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Deep Neural Models for ICD Coding from Clinical Text
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Abstract: The International Classification of Diseases (ICD) has been adopted worldwide in the healthcare domain. However, manual
ICD coding of clinical documents is both time-consuming and error-prone, and it represents a huge monetary burden for a health facility.
Thus, machine learning and deep learning algorithms can and have been used to automate ICD coding. This dissertation presents a
novel deep neural network method for assigning ICD codes to clinical discharge summaries, combining word embeddings, recurrent
units, and neural attention. The neural network explores the hierarchical nature of the input data by building representations at word
and sentence-levels, also including at each level an attention mechanism. Moreover, several innovative strategies were tested together
with the proposed model, including multi-label smoothing regularization, leveraging the hierarchical structure of the ICD codes, as well
as data augmentation strategies or the use of alternative recurrent units. Experiments were conducted on the publicly available MIMIC
III dataset, showing that the proposed model outperforms several previous deep learning models in most performance metrics. The
proposed approach has the potential to be applied in hospitals and other health facilities, as part of a recommendation system for
clinical coding.
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1 INTRODUCTION

In the last decade, we have seen the progressive adoption
of the Electronic Health Record (EHR) worldwide, which
consists of a computerized repository for patients’ health
information [1], resulting in a tremendous amount of digital
health data. Typically, EHRs include structured data, such
as laboratory results, medications, and diagnoses, but also
unstructured text, such as radiology reports, progress notes,
discharge summaries, and other clinical narratives. The use
of all these data represents a promising approach to ana-
lyze patient information and better inform clinical decision
support systems that can deliver personalized recommen-
dations in real-time.

In this context, the World Health Organization (WHO)
proposed the International Classification of Diseases (ICD)1

coding system, which has been widely adopted by physi-
cians and other health care providers, as this represents a
standardized way of indicating diagnoses and procedures
that are performed during a patient visit. ICD codes are
used for many purposes, such as epidemiological studies,
billing, and predictive modeling of the patient state [2].
Traditional ICD coding relies on human experience, which
is time-consuming, error-prone, and represents a substantial
monetary burden for a health facility. Medical coders review
all pertinent medical record information and attribute the
appropriate codes following rigid guidelines and conven-
tions [2, 3]. Therefore, several types of errors frequently
happen in this process. Firstly, ICD codes are organized in
a hierarchical structure, where the top-level codes represent
generic disease categories, and the bottom-level codes rep-
resent more specific diseases. It is common that medical
coders either select incorrect subtypes of a particular dis-
ease, since the difference between disease subtypes is very
subtle, or attribute an overly generic ICD code instead of a
more specific one (undercoding). Also, clinical notes present

1http://www.who.int/classifications/icd/

abbreviations and synonyms, resulting in ambiguities and
misunderstandings when coders are assigning ICD codes
to the notes. Finally, there does not necessarily exist a one-
to-one mapping between diagnosis descriptions and ICD
codes. In many cases, several closely related diagnosis de-
scriptions should be mapped to a single ICD code, resulting
in an unbundling error if the physicians code each disease
separately.

Given the aforementioned challenges, a huge effort has
been placed on using machine learning and deep learning
algorithms to automatically assign ICD codes to clinical
text. However, this task still presents several challenges
associated with the medical note representation and the
medical coding system. Regarding the first case, clinical
notes correspond to long text narratives with a vast medical
vocabulary, making it difficult for a neural network model to
encode and select critical information. Secondly, the medical
coding system has a very high and sparse dimensional label
space. There is a large number of available codes, e.g., over
17, 000 in ICD-92 and 180, 000 in ICD-103. Also, most of
the codes appear very seldom, resulting in few-shot learn-
ing problems, while a few codes occur substantially more
than others. Finally, the automated models for ICD coding
should be computationally efficient and generalizable across
languages, avoiding the need for pretraining huge models
on large amounts of texts from the clinical domain.

Methods for automatic ICD coding, using a supervised
machine learning approach and specifically relying on deep
neural networks, were already developed at Instituto Su-
perior Técnico through a partnership with the Portuguese
Directorate-General of Health (Direção Geral da Saúde),
envisioning the coding of death certificates [4]. This work
reports on extensions over that previous work, applying
some novel ideas for automatic classification of full-text

2https://www.cdc.gov/nchs/ICD/ICD9cm.htm
3https://www.cdc.gov/nchs/ICD/ICD10cm pcs.htm
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contents corresponding to hospital discharge summaries.
Several innovative strategies were tested together with the
proposed model, including multi-label smoothing regular-
ization, as well as data augmentation strategies or the use of
alternative recurrent units.

Following prior work, the proposed deep neural net-
work method was evaluated on the publicly available Med-
ical Information Mart for Intensive Care (MIMIC) III dataset
[5]. Experimental results showed that the model with the
best performance outperforms several previous deep learn-
ing models in most performance metrics. In addition, the
proposed multi-label smoothing strategy, leveraging the
hierarchical structure of the ICD codes, together with the
adoption of a dice loss, in specific the log-cosh Tversky
loss, in combination with the binary cross-entropy objective,
proved to be very effective in this classification task. Data
augmentation, based on a back-translation process, as well
as pretraining the word embeddings with the domain data
were also incorporated into the full proposed model.

