective voting approach.

This system is based in part on the mix network developed by Sako and Kilian [99], wherein each mix

server appends a shuffle proof to the ballots, resorting to the Fiat-Shamir heuristic [54]. Ballots are then

decrypted using a key shared among the trustees. The main disadvantage of this protocol is efficiency,

which ends up as a tradeoff for simplicity. This is because the protocol is purposely not as optimized as

the majority of the previous ones, enabling a simpler implementation and an easier adoption.

Finally, Bayer and Groth [15] designed a zero-knowledge shuffle correctness argument, in other

words, a mathematical system to generate non-interactive proofs that a mix network operated correctly,

which reveal no information about permutations. Introduced as improvement to Sako and Kilian [99], Abe

[3] and Neff [82], this is one of the most efficient shuffle arguments to date, adaptable to homomorphic

cryptosystems other than ElGamal, and achieving sublinear complexity in communication. While this

paper does not propose a voting scheme, its contributions are pivotal to the development of efficient mix

networks and, consecutively, mixnet-based voting protocols.

Examples of Mix-Network-Based Voting Systems

Helios. Devised by Adida [8] in 2008, Helios is a fully electronic voting system built upon the Sako-

Kilian [99] and Benaloh [17] procotols, which focuses primarily on auditability, and therefore promoting

unconditional integrity, even if all authorities are corrupted. As expected, anonymity is attained by re-

lying on mix networks, which provide proofs of correct operation upon decryption. This system does

not address coercion-resistance and provides few security guarantees if voters are submitting ballots

from compromised environments. Still, Helios is capable of attenuating some of the problems of pure

electronic voting, such as undermining vote integrity, by providing end-to-end verifiability.

Civitas. Based on the scheme proposed by Juels et al. [69], Civitas [38] is the first end-to-end verifiable

and coercion-resistant voting system. It is able to achieve coercion-resistance by allowing a voter to

generate fake credentials and vote with them in the presence of a coercer, later invalidating the vote.

A mix network, which resorts to randomized partial checking [67] to enforce verification, is used to

anonymize votes and credentials. Also, Civitas is able to mitigate the scalability problem of Juels et al.

[69] by dividing the election into small blocks of votes, making it suitable, although costly, for large

elections.
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3.2.2 Homomorphic Encryption

Homomorphism in cryptography allows the application of specific computations to a ciphertext with-

out having to decrypt it, and producing the same result as if they were applied to the plaintext. In

particular, the homomorphic property is the ability to concatenate multiple ciphertexts together and to

decrypt them as a whole. Some well known cryptosystems which support this property are Paillier [87]

and a ElGamal [49, 52].

Regarding voting systems, this technique works by encrypting all votes separately with a public

key which belongs to election authorities, then adding all of them together and, only after, decrypting

the aggregated set of votes at once, which reveals no information about the votes individually. It is

important to highlight that this approach only concerns the tallying process, so other requirements, such

as verifying ballot validity, should be fulfilled through proofs of correctness.

The first homomorphic-encryption-based voting protocol was proposed by Cohen (now Benaloh)

and Fischer [39] in 1985. In this scheme, besides the voter, there exists a centralized entity designated

government, responsible for guaranteeing computational privacy, which relies on the intractability of the

residue problem5. Even colluding with dishonest voters, said government can only release a false result

with very low probability, thus ensuring integrity as well. While this solution focuses only on yes/no

voting, it can be extended to multiple choices, although it would impact the efficiency. Still, the greatest

downside of this approach is the ability of a dishonest government, as a single authority, to know any

vote individually. The authors suggested solving this problem in the future by distributing the tallying

work between a few authorities, which would only compromise privacy if these entities cooperated with

each other.

The following year, Benaloh and Yung [21] picked up this suggestion and came up with a voting

solution which distributed the powers of the government, therefore protecting the privacy of individual

votes, even if just one authority is honest. Besides privacy, the authors were able to decrease the

chance of the system producing an incorrect but credible tally, improving integrity. Nonetheless, this

scheme features no robustness because if one tallier does not respect the protocol, no tally is produced

and the election becomes void.

The next proposal was developed along the lines of the previous two [21, 39]. The approach by

Benaloh [22] is described as a (J,K,L) election system, meaning that there are L voters and K tallying

authorities. The election process finishes only if a threshold J of talliers post their voting results. Any

entity can posteriorly verify the accuracy of the reported tally. Similarly to the preceding work, all infor-

mation is shared publicly in a bulletin board, including encrypted votes. These are agglomerated using

the homomorphic property and decrypted at once, not revealing individual votes.

Still, these three approaches [21, 22, 39] are not suitable for large-scale elections since the commu-

nication and computation overheads would increase considerably. They also share the possibility of a

5Given q ∈ Z∗
N , we say q is an rth residue modulo N (or quadratic residue, if r = 2), if there exists an x such that q ≡

xr (mod N). The residue problem states that it is hard to decide whether q is an rth residue modulo N, given q and N , where
N = p1 · p2 and p1, p2 are primes. This problem, first discussed by Gauss [59], is weaker than the integer factorization problem
since, if N is not a composite integer, the problem is easily solvable. We refer to Goldwasser and Micali [60] for a more detailed
explanation.
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voter to prove through a receipt how they voted after the ballot was cast. This characteristic is undesir-

able if there exists an adversary trying to influence the choice of the voter, raising concerns related to

vote-buying and vote-coercion.

In 1994, Benaloh and Tuinstra [20] introduced the concept of receipt-freeness, which focuses on

disallowing voters to take away a ballot receipt and later be able to prove how they voted, assuming

they vote in a safe environment. The contributions of this work also include the development of two

voting schemes, which promote not only receipt-freeness, but also privacy and correctness. The first

one works with a centralized tallying authority, which jeopardizes privacy. The second one was an adap-

tation to support multiple talliers, guaranteeing secrecy and making sure the probability of generating a

convincing fake tally is negligible. Despite all the effort to develop a receipt-free protocol, Hirt and Sako

[64] proved later that it was possible to construct a receipt, and that this approach was not receipt-free

after all.

In the same year, a new scheme was suggested by Sako and Kilian [98], which focused on improving

performance. Previously proposed protocols, such as the ones by Benaloh [22] and Benaloh and Yung

[21], lack communication efficiency and this solution increases said efficiency remarkably. The voting

phase is simple and lightweight, and there exists the possibility of choosing whether to prioritize security

or efficiency by adjusting the number of tallying centers, thus conferring flexibility. Instead of resorting to

the residue problem as the underlying mathematical system of its zero-knowledge protocols, this scheme

relies on the discrete logarithm assumption, which improves the performance since the computations are

simpler.

Notwithstanding, this protocol does not encompass receipt-freeness. Moreover, a malicious voter

can copy a vote by duplicating the ballot, which goes unnoticed. Finally, the greatest drawback of this

proposal, which also affects the previous papers, is the impact on efficiency if it needs to support voting

with more than two choices.

After, Cramer et al. [41] invented a voting solution which demanded a linear number of cryptographic

operations from the authorities, instead of a quadratic one. Therefore, the main contribution of this work

is an efficient voting scheme. Additionally, it offers the usual desired voting properties, such as privacy

and robustness, and solves the vote duplication problem of the preceding proposition [98].

In this solution, multiple authorities substitute a centralized authority, which would be able to reveal

individual votes. The authors also proposed a replacement of the zero-knowledge proofs used by the

previous systems with a more efficient witness hiding protocol, set forth by Cramer et al. [40]. Voter

effort is reduced and becomes linear, but still dependent on the number of authorities. Nonetheless, this

approach is not receipt-free and the next proposal shows that efficiency can be improved even more.

The following year, a new solution was presented by Cramer et al. [42], which complements the

previous work by making the voter’s effort complexity independent of the number of authorities. In this

protocol, voters post their encrypted vote directly to the bulletin board, along with a proof of valid ballot

format, which prevents the disruption of the election process before the tallying phase. Once again,

this scheme resorts to multiple authorities to strengthen privacy and robustness. These authorities fall

back on the threshold cryptography protocol put forward by Pedersen [90] (and based on Shamir secret

21



sharing [102]) to generate private keys distributedly, and later decrypt all votes joined together.

Nonetheless, this scheme [42] does not satisfy receipt-freeness, although the authors explain how it

can be achieved, leaving it as future work. Also, if the election requires more than two candidates, the

ballot and the proof increase in size and complexity, respectively, and thus, degrading efficiency.

Then, Hirt and Sako [64] advanced a new proposal, which combines the receipt-freeness of the

mixnet-based solution by Sako and Kilian [99] and the efficiency of the previous work [42], making this

proposition one of the most efficient receipt-free homomorphic voting systems to date.

In this protocol, before the election, a list of possible votes is compiled. Then, this list is randomly

ordered and re-encrypted by all authorities sequentially (similar to a mix network), and each authority

provides the voter with a designated verifier proof6 of permutation to demonstrate how the shuffling was

done. After the last shuffle, the list of successively re-encrypted votes is shown to the voter. Due to the

designated verifier proofs, the voter is the only entity capable of deducing the equivalence between the

ciphertexts and the actual votes, which makes this protocol receipt-free. Finally, the voter makes their

choice by selecting one of the encrypted outputs.

While the main focus of this work is adapting the Cramer et al. [42] proposition to be an efficient

1-out-of-L7 receipt-free voting solution, Hirt and Sako [64] also proposed a 1-out-of-2 scheme, which

turned out to be an exceptionally efficient solution in yes/no elections. Although, this protocol still has

a few drawbacks to point out. It assumes the existence of untappable channels which, if tapped by an

attacker, undermine vote secrecy. Furthermore, the decryption complexity is proportional to the number

of choices, so it might not have the desired efficiency if L is large.

In 2001, Baudron et al. [14] devised another very efficient homomorphic receipt-free scheme, with

performance equivalent to the previous work [64]. This system is practical in the sense that it is flexible

enough to support many voters and candidates, without compromising performance significantly. Au-

thorities are structured hierarchically, specifically, national, regional and local. Local authorities share

a private key, such that privacy is only compromised if a threshold of them collude. Tallying is per-

formed in stages of hierarchy, that is, local authorities compute their tallies and give them to the regional

authorities, which merge and forward them to the national authority, producing a final tally.

This proposition uses the homomorphic property of the Paillier cryptosystem [87] to concatenate

votes. Although, the use of Paillier poses an efficiency disadvantage when compared to ElGamal [52],

since its computations are more complex and less efficient, specially in distributed key generation. Also,

this approach is limited to 1-out-of-L, not being able to support K-out-of-L voting.

Examples of Homomorphic-Encryption-Based Voting Systems

Helios 2.0. The year after the development of the mixnet-based system Helios [8], a new version

was launched. Though simple and effective, the first version lacked scalability and vote decryption was

delegated to a single trusted authority. The new end-to-end verifiable system by Adida et al. [9] made the

choice of shifting from mix networks to homomorphic tallying based on Cramer et al. [42] because the

6Designated verifier proofs [66] are a type of cryptographic proof which is not verifiable by everyone. Instead, only specific
entities are able to verify its correctness.

7Voting schemes are defined as K-out-of-L schemes when the voter chooses K options out of L choices.
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tallying process becomes easier to implement, and thus, easier to verify. It also ensures confidentiality

by encrypting the votes on the computer of the voter, and distributing the private key among a set of

authorities. While still not addressing coercion-resistance, this system makes up an efficient and simple

solution, which holds on to the core voting properties.

Votebox. This system was presented by Sandler et al. [100] in 2008. Like Helios 2.0, Votebox is also

based on the approach by Cramer et al. [42] and provides end-to-end verifiability. It was designed to

work primarily with DRE machines, which are resistant to data loss in case of failure, and require a lighter

software stack. The system solves the problem of faulty or malicious DRE devices using a technique

called ballot challenge, proposed by Benaloh [18], which allows the voters to audit the machine as many

times as they want, before casting the ballot. Nevertheless, Votebox focuses mainly on integrity, leaving

privacy exposed if a voting machine is compromised.

3.2.3 Blind Signatures

Blind signatures were introduced by Chaum [33] in 1983 as a solution to payment untraceability.

They work like regular digital signatures, with one significant difference: the message is blinded, so the

signer has no knowledge about the information being signed. Once the data is signed, the message

author can unblind the information and request another authority to verify the signature, following the

regular verification procedure. One important note is that the signing entity cannot relate the blinded

message they signed, with the corresponding unblinded message which they may need to verify later.

Some well-known cryptosystems for digital signatures, which are compatible with blind signatures, are

RSA [96] and DSA [73].

In a voting environment, a blind signature authenticates the ballot of a voter before the tallying pro-

cess, ensuring the eligibility of that voter and keeping the vote unknown to the signer. After getting the

signed ballot, the voter can unblind it and either send it immediately to tallying authority, or wait as long

as they want. In the tallying phase, the ballot is unlinkable to the voter. All in all, this process guarantees

privacy and integrity.

In 1992, Fujioka et al. [56] introduced the first widely recognized voting scheme which resorts to this

technique, and it is the foundation for the majority of blind-signature-based voting solutions presented

so far. It aimed at creating a voting system practical enough to support large-scale elections, which

also promotes privacy and fairness. The voters must communicate with the counters (or talliers) using

anonymous channels to send cryptographic keys, which can be achieved using a mix network. The

third entity is the election administrator, which is responsible for checking the eligibility of the voters, and

therefore applying blind signatures to the ballots, if eligibility is confirmed. Before the signature, the voter

commits8 to their choice and the ballot is hidden behind a blinding factor.