The rest of the document is organized as follows. Section
2 outlines previous related work focusing on automatic ICD
coding of clinical text. Section 3 presents the architecture of
the deep neural network that was considered for addressing
ICD coding as a supervised classification task, and the
section also details all the extensions that were proposed on
top of the previous model from Duarte et al. [4]. Section
4 reports the experimental evaluation, presenting dataset
statistics for MIMIC III, the evaluation metrics, and the
obtained results, establishing a comparison of different vari-
ants of the full model against state-of-the-art work in ICD
coding. Finally, Section 5 summarizes the main conclusions
and presents possibilities for future work in the area.

2 RELATED WORK ON AUTOMATIC ICD CODING

Automatic ICD coding has been a hot research problem in
the clinical informatics domain for more than two decades
[6, 7]. Early work for assigning ICD codes to clinical text
usually relied on supervised machine learning approaches.
Perotte et al. [8] described two approaches, both utilizing
Support Vector Machines (SVMs): one treats each ICD code
independently (flat SVM) and the other uses the hierarchical
nature of the ICD codes (hierarchy-based SVM), showing
that when the hierarchical nature of the codes is leveraged,
the modeling is improved. Koopman et al. [9] proposed a
hierarchical SVM approach to assign cancer-related ICD-10
codes to death certificates. First, a single binary classifier
is trained to assign a cancer/nocancer label to a particular
death certificate; then, if positive, a multiple classifier, one
for each type of cancer, is used to assign a specific ICD-10
code to a death certificate. This two-level architecture lead
to a substantial improvement in classification effectiveness.

More recently, due to the breakthroughs obtained by
neural network models in several Natural Language Pro-
cessing (NLP) problems [10], deep learning approaches have
been proposed to handle the ICD coding task. Prakash
et al. [11] introduced condensed memory neural networks
(C-MemNNs), i.e., a model with iterative condensation of
memory representations that preserves the hierarchy of
features in the memory. The researchers combine an ex-
ternal clinical knowledge source (in this case, information

from Wikipedia) with the free-text clinical notes, and use
memory networks’ learning capability to infer the most
probable diagnosis correctly. This work’s major contribution
to memory networks is the addition of a condensed memory
state, which is obtained via the iterative concatenation of
successively lower-dimensional representations of the in-
put memory state. Experiments showed that the proposed
model outperforms other variants of memory networks to
predict the most probable diagnoses.

Shi et al. [12] proposed a hierarchical deep learning
model, featuring an attention mechanism, for automatically
assigning ICD diagnosis codes given written diagnosis. For
each diagnosis description, they use both character-level
Long-Short Term Memory (LSTM) and word-level LSTM
networks to obtain intermediate representations. They also
employ a two-level LSTM architecture for each ICD code to
obtain the hidden representation of its long title description.
Since typically the number of written diagnosis descriptions
does not equal the number of assigned ICD codes, they
apply an attention mechanism for choosing which diagnosis
descriptions are important when performing coding. This
model outperforms others using character-unaware encod-
ing methods or without attention mechanism.

A study conducted by Duarte et al. [4] addressed the
assignment of ICD-10 codes for causes of death, by ana-
lyzing free-text descriptions, in death certificates, autopsy
reports, and clinical bulletins from the Portuguese Ministry
of Health. They leveraged a deep neural network that
combines word embeddings, a hierarchical arrangement
of recurrent units, neural attention, and mechanisms for
initializing the weights of the final nodes of the network.
The neural network explores the hierarchical nature of the
input data, i.e., words from different fields (word-level)
and the fields from different documents (field-level), using
a bidirectional Gated Recurrent Unit (bi-GRU) and an at-
tention mechanism at both levels. Furthermore, the authors
proposed the initialization of the output nodes with the re-
sult of a Non-negative Matrix Factorization (NMF), applied
to a matrix that encodes label co-occurrences in the training
data. Experimental results attested to the contribution of the
different neural network components, such as the attention
mechanism and the NMF initialization. The model proposed
by Duarte et al. [4] is, in fact, the main source of inspiration
for the approach described in this work.

Mullenbach et al. [13] presented Convolutional Attention
for Multi-Label classification (CAML), i.e., a Convolutional
Neural Network (CNN) based method for automatic ICD
code assignment. The authors employed a label-wise atten-
tion mechanism in ICD coding, which allows the model to
learn distinct document representations for each label. The
neural network passes text through a convolutional layer to
compute a base representation of the text of each document
making binary classification decisions for each ICD code.
Rather than a pooling operation, they apply an attention
mechanism to select the most relevant parts of the document
for each possible code. Also, a regularization component
encourages each code’s parameters to be similar to those
of codes with similar textual descriptions (DR-CAML). Al-
though CAML outperforms previous models on all metrics,
DR-CAML performs worse on most metrics when com-
pared with CAML. The experiments were conducted on
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the MIMIC datasets [5, 14], and the splits of datasets were
publicly available, becoming a milestone for reproducibility
in terms of methods for automated ICD coding.

However, models such as the one proposed by Mul-
lenbach et al. [13] employ flat and fixed-length convolu-
tional architectures. There are evident drawbacks in this
type of approaches for multi-label clinical classification,
which clearly requires variable-size features (such as texts
fragments about diseases or procedures) for better repre-
sentation, since the length and grammar vary significantly
in different documents [15, 16]. Therefore, Xie et al. [15]
improved the convolutional attention model by leveraging
a densely connected CNN together with multi-scale feature
attention. Their CNN consists of several stacked convo-
lution blocks via dense connections, which can produce
variable n-gram features layer per layer. After that, the
authors apply a multi-scale feature attention mechanism to
adaptively select the most informative n-gram features for
each word according to the neighborhood. The authors also
incorporate graph CNN to capture both hierarchical rela-
tionships among medical codes and the semantics of each
code. The proposed model, named, MSATT-KG outperforms
the CAML method by a considerable margin. Li and Yu [16]
proposed a novel CNN architecture, combining multi-filter
CNN and residual CNN. To capture patterns with different
lengths, the authors leverage the multi-filter CNN, where
each filter has a different window kernel size (i.e., word
window size). On top of each filter, there is a residual con-
volutional layer, which consists of several residual blocks.
Each of these blocks consists of three convolutional filters,
allowing the enlargement of the receptive field. Experiments
showed that MultiResCNN performs better than CAML in
most evaluation metrics.

3 PROPOSED APPROACH

Taking as main inspiration the work developed by Duarte
et al. [4], this work presents a novel deep neural network
method for assigning ICD codes to clinical text, specifically
by analyzing the free-text information within hospital dis-
charge summaries. The network includes several tools to
generate representations for textual contents, namely word
embeddings, a hierarchical structure of the recurrent units,
and neural attention. Moreover, several innovative strate-
gies are proposed as extensions over the work from Duarte
et al. [4], such as a multi-label smoothing regularization
strategy, leveraging the hierarchical structure of the ICD
codes. Mechanisms for addressing the data imbalance issue
and for data augmentation were also incorporated. Finally,
different mechanisms for initializing the weights of the final
nodes of the network, and the use of alternative recurrent
units are explored. Fig. 1 illustrates the proposed neural
network architecture, which is detailed in the next sections.

Section 3.1 details the internal structure of the neural
network architecture. Section 3.2 focuses on multi-label
smoothing regularization, loss functions and data augmen-
tation. Section 3.3 presents the different neural attention
mechanisms that were explored. Section 3.4 describes two
distinct approaches for initializing the weights of the final
nodes. Section 3.5 concerns a recently proposed recurrent

unit, namely the Mogrifier LSTM [17], which is also consid-
ered as an alternative recurrent unit.

3.1 A Neural Network Architecture for Automatic ICD
Coding
Inspired on the proposal from Yang et al. [18], posteriorly
extended by Duarte et al. [4], a two-level hierarchical ap-
proach is applied for modelling the input text. Therefore,
the model starts by building representations of each sen-
tence, taking word embeddings as input (word-level), which
are aggregated into an encompassing representation. Then,
those representations generated at the first level are used
as input for the second level (sentence-level). GRUs can be
used at both levels to build the representations, specifically
considering bidirectional arrangements (e.g., bi-GRUs).

The GRU [19] computes a hidden state ht based on the
previous hidden state ht−1 and the current input xt using
two gates: a reset gate rt and an update gate zt, as shown in
Eq. 1. These gates control how the information is updated.
The update gate (Eq. 2) is used to determine how much
past information is kept and how much new information
is added, while the reset gated (Eq. 4) is used to control
access to the previous state. In Eqs. 1-4, h̃t corresponds to
the current new state, W and U are the parameter matrices
for the actual and previous states, respectively, and b is a
bias vector. The function α is the logistic sigmoid function,
and � is the elementwise product.

ht = GRU(xt, ht−1) = (1− zt)� ht−1 + zt � h̃t (1)

zt = σ(Wz × xt + Uz × ht−1 + bz) (2)

h̃t = tanh(Wh × xt + rt � (Uh × ht−1 + bh)) (3)

rt = σ(Wr × xt + Ur × ht−1 + br) (4)

A bi-GRU perceives the context of each input in a se-
quence by outlining the information from both directions
(i.e., left to right and right to left). Therefore, the output at
a position i is based on the concatenation of two output
vectors produced by separate GRUs, taking into account
both past and future, i.e., hit = [

−→
hit,
←−
hit].

The model also includes an attention mechanism at word
and sentence-levels. This way, selective attention is paid to
each word/sentence, i.e., different weights are used for the
elements in the sequence of GRU outputs. At each level,
the outputs hit of the bi-GRU encoder are fed into a feed-
forward node (Eq. 5), resulting in vectors uit representing
words or sentences in the input. The matrixWw corresponds
to the transformation matrix, and bw to a bias term. Then,
the attention weights αit are computed according with Eq.
6, using a context vector uw that is randomly initialized.
These weights are summed over the whole sequence (Eq. 7).
Finally, the vector si, which corresponds to a weighted sum
of the bi-GRU outputs, is taken as the representation of the
input of each level.

uit = tanh(Ww × hit + bw) (5)
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Fig. 1: The proposed neural network architecture.

αit =
exp(uTit × uw)∑
t exp(uTit × uw)

(6)

si =
∑
t

αit × hit (7)

The output of the sentence-level attention layer is con-
catenated with the average of the embeddings for all words
in the input field. The result of the concatenation is finally
passed to a feed-forward output layer, with a number of
nodes that is compatible with the classification task and with
a sigmoid activation function.

3.2 Training Objective

Each discharge summary is usually associated with a set of
ICD codes. Hence, the coding task is formulated as a multi-
label classification problem. This work proposes multi-label
smoothing regularization for better model calibration, i.e.,
aligning the confidence of the model’s predictions with
the accuracies of their predictions [20]. This strategy takes
advantage of the hierarchical structure associated to ICD
codes. Instead of considering a binary value for each ICD
code, i.e., attributing yi = 1 if the code is assigned and
yi = 0 otherwise, the ground-truth considers intermediate
values for the codes belonging to the same blocks as the
identified codes (yi = 0.05). Paying attention to the codes
of the same block may help the network to effectively
distinguish the correct ICD codes together with these high
similarity codes.