Because this is just a primordial solution, receipt-freeness is not approached. Also, if the anonymous

channel assumption is broken, the privacy of the voter is compromised. Another disadvantage of this
8A commitment scheme [27, 81, 89] is a cryptographic technique which allows an entity to choose a value, hidden from others,

commit to it and reveal it later, if desired. It is designed to be binding, meaning that, after commitment, the value chosen cannot
be changed.
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approach is that voters must be active in all phases of the voting process, which is a considerable

inconvenience.

The next proposition was presented by Okamoto [85] in 1996 and receipt-freeness was the main

focus. Besides offering privacy and fairness, it was also able to reduce the effort required of a voter to

two rounds of messages, one to obtain eligibility and another one to vote. Nevertheless, the succeeding

work showed a security flaw in the receipt-freeness property of this scheme due to the lack of a formal

definition of said property, leading to a proof that this solution was not receipt-free after all.

In the following year, Okamoto [86] proposed two new voting schemes, one with a stronger assump-

tion, namely a physical booth, and another one with a weaker assumption, which is an untappable

channel. The formal definition of receipt-freeness is presented and applied to both proposals, proving

that the property is satisfied. Still, it has to be pointed out that a channel that is secret and anonymous

(thus, untappable) is extremely difficult to devise. Additionally, a voter must take part in three of the four

voting phases (authorization, voting and claiming), which is not practical.

The next protocol focuses on improving the pioneer approach by Fujioka et al. [56]. The contributions

of this new approach by Ohkubo et al. [84] concentrate mainly on reducing the required active partic-

ipation of the voters during the entire election process, which is demanded by the Fujioka et al. [56]

protocol. The authors managed to minimize the involvement of the voters to the ballot casting phase,

while still being able to satisfy the same properties. In this scheme, there is no single authority, instead

a set of authorities work distributedly, meaning that disruption only happens if a threshold of authorities

collude. Notwithstanding, this solution does not address receipt-freeness. Also, the required existence

of an anonymous channel is still impractical.

Examples of Blind-Signature-Based Voting Systems

Sensus. In 1997, Cranor and Cytron [43] developed a voting system based on the proposal by Fujioka

et al. [56]. Resorting to the RSA [96] cryptosystem as the underlying signature protocol, this system

can conduct small elections and can be adapted to support large-scale ones. There exists a new entity

besides the ones mentioned in Fujioka et al. [56], the registration authority, which is responsible for

signing up voters for the election. However, Sensus faces a critical tradeoff between fairness and voter

effort: either voters stay active until the end of election, providing their commitment keys only in the

tallying phase, or cast the ballot and send the keys immediatly after, allowing the authorities to know

intermediate results, and therefore compromising fairness.

EVOX. Proposed by Herschberg [63] in 1997, EVOX was a new voting system built upon the protocol

developed by Fujioka et al. [56], which ensured that a voter could walk away after casting a ballot. In this

proposal, there exists a new entity called anonymizer, which is responsible for collecting the ballots and

forwarding them to the tallier, working as a mediator between the voter and the tallier, and guaranteeing

that the tallier cannot link messages back to the sender, similar to a mix network. The fairness property

is then secured with the use of this anonymizer. Still, this system faces some problems. Because the

administrator generates the ballots, it can simply vote on behalf of voters who did not vote, posing a threat
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to election integrity. Additionally, the anonymizer must be trusted, otherwise anonymity is compromised.

Finally, while the system is able to ensure security, efficiency is poor and scalability is difficult, since the

single administrator constitutes a bottleneck.

EVOX-MA. Introduced as an improvement to the previous system, DuRette [51] came up with EVOX-

MA in 1999, a voting solution which aimed at solving the main problem of the EVOX system, which is

the possibility of an administrator to pretend to be an abstaining voter and vote on their behalf. This

was solved by distributing the power of the administrator by several machines, and proposing a new

entity called manager, which task is to distribute the ballots throughout voters, therefore preventing an

individual administrator from forging a vote. Nevertheless, it is still possible for the manager, colluding

with a set of administrators, to impersonate voters and cast counterfeit ballots. This situation can happen

particularly when performance is prioritized, specifically, when the threshold of administrators required

to blind sign ballots is small. Also, the system lacks robustness since the manager constitutes a single

point of failure, which affects scalability as well.

REVS. The Robust Electronic Voting System (REVS) was presented by Joaquim et al. [68] in 2003

and focused on eliminating the drawbacks of EVOX-MA. One of the main focal points was improving

robustness by avoiding single points of failure. Another useful feature of REVS is the possibility of

running multiple elections simultaneously, without the threat of voters exchanging or stealing ballots and

casting them in elections they are not eligible, a problem that could occur in both EVOX and EVOX-MA.

This system was designed so that the voter would only need to trust the client application, and that it

would be executed only on trusted hosts. Although, the voter module is vulnerable to interference, which

can compromise privacy and, eventually, integrity. Besides, neither this system nor the previous ones

address receipt-freeness, which can be relevant in some elections.

3.2.4 Discussion

In this subsection, we discuss and compare the cryptographic approaches with regard to three fun-

damental aspects which must be taken into consideration when developing an electronic voting system,

namely, efficiency, flexibility and security. Also, because voting systems may have distinct requirements

and goals, we point out any possible tradeoffs and explain how the techniques adapt to each situation.

This section ends with some remarks, which compare the current work with the challenges our protocol

faces.

Efficiency. This is a critical feature, especially in large-scale voting. Usually, we refer to efficiency as

global property of the protocol. To evaluate it, we take into consideration the following parameters:

• The computational and time resources the protocol demands from a voter. We call this voter effort.

• The computational complexity, time spent and bandwidth required for a specific operation, includ-

ing voter registration, voting and tallying, in the perspective of an authority.

25



• The monetary cost per voter, with regards to software, hardware and operational costs.

We sorted out these criteria by relevance, with respect to our context. Evidently, in other scenarios,

other parameters may be prioritized. While voting system designers aim at maximizing efficiency, it can

sometimes end up traded with other requirements, such as verifiability.

Regarding cryptographic approaches, blind signatures offer great efficiency since they only require

digital signatures, which are fast and have low computational complexity. Nevertheless, this technique

can be time-consuming as it requires, at least, two round trips (getting eligibility and voting).

Homomorphic-encryption-based voting schemes are exceptionally efficient and simple when used

for 1-bit voting (yes/no). However, when the ballot size is expanded, efficiency drops severely, as the

complexity to generate proofs of correctness increases. Accordingly, it could be the best option, in terms

of performance, when a yes/no election is conducted.

Finally, mix networks require little effort from a voter and can achieve superior time performance, if

the technique used to verify the correctness of the permutations is efficient. Even with the need to open

ballots individually and to validate them in the tallying phase, mix networks provide greater efficiency

than homomorphic encryption schemes, if the list of candidates is large. Note that one could also

append proofs of correctness to the ballots to avoid possible election disruptions, due to invalid ballots.

Though, this would impact efficiency considerably.

Flexibility. This concept concerns the possibility of changing the format of the ballot, and how it can

affect efficiency. As one might conclude, the less flexible approach is homomorphic encryption because

its complex mathematical structure requires proofs to show that the ballot is well-formed. Therefore, a

bigger ballot would mean worse performance due to the increase in complexity of the proofs of ballot

validity. This can imply ballot restrictions, and thus, poor flexibility.

On the other hand, blind signature approaches are ballot independent, that is, ballots can have any

format of any size, without having to change the implementation or the components of the system.

Lastly, mixnet-based solutions have a flexibility similar to blind signatures, since ballots are opened and

validated during the tallying phase.

Security. This notion refers to the capability of the voting system to respect its well defined properties,

mentioned in Sections 1.2 and 3.1.3. Besides, security also concerns the correlation between robust-

ness and trust assumptions. As referred in Section 1.2, robustness is the resistance of the system to

disruption when some entities are faulty or malicious. As for trust assumptions, they include what the

system must assume as trustworthy in its environment, in order to function properly. As anticipated, the

majority of voting solutions aim at boosting robustness and decreasing trust assumptions to a minimum.

Still, there can be a tradeoff between both of these and efficiency, which may sometimes result in very

efficient systems being vulnerable to disruption.

In regards to cryptographic techniques, starting by homomorphic encryption, it can attain superior

robustness seeing that ballots always carry a proof of correctness, which means that any attempt to

disrupt the election can be detected earlier than the tallying stage. Furthermore, talliers usually share
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a secret key, which decrypts the votes. This yields robustness since only a threshold of authorities is

required to carry out the tallying operation. Nonetheless, this approach usually has cumbersome trust

assumptions, such as physical voting booths or untappable channels, which if broken, compromise the

election process.

In a mix network context, the shufflers can also share private keys to decrypt ballots, although,

because they are opened individually, a malformed ballot will be detected only in the tallying phase,

which can disrupt the entire voting process. Notwithstanding, the majority of mixnet-based systems are

very robust in the sense that, often, only one or a threshold of mixes must be honest to ensure the

voting can proceed correctly. Additionally, both of these voting solutions might still need to assume the

existence of untappable channels, if they address coercion-resistance.

Finally, in blind signature approaches, while robustness can be solved by replicating each of the com-

ponents of the system and guaranteeing that, at least, a set of them works properly, they have to ensure

a few complicated trust assumptions, such as anonymous channels. Another security disadvantage is

that malformed ballots are only detected in the tallying phase.

Final Remarks. First, all the work presented so far has a strict separation between the voting and

the tallying phases, which concerns the fairness property. The usual way to achieve fairness is by

saving the encrypted ballot in the bulletin board, and then decrypting it in the tallying phase. Another

way to do so, without forcing the voter to be active throughout the entire voting process, is to use an

intermediary, which saves the ballots until the tallying phase. The latter is a common procedure among

voting protocols based on blind signatures.

In our case, the ballot needs to be posted to the bulletin board immediately after voting, in plain text,

and able to counted. This is what we call open-ended voting, which, to the best of our knowledge, no

systems have approached yet.

Second, to verify if a voter is eligible to cast a ballot, their identity is checked against the electoral roll.

This can be done either in the beginning of the tallying phase or during the voting phase. Then, before

counting the ballots, the identities are usually discarded to avoid compromising privacy. This is the most

common procedure performed by current voting schemes.

In our scenario, though, such verification, using the plain identity of the voter, cannot be done, as it

may jeopardize anonymity. Furthermore, it is infeasible to discard the list of voters, otherwise the system

would not be able to detect double voting.

Finally, only a few schemes are designed to support multiple elections running simultaneously [51,

63, 68]. Generally, each election has a credential to be distinguished from others. While this could

be a possible approach to solve the problem, we find a simpler and more efficient way to ensure the

distinction between voting processes.
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3.3 Ring Signatures

The concept of ring signature was first introduced by Rivest et al. [97]. It allows an entity to sign

a message on behalf of a group, preserving the anonymity of the signer. This notion is associated

with the idea of group signature, proposed a decade earlier by Chaum and van Heyst [36]. However,

ring signatures comprise one considerable difference: there is no central authority, which manages the

group and can revoke anonymity. Also, rings can be formed without previous setup and do not require

the cooperation of the signers.

This section only reviews the work on ring signatures due to the fully decentralized nature of the

EUNOMIA platform [2], which hinders the existence of group managers. Still, since the proposition by

Chaum and van Heyst [36], several efficient protocols based on group signatures have been put forward

[12, 26, 30, 32]. We now explain the general operation of a ring signature, followed by a brief assessment

of the current work, and its correlation with election voting.

Ring signatures work by having the legitimate signer spontaneously select a set of valid and possible

signers (including themselves), and then generate a signature, such that no one is able to link back said

signature to the real signer, unless all the non-signers collude to reveal the signer. Rather, the verifier

only learns that the signature was produced by one of the ring members. This anonymity feature can be

useful in many cryptographic protocols, such as e-cash, e-voting and attestation.

While Rivest et al. [97] were the first to formalize the definition of ring signature, a few years earlier,

one could build a ring signature based on the proofs of partial knowledge advanced by Cramer et al. [40],

combined with the Fiat-Shamir heuristic [54]. This technique was not explicitly called a ring signature,

although we refer to it because it carries substantial relevance to the remainder of this work.

The technique by Rivest et al. [97] is a 1-out-of-N ring signature, which means that there is only one

valid signer in the ring. Abe et al. [6] also proposed a flexible and efficient 1-out-of-N signature, which

was compatible with multiple types of keys. Eventually, new protocols unfolded, which allowed multiple

signers in a ring. Bresson et al. [28] and Liu et al. [75] came up with such threshold, or K-out-of-N , ring

signatures, which yielded time and size efficiency.

We now shift our focus to the voting setting. To vote, the voter appends one ring signature to the

ballot, wherein the set of signers must be included in the set of eligible voters. This way, the voter proves

to the authority that the vote came from a valid voter, while keeping their privacy. Notwithstanding, one

serious problem arises when taking this approach: voters can take advantage of the anonymity property

to vote multiple times, as long as all ring members are eligible voters.

Following this concern, a new category of ring signatures emerged. Linkable ring signatures allow

a verifier to link two distinct signatures to the same ring member. This idea was first presented by Liu

et al. [76], who also proposed a voting system with a registration and voting phase. One year later, Liu

and Wong [74] redefined the linkability and anonymity properties of Liu et al. [76], improving the security

model. Still, for both proposals, the signatures were only linkable if the same set of keys was used.

The primordial proposal by Liu et al. [76] also entailed a threshold signature, along with their linkable

ring signature. However, it was not efficient. Thus, Tsang et al. [104] came up with an efficient threshold
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linkable ring signature scheme, which, additionally, was able to link signatures produced on behalf of

different rings, solving the linkability issue of the two previous approaches [74, 76].

One could also be interested in revoking the anonymity of a signer, assuming they signed multiple

times. This concept, known as traceability, was first formalized for ring signatures by Fujisaki and Suzuki

[58]. The proposed traceable ring signature has a tag, which identifies the voter and the election and,

therefore, provides traceability. A few years later, Fujisaki [57] improved the size efficiency and the

security model of the previous ring signature [58].

Nevertheless, traceable ring signatures are not adequate for electronic voting, since the preservation

of the anonymity of the voter is almost always desired. In fact, this type of ring signature is more relevant

in electronic cash, where an authority might be interested in knowing the identity of a double spender.
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Chapter 4

Voting System Design

In this chapter, a voting protocol to be integrated in the EUNOMIA system is proposed. Section 4.1

starts by recapping the objectives which we set out to solve. Subsequently, an overview of the EUNOMIA

ecosystem is given, and its security model is clarified in Section 4.2. We then list the entities which take

part in the solution in Section 4.3, along with the explanation of how their credentials are generated and

managed. Afterwards, the architecture of the voting system is presented in Section 4.4, which covers all

details related to the protocol. This chapter wraps up with a summary in Section 4.5.

4.1 Objectives

Recalling the overall goal of this work, we want to provide users with a way to vote on trustworthiness

properties of posts on social networks, through the EUNOMIA [2] platform. Therefore, we suggest a

voting protocol which endorses security, privacy and integrity. We refer to Section 1.2 for the desired

properties of this voting protocol, wherein they are listed and briefly explained.

The proposed approach is rather challenging to design. We state the reasons to justify the previous

assertion.

• Unlike traditional voting systems, the voting procedure in this context is open-ended, which implies

that it does not end unless the post is deleted. This raises many complications, one of them being

privacy, since ballots are counted immediately after they are cast.

• The system must support multiple voting processes running simultaneously. Usually, every election

requires a different credential, so this could turn out to be a scalability issue: having millions of

concurrent voting processes with millions of voters would not be practical.

• Every user can cast a ballot on every post at most once, so all users are eligible unless they have

voted before. Additionally, no one can know which users have voted. To solve this problem, the

majority of protocols discard the list of voters who cast a ballot, after the election. Although, we

cannot do such a thing because the process is open-ended.
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• The ballot can differ depending on the post the user is voting on. Hence, ballots should have

a flexible structure, and support from the simpler, trust/no-trust scenario, to the more complex,

write-in ballot scenario.

4.2 EUNOMIA Design

In this section, the fundamentals of the EUNOMIA infrastructure are reviewed. Subsection 4.2.1

describes the behavior of the entities which make up the network, the nodes, and subsection 4.2.2

points out the trust assumptions of the platform. This section is relevant because the voting protocol is

built upon the EUNOMIA system, therefore relying on some of its services and assumptions.

4.2.1 Nodes

The EUNOMIA ecosystem is made up of a set of nodes called EUNOMIA Services Nodes (ESN).

Each group of nodes working together is called a federation. In a federation, the nodes coordinate

themselves and are responsible for all tasks, ranging from authentication to data management. The

ESN is made up of smaller components, and each of them is in charge of a certain service. In addition,

nodes are highly flexible and new services can be added with little integration effort. Figure 4.1 portrays

a node, its services and other entities which connect to a node.

Figure 4.1: EUNOMIA Node Architecture [1].

Some of the parts of the ESN serve as basis for certain functionalities of the voting system. We list,

and succinctly explain, the most relevant services in this context.

• Digital Companion: Despite not being part of the node, the Digital Companion (DC) is the in-

terface between the users and the ESN, and can communicate with some services. In fact, it

corresponds to the user interface, which provides information and collects inputs from users. Fur-

thermore, the DC is crucial to the voting system as it performs relevant cryptographic operations.
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• AAA Server: Responsible for authentication and authorization of users, this service provides a

bridge between the EUNOMIA authentication and the voter registration process. Also, it works as

an interface between EUNOMIA and the social network, allowing users to authenticate through

their social media accounts.

• Discovery Server: This resource plays a significant role in the ecosystem, since it publishes the

information of each service. Relevantly, it contains the credentials and metadata necessary for the

voting protocol to execute properly.

• Storage Server: Securely stores all EUNOMIA data, in a distributed manner (through the P2P

filesystem). It keeps all information regarding the voting processes, including ballots and voter

credentials. The integrity of the data is ensured by the Ledger Service.

• Voting Server: Handles all operations related to the voting protocol, from voter registration to

counting ballots.

Each ESN runs on top of another node, which belongs to the social networking platform, and, be-

cause of its abstraction, it is flexible enough to work with multiple social networks. When accessing their

account, users can grant access to their data, which EUNOMIA will extract and process securely. After-

wards, EUNOMIA will be able to provide users with the means to assess the reliability of the content on

their social media feed.

We relevantly add that users only communicate with one node. This node provides access to the

services and handles their data, which may be synchronized, using appropriate security mechanisms,

with other nodes.

4.2.2 Security Model

The security model and trust assumptions of EUNOMIA are now reviewed. We start by assessing

the global infrastructure, followed by an analysis of the distribution of information. Lastly, we approach

the communication in the whole EUNOMIA environment.

As pointed out in Section 1.1, nodes are controlled by independent and unrelated entities. While this

design choice withdraws the need for a centralized, controlling entity, which could impact the trustwor-

thiness evaluation process, it raises some concerns with regard to the security of the system. Generally,

we say the overall platform is secure if a subset of nodes of predefined size is trustworthy.

This infrastructure yields significantly more robustness and resilience than a central authority since

it eliminates single points of failure. Additionally, it promotes scalability, so, if necessary, the network of

nodes can be scaled up to support more users.

As explained in the last section, the digital companion is a part of the EUNOMIA ecosystem, but

totally dissociated from the network of nodes. In fact, the digital companion can be considered the

device of a user. Because the user may be interested in deceiving the system, and they carry out their

actions through the digital companion, we stipulate that the DC is not trustworthy, with respect to the

EUNOMIA environment.
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Concerning data, we assume the information exchanged between services of the same node is

trustworthy. On the other hand, data placed in the distributed storage server, which relies on a potentially

hostile peer-to-peer file system accessible by every node, is not secure, and each ESN is accountable

for handling the confidentiality and integrity of its own data.

Furthermore, the synchronization of information through the distributed file system is eventually con-

sistent, and therefore assumed to be fast enough for the system not to be vulnerable to race conditions.

Finally, we expect the underlying channels of all communications to ensure the confidentiality and

integrity of the data exchanged. This assumption concerns mostly the connection between users and

nodes, since node communication is secured by EUNOMIA.

4.3 Entities

In this section, we state the components which make up the voting system. Their functionality is also

described, along with how they integrate in the EUNOMIA platform. Subsequently, we explain what type

of credential every entity has and how they are generated, distributed, managed and utilized.

• Voter: Evaluates online posts by attributing characteristics of trustworthiness. Additionally, they

may decide to append their features, such as number of followers or political ideology, to the

ballot. In the EUNOMIA ecosystem, the voter is the social network user and carries out the actions

through the digital companion (DC).

• Manager: Registers new voters, distributes ballots, extracts and verifies user features and man-

ages all voting processes.

• Tallier: Verifies the eligibility of the voters and validates, signs and appends ballots to the bulletin

board. Also, it issues tallies for each voting process.

• Anonymizer: Yields the unlinkability between a ballot and a voter. Multiple anonymizers linked

together form a mix network.

The manager, tallier and anonymizer make up the voting server component of the EUNOMIA node.

Furthermore, the bulletin board is supported by the storage server, but just as an abstraction, that is, the

storage server has no knowledge of what belongs to the voting protocol. Also, unlike the usual bulletin

boards, we support modification and deletion of data.

These components, along with some relevant EUNOMIA services, are depicted in a diagram shown

in Figure A.1 of Appendix A.1.

4.3.1 Credentials

Every entity in the voting protocol has a credential in order to be properly identified. For all parties,

we specify the type of credential, how it is generated and distributed, and its functionality.
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• Voter: Generates a key pair locally, in the digital companion, during the registration process. The

public key is sent to the manager, which is responsible for storing, managing and making it available

to everyone. This key identifies the voter within the voting system, independently of EUNOMIA,

and it is used to verify the eligibility when voting on a post, as described in Section 4.4.2. In the

remainder of this work, we refer to the public and private keys of a voter as y and x, respectively.

The next three entities all have the same type of credential, a key pair, along with a public key

certificate. Each of these parties generates a key pair and a certificate when the node is first brought

up, specifically, when the voting server is initialized for the first time. The private key is saved locally and

the certificate is placed in the discovery service, available to the other services and to the voters. The

capabilities of these credentials are now stated, for each of the components.

• Manager: The key is used to sign web requests, namely, ballot and user features requests, and to

sign features when their validation is required.

• Tallier: Signs tallies and valid ballots to be stored, and is used to verify the validity of the ballots

when issuing a tally.

• Anonymizer: Encrypts and decrypts information to build up a mix network.

Additionally, each entity is capable of signing requests sent to another voting server, so the receiver

can be sure that such requests are authentic.

Finally, to refer to each of these keys, we define the notation Ck
i , in which C is the first letter of the

component, i is the identifier and k is either pk (public key) or sk (secret/private key). Furthermore, the

notations E(m)k and S(m)sk designate the encryption with public or symmetric key k and signature with

private key sk, respectively, of message m. For example, S(m)T sk
1

is the signature of message m using

the private key of tallier 1.

4.4 Architecture

This section advances the architecture of the proposed voting system. We start by explaining how

we reached this particular approach, followed by the phases which make up the protocol. Then, the

subsequent subsections describe thoroughly the most relevant processes of the architecture.

When designing this system, we took into into account the challenges presented in Section 4.1.

Initially, we prioritized the problem of ballot flexibility, as there might be the need to customize the ballot in

conformity with the information being evaluated. For this reason, we excluded homomorphic encryption,

since it has low flexibility and it would be costly to compute the proofs of correctness for the ballots.

The first proposed solution relied on blind signatures, combined with a mix network to anonymize

ballots, after obtaining eligibility. Blind signatures provide the desired flexibility and have a step to verify

the eligibility of the user. Furthermore, the technique is mathematically simple and its implementation is

quite straightforward. Nonetheless, this approach was eventually dropped for the reasons below.
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Integrity. Because the ballot is blinded before being signed, the voter can request eligibility for a certain

post, in which they are eligible to vote, but the blinded ballot can contain a different post and still be

signed by the manager. On that account, the voter would be able to break the uniqueness property.

To solve this problem, there are two solutions: either we issue one credential for each post, which is

extremely impractical, or we use partial blind signatures1, which are more complex to implement.

Efficiency. The crux of EUNOMIA is to eliminate single points of control and failure. While the crypto-

graphic operations might be fast, there would still be the need to distribute tasks among multiple nodes.

Thus, the extra step to verify eligibility would constitute the majority of running time of the protocol, which

could severely degrade user experience.

Privacy. To verify eligibility, the manager must know whether the user has voted before. However, as

noted in the beginning of this chapter, the system can never know which users have voted. The best

way to solve this problem would be to make sure the credentials of the voters are unlinkable to the social

network users, which must be ensured during the registration phase. Nevertheless, because the voter

registration process relies on the EUNOMIA platform, it would be hard to guarantee that one could not

trace back the credentials to the user.

While we could have tried to solve these obstacles, the solution would have become outstandingly

complex, so we decided to drop this approach and seek a simpler solution.

Afterwards, we started to turn our focus to the eligibility problem, while still keeping in mind the

ballot flexibility requirement. To summarize, a solution was needed, which allowed the voter to prove the

validity of the following statements together, without revealing absolutely nothing else:

• Their public key is valid and registered.

• They have the corresponding private key.

• They have not voted before on a certain post.

The solution which immediately comes to mind to attain the first two statements is a ring signature.

It would allow the voter to prove that they know the corresponding private key of a public key, which

is included in a set of valid keys. To meet the third requirement, we would need to add linkability to

the ring signature. Nevertheless, this linkability property needs to be customized to link only voter and

post together, and never either of them separately, that is, it must be unlinkable for the same user and

different posts. Furthermore, it should work independently of the keys used in the ring.

Hence, we propose a voting system which relies on a ring signature to provide eligibility. The unique-

ness property is achieved through a pseudonym, which is thoroughly explained in Section 4.4.2. We

provide anonymity by implementing a mix network between the voter and the tallier, which is only op-

tional when voting, and left at the discretion of the user.