The binary cross-entropy (BCE) is used as the loss func-
tion, which is defined as follows:

BCE =
m∑
i

[−yi log(ỹi)− (1− yi) log(1− ỹi)] (8)

In the previous expression, yi and ỹi are, respectively, the
ground-truth and the prediction for the i-th code. All pa-
rameters are learned by minimizing the loss function.

The use of a variant of a dice loss, in combination with
the binary cross-entropy, is also explored in this work, to
address the data-imbalance issue [21], promoting the correct
prediction of the full set of ICD codes associated to each
discharge summary. More specifically, it is considered the
Tversky Loss (TL), an extension of the dice loss, which can
be represented as follows:

TL = 1−
∑m

i yiỹi+γ∑m
i yiỹi+(1−β)

∑m
i yi(1−ỹi)+β

∑m
i (1−yi)ỹi+γ

(9)
In the previous expression, β is chosen such that recall
is considered β times as important as precision and γ is
a factor added for smoothing purposes. Additionally, it is
used a variant of the Tversky loss, namely log-cosh Tversky
Loss (LCTL), which can be defined as:

LCTL = log(cosh(TL)) = log

(
eTL + e−TL

2

)
(10)

With respect to data augmentation, two different strate-
gies are explored. The first one consists of generating new
discharge summaries by mixing the ones that present sim-
ilar content. To do so, the first step is to choose two docu-
ments to be merged. Rather than randomly choosing the two
documents, we first randomly choose one ICD code, and
then two discharge summaries to which that specific code
is assigned. This way, each code has the same probability of
being chosen, and it is least probable to aggravate the data
imbalance issue. Also, since the two discharge summaries
present at least a particular ICD code in common, one
assures that the content is related. After the concatenation of
the two texts, a simple strategy to mix the resulting content
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is performed: a small number of sentences (between two and
four) is selected and randomly introduced in another posi-
tion of the document. The ICD codes of the two instances
are also concatenated, resulting in a new training instance.

The other strategy corresponds to back-translation. This
process is achieved by using Google translate to convert an
original document into a new language, and then taking the
translated document and translate it back into the original
language. Thus, a new document is generated since we
do not achieve exactly the same original text, resulting in
text with a different structure but preserving the semantic
content. This allows the model to pay more attention to
content rather than accessory information (e.g., pronouns
or conjunctions). In this case, for each discharge summary,
five different new documents are obtained, corresponding
to five different languages in which the back-translation
process is performed (Portuguese, Spanish, Italian, French,
and German). The implementation of this strategy relied
on googletrans4. For each discharge summary, the least
similar generated document (considering Jaccard similarity)
is chosen to obtain a dataset as varied as possible. Also,
new document words that are not included in the word
vocabulary from the original training set are substituted by
the most similar word, according to the Jaro-Winkler string
distance metric [22].

3.3 Neural Attention Mechanisms
Regarding the neural attention mechanisms, this work pro-
poses three variants of the approach described by Duarte
et al. [4] and represented in Eqs. 5-7. Focusing on Eq. 5, one
can add a term with a value obtained from the operation
of max pooling over the output hit of the bi-GRU encoder,
which would be given from:

mt = arg max
j
hjt, (11)

The max pooling operation is used to process the vectors
resulting from the sequence into a single d-dimensional
vector by taking the max over each dimension [10]. The
pooling operation can be seen as a feature extractor that
extracts the most important features, where the order of
the features is preserved but not their specific positions. In
this context, this means that at the word and the sentence-
levels, the most salient information across the word and
the sentence sets, respectively, is selected. Including this
term when computing the vectors uit, representing words
or sentences for the attention mechanism as in Eq. 5, one
obtains:

uit = tanh(Ww × hit) + (Wm ×mt) + bw (12)

In the previous expression, Wm is the transformation matrix
associated with max pooling term.

Another possible modification to the simper attention
mechanism is the addition of a term representing the av-
erage of the embeddings for all words in the entire input.
Notice that this differs from an average pooling operation,
in the sense that we are using embeddings for the original
words, instead of the vectors produced by the Recurrent

4https://pypi.org/project/googletrans/

Neural Network (RNN). Given a clinical note withN words,
denoted as X = {x1, x2, ..., xN}, and the word embedding
matrix denoted as E = [e1, ..., eN ]T ∈ RN×de , where de is
the dimension of word embeddings, the average of word
embeddings is represented as follows:

a =
1

N

N∑
i=1

ei (13)

Considering this term for the computation of uit, one
obtains:

uit = tanh(Ww × hit) + (Wa × a) + bw (14)

In the previous expression, Wa is the transformation matrix
associated with the average of embeddings term.