1Partial blind signatures [4, 5] allow a signer to include relevant information in the blinded content being signed. One pertinent
example is setting an expiration date for a signature, without knowing the message.

36



Before proceeding to the voting protocol, we highlight that it is mandatory for the user to register first

as a voter. While the registration phase is not included in the voting protocol below, it is described in

Section 4.4.1. We now enumerate the phases of the proposed solution:

1. Preparation: The user requests a ballot and, optionally, their features, in separate requests. Note

that ballots could have already been requested by the user interface, automatically.

2. Voting: The user makes their choice and the digital companion generates the ring signature and

appends it to the ballot. Additionally, they decide whether to attach some or all of their features to

the ballot.

3. Anonymization: The user decides whether to vote privately or publicly. Should the user prefer to

keep their anonymity, the ballot is sent through the mix network. Otherwise, it is sent directly to the

tallier.

4. Validation: The tallier receives the ballot in plain text, with the ring signature inside, and gathers a

threshold of signatures from other talliers, which are conditional on the validity of the ring signature,

and on the uniqueness and wellformedness of the ballot. If the user has appended features, they

are sent to a threshold of managers, which validate them and return them signed. Upon receiving

all responses, the tallier verifies the signatures of the features, discards them, and posts the ballot,

along with the features and the ballot signatures, to the bulletin board.

The next subsections explain comprehensively the procedures encompassed in this protocol, except

the preparation phase, which is a simple request of a ballot and features. Section 4.4.2 tackles the

details of the voting and the validation phases, describing the pseudonyms, the ring signature and the

validation of user features. Then, the anonymization technique is discussed in Section 4.4.3.

Still in this section, the management of ballots, after the protocol, is addressed, namely, verifying and

tallying, which are studied in Sections 4.4.4 and 4.4.5, respectively.

After careful review of each of the aforementioned subsections, the whole protocol is depicted in a

sequence diagram shown in Figure A.2 of Appendix A.2. Note that, in this sequence diagram, the use

of features is always optional.

4.4.1 Registration

The voter registration process is required for the user to vote. This process is carried out only once,

preferably when the user is signing up with EUNOMIA. The main purpose of this procedure is to generate

credentials for a voter. Despite only being part of the voting component, the registration relies heavily

on EUNOMIA authentication. In any case, the rest of voting protocol runs independently of EUNOMIA

authentication.

The registration process flows as follows:

1. The digital companion generates a key pair, which identifies the voter.

2. The public key, along with the EUNOMIA user identifier, are sent to the manager.
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3. The manager verifies, through the EUNOMIA authentication and storage services, if the user has

registered before as a voter.

4. If the user has not registered before, the manager saves the public key in the storage service,

making it available to everyone, and unlinked to the user identifier.

With the help of EUNOMIA authentication, it is guaranteed that anyone who is not registered in the

EUNOMIA platform, and that users who have already generated credentials for the voting component

cannot issue new credentials, otherwise, the same user would be able to vote multiple times with distinct

credentials. Moreover, no node, besides the one which handles the registration process, can correlate

a public key with a social network user.

Finally, note that it is assumed that the registration process is performed honestly, as explained in

Section 6.1.1.

4.4.2 Voting and Validation

This section approaches the voting and the validation steps of the protocol. After receiving a ballot,

the user makes their choice, and the digital companion calculates the pseudonym and generates a ring

signature. Additionally, the user can choose to append some of their features to the ballot. The tallier

then validates the ring signature and confirms, through the pseudonym, that the ballot is unique. We

explain all of these processes in the following subsections.

Voter Pseudonyms

We use the notion of pseudonym, which allows users to hide their identity from the system, when

voting. Pseudonyms were first used in the context of attestation [29] and they provide the linkability we

require. This linkability property solves the eligibility problem, avoiding frauds such as double voting.

Our pseudonym is determined using two parameters, namely, the private key of the voter and the

identifier of the post. Relevantly, it is deterministic, which implies that, for the same voter and post, the

pseudonym does not change. The definition of a pseudonym is now formalized. We denote G as a

prime order group and define H1 : {0, 1}∗ → G as a cryptographic hash function. The pseudonym is

calculated as

nym = H1(postId)x

where postId is the identifier of the post and x ∈ Z is the private key of the user.

Note that no user can compute pseudonyms of other users unless they hold their private key. Fur-

thermore, due to the discrete logarithm assumption, explained in Section 2.2, the pseudonym is hard to

reverse, so the identity of the user is preserved.

Notwithstanding, one serious problem arises when using pseudonyms: the system does not know

whether they were calculated using the adequate parameters, which, if not, may deceive the system into

believing that a user has not voted before when, in fact, they did. Therefore, to prove that a pseudonym

is correctly formed, we append it to the ring signature. This process is clarified in the next subsection.
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Ring Signature

In this section, the ring signature used to ensure eligibility is tackled. We start by highlighting the

logic behind it and, only then, explaining the signature generation and verification processes.

The ring signature we propose is, in fact, a signature proof of knowledge. We refer to it as ring

signature because its structure is comparable to one and because it behaves similarly to a linkable ring

signature [76, 104].

Our ring signature scheme is formalized as

SPK

{
(x1, ..., xn) :

n∨
i=1

(
yi = gxi ∧ nym = H1(postId)xi

)}(
B
)

wherein ballot B, which is a bit string, is signed, while proving knowledge of values x1, ..., xn ∈ Z,

which are private keys. The element g ∈ G is predefined and used to generate the public keys from the

private keys. The public keys y1, ..., yn ∈ G, which form a set Y, are randomly chosen from the set of

keys of registered voters. Each of these public keys yi has a corresponding private key x′i. Because the

voter only knows their private key xj , where j ∈ {1, ..., n}, the other private keys xi are simulated by the

protocol.

We say the ring signature has size n when the set of public keys Y contains n elements. Finally,

everything in the protocol, including ballot B, is common knowledge, except the values being proved.

This construction uses the Chaum-Pedersen protocol [34], explained in Section 2.4.1, to ensure the

validity of two statements, in a conjunction:

• The private key xi generates a registered public key yi.

• The pseudonym nym is computed with private key xi.

The ring signature is a disjunction of n of these conjunctive statements. Due to the proofs of partial

knowledge by Cramer et al. [40], clarified in Section 2.4.1, one can prove that, at least, one of the

conjunctive statements is valid, revealing nothing else.

We now proceed to the generation and verification of the ring signature. For a matter of simplicity, we

assign h := H1(postId), where H1 is the cryptographic hash function referred in the previous section,

which maps a string to an element of group G. We also define H : {0, 1}∗ → {0, 1}∗ as a cryptographic

hash function. Remind that set Y = {y1, ..., yn} and elements g and nym all belong to the prime order

group G of order l.

In addition, we chose to make this proof non-interactive, which not only does not require honest

verifiers [45], a condition we could not guarantee, but is also, in our context, significantly less time

consuming. The protocol works as follows:

1. The voter, through the digital companion, calculates their pseudonym nym = hx and randomly

picks from Z∗l

• ki, for all i = 1, 2, ..., n

• ci, for all i = 1, 2, ..., n, i 6= j
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2. In the next phase, the voter calculates the following commitments:

rkeyi :=

gki , i = j

gki · y−cii , i 6= j
rnymi :=

hki , i = j

hki · nym−ci , i 6= j

Note that the voter only knows their private key xj and, therefore, fakes the protocol for all the

private keys they don’t know.

3. Then, resorting to the Fiat-Shamir Heuristic [54], the voter generates a challenge c based on the

common knowledge. We emphasize that challenge c includes ballot B, which makes the scheme

a ring signature, rather than a proof of knowledge. The challenge is defined as

c := H(rkey1 ‖ ... ‖ rkeyn ‖ rnym1 ‖ ... ‖ rnymn ‖ y1 ‖ ... ‖ yn ‖ nym ‖ B).

Because the voter only knows one of the private keys, only one of the conjunctive statements is

true. While the challenges for the fake statements were all generated randomly in step 1, a valid

challenge for the legitimate statement still needs to be computed:

cj := c−
n∑

i=1, i 6=j

ci (mod l)

4. The protocol proceeds to the last phase, the response. The following assignment determines the

correct responses si, for all i = 1, 2, ..., n.

si :=

ki + ci · xi (mod l) , i = j

ki , i 6= j

5. The voter sends the commitments ∀ni=1r
key
i , rnymi , the challenges ∀ni=1ci, the responses ∀ni=1si,

the pseudonym nym and the set Y of public keys to the verifier, which is the tallier. All of these

components make up the ring signature, which is sent inside the ballot.

6. Finally, the tallier confirms that the next conditions hold:

(a) All public keys used in the ring signature belong to registered and valid voters.

(b) The voter pseudonym nym has not been used before.

(c) After computing the challenge c using the common knowledge, verify that

c =

n∑
i=1

ci (mod l).
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(d) For all i = 1, 2, ..., n, the following statements hold:

rkeyi = gsi · y−cii rnymi = hsi · nym−ci

If all of the previous requirements verify, the ring signature is valid and the voter is allowed to cast

the ballot.

We further develop on the ring signature in Section 6.1.3, which formalizes the scheme and proves

it holds on to its properties.

Validating Features

The possibility of appending user features, such as number of followers, to a ballot, when voting,

can help users make more conscious conclusions regarding the trustworthiness of content. Initially, one

might think that the features could be validated and signed when they are requested, in the preparation

phase. However, this may lead to serious problems, such as the theft or purchase of features from other

users, or even the loss of ballot privacy.

Therefore, it must be done in the validation phase. Nonetheless, validating features without compro-

mising ballot secrecy is no trivial task. In fact, features cannot be validated by a node which is already

verifying the ballot, as it would be possible to link a vote to a user.

To solve this problem, we took advantage of the decentralized setting wherein this project is imple-

mented. That is, we resort to other nodes, which have no knowledge about the ballot, to validate user

features. This implies that, when the ballot is received by the tallier, the features, and the respective

user identifier, must be encrypted to ensure privacy. However, the voter must not be able to choose with

which key to encrypt the features, since it may lead to collusion.

Therefore, we suggest a (t, n) threshold scheme [102], in which the public key belongs to a federation

of n nodes, and the private key is distributed among the nodes. To perform any private key operation,

a threshold t = 2 of managers (or nodes) must cooperate. Whenever a new node joins the federation,

it is responsible for generating a new key pair in a distributed manner. We refer to the public key of the

federation as the validation key (or Vk, as noted in the sequence diagram of Figure A.2).

Threshold schemes are not new to this work. In fact, some voting protocols [3, 14, 42, 65], presented

in Section 3.2, resort to these schemes when decrypting votes in the tallying phase. Generally, we define

two algorithms for a threshold system: key generation and decryption.

Key generation is a delicate process in the sense that there should not be a centralized node, which

distributes the shares of the private key. Instead, all nodes must engage in a joint protocol, such that no

single entity is capable of reconstructing the private key alone. To achieve this, we follow the distributed

key generation protocol set forth by Pedersen [90]. Informally, each node computes a share xi of the

private key x, which can be reconstructed using t shares.

The decryption algorithm, described by Desmedt and Frankel [47], works by having entities compute

their decryption share wi, along with a zero-knowledge proof that this share is correctly computed. Then,
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a node receives all the required shares w1, ..., wt, and multiplies all shares together to fully decrypt the

message, without revealing the private key.

Feature validation is part of the validation phase, and it is done concurrently with ballot verification.

This procedure works as follows:

1. Still in the voting phase, the user encrypts their features, along with their user identifier, using the

validation key Vk, places the resulting ciphertext in the ballot and votes.

2. The tallier receives the ballot and forwards the encrypted features to the manager, in the same

node, which computes their decryption share w1 of the features ciphertext.

3. The manager sends their share w1 and the encrypted features to a threshold of other managers,

each of which uses the received partial decryption w1 and their decryption share wi to fully decrypt

the features.

4. Once the features are decrypted, each manager validates them, according to the user identifier.

5. If they are valid, each manager returns the features to the original manager, fully decrypted and

signed.

6. The manager validates the received signatures, discards them, and forwards the features to the

tallier, to be appended to the ballot.

We point out a few considerations regarding feature validation. First, due to the continuous tallying

requirement of the voting protocol, dealing with features when voting raises many privacy concerns. In

fact, one can never be sure that the features will not be correlated with the ballot, once it is stored.

Second, this proposal is very high level, and based on the algorithms developed in the referred work.

Third, the implementation is rather tricky and complex so, since the main focus was the development of

the voting system, we have decided to leave it as future work and not to approach it in the evaluation.

4.4.3 Anonymization

Privacy is one of the greatest concerns of every voting system. In this setting, anonymity becomes

even more difficult to achieve due to the open-ended, continuous-tallying scenario. While we solve part

of the problem by using pseudonyms to hide the identities of the users, there still exists the chance to

correlate users and ballots through the internet connection, or even using timing analysis.

Therefore, a mix network was implemented between users and talliers, which randomly delays and

shuffles the ballots received, acting as an anonymous channel. The mixnet provides protection against

passive eavesdroppers and ensures anonymity even if some mixes are malicious. We highlight that

users can opt out of this anonymization process and send the ballot directly to the tallier, or even use

another anonymous channel, such as Tor [50]. Still, the main advantage of using ours is that it requires

no additional effort.

This mix network is similar to the decryption mixnet proposed by Chaum [37]. It is a low-latency mix

network, composed of a set of anonymizers placed sequentially. Each anonymizer (or mix) receives a
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ballot, removes a layer of encryption, holds the ballot for some time while waiting for others, scrambles

the ballots and, only then, forwards them to the next anonymizer or to the tallier. This hinders traffic

correlation attacks.

We now formalize the anonymization scheme. As mentioned before, each anonymizer Ai has a

public key, which we refer to as Apk
i . The ballot is represented as B and, for each layer of encryption, a

random symmetric keyKi is generated. Finally, remind that E(m)k is a function which encrypts message

m using a symmetric or public key k.

To start the anonymization process, the user randomly picks a list of n anonymizers and computes

the initial message

E(Kn, An−1)Apk
n
, E(E(Kn−1, An−1)Apk

n−1
, ..., E(E(K1)Apk

1
, E(B)K1

)K2
...)Kn

.

The first anonymizer An receives the message and decrypts the first part of the message to retrieve

the symmetric key Kn and the identifier of the next anonymizer An−1. Then, the same anonymizer An

removes the first layer of encryption using key Kn and forwards the decryption to the next anonymizer

An−1. This process is repeated until the message reaches the last anonymizer A1. When it does, the

message should be

E(K1)Apk
1
, E(B)K1

which can be trivially decrypted by A1, obtaining the ballot B and, then, passing it on to the tallier for

validation.

We underline that this mix network provides no proof of correct operation, which we disregard since

it carries no relevance to the voting protocol. In fact, verifiability is achieved through other means,

discussed in Section 6.2, and the protocol allows users to send the same ballot through the mix network

as many times as they want.

Another relevant consideration is that everyone can send data through the mix network, without

authentication. Therefore, to avoid spamming, or even denial of service, the first anonymizer, which is

in contact with the user, authenticates the user, using the authentication service of EUNOMIA, before

sending the ballot through the anonymization circuit.

Finally, all information necessary to build a mix network, including public keys and identifiers, is

available on the discovery service.

4.4.4 Verifying and Deleting Votes

In this context, it is appropriate to allow users to check if their ballot was cast, and if it represents

correctly their intentions. Through the pseudonym, which no one besides the owner of the private key

can compute, we allow users to retrieve their previously cast ballot. While we do not approach receipt-

freeness in this proposal, we acknowledge that the possibility to verify previous votes leads to the loss

of that property.
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Additionally, users can delete past ballots. These are removed using the pseudonym as well. We

point out that being able to delete ballots can imply coercion-resistance, since a voter can vote in the

presence of the coercer and later change their vote alone. Nevertheless, the coercer can learn the

pseudonym and compromise their privacy for that post. Still, because we assume there is low coercion

in this scenario, we do not develop on this topic further.

Finally, the manager is the entity responsible for carrying out both the verification and the deletion of

ballots from the bulletin board.

4.4.5 Tallying Votes

Tallies are updated continuously as the results need to be shown to the users as close as possible to

real time. The tallying process is simple and requires small computational effort. Furthermore, anyone

can request a tally for a post at any time. The tallying process runs as follows:

1. A tally is requested and the tallier gets all ballots for a specific post from the bulletin board.

2. The tallier requests, from the discovery service, the certificates of all the talliers which signed the

ballots returned. These are then saved in a cache to expedite future tallying processes.

3. All ballots are verified, one by one, through the signatures appended to them during the validation

phase. Ballots are valid as long as a threshold of signatures is valid. Invalid ballots are discarded

and removed from the bulletin board.

4. The tally is signed and returned.

Regard that it is not the responsibility of the voting system to sort out the votes in a certain way. In

fact, the system is totally unaware of the context, and simply returns a list of authentic ballots, cast by

eligible voters. Only afterwards, the user interface, independently of the voting protocol, arranges the

votes as desired, while taking into account the impartiality of EUNOMIA in the trustworthiness evaluation

process.

4.5 Summary

To summarize, we propose an open-ended voting protocol, which features accuracy, privacy and

verifiability. The system is built upon the decentralized infrastructure of EUNOMIA and it is applied to

the context of information credibility evaluation, by allowing users to vote on trustworthiness properties

of posts on social media.

The proposed ring signature scheme, along with the pseudonym, provide the system with the means

to assess the eligibility of users, without compromising their privacy. We also suggest a technique to

enable users to append their features to a ballot, while maintaining some privacy assurances. Further-

more, a simple mix network is developed, which prevents an adversary from correlating a ballot with a

user, in the voting phase.
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In addition, we provide users with a way to verify and delete their votes, and designed a simple and

straightforward tallying process.

In the end, the system complies with the objectives put forward in Section 4.1, and provides an effi-

cient way to vote in an open-ended, continuous-tallying environment which, to the best of our knowledge,

did not exist before.
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Chapter 5

Implementation

This chapter gives out the details of how the system was implemented. We start by tackling the

cryptosystems used to generate the credentials referred in Section 4.3.1. Then, considering the entities

which take part in the protocol, our implementation is divided into two segments: the voting server

and the client. The details of the implementation for both of them are provided in Sections 5.2 and 5.3,

respectively, along with some code and data examples. Furthermore, in the client section, an explanation

and statistics are presented for a pilot testing experiment.

5.1 Credentials

In this section, we extensively describe the credential system for the entities involved in the protocol.

We start by listing the parties and stating the cryptosystems used. Then, subsection 5.1.1 explains how

the credentials are managed and accessed.

• Manager, Tallier and Anonymizer: During the first initialization process, all of them generate

distinct 2048-bit RSA [96] key pairs. Then, they issue self-signed certificates to certify the knowl-

edge of the generated private keys. These certificates are used for testing purposes and they are

supposed to be replaced by certificates signed by a certificate authority.

• Voter: When registering with the voting system, the voter generates a key pair using the twisted

Edwards form of the elliptic curve Curve25519 [23, 24]. The public key is a point in the curve,

which, if compressed1, has 256 bits. The private key also has 256 bits, and it is a scalar value.

The public key Y is generated by calculating xG, where G is the predefined base point of the curve

[24] and x is the randomly generated private key.

The choices of cryptosystem and key lengths were based on the security standards by NIST [13]

and SafeCurves2, while also taking efficiency into account.

1Point compression in elliptic curves is a technique which reduces the size of the representation of points to save memory. The
usual procedure is to use only one of the coordinates to represent the point, and then append the sign bit of the other coordinate.

2http://safecurves.cr.yp.to (accessed December 31, 2020)
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5.1.1 Management

The credential management process is now outlined. Starting with the manager, the tallier and

the anonymizer, the management of their credentials is fairly straightforward. In fact, there exists only

one step: once the first initialization is completed, their certificates are placed, in X.5093 format, in the

discovery service, associated with the identifier of the voting server. The certificates are never deleted,

even if the node is removed from the federation, otherwise some ballots would become invalid. The

private keys are saved locally in a file during the generation process.

Concerning the voter, their public key is sent to the manager during the registration process, and

it is saved in the storage service in Base64 encoding, available to everyone. The private key, besides

being saved in the local storage of the digital companion, is also stored remotely, in the storage service.

However, it is not saved in plaintext, instead it is encrypted first. This procedure relies on the Password-

Based Key Derivation Function 2 (PBKDF2) [80] to generate a 128-bit symmetric key, using a user

chosen password, a random salt and 10000 iterations. This key then encrypts the private key using AES

[44] in cipher block chaining (CBC) mode. The private key is kept in storage, encrypted, and can be

requested whenever needed.

5.2 Voting Server

The voting server is a service which runs inside the EUNOMIA services nodes. The design practices

of EUNOMIA promote the development of fully decoupled services, that is, each service provides an

Application Programming Interface (API), which works as an abstraction layer to the other services. The

voting server is no exception, so we specified an API to deliver the functionality of the voting server to

the rest of the EUNOMIA ecosystem.

This component is implemented as a Java [11] application, and runs an embedded web service.

This web service is powered by the Grizzly4 and Jersey5 frameworks and it provides the functionality for

the aforementioned API. We used Maven6 to compile, package and execute the project, and JUnit7 to

conduct unit tests.

As referred before, the voting server encompasses the manager, the tallier and the anonymizer.

Since it would not be practical to implement them in separate machines, we have segregated the logic of

each component within the same application. Nevertheless, they all still rely on a library we developed,

which contains the vital functions for any service to work, ranging from storage to authentication.

Relevantly, EUNOMIA nodes are built on top of social network nodes. To run initial tests, we have

used Mastodon8, which is a distributed social networking protocol. Owing to the design principles of

EUNOMIA, other social networks can be integrated with slight effort. Additionally, given the necessity

3https://www.itu.int/rec/T-REC-X.509 (accessed December 31, 2020)
4https://javaee.github.io/grizzly (accessed December 31, 2020)
5https://eclipse-ee4j.github.io/jersey (accessed December 31, 2020)
6https://maven.apache.org/index.html (accessed December 31, 2020)
7https://junit.org (accessed December 31, 2020)
8https://joinmastodon.org (accessed December 31, 2020)
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for modularity of the components, all services run in the same machine, but are virtually isolated from

each other using Docker9.

In the next sections, some topics related to the voting server are approached. First, the libraries on

which it relies to perform some operations are listed. Then, we explain how it is initialized, followed by

the voter registration and anonymization processes. Finally, the ballot structure is approached.

Libraries

The voting server relies on some external libraries to perform some actions, ranging from crypto-

graphic operations to communication. We list those libraries below and explain what they are used for,

in this context.

• BouncyCastle10: Generate, sign and read X.509 certificates.

• EdDSA-Java11: Provides the parameters and the operations for the twisted Edwards Curve25519

[23, 24], which the system uses to verify the ring signatures and pseudonyms and to validate public

keys.

• OkHttp12: Handles all communications of the voting server with other services.

• Gson13: Parses and generates JSON [91] code for the data exchanged with all services and the

digital companion.

Initialization

Each voting server, when launched, goes through an initialization process. In this process, three

environment variables define the crucial parameters for the service to execute correctly, which are:

• VOTING ID: the universally unique identifier (UUID) of the voting server, which distinguishes it from

the remaining ones in the same federation;

• VOTING TOKEN: the token which identifies this component in the EUNOMIA authentication ser-

vice, preventing unauthorized services from pretending to be this voting server;

• AUTH PROVIDER: address of the social network authentication provider.

Then, the voting server checks if a file containing the certificates and private keys of each component

already exists. If this file does not exist, new credentials are generated and posted to the discovery

service. This file, along with the environment variables, facilitate the portability of a voting server between

machines. Finally, to conclude the initialization, the voting server performs a few operations to register

with the other services in the node, such as authentication.

9https://www.docker.com (accessed December 31, 2020)
10http://bouncycastle.org (accessed December 31, 2020)
11https://github.com/str4d/ed25519-java (accessed December 31, 2020)
12https://square.github.io/okhttp (accessed December 31, 2020)
13https://github.com/google/gson (accessed December 31, 2020)
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Voter Registration

The voter registration process is carried out with support from the authentication service, and it

was designed to be performed concurrently with the user registration in EUNOMIA. This procedure is

described in Section 4.4.1. In this section, the technical details of the implementation are addressed.

The simplified code for the voter registration is shown in Figure 5.1.

1 public boolean register(String token, String userId, String publicKey, String privateKey) {
2 if (!Cryptography.ECC.validatePoint(publicKey))
3 return false;
4

5 if (!Authentication.verifyUser(token, userId))
6 return false;
7

8 // check if voter already exists
9 if (!Storage.get(”properties.user id”, ”eq”, userId).isEmpty())

10 return false;
11

12 if (Storage.save(userId, publicKey, privateKey))
13 return true;
14

15 return false;
16 }

Figure 5.1: Sample code, in Java, for the voter registration process.

After the digital companion generates the Ed25519 key pair, it is sent to the voting server. The

public key is verified in the validatePoint() method, which confirms that it is a valid point in the curve.

Then, resorting to the EUNOMIA authentication service, it verifies if the user is legitimate using the

verifyUser() function.

Subsequently, the voting server issues a request to the storage server to check if a voting credential

for that user already exists. If this condition checks out, the save() method is called, which stores the key

pair: the public key in Base64 and the encrypted private key, also in Base64, along with the initialization

vector (IV) and the salt, which are contained in the privateKey variable.

When the user does not have the private key locally, it is requested to the voting server, in a procedure

similar to this one. With help from the verifyUser() method, the voting server verifies if the user is the

owner of that private key, and, if this condition validates, calls storage using get() to retrieve the private

key and return it to the user.

Anonymization

In this section, we sort out the implementation details of the anonymization process. As mentioned in

Section 4.4.3, a mix network is built to simulate an anonymous channel. The work of each anonymizer

as a mix is quite simple: there is a predefined time interval, after which ballots are randomly shuffled

and sent to the next anonymizer. Moreover, the anonymizer is constantly receiving ballots, which are

immediately decrypted and placed in a queue to be dispatched.
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By default, each circuit of anonymization has three anonymizers and the time interval is set at five

seconds. The parameters are customizable by the user and the by the node administrator, respectively,

to fit the desired requirements. One relevant aspect is that the circuit is built by the client, with whichever

anonymizers they would like to use.