Including both terms in the attention mechanism, one
obtain the following alternative to Eq. 5:

uit = tanh(Ww × hit) + (Wm ×mt) + (Wa × a) + bw (15)

3.4 Initializing the Weights of the Output Nodes
Regarding the initialization of the final nodes in the neural
network, two different methodologies were exploited. As
suggested by Duarte et al. [4], the first technique is based on
a NMF over a label co-occurrence matrix. First, a square
matrix Xm,m is built, being m the dimensionality of the
output layer in the model. Each matrix cell reflects the
number of co-occurrences of a pair of ICD labels in the entire
training set (the diagonal corresponds to the frequency
of the label). In order to reduce the impact of the most
common labels, each entry xi,j of the matrix Xm,m is scaled
with a binary logarithm, log2(1 + xi,j). Then, the NMF is
used to decomposed the Xm,m matrix into a product of
two matrices as Xm,m ≈ Wm,n × Hn,m, where n is the
dimensionality of the output of the node before the final
node. The matrix Hn,m is used as the initialization.

The other methodology for initializing the weights of the
final nodes also leverages the co-occurrences between ICD
codes, taking pretrained label embeddings using the GloVe
model [23] on the label set of the training data.

3.5 Using Mogrifier LSTMs as the Recurrent Units
Alternatively to GRUs, other recurrent units can be used at
both levels of the neural network, namely LSTMs [24]. There
are three gates, it, ft and ot, controlling for input, forget and
output, respectively. The gate values are computed based on
linear combinations of the current input xt and the previous
state ht−1, passed through a sigmoid activation function
(Eqs. 18-20). An update candidate gt (Eq. 21) is computed
as a linear combination of xt and ht−1, passed through an
hyperbolic tangent activation function. The memory compo-
nent ct (Eq. 17) is then updated: the forget gate ft controls
how much of the previous memory to keep, and the input
gate it controls how much of the proposed update to keep.
Finally, the output ht (Eq. 16) is determined based on the
content of the memory ct passed through an hyperbolic
tangent nonlinearity and controlled by the output gate ot.
In Eqs. 18-21, W and U are the parameter matrices for
the actual and previous states, respectively, and b is a bias
vector.
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ht = LSTM(xt, ct, ht−1) = ot � tanh(ct) (16)

ct = ft � ct−1 + it � gt (17)

it = σ(Wi × xt + Ui × ht−1 + bi) (18)

ft = σ(Wf × xt + Uf × ht−1 + bf ) (19)

ot = σ(Wo × xt + Uo × ht−1 + bo) (20)

gt = tanh(Wg × xt + Ug × ht−1 + bg) (21)

In this work, we considered an extension to the orig-
inal LSTM architecture, namely the Mogrifier LSTM [17].
Mogrifier LSTM is a LSTM where two inputs xt and ht−1
modulate one another in an alternating fashion before the
usual LSTM computation takes place, as follows:

MofigierLSTM(xt, ct, ht−1) = LSTM(x↑t , ct, h
↑
t−1) (22)

In the previous expression, the modulated x↑t and h↑t−1 are
defined as the highest indexed xit and hit−1, respectively,
from the interleaved sequences:

xit = 2σ(Qihi−1t−1)� xi−2t , for odd i ∈ [1, ..., r] (23)

hit−1 = 2σ(Rixi−1t )� hi−2t−1, for even i ∈ [1, ..., r] (24)

with x−1t = xt and h0t−1 = ht−1. The number of rounds, r ∈
N, is an hyperparameter. To reduce the number of additional
model parameters, the matrices Qi and Ri can be factorized
as products of low-rank matrices: Qi = QileftQ

i
right with

Qi ∈ Rm×n, Qileft ∈ Rm×k, Qiright ∈ Rk×n, where k <
min(m,n) is the rank.

4 EXPERIMENTAL EVALUATION

This section describes the experimental evaluation of the
proposed method, presenting a statistical characterization of
the dataset, the evaluation metrics, and the obtained results
establishing a comparison between different variants of the
proposed model with the best performance and state-of-the-
art-work on ICD coding.

4.1 Dataset
Following the line of work presented by Mullenbach et al.
[13], the experiments were conducted using the publicly
available MIMIC III dataset [5], which comprises informa-
tion relating to patients admitted to critical care units. We
specifically used the exact same data splits from the work
of Mullenbach et al. [13], which were also used in many
of the subsequent studies in the area. Hospital discharge
summaries were the clinical text considered, as these con-
dense all the information during a patient visit into one
document. In the case of the admissions having addenda

TABLE 1: Descriptive statistics for MIMIC III dataset.

Number of distinct ICD-9-CM codes 8,921
Number of distinct ICD-9-CM blocks 1,158
Number of distinct ICD-9-CM chapters 32

Average number of ICD-9-CM codes per instance 15.9
Average number of ICD-9-CM blocks per instance 13.8
Average number of ICD-9-CM chapters per instance 7.7

Number of discharge summaries in the dataset 52,722
Average number of words per instance 1,513.5
Average number of sentences per instance 109.3
Average number of words per sentence 13.8

Training set vocabulary size 139,096
Number of OOV words in the validation set 3,446
Number of OOV words in the test set 6,579

to their summary, these were concatenated to form a single
document.

Each admission is tagged by human coders with a set of
ICD-9-CM codes, describing both diagnoses and procedures
during the patient visit. There are 8, 921 unique ICD codes
present in the dataset, including 6, 918 diagnosis codes
and 2, 003 procedure codes. The data was split using the
patient ID so that no patient appears on both training and
test sets. Patient visits that contain no assigned diagnoses
or procedures were discarded. Table 1 details the dataset
statistics, considering the three data splits (i.e., training,
validation and test).

Different experiments were conducted on MIMIC III,
using the full-label setting as well as the top-50 most fre-
quent codes, designated from now on as MIMIC-III-full and
MIMIC-III-50, respectively. The MIMIC-III-full experiments
considered a total of 52, 722 discharge summaries, namely
47, 719 for training, 1, 631 for validation and 3, 372 for
testing. MIMIC-III-50 corresponds to a subset of 11, 368
discharge summaries, in which 8, 066, 1, 573 and 1, 729 are
used for training, validation and test sets, respectively.

When preprocessing the data, similarly to previous
works in the area [13, 15, 16], tokens containing no alpha-
betic characters were removed and all tokens were con-
verted to lower case. As described previously, the model
takes a hierarchical structure, building a representation of
each sentence firstly, and then of the sequence of sentences.
Therefore, besides tokenization of the input texts, one more
level of segmentation was carried out, at the sentence-level,
using the spaCy library5. The number of sentences and the
number of words of each sentence were truncated to the
percentile 95 of each parameter over the training set (i.e.,
211 and 27, respectively), reducing the computational cost.
Special tokens determine the beginning and end of each
sentence.

The word vocabulary was generated using only the
training instances, having a vocabulary size of 139, 096
and 58, 452 tokens for MIMIC-III-full and MIMIC-III-50, re-
spectively. Out-Of-Vocabulary (OOV) words included in the
validation and test sets were substituted by the most similar
word on the vocabulary, according to the Jaro-Winkler string
distance metric [22]. As described by Duarte et al. [4] and
confirmed through manual analysis, this approach reduces
the number of misspellings or alternative spellings for a
word, by substituting it for the most similar one.

5https://spacy.io
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Fig. 2: Number of occurrences of the 50 most common ICD-
9-CM codes in the dataset.

One of the main challenges in the ICD coding classifi-
cation task relates to the label distribution being extremely
imbalanced. Most of the codes appear very seldom, while
few codes occur several orders of magnitude more than
others. Note that 5, 233 possible codes occur less than 10
times in the dataset. Fig. 2 shows the distribution for the 50
most common ICD-9-CM codes in the dataset.

Another challenge concerning the multi-label scenario is
the high number of ICD codes assigned to each discharge
summary. Although the average number of unique labels
per instance is 15.9, it is possible to find up to 71 codes
associated with one discharge summary.

4.2 Evaluation Metrics
To establish a fair comparison with prior work, the results
of the proposed model are reported on a variety of metrics,
focusing on micro-averaged and macro-averaged F1, AUC
(Area Under the Curve), and precision at n [13]. Micro-
averaged values treat each pair text-code as a separated
prediction. On the other hand, macro-averaged values are
computed by averaging metrics computed per-label. Preci-
sion at n, denoted as P@n, corresponds to the precision of
the n highest scoring labels, checking if they are present
in the ground truth. We have chosen n = 5 for evaluating
the experiments conducted on MIMIC-III-50, which roughly
corresponds to the average number of codes, and n = 8 and
n = 15 for the experiments with MIMIC-III-full.

4.3 Experiments and Results
The implementation of the model relied mostly on Tensor-
Flow6 deep learning library. Other machine learning and
NLP libraries such as scikit-learn7 or NLTK8 were also
used for specific tasks. The entire model was trained using
the backpropagation algorithm [25] in conjunction with the
Adaptive Moment Estimation (Adam) optimization method
[26], setting its learning rate to the default value of 0.001.
The word embedding layer in the first level of the neural
model and the output dimensionality of the RNNs were
set to 175. The batch size and the maximum number of
epochs were defined as 32 and 50, respectively. An early

6http://tensorflow.org
7http://scikit-learn.org
8http://www.nltk.org

stopping mechanism was also used, in which the training
was stopped if there was no improvement in the loss over
the validation set, in two continuous epochs.

In order to assess the importance of each proposed
feature, different variants of the full model outlined in
Section 3 were evaluated. These alternatives are presented
in this section. Starting from a base model, the following
features were tested: (i) including the multi-label smoothing
regularization; (ii) combining the binary cross-entropy with
the log-cosh Tversky loss; (iii) substituting the regular at-
tention mechanism by other additive attention mechanisms;
(iv) leveraging the label co-occurrences when initializing
the weights of the output nodes; (v) substituting the GRU
by alternative RNN cells, namely the Mogrifier LSTM [17];
(vi) incorporating data augmentation; and (vii) including
pretrained word embeddings. Table 2 presents the results
for the following distinct models:

1) Base Model (BM): the architecture from Duarte
et al. [4], without considering mechanisms for ini-
tializing the weights of the output nodes, and with
randomly initialized word embeddings;

2) BM + MLS: a model like the previous one, including
the proposed multi-label smoothing regularization
method;

3) BM + MLS + LCTL – Best Loss Model (BLM): the
model described above, combining the binary cross-
entropy with the log-cosh Tversky loss;

4) BLM with attention as in Eq. 12: Best Loss Model,
including the max pooling term when computing
the attention weights as in Eq. 12;

5) BLM with attention as in Eq. 14: Best Loss Model,
including the average of embeddings term when
computing the attention weights as in Eq. 14;

6) BLM with attention as in Eq. 15: Best Loss Model,
including both max pooling and average of embed-
dings terms when computing the attention weights
as in Eq. 15;

7) BLM + NMF: Best Loss Model, incorporating the
initialization of the output nodes with basis on the
NMF strategy;

8) BLM + GloVe label embeddings: similar to the
previous one, but considering pretrained label em-
beddings resulting from the GloVe model [23] for
initializing the output nodes;

9) BLM with Mogrifier LSTM: Best Loss Model, sub-
stituting the GRU by the Mogrifier LSTM units;

10) BLM + augmentation: Best Loss Model, including
data augmentation performed through the concate-
nation of similar discharge summaries;

11) BLM + back-translation: similar to the latter, but us-
ing data augmentation through the back-translation
strategy;

12) BLM + back-translation + GloVe word embed-
dings: Best Loss Model, including not only the back-
translation mechanism, but also pretrained word
embeddings using the GloVe method for initializing
the embedding layer.