Each package received by an anonymizer is a dictionary with the following keys:

• data: Symmetrically encrypted using AES-CBC and a random 128-bit key, it is the information sent

to the next anonymizer or to the tallier, which is decrypted first.

• info: Encrypted using RSA and the public key of the receiving anonymizer, it contains relevant

information, structured in a dictionary, including the symmetric key and the initialization vector (IV)

to decrypt the data value and the identifier of the next anonymizer.

Because packages are successively encrypted, when the data key is decrypted to be forwarded to

the subsequent anonymizer, the result of the decryption will have this exact same structure. When the

last anonymizer decrypts the data value received, the result will be a ballot, which is sent to the tallier to

be validated.

Ballots

As initially proposed, the ballots in our protocol are fully flexible and independent of the operation of

the system. The ballot is constructed using JSON [91] and this is the only format supported. Figure 5.2

shows one possible valid ballot, built in JSON. It does not show neither the proof (ring signature) nor the

tallier signatures as they would take up too much space unnecessarily.

1 {
2 ”post id”: ”abc”,
3 ”votes”: {
4 ”trust”: 1,
5 ”no trust”: 0
6 },
7 ”features”: {
8 ”followers”: 1234
9 },

10 ”proof”: {...},
11 ”signatures”: {...}
12 }

Figure 5.2: Example of a valid ballot in JSON format.

A ballot is a dictionary, which follows a strictly defined structure to be well-formed. The two essential

keys are the post id (post identifier) and the votes. The latter contains the choices of the user. Figure

5.2 depicts the simplest example, which is a trust/no-trust vote. Nonetheless, this value can be cus-

tomized to fulfill the needs of different posts, which may include open questions. The features key is

optional and holds the features which the user decided to append to the ballot.
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Finally, for the ballot to be valid, it must include the ring signature computed by the user (proof)

and the signatures of the talliers (signatures). The last-mentioned is a dictionary, which matches the

identifier of the voting server to a signature of the post id, the votes and the optional features.

5.3 Client

The client provides the functionality required from a user, with regard to the voting protocol. As

referred in Section 4.2, the digital companion is an interface running on a device, such as a smartphone

or a computer. Similarly to the EUNOMIA node, the functionality of the digital companion can be seen

as modular, so the client works as a external library integrated in the DC. It does not provide a web API,

instead functions can be invoked directly after importing this library.

This component is implemented in Javascript [55], which can be easily executed by any browser,

using a Javascript engine. When the code is executed outside the browser, Node.js14 is used as runtime

environment. In fact, we set up the client library to work primarily with Node.js, which simplified the

development process remarkably, and allows portability to other settings, such as mobile applications.

The client library is logically divided into three segments. The first one provides cryptographic sup-

port for the remainder of the client, which comprises encryption, decryption, signature verification and

operations on elliptic curves. The second includes functionality related to local storage, registration of

voters and communication with storage and discovery services. Finally, the last one implements the

voting operations and works as an abstraction layer to be called by the user interface.

We approach parts of the technical implementation of this segment of the project in the next sub-

sections. First, the external libraries and their respective functionality are listed. Then, the pseudonym

generation is described, followed by an example of how the library is used by the user interface. Finally,

Section 5.3.1 gives an overview of the initial testing of the entire project.

Libraries

Like the voting server, the client library also depends on a few frameworks to provide some function-

ality. The most relevant libraries used are enumerated below and their utility is clarified.

• Elliptic15: Generates public keys using the twisted Edwards Curve25519 [23, 24], and provides the

parameters and the cryptographic support to compute the ring signatures and the pseudonyms.

• Forge16: Provides support for all AES [44] and RSA [96] cryptographic operations, which includes

encryption, signature verification and random value generation.

• Axios17: Handles all network communications to the voting server.

• Level18: It is a key-value storage based on LevelDB19, which is used to store and manage data
14https://nodejs.org (accessed December 31, 2020)
15https://github.com/indutny/elliptic (accessed December 31, 2020)
16https://github.com/digitalbazaar/forge (accessed December 31, 2020)
17https://github.com/axios/axios (accessed December 31, 2020)
18https://leveljs.org (accessed December 31, 2020)
19https://github.com/google/leveldb (accessed December 31, 2020)
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locally, such as previous ballots, voting server information and voter credentials.

Pseudonyms

The pseudonyms are one of the fundamental parts of the voting protocol. As described in Section

4.4.2, the pseudonym is deterministic and calculated using the post identifier and the private key of the

voter. The sample code for this process is shown in Figure 5.3.

1 function computeNym(privateKey, postId) {
2 // get hashed point and calculate nym
3 let H = ecc.hashToPoint(postId);
4 let nym = H.mul(privateKey);
5

6 return nym;
7 }

Figure 5.3: Sample code, in Javascript, for the calculation of a pseudonym.

As one can notice, the calculation of the pseudonym is simple and straightforward. In fact, one just

needs to hash, using hashToPoint(), the postId to a point in the subgroup of points generated by the

base point of the Ed25519 curve, and then multiply the result by the private key. Note that this code

follows the elliptic curve notation.

Voting Example

We now provide an example of how the client library can be used by other parties. Figure 5.4 shows

a code workflow, which takes the required steps to perform a voting operation. Also shown in Figure 5.4

is the request for a tally, for the same post the user voted on.

1 const lib = require(”lib.js”);
2

3 lib.initialize(token, userId, secret).then(r => {
4 return lib.getBallot(token, postId, userId);
5 }).then(r => {
6 // update ballot accordingly
7 let ballot = r.message.ballot;
8 ballot.votes.trust = 1;
9

10 return lib.vote(token, userId, ballot, anonymous = false);
11 }).then(r => log(r)) // voted successfully
12 .catch(e => log(e)); // handle errors
13

14 lib.tally(postId).then(r => log(r)) // output tally
15 .catch(e => log(e)); // handle errors

Figure 5.4: Sample code workflow for voting, in Javascript.

It can be seen that carrying out a voting operation takes very few lines of code. It consists of three

operations: initialize() registers or retrieves credentials for userId, getBallot() requests a new
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ballot for post with identifier postId, and vote() performs the voting action, which includes issuing a

ring signature, preparing the ballot for anonymization (if needed) and sending it to the voting server.

Finally, a tally request for postId is also executed using the tally() function.

For every request, while the responses are logged in this example, they can be handled as desired

by the user interface. The client library makes it remarkably simple to perform any call to the voting

server, which makes the voting protocol easy to use.

5.3.1 Decentralized EUNOMIA

Decentralized EUNOMIA20 was designed as a proof of concept for the EUNOMIA platform. The goal

of this experiment was to test the full functionality of the EUNOMIA Project, which includes voting. It was

built on top of the above-mentioned Mastodon social networking protocol.

Some metrics were collected throughout a period of nine days. A total of 286 users signed up, with

an average of 232 daily active users. The system received around 80000 tally requests and about 5000

ballots were cast.

The Mastodon platform provides a user interface very similar to the well-known social network Twit-

ter21. There is a news feed, composed of posts written by users. Figure 5.5 shows an example of this

social networking feed.

Figure 5.5: News Feed of Decentralized EUNOMIA.

Users interact with EUNOMIA through this interface. The list of posts is picked automatically for each

20https://decentralized.eunomia.social (accessed December 31, 2020)
21https://twitter.com (accessed December 31, 2020)
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user. EUNOMIA then provides tools to evaluate the information on these posts, including the source

and respective modifications, and the possibility of voting on the trustworthiness of a post. Figure 5.6

depicts a post of this feed with more detail.

Figure 5.6: Example of a Post in Decentralized EUNOMIA.

As shown, the post has two voting options, which correspond to the simplest scenario: trust or no

trust. Nonetheless, each ballot can be customized according to the needs of each post. Below the voting

buttons, a tally is presented for each option.
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Chapter 6

Evaluation

In this chapter, a complete and thorough evaluation of the system is performed. Initially, we set out

to create a solution which complied with the desired properties, taking into account the design options

of EUNOMIA. So, we start by reviewing the security of our proposal in Section 6.1, which includes trust

assumptions, a threat model and proofs of security for the properties of the ring signature. Then, based

on the security model built, we explain how the protocol complies with the intended requirements in

Section 6.2.

Finally, in Section 6.3, the performance of the system is evaluated by providing time and bandwidth

metrics, explaining some choices concerning the technologies used and making some considerations

with regard to the efficiency, scalability and practicality.

6.1 Security

This section assesses the voting system, in terms of security. Trust assumptions are approached in

Section 6.1.1. Then, in Section 6.1.2, we provide a threat model, for all possible adversaries, which also

describes how the threats are mitigated. Lastly, the properties of the ring signature scheme are defined,

and their proofs of correctness are sketched in Section 6.1.3.

6.1.1 Trust Assumptions

For the system to function according to the expectations, we need to provide some assumptions of

trustworthiness. We refer to Section 4.2.2 for the security model of EUNOMIA, which is the backbone of

the security model of the voting protocol. The trust assumptions are presented with respect to all entities

and eventual consequences are discussed, should these assumptions be infringed.

Trust Assumption 1. The user trusts the digital companion.

The digital companion is a conceptualization of an interface between the users and the remainder of

the ecosystem. This interface can run in any type of device, ranging from a smartphone to a personal
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computer, which can belong to the user. Because we address pure internet voting, voting can happen in

any type of environment, including a malicious one. Therefore, the device of a voter can be compromised

in many ways, including through the software stack, the network or even physically.

For this reason, we cannot ensure that the digital companion is not corrupted, and that it does not

change the vote or reveal the identity of the user. Therefore, we assume it is not vulnerable to such

attacks, and that it performs the operations correctly. This way, users can trust the digital companion.

If this assumption does not hold, that is, if a user does not trust any device, voting is infeasible. Note,

however, that users may be malicious and try to corrupt the system using the digital companion.

Trust Assumption 2. The voter registration process is carried out by an honest manager.

The registration process is conducted by a single manager, which verifies if the user has registered

before as a voter. If this manager is malicious, it can register the same user multiple times as a voter and

allow the registration of non-unique public keys. Furthermore, it can disclose the correlation between

users and public keys, although this is irrelevant to our scheme, since the public keys are hidden behind

a ring signature.

Trust Assumption 3. At least a threshold t of voting servers, which includes manager, tallier and

anonymizer, is honest.

As referred in the security model of EUNOMIA, at least a subset of nodes must be honest and willing

to cooperate in order for the system to function properly. Because the voting server is a service inside of

each node, we rely on this assumption to conduct the voting processes. This threshold t (out of n voting

servers) is configured when launching a new federation.

If there is not a threshold t of honest voting servers, users cannot vote. Moreover, note that, when a

node refuses to work, the user can simply switch to an honest node.

Trust Assumption 4. There is, at least, one honest anonymizer in a mix network.

We implement a mix network between the user and the tallier, which the user can opt out of during

the voting phase. This mixnet intends to simulate an anonymous channel, which provides privacy guar-

antees to the users. While only one honest mix is enough to ensure anonymity, a sequence of mixes

would yield greater privacy assurance.

Regarding anonymization, we make some additional considerations. First, we assume that there

exist, at all times, enough ballots to be shuffled, that is, multiple users vote approximately at the same

time. If this condition is not fulfilled, a dishonest tallier could correlate ballots and users through timing.

And second, the symmetric keys are always generated at random and used only once, otherwise privacy

may be compromised.
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Trust Assumption 5. The ECDLP is hard to solve, the RSA assumptions hold and the SHA-256 hash

function implements a random oracle.

The RSA is a standard and well-studied assumption. The ECDLP is less studied, although there

exists no efficient method to solve it. Should these assumptions be compromised, an attacker would be

able to pretend to be any authority of the voting system and vote on behalf of other voters, respectively.

Trust Assumption 6. The communication channels between all entities provide confidentiality and

integrity.

This assumption is inherited from the security model of EUNOMIA. While we do not study and ap-

proach these channels in this work, one can suggest the use of well-known secure networking protocols,

such as TLS [95], to ensure confidentiality and integrity. If this assumption does not hold, the protocol

cannot be sure of the authenticity of any data exchanged.

6.1.2 Threat Model

Threat models are useful to address potential threats to a system. In this section, we define some

types of attackers, present some possible attacking scenarios and evaluate the security of the proposed

protocol, with respect to each of the attackers and scenarios. Then, we either set forth the mitigation

techniques performed, or choose to accept the risk.

Before starting the security evaluation of the system, we need to know what type of adversary the

system is running against, so some potential attacker profiles are outlined.

Attacker 1. This is the most basic attacker. It can be anyone with a personal computer and very limited

resources. We assume this entity is registered in EUNOMIA since it would allow easier interaction with

the system, although this may not be the case. Through the digital companion, they can communicate

with some services of the EUNOMIA node, including the voting service, but they cannot tap network

channels nor access other personal computers.

Attacker 2. We generally define this attacker as someone with full access to the voting server of an

EUNOMIA node. It has many capabilities, such as interacting directly with other voting servers and with

all services within the same node. It can add, modify and delete data related to the voting protocol and

can tap, but not interfere with, messages exchanged between other voting servers. This attacker, in

particular, is an abstraction, and two concrete variants are defined below.