On what regards the contribution of the multi-label
smoothing regularization, focusing on F1 metrics, one can
verify that this strategy results in an increase of performance
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TABLE 2: Performance metrics for comparison of different models on the MIMIC-III-full dataset. Here and in all the fol-
lowing tables, ”Diag” and ”Proc” denotes the micro-F1 performance on diagnosis and procedure codes only, respectively.
The values in bold represent the best result in each metric.

AUC F1 P@n
Model Macro Micro Macro Micro Diag Proc 8 15

BM 86.2 97.8 2.3 34.5 29.8 49.1 57.2 43.3
BM + MLS 87.0 96.9 2.6 34.6 30.9 47.0 56.8 43.2
BM + MLS + LCTL (BLM) 83.1 95.3 2.7 41.6 37.8 53.4 59.2 44.1

BLM with attention as in Eq. 12 83.1 95.4 2.3 40.5 36.8 52.3 58.1 41.2
BLM with attention as in Eq. 14 83.6 95.7 2.7 41.8 38.2 53.4 59.3 43.8
BLM with attention as in Eq. 15 83.2 95.4 2.7 41.9 38.5 53.2 59.5 42.5

BLM + NMF 84.5 95.5 2.5 41.6 38.4 52.3 59.9 42.8
BLM + GloVe label embeddings 81.5 95.4 2.0 37.3 34.0 48.1 54.7 40.8

BLM with Mogrifier LSTM 81.6 95.5 1.6 33.7 30.2 44.9 48.1 36.3

BLM + augmentation 82.8 95.3 2.6 40.6 36.9 52.5 58.0 43.2
BLM + back-translation 84.2 95.6 3.0 43.5 40.1 54.6 61.1 45.6

BLM + back-trans. + GloVe word emb. 84.5 95.9 3.3 44.7 41.3 55.8 63.2 47.0

(BM + MLS). As already mentioned, this strategy proposes
that codes belonging to the same blocks as the assigned
codes take the value yi = 0.05 (rather than yi = 0). Several
tests were done to optimize this value, considering that
more codes of the same block would be predicted if this
value was higher, resulting in a higher recall. However,
the precision would decrease, leading to a lower F1 score.
Therefore, the value was chosen according to the F1.

Comparing BM + MLS with BM + MLS + LCTL –
Best Loss Model (BLM), it is possible to verify that the
combination of the binary cross-entropy with the log-cosh
Tversky loss represents a significant performance increase,
with better results in F1 (macro and micro-averaged) and
P@n metrics. The weights considered in the loss were 0.9
and 0.1 for the binary cross-entropy and Tversky loss,
respectively, and the hyperparameters β = 0.5 and γ = 1.
These values were also chosen through a initial set of tests.

After defining the loss function, the following tests were
done in parallel in order to evaluate the following features
over the Best Loss Model: different attention mechanisms,
initialization of the weights of the final nodes, substituting
GRUs by Mogrifier LSTMs, and data augmentation.

Analyzing the results obtained when incorporating alter-
native attention mechanisms, the respective models produce
a performance increase, reflected in several metrics. How-
ever, this increase is neither systematic nor very significant,
so the use of these attention mechanisms was deemed as not
compensatory.

Contrary to what was described by Duarte et al. [4],
when considering a multi-label smoothing mechanism that
leverages the hierarchical structure of the ICD codes and in-
cluding the Tversky loss function, the NMF initialization of
the final nodes does not produce better results. Similarly, the
initialization with the pretrained label embeddings resulting
from the GloVe model represents a worse performance. In
this case, different experiments were also conducted in order
to optimize the number training epochs hyperparameter
(finally defined as five). Notice also that the resulting label
embeddings were normalized to have only positive values,
similarly to the NMF strategy.

Regarding the use of an alternative recurrent unit, a
significant decrease of performance is obtained in all metrics

when substituting the GRU by the Mogrifier LSTM. The op-
timal setting described in the original proposal for Mogrifier
LSTMs includes setting the number of rounds r ∈ {5, 6}
and the rank k ∈ [40, ..., 90] [17]. According to this, we
considered r = 5 and k = 65.

With respect to data augmentation, BLM + augmentation
includes new discharge summaries resulting from concate-
nating similar ones from the MIMIC dataset. For each batch
of 32 instances, 8 correspond to new instances. However,
this model produces a decrease in all evaluation metrics.
One possible explanation is that although the concatenated
discharge summaries have at least one ICD code in com-
mon, the content is not as similar as originally envisioned.
Therefore, the combination results in adding noisy data to
the original dataset. On the other hand, when duplicating
the training set through the back-translation strategy (BLM
+ back-translation), one verifies a significant increase in all
evaluation metrics. This process assumes the addition of real
discharge summaries to the dataset, but that have a slightly
different format. Thereby, this allows the model to pay more
attention to content rather than accessory information.

Finally, the BLM + back-translation + GloVe word em-
beddings model corresponds to a combination of the best
ideas and is the one with generally better results, with a
significant performance increase reflected on all metrics,
except AUC. In this case, several experiments were also
taken to optimize the number of training epochs of the
GloVe model, which was determined as 10.

4.4 Comparison with Previous Work

Regarding the MIMIC-III-full experiment, Table 3 shows the
comparison of the proposed work against several previous
works. Specifically, using a label-wise attention mechanism,
CAML [13] produces better performance than previous deep
learning models, based on standard CNNs [27] and bi-GRUs
[19]. However, DR-CAML [13], which includes a description
regularizer, performs worse on most metrics than CAML.
Addressing the fixed window size problem of CAML,
MASATT-KG [15] and MultiResCNN [16] achieve better
results than CAML. The model with the best performance
proposed in this work, BLM + back-translation + Glove
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TABLE 3: Performance metrics for comparison with previous work on the MIMIC-III-full dataset.

AUC F1 P@n
Model Macro Micro Macro Micro Diag Proc 8 15

CNN [27] 80.6 96.9 4.2 41.9 40.2 49.1 58.1 44.3
Bi-GRU [19] 82.2 97.1 3.8 41.7 39.3 51.4 58.5 44.5
CAML [13] 89.5 98.6 8.8 53.9 52.4 60.9 70.9 56.1
DR-CAML [13] 89.7 98.5 8.6 52.9 51.5 59.5 69.0 54.8
MSATT-KG [15] 91.0 99.2 9.0 55.3 – – 72.8 58.1
MultiResCNN [16] 91.0 98.6 8.5 55.2 – – 73.4 58.4

BLM + back-trans. + GloVe word emb. 84.5 95.9 3.3 44.7 41.3 55.8 63.2 47.0

TABLE 4: Performance metrics for comparison with previous work on the MIIMC-III-50 dataset.

AUC F1
Model Macro Micro Macro Micro P@5

C-Mem-NN [11] 83.3 – – – 42.0
C-LSTM-Att [12] – 90.0 – 53.2 –
CNN [27] 87.6 90.7 57.6 62.5 62.0
Bi-GRU [19] 82.8 86.8 48.4 54.9 59.1
LEAM [28] 88.1 91.2 54.0 61.9 61.2
CAML [13] 87.5 90.9 53.2 61.4 60.9
DR-CAML [13] 88.4 91.6 57.6 63.3 61.8
MSATT-KG [15] 91.4 93.6 63.8 68.4 64.4
MultiResCNN [16] 89.9 92.8 60.6 67.0 64.1

BLM + back-trans. + GloVe word emb. 85.2 88.7 48.2 55.1 56.4

word embeddings, when compared to standard CNNs and
bi-GRUs, produces higher results in the macro-AUC, micro-
F1, and P@n metrics, while achieving lower micro-AUC and
macro-F1. In particular, this model improves the macro-
AUC by 2.3%, micro-F1 by 3.0%, P@8 by 4.7%, and P@15
by 2.5% comparing to the used of standard bi-GRU.

In turn, Table 4 shows the results on the MIMIC-III-
50 dataset. The proposed model, compared to C-Mem-NN
[11], produces notable improvements of 1.9% and 14.4% in
macro-AUC and P@5, respectively. When compared to C-
LSTM-Att [12], it also produces an improvement of 1.9%
in micro-F1. Finally, comparing with a standard bi-GRU, it
achieves a improvement of 2.4%, 1.9% and 0.2% in macro-
AUC, micro-AUC and micro-F1, respectively.

5 CONCLUSIONS AND FUTURE WORK

This work presented a deep learning method for automati-
cally assigning ICD codes to clinical text, using hospital dis-
charge summaries as a case study. Experiments conducted
on the benchmark MIMIC III dataset [5] showed that the
model with the best performance proposed in this work
outperforms several deep learning models in most per-
formance metrics. Furthermore, experimental results with
different variants of the full model attest to the contribution
of distinct model features, namely the proposed multi-label
smoothing regularization, the use of the log-cosh Tversky
loss together with the binary cross-entropy, data augmen-
tation resulting from the back-translation mechanism, and
pretrained word embeddings using the GloVe model [23].
We argue that this model has the potential to be integrated
into existing coding platforms as a recommendation system,
reducing the involvement of medical coders in the ICD
coding.

The proposed model does not present any constraints or
specifications regarding the classification system used or the

clinical text taken as input, and can be used in any similar
classification task. Therefore, considering the application of
this work to real data from a Portuguese hospital rather
than on a database such as MIMIC III, only a few adaptions
would have to be made. The language difference would
not be an obstacle since the model does not use external
knowledge (e.g., large external datasets for pretraining word
embeddings). Even though the model is very flexible, some
limitations would be faced if a dataset different from MIMIC
was used. For instance, the codes included in the MIMIC III
dataset correspond to ICD-9-CM. The Ninth Revision differs
significantly from the Tenth Revision, which is much more
specific and comprises about 10 times more codes, resulting
in a more large and sparse label set and making the coding
task more difficult.

In order to improve the model performance, many op-
tions can be taken into account for future work. For instance,
one major difficulty when developing deep learning meth-
ods for large-scale multi-label text classification problems,
particularly for automatic ICD coding, is predicting infre-
quent or unseen labels. Thus, the investigation of few-shot
or zero-shot learning problems is crucial. Recent work has
already addressed this issue, to some degree, focusing on
the ICD code descriptions and exploring the hierarchical
structure [29, 30].
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