Attacker 2.1. It can be any node, except the one which deals with the user.

Attacker 2.2. It is the node which interacts directly with the user.
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Attacker 3. This attacker is the strongest one. It has the power to control some of the nodes, including

the node in contact with the user. Also, it can tap all network channels between every system entity,

including user devices, as well as introduce counterfeit messages, and modify and suppress messages

in transit.

One important note about all of these attackers is that they can only perform polynomial-time com-

putations. Additionally, the collusion between attackers of different categories, particularly between

attacker 1 and attackers 2 or 3, can occur, nevertheless it is not approached since it presents no threats

besides the ones already addressed.

The next step is to specify some expected (normal) scenarios of the voting protocol, which mention

the components involved and describe a simplified flow of the actions.

Expected Scenario 1. The user scrolls through the posts in the digital companion, chooses one post,

generates a valid ballot with their choice, votes (with or without anonymization), the tallier gathers the

required signatures and the ballot is stored.

Expected Scenario 2. The user deletes their vote through the digital companion and the manager

removes the ballot from storage (or bulletin board).

Expected Scenario 3. The tallier gathers all ballots, for a certain post, from the bulletin board, verifies

their signatures and delivers the correct results to the digital companion, to be presented to the users.

To identify the threats to our system, we use the well-known STRIDE [72] technique. The name

STRIDE is a acronym for the threats to the most relevant security properties: spoofing (authenticity),

tampering (integrity), repudiation (non-repudiation), information disclosure (confidentiality), denial of ser-

vice (availability) and elevation of privilege (authorization). We evaluate the security of our protocol with

regard to these six categories.

Some attacking scenarios are now defined, which are related to the normal executions of the proto-

col. For each scenario, the compromised STRIDE property is specified. We highlight that only voting

(which includes validation) and tallying settings are considered, as we assume that registration (TA 2) is

conducted properly.

Attacking Scenario 1. The user tries to vote more than once on the same post. (Tampering)

Attacking Scenario 2. The user tries to vote while pretending to be another user. (Spoofing)

Attacking Scenario 3. The attacker tries to vote using an unauthorized ballot. (Tampering)

Attacking Scenario 4. The attacker validates an invalid ballot and claims that it was not validated by

them. (Repudiation)
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Attacking Scenario 5. The user votes and the attacker tries to change the vote during voting. (Tam-

pering)

Attacking Scenario 6. The user votes and the attacker tries to reveal the vote, along with the identity

of the user, during or after voting. (Information Disclosure)

Attacking Scenario 7. The attacker tries to change or delete the vote of a user stored in the bulletin

board. (Tampering)

Attacking Scenario 8. One or more attackers try to vote, request tallies or delete ballots multiple times

simultaneously, in an attempt to drain the resources of a voting server. (Denial of Service)

Attacking Scenario 9. The attacker produces an incorrect tally deliberately and claims they are not

responsible. (Repudiation)

We now proceed to the core task of the threat modeling process, which is the identification of

threats. To carry out this process efficiently, the threats are grouped by attacker, from the weakest

to the strongest. For each attacker, we indicate the normal operation of the protocol, the eventual at-

tacks which can be conducted in that scenario, along with the compromised component. Finally, each

discovered threat states the mitigation measures implemented.

We underline that, for each attacker, only applicable expected scenarios and viable attacking sce-

narios are approached, considering their capabilities. Moreover, whenever the mitigation is related to a

trust assumption, we refer to that trust assumption as TA.

Attacker 1 (User)

Expected

Scenario

Attacking

Scenario
Component Mitigation

1

1 Tallier
The ring signature and the pseudonym prevent double

voting.

2 Tallier
The pseudonym cannot be calculated by anyone, except

by the owner of the private key (TA 5).

3 Tallier The ring signature grants the eligibility.

5 Tallier
During voting, the tallier drops every incoming request to

vote with the same pseudonym.
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1

6 Tallier

The identity of the voter is hidden behind the pseudonym

after voting (TA 5). This attacker cannot do anything

during voting.

8 Tallier
Each node implements security measures against denial

of service.

2

6 Manager
The credentials of the voter are hidden behind the

pseudonym (TA 5).

8 Manager
Each node implements security measures against denial

of service.

3 8 Tallier
Each node implements security measures against denial

of service.

Table 6.1: Threat identification for Attacker 1.

Attacker 2.1 (Random Node)

Expected

Scenario

Attacking

Scenario
Component Mitigation

1

3 Tallier
The ring signature can only be computed by a valid voter

(TA 5) and a threshold t of talliers must sign it.

4 Tallier The ballot is signed when validated.

5 Tallier The ballot is signed using the ring signature.

6 Anonymizer

The corruption of this anonymizer can be afforded as

only one honest anonymizer is required to provide

anonymization (TA 4).

2 Does not apply because this attacker does not deal directly with the user.

3

4 Tallier The ballot is signed when validated.

6 Tallier
The credentials of the voter are hidden behind the

pseudonym (TA 5).

9 Tallier Every tally is signed before being returned.

Table 6.2: Threat identification for Attacker 2.1.
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Attacker 2.2 (User Node)

Expected

Scenario

Attacking

Scenario
Component Mitigation

1

2 Tallier

A valid pseudonym can only be calculated by the owner

of the private key. Though, the attacker can access the

encrypted private key.

3 Tallier
The ring signature can only be computed by a valid voter

(TA 5) and a threshold t of talliers must sign it.

4 Tallier The ballot is signed when validated.

5 Tallier The ballot is signed using the ring signature.

6 Anonymizer

As first anonymizer, it can keep the identity of the user

and try to correlate after it leaves the circuit. In any case,

only one honest anonymizer is needed to provide

anonymization (TA 4).

2

6 Manager
After voting, the credentials of the voter are hidden

behind the pseudonym (TA 5).

7 Bulletin Board
The ring signature ensures the integrity of the ballot.

However, there is no protection against deletion.

3 Same as Attacker 2.1.

Table 6.3: Threat identification for Attacker 2.2.

Attacker 3 (Set of Nodes)

Expected

Scenario

Attacking

Scenario
Component Mitigation

1 2 Tallier

A valid pseudonym can only be calculated by the owner

of the private key. Though, the attacker can access the

encrypted private key.
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1

3 Tallier

If the attacker controls a threshold t of talliers, it can vote

as many times as it wants, on any post (TA 3). However,

the ballot will not have a valid ring signature, and

eventual upcoming eligibility checks will not uphold.

4 Tallier The ballot is signed when validated.

5

Tallier,

Network

Channels

The ballot is signed using the ring signature (TA 5) and

network channels provide security guarantees (TA 6).

6 Anonymizer

If the attacker controls all anonymizers of the mix

network, users might lose their anonymity (TA 4). After

voting, the ring signature and the pseudonym hide the

credentials of the voter, even if all nodes are

compromised (TA 5).

2

6 Manager

After voting, the credentials of the voter are hidden

behind the pseudonym, even if all nodes are

compromised (TA 5).

7 Bulletin Board

The ring signature ensures the integrity of the ballot,

even if all nodes are corrupted (TA 5). However, there is

no protection against deletion, which can go undetected

with high probability if multiple nodes are malicious.

3 Same as Attacker 2.1 and 2.2 as controlling multiple nodes does not influence tallying.

Table 6.4: Threat identification for Attacker 3.

6.1.3 Ring Signature

This section formalizes the ring signature scheme proposed in Section 4.4.2. The ring signature is a

tuple of algorithms (Generate, Sign, Verify, Link), which are described below.

• Generate is a probabilistic polynomial-time (PPT) algorithm, which produces a key pair (y, x),

where y is the public key and x is the private key.

• Sign is a PPT algorithm which, upon receiving a message m, a set of public keys Y, a private

key x and a post identifier p, outputs a signature σ on message m, which contains the pseudonym

nym and the set Y.

• Verify is a polynomial-time algorithm which, on input of a message m, a post identifier p and a

signature σ (which already contains the set of public keys), returns the validity of the signature.
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• Link is a polynomial-time algorithm, which receives two signatures σ1 and σ2, and returns whether

they were issued by the same signer, for the same post.

For this scheme, three fundamental properties are proposed: linkability, anonymity1 and unforgeabil-

ity. In the following paragraphs, each property is clarified, and their validity and applicability to the ring

signature is demonstrated.

Linkability. A ring signature is linkable if one can say that two distinct ring signatures were signed

by the same private key, for the same post, independently of the set of public keys or the message.

Relevantly, if the same private key generates two ring signatures for different posts, these will not be

linkable.

Theorem 6.1.1 (Linkability). The proposed ring signature scheme provides linkability.

Proof. Proving that our scheme achieves linkability is straightforward. The pseudonym generated by

the Sign algorithm is deterministically computed using the post identifier p and the private key x of

the signer. Therefore, the Link procedure simply has to compare the pseudonyms of two distinct ring

signatures to know if they are linked.

Anonymity. A ring signature is anonymous if it is not possible to determine which ring member actually

issued the signature. In our construction, the public key can be inferred when the same signer issues

a valid signature for the same post, and the set of public keys is completely different (but contains their

public key). Furthermore, the signer loses anonymity if either their private key is revealed or every private

key, except theirs, is disclosed.

Theorem 6.1.2 (Anonymity). The proposed ring signature construction is anonymous under the discrete

logarithm assumption, in the random oracle model.

Proof. The ring signature is built upon the proofs of partial knowledge by Cramer et al. [40]. Therefore,

to demonstrate that it is infeasible for the verifier to know which private key was used to issue the

signature, one just has to prove witness indistinguishability, that is, a cheating verifier, after engaging

in multiple executions of the protocol, cannot tell which witness the prover is using. Remind that our

scheme is a conversion from an interactive HVZK protocol to a single-move, signature scheme, using

the Fiat-Shamir heuristic [54]. We refer to Theorem 8 of Cramer et al. [40] to prove, based on the

classic interactive HVZK sigma protocol, that the interactive proofs of partial knowledge are, indeed,

witness indistinguishable. The authors also suggested that these proofs of partial knowledge could be

transformed into ring signature schemes, such as ours. In fact, replacing the honest verifier with a

random oracle [16] is comparable to forcing the verifier to be honest, since the random oracle generates

random and independent challenges, similarly to an honest verifier [45]. Therefore, zero-knowledge

is automatically achieved when using random oracles, and, as attested by Cramer et al. [40], zero-

knowledge implies witness indistinguishability. Since the hash function used is assumed to work as a

random oracle, our ring signature is witness indistinguishable.
1Anonymity in ring signatures can also be called signer-ambiguity.
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Unforgeability. This notion refers to the impossibility of an entity to issue a ring signature if they do

not own a private key of the ring. In other words, a ring signature is unforgeable if no one besides the

ring members can generate a valid ring signature.

Theorem 6.1.3 (Unforgeability). The proposed ring signature scheme is unforgeable under the discrete

logarithm assumption, in the random oracle model.

Proof. To prove the system is secure against existential forgery2, the following contradiction is formu-

lated: if an entity, which does not belong to the ring, can generate a valid ring signature with non-

negligible probability of success, then the DLP (or ECDLP) can be solved in polynomial time with non-

negligible probability. This statement has been proved by Pointcheval and Stern [93], in the random

oracle model [16], for signatures schemes which result from the transformation of HVZK protocols.

6.2 Compliance

In Section 1.2, the desired properties of the system were outlined. This section assesses the com-

pliance with respect to those properties, taking into account the security evaluation presented in the

previous section.

Accuracy. We split the accuracy property into two parts: completeness and soundness. Regarding

completeness, if the third trust assumption holds, one can be sure that valid ballots are appropriately

signed and added to the bulletin board. The system also satisfies soundness by making sure, through

the ring signature, that only eligible voters are able to cast valid ballots. However, note that a threshold of

corrupt talliers can post an invalid ballot (without a ring signature) to the bulletin board. Still, any honest

party verifying the tally can trivially identify all invalid ballots.

Privacy. The identity of the user is hidden behind a mix network and a pseudonym, so privacy is

fulfilled. However, if one were to break the fourth assumption, users could be associated with their

ballots. Furthermore, and more serious, if the underlying cryptographic assumptions are broken, all

ballots, including previously cast ones, can be trivially correlated to the public keys of the voters, by

inverting the pseudonym. Still, if the registration process is executed honestly, the public keys are not

linkable to the users.

Uniqueness. The pseudonym allows the system to ensure that a voter cannot vote twice on the same

post, and the ring signature guarantees that the pseudonym is well formed. Unless the ring signature

scheme is broken, which contradicts the fifth assumption, it is not possible to vote twice with the same

key. Uniqueness could, however, be disrupted if a user owns multiple registered key pairs, which cannot

happen because the registration process is performed correctly. Finally, duplicate ballots can still be

2Existential forgery refers to the possibility of an adversary to forge a signature on a single message, over which they have no
control, so it may have no meaning or be random [61].
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validated if a threshold of talliers are corrupted. Nevertheless, this can be easily detected later by any

honest entity verifying a tally.

Verifiability. We divided verifiability into two components: individual and universal. Voter (or individ-

ual) verifiability is trivially achieved thanks to the possibility of any user to check their vote through the

pseudonym. Regarding universal verifiability, one can request access to the bulletin board to verify if all

recorded and valid ballots are present in the tally calculated by the voting server. Furthermore, everyone

can confirm that only eligible voters cast a ballot, by verifying the ring signatures of each ballot.

Robustness. Ensuring availability when the system partially fails is inherited from EUNOMIA. In fact,

most of the data is synchronized across the federation and, because the system is decentralized, some

node failures can be tolerated. Additionally, in Section 6.1.2, it is shown that the system is resistant to

malicious behavior performed by users and nodes, and even to the collusion of some nodes.

6.3 Performance

In this section, the performance of the proposed protocol is evaluated. Because the system deals

directly with users, performance is a fundamental aspect, both for voting and tallying. To conduct a

thorough evaluation, we assess the time taken by some operations, as well as the size of the data ex-

changed, while taking into consideration the environment in which each of the components is executed.

These assessments were carried out until stable and reliable measurements were achieved. In addition,

all results are discussed and some deliberations are made regarding tradeoffs and scalability.

Setup. As mentioned before, the solution encompasses two parts: the client library, which runs on

user devices, and the voting server, which executes on remote machines. To simulate the client, a

personal computer running MacOS 11, with four 2.6 GHz Intel Core i7 cores and 16 GB of RAM was

used. This computer operates over a network averaging 100 Mbps of speed. The experiments for the

voting server were deployed on a virtual machine running Ubuntu 18.04, with one Intel Core processor

capable of 2.5 GHz of clock speed, 1 GB of RAM and networked on a 100 Mbps internet connection.

Both environments attempt to recreate the expected conditions in which the protocol is executed.

Registration. This process involves the generation of credentials, which are then processed by a

single voting server. After five tests, we concluded that the entire registration process takes around

900 ms, including network communication time, and that 0.6 KB of data are exchanged. On the voting

server side, this operation lasts 725 ms on average, with a standard deviation of 60 ms. The generation

of credentials in the device of the user, which comprises the computation of an Ed25519 key pair,

generation of a symmetric key using PBKDF2 and encryption of the private key with such symmetric

key, takes an average of 12 ms to complete, with a standard deviation of 2.5 ms.
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Voting. To evaluate the performance of this stage, we started by assessing the ring signature, which

is the core of the voting phase. Additionally, we measured the time to cast a vote, from the time the

user decides to vote until a response is returned from the voting server. Table 6.5 presents these

metrics, namely, the average time to generate and verify one ring signature with k keys, the size of

that ring signature, and the mean time it takes to vote, from the perspective of the client, depending

on the number of keys k and on the number of talliers t required to sign the ballot. Furthermore, the

average voting time from the standpoint of the voting server (excluding communication with users) is

also included in the metrics, in parenthesis. Finally, for each k and t, five experiments were conducted,

and these were performed using trust/no-trust3 ballots.

Ring Signature Voting

Generation Verification Size t = 1 t = 2 t = 3

k = 5 61 ms 23 ms 2.3 KB 694 (409) ms 2151 (1847) ms 2870 (2567) ms

k = 10 107 ms 23 ms 4.5 KB 786 (386) ms 2258 (1916) ms 2927 (2565) ms

k = 30 291 ms 48 ms 13.1 KB 905 (371) ms 2500 (1932) ms 3163 (2599) ms

k = 100 924 ms 110 ms 43.1 KB 1634 (468) ms 3183 (1974) ms 3927 (2759) ms

Table 6.5: Performance of the voting phase for a trust/no-trust ballot.

Regarding the ring signature, a relevant note is pointed out. Generally, elliptic curve libraries pre-

compute or cache some values in order to speed up future operations, which is the case for our li-

braries. When k changed, the times were registered only after two or three trials, until stable results

were achieved. Nevertheless, one could expect them to decrease slightly more, both for generation and

verification, due to the caching capability.

Concerning the voting times, there are a few factors which can influence these measurements. First,

when t > 1, the receiving tallier is responsible for broadcasting the ballot and gathering signatures. This

process is easily affected by the node communication system. In fact, communication overheads can be

irregular, and the estimated overhead per message is between 150 and 300 ms.

Second, the voting server is a virtually isolated component, as mentioned in Section 5.2. As a matter

of fact, it communicates with other services in the same machine using a virtual network. The devel-

opment of decoupled services, despite being an advantage when integrating new services, produces a

great overhead when services need to interact with each other. This is applicable to the voting compo-

nent because multiple requests are made to the authentication, discovery and storage services.

Finally, for t = 2 and t = 3, one would expect the voting times to be similar, since broadcasting to

talliers and subsequent operations should be concurrent. Once again, this is due to unusual behavior of

the node communication service. For all these reasons, we establish the reference times to validate a

ballot as the ones when t = 1, from the perspective of the voting server.

By default, the system uses three talliers (t = 3) and five public keys (k = 5) when voting. Natu-

3Remember that a trust/no-trust ballot is the simplest and lightest one, where the user chooses whether to trust or not to trust
the information of a post. This ballot takes around 0.1 KB of space, without features, ring signature or tallier signatures.
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rally, when this threshold t of talliers increases, the system becomes more robust and tamper-resistant,

nonetheless time performance is expected to decline due to the aforementioned overheads.

Regarding the number of keys k, there exists another privacy and performance trade-off, that is,

when k increases, privacy improves but performance worsens. Performance was prioritized by setting

k = 5 by omission, which implies that an adversary would need to corrupt four users to be able to infer

which key was indeed used to issue the ring signature. Still, in the future, the system may allow users to

choose the number of keys used to build their ring signature.

Tallying. Along with voting, this is one of the most important metrics of the protocol. Because the

system is continuously issuing tallies, the evaluation and optimization of this process is essential for this

work. We recall that each ballot is validated upon a tallying request, which encompasses the verification

of all signatures of all ballots. By default, one ballot is signed by three talliers. Table 6.6 lists the tally

issuance times for n trust/no-trust ballots, with a ring signature of size k = 5, each of them signed by t

talliers. These timing statistics only consider the perspective of the voting server.

t = 2 t = 3 t = 4

n = 10 61 63 59

n = 100 139 136 124

n = 500 372 411 414

Table 6.6: Average tallying times (in milliseconds).

Note that, after running benchmark tests using the OpenSSL4 tool, the voting server verifies an

RSA 2048-bit signature in 0.032 ms on average. That being said, it can be seen that there exists no

substantial difference when using between two and four talliers. The time difference could be noticeable

though, if the number of ballots n was to be significantly greater than 500. For example, based on

the benchmark metrics, if n = 100000, the extra signatures would take an additional 3.2 seconds to be

verified.

Some relevant considerations are still pointed out. First, these calculations do not include the time to

retrieve tallier certificates from the discovery service, which takes, on average, 100 ms. We have decided

to exclude it since it is only done once, and then cached locally. Second, as mentioned before, these time

measurements do not cover communication time with the client. Anyway, based on our measurements

and under the specified conditions, we estimate that the additional networking time would be between

100 and 200 ms, for 10 < n < 500.

Furthermore, one might find that the results for n = 10 and n = 100 are not anticipated, since the

expectation would be for the average times to increase alongside the number of signatures to be verified.

In fact, as mentioned before, the voting server relies on another service for storage which, despite being

on the same server, may not deliver linear timing results. Therefore, this particular outcome may be due

to a few factors, such as irregularities in the communication or data caching policies.

4https://www.openssl.org (accessed December 31, 2020)
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Finally, there is one valuable optimization, which can reduce tallying times. The ballots could be

cached and only new ballots would be retrieved whenever a new tally is requested. This ballot caching

feature was not implemented yet, although we leave it as future work.
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Chapter 7

Conclusions

In the past decades, the number of people accessing information through social media and the

internet has been increasing. In fact, nowadays, it is significantly easier to reach people using computer-

mediated communication, and to change their beliefs or attitudes.

Disinformation has been gaining momentum in the last few years, either in the form of deceptive

advertising, distorted news, or even government propaganda. This is a very controversial issue, since

online persuasion has become easier and more common throughout the past decades.

Following the growth of these phenomena, the EUNOMIA Project comes along to help fight the

spread of disinformation. This platform comprises multiple techniques to assist people in assessing the

reliability of information on social media. Among them, there is a voting system which allows users to

vote on trustworthiness characteristics of social networking posts.

Nevertheless, designing such a voting system is a challenging task. As a matter of fact, it should

support multiple simultaneous, open-ended voting processes with flexible ballots, and must be able to

grant eligibility and avoid double voting without compromising privacy. Furthermore, it has to respect

the properties set forth in Section 1.2, such as accuracy and verifiability. To date, and to the best of our

knowledge, there are no systems which feature these characteristics.

In this work, a proposal for the above-mentioned internet voting system was elaborated. Naturally,

this system is integrated in EUNOMIA, and designed according to its principles, yielding robustness.

We use ring signatures and pseudonyms to grant eligibility, and implement a mix network to ensure

anonymity. Additionally, the system is fully transparent and provides users with the capability of verifying

their votes, and that the tallying process is performed correctly.

The details of the implementation were advanced in Chapter 5, and a thorough security and perfor-

mance evaluation was conducted, which results are presented in Chapter 6. The evaluation showed the

system complies with the initially defined properties, and that it puts forward the adequate mechanisms

to fight against a range of relevant attacks, carried out by both weak and powerful attackers.

As referred in Section 5.3.1, the entire EUNOMIA ecosystem, including, and relevantly, the voting

component, underwent an initial test with a few hundred users. The next testing phase is planned for
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January 2021, and will be performed in association with the social journalism platform Blasting News1,

which counts with more than 100 million monthly readers.

7.1 Achievements

Throughout the course of this dissertation, multiple achievements were accomplished, which com-

plied with the initially defined objectives. These achievements are listed below.

• Comprehensive survey on electronic voting systems, which includes their strengths and limitations.

• Proposal for an efficient internet voting protocol, based on ring signatures, which features accuracy,

privacy and verifiability, while supporting multiple simultaneous, open-ended voting processes and

flexible ballots.

• Full prototype of this voting system, implemented in Java and Javascript.

• Proof of concept for this system, in the context of fighting disinformation, with three hundred users.

7.2 Future Work

The proposed system can be further optimized. We leave some future work suggestions, which

would make this solution more efficient and secure.

First, the proposed ring signature requires O(n) (linear) time to be generated and verified. This

scheme could be improved by using a technique which allows the generation and verification of the

ring signature in O(1) (constant) time. One possibility could be the use of accumulators [19] in zero-

knowledge set-membership proofs [31]. Nevertheless, this improvement is significantly more complex

than the one proposed, and has unwieldy implementation details.

Another efficiency optimization, already mentioned in Section 6.3, is to cache ballots when tallying,

which would significantly reduce tallying times and make the system more efficient.

Shifting to security enhancements, we suggest the introduction of dummy ballots in the circuit of

anonymizers to deceive potential adversaries. This refinement removes the need to assume that there

would be enough ballots to be shuffled. Additionally, another optimization to the mix network is to add

padding to all encrypted ballots, such that the ciphertexts would always have the same size.

The ballot deletion process can also be improved, in order to avoid unauthorized deletion of ballots

by randomly generating pseudonyms. The solution would be to use a zero-knowledge proof to prove the

correct computation of the pseudonym.

Finally, we leave feature validation to be implemented in the future.

1https://www.blastingnews.com (accessed December 31, 2020)
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ceedings of the 25th International Conference on World Wide Web, pages 263–273. International

World Wide Web Conferences Steering Committee, 2016.

[92] B. Pfitzmann. Breaking an efficient anonymous channel. In Workshop on the Theory and Appli-

cation of of Cryptographic Techniques, pages 332–340. Springer, 1994.

[93] D. Pointcheval and J. Stern. Security proofs for signature schemes. In International Conference

on the Theory and Applications of Cryptographic Techniques, pages 387–398. Springer, 1996.

[94] M. O. Rabin. Digitalized signatures. Foundations of secure computation, pages 155–168, 1978.

[95] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, Aug. 2018.

[96] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key

cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[97] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In International Conference on the

Theory and Application of Cryptology and Information Security, pages 552–565. Springer, 2001.

[98] K. Sako and J. Kilian. Secure voting using partially compatible homomorphisms. In Annual Inter-

national Cryptology Conference, pages 411–424. Springer, 1994.

[99] K. Sako and J. Kilian. Receipt-free mix-type voting scheme. In International Conference on the

Theory and Applications of Cryptographic Techniques, pages 393–403. Springer, 1995.

[100] D. Sandler, K. Derr, and D. S. Wallach. Votebox: A tamper-evident, verifiable electronic voting

system. In USENIX Security Symposium, volume 4, page 87, 2008.

[101] C.-P. Schnorr. Efficient identification and signatures for smart cards. In Conference on the Theory

and Application of Cryptology, pages 239–252. Springer, 1989.

[102] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[103] N. P. Smart. Cryptography made simple. Springer, 2016.

[104] P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu, and D. S. Wong. Separable linkable

threshold ring signatures. In International Conference on Cryptology in India, pages 384–398.

Springer, 2004.

79



80



Appendix A

Diagrams

A.1 Voting Components

Figure A.1: Components of the solution.
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A.2 Voting Protocol

Figure A.2: Sequence diagram of the proposed protocol.
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